Merge tag 'dax-fixes-4.20-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[platform/kernel/linux-rpi.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125                 struct page **pagep, enum sgp_type sgp,
126                 gfp_t gfp, struct vm_area_struct *vma,
127                 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130                 struct page **pagep, enum sgp_type sgp)
131 {
132         return shmem_getpage_gfp(inode, index, pagep, sgp,
133                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_NORESERVE) ?
150                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (!(flags & VM_NORESERVE))
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160                 loff_t oldsize, loff_t newsize)
161 {
162         if (!(flags & VM_NORESERVE)) {
163                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164                         return security_vm_enough_memory_mm(current->mm,
165                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
166                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168         }
169         return 0;
170 }
171
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180         if (!(flags & VM_NORESERVE))
181                 return 0;
182
183         return security_vm_enough_memory_mm(current->mm,
184                         pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189         if (flags & VM_NORESERVE)
190                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195         struct shmem_inode_info *info = SHMEM_I(inode);
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198         if (shmem_acct_block(info->flags, pages))
199                 return false;
200
201         if (sbinfo->max_blocks) {
202                 if (percpu_counter_compare(&sbinfo->used_blocks,
203                                            sbinfo->max_blocks - pages) > 0)
204                         goto unacct;
205                 percpu_counter_add(&sbinfo->used_blocks, pages);
206         }
207
208         return true;
209
210 unacct:
211         shmem_unacct_blocks(info->flags, pages);
212         return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (sbinfo->max_blocks)
221                 percpu_counter_sub(&sbinfo->used_blocks, pages);
222         shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236         return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245         if (sbinfo->max_inodes) {
246                 spin_lock(&sbinfo->stat_lock);
247                 if (!sbinfo->free_inodes) {
248                         spin_unlock(&sbinfo->stat_lock);
249                         return -ENOSPC;
250                 }
251                 sbinfo->free_inodes--;
252                 spin_unlock(&sbinfo->stat_lock);
253         }
254         return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260         if (sbinfo->max_inodes) {
261                 spin_lock(&sbinfo->stat_lock);
262                 sbinfo->free_inodes++;
263                 spin_unlock(&sbinfo->stat_lock);
264         }
265 }
266
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         long freed;
283
284         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285         if (freed > 0) {
286                 info->alloced -= freed;
287                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288                 shmem_inode_unacct_blocks(inode, freed);
289         }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         unsigned long flags;
296
297         if (!shmem_inode_acct_block(inode, pages))
298                 return false;
299
300         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301         inode->i_mapping->nrpages += pages;
302
303         spin_lock_irqsave(&info->lock, flags);
304         info->alloced += pages;
305         inode->i_blocks += pages * BLOCKS_PER_PAGE;
306         shmem_recalc_inode(inode);
307         spin_unlock_irqrestore(&info->lock, flags);
308
309         return true;
310 }
311
312 void shmem_uncharge(struct inode *inode, long pages)
313 {
314         struct shmem_inode_info *info = SHMEM_I(inode);
315         unsigned long flags;
316
317         /* nrpages adjustment done by __delete_from_page_cache() or caller */
318
319         spin_lock_irqsave(&info->lock, flags);
320         info->alloced -= pages;
321         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322         shmem_recalc_inode(inode);
323         spin_unlock_irqrestore(&info->lock, flags);
324
325         shmem_inode_unacct_blocks(inode, pages);
326 }
327
328 /*
329  * Replace item expected in xarray by a new item, while holding xa_lock.
330  */
331 static int shmem_replace_entry(struct address_space *mapping,
332                         pgoff_t index, void *expected, void *replacement)
333 {
334         XA_STATE(xas, &mapping->i_pages, index);
335         void *item;
336
337         VM_BUG_ON(!expected);
338         VM_BUG_ON(!replacement);
339         item = xas_load(&xas);
340         if (item != expected)
341                 return -ENOENT;
342         xas_store(&xas, replacement);
343         return 0;
344 }
345
346 /*
347  * Sometimes, before we decide whether to proceed or to fail, we must check
348  * that an entry was not already brought back from swap by a racing thread.
349  *
350  * Checking page is not enough: by the time a SwapCache page is locked, it
351  * might be reused, and again be SwapCache, using the same swap as before.
352  */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354                                pgoff_t index, swp_entry_t swap)
355 {
356         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
357 }
358
359 /*
360  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
361  *
362  * SHMEM_HUGE_NEVER:
363  *      disables huge pages for the mount;
364  * SHMEM_HUGE_ALWAYS:
365  *      enables huge pages for the mount;
366  * SHMEM_HUGE_WITHIN_SIZE:
367  *      only allocate huge pages if the page will be fully within i_size,
368  *      also respect fadvise()/madvise() hints;
369  * SHMEM_HUGE_ADVISE:
370  *      only allocate huge pages if requested with fadvise()/madvise();
371  */
372
373 #define SHMEM_HUGE_NEVER        0
374 #define SHMEM_HUGE_ALWAYS       1
375 #define SHMEM_HUGE_WITHIN_SIZE  2
376 #define SHMEM_HUGE_ADVISE       3
377
378 /*
379  * Special values.
380  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
381  *
382  * SHMEM_HUGE_DENY:
383  *      disables huge on shm_mnt and all mounts, for emergency use;
384  * SHMEM_HUGE_FORCE:
385  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
386  *
387  */
388 #define SHMEM_HUGE_DENY         (-1)
389 #define SHMEM_HUGE_FORCE        (-2)
390
391 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
392 /* ifdef here to avoid bloating shmem.o when not necessary */
393
394 static int shmem_huge __read_mostly;
395
396 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
397 static int shmem_parse_huge(const char *str)
398 {
399         if (!strcmp(str, "never"))
400                 return SHMEM_HUGE_NEVER;
401         if (!strcmp(str, "always"))
402                 return SHMEM_HUGE_ALWAYS;
403         if (!strcmp(str, "within_size"))
404                 return SHMEM_HUGE_WITHIN_SIZE;
405         if (!strcmp(str, "advise"))
406                 return SHMEM_HUGE_ADVISE;
407         if (!strcmp(str, "deny"))
408                 return SHMEM_HUGE_DENY;
409         if (!strcmp(str, "force"))
410                 return SHMEM_HUGE_FORCE;
411         return -EINVAL;
412 }
413
414 static const char *shmem_format_huge(int huge)
415 {
416         switch (huge) {
417         case SHMEM_HUGE_NEVER:
418                 return "never";
419         case SHMEM_HUGE_ALWAYS:
420                 return "always";
421         case SHMEM_HUGE_WITHIN_SIZE:
422                 return "within_size";
423         case SHMEM_HUGE_ADVISE:
424                 return "advise";
425         case SHMEM_HUGE_DENY:
426                 return "deny";
427         case SHMEM_HUGE_FORCE:
428                 return "force";
429         default:
430                 VM_BUG_ON(1);
431                 return "bad_val";
432         }
433 }
434 #endif
435
436 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
437                 struct shrink_control *sc, unsigned long nr_to_split)
438 {
439         LIST_HEAD(list), *pos, *next;
440         LIST_HEAD(to_remove);
441         struct inode *inode;
442         struct shmem_inode_info *info;
443         struct page *page;
444         unsigned long batch = sc ? sc->nr_to_scan : 128;
445         int removed = 0, split = 0;
446
447         if (list_empty(&sbinfo->shrinklist))
448                 return SHRINK_STOP;
449
450         spin_lock(&sbinfo->shrinklist_lock);
451         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
452                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
453
454                 /* pin the inode */
455                 inode = igrab(&info->vfs_inode);
456
457                 /* inode is about to be evicted */
458                 if (!inode) {
459                         list_del_init(&info->shrinklist);
460                         removed++;
461                         goto next;
462                 }
463
464                 /* Check if there's anything to gain */
465                 if (round_up(inode->i_size, PAGE_SIZE) ==
466                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
467                         list_move(&info->shrinklist, &to_remove);
468                         removed++;
469                         goto next;
470                 }
471
472                 list_move(&info->shrinklist, &list);
473 next:
474                 if (!--batch)
475                         break;
476         }
477         spin_unlock(&sbinfo->shrinklist_lock);
478
479         list_for_each_safe(pos, next, &to_remove) {
480                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
481                 inode = &info->vfs_inode;
482                 list_del_init(&info->shrinklist);
483                 iput(inode);
484         }
485
486         list_for_each_safe(pos, next, &list) {
487                 int ret;
488
489                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490                 inode = &info->vfs_inode;
491
492                 if (nr_to_split && split >= nr_to_split)
493                         goto leave;
494
495                 page = find_get_page(inode->i_mapping,
496                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
497                 if (!page)
498                         goto drop;
499
500                 /* No huge page at the end of the file: nothing to split */
501                 if (!PageTransHuge(page)) {
502                         put_page(page);
503                         goto drop;
504                 }
505
506                 /*
507                  * Leave the inode on the list if we failed to lock
508                  * the page at this time.
509                  *
510                  * Waiting for the lock may lead to deadlock in the
511                  * reclaim path.
512                  */
513                 if (!trylock_page(page)) {
514                         put_page(page);
515                         goto leave;
516                 }
517
518                 ret = split_huge_page(page);
519                 unlock_page(page);
520                 put_page(page);
521
522                 /* If split failed leave the inode on the list */
523                 if (ret)
524                         goto leave;
525
526                 split++;
527 drop:
528                 list_del_init(&info->shrinklist);
529                 removed++;
530 leave:
531                 iput(inode);
532         }
533
534         spin_lock(&sbinfo->shrinklist_lock);
535         list_splice_tail(&list, &sbinfo->shrinklist);
536         sbinfo->shrinklist_len -= removed;
537         spin_unlock(&sbinfo->shrinklist_lock);
538
539         return split;
540 }
541
542 static long shmem_unused_huge_scan(struct super_block *sb,
543                 struct shrink_control *sc)
544 {
545         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
546
547         if (!READ_ONCE(sbinfo->shrinklist_len))
548                 return SHRINK_STOP;
549
550         return shmem_unused_huge_shrink(sbinfo, sc, 0);
551 }
552
553 static long shmem_unused_huge_count(struct super_block *sb,
554                 struct shrink_control *sc)
555 {
556         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
557         return READ_ONCE(sbinfo->shrinklist_len);
558 }
559 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
560
561 #define shmem_huge SHMEM_HUGE_DENY
562
563 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
564                 struct shrink_control *sc, unsigned long nr_to_split)
565 {
566         return 0;
567 }
568 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569
570 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
571 {
572         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
573             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
574             shmem_huge != SHMEM_HUGE_DENY)
575                 return true;
576         return false;
577 }
578
579 /*
580  * Like add_to_page_cache_locked, but error if expected item has gone.
581  */
582 static int shmem_add_to_page_cache(struct page *page,
583                                    struct address_space *mapping,
584                                    pgoff_t index, void *expected, gfp_t gfp)
585 {
586         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
587         unsigned long i = 0;
588         unsigned long nr = 1UL << compound_order(page);
589
590         VM_BUG_ON_PAGE(PageTail(page), page);
591         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
592         VM_BUG_ON_PAGE(!PageLocked(page), page);
593         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
594         VM_BUG_ON(expected && PageTransHuge(page));
595
596         page_ref_add(page, nr);
597         page->mapping = mapping;
598         page->index = index;
599
600         do {
601                 void *entry;
602                 xas_lock_irq(&xas);
603                 entry = xas_find_conflict(&xas);
604                 if (entry != expected)
605                         xas_set_err(&xas, -EEXIST);
606                 xas_create_range(&xas);
607                 if (xas_error(&xas))
608                         goto unlock;
609 next:
610                 xas_store(&xas, page + i);
611                 if (++i < nr) {
612                         xas_next(&xas);
613                         goto next;
614                 }
615                 if (PageTransHuge(page)) {
616                         count_vm_event(THP_FILE_ALLOC);
617                         __inc_node_page_state(page, NR_SHMEM_THPS);
618                 }
619                 mapping->nrpages += nr;
620                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
622 unlock:
623                 xas_unlock_irq(&xas);
624         } while (xas_nomem(&xas, gfp));
625
626         if (xas_error(&xas)) {
627                 page->mapping = NULL;
628                 page_ref_sub(page, nr);
629                 return xas_error(&xas);
630         }
631
632         return 0;
633 }
634
635 /*
636  * Like delete_from_page_cache, but substitutes swap for page.
637  */
638 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
639 {
640         struct address_space *mapping = page->mapping;
641         int error;
642
643         VM_BUG_ON_PAGE(PageCompound(page), page);
644
645         xa_lock_irq(&mapping->i_pages);
646         error = shmem_replace_entry(mapping, page->index, page, radswap);
647         page->mapping = NULL;
648         mapping->nrpages--;
649         __dec_node_page_state(page, NR_FILE_PAGES);
650         __dec_node_page_state(page, NR_SHMEM);
651         xa_unlock_irq(&mapping->i_pages);
652         put_page(page);
653         BUG_ON(error);
654 }
655
656 /*
657  * Remove swap entry from page cache, free the swap and its page cache.
658  */
659 static int shmem_free_swap(struct address_space *mapping,
660                            pgoff_t index, void *radswap)
661 {
662         void *old;
663
664         xa_lock_irq(&mapping->i_pages);
665         old = __xa_cmpxchg(&mapping->i_pages, index, radswap, NULL, 0);
666         xa_unlock_irq(&mapping->i_pages);
667         if (old != radswap)
668                 return -ENOENT;
669         free_swap_and_cache(radix_to_swp_entry(radswap));
670         return 0;
671 }
672
673 /*
674  * Determine (in bytes) how many of the shmem object's pages mapped by the
675  * given offsets are swapped out.
676  *
677  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
678  * as long as the inode doesn't go away and racy results are not a problem.
679  */
680 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
681                                                 pgoff_t start, pgoff_t end)
682 {
683         XA_STATE(xas, &mapping->i_pages, start);
684         struct page *page;
685         unsigned long swapped = 0;
686
687         rcu_read_lock();
688         xas_for_each(&xas, page, end - 1) {
689                 if (xas_retry(&xas, page))
690                         continue;
691                 if (xa_is_value(page))
692                         swapped++;
693
694                 if (need_resched()) {
695                         xas_pause(&xas);
696                         cond_resched_rcu();
697                 }
698         }
699
700         rcu_read_unlock();
701
702         return swapped << PAGE_SHIFT;
703 }
704
705 /*
706  * Determine (in bytes) how many of the shmem object's pages mapped by the
707  * given vma is swapped out.
708  *
709  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
710  * as long as the inode doesn't go away and racy results are not a problem.
711  */
712 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
713 {
714         struct inode *inode = file_inode(vma->vm_file);
715         struct shmem_inode_info *info = SHMEM_I(inode);
716         struct address_space *mapping = inode->i_mapping;
717         unsigned long swapped;
718
719         /* Be careful as we don't hold info->lock */
720         swapped = READ_ONCE(info->swapped);
721
722         /*
723          * The easier cases are when the shmem object has nothing in swap, or
724          * the vma maps it whole. Then we can simply use the stats that we
725          * already track.
726          */
727         if (!swapped)
728                 return 0;
729
730         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
731                 return swapped << PAGE_SHIFT;
732
733         /* Here comes the more involved part */
734         return shmem_partial_swap_usage(mapping,
735                         linear_page_index(vma, vma->vm_start),
736                         linear_page_index(vma, vma->vm_end));
737 }
738
739 /*
740  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
741  */
742 void shmem_unlock_mapping(struct address_space *mapping)
743 {
744         struct pagevec pvec;
745         pgoff_t indices[PAGEVEC_SIZE];
746         pgoff_t index = 0;
747
748         pagevec_init(&pvec);
749         /*
750          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
751          */
752         while (!mapping_unevictable(mapping)) {
753                 /*
754                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
755                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
756                  */
757                 pvec.nr = find_get_entries(mapping, index,
758                                            PAGEVEC_SIZE, pvec.pages, indices);
759                 if (!pvec.nr)
760                         break;
761                 index = indices[pvec.nr - 1] + 1;
762                 pagevec_remove_exceptionals(&pvec);
763                 check_move_unevictable_pages(pvec.pages, pvec.nr);
764                 pagevec_release(&pvec);
765                 cond_resched();
766         }
767 }
768
769 /*
770  * Remove range of pages and swap entries from page cache, and free them.
771  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
772  */
773 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
774                                                                  bool unfalloc)
775 {
776         struct address_space *mapping = inode->i_mapping;
777         struct shmem_inode_info *info = SHMEM_I(inode);
778         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
779         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
780         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
781         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
782         struct pagevec pvec;
783         pgoff_t indices[PAGEVEC_SIZE];
784         long nr_swaps_freed = 0;
785         pgoff_t index;
786         int i;
787
788         if (lend == -1)
789                 end = -1;       /* unsigned, so actually very big */
790
791         pagevec_init(&pvec);
792         index = start;
793         while (index < end) {
794                 pvec.nr = find_get_entries(mapping, index,
795                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
796                         pvec.pages, indices);
797                 if (!pvec.nr)
798                         break;
799                 for (i = 0; i < pagevec_count(&pvec); i++) {
800                         struct page *page = pvec.pages[i];
801
802                         index = indices[i];
803                         if (index >= end)
804                                 break;
805
806                         if (xa_is_value(page)) {
807                                 if (unfalloc)
808                                         continue;
809                                 nr_swaps_freed += !shmem_free_swap(mapping,
810                                                                 index, page);
811                                 continue;
812                         }
813
814                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
815
816                         if (!trylock_page(page))
817                                 continue;
818
819                         if (PageTransTail(page)) {
820                                 /* Middle of THP: zero out the page */
821                                 clear_highpage(page);
822                                 unlock_page(page);
823                                 continue;
824                         } else if (PageTransHuge(page)) {
825                                 if (index == round_down(end, HPAGE_PMD_NR)) {
826                                         /*
827                                          * Range ends in the middle of THP:
828                                          * zero out the page
829                                          */
830                                         clear_highpage(page);
831                                         unlock_page(page);
832                                         continue;
833                                 }
834                                 index += HPAGE_PMD_NR - 1;
835                                 i += HPAGE_PMD_NR - 1;
836                         }
837
838                         if (!unfalloc || !PageUptodate(page)) {
839                                 VM_BUG_ON_PAGE(PageTail(page), page);
840                                 if (page_mapping(page) == mapping) {
841                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
842                                         truncate_inode_page(mapping, page);
843                                 }
844                         }
845                         unlock_page(page);
846                 }
847                 pagevec_remove_exceptionals(&pvec);
848                 pagevec_release(&pvec);
849                 cond_resched();
850                 index++;
851         }
852
853         if (partial_start) {
854                 struct page *page = NULL;
855                 shmem_getpage(inode, start - 1, &page, SGP_READ);
856                 if (page) {
857                         unsigned int top = PAGE_SIZE;
858                         if (start > end) {
859                                 top = partial_end;
860                                 partial_end = 0;
861                         }
862                         zero_user_segment(page, partial_start, top);
863                         set_page_dirty(page);
864                         unlock_page(page);
865                         put_page(page);
866                 }
867         }
868         if (partial_end) {
869                 struct page *page = NULL;
870                 shmem_getpage(inode, end, &page, SGP_READ);
871                 if (page) {
872                         zero_user_segment(page, 0, partial_end);
873                         set_page_dirty(page);
874                         unlock_page(page);
875                         put_page(page);
876                 }
877         }
878         if (start >= end)
879                 return;
880
881         index = start;
882         while (index < end) {
883                 cond_resched();
884
885                 pvec.nr = find_get_entries(mapping, index,
886                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
887                                 pvec.pages, indices);
888                 if (!pvec.nr) {
889                         /* If all gone or hole-punch or unfalloc, we're done */
890                         if (index == start || end != -1)
891                                 break;
892                         /* But if truncating, restart to make sure all gone */
893                         index = start;
894                         continue;
895                 }
896                 for (i = 0; i < pagevec_count(&pvec); i++) {
897                         struct page *page = pvec.pages[i];
898
899                         index = indices[i];
900                         if (index >= end)
901                                 break;
902
903                         if (xa_is_value(page)) {
904                                 if (unfalloc)
905                                         continue;
906                                 if (shmem_free_swap(mapping, index, page)) {
907                                         /* Swap was replaced by page: retry */
908                                         index--;
909                                         break;
910                                 }
911                                 nr_swaps_freed++;
912                                 continue;
913                         }
914
915                         lock_page(page);
916
917                         if (PageTransTail(page)) {
918                                 /* Middle of THP: zero out the page */
919                                 clear_highpage(page);
920                                 unlock_page(page);
921                                 /*
922                                  * Partial thp truncate due 'start' in middle
923                                  * of THP: don't need to look on these pages
924                                  * again on !pvec.nr restart.
925                                  */
926                                 if (index != round_down(end, HPAGE_PMD_NR))
927                                         start++;
928                                 continue;
929                         } else if (PageTransHuge(page)) {
930                                 if (index == round_down(end, HPAGE_PMD_NR)) {
931                                         /*
932                                          * Range ends in the middle of THP:
933                                          * zero out the page
934                                          */
935                                         clear_highpage(page);
936                                         unlock_page(page);
937                                         continue;
938                                 }
939                                 index += HPAGE_PMD_NR - 1;
940                                 i += HPAGE_PMD_NR - 1;
941                         }
942
943                         if (!unfalloc || !PageUptodate(page)) {
944                                 VM_BUG_ON_PAGE(PageTail(page), page);
945                                 if (page_mapping(page) == mapping) {
946                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
947                                         truncate_inode_page(mapping, page);
948                                 } else {
949                                         /* Page was replaced by swap: retry */
950                                         unlock_page(page);
951                                         index--;
952                                         break;
953                                 }
954                         }
955                         unlock_page(page);
956                 }
957                 pagevec_remove_exceptionals(&pvec);
958                 pagevec_release(&pvec);
959                 index++;
960         }
961
962         spin_lock_irq(&info->lock);
963         info->swapped -= nr_swaps_freed;
964         shmem_recalc_inode(inode);
965         spin_unlock_irq(&info->lock);
966 }
967
968 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
969 {
970         shmem_undo_range(inode, lstart, lend, false);
971         inode->i_ctime = inode->i_mtime = current_time(inode);
972 }
973 EXPORT_SYMBOL_GPL(shmem_truncate_range);
974
975 static int shmem_getattr(const struct path *path, struct kstat *stat,
976                          u32 request_mask, unsigned int query_flags)
977 {
978         struct inode *inode = path->dentry->d_inode;
979         struct shmem_inode_info *info = SHMEM_I(inode);
980         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
981
982         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
983                 spin_lock_irq(&info->lock);
984                 shmem_recalc_inode(inode);
985                 spin_unlock_irq(&info->lock);
986         }
987         generic_fillattr(inode, stat);
988
989         if (is_huge_enabled(sb_info))
990                 stat->blksize = HPAGE_PMD_SIZE;
991
992         return 0;
993 }
994
995 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
996 {
997         struct inode *inode = d_inode(dentry);
998         struct shmem_inode_info *info = SHMEM_I(inode);
999         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1000         int error;
1001
1002         error = setattr_prepare(dentry, attr);
1003         if (error)
1004                 return error;
1005
1006         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1007                 loff_t oldsize = inode->i_size;
1008                 loff_t newsize = attr->ia_size;
1009
1010                 /* protected by i_mutex */
1011                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1012                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1013                         return -EPERM;
1014
1015                 if (newsize != oldsize) {
1016                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1017                                         oldsize, newsize);
1018                         if (error)
1019                                 return error;
1020                         i_size_write(inode, newsize);
1021                         inode->i_ctime = inode->i_mtime = current_time(inode);
1022                 }
1023                 if (newsize <= oldsize) {
1024                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1025                         if (oldsize > holebegin)
1026                                 unmap_mapping_range(inode->i_mapping,
1027                                                         holebegin, 0, 1);
1028                         if (info->alloced)
1029                                 shmem_truncate_range(inode,
1030                                                         newsize, (loff_t)-1);
1031                         /* unmap again to remove racily COWed private pages */
1032                         if (oldsize > holebegin)
1033                                 unmap_mapping_range(inode->i_mapping,
1034                                                         holebegin, 0, 1);
1035
1036                         /*
1037                          * Part of the huge page can be beyond i_size: subject
1038                          * to shrink under memory pressure.
1039                          */
1040                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1041                                 spin_lock(&sbinfo->shrinklist_lock);
1042                                 /*
1043                                  * _careful to defend against unlocked access to
1044                                  * ->shrink_list in shmem_unused_huge_shrink()
1045                                  */
1046                                 if (list_empty_careful(&info->shrinklist)) {
1047                                         list_add_tail(&info->shrinklist,
1048                                                         &sbinfo->shrinklist);
1049                                         sbinfo->shrinklist_len++;
1050                                 }
1051                                 spin_unlock(&sbinfo->shrinklist_lock);
1052                         }
1053                 }
1054         }
1055
1056         setattr_copy(inode, attr);
1057         if (attr->ia_valid & ATTR_MODE)
1058                 error = posix_acl_chmod(inode, inode->i_mode);
1059         return error;
1060 }
1061
1062 static void shmem_evict_inode(struct inode *inode)
1063 {
1064         struct shmem_inode_info *info = SHMEM_I(inode);
1065         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1066
1067         if (inode->i_mapping->a_ops == &shmem_aops) {
1068                 shmem_unacct_size(info->flags, inode->i_size);
1069                 inode->i_size = 0;
1070                 shmem_truncate_range(inode, 0, (loff_t)-1);
1071                 if (!list_empty(&info->shrinklist)) {
1072                         spin_lock(&sbinfo->shrinklist_lock);
1073                         if (!list_empty(&info->shrinklist)) {
1074                                 list_del_init(&info->shrinklist);
1075                                 sbinfo->shrinklist_len--;
1076                         }
1077                         spin_unlock(&sbinfo->shrinklist_lock);
1078                 }
1079                 if (!list_empty(&info->swaplist)) {
1080                         mutex_lock(&shmem_swaplist_mutex);
1081                         list_del_init(&info->swaplist);
1082                         mutex_unlock(&shmem_swaplist_mutex);
1083                 }
1084         }
1085
1086         simple_xattrs_free(&info->xattrs);
1087         WARN_ON(inode->i_blocks);
1088         shmem_free_inode(inode->i_sb);
1089         clear_inode(inode);
1090 }
1091
1092 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1093 {
1094         XA_STATE(xas, xa, 0);
1095         unsigned int checked = 0;
1096         void *entry;
1097
1098         rcu_read_lock();
1099         xas_for_each(&xas, entry, ULONG_MAX) {
1100                 if (xas_retry(&xas, entry))
1101                         continue;
1102                 if (entry == item)
1103                         break;
1104                 checked++;
1105                 if ((checked % XA_CHECK_SCHED) != 0)
1106                         continue;
1107                 xas_pause(&xas);
1108                 cond_resched_rcu();
1109         }
1110         rcu_read_unlock();
1111
1112         return entry ? xas.xa_index : -1;
1113 }
1114
1115 /*
1116  * If swap found in inode, free it and move page from swapcache to filecache.
1117  */
1118 static int shmem_unuse_inode(struct shmem_inode_info *info,
1119                              swp_entry_t swap, struct page **pagep)
1120 {
1121         struct address_space *mapping = info->vfs_inode.i_mapping;
1122         void *radswap;
1123         pgoff_t index;
1124         gfp_t gfp;
1125         int error = 0;
1126
1127         radswap = swp_to_radix_entry(swap);
1128         index = find_swap_entry(&mapping->i_pages, radswap);
1129         if (index == -1)
1130                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1131
1132         /*
1133          * Move _head_ to start search for next from here.
1134          * But be careful: shmem_evict_inode checks list_empty without taking
1135          * mutex, and there's an instant in list_move_tail when info->swaplist
1136          * would appear empty, if it were the only one on shmem_swaplist.
1137          */
1138         if (shmem_swaplist.next != &info->swaplist)
1139                 list_move_tail(&shmem_swaplist, &info->swaplist);
1140
1141         gfp = mapping_gfp_mask(mapping);
1142         if (shmem_should_replace_page(*pagep, gfp)) {
1143                 mutex_unlock(&shmem_swaplist_mutex);
1144                 error = shmem_replace_page(pagep, gfp, info, index);
1145                 mutex_lock(&shmem_swaplist_mutex);
1146                 /*
1147                  * We needed to drop mutex to make that restrictive page
1148                  * allocation, but the inode might have been freed while we
1149                  * dropped it: although a racing shmem_evict_inode() cannot
1150                  * complete without emptying the page cache, our page lock
1151                  * on this swapcache page is not enough to prevent that -
1152                  * free_swap_and_cache() of our swap entry will only
1153                  * trylock_page(), removing swap from page cache whatever.
1154                  *
1155                  * We must not proceed to shmem_add_to_page_cache() if the
1156                  * inode has been freed, but of course we cannot rely on
1157                  * inode or mapping or info to check that.  However, we can
1158                  * safely check if our swap entry is still in use (and here
1159                  * it can't have got reused for another page): if it's still
1160                  * in use, then the inode cannot have been freed yet, and we
1161                  * can safely proceed (if it's no longer in use, that tells
1162                  * nothing about the inode, but we don't need to unuse swap).
1163                  */
1164                 if (!page_swapcount(*pagep))
1165                         error = -ENOENT;
1166         }
1167
1168         /*
1169          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1170          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1171          * beneath us (pagelock doesn't help until the page is in pagecache).
1172          */
1173         if (!error)
1174                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1175                                                 radswap, gfp);
1176         if (error != -ENOMEM) {
1177                 /*
1178                  * Truncation and eviction use free_swap_and_cache(), which
1179                  * only does trylock page: if we raced, best clean up here.
1180                  */
1181                 delete_from_swap_cache(*pagep);
1182                 set_page_dirty(*pagep);
1183                 if (!error) {
1184                         spin_lock_irq(&info->lock);
1185                         info->swapped--;
1186                         spin_unlock_irq(&info->lock);
1187                         swap_free(swap);
1188                 }
1189         }
1190         return error;
1191 }
1192
1193 /*
1194  * Search through swapped inodes to find and replace swap by page.
1195  */
1196 int shmem_unuse(swp_entry_t swap, struct page *page)
1197 {
1198         struct list_head *this, *next;
1199         struct shmem_inode_info *info;
1200         struct mem_cgroup *memcg;
1201         int error = 0;
1202
1203         /*
1204          * There's a faint possibility that swap page was replaced before
1205          * caller locked it: caller will come back later with the right page.
1206          */
1207         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1208                 goto out;
1209
1210         /*
1211          * Charge page using GFP_KERNEL while we can wait, before taking
1212          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1213          * Charged back to the user (not to caller) when swap account is used.
1214          */
1215         error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1216                                             &memcg, false);
1217         if (error)
1218                 goto out;
1219         /* No memory allocation: swap entry occupies the slot for the page */
1220         error = -EAGAIN;
1221
1222         mutex_lock(&shmem_swaplist_mutex);
1223         list_for_each_safe(this, next, &shmem_swaplist) {
1224                 info = list_entry(this, struct shmem_inode_info, swaplist);
1225                 if (info->swapped)
1226                         error = shmem_unuse_inode(info, swap, &page);
1227                 else
1228                         list_del_init(&info->swaplist);
1229                 cond_resched();
1230                 if (error != -EAGAIN)
1231                         break;
1232                 /* found nothing in this: move on to search the next */
1233         }
1234         mutex_unlock(&shmem_swaplist_mutex);
1235
1236         if (error) {
1237                 if (error != -ENOMEM)
1238                         error = 0;
1239                 mem_cgroup_cancel_charge(page, memcg, false);
1240         } else
1241                 mem_cgroup_commit_charge(page, memcg, true, false);
1242 out:
1243         unlock_page(page);
1244         put_page(page);
1245         return error;
1246 }
1247
1248 /*
1249  * Move the page from the page cache to the swap cache.
1250  */
1251 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1252 {
1253         struct shmem_inode_info *info;
1254         struct address_space *mapping;
1255         struct inode *inode;
1256         swp_entry_t swap;
1257         pgoff_t index;
1258
1259         VM_BUG_ON_PAGE(PageCompound(page), page);
1260         BUG_ON(!PageLocked(page));
1261         mapping = page->mapping;
1262         index = page->index;
1263         inode = mapping->host;
1264         info = SHMEM_I(inode);
1265         if (info->flags & VM_LOCKED)
1266                 goto redirty;
1267         if (!total_swap_pages)
1268                 goto redirty;
1269
1270         /*
1271          * Our capabilities prevent regular writeback or sync from ever calling
1272          * shmem_writepage; but a stacking filesystem might use ->writepage of
1273          * its underlying filesystem, in which case tmpfs should write out to
1274          * swap only in response to memory pressure, and not for the writeback
1275          * threads or sync.
1276          */
1277         if (!wbc->for_reclaim) {
1278                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1279                 goto redirty;
1280         }
1281
1282         /*
1283          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1284          * value into swapfile.c, the only way we can correctly account for a
1285          * fallocated page arriving here is now to initialize it and write it.
1286          *
1287          * That's okay for a page already fallocated earlier, but if we have
1288          * not yet completed the fallocation, then (a) we want to keep track
1289          * of this page in case we have to undo it, and (b) it may not be a
1290          * good idea to continue anyway, once we're pushing into swap.  So
1291          * reactivate the page, and let shmem_fallocate() quit when too many.
1292          */
1293         if (!PageUptodate(page)) {
1294                 if (inode->i_private) {
1295                         struct shmem_falloc *shmem_falloc;
1296                         spin_lock(&inode->i_lock);
1297                         shmem_falloc = inode->i_private;
1298                         if (shmem_falloc &&
1299                             !shmem_falloc->waitq &&
1300                             index >= shmem_falloc->start &&
1301                             index < shmem_falloc->next)
1302                                 shmem_falloc->nr_unswapped++;
1303                         else
1304                                 shmem_falloc = NULL;
1305                         spin_unlock(&inode->i_lock);
1306                         if (shmem_falloc)
1307                                 goto redirty;
1308                 }
1309                 clear_highpage(page);
1310                 flush_dcache_page(page);
1311                 SetPageUptodate(page);
1312         }
1313
1314         swap = get_swap_page(page);
1315         if (!swap.val)
1316                 goto redirty;
1317
1318         /*
1319          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1320          * if it's not already there.  Do it now before the page is
1321          * moved to swap cache, when its pagelock no longer protects
1322          * the inode from eviction.  But don't unlock the mutex until
1323          * we've incremented swapped, because shmem_unuse_inode() will
1324          * prune a !swapped inode from the swaplist under this mutex.
1325          */
1326         mutex_lock(&shmem_swaplist_mutex);
1327         if (list_empty(&info->swaplist))
1328                 list_add_tail(&info->swaplist, &shmem_swaplist);
1329
1330         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1331                 spin_lock_irq(&info->lock);
1332                 shmem_recalc_inode(inode);
1333                 info->swapped++;
1334                 spin_unlock_irq(&info->lock);
1335
1336                 swap_shmem_alloc(swap);
1337                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1338
1339                 mutex_unlock(&shmem_swaplist_mutex);
1340                 BUG_ON(page_mapped(page));
1341                 swap_writepage(page, wbc);
1342                 return 0;
1343         }
1344
1345         mutex_unlock(&shmem_swaplist_mutex);
1346         put_swap_page(page, swap);
1347 redirty:
1348         set_page_dirty(page);
1349         if (wbc->for_reclaim)
1350                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1351         unlock_page(page);
1352         return 0;
1353 }
1354
1355 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1356 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1357 {
1358         char buffer[64];
1359
1360         if (!mpol || mpol->mode == MPOL_DEFAULT)
1361                 return;         /* show nothing */
1362
1363         mpol_to_str(buffer, sizeof(buffer), mpol);
1364
1365         seq_printf(seq, ",mpol=%s", buffer);
1366 }
1367
1368 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1369 {
1370         struct mempolicy *mpol = NULL;
1371         if (sbinfo->mpol) {
1372                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1373                 mpol = sbinfo->mpol;
1374                 mpol_get(mpol);
1375                 spin_unlock(&sbinfo->stat_lock);
1376         }
1377         return mpol;
1378 }
1379 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1380 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1381 {
1382 }
1383 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384 {
1385         return NULL;
1386 }
1387 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1388 #ifndef CONFIG_NUMA
1389 #define vm_policy vm_private_data
1390 #endif
1391
1392 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1393                 struct shmem_inode_info *info, pgoff_t index)
1394 {
1395         /* Create a pseudo vma that just contains the policy */
1396         vma_init(vma, NULL);
1397         /* Bias interleave by inode number to distribute better across nodes */
1398         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1399         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1400 }
1401
1402 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1403 {
1404         /* Drop reference taken by mpol_shared_policy_lookup() */
1405         mpol_cond_put(vma->vm_policy);
1406 }
1407
1408 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1409                         struct shmem_inode_info *info, pgoff_t index)
1410 {
1411         struct vm_area_struct pvma;
1412         struct page *page;
1413         struct vm_fault vmf;
1414
1415         shmem_pseudo_vma_init(&pvma, info, index);
1416         vmf.vma = &pvma;
1417         vmf.address = 0;
1418         page = swap_cluster_readahead(swap, gfp, &vmf);
1419         shmem_pseudo_vma_destroy(&pvma);
1420
1421         return page;
1422 }
1423
1424 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1425                 struct shmem_inode_info *info, pgoff_t index)
1426 {
1427         struct vm_area_struct pvma;
1428         struct address_space *mapping = info->vfs_inode.i_mapping;
1429         pgoff_t hindex;
1430         struct page *page;
1431
1432         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1433                 return NULL;
1434
1435         hindex = round_down(index, HPAGE_PMD_NR);
1436         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1437                                                                 XA_PRESENT))
1438                 return NULL;
1439
1440         shmem_pseudo_vma_init(&pvma, info, hindex);
1441         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1442                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1443         shmem_pseudo_vma_destroy(&pvma);
1444         if (page)
1445                 prep_transhuge_page(page);
1446         return page;
1447 }
1448
1449 static struct page *shmem_alloc_page(gfp_t gfp,
1450                         struct shmem_inode_info *info, pgoff_t index)
1451 {
1452         struct vm_area_struct pvma;
1453         struct page *page;
1454
1455         shmem_pseudo_vma_init(&pvma, info, index);
1456         page = alloc_page_vma(gfp, &pvma, 0);
1457         shmem_pseudo_vma_destroy(&pvma);
1458
1459         return page;
1460 }
1461
1462 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1463                 struct inode *inode,
1464                 pgoff_t index, bool huge)
1465 {
1466         struct shmem_inode_info *info = SHMEM_I(inode);
1467         struct page *page;
1468         int nr;
1469         int err = -ENOSPC;
1470
1471         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1472                 huge = false;
1473         nr = huge ? HPAGE_PMD_NR : 1;
1474
1475         if (!shmem_inode_acct_block(inode, nr))
1476                 goto failed;
1477
1478         if (huge)
1479                 page = shmem_alloc_hugepage(gfp, info, index);
1480         else
1481                 page = shmem_alloc_page(gfp, info, index);
1482         if (page) {
1483                 __SetPageLocked(page);
1484                 __SetPageSwapBacked(page);
1485                 return page;
1486         }
1487
1488         err = -ENOMEM;
1489         shmem_inode_unacct_blocks(inode, nr);
1490 failed:
1491         return ERR_PTR(err);
1492 }
1493
1494 /*
1495  * When a page is moved from swapcache to shmem filecache (either by the
1496  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1497  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1498  * ignorance of the mapping it belongs to.  If that mapping has special
1499  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1500  * we may need to copy to a suitable page before moving to filecache.
1501  *
1502  * In a future release, this may well be extended to respect cpuset and
1503  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1504  * but for now it is a simple matter of zone.
1505  */
1506 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1507 {
1508         return page_zonenum(page) > gfp_zone(gfp);
1509 }
1510
1511 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1512                                 struct shmem_inode_info *info, pgoff_t index)
1513 {
1514         struct page *oldpage, *newpage;
1515         struct address_space *swap_mapping;
1516         swp_entry_t entry;
1517         pgoff_t swap_index;
1518         int error;
1519
1520         oldpage = *pagep;
1521         entry.val = page_private(oldpage);
1522         swap_index = swp_offset(entry);
1523         swap_mapping = page_mapping(oldpage);
1524
1525         /*
1526          * We have arrived here because our zones are constrained, so don't
1527          * limit chance of success by further cpuset and node constraints.
1528          */
1529         gfp &= ~GFP_CONSTRAINT_MASK;
1530         newpage = shmem_alloc_page(gfp, info, index);
1531         if (!newpage)
1532                 return -ENOMEM;
1533
1534         get_page(newpage);
1535         copy_highpage(newpage, oldpage);
1536         flush_dcache_page(newpage);
1537
1538         __SetPageLocked(newpage);
1539         __SetPageSwapBacked(newpage);
1540         SetPageUptodate(newpage);
1541         set_page_private(newpage, entry.val);
1542         SetPageSwapCache(newpage);
1543
1544         /*
1545          * Our caller will very soon move newpage out of swapcache, but it's
1546          * a nice clean interface for us to replace oldpage by newpage there.
1547          */
1548         xa_lock_irq(&swap_mapping->i_pages);
1549         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1550         if (!error) {
1551                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1552                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1553         }
1554         xa_unlock_irq(&swap_mapping->i_pages);
1555
1556         if (unlikely(error)) {
1557                 /*
1558                  * Is this possible?  I think not, now that our callers check
1559                  * both PageSwapCache and page_private after getting page lock;
1560                  * but be defensive.  Reverse old to newpage for clear and free.
1561                  */
1562                 oldpage = newpage;
1563         } else {
1564                 mem_cgroup_migrate(oldpage, newpage);
1565                 lru_cache_add_anon(newpage);
1566                 *pagep = newpage;
1567         }
1568
1569         ClearPageSwapCache(oldpage);
1570         set_page_private(oldpage, 0);
1571
1572         unlock_page(oldpage);
1573         put_page(oldpage);
1574         put_page(oldpage);
1575         return error;
1576 }
1577
1578 /*
1579  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1580  *
1581  * If we allocate a new one we do not mark it dirty. That's up to the
1582  * vm. If we swap it in we mark it dirty since we also free the swap
1583  * entry since a page cannot live in both the swap and page cache.
1584  *
1585  * fault_mm and fault_type are only supplied by shmem_fault:
1586  * otherwise they are NULL.
1587  */
1588 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1589         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1590         struct vm_area_struct *vma, struct vm_fault *vmf,
1591                         vm_fault_t *fault_type)
1592 {
1593         struct address_space *mapping = inode->i_mapping;
1594         struct shmem_inode_info *info = SHMEM_I(inode);
1595         struct shmem_sb_info *sbinfo;
1596         struct mm_struct *charge_mm;
1597         struct mem_cgroup *memcg;
1598         struct page *page;
1599         swp_entry_t swap;
1600         enum sgp_type sgp_huge = sgp;
1601         pgoff_t hindex = index;
1602         int error;
1603         int once = 0;
1604         int alloced = 0;
1605
1606         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1607                 return -EFBIG;
1608         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1609                 sgp = SGP_CACHE;
1610 repeat:
1611         swap.val = 0;
1612         page = find_lock_entry(mapping, index);
1613         if (xa_is_value(page)) {
1614                 swap = radix_to_swp_entry(page);
1615                 page = NULL;
1616         }
1617
1618         if (sgp <= SGP_CACHE &&
1619             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1620                 error = -EINVAL;
1621                 goto unlock;
1622         }
1623
1624         if (page && sgp == SGP_WRITE)
1625                 mark_page_accessed(page);
1626
1627         /* fallocated page? */
1628         if (page && !PageUptodate(page)) {
1629                 if (sgp != SGP_READ)
1630                         goto clear;
1631                 unlock_page(page);
1632                 put_page(page);
1633                 page = NULL;
1634         }
1635         if (page || (sgp == SGP_READ && !swap.val)) {
1636                 *pagep = page;
1637                 return 0;
1638         }
1639
1640         /*
1641          * Fast cache lookup did not find it:
1642          * bring it back from swap or allocate.
1643          */
1644         sbinfo = SHMEM_SB(inode->i_sb);
1645         charge_mm = vma ? vma->vm_mm : current->mm;
1646
1647         if (swap.val) {
1648                 /* Look it up and read it in.. */
1649                 page = lookup_swap_cache(swap, NULL, 0);
1650                 if (!page) {
1651                         /* Or update major stats only when swapin succeeds?? */
1652                         if (fault_type) {
1653                                 *fault_type |= VM_FAULT_MAJOR;
1654                                 count_vm_event(PGMAJFAULT);
1655                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656                         }
1657                         /* Here we actually start the io */
1658                         page = shmem_swapin(swap, gfp, info, index);
1659                         if (!page) {
1660                                 error = -ENOMEM;
1661                                 goto failed;
1662                         }
1663                 }
1664
1665                 /* We have to do this with page locked to prevent races */
1666                 lock_page(page);
1667                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668                     !shmem_confirm_swap(mapping, index, swap)) {
1669                         error = -EEXIST;        /* try again */
1670                         goto unlock;
1671                 }
1672                 if (!PageUptodate(page)) {
1673                         error = -EIO;
1674                         goto failed;
1675                 }
1676                 wait_on_page_writeback(page);
1677
1678                 if (shmem_should_replace_page(page, gfp)) {
1679                         error = shmem_replace_page(&page, gfp, info, index);
1680                         if (error)
1681                                 goto failed;
1682                 }
1683
1684                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685                                 false);
1686                 if (!error) {
1687                         error = shmem_add_to_page_cache(page, mapping, index,
1688                                                 swp_to_radix_entry(swap), gfp);
1689                         /*
1690                          * We already confirmed swap under page lock, and make
1691                          * no memory allocation here, so usually no possibility
1692                          * of error; but free_swap_and_cache() only trylocks a
1693                          * page, so it is just possible that the entry has been
1694                          * truncated or holepunched since swap was confirmed.
1695                          * shmem_undo_range() will have done some of the
1696                          * unaccounting, now delete_from_swap_cache() will do
1697                          * the rest.
1698                          * Reset swap.val? No, leave it so "failed" goes back to
1699                          * "repeat": reading a hole and writing should succeed.
1700                          */
1701                         if (error) {
1702                                 mem_cgroup_cancel_charge(page, memcg, false);
1703                                 delete_from_swap_cache(page);
1704                         }
1705                 }
1706                 if (error)
1707                         goto failed;
1708
1709                 mem_cgroup_commit_charge(page, memcg, true, false);
1710
1711                 spin_lock_irq(&info->lock);
1712                 info->swapped--;
1713                 shmem_recalc_inode(inode);
1714                 spin_unlock_irq(&info->lock);
1715
1716                 if (sgp == SGP_WRITE)
1717                         mark_page_accessed(page);
1718
1719                 delete_from_swap_cache(page);
1720                 set_page_dirty(page);
1721                 swap_free(swap);
1722
1723         } else {
1724                 if (vma && userfaultfd_missing(vma)) {
1725                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1726                         return 0;
1727                 }
1728
1729                 /* shmem_symlink() */
1730                 if (mapping->a_ops != &shmem_aops)
1731                         goto alloc_nohuge;
1732                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1733                         goto alloc_nohuge;
1734                 if (shmem_huge == SHMEM_HUGE_FORCE)
1735                         goto alloc_huge;
1736                 switch (sbinfo->huge) {
1737                         loff_t i_size;
1738                         pgoff_t off;
1739                 case SHMEM_HUGE_NEVER:
1740                         goto alloc_nohuge;
1741                 case SHMEM_HUGE_WITHIN_SIZE:
1742                         off = round_up(index, HPAGE_PMD_NR);
1743                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1744                         if (i_size >= HPAGE_PMD_SIZE &&
1745                                         i_size >> PAGE_SHIFT >= off)
1746                                 goto alloc_huge;
1747                         /* fallthrough */
1748                 case SHMEM_HUGE_ADVISE:
1749                         if (sgp_huge == SGP_HUGE)
1750                                 goto alloc_huge;
1751                         /* TODO: implement fadvise() hints */
1752                         goto alloc_nohuge;
1753                 }
1754
1755 alloc_huge:
1756                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1757                 if (IS_ERR(page)) {
1758 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1759                                         index, false);
1760                 }
1761                 if (IS_ERR(page)) {
1762                         int retry = 5;
1763                         error = PTR_ERR(page);
1764                         page = NULL;
1765                         if (error != -ENOSPC)
1766                                 goto failed;
1767                         /*
1768                          * Try to reclaim some spece by splitting a huge page
1769                          * beyond i_size on the filesystem.
1770                          */
1771                         while (retry--) {
1772                                 int ret;
1773                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1774                                 if (ret == SHRINK_STOP)
1775                                         break;
1776                                 if (ret)
1777                                         goto alloc_nohuge;
1778                         }
1779                         goto failed;
1780                 }
1781
1782                 if (PageTransHuge(page))
1783                         hindex = round_down(index, HPAGE_PMD_NR);
1784                 else
1785                         hindex = index;
1786
1787                 if (sgp == SGP_WRITE)
1788                         __SetPageReferenced(page);
1789
1790                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1791                                 PageTransHuge(page));
1792                 if (error)
1793                         goto unacct;
1794                 error = shmem_add_to_page_cache(page, mapping, hindex,
1795                                                 NULL, gfp & GFP_RECLAIM_MASK);
1796                 if (error) {
1797                         mem_cgroup_cancel_charge(page, memcg,
1798                                         PageTransHuge(page));
1799                         goto unacct;
1800                 }
1801                 mem_cgroup_commit_charge(page, memcg, false,
1802                                 PageTransHuge(page));
1803                 lru_cache_add_anon(page);
1804
1805                 spin_lock_irq(&info->lock);
1806                 info->alloced += 1 << compound_order(page);
1807                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1808                 shmem_recalc_inode(inode);
1809                 spin_unlock_irq(&info->lock);
1810                 alloced = true;
1811
1812                 if (PageTransHuge(page) &&
1813                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814                                 hindex + HPAGE_PMD_NR - 1) {
1815                         /*
1816                          * Part of the huge page is beyond i_size: subject
1817                          * to shrink under memory pressure.
1818                          */
1819                         spin_lock(&sbinfo->shrinklist_lock);
1820                         /*
1821                          * _careful to defend against unlocked access to
1822                          * ->shrink_list in shmem_unused_huge_shrink()
1823                          */
1824                         if (list_empty_careful(&info->shrinklist)) {
1825                                 list_add_tail(&info->shrinklist,
1826                                                 &sbinfo->shrinklist);
1827                                 sbinfo->shrinklist_len++;
1828                         }
1829                         spin_unlock(&sbinfo->shrinklist_lock);
1830                 }
1831
1832                 /*
1833                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1834                  */
1835                 if (sgp == SGP_FALLOC)
1836                         sgp = SGP_WRITE;
1837 clear:
1838                 /*
1839                  * Let SGP_WRITE caller clear ends if write does not fill page;
1840                  * but SGP_FALLOC on a page fallocated earlier must initialize
1841                  * it now, lest undo on failure cancel our earlier guarantee.
1842                  */
1843                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1844                         struct page *head = compound_head(page);
1845                         int i;
1846
1847                         for (i = 0; i < (1 << compound_order(head)); i++) {
1848                                 clear_highpage(head + i);
1849                                 flush_dcache_page(head + i);
1850                         }
1851                         SetPageUptodate(head);
1852                 }
1853         }
1854
1855         /* Perhaps the file has been truncated since we checked */
1856         if (sgp <= SGP_CACHE &&
1857             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1858                 if (alloced) {
1859                         ClearPageDirty(page);
1860                         delete_from_page_cache(page);
1861                         spin_lock_irq(&info->lock);
1862                         shmem_recalc_inode(inode);
1863                         spin_unlock_irq(&info->lock);
1864                 }
1865                 error = -EINVAL;
1866                 goto unlock;
1867         }
1868         *pagep = page + index - hindex;
1869         return 0;
1870
1871         /*
1872          * Error recovery.
1873          */
1874 unacct:
1875         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1876
1877         if (PageTransHuge(page)) {
1878                 unlock_page(page);
1879                 put_page(page);
1880                 goto alloc_nohuge;
1881         }
1882 failed:
1883         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1884                 error = -EEXIST;
1885 unlock:
1886         if (page) {
1887                 unlock_page(page);
1888                 put_page(page);
1889         }
1890         if (error == -ENOSPC && !once++) {
1891                 spin_lock_irq(&info->lock);
1892                 shmem_recalc_inode(inode);
1893                 spin_unlock_irq(&info->lock);
1894                 goto repeat;
1895         }
1896         if (error == -EEXIST)
1897                 goto repeat;
1898         return error;
1899 }
1900
1901 /*
1902  * This is like autoremove_wake_function, but it removes the wait queue
1903  * entry unconditionally - even if something else had already woken the
1904  * target.
1905  */
1906 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1907 {
1908         int ret = default_wake_function(wait, mode, sync, key);
1909         list_del_init(&wait->entry);
1910         return ret;
1911 }
1912
1913 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1914 {
1915         struct vm_area_struct *vma = vmf->vma;
1916         struct inode *inode = file_inode(vma->vm_file);
1917         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1918         enum sgp_type sgp;
1919         int err;
1920         vm_fault_t ret = VM_FAULT_LOCKED;
1921
1922         /*
1923          * Trinity finds that probing a hole which tmpfs is punching can
1924          * prevent the hole-punch from ever completing: which in turn
1925          * locks writers out with its hold on i_mutex.  So refrain from
1926          * faulting pages into the hole while it's being punched.  Although
1927          * shmem_undo_range() does remove the additions, it may be unable to
1928          * keep up, as each new page needs its own unmap_mapping_range() call,
1929          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1930          *
1931          * It does not matter if we sometimes reach this check just before the
1932          * hole-punch begins, so that one fault then races with the punch:
1933          * we just need to make racing faults a rare case.
1934          *
1935          * The implementation below would be much simpler if we just used a
1936          * standard mutex or completion: but we cannot take i_mutex in fault,
1937          * and bloating every shmem inode for this unlikely case would be sad.
1938          */
1939         if (unlikely(inode->i_private)) {
1940                 struct shmem_falloc *shmem_falloc;
1941
1942                 spin_lock(&inode->i_lock);
1943                 shmem_falloc = inode->i_private;
1944                 if (shmem_falloc &&
1945                     shmem_falloc->waitq &&
1946                     vmf->pgoff >= shmem_falloc->start &&
1947                     vmf->pgoff < shmem_falloc->next) {
1948                         wait_queue_head_t *shmem_falloc_waitq;
1949                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1950
1951                         ret = VM_FAULT_NOPAGE;
1952                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1953                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1954                                 /* It's polite to up mmap_sem if we can */
1955                                 up_read(&vma->vm_mm->mmap_sem);
1956                                 ret = VM_FAULT_RETRY;
1957                         }
1958
1959                         shmem_falloc_waitq = shmem_falloc->waitq;
1960                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1961                                         TASK_UNINTERRUPTIBLE);
1962                         spin_unlock(&inode->i_lock);
1963                         schedule();
1964
1965                         /*
1966                          * shmem_falloc_waitq points into the shmem_fallocate()
1967                          * stack of the hole-punching task: shmem_falloc_waitq
1968                          * is usually invalid by the time we reach here, but
1969                          * finish_wait() does not dereference it in that case;
1970                          * though i_lock needed lest racing with wake_up_all().
1971                          */
1972                         spin_lock(&inode->i_lock);
1973                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1974                         spin_unlock(&inode->i_lock);
1975                         return ret;
1976                 }
1977                 spin_unlock(&inode->i_lock);
1978         }
1979
1980         sgp = SGP_CACHE;
1981
1982         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1983             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1984                 sgp = SGP_NOHUGE;
1985         else if (vma->vm_flags & VM_HUGEPAGE)
1986                 sgp = SGP_HUGE;
1987
1988         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1989                                   gfp, vma, vmf, &ret);
1990         if (err)
1991                 return vmf_error(err);
1992         return ret;
1993 }
1994
1995 unsigned long shmem_get_unmapped_area(struct file *file,
1996                                       unsigned long uaddr, unsigned long len,
1997                                       unsigned long pgoff, unsigned long flags)
1998 {
1999         unsigned long (*get_area)(struct file *,
2000                 unsigned long, unsigned long, unsigned long, unsigned long);
2001         unsigned long addr;
2002         unsigned long offset;
2003         unsigned long inflated_len;
2004         unsigned long inflated_addr;
2005         unsigned long inflated_offset;
2006
2007         if (len > TASK_SIZE)
2008                 return -ENOMEM;
2009
2010         get_area = current->mm->get_unmapped_area;
2011         addr = get_area(file, uaddr, len, pgoff, flags);
2012
2013         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2014                 return addr;
2015         if (IS_ERR_VALUE(addr))
2016                 return addr;
2017         if (addr & ~PAGE_MASK)
2018                 return addr;
2019         if (addr > TASK_SIZE - len)
2020                 return addr;
2021
2022         if (shmem_huge == SHMEM_HUGE_DENY)
2023                 return addr;
2024         if (len < HPAGE_PMD_SIZE)
2025                 return addr;
2026         if (flags & MAP_FIXED)
2027                 return addr;
2028         /*
2029          * Our priority is to support MAP_SHARED mapped hugely;
2030          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2031          * But if caller specified an address hint, respect that as before.
2032          */
2033         if (uaddr)
2034                 return addr;
2035
2036         if (shmem_huge != SHMEM_HUGE_FORCE) {
2037                 struct super_block *sb;
2038
2039                 if (file) {
2040                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2041                         sb = file_inode(file)->i_sb;
2042                 } else {
2043                         /*
2044                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2045                          * for "/dev/zero", to create a shared anonymous object.
2046                          */
2047                         if (IS_ERR(shm_mnt))
2048                                 return addr;
2049                         sb = shm_mnt->mnt_sb;
2050                 }
2051                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2052                         return addr;
2053         }
2054
2055         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2056         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2057                 return addr;
2058         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2059                 return addr;
2060
2061         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2062         if (inflated_len > TASK_SIZE)
2063                 return addr;
2064         if (inflated_len < len)
2065                 return addr;
2066
2067         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2068         if (IS_ERR_VALUE(inflated_addr))
2069                 return addr;
2070         if (inflated_addr & ~PAGE_MASK)
2071                 return addr;
2072
2073         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2074         inflated_addr += offset - inflated_offset;
2075         if (inflated_offset > offset)
2076                 inflated_addr += HPAGE_PMD_SIZE;
2077
2078         if (inflated_addr > TASK_SIZE - len)
2079                 return addr;
2080         return inflated_addr;
2081 }
2082
2083 #ifdef CONFIG_NUMA
2084 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2085 {
2086         struct inode *inode = file_inode(vma->vm_file);
2087         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2088 }
2089
2090 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2091                                           unsigned long addr)
2092 {
2093         struct inode *inode = file_inode(vma->vm_file);
2094         pgoff_t index;
2095
2096         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2097         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2098 }
2099 #endif
2100
2101 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2102 {
2103         struct inode *inode = file_inode(file);
2104         struct shmem_inode_info *info = SHMEM_I(inode);
2105         int retval = -ENOMEM;
2106
2107         spin_lock_irq(&info->lock);
2108         if (lock && !(info->flags & VM_LOCKED)) {
2109                 if (!user_shm_lock(inode->i_size, user))
2110                         goto out_nomem;
2111                 info->flags |= VM_LOCKED;
2112                 mapping_set_unevictable(file->f_mapping);
2113         }
2114         if (!lock && (info->flags & VM_LOCKED) && user) {
2115                 user_shm_unlock(inode->i_size, user);
2116                 info->flags &= ~VM_LOCKED;
2117                 mapping_clear_unevictable(file->f_mapping);
2118         }
2119         retval = 0;
2120
2121 out_nomem:
2122         spin_unlock_irq(&info->lock);
2123         return retval;
2124 }
2125
2126 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2127 {
2128         file_accessed(file);
2129         vma->vm_ops = &shmem_vm_ops;
2130         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2131                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2132                         (vma->vm_end & HPAGE_PMD_MASK)) {
2133                 khugepaged_enter(vma, vma->vm_flags);
2134         }
2135         return 0;
2136 }
2137
2138 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2139                                      umode_t mode, dev_t dev, unsigned long flags)
2140 {
2141         struct inode *inode;
2142         struct shmem_inode_info *info;
2143         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2144
2145         if (shmem_reserve_inode(sb))
2146                 return NULL;
2147
2148         inode = new_inode(sb);
2149         if (inode) {
2150                 inode->i_ino = get_next_ino();
2151                 inode_init_owner(inode, dir, mode);
2152                 inode->i_blocks = 0;
2153                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2154                 inode->i_generation = prandom_u32();
2155                 info = SHMEM_I(inode);
2156                 memset(info, 0, (char *)inode - (char *)info);
2157                 spin_lock_init(&info->lock);
2158                 info->seals = F_SEAL_SEAL;
2159                 info->flags = flags & VM_NORESERVE;
2160                 INIT_LIST_HEAD(&info->shrinklist);
2161                 INIT_LIST_HEAD(&info->swaplist);
2162                 simple_xattrs_init(&info->xattrs);
2163                 cache_no_acl(inode);
2164
2165                 switch (mode & S_IFMT) {
2166                 default:
2167                         inode->i_op = &shmem_special_inode_operations;
2168                         init_special_inode(inode, mode, dev);
2169                         break;
2170                 case S_IFREG:
2171                         inode->i_mapping->a_ops = &shmem_aops;
2172                         inode->i_op = &shmem_inode_operations;
2173                         inode->i_fop = &shmem_file_operations;
2174                         mpol_shared_policy_init(&info->policy,
2175                                                  shmem_get_sbmpol(sbinfo));
2176                         break;
2177                 case S_IFDIR:
2178                         inc_nlink(inode);
2179                         /* Some things misbehave if size == 0 on a directory */
2180                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2181                         inode->i_op = &shmem_dir_inode_operations;
2182                         inode->i_fop = &simple_dir_operations;
2183                         break;
2184                 case S_IFLNK:
2185                         /*
2186                          * Must not load anything in the rbtree,
2187                          * mpol_free_shared_policy will not be called.
2188                          */
2189                         mpol_shared_policy_init(&info->policy, NULL);
2190                         break;
2191                 }
2192
2193                 lockdep_annotate_inode_mutex_key(inode);
2194         } else
2195                 shmem_free_inode(sb);
2196         return inode;
2197 }
2198
2199 bool shmem_mapping(struct address_space *mapping)
2200 {
2201         return mapping->a_ops == &shmem_aops;
2202 }
2203
2204 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2205                                   pmd_t *dst_pmd,
2206                                   struct vm_area_struct *dst_vma,
2207                                   unsigned long dst_addr,
2208                                   unsigned long src_addr,
2209                                   bool zeropage,
2210                                   struct page **pagep)
2211 {
2212         struct inode *inode = file_inode(dst_vma->vm_file);
2213         struct shmem_inode_info *info = SHMEM_I(inode);
2214         struct address_space *mapping = inode->i_mapping;
2215         gfp_t gfp = mapping_gfp_mask(mapping);
2216         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2217         struct mem_cgroup *memcg;
2218         spinlock_t *ptl;
2219         void *page_kaddr;
2220         struct page *page;
2221         pte_t _dst_pte, *dst_pte;
2222         int ret;
2223         pgoff_t offset, max_off;
2224
2225         ret = -ENOMEM;
2226         if (!shmem_inode_acct_block(inode, 1))
2227                 goto out;
2228
2229         if (!*pagep) {
2230                 page = shmem_alloc_page(gfp, info, pgoff);
2231                 if (!page)
2232                         goto out_unacct_blocks;
2233
2234                 if (!zeropage) {        /* mcopy_atomic */
2235                         page_kaddr = kmap_atomic(page);
2236                         ret = copy_from_user(page_kaddr,
2237                                              (const void __user *)src_addr,
2238                                              PAGE_SIZE);
2239                         kunmap_atomic(page_kaddr);
2240
2241                         /* fallback to copy_from_user outside mmap_sem */
2242                         if (unlikely(ret)) {
2243                                 *pagep = page;
2244                                 shmem_inode_unacct_blocks(inode, 1);
2245                                 /* don't free the page */
2246                                 return -ENOENT;
2247                         }
2248                 } else {                /* mfill_zeropage_atomic */
2249                         clear_highpage(page);
2250                 }
2251         } else {
2252                 page = *pagep;
2253                 *pagep = NULL;
2254         }
2255
2256         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2257         __SetPageLocked(page);
2258         __SetPageSwapBacked(page);
2259         __SetPageUptodate(page);
2260
2261         ret = -EFAULT;
2262         offset = linear_page_index(dst_vma, dst_addr);
2263         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2264         if (unlikely(offset >= max_off))
2265                 goto out_release;
2266
2267         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2268         if (ret)
2269                 goto out_release;
2270
2271         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2272                                                 gfp & GFP_RECLAIM_MASK);
2273         if (ret)
2274                 goto out_release_uncharge;
2275
2276         mem_cgroup_commit_charge(page, memcg, false, false);
2277
2278         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2279         if (dst_vma->vm_flags & VM_WRITE)
2280                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2281         else {
2282                 /*
2283                  * We don't set the pte dirty if the vma has no
2284                  * VM_WRITE permission, so mark the page dirty or it
2285                  * could be freed from under us. We could do it
2286                  * unconditionally before unlock_page(), but doing it
2287                  * only if VM_WRITE is not set is faster.
2288                  */
2289                 set_page_dirty(page);
2290         }
2291
2292         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2293
2294         ret = -EFAULT;
2295         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2296         if (unlikely(offset >= max_off))
2297                 goto out_release_uncharge_unlock;
2298
2299         ret = -EEXIST;
2300         if (!pte_none(*dst_pte))
2301                 goto out_release_uncharge_unlock;
2302
2303         lru_cache_add_anon(page);
2304
2305         spin_lock(&info->lock);
2306         info->alloced++;
2307         inode->i_blocks += BLOCKS_PER_PAGE;
2308         shmem_recalc_inode(inode);
2309         spin_unlock(&info->lock);
2310
2311         inc_mm_counter(dst_mm, mm_counter_file(page));
2312         page_add_file_rmap(page, false);
2313         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2314
2315         /* No need to invalidate - it was non-present before */
2316         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2317         pte_unmap_unlock(dst_pte, ptl);
2318         unlock_page(page);
2319         ret = 0;
2320 out:
2321         return ret;
2322 out_release_uncharge_unlock:
2323         pte_unmap_unlock(dst_pte, ptl);
2324         ClearPageDirty(page);
2325         delete_from_page_cache(page);
2326 out_release_uncharge:
2327         mem_cgroup_cancel_charge(page, memcg, false);
2328 out_release:
2329         unlock_page(page);
2330         put_page(page);
2331 out_unacct_blocks:
2332         shmem_inode_unacct_blocks(inode, 1);
2333         goto out;
2334 }
2335
2336 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2337                            pmd_t *dst_pmd,
2338                            struct vm_area_struct *dst_vma,
2339                            unsigned long dst_addr,
2340                            unsigned long src_addr,
2341                            struct page **pagep)
2342 {
2343         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2344                                       dst_addr, src_addr, false, pagep);
2345 }
2346
2347 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2348                              pmd_t *dst_pmd,
2349                              struct vm_area_struct *dst_vma,
2350                              unsigned long dst_addr)
2351 {
2352         struct page *page = NULL;
2353
2354         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2355                                       dst_addr, 0, true, &page);
2356 }
2357
2358 #ifdef CONFIG_TMPFS
2359 static const struct inode_operations shmem_symlink_inode_operations;
2360 static const struct inode_operations shmem_short_symlink_operations;
2361
2362 #ifdef CONFIG_TMPFS_XATTR
2363 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2364 #else
2365 #define shmem_initxattrs NULL
2366 #endif
2367
2368 static int
2369 shmem_write_begin(struct file *file, struct address_space *mapping,
2370                         loff_t pos, unsigned len, unsigned flags,
2371                         struct page **pagep, void **fsdata)
2372 {
2373         struct inode *inode = mapping->host;
2374         struct shmem_inode_info *info = SHMEM_I(inode);
2375         pgoff_t index = pos >> PAGE_SHIFT;
2376
2377         /* i_mutex is held by caller */
2378         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2379                 if (info->seals & F_SEAL_WRITE)
2380                         return -EPERM;
2381                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2382                         return -EPERM;
2383         }
2384
2385         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2386 }
2387
2388 static int
2389 shmem_write_end(struct file *file, struct address_space *mapping,
2390                         loff_t pos, unsigned len, unsigned copied,
2391                         struct page *page, void *fsdata)
2392 {
2393         struct inode *inode = mapping->host;
2394
2395         if (pos + copied > inode->i_size)
2396                 i_size_write(inode, pos + copied);
2397
2398         if (!PageUptodate(page)) {
2399                 struct page *head = compound_head(page);
2400                 if (PageTransCompound(page)) {
2401                         int i;
2402
2403                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2404                                 if (head + i == page)
2405                                         continue;
2406                                 clear_highpage(head + i);
2407                                 flush_dcache_page(head + i);
2408                         }
2409                 }
2410                 if (copied < PAGE_SIZE) {
2411                         unsigned from = pos & (PAGE_SIZE - 1);
2412                         zero_user_segments(page, 0, from,
2413                                         from + copied, PAGE_SIZE);
2414                 }
2415                 SetPageUptodate(head);
2416         }
2417         set_page_dirty(page);
2418         unlock_page(page);
2419         put_page(page);
2420
2421         return copied;
2422 }
2423
2424 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2425 {
2426         struct file *file = iocb->ki_filp;
2427         struct inode *inode = file_inode(file);
2428         struct address_space *mapping = inode->i_mapping;
2429         pgoff_t index;
2430         unsigned long offset;
2431         enum sgp_type sgp = SGP_READ;
2432         int error = 0;
2433         ssize_t retval = 0;
2434         loff_t *ppos = &iocb->ki_pos;
2435
2436         /*
2437          * Might this read be for a stacking filesystem?  Then when reading
2438          * holes of a sparse file, we actually need to allocate those pages,
2439          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2440          */
2441         if (!iter_is_iovec(to))
2442                 sgp = SGP_CACHE;
2443
2444         index = *ppos >> PAGE_SHIFT;
2445         offset = *ppos & ~PAGE_MASK;
2446
2447         for (;;) {
2448                 struct page *page = NULL;
2449                 pgoff_t end_index;
2450                 unsigned long nr, ret;
2451                 loff_t i_size = i_size_read(inode);
2452
2453                 end_index = i_size >> PAGE_SHIFT;
2454                 if (index > end_index)
2455                         break;
2456                 if (index == end_index) {
2457                         nr = i_size & ~PAGE_MASK;
2458                         if (nr <= offset)
2459                                 break;
2460                 }
2461
2462                 error = shmem_getpage(inode, index, &page, sgp);
2463                 if (error) {
2464                         if (error == -EINVAL)
2465                                 error = 0;
2466                         break;
2467                 }
2468                 if (page) {
2469                         if (sgp == SGP_CACHE)
2470                                 set_page_dirty(page);
2471                         unlock_page(page);
2472                 }
2473
2474                 /*
2475                  * We must evaluate after, since reads (unlike writes)
2476                  * are called without i_mutex protection against truncate
2477                  */
2478                 nr = PAGE_SIZE;
2479                 i_size = i_size_read(inode);
2480                 end_index = i_size >> PAGE_SHIFT;
2481                 if (index == end_index) {
2482                         nr = i_size & ~PAGE_MASK;
2483                         if (nr <= offset) {
2484                                 if (page)
2485                                         put_page(page);
2486                                 break;
2487                         }
2488                 }
2489                 nr -= offset;
2490
2491                 if (page) {
2492                         /*
2493                          * If users can be writing to this page using arbitrary
2494                          * virtual addresses, take care about potential aliasing
2495                          * before reading the page on the kernel side.
2496                          */
2497                         if (mapping_writably_mapped(mapping))
2498                                 flush_dcache_page(page);
2499                         /*
2500                          * Mark the page accessed if we read the beginning.
2501                          */
2502                         if (!offset)
2503                                 mark_page_accessed(page);
2504                 } else {
2505                         page = ZERO_PAGE(0);
2506                         get_page(page);
2507                 }
2508
2509                 /*
2510                  * Ok, we have the page, and it's up-to-date, so
2511                  * now we can copy it to user space...
2512                  */
2513                 ret = copy_page_to_iter(page, offset, nr, to);
2514                 retval += ret;
2515                 offset += ret;
2516                 index += offset >> PAGE_SHIFT;
2517                 offset &= ~PAGE_MASK;
2518
2519                 put_page(page);
2520                 if (!iov_iter_count(to))
2521                         break;
2522                 if (ret < nr) {
2523                         error = -EFAULT;
2524                         break;
2525                 }
2526                 cond_resched();
2527         }
2528
2529         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2530         file_accessed(file);
2531         return retval ? retval : error;
2532 }
2533
2534 /*
2535  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2536  */
2537 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2538                                     pgoff_t index, pgoff_t end, int whence)
2539 {
2540         struct page *page;
2541         struct pagevec pvec;
2542         pgoff_t indices[PAGEVEC_SIZE];
2543         bool done = false;
2544         int i;
2545
2546         pagevec_init(&pvec);
2547         pvec.nr = 1;            /* start small: we may be there already */
2548         while (!done) {
2549                 pvec.nr = find_get_entries(mapping, index,
2550                                         pvec.nr, pvec.pages, indices);
2551                 if (!pvec.nr) {
2552                         if (whence == SEEK_DATA)
2553                                 index = end;
2554                         break;
2555                 }
2556                 for (i = 0; i < pvec.nr; i++, index++) {
2557                         if (index < indices[i]) {
2558                                 if (whence == SEEK_HOLE) {
2559                                         done = true;
2560                                         break;
2561                                 }
2562                                 index = indices[i];
2563                         }
2564                         page = pvec.pages[i];
2565                         if (page && !xa_is_value(page)) {
2566                                 if (!PageUptodate(page))
2567                                         page = NULL;
2568                         }
2569                         if (index >= end ||
2570                             (page && whence == SEEK_DATA) ||
2571                             (!page && whence == SEEK_HOLE)) {
2572                                 done = true;
2573                                 break;
2574                         }
2575                 }
2576                 pagevec_remove_exceptionals(&pvec);
2577                 pagevec_release(&pvec);
2578                 pvec.nr = PAGEVEC_SIZE;
2579                 cond_resched();
2580         }
2581         return index;
2582 }
2583
2584 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2585 {
2586         struct address_space *mapping = file->f_mapping;
2587         struct inode *inode = mapping->host;
2588         pgoff_t start, end;
2589         loff_t new_offset;
2590
2591         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2592                 return generic_file_llseek_size(file, offset, whence,
2593                                         MAX_LFS_FILESIZE, i_size_read(inode));
2594         inode_lock(inode);
2595         /* We're holding i_mutex so we can access i_size directly */
2596
2597         if (offset < 0 || offset >= inode->i_size)
2598                 offset = -ENXIO;
2599         else {
2600                 start = offset >> PAGE_SHIFT;
2601                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2602                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2603                 new_offset <<= PAGE_SHIFT;
2604                 if (new_offset > offset) {
2605                         if (new_offset < inode->i_size)
2606                                 offset = new_offset;
2607                         else if (whence == SEEK_DATA)
2608                                 offset = -ENXIO;
2609                         else
2610                                 offset = inode->i_size;
2611                 }
2612         }
2613
2614         if (offset >= 0)
2615                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2616         inode_unlock(inode);
2617         return offset;
2618 }
2619
2620 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2621                                                          loff_t len)
2622 {
2623         struct inode *inode = file_inode(file);
2624         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2625         struct shmem_inode_info *info = SHMEM_I(inode);
2626         struct shmem_falloc shmem_falloc;
2627         pgoff_t start, index, end;
2628         int error;
2629
2630         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2631                 return -EOPNOTSUPP;
2632
2633         inode_lock(inode);
2634
2635         if (mode & FALLOC_FL_PUNCH_HOLE) {
2636                 struct address_space *mapping = file->f_mapping;
2637                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2638                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2639                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2640
2641                 /* protected by i_mutex */
2642                 if (info->seals & F_SEAL_WRITE) {
2643                         error = -EPERM;
2644                         goto out;
2645                 }
2646
2647                 shmem_falloc.waitq = &shmem_falloc_waitq;
2648                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2649                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2650                 spin_lock(&inode->i_lock);
2651                 inode->i_private = &shmem_falloc;
2652                 spin_unlock(&inode->i_lock);
2653
2654                 if ((u64)unmap_end > (u64)unmap_start)
2655                         unmap_mapping_range(mapping, unmap_start,
2656                                             1 + unmap_end - unmap_start, 0);
2657                 shmem_truncate_range(inode, offset, offset + len - 1);
2658                 /* No need to unmap again: hole-punching leaves COWed pages */
2659
2660                 spin_lock(&inode->i_lock);
2661                 inode->i_private = NULL;
2662                 wake_up_all(&shmem_falloc_waitq);
2663                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2664                 spin_unlock(&inode->i_lock);
2665                 error = 0;
2666                 goto out;
2667         }
2668
2669         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2670         error = inode_newsize_ok(inode, offset + len);
2671         if (error)
2672                 goto out;
2673
2674         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2675                 error = -EPERM;
2676                 goto out;
2677         }
2678
2679         start = offset >> PAGE_SHIFT;
2680         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2681         /* Try to avoid a swapstorm if len is impossible to satisfy */
2682         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2683                 error = -ENOSPC;
2684                 goto out;
2685         }
2686
2687         shmem_falloc.waitq = NULL;
2688         shmem_falloc.start = start;
2689         shmem_falloc.next  = start;
2690         shmem_falloc.nr_falloced = 0;
2691         shmem_falloc.nr_unswapped = 0;
2692         spin_lock(&inode->i_lock);
2693         inode->i_private = &shmem_falloc;
2694         spin_unlock(&inode->i_lock);
2695
2696         for (index = start; index < end; index++) {
2697                 struct page *page;
2698
2699                 /*
2700                  * Good, the fallocate(2) manpage permits EINTR: we may have
2701                  * been interrupted because we are using up too much memory.
2702                  */
2703                 if (signal_pending(current))
2704                         error = -EINTR;
2705                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2706                         error = -ENOMEM;
2707                 else
2708                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2709                 if (error) {
2710                         /* Remove the !PageUptodate pages we added */
2711                         if (index > start) {
2712                                 shmem_undo_range(inode,
2713                                     (loff_t)start << PAGE_SHIFT,
2714                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2715                         }
2716                         goto undone;
2717                 }
2718
2719                 /*
2720                  * Inform shmem_writepage() how far we have reached.
2721                  * No need for lock or barrier: we have the page lock.
2722                  */
2723                 shmem_falloc.next++;
2724                 if (!PageUptodate(page))
2725                         shmem_falloc.nr_falloced++;
2726
2727                 /*
2728                  * If !PageUptodate, leave it that way so that freeable pages
2729                  * can be recognized if we need to rollback on error later.
2730                  * But set_page_dirty so that memory pressure will swap rather
2731                  * than free the pages we are allocating (and SGP_CACHE pages
2732                  * might still be clean: we now need to mark those dirty too).
2733                  */
2734                 set_page_dirty(page);
2735                 unlock_page(page);
2736                 put_page(page);
2737                 cond_resched();
2738         }
2739
2740         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2741                 i_size_write(inode, offset + len);
2742         inode->i_ctime = current_time(inode);
2743 undone:
2744         spin_lock(&inode->i_lock);
2745         inode->i_private = NULL;
2746         spin_unlock(&inode->i_lock);
2747 out:
2748         inode_unlock(inode);
2749         return error;
2750 }
2751
2752 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2753 {
2754         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2755
2756         buf->f_type = TMPFS_MAGIC;
2757         buf->f_bsize = PAGE_SIZE;
2758         buf->f_namelen = NAME_MAX;
2759         if (sbinfo->max_blocks) {
2760                 buf->f_blocks = sbinfo->max_blocks;
2761                 buf->f_bavail =
2762                 buf->f_bfree  = sbinfo->max_blocks -
2763                                 percpu_counter_sum(&sbinfo->used_blocks);
2764         }
2765         if (sbinfo->max_inodes) {
2766                 buf->f_files = sbinfo->max_inodes;
2767                 buf->f_ffree = sbinfo->free_inodes;
2768         }
2769         /* else leave those fields 0 like simple_statfs */
2770         return 0;
2771 }
2772
2773 /*
2774  * File creation. Allocate an inode, and we're done..
2775  */
2776 static int
2777 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2778 {
2779         struct inode *inode;
2780         int error = -ENOSPC;
2781
2782         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2783         if (inode) {
2784                 error = simple_acl_create(dir, inode);
2785                 if (error)
2786                         goto out_iput;
2787                 error = security_inode_init_security(inode, dir,
2788                                                      &dentry->d_name,
2789                                                      shmem_initxattrs, NULL);
2790                 if (error && error != -EOPNOTSUPP)
2791                         goto out_iput;
2792
2793                 error = 0;
2794                 dir->i_size += BOGO_DIRENT_SIZE;
2795                 dir->i_ctime = dir->i_mtime = current_time(dir);
2796                 d_instantiate(dentry, inode);
2797                 dget(dentry); /* Extra count - pin the dentry in core */
2798         }
2799         return error;
2800 out_iput:
2801         iput(inode);
2802         return error;
2803 }
2804
2805 static int
2806 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2807 {
2808         struct inode *inode;
2809         int error = -ENOSPC;
2810
2811         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2812         if (inode) {
2813                 error = security_inode_init_security(inode, dir,
2814                                                      NULL,
2815                                                      shmem_initxattrs, NULL);
2816                 if (error && error != -EOPNOTSUPP)
2817                         goto out_iput;
2818                 error = simple_acl_create(dir, inode);
2819                 if (error)
2820                         goto out_iput;
2821                 d_tmpfile(dentry, inode);
2822         }
2823         return error;
2824 out_iput:
2825         iput(inode);
2826         return error;
2827 }
2828
2829 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2830 {
2831         int error;
2832
2833         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2834                 return error;
2835         inc_nlink(dir);
2836         return 0;
2837 }
2838
2839 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2840                 bool excl)
2841 {
2842         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2843 }
2844
2845 /*
2846  * Link a file..
2847  */
2848 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2849 {
2850         struct inode *inode = d_inode(old_dentry);
2851         int ret;
2852
2853         /*
2854          * No ordinary (disk based) filesystem counts links as inodes;
2855          * but each new link needs a new dentry, pinning lowmem, and
2856          * tmpfs dentries cannot be pruned until they are unlinked.
2857          */
2858         ret = shmem_reserve_inode(inode->i_sb);
2859         if (ret)
2860                 goto out;
2861
2862         dir->i_size += BOGO_DIRENT_SIZE;
2863         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2864         inc_nlink(inode);
2865         ihold(inode);   /* New dentry reference */
2866         dget(dentry);           /* Extra pinning count for the created dentry */
2867         d_instantiate(dentry, inode);
2868 out:
2869         return ret;
2870 }
2871
2872 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2873 {
2874         struct inode *inode = d_inode(dentry);
2875
2876         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2877                 shmem_free_inode(inode->i_sb);
2878
2879         dir->i_size -= BOGO_DIRENT_SIZE;
2880         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2881         drop_nlink(inode);
2882         dput(dentry);   /* Undo the count from "create" - this does all the work */
2883         return 0;
2884 }
2885
2886 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2887 {
2888         if (!simple_empty(dentry))
2889                 return -ENOTEMPTY;
2890
2891         drop_nlink(d_inode(dentry));
2892         drop_nlink(dir);
2893         return shmem_unlink(dir, dentry);
2894 }
2895
2896 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2897 {
2898         bool old_is_dir = d_is_dir(old_dentry);
2899         bool new_is_dir = d_is_dir(new_dentry);
2900
2901         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2902                 if (old_is_dir) {
2903                         drop_nlink(old_dir);
2904                         inc_nlink(new_dir);
2905                 } else {
2906                         drop_nlink(new_dir);
2907                         inc_nlink(old_dir);
2908                 }
2909         }
2910         old_dir->i_ctime = old_dir->i_mtime =
2911         new_dir->i_ctime = new_dir->i_mtime =
2912         d_inode(old_dentry)->i_ctime =
2913         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2914
2915         return 0;
2916 }
2917
2918 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2919 {
2920         struct dentry *whiteout;
2921         int error;
2922
2923         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2924         if (!whiteout)
2925                 return -ENOMEM;
2926
2927         error = shmem_mknod(old_dir, whiteout,
2928                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2929         dput(whiteout);
2930         if (error)
2931                 return error;
2932
2933         /*
2934          * Cheat and hash the whiteout while the old dentry is still in
2935          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2936          *
2937          * d_lookup() will consistently find one of them at this point,
2938          * not sure which one, but that isn't even important.
2939          */
2940         d_rehash(whiteout);
2941         return 0;
2942 }
2943
2944 /*
2945  * The VFS layer already does all the dentry stuff for rename,
2946  * we just have to decrement the usage count for the target if
2947  * it exists so that the VFS layer correctly free's it when it
2948  * gets overwritten.
2949  */
2950 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2951 {
2952         struct inode *inode = d_inode(old_dentry);
2953         int they_are_dirs = S_ISDIR(inode->i_mode);
2954
2955         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2956                 return -EINVAL;
2957
2958         if (flags & RENAME_EXCHANGE)
2959                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2960
2961         if (!simple_empty(new_dentry))
2962                 return -ENOTEMPTY;
2963
2964         if (flags & RENAME_WHITEOUT) {
2965                 int error;
2966
2967                 error = shmem_whiteout(old_dir, old_dentry);
2968                 if (error)
2969                         return error;
2970         }
2971
2972         if (d_really_is_positive(new_dentry)) {
2973                 (void) shmem_unlink(new_dir, new_dentry);
2974                 if (they_are_dirs) {
2975                         drop_nlink(d_inode(new_dentry));
2976                         drop_nlink(old_dir);
2977                 }
2978         } else if (they_are_dirs) {
2979                 drop_nlink(old_dir);
2980                 inc_nlink(new_dir);
2981         }
2982
2983         old_dir->i_size -= BOGO_DIRENT_SIZE;
2984         new_dir->i_size += BOGO_DIRENT_SIZE;
2985         old_dir->i_ctime = old_dir->i_mtime =
2986         new_dir->i_ctime = new_dir->i_mtime =
2987         inode->i_ctime = current_time(old_dir);
2988         return 0;
2989 }
2990
2991 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2992 {
2993         int error;
2994         int len;
2995         struct inode *inode;
2996         struct page *page;
2997
2998         len = strlen(symname) + 1;
2999         if (len > PAGE_SIZE)
3000                 return -ENAMETOOLONG;
3001
3002         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3003                                 VM_NORESERVE);
3004         if (!inode)
3005                 return -ENOSPC;
3006
3007         error = security_inode_init_security(inode, dir, &dentry->d_name,
3008                                              shmem_initxattrs, NULL);
3009         if (error) {
3010                 if (error != -EOPNOTSUPP) {
3011                         iput(inode);
3012                         return error;
3013                 }
3014                 error = 0;
3015         }
3016
3017         inode->i_size = len-1;
3018         if (len <= SHORT_SYMLINK_LEN) {
3019                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3020                 if (!inode->i_link) {
3021                         iput(inode);
3022                         return -ENOMEM;
3023                 }
3024                 inode->i_op = &shmem_short_symlink_operations;
3025         } else {
3026                 inode_nohighmem(inode);
3027                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3028                 if (error) {
3029                         iput(inode);
3030                         return error;
3031                 }
3032                 inode->i_mapping->a_ops = &shmem_aops;
3033                 inode->i_op = &shmem_symlink_inode_operations;
3034                 memcpy(page_address(page), symname, len);
3035                 SetPageUptodate(page);
3036                 set_page_dirty(page);
3037                 unlock_page(page);
3038                 put_page(page);
3039         }
3040         dir->i_size += BOGO_DIRENT_SIZE;
3041         dir->i_ctime = dir->i_mtime = current_time(dir);
3042         d_instantiate(dentry, inode);
3043         dget(dentry);
3044         return 0;
3045 }
3046
3047 static void shmem_put_link(void *arg)
3048 {
3049         mark_page_accessed(arg);
3050         put_page(arg);
3051 }
3052
3053 static const char *shmem_get_link(struct dentry *dentry,
3054                                   struct inode *inode,
3055                                   struct delayed_call *done)
3056 {
3057         struct page *page = NULL;
3058         int error;
3059         if (!dentry) {
3060                 page = find_get_page(inode->i_mapping, 0);
3061                 if (!page)
3062                         return ERR_PTR(-ECHILD);
3063                 if (!PageUptodate(page)) {
3064                         put_page(page);
3065                         return ERR_PTR(-ECHILD);
3066                 }
3067         } else {
3068                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3069                 if (error)
3070                         return ERR_PTR(error);
3071                 unlock_page(page);
3072         }
3073         set_delayed_call(done, shmem_put_link, page);
3074         return page_address(page);
3075 }
3076
3077 #ifdef CONFIG_TMPFS_XATTR
3078 /*
3079  * Superblocks without xattr inode operations may get some security.* xattr
3080  * support from the LSM "for free". As soon as we have any other xattrs
3081  * like ACLs, we also need to implement the security.* handlers at
3082  * filesystem level, though.
3083  */
3084
3085 /*
3086  * Callback for security_inode_init_security() for acquiring xattrs.
3087  */
3088 static int shmem_initxattrs(struct inode *inode,
3089                             const struct xattr *xattr_array,
3090                             void *fs_info)
3091 {
3092         struct shmem_inode_info *info = SHMEM_I(inode);
3093         const struct xattr *xattr;
3094         struct simple_xattr *new_xattr;
3095         size_t len;
3096
3097         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3098                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3099                 if (!new_xattr)
3100                         return -ENOMEM;
3101
3102                 len = strlen(xattr->name) + 1;
3103                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3104                                           GFP_KERNEL);
3105                 if (!new_xattr->name) {
3106                         kfree(new_xattr);
3107                         return -ENOMEM;
3108                 }
3109
3110                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3111                        XATTR_SECURITY_PREFIX_LEN);
3112                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3113                        xattr->name, len);
3114
3115                 simple_xattr_list_add(&info->xattrs, new_xattr);
3116         }
3117
3118         return 0;
3119 }
3120
3121 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3122                                    struct dentry *unused, struct inode *inode,
3123                                    const char *name, void *buffer, size_t size)
3124 {
3125         struct shmem_inode_info *info = SHMEM_I(inode);
3126
3127         name = xattr_full_name(handler, name);
3128         return simple_xattr_get(&info->xattrs, name, buffer, size);
3129 }
3130
3131 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3132                                    struct dentry *unused, struct inode *inode,
3133                                    const char *name, const void *value,
3134                                    size_t size, int flags)
3135 {
3136         struct shmem_inode_info *info = SHMEM_I(inode);
3137
3138         name = xattr_full_name(handler, name);
3139         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3140 }
3141
3142 static const struct xattr_handler shmem_security_xattr_handler = {
3143         .prefix = XATTR_SECURITY_PREFIX,
3144         .get = shmem_xattr_handler_get,
3145         .set = shmem_xattr_handler_set,
3146 };
3147
3148 static const struct xattr_handler shmem_trusted_xattr_handler = {
3149         .prefix = XATTR_TRUSTED_PREFIX,
3150         .get = shmem_xattr_handler_get,
3151         .set = shmem_xattr_handler_set,
3152 };
3153
3154 static const struct xattr_handler *shmem_xattr_handlers[] = {
3155 #ifdef CONFIG_TMPFS_POSIX_ACL
3156         &posix_acl_access_xattr_handler,
3157         &posix_acl_default_xattr_handler,
3158 #endif
3159         &shmem_security_xattr_handler,
3160         &shmem_trusted_xattr_handler,
3161         NULL
3162 };
3163
3164 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3165 {
3166         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3167         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3168 }
3169 #endif /* CONFIG_TMPFS_XATTR */
3170
3171 static const struct inode_operations shmem_short_symlink_operations = {
3172         .get_link       = simple_get_link,
3173 #ifdef CONFIG_TMPFS_XATTR
3174         .listxattr      = shmem_listxattr,
3175 #endif
3176 };
3177
3178 static const struct inode_operations shmem_symlink_inode_operations = {
3179         .get_link       = shmem_get_link,
3180 #ifdef CONFIG_TMPFS_XATTR
3181         .listxattr      = shmem_listxattr,
3182 #endif
3183 };
3184
3185 static struct dentry *shmem_get_parent(struct dentry *child)
3186 {
3187         return ERR_PTR(-ESTALE);
3188 }
3189
3190 static int shmem_match(struct inode *ino, void *vfh)
3191 {
3192         __u32 *fh = vfh;
3193         __u64 inum = fh[2];
3194         inum = (inum << 32) | fh[1];
3195         return ino->i_ino == inum && fh[0] == ino->i_generation;
3196 }
3197
3198 /* Find any alias of inode, but prefer a hashed alias */
3199 static struct dentry *shmem_find_alias(struct inode *inode)
3200 {
3201         struct dentry *alias = d_find_alias(inode);
3202
3203         return alias ?: d_find_any_alias(inode);
3204 }
3205
3206
3207 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3208                 struct fid *fid, int fh_len, int fh_type)
3209 {
3210         struct inode *inode;
3211         struct dentry *dentry = NULL;
3212         u64 inum;
3213
3214         if (fh_len < 3)
3215                 return NULL;
3216
3217         inum = fid->raw[2];
3218         inum = (inum << 32) | fid->raw[1];
3219
3220         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3221                         shmem_match, fid->raw);
3222         if (inode) {
3223                 dentry = shmem_find_alias(inode);
3224                 iput(inode);
3225         }
3226
3227         return dentry;
3228 }
3229
3230 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3231                                 struct inode *parent)
3232 {
3233         if (*len < 3) {
3234                 *len = 3;
3235                 return FILEID_INVALID;
3236         }
3237
3238         if (inode_unhashed(inode)) {
3239                 /* Unfortunately insert_inode_hash is not idempotent,
3240                  * so as we hash inodes here rather than at creation
3241                  * time, we need a lock to ensure we only try
3242                  * to do it once
3243                  */
3244                 static DEFINE_SPINLOCK(lock);
3245                 spin_lock(&lock);
3246                 if (inode_unhashed(inode))
3247                         __insert_inode_hash(inode,
3248                                             inode->i_ino + inode->i_generation);
3249                 spin_unlock(&lock);
3250         }
3251
3252         fh[0] = inode->i_generation;
3253         fh[1] = inode->i_ino;
3254         fh[2] = ((__u64)inode->i_ino) >> 32;
3255
3256         *len = 3;
3257         return 1;
3258 }
3259
3260 static const struct export_operations shmem_export_ops = {
3261         .get_parent     = shmem_get_parent,
3262         .encode_fh      = shmem_encode_fh,
3263         .fh_to_dentry   = shmem_fh_to_dentry,
3264 };
3265
3266 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3267                                bool remount)
3268 {
3269         char *this_char, *value, *rest;
3270         struct mempolicy *mpol = NULL;
3271         uid_t uid;
3272         gid_t gid;
3273
3274         while (options != NULL) {
3275                 this_char = options;
3276                 for (;;) {
3277                         /*
3278                          * NUL-terminate this option: unfortunately,
3279                          * mount options form a comma-separated list,
3280                          * but mpol's nodelist may also contain commas.
3281                          */
3282                         options = strchr(options, ',');
3283                         if (options == NULL)
3284                                 break;
3285                         options++;
3286                         if (!isdigit(*options)) {
3287                                 options[-1] = '\0';
3288                                 break;
3289                         }
3290                 }
3291                 if (!*this_char)
3292                         continue;
3293                 if ((value = strchr(this_char,'=')) != NULL) {
3294                         *value++ = 0;
3295                 } else {
3296                         pr_err("tmpfs: No value for mount option '%s'\n",
3297                                this_char);
3298                         goto error;
3299                 }
3300
3301                 if (!strcmp(this_char,"size")) {
3302                         unsigned long long size;
3303                         size = memparse(value,&rest);
3304                         if (*rest == '%') {
3305                                 size <<= PAGE_SHIFT;
3306                                 size *= totalram_pages;
3307                                 do_div(size, 100);
3308                                 rest++;
3309                         }
3310                         if (*rest)
3311                                 goto bad_val;
3312                         sbinfo->max_blocks =
3313                                 DIV_ROUND_UP(size, PAGE_SIZE);
3314                 } else if (!strcmp(this_char,"nr_blocks")) {
3315                         sbinfo->max_blocks = memparse(value, &rest);
3316                         if (*rest)
3317                                 goto bad_val;
3318                 } else if (!strcmp(this_char,"nr_inodes")) {
3319                         sbinfo->max_inodes = memparse(value, &rest);
3320                         if (*rest)
3321                                 goto bad_val;
3322                 } else if (!strcmp(this_char,"mode")) {
3323                         if (remount)
3324                                 continue;
3325                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3326                         if (*rest)
3327                                 goto bad_val;
3328                 } else if (!strcmp(this_char,"uid")) {
3329                         if (remount)
3330                                 continue;
3331                         uid = simple_strtoul(value, &rest, 0);
3332                         if (*rest)
3333                                 goto bad_val;
3334                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3335                         if (!uid_valid(sbinfo->uid))
3336                                 goto bad_val;
3337                 } else if (!strcmp(this_char,"gid")) {
3338                         if (remount)
3339                                 continue;
3340                         gid = simple_strtoul(value, &rest, 0);
3341                         if (*rest)
3342                                 goto bad_val;
3343                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3344                         if (!gid_valid(sbinfo->gid))
3345                                 goto bad_val;
3346 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3347                 } else if (!strcmp(this_char, "huge")) {
3348                         int huge;
3349                         huge = shmem_parse_huge(value);
3350                         if (huge < 0)
3351                                 goto bad_val;
3352                         if (!has_transparent_hugepage() &&
3353                                         huge != SHMEM_HUGE_NEVER)
3354                                 goto bad_val;
3355                         sbinfo->huge = huge;
3356 #endif
3357 #ifdef CONFIG_NUMA
3358                 } else if (!strcmp(this_char,"mpol")) {
3359                         mpol_put(mpol);
3360                         mpol = NULL;
3361                         if (mpol_parse_str(value, &mpol))
3362                                 goto bad_val;
3363 #endif
3364                 } else {
3365                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3366                         goto error;
3367                 }
3368         }
3369         sbinfo->mpol = mpol;
3370         return 0;
3371
3372 bad_val:
3373         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3374                value, this_char);
3375 error:
3376         mpol_put(mpol);
3377         return 1;
3378
3379 }
3380
3381 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3382 {
3383         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3384         struct shmem_sb_info config = *sbinfo;
3385         unsigned long inodes;
3386         int error = -EINVAL;
3387
3388         config.mpol = NULL;
3389         if (shmem_parse_options(data, &config, true))
3390                 return error;
3391
3392         spin_lock(&sbinfo->stat_lock);
3393         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3394         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3395                 goto out;
3396         if (config.max_inodes < inodes)
3397                 goto out;
3398         /*
3399          * Those tests disallow limited->unlimited while any are in use;
3400          * but we must separately disallow unlimited->limited, because
3401          * in that case we have no record of how much is already in use.
3402          */
3403         if (config.max_blocks && !sbinfo->max_blocks)
3404                 goto out;
3405         if (config.max_inodes && !sbinfo->max_inodes)
3406                 goto out;
3407
3408         error = 0;
3409         sbinfo->huge = config.huge;
3410         sbinfo->max_blocks  = config.max_blocks;
3411         sbinfo->max_inodes  = config.max_inodes;
3412         sbinfo->free_inodes = config.max_inodes - inodes;
3413
3414         /*
3415          * Preserve previous mempolicy unless mpol remount option was specified.
3416          */
3417         if (config.mpol) {
3418                 mpol_put(sbinfo->mpol);
3419                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3420         }
3421 out:
3422         spin_unlock(&sbinfo->stat_lock);
3423         return error;
3424 }
3425
3426 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3427 {
3428         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3429
3430         if (sbinfo->max_blocks != shmem_default_max_blocks())
3431                 seq_printf(seq, ",size=%luk",
3432                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3433         if (sbinfo->max_inodes != shmem_default_max_inodes())
3434                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3435         if (sbinfo->mode != (0777 | S_ISVTX))
3436                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3437         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3438                 seq_printf(seq, ",uid=%u",
3439                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3440         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3441                 seq_printf(seq, ",gid=%u",
3442                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3444         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3445         if (sbinfo->huge)
3446                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3447 #endif
3448         shmem_show_mpol(seq, sbinfo->mpol);
3449         return 0;
3450 }
3451
3452 #endif /* CONFIG_TMPFS */
3453
3454 static void shmem_put_super(struct super_block *sb)
3455 {
3456         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3457
3458         percpu_counter_destroy(&sbinfo->used_blocks);
3459         mpol_put(sbinfo->mpol);
3460         kfree(sbinfo);
3461         sb->s_fs_info = NULL;
3462 }
3463
3464 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3465 {
3466         struct inode *inode;
3467         struct shmem_sb_info *sbinfo;
3468         int err = -ENOMEM;
3469
3470         /* Round up to L1_CACHE_BYTES to resist false sharing */
3471         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3472                                 L1_CACHE_BYTES), GFP_KERNEL);
3473         if (!sbinfo)
3474                 return -ENOMEM;
3475
3476         sbinfo->mode = 0777 | S_ISVTX;
3477         sbinfo->uid = current_fsuid();
3478         sbinfo->gid = current_fsgid();
3479         sb->s_fs_info = sbinfo;
3480
3481 #ifdef CONFIG_TMPFS
3482         /*
3483          * Per default we only allow half of the physical ram per
3484          * tmpfs instance, limiting inodes to one per page of lowmem;
3485          * but the internal instance is left unlimited.
3486          */
3487         if (!(sb->s_flags & SB_KERNMOUNT)) {
3488                 sbinfo->max_blocks = shmem_default_max_blocks();
3489                 sbinfo->max_inodes = shmem_default_max_inodes();
3490                 if (shmem_parse_options(data, sbinfo, false)) {
3491                         err = -EINVAL;
3492                         goto failed;
3493                 }
3494         } else {
3495                 sb->s_flags |= SB_NOUSER;
3496         }
3497         sb->s_export_op = &shmem_export_ops;
3498         sb->s_flags |= SB_NOSEC;
3499 #else
3500         sb->s_flags |= SB_NOUSER;
3501 #endif
3502
3503         spin_lock_init(&sbinfo->stat_lock);
3504         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3505                 goto failed;
3506         sbinfo->free_inodes = sbinfo->max_inodes;
3507         spin_lock_init(&sbinfo->shrinklist_lock);
3508         INIT_LIST_HEAD(&sbinfo->shrinklist);
3509
3510         sb->s_maxbytes = MAX_LFS_FILESIZE;
3511         sb->s_blocksize = PAGE_SIZE;
3512         sb->s_blocksize_bits = PAGE_SHIFT;
3513         sb->s_magic = TMPFS_MAGIC;
3514         sb->s_op = &shmem_ops;
3515         sb->s_time_gran = 1;
3516 #ifdef CONFIG_TMPFS_XATTR
3517         sb->s_xattr = shmem_xattr_handlers;
3518 #endif
3519 #ifdef CONFIG_TMPFS_POSIX_ACL
3520         sb->s_flags |= SB_POSIXACL;
3521 #endif
3522         uuid_gen(&sb->s_uuid);
3523
3524         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3525         if (!inode)
3526                 goto failed;
3527         inode->i_uid = sbinfo->uid;
3528         inode->i_gid = sbinfo->gid;
3529         sb->s_root = d_make_root(inode);
3530         if (!sb->s_root)
3531                 goto failed;
3532         return 0;
3533
3534 failed:
3535         shmem_put_super(sb);
3536         return err;
3537 }
3538
3539 static struct kmem_cache *shmem_inode_cachep;
3540
3541 static struct inode *shmem_alloc_inode(struct super_block *sb)
3542 {
3543         struct shmem_inode_info *info;
3544         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3545         if (!info)
3546                 return NULL;
3547         return &info->vfs_inode;
3548 }
3549
3550 static void shmem_destroy_callback(struct rcu_head *head)
3551 {
3552         struct inode *inode = container_of(head, struct inode, i_rcu);
3553         if (S_ISLNK(inode->i_mode))
3554                 kfree(inode->i_link);
3555         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3556 }
3557
3558 static void shmem_destroy_inode(struct inode *inode)
3559 {
3560         if (S_ISREG(inode->i_mode))
3561                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3562         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3563 }
3564
3565 static void shmem_init_inode(void *foo)
3566 {
3567         struct shmem_inode_info *info = foo;
3568         inode_init_once(&info->vfs_inode);
3569 }
3570
3571 static void shmem_init_inodecache(void)
3572 {
3573         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3574                                 sizeof(struct shmem_inode_info),
3575                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3576 }
3577
3578 static void shmem_destroy_inodecache(void)
3579 {
3580         kmem_cache_destroy(shmem_inode_cachep);
3581 }
3582
3583 static const struct address_space_operations shmem_aops = {
3584         .writepage      = shmem_writepage,
3585         .set_page_dirty = __set_page_dirty_no_writeback,
3586 #ifdef CONFIG_TMPFS
3587         .write_begin    = shmem_write_begin,
3588         .write_end      = shmem_write_end,
3589 #endif
3590 #ifdef CONFIG_MIGRATION
3591         .migratepage    = migrate_page,
3592 #endif
3593         .error_remove_page = generic_error_remove_page,
3594 };
3595
3596 static const struct file_operations shmem_file_operations = {
3597         .mmap           = shmem_mmap,
3598         .get_unmapped_area = shmem_get_unmapped_area,
3599 #ifdef CONFIG_TMPFS
3600         .llseek         = shmem_file_llseek,
3601         .read_iter      = shmem_file_read_iter,
3602         .write_iter     = generic_file_write_iter,
3603         .fsync          = noop_fsync,
3604         .splice_read    = generic_file_splice_read,
3605         .splice_write   = iter_file_splice_write,
3606         .fallocate      = shmem_fallocate,
3607 #endif
3608 };
3609
3610 static const struct inode_operations shmem_inode_operations = {
3611         .getattr        = shmem_getattr,
3612         .setattr        = shmem_setattr,
3613 #ifdef CONFIG_TMPFS_XATTR
3614         .listxattr      = shmem_listxattr,
3615         .set_acl        = simple_set_acl,
3616 #endif
3617 };
3618
3619 static const struct inode_operations shmem_dir_inode_operations = {
3620 #ifdef CONFIG_TMPFS
3621         .create         = shmem_create,
3622         .lookup         = simple_lookup,
3623         .link           = shmem_link,
3624         .unlink         = shmem_unlink,
3625         .symlink        = shmem_symlink,
3626         .mkdir          = shmem_mkdir,
3627         .rmdir          = shmem_rmdir,
3628         .mknod          = shmem_mknod,
3629         .rename         = shmem_rename2,
3630         .tmpfile        = shmem_tmpfile,
3631 #endif
3632 #ifdef CONFIG_TMPFS_XATTR
3633         .listxattr      = shmem_listxattr,
3634 #endif
3635 #ifdef CONFIG_TMPFS_POSIX_ACL
3636         .setattr        = shmem_setattr,
3637         .set_acl        = simple_set_acl,
3638 #endif
3639 };
3640
3641 static const struct inode_operations shmem_special_inode_operations = {
3642 #ifdef CONFIG_TMPFS_XATTR
3643         .listxattr      = shmem_listxattr,
3644 #endif
3645 #ifdef CONFIG_TMPFS_POSIX_ACL
3646         .setattr        = shmem_setattr,
3647         .set_acl        = simple_set_acl,
3648 #endif
3649 };
3650
3651 static const struct super_operations shmem_ops = {
3652         .alloc_inode    = shmem_alloc_inode,
3653         .destroy_inode  = shmem_destroy_inode,
3654 #ifdef CONFIG_TMPFS
3655         .statfs         = shmem_statfs,
3656         .remount_fs     = shmem_remount_fs,
3657         .show_options   = shmem_show_options,
3658 #endif
3659         .evict_inode    = shmem_evict_inode,
3660         .drop_inode     = generic_delete_inode,
3661         .put_super      = shmem_put_super,
3662 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3663         .nr_cached_objects      = shmem_unused_huge_count,
3664         .free_cached_objects    = shmem_unused_huge_scan,
3665 #endif
3666 };
3667
3668 static const struct vm_operations_struct shmem_vm_ops = {
3669         .fault          = shmem_fault,
3670         .map_pages      = filemap_map_pages,
3671 #ifdef CONFIG_NUMA
3672         .set_policy     = shmem_set_policy,
3673         .get_policy     = shmem_get_policy,
3674 #endif
3675 };
3676
3677 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3678         int flags, const char *dev_name, void *data)
3679 {
3680         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3681 }
3682
3683 static struct file_system_type shmem_fs_type = {
3684         .owner          = THIS_MODULE,
3685         .name           = "tmpfs",
3686         .mount          = shmem_mount,
3687         .kill_sb        = kill_litter_super,
3688         .fs_flags       = FS_USERNS_MOUNT,
3689 };
3690
3691 int __init shmem_init(void)
3692 {
3693         int error;
3694
3695         /* If rootfs called this, don't re-init */
3696         if (shmem_inode_cachep)
3697                 return 0;
3698
3699         shmem_init_inodecache();
3700
3701         error = register_filesystem(&shmem_fs_type);
3702         if (error) {
3703                 pr_err("Could not register tmpfs\n");
3704                 goto out2;
3705         }
3706
3707         shm_mnt = kern_mount(&shmem_fs_type);
3708         if (IS_ERR(shm_mnt)) {
3709                 error = PTR_ERR(shm_mnt);
3710                 pr_err("Could not kern_mount tmpfs\n");
3711                 goto out1;
3712         }
3713
3714 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3715         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3716                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3717         else
3718                 shmem_huge = 0; /* just in case it was patched */
3719 #endif
3720         return 0;
3721
3722 out1:
3723         unregister_filesystem(&shmem_fs_type);
3724 out2:
3725         shmem_destroy_inodecache();
3726         shm_mnt = ERR_PTR(error);
3727         return error;
3728 }
3729
3730 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3731 static ssize_t shmem_enabled_show(struct kobject *kobj,
3732                 struct kobj_attribute *attr, char *buf)
3733 {
3734         int values[] = {
3735                 SHMEM_HUGE_ALWAYS,
3736                 SHMEM_HUGE_WITHIN_SIZE,
3737                 SHMEM_HUGE_ADVISE,
3738                 SHMEM_HUGE_NEVER,
3739                 SHMEM_HUGE_DENY,
3740                 SHMEM_HUGE_FORCE,
3741         };
3742         int i, count;
3743
3744         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3745                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3746
3747                 count += sprintf(buf + count, fmt,
3748                                 shmem_format_huge(values[i]));
3749         }
3750         buf[count - 1] = '\n';
3751         return count;
3752 }
3753
3754 static ssize_t shmem_enabled_store(struct kobject *kobj,
3755                 struct kobj_attribute *attr, const char *buf, size_t count)
3756 {
3757         char tmp[16];
3758         int huge;
3759
3760         if (count + 1 > sizeof(tmp))
3761                 return -EINVAL;
3762         memcpy(tmp, buf, count);
3763         tmp[count] = '\0';
3764         if (count && tmp[count - 1] == '\n')
3765                 tmp[count - 1] = '\0';
3766
3767         huge = shmem_parse_huge(tmp);
3768         if (huge == -EINVAL)
3769                 return -EINVAL;
3770         if (!has_transparent_hugepage() &&
3771                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3772                 return -EINVAL;
3773
3774         shmem_huge = huge;
3775         if (shmem_huge > SHMEM_HUGE_DENY)
3776                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3777         return count;
3778 }
3779
3780 struct kobj_attribute shmem_enabled_attr =
3781         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3782 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3783
3784 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3785 bool shmem_huge_enabled(struct vm_area_struct *vma)
3786 {
3787         struct inode *inode = file_inode(vma->vm_file);
3788         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3789         loff_t i_size;
3790         pgoff_t off;
3791
3792         if (shmem_huge == SHMEM_HUGE_FORCE)
3793                 return true;
3794         if (shmem_huge == SHMEM_HUGE_DENY)
3795                 return false;
3796         switch (sbinfo->huge) {
3797                 case SHMEM_HUGE_NEVER:
3798                         return false;
3799                 case SHMEM_HUGE_ALWAYS:
3800                         return true;
3801                 case SHMEM_HUGE_WITHIN_SIZE:
3802                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3803                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3804                         if (i_size >= HPAGE_PMD_SIZE &&
3805                                         i_size >> PAGE_SHIFT >= off)
3806                                 return true;
3807                         /* fall through */
3808                 case SHMEM_HUGE_ADVISE:
3809                         /* TODO: implement fadvise() hints */
3810                         return (vma->vm_flags & VM_HUGEPAGE);
3811                 default:
3812                         VM_BUG_ON(1);
3813                         return false;
3814         }
3815 }
3816 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3817
3818 #else /* !CONFIG_SHMEM */
3819
3820 /*
3821  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3822  *
3823  * This is intended for small system where the benefits of the full
3824  * shmem code (swap-backed and resource-limited) are outweighed by
3825  * their complexity. On systems without swap this code should be
3826  * effectively equivalent, but much lighter weight.
3827  */
3828
3829 static struct file_system_type shmem_fs_type = {
3830         .name           = "tmpfs",
3831         .mount          = ramfs_mount,
3832         .kill_sb        = kill_litter_super,
3833         .fs_flags       = FS_USERNS_MOUNT,
3834 };
3835
3836 int __init shmem_init(void)
3837 {
3838         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3839
3840         shm_mnt = kern_mount(&shmem_fs_type);
3841         BUG_ON(IS_ERR(shm_mnt));
3842
3843         return 0;
3844 }
3845
3846 int shmem_unuse(swp_entry_t swap, struct page *page)
3847 {
3848         return 0;
3849 }
3850
3851 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3852 {
3853         return 0;
3854 }
3855
3856 void shmem_unlock_mapping(struct address_space *mapping)
3857 {
3858 }
3859
3860 #ifdef CONFIG_MMU
3861 unsigned long shmem_get_unmapped_area(struct file *file,
3862                                       unsigned long addr, unsigned long len,
3863                                       unsigned long pgoff, unsigned long flags)
3864 {
3865         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3866 }
3867 #endif
3868
3869 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3870 {
3871         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3872 }
3873 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3874
3875 #define shmem_vm_ops                            generic_file_vm_ops
3876 #define shmem_file_operations                   ramfs_file_operations
3877 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3878 #define shmem_acct_size(flags, size)            0
3879 #define shmem_unacct_size(flags, size)          do {} while (0)
3880
3881 #endif /* CONFIG_SHMEM */
3882
3883 /* common code */
3884
3885 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3886                                        unsigned long flags, unsigned int i_flags)
3887 {
3888         struct inode *inode;
3889         struct file *res;
3890
3891         if (IS_ERR(mnt))
3892                 return ERR_CAST(mnt);
3893
3894         if (size < 0 || size > MAX_LFS_FILESIZE)
3895                 return ERR_PTR(-EINVAL);
3896
3897         if (shmem_acct_size(flags, size))
3898                 return ERR_PTR(-ENOMEM);
3899
3900         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3901                                 flags);
3902         if (unlikely(!inode)) {
3903                 shmem_unacct_size(flags, size);
3904                 return ERR_PTR(-ENOSPC);
3905         }
3906         inode->i_flags |= i_flags;
3907         inode->i_size = size;
3908         clear_nlink(inode);     /* It is unlinked */
3909         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3910         if (!IS_ERR(res))
3911                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3912                                 &shmem_file_operations);
3913         if (IS_ERR(res))
3914                 iput(inode);
3915         return res;
3916 }
3917
3918 /**
3919  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3920  *      kernel internal.  There will be NO LSM permission checks against the
3921  *      underlying inode.  So users of this interface must do LSM checks at a
3922  *      higher layer.  The users are the big_key and shm implementations.  LSM
3923  *      checks are provided at the key or shm level rather than the inode.
3924  * @name: name for dentry (to be seen in /proc/<pid>/maps
3925  * @size: size to be set for the file
3926  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3927  */
3928 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3929 {
3930         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3931 }
3932
3933 /**
3934  * shmem_file_setup - get an unlinked file living in tmpfs
3935  * @name: name for dentry (to be seen in /proc/<pid>/maps
3936  * @size: size to be set for the file
3937  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3938  */
3939 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3940 {
3941         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3942 }
3943 EXPORT_SYMBOL_GPL(shmem_file_setup);
3944
3945 /**
3946  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3947  * @mnt: the tmpfs mount where the file will be created
3948  * @name: name for dentry (to be seen in /proc/<pid>/maps
3949  * @size: size to be set for the file
3950  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3951  */
3952 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3953                                        loff_t size, unsigned long flags)
3954 {
3955         return __shmem_file_setup(mnt, name, size, flags, 0);
3956 }
3957 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3958
3959 /**
3960  * shmem_zero_setup - setup a shared anonymous mapping
3961  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3962  */
3963 int shmem_zero_setup(struct vm_area_struct *vma)
3964 {
3965         struct file *file;
3966         loff_t size = vma->vm_end - vma->vm_start;
3967
3968         /*
3969          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3970          * between XFS directory reading and selinux: since this file is only
3971          * accessible to the user through its mapping, use S_PRIVATE flag to
3972          * bypass file security, in the same way as shmem_kernel_file_setup().
3973          */
3974         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3975         if (IS_ERR(file))
3976                 return PTR_ERR(file);
3977
3978         if (vma->vm_file)
3979                 fput(vma->vm_file);
3980         vma->vm_file = file;
3981         vma->vm_ops = &shmem_vm_ops;
3982
3983         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3984                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3985                         (vma->vm_end & HPAGE_PMD_MASK)) {
3986                 khugepaged_enter(vma, vma->vm_flags);
3987         }
3988
3989         return 0;
3990 }
3991
3992 /**
3993  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3994  * @mapping:    the page's address_space
3995  * @index:      the page index
3996  * @gfp:        the page allocator flags to use if allocating
3997  *
3998  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3999  * with any new page allocations done using the specified allocation flags.
4000  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4001  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4002  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4003  *
4004  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4005  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4006  */
4007 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4008                                          pgoff_t index, gfp_t gfp)
4009 {
4010 #ifdef CONFIG_SHMEM
4011         struct inode *inode = mapping->host;
4012         struct page *page;
4013         int error;
4014
4015         BUG_ON(mapping->a_ops != &shmem_aops);
4016         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4017                                   gfp, NULL, NULL, NULL);
4018         if (error)
4019                 page = ERR_PTR(error);
4020         else
4021                 unlock_page(page);
4022         return page;
4023 #else
4024         /*
4025          * The tiny !SHMEM case uses ramfs without swap
4026          */
4027         return read_cache_page_gfp(mapping, index, gfp);
4028 #endif
4029 }
4030 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);