Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/kernel/linux-starfive.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139                              struct page **pagep, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (shmem_huge == SHMEM_HUGE_DENY)
481                 return false;
482         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484                 return false;
485         if (shmem_huge == SHMEM_HUGE_FORCE)
486                 return true;
487
488         switch (SHMEM_SB(inode->i_sb)->huge) {
489         case SHMEM_HUGE_ALWAYS:
490                 return true;
491         case SHMEM_HUGE_WITHIN_SIZE:
492                 index = round_up(index + 1, HPAGE_PMD_NR);
493                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494                 if (i_size >> PAGE_SHIFT >= index)
495                         return true;
496                 fallthrough;
497         case SHMEM_HUGE_ADVISE:
498                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499                         return true;
500                 fallthrough;
501         default:
502                 return false;
503         }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509         if (!strcmp(str, "never"))
510                 return SHMEM_HUGE_NEVER;
511         if (!strcmp(str, "always"))
512                 return SHMEM_HUGE_ALWAYS;
513         if (!strcmp(str, "within_size"))
514                 return SHMEM_HUGE_WITHIN_SIZE;
515         if (!strcmp(str, "advise"))
516                 return SHMEM_HUGE_ADVISE;
517         if (!strcmp(str, "deny"))
518                 return SHMEM_HUGE_DENY;
519         if (!strcmp(str, "force"))
520                 return SHMEM_HUGE_FORCE;
521         return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528         switch (huge) {
529         case SHMEM_HUGE_NEVER:
530                 return "never";
531         case SHMEM_HUGE_ALWAYS:
532                 return "always";
533         case SHMEM_HUGE_WITHIN_SIZE:
534                 return "within_size";
535         case SHMEM_HUGE_ADVISE:
536                 return "advise";
537         case SHMEM_HUGE_DENY:
538                 return "deny";
539         case SHMEM_HUGE_FORCE:
540                 return "force";
541         default:
542                 VM_BUG_ON(1);
543                 return "bad_val";
544         }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549                 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551         LIST_HEAD(list), *pos, *next;
552         LIST_HEAD(to_remove);
553         struct inode *inode;
554         struct shmem_inode_info *info;
555         struct page *page;
556         unsigned long batch = sc ? sc->nr_to_scan : 128;
557         int removed = 0, split = 0;
558
559         if (list_empty(&sbinfo->shrinklist))
560                 return SHRINK_STOP;
561
562         spin_lock(&sbinfo->shrinklist_lock);
563         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566                 /* pin the inode */
567                 inode = igrab(&info->vfs_inode);
568
569                 /* inode is about to be evicted */
570                 if (!inode) {
571                         list_del_init(&info->shrinklist);
572                         removed++;
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         removed++;
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto leave;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Leave the inode on the list if we failed to lock
620                  * the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto leave;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed leave the inode on the list */
635                 if (ret)
636                         goto leave;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 removed++;
642 leave:
643                 iput(inode);
644         }
645
646         spin_lock(&sbinfo->shrinklist_lock);
647         list_splice_tail(&list, &sbinfo->shrinklist);
648         sbinfo->shrinklist_len -= removed;
649         spin_unlock(&sbinfo->shrinklist_lock);
650
651         return split;
652 }
653
654 static long shmem_unused_huge_scan(struct super_block *sb,
655                 struct shrink_control *sc)
656 {
657         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659         if (!READ_ONCE(sbinfo->shrinklist_len))
660                 return SHRINK_STOP;
661
662         return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
665 static long shmem_unused_huge_count(struct super_block *sb,
666                 struct shrink_control *sc)
667 {
668         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669         return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
675 bool shmem_is_huge(struct vm_area_struct *vma,
676                    struct inode *inode, pgoff_t index)
677 {
678         return false;
679 }
680
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682                 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684         return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692                                    struct address_space *mapping,
693                                    pgoff_t index, void *expected, gfp_t gfp,
694                                    struct mm_struct *charge_mm)
695 {
696         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697         unsigned long nr = compound_nr(page);
698         int error;
699
700         VM_BUG_ON_PAGE(PageTail(page), page);
701         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
702         VM_BUG_ON_PAGE(!PageLocked(page), page);
703         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
704         VM_BUG_ON(expected && PageTransHuge(page));
705
706         page_ref_add(page, nr);
707         page->mapping = mapping;
708         page->index = index;
709
710         if (!PageSwapCache(page)) {
711                 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
712                 if (error) {
713                         if (PageTransHuge(page)) {
714                                 count_vm_event(THP_FILE_FALLBACK);
715                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
716                         }
717                         goto error;
718                 }
719         }
720         cgroup_throttle_swaprate(page, gfp);
721
722         do {
723                 xas_lock_irq(&xas);
724                 if (expected != xas_find_conflict(&xas)) {
725                         xas_set_err(&xas, -EEXIST);
726                         goto unlock;
727                 }
728                 if (expected && xas_find_conflict(&xas)) {
729                         xas_set_err(&xas, -EEXIST);
730                         goto unlock;
731                 }
732                 xas_store(&xas, page);
733                 if (xas_error(&xas))
734                         goto unlock;
735                 if (PageTransHuge(page)) {
736                         count_vm_event(THP_FILE_ALLOC);
737                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
738                 }
739                 mapping->nrpages += nr;
740                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
741                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
742 unlock:
743                 xas_unlock_irq(&xas);
744         } while (xas_nomem(&xas, gfp));
745
746         if (xas_error(&xas)) {
747                 error = xas_error(&xas);
748                 goto error;
749         }
750
751         return 0;
752 error:
753         page->mapping = NULL;
754         page_ref_sub(page, nr);
755         return error;
756 }
757
758 /*
759  * Like delete_from_page_cache, but substitutes swap for page.
760  */
761 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
762 {
763         struct address_space *mapping = page->mapping;
764         int error;
765
766         VM_BUG_ON_PAGE(PageCompound(page), page);
767
768         xa_lock_irq(&mapping->i_pages);
769         error = shmem_replace_entry(mapping, page->index, page, radswap);
770         page->mapping = NULL;
771         mapping->nrpages--;
772         __dec_lruvec_page_state(page, NR_FILE_PAGES);
773         __dec_lruvec_page_state(page, NR_SHMEM);
774         xa_unlock_irq(&mapping->i_pages);
775         put_page(page);
776         BUG_ON(error);
777 }
778
779 /*
780  * Remove swap entry from page cache, free the swap and its page cache.
781  */
782 static int shmem_free_swap(struct address_space *mapping,
783                            pgoff_t index, void *radswap)
784 {
785         void *old;
786
787         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
788         if (old != radswap)
789                 return -ENOENT;
790         free_swap_and_cache(radix_to_swp_entry(radswap));
791         return 0;
792 }
793
794 /*
795  * Determine (in bytes) how many of the shmem object's pages mapped by the
796  * given offsets are swapped out.
797  *
798  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
799  * as long as the inode doesn't go away and racy results are not a problem.
800  */
801 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
802                                                 pgoff_t start, pgoff_t end)
803 {
804         XA_STATE(xas, &mapping->i_pages, start);
805         struct page *page;
806         unsigned long swapped = 0;
807
808         rcu_read_lock();
809         xas_for_each(&xas, page, end - 1) {
810                 if (xas_retry(&xas, page))
811                         continue;
812                 if (xa_is_value(page))
813                         swapped++;
814
815                 if (need_resched()) {
816                         xas_pause(&xas);
817                         cond_resched_rcu();
818                 }
819         }
820
821         rcu_read_unlock();
822
823         return swapped << PAGE_SHIFT;
824 }
825
826 /*
827  * Determine (in bytes) how many of the shmem object's pages mapped by the
828  * given vma is swapped out.
829  *
830  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
831  * as long as the inode doesn't go away and racy results are not a problem.
832  */
833 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
834 {
835         struct inode *inode = file_inode(vma->vm_file);
836         struct shmem_inode_info *info = SHMEM_I(inode);
837         struct address_space *mapping = inode->i_mapping;
838         unsigned long swapped;
839
840         /* Be careful as we don't hold info->lock */
841         swapped = READ_ONCE(info->swapped);
842
843         /*
844          * The easier cases are when the shmem object has nothing in swap, or
845          * the vma maps it whole. Then we can simply use the stats that we
846          * already track.
847          */
848         if (!swapped)
849                 return 0;
850
851         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
852                 return swapped << PAGE_SHIFT;
853
854         /* Here comes the more involved part */
855         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
856                                         vma->vm_pgoff + vma_pages(vma));
857 }
858
859 /*
860  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
861  */
862 void shmem_unlock_mapping(struct address_space *mapping)
863 {
864         struct pagevec pvec;
865         pgoff_t index = 0;
866
867         pagevec_init(&pvec);
868         /*
869          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
870          */
871         while (!mapping_unevictable(mapping)) {
872                 if (!pagevec_lookup(&pvec, mapping, &index))
873                         break;
874                 check_move_unevictable_pages(&pvec);
875                 pagevec_release(&pvec);
876                 cond_resched();
877         }
878 }
879
880 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
881 {
882         struct folio *folio;
883         struct page *page;
884
885         /*
886          * At first avoid shmem_getpage(,,,SGP_READ): that fails
887          * beyond i_size, and reports fallocated pages as holes.
888          */
889         folio = __filemap_get_folio(inode->i_mapping, index,
890                                         FGP_ENTRY | FGP_LOCK, 0);
891         if (!xa_is_value(folio))
892                 return folio;
893         /*
894          * But read a page back from swap if any of it is within i_size
895          * (although in some cases this is just a waste of time).
896          */
897         page = NULL;
898         shmem_getpage(inode, index, &page, SGP_READ);
899         return page ? page_folio(page) : NULL;
900 }
901
902 /*
903  * Remove range of pages and swap entries from page cache, and free them.
904  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
905  */
906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
907                                                                  bool unfalloc)
908 {
909         struct address_space *mapping = inode->i_mapping;
910         struct shmem_inode_info *info = SHMEM_I(inode);
911         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
912         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
913         struct folio_batch fbatch;
914         pgoff_t indices[PAGEVEC_SIZE];
915         struct folio *folio;
916         bool same_folio;
917         long nr_swaps_freed = 0;
918         pgoff_t index;
919         int i;
920
921         if (lend == -1)
922                 end = -1;       /* unsigned, so actually very big */
923
924         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
925                 info->fallocend = start;
926
927         folio_batch_init(&fbatch);
928         index = start;
929         while (index < end && find_lock_entries(mapping, index, end - 1,
930                         &fbatch, indices)) {
931                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
932                         folio = fbatch.folios[i];
933
934                         index = indices[i];
935
936                         if (xa_is_value(folio)) {
937                                 if (unfalloc)
938                                         continue;
939                                 nr_swaps_freed += !shmem_free_swap(mapping,
940                                                                 index, folio);
941                                 continue;
942                         }
943                         index += folio_nr_pages(folio) - 1;
944
945                         if (!unfalloc || !folio_test_uptodate(folio))
946                                 truncate_inode_folio(mapping, folio);
947                         folio_unlock(folio);
948                 }
949                 folio_batch_remove_exceptionals(&fbatch);
950                 folio_batch_release(&fbatch);
951                 cond_resched();
952                 index++;
953         }
954
955         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
956         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
957         if (folio) {
958                 same_folio = lend < folio_pos(folio) + folio_size(folio);
959                 folio_mark_dirty(folio);
960                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
961                         start = folio->index + folio_nr_pages(folio);
962                         if (same_folio)
963                                 end = folio->index;
964                 }
965                 folio_unlock(folio);
966                 folio_put(folio);
967                 folio = NULL;
968         }
969
970         if (!same_folio)
971                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
972         if (folio) {
973                 folio_mark_dirty(folio);
974                 if (!truncate_inode_partial_folio(folio, lstart, lend))
975                         end = folio->index;
976                 folio_unlock(folio);
977                 folio_put(folio);
978         }
979
980         index = start;
981         while (index < end) {
982                 cond_resched();
983
984                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
985                                 indices)) {
986                         /* If all gone or hole-punch or unfalloc, we're done */
987                         if (index == start || end != -1)
988                                 break;
989                         /* But if truncating, restart to make sure all gone */
990                         index = start;
991                         continue;
992                 }
993                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
994                         folio = fbatch.folios[i];
995
996                         index = indices[i];
997                         if (xa_is_value(folio)) {
998                                 if (unfalloc)
999                                         continue;
1000                                 if (shmem_free_swap(mapping, index, folio)) {
1001                                         /* Swap was replaced by page: retry */
1002                                         index--;
1003                                         break;
1004                                 }
1005                                 nr_swaps_freed++;
1006                                 continue;
1007                         }
1008
1009                         folio_lock(folio);
1010
1011                         if (!unfalloc || !folio_test_uptodate(folio)) {
1012                                 if (folio_mapping(folio) != mapping) {
1013                                         /* Page was replaced by swap: retry */
1014                                         folio_unlock(folio);
1015                                         index--;
1016                                         break;
1017                                 }
1018                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1019                                                 folio);
1020                                 truncate_inode_folio(mapping, folio);
1021                         }
1022                         index = folio->index + folio_nr_pages(folio) - 1;
1023                         folio_unlock(folio);
1024                 }
1025                 folio_batch_remove_exceptionals(&fbatch);
1026                 folio_batch_release(&fbatch);
1027                 index++;
1028         }
1029
1030         spin_lock_irq(&info->lock);
1031         info->swapped -= nr_swaps_freed;
1032         shmem_recalc_inode(inode);
1033         spin_unlock_irq(&info->lock);
1034 }
1035
1036 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1037 {
1038         shmem_undo_range(inode, lstart, lend, false);
1039         inode->i_ctime = inode->i_mtime = current_time(inode);
1040 }
1041 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1042
1043 static int shmem_getattr(struct user_namespace *mnt_userns,
1044                          const struct path *path, struct kstat *stat,
1045                          u32 request_mask, unsigned int query_flags)
1046 {
1047         struct inode *inode = path->dentry->d_inode;
1048         struct shmem_inode_info *info = SHMEM_I(inode);
1049
1050         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1051                 spin_lock_irq(&info->lock);
1052                 shmem_recalc_inode(inode);
1053                 spin_unlock_irq(&info->lock);
1054         }
1055         generic_fillattr(&init_user_ns, inode, stat);
1056
1057         if (shmem_is_huge(NULL, inode, 0))
1058                 stat->blksize = HPAGE_PMD_SIZE;
1059
1060         return 0;
1061 }
1062
1063 static int shmem_setattr(struct user_namespace *mnt_userns,
1064                          struct dentry *dentry, struct iattr *attr)
1065 {
1066         struct inode *inode = d_inode(dentry);
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068         int error;
1069
1070         error = setattr_prepare(&init_user_ns, dentry, attr);
1071         if (error)
1072                 return error;
1073
1074         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1075                 loff_t oldsize = inode->i_size;
1076                 loff_t newsize = attr->ia_size;
1077
1078                 /* protected by i_rwsem */
1079                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1080                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1081                         return -EPERM;
1082
1083                 if (newsize != oldsize) {
1084                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1085                                         oldsize, newsize);
1086                         if (error)
1087                                 return error;
1088                         i_size_write(inode, newsize);
1089                         inode->i_ctime = inode->i_mtime = current_time(inode);
1090                 }
1091                 if (newsize <= oldsize) {
1092                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1093                         if (oldsize > holebegin)
1094                                 unmap_mapping_range(inode->i_mapping,
1095                                                         holebegin, 0, 1);
1096                         if (info->alloced)
1097                                 shmem_truncate_range(inode,
1098                                                         newsize, (loff_t)-1);
1099                         /* unmap again to remove racily COWed private pages */
1100                         if (oldsize > holebegin)
1101                                 unmap_mapping_range(inode->i_mapping,
1102                                                         holebegin, 0, 1);
1103                 }
1104         }
1105
1106         setattr_copy(&init_user_ns, inode, attr);
1107         if (attr->ia_valid & ATTR_MODE)
1108                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1109         return error;
1110 }
1111
1112 static void shmem_evict_inode(struct inode *inode)
1113 {
1114         struct shmem_inode_info *info = SHMEM_I(inode);
1115         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1116
1117         if (shmem_mapping(inode->i_mapping)) {
1118                 shmem_unacct_size(info->flags, inode->i_size);
1119                 inode->i_size = 0;
1120                 shmem_truncate_range(inode, 0, (loff_t)-1);
1121                 if (!list_empty(&info->shrinklist)) {
1122                         spin_lock(&sbinfo->shrinklist_lock);
1123                         if (!list_empty(&info->shrinklist)) {
1124                                 list_del_init(&info->shrinklist);
1125                                 sbinfo->shrinklist_len--;
1126                         }
1127                         spin_unlock(&sbinfo->shrinklist_lock);
1128                 }
1129                 while (!list_empty(&info->swaplist)) {
1130                         /* Wait while shmem_unuse() is scanning this inode... */
1131                         wait_var_event(&info->stop_eviction,
1132                                        !atomic_read(&info->stop_eviction));
1133                         mutex_lock(&shmem_swaplist_mutex);
1134                         /* ...but beware of the race if we peeked too early */
1135                         if (!atomic_read(&info->stop_eviction))
1136                                 list_del_init(&info->swaplist);
1137                         mutex_unlock(&shmem_swaplist_mutex);
1138                 }
1139         }
1140
1141         simple_xattrs_free(&info->xattrs);
1142         WARN_ON(inode->i_blocks);
1143         shmem_free_inode(inode->i_sb);
1144         clear_inode(inode);
1145 }
1146
1147 static int shmem_find_swap_entries(struct address_space *mapping,
1148                                    pgoff_t start, unsigned int nr_entries,
1149                                    struct page **entries, pgoff_t *indices,
1150                                    unsigned int type, bool frontswap)
1151 {
1152         XA_STATE(xas, &mapping->i_pages, start);
1153         struct page *page;
1154         swp_entry_t entry;
1155         unsigned int ret = 0;
1156
1157         if (!nr_entries)
1158                 return 0;
1159
1160         rcu_read_lock();
1161         xas_for_each(&xas, page, ULONG_MAX) {
1162                 if (xas_retry(&xas, page))
1163                         continue;
1164
1165                 if (!xa_is_value(page))
1166                         continue;
1167
1168                 entry = radix_to_swp_entry(page);
1169                 if (swp_type(entry) != type)
1170                         continue;
1171                 if (frontswap &&
1172                     !frontswap_test(swap_info[type], swp_offset(entry)))
1173                         continue;
1174
1175                 indices[ret] = xas.xa_index;
1176                 entries[ret] = page;
1177
1178                 if (need_resched()) {
1179                         xas_pause(&xas);
1180                         cond_resched_rcu();
1181                 }
1182                 if (++ret == nr_entries)
1183                         break;
1184         }
1185         rcu_read_unlock();
1186
1187         return ret;
1188 }
1189
1190 /*
1191  * Move the swapped pages for an inode to page cache. Returns the count
1192  * of pages swapped in, or the error in case of failure.
1193  */
1194 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1195                                     pgoff_t *indices)
1196 {
1197         int i = 0;
1198         int ret = 0;
1199         int error = 0;
1200         struct address_space *mapping = inode->i_mapping;
1201
1202         for (i = 0; i < pvec.nr; i++) {
1203                 struct page *page = pvec.pages[i];
1204
1205                 if (!xa_is_value(page))
1206                         continue;
1207                 error = shmem_swapin_page(inode, indices[i],
1208                                           &page, SGP_CACHE,
1209                                           mapping_gfp_mask(mapping),
1210                                           NULL, NULL);
1211                 if (error == 0) {
1212                         unlock_page(page);
1213                         put_page(page);
1214                         ret++;
1215                 }
1216                 if (error == -ENOMEM)
1217                         break;
1218                 error = 0;
1219         }
1220         return error ? error : ret;
1221 }
1222
1223 /*
1224  * If swap found in inode, free it and move page from swapcache to filecache.
1225  */
1226 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1227                              bool frontswap, unsigned long *fs_pages_to_unuse)
1228 {
1229         struct address_space *mapping = inode->i_mapping;
1230         pgoff_t start = 0;
1231         struct pagevec pvec;
1232         pgoff_t indices[PAGEVEC_SIZE];
1233         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1234         int ret = 0;
1235
1236         pagevec_init(&pvec);
1237         do {
1238                 unsigned int nr_entries = PAGEVEC_SIZE;
1239
1240                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1241                         nr_entries = *fs_pages_to_unuse;
1242
1243                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1244                                                   pvec.pages, indices,
1245                                                   type, frontswap);
1246                 if (pvec.nr == 0) {
1247                         ret = 0;
1248                         break;
1249                 }
1250
1251                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1252                 if (ret < 0)
1253                         break;
1254
1255                 if (frontswap_partial) {
1256                         *fs_pages_to_unuse -= ret;
1257                         if (*fs_pages_to_unuse == 0) {
1258                                 ret = FRONTSWAP_PAGES_UNUSED;
1259                                 break;
1260                         }
1261                 }
1262
1263                 start = indices[pvec.nr - 1];
1264         } while (true);
1265
1266         return ret;
1267 }
1268
1269 /*
1270  * Read all the shared memory data that resides in the swap
1271  * device 'type' back into memory, so the swap device can be
1272  * unused.
1273  */
1274 int shmem_unuse(unsigned int type, bool frontswap,
1275                 unsigned long *fs_pages_to_unuse)
1276 {
1277         struct shmem_inode_info *info, *next;
1278         int error = 0;
1279
1280         if (list_empty(&shmem_swaplist))
1281                 return 0;
1282
1283         mutex_lock(&shmem_swaplist_mutex);
1284         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1285                 if (!info->swapped) {
1286                         list_del_init(&info->swaplist);
1287                         continue;
1288                 }
1289                 /*
1290                  * Drop the swaplist mutex while searching the inode for swap;
1291                  * but before doing so, make sure shmem_evict_inode() will not
1292                  * remove placeholder inode from swaplist, nor let it be freed
1293                  * (igrab() would protect from unlink, but not from unmount).
1294                  */
1295                 atomic_inc(&info->stop_eviction);
1296                 mutex_unlock(&shmem_swaplist_mutex);
1297
1298                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1299                                           fs_pages_to_unuse);
1300                 cond_resched();
1301
1302                 mutex_lock(&shmem_swaplist_mutex);
1303                 next = list_next_entry(info, swaplist);
1304                 if (!info->swapped)
1305                         list_del_init(&info->swaplist);
1306                 if (atomic_dec_and_test(&info->stop_eviction))
1307                         wake_up_var(&info->stop_eviction);
1308                 if (error)
1309                         break;
1310         }
1311         mutex_unlock(&shmem_swaplist_mutex);
1312
1313         return error;
1314 }
1315
1316 /*
1317  * Move the page from the page cache to the swap cache.
1318  */
1319 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1320 {
1321         struct shmem_inode_info *info;
1322         struct address_space *mapping;
1323         struct inode *inode;
1324         swp_entry_t swap;
1325         pgoff_t index;
1326
1327         /*
1328          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1329          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1330          * and its shmem_writeback() needs them to be split when swapping.
1331          */
1332         if (PageTransCompound(page)) {
1333                 /* Ensure the subpages are still dirty */
1334                 SetPageDirty(page);
1335                 if (split_huge_page(page) < 0)
1336                         goto redirty;
1337                 ClearPageDirty(page);
1338         }
1339
1340         BUG_ON(!PageLocked(page));
1341         mapping = page->mapping;
1342         index = page->index;
1343         inode = mapping->host;
1344         info = SHMEM_I(inode);
1345         if (info->flags & VM_LOCKED)
1346                 goto redirty;
1347         if (!total_swap_pages)
1348                 goto redirty;
1349
1350         /*
1351          * Our capabilities prevent regular writeback or sync from ever calling
1352          * shmem_writepage; but a stacking filesystem might use ->writepage of
1353          * its underlying filesystem, in which case tmpfs should write out to
1354          * swap only in response to memory pressure, and not for the writeback
1355          * threads or sync.
1356          */
1357         if (!wbc->for_reclaim) {
1358                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1359                 goto redirty;
1360         }
1361
1362         /*
1363          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1364          * value into swapfile.c, the only way we can correctly account for a
1365          * fallocated page arriving here is now to initialize it and write it.
1366          *
1367          * That's okay for a page already fallocated earlier, but if we have
1368          * not yet completed the fallocation, then (a) we want to keep track
1369          * of this page in case we have to undo it, and (b) it may not be a
1370          * good idea to continue anyway, once we're pushing into swap.  So
1371          * reactivate the page, and let shmem_fallocate() quit when too many.
1372          */
1373         if (!PageUptodate(page)) {
1374                 if (inode->i_private) {
1375                         struct shmem_falloc *shmem_falloc;
1376                         spin_lock(&inode->i_lock);
1377                         shmem_falloc = inode->i_private;
1378                         if (shmem_falloc &&
1379                             !shmem_falloc->waitq &&
1380                             index >= shmem_falloc->start &&
1381                             index < shmem_falloc->next)
1382                                 shmem_falloc->nr_unswapped++;
1383                         else
1384                                 shmem_falloc = NULL;
1385                         spin_unlock(&inode->i_lock);
1386                         if (shmem_falloc)
1387                                 goto redirty;
1388                 }
1389                 clear_highpage(page);
1390                 flush_dcache_page(page);
1391                 SetPageUptodate(page);
1392         }
1393
1394         swap = get_swap_page(page);
1395         if (!swap.val)
1396                 goto redirty;
1397
1398         /*
1399          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1400          * if it's not already there.  Do it now before the page is
1401          * moved to swap cache, when its pagelock no longer protects
1402          * the inode from eviction.  But don't unlock the mutex until
1403          * we've incremented swapped, because shmem_unuse_inode() will
1404          * prune a !swapped inode from the swaplist under this mutex.
1405          */
1406         mutex_lock(&shmem_swaplist_mutex);
1407         if (list_empty(&info->swaplist))
1408                 list_add(&info->swaplist, &shmem_swaplist);
1409
1410         if (add_to_swap_cache(page, swap,
1411                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1412                         NULL) == 0) {
1413                 spin_lock_irq(&info->lock);
1414                 shmem_recalc_inode(inode);
1415                 info->swapped++;
1416                 spin_unlock_irq(&info->lock);
1417
1418                 swap_shmem_alloc(swap);
1419                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1420
1421                 mutex_unlock(&shmem_swaplist_mutex);
1422                 BUG_ON(page_mapped(page));
1423                 swap_writepage(page, wbc);
1424                 return 0;
1425         }
1426
1427         mutex_unlock(&shmem_swaplist_mutex);
1428         put_swap_page(page, swap);
1429 redirty:
1430         set_page_dirty(page);
1431         if (wbc->for_reclaim)
1432                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1433         unlock_page(page);
1434         return 0;
1435 }
1436
1437 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1438 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1439 {
1440         char buffer[64];
1441
1442         if (!mpol || mpol->mode == MPOL_DEFAULT)
1443                 return;         /* show nothing */
1444
1445         mpol_to_str(buffer, sizeof(buffer), mpol);
1446
1447         seq_printf(seq, ",mpol=%s", buffer);
1448 }
1449
1450 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1451 {
1452         struct mempolicy *mpol = NULL;
1453         if (sbinfo->mpol) {
1454                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1455                 mpol = sbinfo->mpol;
1456                 mpol_get(mpol);
1457                 raw_spin_unlock(&sbinfo->stat_lock);
1458         }
1459         return mpol;
1460 }
1461 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1462 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1463 {
1464 }
1465 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1466 {
1467         return NULL;
1468 }
1469 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1470 #ifndef CONFIG_NUMA
1471 #define vm_policy vm_private_data
1472 #endif
1473
1474 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1475                 struct shmem_inode_info *info, pgoff_t index)
1476 {
1477         /* Create a pseudo vma that just contains the policy */
1478         vma_init(vma, NULL);
1479         /* Bias interleave by inode number to distribute better across nodes */
1480         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1481         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1482 }
1483
1484 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1485 {
1486         /* Drop reference taken by mpol_shared_policy_lookup() */
1487         mpol_cond_put(vma->vm_policy);
1488 }
1489
1490 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1491                         struct shmem_inode_info *info, pgoff_t index)
1492 {
1493         struct vm_area_struct pvma;
1494         struct page *page;
1495         struct vm_fault vmf = {
1496                 .vma = &pvma,
1497         };
1498
1499         shmem_pseudo_vma_init(&pvma, info, index);
1500         page = swap_cluster_readahead(swap, gfp, &vmf);
1501         shmem_pseudo_vma_destroy(&pvma);
1502
1503         return page;
1504 }
1505
1506 /*
1507  * Make sure huge_gfp is always more limited than limit_gfp.
1508  * Some of the flags set permissions, while others set limitations.
1509  */
1510 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1511 {
1512         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1513         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1514         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1515         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1516
1517         /* Allow allocations only from the originally specified zones. */
1518         result |= zoneflags;
1519
1520         /*
1521          * Minimize the result gfp by taking the union with the deny flags,
1522          * and the intersection of the allow flags.
1523          */
1524         result |= (limit_gfp & denyflags);
1525         result |= (huge_gfp & limit_gfp) & allowflags;
1526
1527         return result;
1528 }
1529
1530 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1531                 struct shmem_inode_info *info, pgoff_t index)
1532 {
1533         struct vm_area_struct pvma;
1534         struct address_space *mapping = info->vfs_inode.i_mapping;
1535         pgoff_t hindex;
1536         struct page *page;
1537
1538         hindex = round_down(index, HPAGE_PMD_NR);
1539         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1540                                                                 XA_PRESENT))
1541                 return NULL;
1542
1543         shmem_pseudo_vma_init(&pvma, info, hindex);
1544         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1545                                true);
1546         shmem_pseudo_vma_destroy(&pvma);
1547         if (page)
1548                 prep_transhuge_page(page);
1549         else
1550                 count_vm_event(THP_FILE_FALLBACK);
1551         return page;
1552 }
1553
1554 static struct page *shmem_alloc_page(gfp_t gfp,
1555                         struct shmem_inode_info *info, pgoff_t index)
1556 {
1557         struct vm_area_struct pvma;
1558         struct page *page;
1559
1560         shmem_pseudo_vma_init(&pvma, info, index);
1561         page = alloc_page_vma(gfp, &pvma, 0);
1562         shmem_pseudo_vma_destroy(&pvma);
1563
1564         return page;
1565 }
1566
1567 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1568                 struct inode *inode,
1569                 pgoff_t index, bool huge)
1570 {
1571         struct shmem_inode_info *info = SHMEM_I(inode);
1572         struct page *page;
1573         int nr;
1574         int err = -ENOSPC;
1575
1576         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1577                 huge = false;
1578         nr = huge ? HPAGE_PMD_NR : 1;
1579
1580         if (!shmem_inode_acct_block(inode, nr))
1581                 goto failed;
1582
1583         if (huge)
1584                 page = shmem_alloc_hugepage(gfp, info, index);
1585         else
1586                 page = shmem_alloc_page(gfp, info, index);
1587         if (page) {
1588                 __SetPageLocked(page);
1589                 __SetPageSwapBacked(page);
1590                 return page;
1591         }
1592
1593         err = -ENOMEM;
1594         shmem_inode_unacct_blocks(inode, nr);
1595 failed:
1596         return ERR_PTR(err);
1597 }
1598
1599 /*
1600  * When a page is moved from swapcache to shmem filecache (either by the
1601  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1602  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1603  * ignorance of the mapping it belongs to.  If that mapping has special
1604  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1605  * we may need to copy to a suitable page before moving to filecache.
1606  *
1607  * In a future release, this may well be extended to respect cpuset and
1608  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1609  * but for now it is a simple matter of zone.
1610  */
1611 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1612 {
1613         return page_zonenum(page) > gfp_zone(gfp);
1614 }
1615
1616 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1617                                 struct shmem_inode_info *info, pgoff_t index)
1618 {
1619         struct page *oldpage, *newpage;
1620         struct folio *old, *new;
1621         struct address_space *swap_mapping;
1622         swp_entry_t entry;
1623         pgoff_t swap_index;
1624         int error;
1625
1626         oldpage = *pagep;
1627         entry.val = page_private(oldpage);
1628         swap_index = swp_offset(entry);
1629         swap_mapping = page_mapping(oldpage);
1630
1631         /*
1632          * We have arrived here because our zones are constrained, so don't
1633          * limit chance of success by further cpuset and node constraints.
1634          */
1635         gfp &= ~GFP_CONSTRAINT_MASK;
1636         newpage = shmem_alloc_page(gfp, info, index);
1637         if (!newpage)
1638                 return -ENOMEM;
1639
1640         get_page(newpage);
1641         copy_highpage(newpage, oldpage);
1642         flush_dcache_page(newpage);
1643
1644         __SetPageLocked(newpage);
1645         __SetPageSwapBacked(newpage);
1646         SetPageUptodate(newpage);
1647         set_page_private(newpage, entry.val);
1648         SetPageSwapCache(newpage);
1649
1650         /*
1651          * Our caller will very soon move newpage out of swapcache, but it's
1652          * a nice clean interface for us to replace oldpage by newpage there.
1653          */
1654         xa_lock_irq(&swap_mapping->i_pages);
1655         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1656         if (!error) {
1657                 old = page_folio(oldpage);
1658                 new = page_folio(newpage);
1659                 mem_cgroup_migrate(old, new);
1660                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1661                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1662         }
1663         xa_unlock_irq(&swap_mapping->i_pages);
1664
1665         if (unlikely(error)) {
1666                 /*
1667                  * Is this possible?  I think not, now that our callers check
1668                  * both PageSwapCache and page_private after getting page lock;
1669                  * but be defensive.  Reverse old to newpage for clear and free.
1670                  */
1671                 oldpage = newpage;
1672         } else {
1673                 lru_cache_add(newpage);
1674                 *pagep = newpage;
1675         }
1676
1677         ClearPageSwapCache(oldpage);
1678         set_page_private(oldpage, 0);
1679
1680         unlock_page(oldpage);
1681         put_page(oldpage);
1682         put_page(oldpage);
1683         return error;
1684 }
1685
1686 /*
1687  * Swap in the page pointed to by *pagep.
1688  * Caller has to make sure that *pagep contains a valid swapped page.
1689  * Returns 0 and the page in pagep if success. On failure, returns the
1690  * error code and NULL in *pagep.
1691  */
1692 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1693                              struct page **pagep, enum sgp_type sgp,
1694                              gfp_t gfp, struct vm_area_struct *vma,
1695                              vm_fault_t *fault_type)
1696 {
1697         struct address_space *mapping = inode->i_mapping;
1698         struct shmem_inode_info *info = SHMEM_I(inode);
1699         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1700         struct page *page;
1701         swp_entry_t swap;
1702         int error;
1703
1704         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705         swap = radix_to_swp_entry(*pagep);
1706         *pagep = NULL;
1707
1708         /* Look it up and read it in.. */
1709         page = lookup_swap_cache(swap, NULL, 0);
1710         if (!page) {
1711                 /* Or update major stats only when swapin succeeds?? */
1712                 if (fault_type) {
1713                         *fault_type |= VM_FAULT_MAJOR;
1714                         count_vm_event(PGMAJFAULT);
1715                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1716                 }
1717                 /* Here we actually start the io */
1718                 page = shmem_swapin(swap, gfp, info, index);
1719                 if (!page) {
1720                         error = -ENOMEM;
1721                         goto failed;
1722                 }
1723         }
1724
1725         /* We have to do this with page locked to prevent races */
1726         lock_page(page);
1727         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1728             !shmem_confirm_swap(mapping, index, swap)) {
1729                 error = -EEXIST;
1730                 goto unlock;
1731         }
1732         if (!PageUptodate(page)) {
1733                 error = -EIO;
1734                 goto failed;
1735         }
1736         wait_on_page_writeback(page);
1737
1738         /*
1739          * Some architectures may have to restore extra metadata to the
1740          * physical page after reading from swap.
1741          */
1742         arch_swap_restore(swap, page);
1743
1744         if (shmem_should_replace_page(page, gfp)) {
1745                 error = shmem_replace_page(&page, gfp, info, index);
1746                 if (error)
1747                         goto failed;
1748         }
1749
1750         error = shmem_add_to_page_cache(page, mapping, index,
1751                                         swp_to_radix_entry(swap), gfp,
1752                                         charge_mm);
1753         if (error)
1754                 goto failed;
1755
1756         spin_lock_irq(&info->lock);
1757         info->swapped--;
1758         shmem_recalc_inode(inode);
1759         spin_unlock_irq(&info->lock);
1760
1761         if (sgp == SGP_WRITE)
1762                 mark_page_accessed(page);
1763
1764         delete_from_swap_cache(page);
1765         set_page_dirty(page);
1766         swap_free(swap);
1767
1768         *pagep = page;
1769         return 0;
1770 failed:
1771         if (!shmem_confirm_swap(mapping, index, swap))
1772                 error = -EEXIST;
1773 unlock:
1774         if (page) {
1775                 unlock_page(page);
1776                 put_page(page);
1777         }
1778
1779         return error;
1780 }
1781
1782 /*
1783  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1784  *
1785  * If we allocate a new one we do not mark it dirty. That's up to the
1786  * vm. If we swap it in we mark it dirty since we also free the swap
1787  * entry since a page cannot live in both the swap and page cache.
1788  *
1789  * vma, vmf, and fault_type are only supplied by shmem_fault:
1790  * otherwise they are NULL.
1791  */
1792 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1793         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1794         struct vm_area_struct *vma, struct vm_fault *vmf,
1795                         vm_fault_t *fault_type)
1796 {
1797         struct address_space *mapping = inode->i_mapping;
1798         struct shmem_inode_info *info = SHMEM_I(inode);
1799         struct shmem_sb_info *sbinfo;
1800         struct mm_struct *charge_mm;
1801         struct page *page;
1802         pgoff_t hindex = index;
1803         gfp_t huge_gfp;
1804         int error;
1805         int once = 0;
1806         int alloced = 0;
1807
1808         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809                 return -EFBIG;
1810 repeat:
1811         if (sgp <= SGP_CACHE &&
1812             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1813                 return -EINVAL;
1814         }
1815
1816         sbinfo = SHMEM_SB(inode->i_sb);
1817         charge_mm = vma ? vma->vm_mm : NULL;
1818
1819         page = pagecache_get_page(mapping, index,
1820                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1821
1822         if (page && vma && userfaultfd_minor(vma)) {
1823                 if (!xa_is_value(page)) {
1824                         unlock_page(page);
1825                         put_page(page);
1826                 }
1827                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1828                 return 0;
1829         }
1830
1831         if (xa_is_value(page)) {
1832                 error = shmem_swapin_page(inode, index, &page,
1833                                           sgp, gfp, vma, fault_type);
1834                 if (error == -EEXIST)
1835                         goto repeat;
1836
1837                 *pagep = page;
1838                 return error;
1839         }
1840
1841         if (page) {
1842                 hindex = page->index;
1843                 if (sgp == SGP_WRITE)
1844                         mark_page_accessed(page);
1845                 if (PageUptodate(page))
1846                         goto out;
1847                 /* fallocated page */
1848                 if (sgp != SGP_READ)
1849                         goto clear;
1850                 unlock_page(page);
1851                 put_page(page);
1852         }
1853
1854         /*
1855          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1856          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1857          */
1858         *pagep = NULL;
1859         if (sgp == SGP_READ)
1860                 return 0;
1861         if (sgp == SGP_NOALLOC)
1862                 return -ENOENT;
1863
1864         /*
1865          * Fast cache lookup and swap lookup did not find it: allocate.
1866          */
1867
1868         if (vma && userfaultfd_missing(vma)) {
1869                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1870                 return 0;
1871         }
1872
1873         /* Never use a huge page for shmem_symlink() */
1874         if (S_ISLNK(inode->i_mode))
1875                 goto alloc_nohuge;
1876         if (!shmem_is_huge(vma, inode, index))
1877                 goto alloc_nohuge;
1878
1879         huge_gfp = vma_thp_gfp_mask(vma);
1880         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1881         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1882         if (IS_ERR(page)) {
1883 alloc_nohuge:
1884                 page = shmem_alloc_and_acct_page(gfp, inode,
1885                                                  index, false);
1886         }
1887         if (IS_ERR(page)) {
1888                 int retry = 5;
1889
1890                 error = PTR_ERR(page);
1891                 page = NULL;
1892                 if (error != -ENOSPC)
1893                         goto unlock;
1894                 /*
1895                  * Try to reclaim some space by splitting a huge page
1896                  * beyond i_size on the filesystem.
1897                  */
1898                 while (retry--) {
1899                         int ret;
1900
1901                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1902                         if (ret == SHRINK_STOP)
1903                                 break;
1904                         if (ret)
1905                                 goto alloc_nohuge;
1906                 }
1907                 goto unlock;
1908         }
1909
1910         if (PageTransHuge(page))
1911                 hindex = round_down(index, HPAGE_PMD_NR);
1912         else
1913                 hindex = index;
1914
1915         if (sgp == SGP_WRITE)
1916                 __SetPageReferenced(page);
1917
1918         error = shmem_add_to_page_cache(page, mapping, hindex,
1919                                         NULL, gfp & GFP_RECLAIM_MASK,
1920                                         charge_mm);
1921         if (error)
1922                 goto unacct;
1923         lru_cache_add(page);
1924
1925         spin_lock_irq(&info->lock);
1926         info->alloced += compound_nr(page);
1927         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1928         shmem_recalc_inode(inode);
1929         spin_unlock_irq(&info->lock);
1930         alloced = true;
1931
1932         if (PageTransHuge(page) &&
1933             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1934                         hindex + HPAGE_PMD_NR - 1) {
1935                 /*
1936                  * Part of the huge page is beyond i_size: subject
1937                  * to shrink under memory pressure.
1938                  */
1939                 spin_lock(&sbinfo->shrinklist_lock);
1940                 /*
1941                  * _careful to defend against unlocked access to
1942                  * ->shrink_list in shmem_unused_huge_shrink()
1943                  */
1944                 if (list_empty_careful(&info->shrinklist)) {
1945                         list_add_tail(&info->shrinklist,
1946                                       &sbinfo->shrinklist);
1947                         sbinfo->shrinklist_len++;
1948                 }
1949                 spin_unlock(&sbinfo->shrinklist_lock);
1950         }
1951
1952         /*
1953          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1954          */
1955         if (sgp == SGP_FALLOC)
1956                 sgp = SGP_WRITE;
1957 clear:
1958         /*
1959          * Let SGP_WRITE caller clear ends if write does not fill page;
1960          * but SGP_FALLOC on a page fallocated earlier must initialize
1961          * it now, lest undo on failure cancel our earlier guarantee.
1962          */
1963         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1964                 int i;
1965
1966                 for (i = 0; i < compound_nr(page); i++) {
1967                         clear_highpage(page + i);
1968                         flush_dcache_page(page + i);
1969                 }
1970                 SetPageUptodate(page);
1971         }
1972
1973         /* Perhaps the file has been truncated since we checked */
1974         if (sgp <= SGP_CACHE &&
1975             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1976                 if (alloced) {
1977                         ClearPageDirty(page);
1978                         delete_from_page_cache(page);
1979                         spin_lock_irq(&info->lock);
1980                         shmem_recalc_inode(inode);
1981                         spin_unlock_irq(&info->lock);
1982                 }
1983                 error = -EINVAL;
1984                 goto unlock;
1985         }
1986 out:
1987         *pagep = page + index - hindex;
1988         return 0;
1989
1990         /*
1991          * Error recovery.
1992          */
1993 unacct:
1994         shmem_inode_unacct_blocks(inode, compound_nr(page));
1995
1996         if (PageTransHuge(page)) {
1997                 unlock_page(page);
1998                 put_page(page);
1999                 goto alloc_nohuge;
2000         }
2001 unlock:
2002         if (page) {
2003                 unlock_page(page);
2004                 put_page(page);
2005         }
2006         if (error == -ENOSPC && !once++) {
2007                 spin_lock_irq(&info->lock);
2008                 shmem_recalc_inode(inode);
2009                 spin_unlock_irq(&info->lock);
2010                 goto repeat;
2011         }
2012         if (error == -EEXIST)
2013                 goto repeat;
2014         return error;
2015 }
2016
2017 /*
2018  * This is like autoremove_wake_function, but it removes the wait queue
2019  * entry unconditionally - even if something else had already woken the
2020  * target.
2021  */
2022 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2023 {
2024         int ret = default_wake_function(wait, mode, sync, key);
2025         list_del_init(&wait->entry);
2026         return ret;
2027 }
2028
2029 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2030 {
2031         struct vm_area_struct *vma = vmf->vma;
2032         struct inode *inode = file_inode(vma->vm_file);
2033         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2034         int err;
2035         vm_fault_t ret = VM_FAULT_LOCKED;
2036
2037         /*
2038          * Trinity finds that probing a hole which tmpfs is punching can
2039          * prevent the hole-punch from ever completing: which in turn
2040          * locks writers out with its hold on i_rwsem.  So refrain from
2041          * faulting pages into the hole while it's being punched.  Although
2042          * shmem_undo_range() does remove the additions, it may be unable to
2043          * keep up, as each new page needs its own unmap_mapping_range() call,
2044          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2045          *
2046          * It does not matter if we sometimes reach this check just before the
2047          * hole-punch begins, so that one fault then races with the punch:
2048          * we just need to make racing faults a rare case.
2049          *
2050          * The implementation below would be much simpler if we just used a
2051          * standard mutex or completion: but we cannot take i_rwsem in fault,
2052          * and bloating every shmem inode for this unlikely case would be sad.
2053          */
2054         if (unlikely(inode->i_private)) {
2055                 struct shmem_falloc *shmem_falloc;
2056
2057                 spin_lock(&inode->i_lock);
2058                 shmem_falloc = inode->i_private;
2059                 if (shmem_falloc &&
2060                     shmem_falloc->waitq &&
2061                     vmf->pgoff >= shmem_falloc->start &&
2062                     vmf->pgoff < shmem_falloc->next) {
2063                         struct file *fpin;
2064                         wait_queue_head_t *shmem_falloc_waitq;
2065                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2066
2067                         ret = VM_FAULT_NOPAGE;
2068                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2069                         if (fpin)
2070                                 ret = VM_FAULT_RETRY;
2071
2072                         shmem_falloc_waitq = shmem_falloc->waitq;
2073                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2074                                         TASK_UNINTERRUPTIBLE);
2075                         spin_unlock(&inode->i_lock);
2076                         schedule();
2077
2078                         /*
2079                          * shmem_falloc_waitq points into the shmem_fallocate()
2080                          * stack of the hole-punching task: shmem_falloc_waitq
2081                          * is usually invalid by the time we reach here, but
2082                          * finish_wait() does not dereference it in that case;
2083                          * though i_lock needed lest racing with wake_up_all().
2084                          */
2085                         spin_lock(&inode->i_lock);
2086                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2087                         spin_unlock(&inode->i_lock);
2088
2089                         if (fpin)
2090                                 fput(fpin);
2091                         return ret;
2092                 }
2093                 spin_unlock(&inode->i_lock);
2094         }
2095
2096         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2097                                   gfp, vma, vmf, &ret);
2098         if (err)
2099                 return vmf_error(err);
2100         return ret;
2101 }
2102
2103 unsigned long shmem_get_unmapped_area(struct file *file,
2104                                       unsigned long uaddr, unsigned long len,
2105                                       unsigned long pgoff, unsigned long flags)
2106 {
2107         unsigned long (*get_area)(struct file *,
2108                 unsigned long, unsigned long, unsigned long, unsigned long);
2109         unsigned long addr;
2110         unsigned long offset;
2111         unsigned long inflated_len;
2112         unsigned long inflated_addr;
2113         unsigned long inflated_offset;
2114
2115         if (len > TASK_SIZE)
2116                 return -ENOMEM;
2117
2118         get_area = current->mm->get_unmapped_area;
2119         addr = get_area(file, uaddr, len, pgoff, flags);
2120
2121         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2122                 return addr;
2123         if (IS_ERR_VALUE(addr))
2124                 return addr;
2125         if (addr & ~PAGE_MASK)
2126                 return addr;
2127         if (addr > TASK_SIZE - len)
2128                 return addr;
2129
2130         if (shmem_huge == SHMEM_HUGE_DENY)
2131                 return addr;
2132         if (len < HPAGE_PMD_SIZE)
2133                 return addr;
2134         if (flags & MAP_FIXED)
2135                 return addr;
2136         /*
2137          * Our priority is to support MAP_SHARED mapped hugely;
2138          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2139          * But if caller specified an address hint and we allocated area there
2140          * successfully, respect that as before.
2141          */
2142         if (uaddr == addr)
2143                 return addr;
2144
2145         if (shmem_huge != SHMEM_HUGE_FORCE) {
2146                 struct super_block *sb;
2147
2148                 if (file) {
2149                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2150                         sb = file_inode(file)->i_sb;
2151                 } else {
2152                         /*
2153                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2154                          * for "/dev/zero", to create a shared anonymous object.
2155                          */
2156                         if (IS_ERR(shm_mnt))
2157                                 return addr;
2158                         sb = shm_mnt->mnt_sb;
2159                 }
2160                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2161                         return addr;
2162         }
2163
2164         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2165         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2166                 return addr;
2167         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2168                 return addr;
2169
2170         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2171         if (inflated_len > TASK_SIZE)
2172                 return addr;
2173         if (inflated_len < len)
2174                 return addr;
2175
2176         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2177         if (IS_ERR_VALUE(inflated_addr))
2178                 return addr;
2179         if (inflated_addr & ~PAGE_MASK)
2180                 return addr;
2181
2182         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2183         inflated_addr += offset - inflated_offset;
2184         if (inflated_offset > offset)
2185                 inflated_addr += HPAGE_PMD_SIZE;
2186
2187         if (inflated_addr > TASK_SIZE - len)
2188                 return addr;
2189         return inflated_addr;
2190 }
2191
2192 #ifdef CONFIG_NUMA
2193 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2194 {
2195         struct inode *inode = file_inode(vma->vm_file);
2196         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2197 }
2198
2199 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2200                                           unsigned long addr)
2201 {
2202         struct inode *inode = file_inode(vma->vm_file);
2203         pgoff_t index;
2204
2205         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2206         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2207 }
2208 #endif
2209
2210 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2211 {
2212         struct inode *inode = file_inode(file);
2213         struct shmem_inode_info *info = SHMEM_I(inode);
2214         int retval = -ENOMEM;
2215
2216         /*
2217          * What serializes the accesses to info->flags?
2218          * ipc_lock_object() when called from shmctl_do_lock(),
2219          * no serialization needed when called from shm_destroy().
2220          */
2221         if (lock && !(info->flags & VM_LOCKED)) {
2222                 if (!user_shm_lock(inode->i_size, ucounts))
2223                         goto out_nomem;
2224                 info->flags |= VM_LOCKED;
2225                 mapping_set_unevictable(file->f_mapping);
2226         }
2227         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2228                 user_shm_unlock(inode->i_size, ucounts);
2229                 info->flags &= ~VM_LOCKED;
2230                 mapping_clear_unevictable(file->f_mapping);
2231         }
2232         retval = 0;
2233
2234 out_nomem:
2235         return retval;
2236 }
2237
2238 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2239 {
2240         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2241         int ret;
2242
2243         ret = seal_check_future_write(info->seals, vma);
2244         if (ret)
2245                 return ret;
2246
2247         /* arm64 - allow memory tagging on RAM-based files */
2248         vma->vm_flags |= VM_MTE_ALLOWED;
2249
2250         file_accessed(file);
2251         vma->vm_ops = &shmem_vm_ops;
2252         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2253                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2254                         (vma->vm_end & HPAGE_PMD_MASK)) {
2255                 khugepaged_enter(vma, vma->vm_flags);
2256         }
2257         return 0;
2258 }
2259
2260 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2261                                      umode_t mode, dev_t dev, unsigned long flags)
2262 {
2263         struct inode *inode;
2264         struct shmem_inode_info *info;
2265         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2266         ino_t ino;
2267
2268         if (shmem_reserve_inode(sb, &ino))
2269                 return NULL;
2270
2271         inode = new_inode(sb);
2272         if (inode) {
2273                 inode->i_ino = ino;
2274                 inode_init_owner(&init_user_ns, inode, dir, mode);
2275                 inode->i_blocks = 0;
2276                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2277                 inode->i_generation = prandom_u32();
2278                 info = SHMEM_I(inode);
2279                 memset(info, 0, (char *)inode - (char *)info);
2280                 spin_lock_init(&info->lock);
2281                 atomic_set(&info->stop_eviction, 0);
2282                 info->seals = F_SEAL_SEAL;
2283                 info->flags = flags & VM_NORESERVE;
2284                 INIT_LIST_HEAD(&info->shrinklist);
2285                 INIT_LIST_HEAD(&info->swaplist);
2286                 simple_xattrs_init(&info->xattrs);
2287                 cache_no_acl(inode);
2288                 mapping_set_large_folios(inode->i_mapping);
2289
2290                 switch (mode & S_IFMT) {
2291                 default:
2292                         inode->i_op = &shmem_special_inode_operations;
2293                         init_special_inode(inode, mode, dev);
2294                         break;
2295                 case S_IFREG:
2296                         inode->i_mapping->a_ops = &shmem_aops;
2297                         inode->i_op = &shmem_inode_operations;
2298                         inode->i_fop = &shmem_file_operations;
2299                         mpol_shared_policy_init(&info->policy,
2300                                                  shmem_get_sbmpol(sbinfo));
2301                         break;
2302                 case S_IFDIR:
2303                         inc_nlink(inode);
2304                         /* Some things misbehave if size == 0 on a directory */
2305                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2306                         inode->i_op = &shmem_dir_inode_operations;
2307                         inode->i_fop = &simple_dir_operations;
2308                         break;
2309                 case S_IFLNK:
2310                         /*
2311                          * Must not load anything in the rbtree,
2312                          * mpol_free_shared_policy will not be called.
2313                          */
2314                         mpol_shared_policy_init(&info->policy, NULL);
2315                         break;
2316                 }
2317
2318                 lockdep_annotate_inode_mutex_key(inode);
2319         } else
2320                 shmem_free_inode(sb);
2321         return inode;
2322 }
2323
2324 #ifdef CONFIG_USERFAULTFD
2325 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2326                            pmd_t *dst_pmd,
2327                            struct vm_area_struct *dst_vma,
2328                            unsigned long dst_addr,
2329                            unsigned long src_addr,
2330                            bool zeropage,
2331                            struct page **pagep)
2332 {
2333         struct inode *inode = file_inode(dst_vma->vm_file);
2334         struct shmem_inode_info *info = SHMEM_I(inode);
2335         struct address_space *mapping = inode->i_mapping;
2336         gfp_t gfp = mapping_gfp_mask(mapping);
2337         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2338         void *page_kaddr;
2339         struct page *page;
2340         int ret;
2341         pgoff_t max_off;
2342
2343         if (!shmem_inode_acct_block(inode, 1)) {
2344                 /*
2345                  * We may have got a page, returned -ENOENT triggering a retry,
2346                  * and now we find ourselves with -ENOMEM. Release the page, to
2347                  * avoid a BUG_ON in our caller.
2348                  */
2349                 if (unlikely(*pagep)) {
2350                         put_page(*pagep);
2351                         *pagep = NULL;
2352                 }
2353                 return -ENOMEM;
2354         }
2355
2356         if (!*pagep) {
2357                 ret = -ENOMEM;
2358                 page = shmem_alloc_page(gfp, info, pgoff);
2359                 if (!page)
2360                         goto out_unacct_blocks;
2361
2362                 if (!zeropage) {        /* COPY */
2363                         page_kaddr = kmap_atomic(page);
2364                         ret = copy_from_user(page_kaddr,
2365                                              (const void __user *)src_addr,
2366                                              PAGE_SIZE);
2367                         kunmap_atomic(page_kaddr);
2368
2369                         /* fallback to copy_from_user outside mmap_lock */
2370                         if (unlikely(ret)) {
2371                                 *pagep = page;
2372                                 ret = -ENOENT;
2373                                 /* don't free the page */
2374                                 goto out_unacct_blocks;
2375                         }
2376                 } else {                /* ZEROPAGE */
2377                         clear_highpage(page);
2378                 }
2379         } else {
2380                 page = *pagep;
2381                 *pagep = NULL;
2382         }
2383
2384         VM_BUG_ON(PageLocked(page));
2385         VM_BUG_ON(PageSwapBacked(page));
2386         __SetPageLocked(page);
2387         __SetPageSwapBacked(page);
2388         __SetPageUptodate(page);
2389
2390         ret = -EFAULT;
2391         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392         if (unlikely(pgoff >= max_off))
2393                 goto out_release;
2394
2395         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2396                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2397         if (ret)
2398                 goto out_release;
2399
2400         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2401                                        page, true, false);
2402         if (ret)
2403                 goto out_delete_from_cache;
2404
2405         spin_lock_irq(&info->lock);
2406         info->alloced++;
2407         inode->i_blocks += BLOCKS_PER_PAGE;
2408         shmem_recalc_inode(inode);
2409         spin_unlock_irq(&info->lock);
2410
2411         unlock_page(page);
2412         return 0;
2413 out_delete_from_cache:
2414         delete_from_page_cache(page);
2415 out_release:
2416         unlock_page(page);
2417         put_page(page);
2418 out_unacct_blocks:
2419         shmem_inode_unacct_blocks(inode, 1);
2420         return ret;
2421 }
2422 #endif /* CONFIG_USERFAULTFD */
2423
2424 #ifdef CONFIG_TMPFS
2425 static const struct inode_operations shmem_symlink_inode_operations;
2426 static const struct inode_operations shmem_short_symlink_operations;
2427
2428 #ifdef CONFIG_TMPFS_XATTR
2429 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2430 #else
2431 #define shmem_initxattrs NULL
2432 #endif
2433
2434 static int
2435 shmem_write_begin(struct file *file, struct address_space *mapping,
2436                         loff_t pos, unsigned len, unsigned flags,
2437                         struct page **pagep, void **fsdata)
2438 {
2439         struct inode *inode = mapping->host;
2440         struct shmem_inode_info *info = SHMEM_I(inode);
2441         pgoff_t index = pos >> PAGE_SHIFT;
2442
2443         /* i_rwsem is held by caller */
2444         if (unlikely(info->seals & (F_SEAL_GROW |
2445                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2446                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2447                         return -EPERM;
2448                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2449                         return -EPERM;
2450         }
2451
2452         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2453 }
2454
2455 static int
2456 shmem_write_end(struct file *file, struct address_space *mapping,
2457                         loff_t pos, unsigned len, unsigned copied,
2458                         struct page *page, void *fsdata)
2459 {
2460         struct inode *inode = mapping->host;
2461
2462         if (pos + copied > inode->i_size)
2463                 i_size_write(inode, pos + copied);
2464
2465         if (!PageUptodate(page)) {
2466                 struct page *head = compound_head(page);
2467                 if (PageTransCompound(page)) {
2468                         int i;
2469
2470                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2471                                 if (head + i == page)
2472                                         continue;
2473                                 clear_highpage(head + i);
2474                                 flush_dcache_page(head + i);
2475                         }
2476                 }
2477                 if (copied < PAGE_SIZE) {
2478                         unsigned from = pos & (PAGE_SIZE - 1);
2479                         zero_user_segments(page, 0, from,
2480                                         from + copied, PAGE_SIZE);
2481                 }
2482                 SetPageUptodate(head);
2483         }
2484         set_page_dirty(page);
2485         unlock_page(page);
2486         put_page(page);
2487
2488         return copied;
2489 }
2490
2491 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2492 {
2493         struct file *file = iocb->ki_filp;
2494         struct inode *inode = file_inode(file);
2495         struct address_space *mapping = inode->i_mapping;
2496         pgoff_t index;
2497         unsigned long offset;
2498         enum sgp_type sgp = SGP_READ;
2499         int error = 0;
2500         ssize_t retval = 0;
2501         loff_t *ppos = &iocb->ki_pos;
2502
2503         /*
2504          * Might this read be for a stacking filesystem?  Then when reading
2505          * holes of a sparse file, we actually need to allocate those pages,
2506          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2507          */
2508         if (!iter_is_iovec(to))
2509                 sgp = SGP_CACHE;
2510
2511         index = *ppos >> PAGE_SHIFT;
2512         offset = *ppos & ~PAGE_MASK;
2513
2514         for (;;) {
2515                 struct page *page = NULL;
2516                 pgoff_t end_index;
2517                 unsigned long nr, ret;
2518                 loff_t i_size = i_size_read(inode);
2519
2520                 end_index = i_size >> PAGE_SHIFT;
2521                 if (index > end_index)
2522                         break;
2523                 if (index == end_index) {
2524                         nr = i_size & ~PAGE_MASK;
2525                         if (nr <= offset)
2526                                 break;
2527                 }
2528
2529                 error = shmem_getpage(inode, index, &page, sgp);
2530                 if (error) {
2531                         if (error == -EINVAL)
2532                                 error = 0;
2533                         break;
2534                 }
2535                 if (page) {
2536                         if (sgp == SGP_CACHE)
2537                                 set_page_dirty(page);
2538                         unlock_page(page);
2539                 }
2540
2541                 /*
2542                  * We must evaluate after, since reads (unlike writes)
2543                  * are called without i_rwsem protection against truncate
2544                  */
2545                 nr = PAGE_SIZE;
2546                 i_size = i_size_read(inode);
2547                 end_index = i_size >> PAGE_SHIFT;
2548                 if (index == end_index) {
2549                         nr = i_size & ~PAGE_MASK;
2550                         if (nr <= offset) {
2551                                 if (page)
2552                                         put_page(page);
2553                                 break;
2554                         }
2555                 }
2556                 nr -= offset;
2557
2558                 if (page) {
2559                         /*
2560                          * If users can be writing to this page using arbitrary
2561                          * virtual addresses, take care about potential aliasing
2562                          * before reading the page on the kernel side.
2563                          */
2564                         if (mapping_writably_mapped(mapping))
2565                                 flush_dcache_page(page);
2566                         /*
2567                          * Mark the page accessed if we read the beginning.
2568                          */
2569                         if (!offset)
2570                                 mark_page_accessed(page);
2571                 } else {
2572                         page = ZERO_PAGE(0);
2573                         get_page(page);
2574                 }
2575
2576                 /*
2577                  * Ok, we have the page, and it's up-to-date, so
2578                  * now we can copy it to user space...
2579                  */
2580                 ret = copy_page_to_iter(page, offset, nr, to);
2581                 retval += ret;
2582                 offset += ret;
2583                 index += offset >> PAGE_SHIFT;
2584                 offset &= ~PAGE_MASK;
2585
2586                 put_page(page);
2587                 if (!iov_iter_count(to))
2588                         break;
2589                 if (ret < nr) {
2590                         error = -EFAULT;
2591                         break;
2592                 }
2593                 cond_resched();
2594         }
2595
2596         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2597         file_accessed(file);
2598         return retval ? retval : error;
2599 }
2600
2601 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2602 {
2603         struct address_space *mapping = file->f_mapping;
2604         struct inode *inode = mapping->host;
2605
2606         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2607                 return generic_file_llseek_size(file, offset, whence,
2608                                         MAX_LFS_FILESIZE, i_size_read(inode));
2609         if (offset < 0)
2610                 return -ENXIO;
2611
2612         inode_lock(inode);
2613         /* We're holding i_rwsem so we can access i_size directly */
2614         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2615         if (offset >= 0)
2616                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2617         inode_unlock(inode);
2618         return offset;
2619 }
2620
2621 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2622                                                          loff_t len)
2623 {
2624         struct inode *inode = file_inode(file);
2625         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2626         struct shmem_inode_info *info = SHMEM_I(inode);
2627         struct shmem_falloc shmem_falloc;
2628         pgoff_t start, index, end, undo_fallocend;
2629         int error;
2630
2631         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2632                 return -EOPNOTSUPP;
2633
2634         inode_lock(inode);
2635
2636         if (mode & FALLOC_FL_PUNCH_HOLE) {
2637                 struct address_space *mapping = file->f_mapping;
2638                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2639                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2640                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2641
2642                 /* protected by i_rwsem */
2643                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2644                         error = -EPERM;
2645                         goto out;
2646                 }
2647
2648                 shmem_falloc.waitq = &shmem_falloc_waitq;
2649                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2650                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2651                 spin_lock(&inode->i_lock);
2652                 inode->i_private = &shmem_falloc;
2653                 spin_unlock(&inode->i_lock);
2654
2655                 if ((u64)unmap_end > (u64)unmap_start)
2656                         unmap_mapping_range(mapping, unmap_start,
2657                                             1 + unmap_end - unmap_start, 0);
2658                 shmem_truncate_range(inode, offset, offset + len - 1);
2659                 /* No need to unmap again: hole-punching leaves COWed pages */
2660
2661                 spin_lock(&inode->i_lock);
2662                 inode->i_private = NULL;
2663                 wake_up_all(&shmem_falloc_waitq);
2664                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2665                 spin_unlock(&inode->i_lock);
2666                 error = 0;
2667                 goto out;
2668         }
2669
2670         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2671         error = inode_newsize_ok(inode, offset + len);
2672         if (error)
2673                 goto out;
2674
2675         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2676                 error = -EPERM;
2677                 goto out;
2678         }
2679
2680         start = offset >> PAGE_SHIFT;
2681         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2682         /* Try to avoid a swapstorm if len is impossible to satisfy */
2683         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2684                 error = -ENOSPC;
2685                 goto out;
2686         }
2687
2688         shmem_falloc.waitq = NULL;
2689         shmem_falloc.start = start;
2690         shmem_falloc.next  = start;
2691         shmem_falloc.nr_falloced = 0;
2692         shmem_falloc.nr_unswapped = 0;
2693         spin_lock(&inode->i_lock);
2694         inode->i_private = &shmem_falloc;
2695         spin_unlock(&inode->i_lock);
2696
2697         /*
2698          * info->fallocend is only relevant when huge pages might be
2699          * involved: to prevent split_huge_page() freeing fallocated
2700          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2701          */
2702         undo_fallocend = info->fallocend;
2703         if (info->fallocend < end)
2704                 info->fallocend = end;
2705
2706         for (index = start; index < end; ) {
2707                 struct page *page;
2708
2709                 /*
2710                  * Good, the fallocate(2) manpage permits EINTR: we may have
2711                  * been interrupted because we are using up too much memory.
2712                  */
2713                 if (signal_pending(current))
2714                         error = -EINTR;
2715                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2716                         error = -ENOMEM;
2717                 else
2718                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2719                 if (error) {
2720                         info->fallocend = undo_fallocend;
2721                         /* Remove the !PageUptodate pages we added */
2722                         if (index > start) {
2723                                 shmem_undo_range(inode,
2724                                     (loff_t)start << PAGE_SHIFT,
2725                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2726                         }
2727                         goto undone;
2728                 }
2729
2730                 index++;
2731                 /*
2732                  * Here is a more important optimization than it appears:
2733                  * a second SGP_FALLOC on the same huge page will clear it,
2734                  * making it PageUptodate and un-undoable if we fail later.
2735                  */
2736                 if (PageTransCompound(page)) {
2737                         index = round_up(index, HPAGE_PMD_NR);
2738                         /* Beware 32-bit wraparound */
2739                         if (!index)
2740                                 index--;
2741                 }
2742
2743                 /*
2744                  * Inform shmem_writepage() how far we have reached.
2745                  * No need for lock or barrier: we have the page lock.
2746                  */
2747                 if (!PageUptodate(page))
2748                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2749                 shmem_falloc.next = index;
2750
2751                 /*
2752                  * If !PageUptodate, leave it that way so that freeable pages
2753                  * can be recognized if we need to rollback on error later.
2754                  * But set_page_dirty so that memory pressure will swap rather
2755                  * than free the pages we are allocating (and SGP_CACHE pages
2756                  * might still be clean: we now need to mark those dirty too).
2757                  */
2758                 set_page_dirty(page);
2759                 unlock_page(page);
2760                 put_page(page);
2761                 cond_resched();
2762         }
2763
2764         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2765                 i_size_write(inode, offset + len);
2766         inode->i_ctime = current_time(inode);
2767 undone:
2768         spin_lock(&inode->i_lock);
2769         inode->i_private = NULL;
2770         spin_unlock(&inode->i_lock);
2771 out:
2772         inode_unlock(inode);
2773         return error;
2774 }
2775
2776 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2777 {
2778         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2779
2780         buf->f_type = TMPFS_MAGIC;
2781         buf->f_bsize = PAGE_SIZE;
2782         buf->f_namelen = NAME_MAX;
2783         if (sbinfo->max_blocks) {
2784                 buf->f_blocks = sbinfo->max_blocks;
2785                 buf->f_bavail =
2786                 buf->f_bfree  = sbinfo->max_blocks -
2787                                 percpu_counter_sum(&sbinfo->used_blocks);
2788         }
2789         if (sbinfo->max_inodes) {
2790                 buf->f_files = sbinfo->max_inodes;
2791                 buf->f_ffree = sbinfo->free_inodes;
2792         }
2793         /* else leave those fields 0 like simple_statfs */
2794
2795         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2796
2797         return 0;
2798 }
2799
2800 /*
2801  * File creation. Allocate an inode, and we're done..
2802  */
2803 static int
2804 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2805             struct dentry *dentry, umode_t mode, dev_t dev)
2806 {
2807         struct inode *inode;
2808         int error = -ENOSPC;
2809
2810         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2811         if (inode) {
2812                 error = simple_acl_create(dir, inode);
2813                 if (error)
2814                         goto out_iput;
2815                 error = security_inode_init_security(inode, dir,
2816                                                      &dentry->d_name,
2817                                                      shmem_initxattrs, NULL);
2818                 if (error && error != -EOPNOTSUPP)
2819                         goto out_iput;
2820
2821                 error = 0;
2822                 dir->i_size += BOGO_DIRENT_SIZE;
2823                 dir->i_ctime = dir->i_mtime = current_time(dir);
2824                 d_instantiate(dentry, inode);
2825                 dget(dentry); /* Extra count - pin the dentry in core */
2826         }
2827         return error;
2828 out_iput:
2829         iput(inode);
2830         return error;
2831 }
2832
2833 static int
2834 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2835               struct dentry *dentry, umode_t mode)
2836 {
2837         struct inode *inode;
2838         int error = -ENOSPC;
2839
2840         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2841         if (inode) {
2842                 error = security_inode_init_security(inode, dir,
2843                                                      NULL,
2844                                                      shmem_initxattrs, NULL);
2845                 if (error && error != -EOPNOTSUPP)
2846                         goto out_iput;
2847                 error = simple_acl_create(dir, inode);
2848                 if (error)
2849                         goto out_iput;
2850                 d_tmpfile(dentry, inode);
2851         }
2852         return error;
2853 out_iput:
2854         iput(inode);
2855         return error;
2856 }
2857
2858 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2859                        struct dentry *dentry, umode_t mode)
2860 {
2861         int error;
2862
2863         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2864                                  mode | S_IFDIR, 0)))
2865                 return error;
2866         inc_nlink(dir);
2867         return 0;
2868 }
2869
2870 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2871                         struct dentry *dentry, umode_t mode, bool excl)
2872 {
2873         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2874 }
2875
2876 /*
2877  * Link a file..
2878  */
2879 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2880 {
2881         struct inode *inode = d_inode(old_dentry);
2882         int ret = 0;
2883
2884         /*
2885          * No ordinary (disk based) filesystem counts links as inodes;
2886          * but each new link needs a new dentry, pinning lowmem, and
2887          * tmpfs dentries cannot be pruned until they are unlinked.
2888          * But if an O_TMPFILE file is linked into the tmpfs, the
2889          * first link must skip that, to get the accounting right.
2890          */
2891         if (inode->i_nlink) {
2892                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2893                 if (ret)
2894                         goto out;
2895         }
2896
2897         dir->i_size += BOGO_DIRENT_SIZE;
2898         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899         inc_nlink(inode);
2900         ihold(inode);   /* New dentry reference */
2901         dget(dentry);           /* Extra pinning count for the created dentry */
2902         d_instantiate(dentry, inode);
2903 out:
2904         return ret;
2905 }
2906
2907 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2908 {
2909         struct inode *inode = d_inode(dentry);
2910
2911         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2912                 shmem_free_inode(inode->i_sb);
2913
2914         dir->i_size -= BOGO_DIRENT_SIZE;
2915         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2916         drop_nlink(inode);
2917         dput(dentry);   /* Undo the count from "create" - this does all the work */
2918         return 0;
2919 }
2920
2921 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2922 {
2923         if (!simple_empty(dentry))
2924                 return -ENOTEMPTY;
2925
2926         drop_nlink(d_inode(dentry));
2927         drop_nlink(dir);
2928         return shmem_unlink(dir, dentry);
2929 }
2930
2931 static int shmem_whiteout(struct user_namespace *mnt_userns,
2932                           struct inode *old_dir, struct dentry *old_dentry)
2933 {
2934         struct dentry *whiteout;
2935         int error;
2936
2937         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2938         if (!whiteout)
2939                 return -ENOMEM;
2940
2941         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2942                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2943         dput(whiteout);
2944         if (error)
2945                 return error;
2946
2947         /*
2948          * Cheat and hash the whiteout while the old dentry is still in
2949          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2950          *
2951          * d_lookup() will consistently find one of them at this point,
2952          * not sure which one, but that isn't even important.
2953          */
2954         d_rehash(whiteout);
2955         return 0;
2956 }
2957
2958 /*
2959  * The VFS layer already does all the dentry stuff for rename,
2960  * we just have to decrement the usage count for the target if
2961  * it exists so that the VFS layer correctly free's it when it
2962  * gets overwritten.
2963  */
2964 static int shmem_rename2(struct user_namespace *mnt_userns,
2965                          struct inode *old_dir, struct dentry *old_dentry,
2966                          struct inode *new_dir, struct dentry *new_dentry,
2967                          unsigned int flags)
2968 {
2969         struct inode *inode = d_inode(old_dentry);
2970         int they_are_dirs = S_ISDIR(inode->i_mode);
2971
2972         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2973                 return -EINVAL;
2974
2975         if (flags & RENAME_EXCHANGE)
2976                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2977
2978         if (!simple_empty(new_dentry))
2979                 return -ENOTEMPTY;
2980
2981         if (flags & RENAME_WHITEOUT) {
2982                 int error;
2983
2984                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2985                 if (error)
2986                         return error;
2987         }
2988
2989         if (d_really_is_positive(new_dentry)) {
2990                 (void) shmem_unlink(new_dir, new_dentry);
2991                 if (they_are_dirs) {
2992                         drop_nlink(d_inode(new_dentry));
2993                         drop_nlink(old_dir);
2994                 }
2995         } else if (they_are_dirs) {
2996                 drop_nlink(old_dir);
2997                 inc_nlink(new_dir);
2998         }
2999
3000         old_dir->i_size -= BOGO_DIRENT_SIZE;
3001         new_dir->i_size += BOGO_DIRENT_SIZE;
3002         old_dir->i_ctime = old_dir->i_mtime =
3003         new_dir->i_ctime = new_dir->i_mtime =
3004         inode->i_ctime = current_time(old_dir);
3005         return 0;
3006 }
3007
3008 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3009                          struct dentry *dentry, const char *symname)
3010 {
3011         int error;
3012         int len;
3013         struct inode *inode;
3014         struct page *page;
3015
3016         len = strlen(symname) + 1;
3017         if (len > PAGE_SIZE)
3018                 return -ENAMETOOLONG;
3019
3020         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3021                                 VM_NORESERVE);
3022         if (!inode)
3023                 return -ENOSPC;
3024
3025         error = security_inode_init_security(inode, dir, &dentry->d_name,
3026                                              shmem_initxattrs, NULL);
3027         if (error && error != -EOPNOTSUPP) {
3028                 iput(inode);
3029                 return error;
3030         }
3031
3032         inode->i_size = len-1;
3033         if (len <= SHORT_SYMLINK_LEN) {
3034                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3035                 if (!inode->i_link) {
3036                         iput(inode);
3037                         return -ENOMEM;
3038                 }
3039                 inode->i_op = &shmem_short_symlink_operations;
3040         } else {
3041                 inode_nohighmem(inode);
3042                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3043                 if (error) {
3044                         iput(inode);
3045                         return error;
3046                 }
3047                 inode->i_mapping->a_ops = &shmem_aops;
3048                 inode->i_op = &shmem_symlink_inode_operations;
3049                 memcpy(page_address(page), symname, len);
3050                 SetPageUptodate(page);
3051                 set_page_dirty(page);
3052                 unlock_page(page);
3053                 put_page(page);
3054         }
3055         dir->i_size += BOGO_DIRENT_SIZE;
3056         dir->i_ctime = dir->i_mtime = current_time(dir);
3057         d_instantiate(dentry, inode);
3058         dget(dentry);
3059         return 0;
3060 }
3061
3062 static void shmem_put_link(void *arg)
3063 {
3064         mark_page_accessed(arg);
3065         put_page(arg);
3066 }
3067
3068 static const char *shmem_get_link(struct dentry *dentry,
3069                                   struct inode *inode,
3070                                   struct delayed_call *done)
3071 {
3072         struct page *page = NULL;
3073         int error;
3074         if (!dentry) {
3075                 page = find_get_page(inode->i_mapping, 0);
3076                 if (!page)
3077                         return ERR_PTR(-ECHILD);
3078                 if (!PageUptodate(page)) {
3079                         put_page(page);
3080                         return ERR_PTR(-ECHILD);
3081                 }
3082         } else {
3083                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3084                 if (error)
3085                         return ERR_PTR(error);
3086                 unlock_page(page);
3087         }
3088         set_delayed_call(done, shmem_put_link, page);
3089         return page_address(page);
3090 }
3091
3092 #ifdef CONFIG_TMPFS_XATTR
3093 /*
3094  * Superblocks without xattr inode operations may get some security.* xattr
3095  * support from the LSM "for free". As soon as we have any other xattrs
3096  * like ACLs, we also need to implement the security.* handlers at
3097  * filesystem level, though.
3098  */
3099
3100 /*
3101  * Callback for security_inode_init_security() for acquiring xattrs.
3102  */
3103 static int shmem_initxattrs(struct inode *inode,
3104                             const struct xattr *xattr_array,
3105                             void *fs_info)
3106 {
3107         struct shmem_inode_info *info = SHMEM_I(inode);
3108         const struct xattr *xattr;
3109         struct simple_xattr *new_xattr;
3110         size_t len;
3111
3112         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3113                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3114                 if (!new_xattr)
3115                         return -ENOMEM;
3116
3117                 len = strlen(xattr->name) + 1;
3118                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3119                                           GFP_KERNEL);
3120                 if (!new_xattr->name) {
3121                         kvfree(new_xattr);
3122                         return -ENOMEM;
3123                 }
3124
3125                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3126                        XATTR_SECURITY_PREFIX_LEN);
3127                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3128                        xattr->name, len);
3129
3130                 simple_xattr_list_add(&info->xattrs, new_xattr);
3131         }
3132
3133         return 0;
3134 }
3135
3136 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3137                                    struct dentry *unused, struct inode *inode,
3138                                    const char *name, void *buffer, size_t size)
3139 {
3140         struct shmem_inode_info *info = SHMEM_I(inode);
3141
3142         name = xattr_full_name(handler, name);
3143         return simple_xattr_get(&info->xattrs, name, buffer, size);
3144 }
3145
3146 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3147                                    struct user_namespace *mnt_userns,
3148                                    struct dentry *unused, struct inode *inode,
3149                                    const char *name, const void *value,
3150                                    size_t size, int flags)
3151 {
3152         struct shmem_inode_info *info = SHMEM_I(inode);
3153
3154         name = xattr_full_name(handler, name);
3155         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3156 }
3157
3158 static const struct xattr_handler shmem_security_xattr_handler = {
3159         .prefix = XATTR_SECURITY_PREFIX,
3160         .get = shmem_xattr_handler_get,
3161         .set = shmem_xattr_handler_set,
3162 };
3163
3164 static const struct xattr_handler shmem_trusted_xattr_handler = {
3165         .prefix = XATTR_TRUSTED_PREFIX,
3166         .get = shmem_xattr_handler_get,
3167         .set = shmem_xattr_handler_set,
3168 };
3169
3170 static const struct xattr_handler *shmem_xattr_handlers[] = {
3171 #ifdef CONFIG_TMPFS_POSIX_ACL
3172         &posix_acl_access_xattr_handler,
3173         &posix_acl_default_xattr_handler,
3174 #endif
3175         &shmem_security_xattr_handler,
3176         &shmem_trusted_xattr_handler,
3177         NULL
3178 };
3179
3180 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3181 {
3182         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3183         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3184 }
3185 #endif /* CONFIG_TMPFS_XATTR */
3186
3187 static const struct inode_operations shmem_short_symlink_operations = {
3188         .get_link       = simple_get_link,
3189 #ifdef CONFIG_TMPFS_XATTR
3190         .listxattr      = shmem_listxattr,
3191 #endif
3192 };
3193
3194 static const struct inode_operations shmem_symlink_inode_operations = {
3195         .get_link       = shmem_get_link,
3196 #ifdef CONFIG_TMPFS_XATTR
3197         .listxattr      = shmem_listxattr,
3198 #endif
3199 };
3200
3201 static struct dentry *shmem_get_parent(struct dentry *child)
3202 {
3203         return ERR_PTR(-ESTALE);
3204 }
3205
3206 static int shmem_match(struct inode *ino, void *vfh)
3207 {
3208         __u32 *fh = vfh;
3209         __u64 inum = fh[2];
3210         inum = (inum << 32) | fh[1];
3211         return ino->i_ino == inum && fh[0] == ino->i_generation;
3212 }
3213
3214 /* Find any alias of inode, but prefer a hashed alias */
3215 static struct dentry *shmem_find_alias(struct inode *inode)
3216 {
3217         struct dentry *alias = d_find_alias(inode);
3218
3219         return alias ?: d_find_any_alias(inode);
3220 }
3221
3222
3223 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3224                 struct fid *fid, int fh_len, int fh_type)
3225 {
3226         struct inode *inode;
3227         struct dentry *dentry = NULL;
3228         u64 inum;
3229
3230         if (fh_len < 3)
3231                 return NULL;
3232
3233         inum = fid->raw[2];
3234         inum = (inum << 32) | fid->raw[1];
3235
3236         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3237                         shmem_match, fid->raw);
3238         if (inode) {
3239                 dentry = shmem_find_alias(inode);
3240                 iput(inode);
3241         }
3242
3243         return dentry;
3244 }
3245
3246 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3247                                 struct inode *parent)
3248 {
3249         if (*len < 3) {
3250                 *len = 3;
3251                 return FILEID_INVALID;
3252         }
3253
3254         if (inode_unhashed(inode)) {
3255                 /* Unfortunately insert_inode_hash is not idempotent,
3256                  * so as we hash inodes here rather than at creation
3257                  * time, we need a lock to ensure we only try
3258                  * to do it once
3259                  */
3260                 static DEFINE_SPINLOCK(lock);
3261                 spin_lock(&lock);
3262                 if (inode_unhashed(inode))
3263                         __insert_inode_hash(inode,
3264                                             inode->i_ino + inode->i_generation);
3265                 spin_unlock(&lock);
3266         }
3267
3268         fh[0] = inode->i_generation;
3269         fh[1] = inode->i_ino;
3270         fh[2] = ((__u64)inode->i_ino) >> 32;
3271
3272         *len = 3;
3273         return 1;
3274 }
3275
3276 static const struct export_operations shmem_export_ops = {
3277         .get_parent     = shmem_get_parent,
3278         .encode_fh      = shmem_encode_fh,
3279         .fh_to_dentry   = shmem_fh_to_dentry,
3280 };
3281
3282 enum shmem_param {
3283         Opt_gid,
3284         Opt_huge,
3285         Opt_mode,
3286         Opt_mpol,
3287         Opt_nr_blocks,
3288         Opt_nr_inodes,
3289         Opt_size,
3290         Opt_uid,
3291         Opt_inode32,
3292         Opt_inode64,
3293 };
3294
3295 static const struct constant_table shmem_param_enums_huge[] = {
3296         {"never",       SHMEM_HUGE_NEVER },
3297         {"always",      SHMEM_HUGE_ALWAYS },
3298         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3299         {"advise",      SHMEM_HUGE_ADVISE },
3300         {}
3301 };
3302
3303 const struct fs_parameter_spec shmem_fs_parameters[] = {
3304         fsparam_u32   ("gid",           Opt_gid),
3305         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3306         fsparam_u32oct("mode",          Opt_mode),
3307         fsparam_string("mpol",          Opt_mpol),
3308         fsparam_string("nr_blocks",     Opt_nr_blocks),
3309         fsparam_string("nr_inodes",     Opt_nr_inodes),
3310         fsparam_string("size",          Opt_size),
3311         fsparam_u32   ("uid",           Opt_uid),
3312         fsparam_flag  ("inode32",       Opt_inode32),
3313         fsparam_flag  ("inode64",       Opt_inode64),
3314         {}
3315 };
3316
3317 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3318 {
3319         struct shmem_options *ctx = fc->fs_private;
3320         struct fs_parse_result result;
3321         unsigned long long size;
3322         char *rest;
3323         int opt;
3324
3325         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3326         if (opt < 0)
3327                 return opt;
3328
3329         switch (opt) {
3330         case Opt_size:
3331                 size = memparse(param->string, &rest);
3332                 if (*rest == '%') {
3333                         size <<= PAGE_SHIFT;
3334                         size *= totalram_pages();
3335                         do_div(size, 100);
3336                         rest++;
3337                 }
3338                 if (*rest)
3339                         goto bad_value;
3340                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3341                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3342                 break;
3343         case Opt_nr_blocks:
3344                 ctx->blocks = memparse(param->string, &rest);
3345                 if (*rest)
3346                         goto bad_value;
3347                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3348                 break;
3349         case Opt_nr_inodes:
3350                 ctx->inodes = memparse(param->string, &rest);
3351                 if (*rest)
3352                         goto bad_value;
3353                 ctx->seen |= SHMEM_SEEN_INODES;
3354                 break;
3355         case Opt_mode:
3356                 ctx->mode = result.uint_32 & 07777;
3357                 break;
3358         case Opt_uid:
3359                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3360                 if (!uid_valid(ctx->uid))
3361                         goto bad_value;
3362                 break;
3363         case Opt_gid:
3364                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3365                 if (!gid_valid(ctx->gid))
3366                         goto bad_value;
3367                 break;
3368         case Opt_huge:
3369                 ctx->huge = result.uint_32;
3370                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3371                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3372                       has_transparent_hugepage()))
3373                         goto unsupported_parameter;
3374                 ctx->seen |= SHMEM_SEEN_HUGE;
3375                 break;
3376         case Opt_mpol:
3377                 if (IS_ENABLED(CONFIG_NUMA)) {
3378                         mpol_put(ctx->mpol);
3379                         ctx->mpol = NULL;
3380                         if (mpol_parse_str(param->string, &ctx->mpol))
3381                                 goto bad_value;
3382                         break;
3383                 }
3384                 goto unsupported_parameter;
3385         case Opt_inode32:
3386                 ctx->full_inums = false;
3387                 ctx->seen |= SHMEM_SEEN_INUMS;
3388                 break;
3389         case Opt_inode64:
3390                 if (sizeof(ino_t) < 8) {
3391                         return invalfc(fc,
3392                                        "Cannot use inode64 with <64bit inums in kernel\n");
3393                 }
3394                 ctx->full_inums = true;
3395                 ctx->seen |= SHMEM_SEEN_INUMS;
3396                 break;
3397         }
3398         return 0;
3399
3400 unsupported_parameter:
3401         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3402 bad_value:
3403         return invalfc(fc, "Bad value for '%s'", param->key);
3404 }
3405
3406 static int shmem_parse_options(struct fs_context *fc, void *data)
3407 {
3408         char *options = data;
3409
3410         if (options) {
3411                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3412                 if (err)
3413                         return err;
3414         }
3415
3416         while (options != NULL) {
3417                 char *this_char = options;
3418                 for (;;) {
3419                         /*
3420                          * NUL-terminate this option: unfortunately,
3421                          * mount options form a comma-separated list,
3422                          * but mpol's nodelist may also contain commas.
3423                          */
3424                         options = strchr(options, ',');
3425                         if (options == NULL)
3426                                 break;
3427                         options++;
3428                         if (!isdigit(*options)) {
3429                                 options[-1] = '\0';
3430                                 break;
3431                         }
3432                 }
3433                 if (*this_char) {
3434                         char *value = strchr(this_char, '=');
3435                         size_t len = 0;
3436                         int err;
3437
3438                         if (value) {
3439                                 *value++ = '\0';
3440                                 len = strlen(value);
3441                         }
3442                         err = vfs_parse_fs_string(fc, this_char, value, len);
3443                         if (err < 0)
3444                                 return err;
3445                 }
3446         }
3447         return 0;
3448 }
3449
3450 /*
3451  * Reconfigure a shmem filesystem.
3452  *
3453  * Note that we disallow change from limited->unlimited blocks/inodes while any
3454  * are in use; but we must separately disallow unlimited->limited, because in
3455  * that case we have no record of how much is already in use.
3456  */
3457 static int shmem_reconfigure(struct fs_context *fc)
3458 {
3459         struct shmem_options *ctx = fc->fs_private;
3460         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3461         unsigned long inodes;
3462         struct mempolicy *mpol = NULL;
3463         const char *err;
3464
3465         raw_spin_lock(&sbinfo->stat_lock);
3466         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3467         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3468                 if (!sbinfo->max_blocks) {
3469                         err = "Cannot retroactively limit size";
3470                         goto out;
3471                 }
3472                 if (percpu_counter_compare(&sbinfo->used_blocks,
3473                                            ctx->blocks) > 0) {
3474                         err = "Too small a size for current use";
3475                         goto out;
3476                 }
3477         }
3478         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3479                 if (!sbinfo->max_inodes) {
3480                         err = "Cannot retroactively limit inodes";
3481                         goto out;
3482                 }
3483                 if (ctx->inodes < inodes) {
3484                         err = "Too few inodes for current use";
3485                         goto out;
3486                 }
3487         }
3488
3489         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3490             sbinfo->next_ino > UINT_MAX) {
3491                 err = "Current inum too high to switch to 32-bit inums";
3492                 goto out;
3493         }
3494
3495         if (ctx->seen & SHMEM_SEEN_HUGE)
3496                 sbinfo->huge = ctx->huge;
3497         if (ctx->seen & SHMEM_SEEN_INUMS)
3498                 sbinfo->full_inums = ctx->full_inums;
3499         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3500                 sbinfo->max_blocks  = ctx->blocks;
3501         if (ctx->seen & SHMEM_SEEN_INODES) {
3502                 sbinfo->max_inodes  = ctx->inodes;
3503                 sbinfo->free_inodes = ctx->inodes - inodes;
3504         }
3505
3506         /*
3507          * Preserve previous mempolicy unless mpol remount option was specified.
3508          */
3509         if (ctx->mpol) {
3510                 mpol = sbinfo->mpol;
3511                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3512                 ctx->mpol = NULL;
3513         }
3514         raw_spin_unlock(&sbinfo->stat_lock);
3515         mpol_put(mpol);
3516         return 0;
3517 out:
3518         raw_spin_unlock(&sbinfo->stat_lock);
3519         return invalfc(fc, "%s", err);
3520 }
3521
3522 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3523 {
3524         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3525
3526         if (sbinfo->max_blocks != shmem_default_max_blocks())
3527                 seq_printf(seq, ",size=%luk",
3528                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3529         if (sbinfo->max_inodes != shmem_default_max_inodes())
3530                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3531         if (sbinfo->mode != (0777 | S_ISVTX))
3532                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3533         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3534                 seq_printf(seq, ",uid=%u",
3535                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3536         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3537                 seq_printf(seq, ",gid=%u",
3538                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3539
3540         /*
3541          * Showing inode{64,32} might be useful even if it's the system default,
3542          * since then people don't have to resort to checking both here and
3543          * /proc/config.gz to confirm 64-bit inums were successfully applied
3544          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3545          *
3546          * We hide it when inode64 isn't the default and we are using 32-bit
3547          * inodes, since that probably just means the feature isn't even under
3548          * consideration.
3549          *
3550          * As such:
3551          *
3552          *                     +-----------------+-----------------+
3553          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3554          *  +------------------+-----------------+-----------------+
3555          *  | full_inums=true  | show            | show            |
3556          *  | full_inums=false | show            | hide            |
3557          *  +------------------+-----------------+-----------------+
3558          *
3559          */
3560         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3561                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3563         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3564         if (sbinfo->huge)
3565                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3566 #endif
3567         shmem_show_mpol(seq, sbinfo->mpol);
3568         return 0;
3569 }
3570
3571 #endif /* CONFIG_TMPFS */
3572
3573 static void shmem_put_super(struct super_block *sb)
3574 {
3575         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3576
3577         free_percpu(sbinfo->ino_batch);
3578         percpu_counter_destroy(&sbinfo->used_blocks);
3579         mpol_put(sbinfo->mpol);
3580         kfree(sbinfo);
3581         sb->s_fs_info = NULL;
3582 }
3583
3584 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3585 {
3586         struct shmem_options *ctx = fc->fs_private;
3587         struct inode *inode;
3588         struct shmem_sb_info *sbinfo;
3589
3590         /* Round up to L1_CACHE_BYTES to resist false sharing */
3591         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3592                                 L1_CACHE_BYTES), GFP_KERNEL);
3593         if (!sbinfo)
3594                 return -ENOMEM;
3595
3596         sb->s_fs_info = sbinfo;
3597
3598 #ifdef CONFIG_TMPFS
3599         /*
3600          * Per default we only allow half of the physical ram per
3601          * tmpfs instance, limiting inodes to one per page of lowmem;
3602          * but the internal instance is left unlimited.
3603          */
3604         if (!(sb->s_flags & SB_KERNMOUNT)) {
3605                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3606                         ctx->blocks = shmem_default_max_blocks();
3607                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3608                         ctx->inodes = shmem_default_max_inodes();
3609                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3610                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3611         } else {
3612                 sb->s_flags |= SB_NOUSER;
3613         }
3614         sb->s_export_op = &shmem_export_ops;
3615         sb->s_flags |= SB_NOSEC;
3616 #else
3617         sb->s_flags |= SB_NOUSER;
3618 #endif
3619         sbinfo->max_blocks = ctx->blocks;
3620         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3621         if (sb->s_flags & SB_KERNMOUNT) {
3622                 sbinfo->ino_batch = alloc_percpu(ino_t);
3623                 if (!sbinfo->ino_batch)
3624                         goto failed;
3625         }
3626         sbinfo->uid = ctx->uid;
3627         sbinfo->gid = ctx->gid;
3628         sbinfo->full_inums = ctx->full_inums;
3629         sbinfo->mode = ctx->mode;
3630         sbinfo->huge = ctx->huge;
3631         sbinfo->mpol = ctx->mpol;
3632         ctx->mpol = NULL;
3633
3634         raw_spin_lock_init(&sbinfo->stat_lock);
3635         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3636                 goto failed;
3637         spin_lock_init(&sbinfo->shrinklist_lock);
3638         INIT_LIST_HEAD(&sbinfo->shrinklist);
3639
3640         sb->s_maxbytes = MAX_LFS_FILESIZE;
3641         sb->s_blocksize = PAGE_SIZE;
3642         sb->s_blocksize_bits = PAGE_SHIFT;
3643         sb->s_magic = TMPFS_MAGIC;
3644         sb->s_op = &shmem_ops;
3645         sb->s_time_gran = 1;
3646 #ifdef CONFIG_TMPFS_XATTR
3647         sb->s_xattr = shmem_xattr_handlers;
3648 #endif
3649 #ifdef CONFIG_TMPFS_POSIX_ACL
3650         sb->s_flags |= SB_POSIXACL;
3651 #endif
3652         uuid_gen(&sb->s_uuid);
3653
3654         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3655         if (!inode)
3656                 goto failed;
3657         inode->i_uid = sbinfo->uid;
3658         inode->i_gid = sbinfo->gid;
3659         sb->s_root = d_make_root(inode);
3660         if (!sb->s_root)
3661                 goto failed;
3662         return 0;
3663
3664 failed:
3665         shmem_put_super(sb);
3666         return -ENOMEM;
3667 }
3668
3669 static int shmem_get_tree(struct fs_context *fc)
3670 {
3671         return get_tree_nodev(fc, shmem_fill_super);
3672 }
3673
3674 static void shmem_free_fc(struct fs_context *fc)
3675 {
3676         struct shmem_options *ctx = fc->fs_private;
3677
3678         if (ctx) {
3679                 mpol_put(ctx->mpol);
3680                 kfree(ctx);
3681         }
3682 }
3683
3684 static const struct fs_context_operations shmem_fs_context_ops = {
3685         .free                   = shmem_free_fc,
3686         .get_tree               = shmem_get_tree,
3687 #ifdef CONFIG_TMPFS
3688         .parse_monolithic       = shmem_parse_options,
3689         .parse_param            = shmem_parse_one,
3690         .reconfigure            = shmem_reconfigure,
3691 #endif
3692 };
3693
3694 static struct kmem_cache *shmem_inode_cachep;
3695
3696 static struct inode *shmem_alloc_inode(struct super_block *sb)
3697 {
3698         struct shmem_inode_info *info;
3699         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3700         if (!info)
3701                 return NULL;
3702         return &info->vfs_inode;
3703 }
3704
3705 static void shmem_free_in_core_inode(struct inode *inode)
3706 {
3707         if (S_ISLNK(inode->i_mode))
3708                 kfree(inode->i_link);
3709         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3710 }
3711
3712 static void shmem_destroy_inode(struct inode *inode)
3713 {
3714         if (S_ISREG(inode->i_mode))
3715                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3716 }
3717
3718 static void shmem_init_inode(void *foo)
3719 {
3720         struct shmem_inode_info *info = foo;
3721         inode_init_once(&info->vfs_inode);
3722 }
3723
3724 static void shmem_init_inodecache(void)
3725 {
3726         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3727                                 sizeof(struct shmem_inode_info),
3728                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3729 }
3730
3731 static void shmem_destroy_inodecache(void)
3732 {
3733         kmem_cache_destroy(shmem_inode_cachep);
3734 }
3735
3736 const struct address_space_operations shmem_aops = {
3737         .writepage      = shmem_writepage,
3738         .set_page_dirty = __set_page_dirty_no_writeback,
3739 #ifdef CONFIG_TMPFS
3740         .write_begin    = shmem_write_begin,
3741         .write_end      = shmem_write_end,
3742 #endif
3743 #ifdef CONFIG_MIGRATION
3744         .migratepage    = migrate_page,
3745 #endif
3746         .error_remove_page = generic_error_remove_page,
3747 };
3748 EXPORT_SYMBOL(shmem_aops);
3749
3750 static const struct file_operations shmem_file_operations = {
3751         .mmap           = shmem_mmap,
3752         .get_unmapped_area = shmem_get_unmapped_area,
3753 #ifdef CONFIG_TMPFS
3754         .llseek         = shmem_file_llseek,
3755         .read_iter      = shmem_file_read_iter,
3756         .write_iter     = generic_file_write_iter,
3757         .fsync          = noop_fsync,
3758         .splice_read    = generic_file_splice_read,
3759         .splice_write   = iter_file_splice_write,
3760         .fallocate      = shmem_fallocate,
3761 #endif
3762 };
3763
3764 static const struct inode_operations shmem_inode_operations = {
3765         .getattr        = shmem_getattr,
3766         .setattr        = shmem_setattr,
3767 #ifdef CONFIG_TMPFS_XATTR
3768         .listxattr      = shmem_listxattr,
3769         .set_acl        = simple_set_acl,
3770 #endif
3771 };
3772
3773 static const struct inode_operations shmem_dir_inode_operations = {
3774 #ifdef CONFIG_TMPFS
3775         .create         = shmem_create,
3776         .lookup         = simple_lookup,
3777         .link           = shmem_link,
3778         .unlink         = shmem_unlink,
3779         .symlink        = shmem_symlink,
3780         .mkdir          = shmem_mkdir,
3781         .rmdir          = shmem_rmdir,
3782         .mknod          = shmem_mknod,
3783         .rename         = shmem_rename2,
3784         .tmpfile        = shmem_tmpfile,
3785 #endif
3786 #ifdef CONFIG_TMPFS_XATTR
3787         .listxattr      = shmem_listxattr,
3788 #endif
3789 #ifdef CONFIG_TMPFS_POSIX_ACL
3790         .setattr        = shmem_setattr,
3791         .set_acl        = simple_set_acl,
3792 #endif
3793 };
3794
3795 static const struct inode_operations shmem_special_inode_operations = {
3796 #ifdef CONFIG_TMPFS_XATTR
3797         .listxattr      = shmem_listxattr,
3798 #endif
3799 #ifdef CONFIG_TMPFS_POSIX_ACL
3800         .setattr        = shmem_setattr,
3801         .set_acl        = simple_set_acl,
3802 #endif
3803 };
3804
3805 static const struct super_operations shmem_ops = {
3806         .alloc_inode    = shmem_alloc_inode,
3807         .free_inode     = shmem_free_in_core_inode,
3808         .destroy_inode  = shmem_destroy_inode,
3809 #ifdef CONFIG_TMPFS
3810         .statfs         = shmem_statfs,
3811         .show_options   = shmem_show_options,
3812 #endif
3813         .evict_inode    = shmem_evict_inode,
3814         .drop_inode     = generic_delete_inode,
3815         .put_super      = shmem_put_super,
3816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3817         .nr_cached_objects      = shmem_unused_huge_count,
3818         .free_cached_objects    = shmem_unused_huge_scan,
3819 #endif
3820 };
3821
3822 static const struct vm_operations_struct shmem_vm_ops = {
3823         .fault          = shmem_fault,
3824         .map_pages      = filemap_map_pages,
3825 #ifdef CONFIG_NUMA
3826         .set_policy     = shmem_set_policy,
3827         .get_policy     = shmem_get_policy,
3828 #endif
3829 };
3830
3831 int shmem_init_fs_context(struct fs_context *fc)
3832 {
3833         struct shmem_options *ctx;
3834
3835         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3836         if (!ctx)
3837                 return -ENOMEM;
3838
3839         ctx->mode = 0777 | S_ISVTX;
3840         ctx->uid = current_fsuid();
3841         ctx->gid = current_fsgid();
3842
3843         fc->fs_private = ctx;
3844         fc->ops = &shmem_fs_context_ops;
3845         return 0;
3846 }
3847
3848 static struct file_system_type shmem_fs_type = {
3849         .owner          = THIS_MODULE,
3850         .name           = "tmpfs",
3851         .init_fs_context = shmem_init_fs_context,
3852 #ifdef CONFIG_TMPFS
3853         .parameters     = shmem_fs_parameters,
3854 #endif
3855         .kill_sb        = kill_litter_super,
3856         .fs_flags       = FS_USERNS_MOUNT,
3857 };
3858
3859 int __init shmem_init(void)
3860 {
3861         int error;
3862
3863         shmem_init_inodecache();
3864
3865         error = register_filesystem(&shmem_fs_type);
3866         if (error) {
3867                 pr_err("Could not register tmpfs\n");
3868                 goto out2;
3869         }
3870
3871         shm_mnt = kern_mount(&shmem_fs_type);
3872         if (IS_ERR(shm_mnt)) {
3873                 error = PTR_ERR(shm_mnt);
3874                 pr_err("Could not kern_mount tmpfs\n");
3875                 goto out1;
3876         }
3877
3878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3880                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3881         else
3882                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3883 #endif
3884         return 0;
3885
3886 out1:
3887         unregister_filesystem(&shmem_fs_type);
3888 out2:
3889         shmem_destroy_inodecache();
3890         shm_mnt = ERR_PTR(error);
3891         return error;
3892 }
3893
3894 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3895 static ssize_t shmem_enabled_show(struct kobject *kobj,
3896                                   struct kobj_attribute *attr, char *buf)
3897 {
3898         static const int values[] = {
3899                 SHMEM_HUGE_ALWAYS,
3900                 SHMEM_HUGE_WITHIN_SIZE,
3901                 SHMEM_HUGE_ADVISE,
3902                 SHMEM_HUGE_NEVER,
3903                 SHMEM_HUGE_DENY,
3904                 SHMEM_HUGE_FORCE,
3905         };
3906         int len = 0;
3907         int i;
3908
3909         for (i = 0; i < ARRAY_SIZE(values); i++) {
3910                 len += sysfs_emit_at(buf, len,
3911                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3912                                      i ? " " : "",
3913                                      shmem_format_huge(values[i]));
3914         }
3915
3916         len += sysfs_emit_at(buf, len, "\n");
3917
3918         return len;
3919 }
3920
3921 static ssize_t shmem_enabled_store(struct kobject *kobj,
3922                 struct kobj_attribute *attr, const char *buf, size_t count)
3923 {
3924         char tmp[16];
3925         int huge;
3926
3927         if (count + 1 > sizeof(tmp))
3928                 return -EINVAL;
3929         memcpy(tmp, buf, count);
3930         tmp[count] = '\0';
3931         if (count && tmp[count - 1] == '\n')
3932                 tmp[count - 1] = '\0';
3933
3934         huge = shmem_parse_huge(tmp);
3935         if (huge == -EINVAL)
3936                 return -EINVAL;
3937         if (!has_transparent_hugepage() &&
3938                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3939                 return -EINVAL;
3940
3941         shmem_huge = huge;
3942         if (shmem_huge > SHMEM_HUGE_DENY)
3943                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944         return count;
3945 }
3946
3947 struct kobj_attribute shmem_enabled_attr =
3948         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3949 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3950
3951 #else /* !CONFIG_SHMEM */
3952
3953 /*
3954  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3955  *
3956  * This is intended for small system where the benefits of the full
3957  * shmem code (swap-backed and resource-limited) are outweighed by
3958  * their complexity. On systems without swap this code should be
3959  * effectively equivalent, but much lighter weight.
3960  */
3961
3962 static struct file_system_type shmem_fs_type = {
3963         .name           = "tmpfs",
3964         .init_fs_context = ramfs_init_fs_context,
3965         .parameters     = ramfs_fs_parameters,
3966         .kill_sb        = kill_litter_super,
3967         .fs_flags       = FS_USERNS_MOUNT,
3968 };
3969
3970 int __init shmem_init(void)
3971 {
3972         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3973
3974         shm_mnt = kern_mount(&shmem_fs_type);
3975         BUG_ON(IS_ERR(shm_mnt));
3976
3977         return 0;
3978 }
3979
3980 int shmem_unuse(unsigned int type, bool frontswap,
3981                 unsigned long *fs_pages_to_unuse)
3982 {
3983         return 0;
3984 }
3985
3986 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3987 {
3988         return 0;
3989 }
3990
3991 void shmem_unlock_mapping(struct address_space *mapping)
3992 {
3993 }
3994
3995 #ifdef CONFIG_MMU
3996 unsigned long shmem_get_unmapped_area(struct file *file,
3997                                       unsigned long addr, unsigned long len,
3998                                       unsigned long pgoff, unsigned long flags)
3999 {
4000         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4001 }
4002 #endif
4003
4004 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4005 {
4006         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4007 }
4008 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4009
4010 #define shmem_vm_ops                            generic_file_vm_ops
4011 #define shmem_file_operations                   ramfs_file_operations
4012 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4013 #define shmem_acct_size(flags, size)            0
4014 #define shmem_unacct_size(flags, size)          do {} while (0)
4015
4016 #endif /* CONFIG_SHMEM */
4017
4018 /* common code */
4019
4020 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4021                                        unsigned long flags, unsigned int i_flags)
4022 {
4023         struct inode *inode;
4024         struct file *res;
4025
4026         if (IS_ERR(mnt))
4027                 return ERR_CAST(mnt);
4028
4029         if (size < 0 || size > MAX_LFS_FILESIZE)
4030                 return ERR_PTR(-EINVAL);
4031
4032         if (shmem_acct_size(flags, size))
4033                 return ERR_PTR(-ENOMEM);
4034
4035         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4036                                 flags);
4037         if (unlikely(!inode)) {
4038                 shmem_unacct_size(flags, size);
4039                 return ERR_PTR(-ENOSPC);
4040         }
4041         inode->i_flags |= i_flags;
4042         inode->i_size = size;
4043         clear_nlink(inode);     /* It is unlinked */
4044         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4045         if (!IS_ERR(res))
4046                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4047                                 &shmem_file_operations);
4048         if (IS_ERR(res))
4049                 iput(inode);
4050         return res;
4051 }
4052
4053 /**
4054  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4055  *      kernel internal.  There will be NO LSM permission checks against the
4056  *      underlying inode.  So users of this interface must do LSM checks at a
4057  *      higher layer.  The users are the big_key and shm implementations.  LSM
4058  *      checks are provided at the key or shm level rather than the inode.
4059  * @name: name for dentry (to be seen in /proc/<pid>/maps
4060  * @size: size to be set for the file
4061  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4062  */
4063 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4064 {
4065         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4066 }
4067
4068 /**
4069  * shmem_file_setup - get an unlinked file living in tmpfs
4070  * @name: name for dentry (to be seen in /proc/<pid>/maps
4071  * @size: size to be set for the file
4072  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4073  */
4074 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4075 {
4076         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4077 }
4078 EXPORT_SYMBOL_GPL(shmem_file_setup);
4079
4080 /**
4081  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4082  * @mnt: the tmpfs mount where the file will be created
4083  * @name: name for dentry (to be seen in /proc/<pid>/maps
4084  * @size: size to be set for the file
4085  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4086  */
4087 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4088                                        loff_t size, unsigned long flags)
4089 {
4090         return __shmem_file_setup(mnt, name, size, flags, 0);
4091 }
4092 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4093
4094 /**
4095  * shmem_zero_setup - setup a shared anonymous mapping
4096  * @vma: the vma to be mmapped is prepared by do_mmap
4097  */
4098 int shmem_zero_setup(struct vm_area_struct *vma)
4099 {
4100         struct file *file;
4101         loff_t size = vma->vm_end - vma->vm_start;
4102
4103         /*
4104          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4105          * between XFS directory reading and selinux: since this file is only
4106          * accessible to the user through its mapping, use S_PRIVATE flag to
4107          * bypass file security, in the same way as shmem_kernel_file_setup().
4108          */
4109         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4110         if (IS_ERR(file))
4111                 return PTR_ERR(file);
4112
4113         if (vma->vm_file)
4114                 fput(vma->vm_file);
4115         vma->vm_file = file;
4116         vma->vm_ops = &shmem_vm_ops;
4117
4118         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4119                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4120                         (vma->vm_end & HPAGE_PMD_MASK)) {
4121                 khugepaged_enter(vma, vma->vm_flags);
4122         }
4123
4124         return 0;
4125 }
4126
4127 /**
4128  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4129  * @mapping:    the page's address_space
4130  * @index:      the page index
4131  * @gfp:        the page allocator flags to use if allocating
4132  *
4133  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4134  * with any new page allocations done using the specified allocation flags.
4135  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4136  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4137  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4138  *
4139  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4140  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4141  */
4142 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4143                                          pgoff_t index, gfp_t gfp)
4144 {
4145 #ifdef CONFIG_SHMEM
4146         struct inode *inode = mapping->host;
4147         struct page *page;
4148         int error;
4149
4150         BUG_ON(!shmem_mapping(mapping));
4151         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4152                                   gfp, NULL, NULL, NULL);
4153         if (error)
4154                 page = ERR_PTR(error);
4155         else
4156                 unlock_page(page);
4157         return page;
4158 #else
4159         /*
4160          * The tiny !SHMEM case uses ramfs without swap
4161          */
4162         return read_cache_page_gfp(mapping, index, gfp);
4163 #endif
4164 }
4165 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);