shmem: fix faulting into a hole while it's punched
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         int     mode;           /* FALLOC_FL mode currently operating */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON_PAGE(!PageLocked(page), page);
290         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         for ( ; ; ) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         if (index == start || unfalloc)
544                                 break;
545                         index = start;
546                         continue;
547                 }
548                 if ((index == start || unfalloc) && indices[0] >= end) {
549                         shmem_deswap_pagevec(&pvec);
550                         pagevec_release(&pvec);
551                         break;
552                 }
553                 mem_cgroup_uncharge_start();
554                 for (i = 0; i < pagevec_count(&pvec); i++) {
555                         struct page *page = pvec.pages[i];
556
557                         index = indices[i];
558                         if (index >= end)
559                                 break;
560
561                         if (radix_tree_exceptional_entry(page)) {
562                                 if (unfalloc)
563                                         continue;
564                                 nr_swaps_freed += !shmem_free_swap(mapping,
565                                                                 index, page);
566                                 continue;
567                         }
568
569                         lock_page(page);
570                         if (!unfalloc || !PageUptodate(page)) {
571                                 if (page->mapping == mapping) {
572                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
573                                         truncate_inode_page(mapping, page);
574                                 }
575                         }
576                         unlock_page(page);
577                 }
578                 shmem_deswap_pagevec(&pvec);
579                 pagevec_release(&pvec);
580                 mem_cgroup_uncharge_end();
581                 index++;
582         }
583
584         spin_lock(&info->lock);
585         info->swapped -= nr_swaps_freed;
586         shmem_recalc_inode(inode);
587         spin_unlock(&info->lock);
588 }
589
590 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
591 {
592         shmem_undo_range(inode, lstart, lend, false);
593         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
594 }
595 EXPORT_SYMBOL_GPL(shmem_truncate_range);
596
597 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
598 {
599         struct inode *inode = dentry->d_inode;
600         int error;
601
602         error = inode_change_ok(inode, attr);
603         if (error)
604                 return error;
605
606         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
607                 loff_t oldsize = inode->i_size;
608                 loff_t newsize = attr->ia_size;
609
610                 if (newsize != oldsize) {
611                         i_size_write(inode, newsize);
612                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
613                 }
614                 if (newsize < oldsize) {
615                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
616                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
617                         shmem_truncate_range(inode, newsize, (loff_t)-1);
618                         /* unmap again to remove racily COWed private pages */
619                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
620                 }
621         }
622
623         setattr_copy(inode, attr);
624         if (attr->ia_valid & ATTR_MODE)
625                 error = posix_acl_chmod(inode, inode->i_mode);
626         return error;
627 }
628
629 static void shmem_evict_inode(struct inode *inode)
630 {
631         struct shmem_inode_info *info = SHMEM_I(inode);
632
633         if (inode->i_mapping->a_ops == &shmem_aops) {
634                 shmem_unacct_size(info->flags, inode->i_size);
635                 inode->i_size = 0;
636                 shmem_truncate_range(inode, 0, (loff_t)-1);
637                 if (!list_empty(&info->swaplist)) {
638                         mutex_lock(&shmem_swaplist_mutex);
639                         list_del_init(&info->swaplist);
640                         mutex_unlock(&shmem_swaplist_mutex);
641                 }
642         } else
643                 kfree(info->symlink);
644
645         simple_xattrs_free(&info->xattrs);
646         WARN_ON(inode->i_blocks);
647         shmem_free_inode(inode->i_sb);
648         clear_inode(inode);
649 }
650
651 /*
652  * If swap found in inode, free it and move page from swapcache to filecache.
653  */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655                              swp_entry_t swap, struct page **pagep)
656 {
657         struct address_space *mapping = info->vfs_inode.i_mapping;
658         void *radswap;
659         pgoff_t index;
660         gfp_t gfp;
661         int error = 0;
662
663         radswap = swp_to_radix_entry(swap);
664         index = radix_tree_locate_item(&mapping->page_tree, radswap);
665         if (index == -1)
666                 return 0;
667
668         /*
669          * Move _head_ to start search for next from here.
670          * But be careful: shmem_evict_inode checks list_empty without taking
671          * mutex, and there's an instant in list_move_tail when info->swaplist
672          * would appear empty, if it were the only one on shmem_swaplist.
673          */
674         if (shmem_swaplist.next != &info->swaplist)
675                 list_move_tail(&shmem_swaplist, &info->swaplist);
676
677         gfp = mapping_gfp_mask(mapping);
678         if (shmem_should_replace_page(*pagep, gfp)) {
679                 mutex_unlock(&shmem_swaplist_mutex);
680                 error = shmem_replace_page(pagep, gfp, info, index);
681                 mutex_lock(&shmem_swaplist_mutex);
682                 /*
683                  * We needed to drop mutex to make that restrictive page
684                  * allocation, but the inode might have been freed while we
685                  * dropped it: although a racing shmem_evict_inode() cannot
686                  * complete without emptying the radix_tree, our page lock
687                  * on this swapcache page is not enough to prevent that -
688                  * free_swap_and_cache() of our swap entry will only
689                  * trylock_page(), removing swap from radix_tree whatever.
690                  *
691                  * We must not proceed to shmem_add_to_page_cache() if the
692                  * inode has been freed, but of course we cannot rely on
693                  * inode or mapping or info to check that.  However, we can
694                  * safely check if our swap entry is still in use (and here
695                  * it can't have got reused for another page): if it's still
696                  * in use, then the inode cannot have been freed yet, and we
697                  * can safely proceed (if it's no longer in use, that tells
698                  * nothing about the inode, but we don't need to unuse swap).
699                  */
700                 if (!page_swapcount(*pagep))
701                         error = -ENOENT;
702         }
703
704         /*
705          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706          * but also to hold up shmem_evict_inode(): so inode cannot be freed
707          * beneath us (pagelock doesn't help until the page is in pagecache).
708          */
709         if (!error)
710                 error = shmem_add_to_page_cache(*pagep, mapping, index,
711                                                 GFP_NOWAIT, radswap);
712         if (error != -ENOMEM) {
713                 /*
714                  * Truncation and eviction use free_swap_and_cache(), which
715                  * only does trylock page: if we raced, best clean up here.
716                  */
717                 delete_from_swap_cache(*pagep);
718                 set_page_dirty(*pagep);
719                 if (!error) {
720                         spin_lock(&info->lock);
721                         info->swapped--;
722                         spin_unlock(&info->lock);
723                         swap_free(swap);
724                 }
725                 error = 1;      /* not an error, but entry was found */
726         }
727         return error;
728 }
729
730 /*
731  * Search through swapped inodes to find and replace swap by page.
732  */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735         struct list_head *this, *next;
736         struct shmem_inode_info *info;
737         int found = 0;
738         int error = 0;
739
740         /*
741          * There's a faint possibility that swap page was replaced before
742          * caller locked it: caller will come back later with the right page.
743          */
744         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745                 goto out;
746
747         /*
748          * Charge page using GFP_KERNEL while we can wait, before taking
749          * the shmem_swaplist_mutex which might hold up shmem_writepage().
750          * Charged back to the user (not to caller) when swap account is used.
751          */
752         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753         if (error)
754                 goto out;
755         /* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757         mutex_lock(&shmem_swaplist_mutex);
758         list_for_each_safe(this, next, &shmem_swaplist) {
759                 info = list_entry(this, struct shmem_inode_info, swaplist);
760                 if (info->swapped)
761                         found = shmem_unuse_inode(info, swap, &page);
762                 else
763                         list_del_init(&info->swaplist);
764                 cond_resched();
765                 if (found)
766                         break;
767         }
768         mutex_unlock(&shmem_swaplist_mutex);
769
770         if (found < 0)
771                 error = found;
772 out:
773         unlock_page(page);
774         page_cache_release(page);
775         return error;
776 }
777
778 /*
779  * Move the page from the page cache to the swap cache.
780  */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783         struct shmem_inode_info *info;
784         struct address_space *mapping;
785         struct inode *inode;
786         swp_entry_t swap;
787         pgoff_t index;
788
789         BUG_ON(!PageLocked(page));
790         mapping = page->mapping;
791         index = page->index;
792         inode = mapping->host;
793         info = SHMEM_I(inode);
794         if (info->flags & VM_LOCKED)
795                 goto redirty;
796         if (!total_swap_pages)
797                 goto redirty;
798
799         /*
800          * shmem_backing_dev_info's capabilities prevent regular writeback or
801          * sync from ever calling shmem_writepage; but a stacking filesystem
802          * might use ->writepage of its underlying filesystem, in which case
803          * tmpfs should write out to swap only in response to memory pressure,
804          * and not for the writeback threads or sync.
805          */
806         if (!wbc->for_reclaim) {
807                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
808                 goto redirty;
809         }
810
811         /*
812          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813          * value into swapfile.c, the only way we can correctly account for a
814          * fallocated page arriving here is now to initialize it and write it.
815          *
816          * That's okay for a page already fallocated earlier, but if we have
817          * not yet completed the fallocation, then (a) we want to keep track
818          * of this page in case we have to undo it, and (b) it may not be a
819          * good idea to continue anyway, once we're pushing into swap.  So
820          * reactivate the page, and let shmem_fallocate() quit when too many.
821          */
822         if (!PageUptodate(page)) {
823                 if (inode->i_private) {
824                         struct shmem_falloc *shmem_falloc;
825                         spin_lock(&inode->i_lock);
826                         shmem_falloc = inode->i_private;
827                         if (shmem_falloc &&
828                             !shmem_falloc->mode &&
829                             index >= shmem_falloc->start &&
830                             index < shmem_falloc->next)
831                                 shmem_falloc->nr_unswapped++;
832                         else
833                                 shmem_falloc = NULL;
834                         spin_unlock(&inode->i_lock);
835                         if (shmem_falloc)
836                                 goto redirty;
837                 }
838                 clear_highpage(page);
839                 flush_dcache_page(page);
840                 SetPageUptodate(page);
841         }
842
843         swap = get_swap_page();
844         if (!swap.val)
845                 goto redirty;
846
847         /*
848          * Add inode to shmem_unuse()'s list of swapped-out inodes,
849          * if it's not already there.  Do it now before the page is
850          * moved to swap cache, when its pagelock no longer protects
851          * the inode from eviction.  But don't unlock the mutex until
852          * we've incremented swapped, because shmem_unuse_inode() will
853          * prune a !swapped inode from the swaplist under this mutex.
854          */
855         mutex_lock(&shmem_swaplist_mutex);
856         if (list_empty(&info->swaplist))
857                 list_add_tail(&info->swaplist, &shmem_swaplist);
858
859         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860                 swap_shmem_alloc(swap);
861                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863                 spin_lock(&info->lock);
864                 info->swapped++;
865                 shmem_recalc_inode(inode);
866                 spin_unlock(&info->lock);
867
868                 mutex_unlock(&shmem_swaplist_mutex);
869                 BUG_ON(page_mapped(page));
870                 swap_writepage(page, wbc);
871                 return 0;
872         }
873
874         mutex_unlock(&shmem_swaplist_mutex);
875         swapcache_free(swap, NULL);
876 redirty:
877         set_page_dirty(page);
878         if (wbc->for_reclaim)
879                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
880         unlock_page(page);
881         return 0;
882 }
883
884 #ifdef CONFIG_NUMA
885 #ifdef CONFIG_TMPFS
886 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 {
888         char buffer[64];
889
890         if (!mpol || mpol->mode == MPOL_DEFAULT)
891                 return;         /* show nothing */
892
893         mpol_to_str(buffer, sizeof(buffer), mpol);
894
895         seq_printf(seq, ",mpol=%s", buffer);
896 }
897
898 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 {
900         struct mempolicy *mpol = NULL;
901         if (sbinfo->mpol) {
902                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
903                 mpol = sbinfo->mpol;
904                 mpol_get(mpol);
905                 spin_unlock(&sbinfo->stat_lock);
906         }
907         return mpol;
908 }
909 #endif /* CONFIG_TMPFS */
910
911 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912                         struct shmem_inode_info *info, pgoff_t index)
913 {
914         struct vm_area_struct pvma;
915         struct page *page;
916
917         /* Create a pseudo vma that just contains the policy */
918         pvma.vm_start = 0;
919         /* Bias interleave by inode number to distribute better across nodes */
920         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921         pvma.vm_ops = NULL;
922         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923
924         page = swapin_readahead(swap, gfp, &pvma, 0);
925
926         /* Drop reference taken by mpol_shared_policy_lookup() */
927         mpol_cond_put(pvma.vm_policy);
928
929         return page;
930 }
931
932 static struct page *shmem_alloc_page(gfp_t gfp,
933                         struct shmem_inode_info *info, pgoff_t index)
934 {
935         struct vm_area_struct pvma;
936         struct page *page;
937
938         /* Create a pseudo vma that just contains the policy */
939         pvma.vm_start = 0;
940         /* Bias interleave by inode number to distribute better across nodes */
941         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942         pvma.vm_ops = NULL;
943         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944
945         page = alloc_page_vma(gfp, &pvma, 0);
946
947         /* Drop reference taken by mpol_shared_policy_lookup() */
948         mpol_cond_put(pvma.vm_policy);
949
950         return page;
951 }
952 #else /* !CONFIG_NUMA */
953 #ifdef CONFIG_TMPFS
954 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 }
957 #endif /* CONFIG_TMPFS */
958
959 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960                         struct shmem_inode_info *info, pgoff_t index)
961 {
962         return swapin_readahead(swap, gfp, NULL, 0);
963 }
964
965 static inline struct page *shmem_alloc_page(gfp_t gfp,
966                         struct shmem_inode_info *info, pgoff_t index)
967 {
968         return alloc_page(gfp);
969 }
970 #endif /* CONFIG_NUMA */
971
972 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974 {
975         return NULL;
976 }
977 #endif
978
979 /*
980  * When a page is moved from swapcache to shmem filecache (either by the
981  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982  * shmem_unuse_inode()), it may have been read in earlier from swap, in
983  * ignorance of the mapping it belongs to.  If that mapping has special
984  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985  * we may need to copy to a suitable page before moving to filecache.
986  *
987  * In a future release, this may well be extended to respect cpuset and
988  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989  * but for now it is a simple matter of zone.
990  */
991 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992 {
993         return page_zonenum(page) > gfp_zone(gfp);
994 }
995
996 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997                                 struct shmem_inode_info *info, pgoff_t index)
998 {
999         struct page *oldpage, *newpage;
1000         struct address_space *swap_mapping;
1001         pgoff_t swap_index;
1002         int error;
1003
1004         oldpage = *pagep;
1005         swap_index = page_private(oldpage);
1006         swap_mapping = page_mapping(oldpage);
1007
1008         /*
1009          * We have arrived here because our zones are constrained, so don't
1010          * limit chance of success by further cpuset and node constraints.
1011          */
1012         gfp &= ~GFP_CONSTRAINT_MASK;
1013         newpage = shmem_alloc_page(gfp, info, index);
1014         if (!newpage)
1015                 return -ENOMEM;
1016
1017         page_cache_get(newpage);
1018         copy_highpage(newpage, oldpage);
1019         flush_dcache_page(newpage);
1020
1021         __set_page_locked(newpage);
1022         SetPageUptodate(newpage);
1023         SetPageSwapBacked(newpage);
1024         set_page_private(newpage, swap_index);
1025         SetPageSwapCache(newpage);
1026
1027         /*
1028          * Our caller will very soon move newpage out of swapcache, but it's
1029          * a nice clean interface for us to replace oldpage by newpage there.
1030          */
1031         spin_lock_irq(&swap_mapping->tree_lock);
1032         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033                                                                    newpage);
1034         if (!error) {
1035                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1036                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037         }
1038         spin_unlock_irq(&swap_mapping->tree_lock);
1039
1040         if (unlikely(error)) {
1041                 /*
1042                  * Is this possible?  I think not, now that our callers check
1043                  * both PageSwapCache and page_private after getting page lock;
1044                  * but be defensive.  Reverse old to newpage for clear and free.
1045                  */
1046                 oldpage = newpage;
1047         } else {
1048                 mem_cgroup_replace_page_cache(oldpage, newpage);
1049                 lru_cache_add_anon(newpage);
1050                 *pagep = newpage;
1051         }
1052
1053         ClearPageSwapCache(oldpage);
1054         set_page_private(oldpage, 0);
1055
1056         unlock_page(oldpage);
1057         page_cache_release(oldpage);
1058         page_cache_release(oldpage);
1059         return error;
1060 }
1061
1062 /*
1063  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064  *
1065  * If we allocate a new one we do not mark it dirty. That's up to the
1066  * vm. If we swap it in we mark it dirty since we also free the swap
1067  * entry since a page cannot live in both the swap and page cache
1068  */
1069 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071 {
1072         struct address_space *mapping = inode->i_mapping;
1073         struct shmem_inode_info *info;
1074         struct shmem_sb_info *sbinfo;
1075         struct page *page;
1076         swp_entry_t swap;
1077         int error;
1078         int once = 0;
1079         int alloced = 0;
1080
1081         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082                 return -EFBIG;
1083 repeat:
1084         swap.val = 0;
1085         page = find_lock_page(mapping, index);
1086         if (radix_tree_exceptional_entry(page)) {
1087                 swap = radix_to_swp_entry(page);
1088                 page = NULL;
1089         }
1090
1091         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093                 error = -EINVAL;
1094                 goto failed;
1095         }
1096
1097         /* fallocated page? */
1098         if (page && !PageUptodate(page)) {
1099                 if (sgp != SGP_READ)
1100                         goto clear;
1101                 unlock_page(page);
1102                 page_cache_release(page);
1103                 page = NULL;
1104         }
1105         if (page || (sgp == SGP_READ && !swap.val)) {
1106                 *pagep = page;
1107                 return 0;
1108         }
1109
1110         /*
1111          * Fast cache lookup did not find it:
1112          * bring it back from swap or allocate.
1113          */
1114         info = SHMEM_I(inode);
1115         sbinfo = SHMEM_SB(inode->i_sb);
1116
1117         if (swap.val) {
1118                 /* Look it up and read it in.. */
1119                 page = lookup_swap_cache(swap);
1120                 if (!page) {
1121                         /* here we actually do the io */
1122                         if (fault_type)
1123                                 *fault_type |= VM_FAULT_MAJOR;
1124                         page = shmem_swapin(swap, gfp, info, index);
1125                         if (!page) {
1126                                 error = -ENOMEM;
1127                                 goto failed;
1128                         }
1129                 }
1130
1131                 /* We have to do this with page locked to prevent races */
1132                 lock_page(page);
1133                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134                     !shmem_confirm_swap(mapping, index, swap)) {
1135                         error = -EEXIST;        /* try again */
1136                         goto unlock;
1137                 }
1138                 if (!PageUptodate(page)) {
1139                         error = -EIO;
1140                         goto failed;
1141                 }
1142                 wait_on_page_writeback(page);
1143
1144                 if (shmem_should_replace_page(page, gfp)) {
1145                         error = shmem_replace_page(&page, gfp, info, index);
1146                         if (error)
1147                                 goto failed;
1148                 }
1149
1150                 error = mem_cgroup_cache_charge(page, current->mm,
1151                                                 gfp & GFP_RECLAIM_MASK);
1152                 if (!error) {
1153                         error = shmem_add_to_page_cache(page, mapping, index,
1154                                                 gfp, swp_to_radix_entry(swap));
1155                         /*
1156                          * We already confirmed swap under page lock, and make
1157                          * no memory allocation here, so usually no possibility
1158                          * of error; but free_swap_and_cache() only trylocks a
1159                          * page, so it is just possible that the entry has been
1160                          * truncated or holepunched since swap was confirmed.
1161                          * shmem_undo_range() will have done some of the
1162                          * unaccounting, now delete_from_swap_cache() will do
1163                          * the rest (including mem_cgroup_uncharge_swapcache).
1164                          * Reset swap.val? No, leave it so "failed" goes back to
1165                          * "repeat": reading a hole and writing should succeed.
1166                          */
1167                         if (error)
1168                                 delete_from_swap_cache(page);
1169                 }
1170                 if (error)
1171                         goto failed;
1172
1173                 spin_lock(&info->lock);
1174                 info->swapped--;
1175                 shmem_recalc_inode(inode);
1176                 spin_unlock(&info->lock);
1177
1178                 delete_from_swap_cache(page);
1179                 set_page_dirty(page);
1180                 swap_free(swap);
1181
1182         } else {
1183                 if (shmem_acct_block(info->flags)) {
1184                         error = -ENOSPC;
1185                         goto failed;
1186                 }
1187                 if (sbinfo->max_blocks) {
1188                         if (percpu_counter_compare(&sbinfo->used_blocks,
1189                                                 sbinfo->max_blocks) >= 0) {
1190                                 error = -ENOSPC;
1191                                 goto unacct;
1192                         }
1193                         percpu_counter_inc(&sbinfo->used_blocks);
1194                 }
1195
1196                 page = shmem_alloc_page(gfp, info, index);
1197                 if (!page) {
1198                         error = -ENOMEM;
1199                         goto decused;
1200                 }
1201
1202                 SetPageSwapBacked(page);
1203                 __set_page_locked(page);
1204                 error = mem_cgroup_cache_charge(page, current->mm,
1205                                                 gfp & GFP_RECLAIM_MASK);
1206                 if (error)
1207                         goto decused;
1208                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1209                 if (!error) {
1210                         error = shmem_add_to_page_cache(page, mapping, index,
1211                                                         gfp, NULL);
1212                         radix_tree_preload_end();
1213                 }
1214                 if (error) {
1215                         mem_cgroup_uncharge_cache_page(page);
1216                         goto decused;
1217                 }
1218                 lru_cache_add_anon(page);
1219
1220                 spin_lock(&info->lock);
1221                 info->alloced++;
1222                 inode->i_blocks += BLOCKS_PER_PAGE;
1223                 shmem_recalc_inode(inode);
1224                 spin_unlock(&info->lock);
1225                 alloced = true;
1226
1227                 /*
1228                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229                  */
1230                 if (sgp == SGP_FALLOC)
1231                         sgp = SGP_WRITE;
1232 clear:
1233                 /*
1234                  * Let SGP_WRITE caller clear ends if write does not fill page;
1235                  * but SGP_FALLOC on a page fallocated earlier must initialize
1236                  * it now, lest undo on failure cancel our earlier guarantee.
1237                  */
1238                 if (sgp != SGP_WRITE) {
1239                         clear_highpage(page);
1240                         flush_dcache_page(page);
1241                         SetPageUptodate(page);
1242                 }
1243                 if (sgp == SGP_DIRTY)
1244                         set_page_dirty(page);
1245         }
1246
1247         /* Perhaps the file has been truncated since we checked */
1248         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250                 error = -EINVAL;
1251                 if (alloced)
1252                         goto trunc;
1253                 else
1254                         goto failed;
1255         }
1256         *pagep = page;
1257         return 0;
1258
1259         /*
1260          * Error recovery.
1261          */
1262 trunc:
1263         info = SHMEM_I(inode);
1264         ClearPageDirty(page);
1265         delete_from_page_cache(page);
1266         spin_lock(&info->lock);
1267         info->alloced--;
1268         inode->i_blocks -= BLOCKS_PER_PAGE;
1269         spin_unlock(&info->lock);
1270 decused:
1271         sbinfo = SHMEM_SB(inode->i_sb);
1272         if (sbinfo->max_blocks)
1273                 percpu_counter_add(&sbinfo->used_blocks, -1);
1274 unacct:
1275         shmem_unacct_blocks(info->flags, 1);
1276 failed:
1277         if (swap.val && error != -EINVAL &&
1278             !shmem_confirm_swap(mapping, index, swap))
1279                 error = -EEXIST;
1280 unlock:
1281         if (page) {
1282                 unlock_page(page);
1283                 page_cache_release(page);
1284         }
1285         if (error == -ENOSPC && !once++) {
1286                 info = SHMEM_I(inode);
1287                 spin_lock(&info->lock);
1288                 shmem_recalc_inode(inode);
1289                 spin_unlock(&info->lock);
1290                 goto repeat;
1291         }
1292         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1293                 goto repeat;
1294         return error;
1295 }
1296
1297 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298 {
1299         struct inode *inode = file_inode(vma->vm_file);
1300         int error;
1301         int ret = VM_FAULT_LOCKED;
1302
1303         /*
1304          * Trinity finds that probing a hole which tmpfs is punching can
1305          * prevent the hole-punch from ever completing: which in turn
1306          * locks writers out with its hold on i_mutex.  So refrain from
1307          * faulting pages into the hole while it's being punched, and
1308          * wait on i_mutex to be released if vmf->flags permits.
1309          */
1310         if (unlikely(inode->i_private)) {
1311                 struct shmem_falloc *shmem_falloc;
1312
1313                 spin_lock(&inode->i_lock);
1314                 shmem_falloc = inode->i_private;
1315                 if (!shmem_falloc ||
1316                     shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1317                     vmf->pgoff < shmem_falloc->start ||
1318                     vmf->pgoff >= shmem_falloc->next)
1319                         shmem_falloc = NULL;
1320                 spin_unlock(&inode->i_lock);
1321                 /*
1322                  * i_lock has protected us from taking shmem_falloc seriously
1323                  * once return from shmem_fallocate() went back up that stack.
1324                  * i_lock does not serialize with i_mutex at all, but it does
1325                  * not matter if sometimes we wait unnecessarily, or sometimes
1326                  * miss out on waiting: we just need to make those cases rare.
1327                  */
1328                 if (shmem_falloc) {
1329                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1330                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1331                                 up_read(&vma->vm_mm->mmap_sem);
1332                                 mutex_lock(&inode->i_mutex);
1333                                 mutex_unlock(&inode->i_mutex);
1334                                 return VM_FAULT_RETRY;
1335                         }
1336                         /* cond_resched? Leave that to GUP or return to user */
1337                         return VM_FAULT_NOPAGE;
1338                 }
1339         }
1340
1341         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1342         if (error)
1343                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1344
1345         if (ret & VM_FAULT_MAJOR) {
1346                 count_vm_event(PGMAJFAULT);
1347                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1348         }
1349         return ret;
1350 }
1351
1352 #ifdef CONFIG_NUMA
1353 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1354 {
1355         struct inode *inode = file_inode(vma->vm_file);
1356         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1357 }
1358
1359 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1360                                           unsigned long addr)
1361 {
1362         struct inode *inode = file_inode(vma->vm_file);
1363         pgoff_t index;
1364
1365         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1366         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1367 }
1368 #endif
1369
1370 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1371 {
1372         struct inode *inode = file_inode(file);
1373         struct shmem_inode_info *info = SHMEM_I(inode);
1374         int retval = -ENOMEM;
1375
1376         spin_lock(&info->lock);
1377         if (lock && !(info->flags & VM_LOCKED)) {
1378                 if (!user_shm_lock(inode->i_size, user))
1379                         goto out_nomem;
1380                 info->flags |= VM_LOCKED;
1381                 mapping_set_unevictable(file->f_mapping);
1382         }
1383         if (!lock && (info->flags & VM_LOCKED) && user) {
1384                 user_shm_unlock(inode->i_size, user);
1385                 info->flags &= ~VM_LOCKED;
1386                 mapping_clear_unevictable(file->f_mapping);
1387         }
1388         retval = 0;
1389
1390 out_nomem:
1391         spin_unlock(&info->lock);
1392         return retval;
1393 }
1394
1395 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1396 {
1397         file_accessed(file);
1398         vma->vm_ops = &shmem_vm_ops;
1399         return 0;
1400 }
1401
1402 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1403                                      umode_t mode, dev_t dev, unsigned long flags)
1404 {
1405         struct inode *inode;
1406         struct shmem_inode_info *info;
1407         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1408
1409         if (shmem_reserve_inode(sb))
1410                 return NULL;
1411
1412         inode = new_inode(sb);
1413         if (inode) {
1414                 inode->i_ino = get_next_ino();
1415                 inode_init_owner(inode, dir, mode);
1416                 inode->i_blocks = 0;
1417                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1418                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1419                 inode->i_generation = get_seconds();
1420                 info = SHMEM_I(inode);
1421                 memset(info, 0, (char *)inode - (char *)info);
1422                 spin_lock_init(&info->lock);
1423                 info->flags = flags & VM_NORESERVE;
1424                 INIT_LIST_HEAD(&info->swaplist);
1425                 simple_xattrs_init(&info->xattrs);
1426                 cache_no_acl(inode);
1427
1428                 switch (mode & S_IFMT) {
1429                 default:
1430                         inode->i_op = &shmem_special_inode_operations;
1431                         init_special_inode(inode, mode, dev);
1432                         break;
1433                 case S_IFREG:
1434                         inode->i_mapping->a_ops = &shmem_aops;
1435                         inode->i_op = &shmem_inode_operations;
1436                         inode->i_fop = &shmem_file_operations;
1437                         mpol_shared_policy_init(&info->policy,
1438                                                  shmem_get_sbmpol(sbinfo));
1439                         break;
1440                 case S_IFDIR:
1441                         inc_nlink(inode);
1442                         /* Some things misbehave if size == 0 on a directory */
1443                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1444                         inode->i_op = &shmem_dir_inode_operations;
1445                         inode->i_fop = &simple_dir_operations;
1446                         break;
1447                 case S_IFLNK:
1448                         /*
1449                          * Must not load anything in the rbtree,
1450                          * mpol_free_shared_policy will not be called.
1451                          */
1452                         mpol_shared_policy_init(&info->policy, NULL);
1453                         break;
1454                 }
1455         } else
1456                 shmem_free_inode(sb);
1457         return inode;
1458 }
1459
1460 #ifdef CONFIG_TMPFS
1461 static const struct inode_operations shmem_symlink_inode_operations;
1462 static const struct inode_operations shmem_short_symlink_operations;
1463
1464 #ifdef CONFIG_TMPFS_XATTR
1465 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1466 #else
1467 #define shmem_initxattrs NULL
1468 #endif
1469
1470 static int
1471 shmem_write_begin(struct file *file, struct address_space *mapping,
1472                         loff_t pos, unsigned len, unsigned flags,
1473                         struct page **pagep, void **fsdata)
1474 {
1475         struct inode *inode = mapping->host;
1476         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1477         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1478 }
1479
1480 static int
1481 shmem_write_end(struct file *file, struct address_space *mapping,
1482                         loff_t pos, unsigned len, unsigned copied,
1483                         struct page *page, void *fsdata)
1484 {
1485         struct inode *inode = mapping->host;
1486
1487         if (pos + copied > inode->i_size)
1488                 i_size_write(inode, pos + copied);
1489
1490         if (!PageUptodate(page)) {
1491                 if (copied < PAGE_CACHE_SIZE) {
1492                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1493                         zero_user_segments(page, 0, from,
1494                                         from + copied, PAGE_CACHE_SIZE);
1495                 }
1496                 SetPageUptodate(page);
1497         }
1498         set_page_dirty(page);
1499         unlock_page(page);
1500         page_cache_release(page);
1501
1502         return copied;
1503 }
1504
1505 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1506 {
1507         struct inode *inode = file_inode(filp);
1508         struct address_space *mapping = inode->i_mapping;
1509         pgoff_t index;
1510         unsigned long offset;
1511         enum sgp_type sgp = SGP_READ;
1512
1513         /*
1514          * Might this read be for a stacking filesystem?  Then when reading
1515          * holes of a sparse file, we actually need to allocate those pages,
1516          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1517          */
1518         if (segment_eq(get_fs(), KERNEL_DS))
1519                 sgp = SGP_DIRTY;
1520
1521         index = *ppos >> PAGE_CACHE_SHIFT;
1522         offset = *ppos & ~PAGE_CACHE_MASK;
1523
1524         for (;;) {
1525                 struct page *page = NULL;
1526                 pgoff_t end_index;
1527                 unsigned long nr, ret;
1528                 loff_t i_size = i_size_read(inode);
1529
1530                 end_index = i_size >> PAGE_CACHE_SHIFT;
1531                 if (index > end_index)
1532                         break;
1533                 if (index == end_index) {
1534                         nr = i_size & ~PAGE_CACHE_MASK;
1535                         if (nr <= offset)
1536                                 break;
1537                 }
1538
1539                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1540                 if (desc->error) {
1541                         if (desc->error == -EINVAL)
1542                                 desc->error = 0;
1543                         break;
1544                 }
1545                 if (page)
1546                         unlock_page(page);
1547
1548                 /*
1549                  * We must evaluate after, since reads (unlike writes)
1550                  * are called without i_mutex protection against truncate
1551                  */
1552                 nr = PAGE_CACHE_SIZE;
1553                 i_size = i_size_read(inode);
1554                 end_index = i_size >> PAGE_CACHE_SHIFT;
1555                 if (index == end_index) {
1556                         nr = i_size & ~PAGE_CACHE_MASK;
1557                         if (nr <= offset) {
1558                                 if (page)
1559                                         page_cache_release(page);
1560                                 break;
1561                         }
1562                 }
1563                 nr -= offset;
1564
1565                 if (page) {
1566                         /*
1567                          * If users can be writing to this page using arbitrary
1568                          * virtual addresses, take care about potential aliasing
1569                          * before reading the page on the kernel side.
1570                          */
1571                         if (mapping_writably_mapped(mapping))
1572                                 flush_dcache_page(page);
1573                         /*
1574                          * Mark the page accessed if we read the beginning.
1575                          */
1576                         if (!offset)
1577                                 mark_page_accessed(page);
1578                 } else {
1579                         page = ZERO_PAGE(0);
1580                         page_cache_get(page);
1581                 }
1582
1583                 /*
1584                  * Ok, we have the page, and it's up-to-date, so
1585                  * now we can copy it to user space...
1586                  *
1587                  * The actor routine returns how many bytes were actually used..
1588                  * NOTE! This may not be the same as how much of a user buffer
1589                  * we filled up (we may be padding etc), so we can only update
1590                  * "pos" here (the actor routine has to update the user buffer
1591                  * pointers and the remaining count).
1592                  */
1593                 ret = actor(desc, page, offset, nr);
1594                 offset += ret;
1595                 index += offset >> PAGE_CACHE_SHIFT;
1596                 offset &= ~PAGE_CACHE_MASK;
1597
1598                 page_cache_release(page);
1599                 if (ret != nr || !desc->count)
1600                         break;
1601
1602                 cond_resched();
1603         }
1604
1605         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1606         file_accessed(filp);
1607 }
1608
1609 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1610                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1611 {
1612         struct file *filp = iocb->ki_filp;
1613         ssize_t retval;
1614         unsigned long seg;
1615         size_t count;
1616         loff_t *ppos = &iocb->ki_pos;
1617
1618         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1619         if (retval)
1620                 return retval;
1621
1622         for (seg = 0; seg < nr_segs; seg++) {
1623                 read_descriptor_t desc;
1624
1625                 desc.written = 0;
1626                 desc.arg.buf = iov[seg].iov_base;
1627                 desc.count = iov[seg].iov_len;
1628                 if (desc.count == 0)
1629                         continue;
1630                 desc.error = 0;
1631                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1632                 retval += desc.written;
1633                 if (desc.error) {
1634                         retval = retval ?: desc.error;
1635                         break;
1636                 }
1637                 if (desc.count > 0)
1638                         break;
1639         }
1640         return retval;
1641 }
1642
1643 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1644                                 struct pipe_inode_info *pipe, size_t len,
1645                                 unsigned int flags)
1646 {
1647         struct address_space *mapping = in->f_mapping;
1648         struct inode *inode = mapping->host;
1649         unsigned int loff, nr_pages, req_pages;
1650         struct page *pages[PIPE_DEF_BUFFERS];
1651         struct partial_page partial[PIPE_DEF_BUFFERS];
1652         struct page *page;
1653         pgoff_t index, end_index;
1654         loff_t isize, left;
1655         int error, page_nr;
1656         struct splice_pipe_desc spd = {
1657                 .pages = pages,
1658                 .partial = partial,
1659                 .nr_pages_max = PIPE_DEF_BUFFERS,
1660                 .flags = flags,
1661                 .ops = &page_cache_pipe_buf_ops,
1662                 .spd_release = spd_release_page,
1663         };
1664
1665         isize = i_size_read(inode);
1666         if (unlikely(*ppos >= isize))
1667                 return 0;
1668
1669         left = isize - *ppos;
1670         if (unlikely(left < len))
1671                 len = left;
1672
1673         if (splice_grow_spd(pipe, &spd))
1674                 return -ENOMEM;
1675
1676         index = *ppos >> PAGE_CACHE_SHIFT;
1677         loff = *ppos & ~PAGE_CACHE_MASK;
1678         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1679         nr_pages = min(req_pages, pipe->buffers);
1680
1681         spd.nr_pages = find_get_pages_contig(mapping, index,
1682                                                 nr_pages, spd.pages);
1683         index += spd.nr_pages;
1684         error = 0;
1685
1686         while (spd.nr_pages < nr_pages) {
1687                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1688                 if (error)
1689                         break;
1690                 unlock_page(page);
1691                 spd.pages[spd.nr_pages++] = page;
1692                 index++;
1693         }
1694
1695         index = *ppos >> PAGE_CACHE_SHIFT;
1696         nr_pages = spd.nr_pages;
1697         spd.nr_pages = 0;
1698
1699         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1700                 unsigned int this_len;
1701
1702                 if (!len)
1703                         break;
1704
1705                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1706                 page = spd.pages[page_nr];
1707
1708                 if (!PageUptodate(page) || page->mapping != mapping) {
1709                         error = shmem_getpage(inode, index, &page,
1710                                                         SGP_CACHE, NULL);
1711                         if (error)
1712                                 break;
1713                         unlock_page(page);
1714                         page_cache_release(spd.pages[page_nr]);
1715                         spd.pages[page_nr] = page;
1716                 }
1717
1718                 isize = i_size_read(inode);
1719                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1720                 if (unlikely(!isize || index > end_index))
1721                         break;
1722
1723                 if (end_index == index) {
1724                         unsigned int plen;
1725
1726                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1727                         if (plen <= loff)
1728                                 break;
1729
1730                         this_len = min(this_len, plen - loff);
1731                         len = this_len;
1732                 }
1733
1734                 spd.partial[page_nr].offset = loff;
1735                 spd.partial[page_nr].len = this_len;
1736                 len -= this_len;
1737                 loff = 0;
1738                 spd.nr_pages++;
1739                 index++;
1740         }
1741
1742         while (page_nr < nr_pages)
1743                 page_cache_release(spd.pages[page_nr++]);
1744
1745         if (spd.nr_pages)
1746                 error = splice_to_pipe(pipe, &spd);
1747
1748         splice_shrink_spd(&spd);
1749
1750         if (error > 0) {
1751                 *ppos += error;
1752                 file_accessed(in);
1753         }
1754         return error;
1755 }
1756
1757 /*
1758  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1759  */
1760 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1761                                     pgoff_t index, pgoff_t end, int whence)
1762 {
1763         struct page *page;
1764         struct pagevec pvec;
1765         pgoff_t indices[PAGEVEC_SIZE];
1766         bool done = false;
1767         int i;
1768
1769         pagevec_init(&pvec, 0);
1770         pvec.nr = 1;            /* start small: we may be there already */
1771         while (!done) {
1772                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1773                                         pvec.nr, pvec.pages, indices);
1774                 if (!pvec.nr) {
1775                         if (whence == SEEK_DATA)
1776                                 index = end;
1777                         break;
1778                 }
1779                 for (i = 0; i < pvec.nr; i++, index++) {
1780                         if (index < indices[i]) {
1781                                 if (whence == SEEK_HOLE) {
1782                                         done = true;
1783                                         break;
1784                                 }
1785                                 index = indices[i];
1786                         }
1787                         page = pvec.pages[i];
1788                         if (page && !radix_tree_exceptional_entry(page)) {
1789                                 if (!PageUptodate(page))
1790                                         page = NULL;
1791                         }
1792                         if (index >= end ||
1793                             (page && whence == SEEK_DATA) ||
1794                             (!page && whence == SEEK_HOLE)) {
1795                                 done = true;
1796                                 break;
1797                         }
1798                 }
1799                 shmem_deswap_pagevec(&pvec);
1800                 pagevec_release(&pvec);
1801                 pvec.nr = PAGEVEC_SIZE;
1802                 cond_resched();
1803         }
1804         return index;
1805 }
1806
1807 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1808 {
1809         struct address_space *mapping = file->f_mapping;
1810         struct inode *inode = mapping->host;
1811         pgoff_t start, end;
1812         loff_t new_offset;
1813
1814         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1815                 return generic_file_llseek_size(file, offset, whence,
1816                                         MAX_LFS_FILESIZE, i_size_read(inode));
1817         mutex_lock(&inode->i_mutex);
1818         /* We're holding i_mutex so we can access i_size directly */
1819
1820         if (offset < 0)
1821                 offset = -EINVAL;
1822         else if (offset >= inode->i_size)
1823                 offset = -ENXIO;
1824         else {
1825                 start = offset >> PAGE_CACHE_SHIFT;
1826                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1827                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1828                 new_offset <<= PAGE_CACHE_SHIFT;
1829                 if (new_offset > offset) {
1830                         if (new_offset < inode->i_size)
1831                                 offset = new_offset;
1832                         else if (whence == SEEK_DATA)
1833                                 offset = -ENXIO;
1834                         else
1835                                 offset = inode->i_size;
1836                 }
1837         }
1838
1839         if (offset >= 0)
1840                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1841         mutex_unlock(&inode->i_mutex);
1842         return offset;
1843 }
1844
1845 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1846                                                          loff_t len)
1847 {
1848         struct inode *inode = file_inode(file);
1849         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1850         struct shmem_falloc shmem_falloc;
1851         pgoff_t start, index, end;
1852         int error;
1853
1854         mutex_lock(&inode->i_mutex);
1855
1856         shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1857
1858         if (mode & FALLOC_FL_PUNCH_HOLE) {
1859                 struct address_space *mapping = file->f_mapping;
1860                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1861                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1862
1863                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1864                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1865                 spin_lock(&inode->i_lock);
1866                 inode->i_private = &shmem_falloc;
1867                 spin_unlock(&inode->i_lock);
1868
1869                 if ((u64)unmap_end > (u64)unmap_start)
1870                         unmap_mapping_range(mapping, unmap_start,
1871                                             1 + unmap_end - unmap_start, 0);
1872                 shmem_truncate_range(inode, offset, offset + len - 1);
1873                 /* No need to unmap again: hole-punching leaves COWed pages */
1874                 error = 0;
1875                 goto undone;
1876         }
1877
1878         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1879         error = inode_newsize_ok(inode, offset + len);
1880         if (error)
1881                 goto out;
1882
1883         start = offset >> PAGE_CACHE_SHIFT;
1884         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1885         /* Try to avoid a swapstorm if len is impossible to satisfy */
1886         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1887                 error = -ENOSPC;
1888                 goto out;
1889         }
1890
1891         shmem_falloc.start = start;
1892         shmem_falloc.next  = start;
1893         shmem_falloc.nr_falloced = 0;
1894         shmem_falloc.nr_unswapped = 0;
1895         spin_lock(&inode->i_lock);
1896         inode->i_private = &shmem_falloc;
1897         spin_unlock(&inode->i_lock);
1898
1899         for (index = start; index < end; index++) {
1900                 struct page *page;
1901
1902                 /*
1903                  * Good, the fallocate(2) manpage permits EINTR: we may have
1904                  * been interrupted because we are using up too much memory.
1905                  */
1906                 if (signal_pending(current))
1907                         error = -EINTR;
1908                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1909                         error = -ENOMEM;
1910                 else
1911                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1912                                                                         NULL);
1913                 if (error) {
1914                         /* Remove the !PageUptodate pages we added */
1915                         shmem_undo_range(inode,
1916                                 (loff_t)start << PAGE_CACHE_SHIFT,
1917                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1918                         goto undone;
1919                 }
1920
1921                 /*
1922                  * Inform shmem_writepage() how far we have reached.
1923                  * No need for lock or barrier: we have the page lock.
1924                  */
1925                 shmem_falloc.next++;
1926                 if (!PageUptodate(page))
1927                         shmem_falloc.nr_falloced++;
1928
1929                 /*
1930                  * If !PageUptodate, leave it that way so that freeable pages
1931                  * can be recognized if we need to rollback on error later.
1932                  * But set_page_dirty so that memory pressure will swap rather
1933                  * than free the pages we are allocating (and SGP_CACHE pages
1934                  * might still be clean: we now need to mark those dirty too).
1935                  */
1936                 set_page_dirty(page);
1937                 unlock_page(page);
1938                 page_cache_release(page);
1939                 cond_resched();
1940         }
1941
1942         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1943                 i_size_write(inode, offset + len);
1944         inode->i_ctime = CURRENT_TIME;
1945 undone:
1946         spin_lock(&inode->i_lock);
1947         inode->i_private = NULL;
1948         spin_unlock(&inode->i_lock);
1949 out:
1950         mutex_unlock(&inode->i_mutex);
1951         return error;
1952 }
1953
1954 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1955 {
1956         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1957
1958         buf->f_type = TMPFS_MAGIC;
1959         buf->f_bsize = PAGE_CACHE_SIZE;
1960         buf->f_namelen = NAME_MAX;
1961         if (sbinfo->max_blocks) {
1962                 buf->f_blocks = sbinfo->max_blocks;
1963                 buf->f_bavail =
1964                 buf->f_bfree  = sbinfo->max_blocks -
1965                                 percpu_counter_sum(&sbinfo->used_blocks);
1966         }
1967         if (sbinfo->max_inodes) {
1968                 buf->f_files = sbinfo->max_inodes;
1969                 buf->f_ffree = sbinfo->free_inodes;
1970         }
1971         /* else leave those fields 0 like simple_statfs */
1972         return 0;
1973 }
1974
1975 /*
1976  * File creation. Allocate an inode, and we're done..
1977  */
1978 static int
1979 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1980 {
1981         struct inode *inode;
1982         int error = -ENOSPC;
1983
1984         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1985         if (inode) {
1986                 error = simple_acl_create(dir, inode);
1987                 if (error)
1988                         goto out_iput;
1989                 error = security_inode_init_security(inode, dir,
1990                                                      &dentry->d_name,
1991                                                      shmem_initxattrs, NULL);
1992                 if (error && error != -EOPNOTSUPP)
1993                         goto out_iput;
1994
1995                 error = 0;
1996                 dir->i_size += BOGO_DIRENT_SIZE;
1997                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1998                 d_instantiate(dentry, inode);
1999                 dget(dentry); /* Extra count - pin the dentry in core */
2000         }
2001         return error;
2002 out_iput:
2003         iput(inode);
2004         return error;
2005 }
2006
2007 static int
2008 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2009 {
2010         struct inode *inode;
2011         int error = -ENOSPC;
2012
2013         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2014         if (inode) {
2015                 error = security_inode_init_security(inode, dir,
2016                                                      NULL,
2017                                                      shmem_initxattrs, NULL);
2018                 if (error && error != -EOPNOTSUPP)
2019                         goto out_iput;
2020                 error = simple_acl_create(dir, inode);
2021                 if (error)
2022                         goto out_iput;
2023                 d_tmpfile(dentry, inode);
2024         }
2025         return error;
2026 out_iput:
2027         iput(inode);
2028         return error;
2029 }
2030
2031 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2032 {
2033         int error;
2034
2035         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2036                 return error;
2037         inc_nlink(dir);
2038         return 0;
2039 }
2040
2041 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2042                 bool excl)
2043 {
2044         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2045 }
2046
2047 /*
2048  * Link a file..
2049  */
2050 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2051 {
2052         struct inode *inode = old_dentry->d_inode;
2053         int ret;
2054
2055         /*
2056          * No ordinary (disk based) filesystem counts links as inodes;
2057          * but each new link needs a new dentry, pinning lowmem, and
2058          * tmpfs dentries cannot be pruned until they are unlinked.
2059          */
2060         ret = shmem_reserve_inode(inode->i_sb);
2061         if (ret)
2062                 goto out;
2063
2064         dir->i_size += BOGO_DIRENT_SIZE;
2065         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2066         inc_nlink(inode);
2067         ihold(inode);   /* New dentry reference */
2068         dget(dentry);           /* Extra pinning count for the created dentry */
2069         d_instantiate(dentry, inode);
2070 out:
2071         return ret;
2072 }
2073
2074 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2075 {
2076         struct inode *inode = dentry->d_inode;
2077
2078         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2079                 shmem_free_inode(inode->i_sb);
2080
2081         dir->i_size -= BOGO_DIRENT_SIZE;
2082         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2083         drop_nlink(inode);
2084         dput(dentry);   /* Undo the count from "create" - this does all the work */
2085         return 0;
2086 }
2087
2088 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2089 {
2090         if (!simple_empty(dentry))
2091                 return -ENOTEMPTY;
2092
2093         drop_nlink(dentry->d_inode);
2094         drop_nlink(dir);
2095         return shmem_unlink(dir, dentry);
2096 }
2097
2098 /*
2099  * The VFS layer already does all the dentry stuff for rename,
2100  * we just have to decrement the usage count for the target if
2101  * it exists so that the VFS layer correctly free's it when it
2102  * gets overwritten.
2103  */
2104 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2105 {
2106         struct inode *inode = old_dentry->d_inode;
2107         int they_are_dirs = S_ISDIR(inode->i_mode);
2108
2109         if (!simple_empty(new_dentry))
2110                 return -ENOTEMPTY;
2111
2112         if (new_dentry->d_inode) {
2113                 (void) shmem_unlink(new_dir, new_dentry);
2114                 if (they_are_dirs)
2115                         drop_nlink(old_dir);
2116         } else if (they_are_dirs) {
2117                 drop_nlink(old_dir);
2118                 inc_nlink(new_dir);
2119         }
2120
2121         old_dir->i_size -= BOGO_DIRENT_SIZE;
2122         new_dir->i_size += BOGO_DIRENT_SIZE;
2123         old_dir->i_ctime = old_dir->i_mtime =
2124         new_dir->i_ctime = new_dir->i_mtime =
2125         inode->i_ctime = CURRENT_TIME;
2126         return 0;
2127 }
2128
2129 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2130 {
2131         int error;
2132         int len;
2133         struct inode *inode;
2134         struct page *page;
2135         char *kaddr;
2136         struct shmem_inode_info *info;
2137
2138         len = strlen(symname) + 1;
2139         if (len > PAGE_CACHE_SIZE)
2140                 return -ENAMETOOLONG;
2141
2142         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2143         if (!inode)
2144                 return -ENOSPC;
2145
2146         error = security_inode_init_security(inode, dir, &dentry->d_name,
2147                                              shmem_initxattrs, NULL);
2148         if (error) {
2149                 if (error != -EOPNOTSUPP) {
2150                         iput(inode);
2151                         return error;
2152                 }
2153                 error = 0;
2154         }
2155
2156         info = SHMEM_I(inode);
2157         inode->i_size = len-1;
2158         if (len <= SHORT_SYMLINK_LEN) {
2159                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2160                 if (!info->symlink) {
2161                         iput(inode);
2162                         return -ENOMEM;
2163                 }
2164                 inode->i_op = &shmem_short_symlink_operations;
2165         } else {
2166                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2167                 if (error) {
2168                         iput(inode);
2169                         return error;
2170                 }
2171                 inode->i_mapping->a_ops = &shmem_aops;
2172                 inode->i_op = &shmem_symlink_inode_operations;
2173                 kaddr = kmap_atomic(page);
2174                 memcpy(kaddr, symname, len);
2175                 kunmap_atomic(kaddr);
2176                 SetPageUptodate(page);
2177                 set_page_dirty(page);
2178                 unlock_page(page);
2179                 page_cache_release(page);
2180         }
2181         dir->i_size += BOGO_DIRENT_SIZE;
2182         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2183         d_instantiate(dentry, inode);
2184         dget(dentry);
2185         return 0;
2186 }
2187
2188 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2189 {
2190         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2191         return NULL;
2192 }
2193
2194 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2195 {
2196         struct page *page = NULL;
2197         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2198         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2199         if (page)
2200                 unlock_page(page);
2201         return page;
2202 }
2203
2204 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2205 {
2206         if (!IS_ERR(nd_get_link(nd))) {
2207                 struct page *page = cookie;
2208                 kunmap(page);
2209                 mark_page_accessed(page);
2210                 page_cache_release(page);
2211         }
2212 }
2213
2214 #ifdef CONFIG_TMPFS_XATTR
2215 /*
2216  * Superblocks without xattr inode operations may get some security.* xattr
2217  * support from the LSM "for free". As soon as we have any other xattrs
2218  * like ACLs, we also need to implement the security.* handlers at
2219  * filesystem level, though.
2220  */
2221
2222 /*
2223  * Callback for security_inode_init_security() for acquiring xattrs.
2224  */
2225 static int shmem_initxattrs(struct inode *inode,
2226                             const struct xattr *xattr_array,
2227                             void *fs_info)
2228 {
2229         struct shmem_inode_info *info = SHMEM_I(inode);
2230         const struct xattr *xattr;
2231         struct simple_xattr *new_xattr;
2232         size_t len;
2233
2234         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2235                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2236                 if (!new_xattr)
2237                         return -ENOMEM;
2238
2239                 len = strlen(xattr->name) + 1;
2240                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2241                                           GFP_KERNEL);
2242                 if (!new_xattr->name) {
2243                         kfree(new_xattr);
2244                         return -ENOMEM;
2245                 }
2246
2247                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2248                        XATTR_SECURITY_PREFIX_LEN);
2249                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2250                        xattr->name, len);
2251
2252                 simple_xattr_list_add(&info->xattrs, new_xattr);
2253         }
2254
2255         return 0;
2256 }
2257
2258 static const struct xattr_handler *shmem_xattr_handlers[] = {
2259 #ifdef CONFIG_TMPFS_POSIX_ACL
2260         &posix_acl_access_xattr_handler,
2261         &posix_acl_default_xattr_handler,
2262 #endif
2263         NULL
2264 };
2265
2266 static int shmem_xattr_validate(const char *name)
2267 {
2268         struct { const char *prefix; size_t len; } arr[] = {
2269                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2270                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2271         };
2272         int i;
2273
2274         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2275                 size_t preflen = arr[i].len;
2276                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2277                         if (!name[preflen])
2278                                 return -EINVAL;
2279                         return 0;
2280                 }
2281         }
2282         return -EOPNOTSUPP;
2283 }
2284
2285 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2286                               void *buffer, size_t size)
2287 {
2288         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2289         int err;
2290
2291         /*
2292          * If this is a request for a synthetic attribute in the system.*
2293          * namespace use the generic infrastructure to resolve a handler
2294          * for it via sb->s_xattr.
2295          */
2296         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2297                 return generic_getxattr(dentry, name, buffer, size);
2298
2299         err = shmem_xattr_validate(name);
2300         if (err)
2301                 return err;
2302
2303         return simple_xattr_get(&info->xattrs, name, buffer, size);
2304 }
2305
2306 static int shmem_setxattr(struct dentry *dentry, const char *name,
2307                           const void *value, size_t size, int flags)
2308 {
2309         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2310         int err;
2311
2312         /*
2313          * If this is a request for a synthetic attribute in the system.*
2314          * namespace use the generic infrastructure to resolve a handler
2315          * for it via sb->s_xattr.
2316          */
2317         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2318                 return generic_setxattr(dentry, name, value, size, flags);
2319
2320         err = shmem_xattr_validate(name);
2321         if (err)
2322                 return err;
2323
2324         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2325 }
2326
2327 static int shmem_removexattr(struct dentry *dentry, const char *name)
2328 {
2329         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2330         int err;
2331
2332         /*
2333          * If this is a request for a synthetic attribute in the system.*
2334          * namespace use the generic infrastructure to resolve a handler
2335          * for it via sb->s_xattr.
2336          */
2337         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2338                 return generic_removexattr(dentry, name);
2339
2340         err = shmem_xattr_validate(name);
2341         if (err)
2342                 return err;
2343
2344         return simple_xattr_remove(&info->xattrs, name);
2345 }
2346
2347 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2348 {
2349         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2350         return simple_xattr_list(&info->xattrs, buffer, size);
2351 }
2352 #endif /* CONFIG_TMPFS_XATTR */
2353
2354 static const struct inode_operations shmem_short_symlink_operations = {
2355         .readlink       = generic_readlink,
2356         .follow_link    = shmem_follow_short_symlink,
2357 #ifdef CONFIG_TMPFS_XATTR
2358         .setxattr       = shmem_setxattr,
2359         .getxattr       = shmem_getxattr,
2360         .listxattr      = shmem_listxattr,
2361         .removexattr    = shmem_removexattr,
2362 #endif
2363 };
2364
2365 static const struct inode_operations shmem_symlink_inode_operations = {
2366         .readlink       = generic_readlink,
2367         .follow_link    = shmem_follow_link,
2368         .put_link       = shmem_put_link,
2369 #ifdef CONFIG_TMPFS_XATTR
2370         .setxattr       = shmem_setxattr,
2371         .getxattr       = shmem_getxattr,
2372         .listxattr      = shmem_listxattr,
2373         .removexattr    = shmem_removexattr,
2374 #endif
2375 };
2376
2377 static struct dentry *shmem_get_parent(struct dentry *child)
2378 {
2379         return ERR_PTR(-ESTALE);
2380 }
2381
2382 static int shmem_match(struct inode *ino, void *vfh)
2383 {
2384         __u32 *fh = vfh;
2385         __u64 inum = fh[2];
2386         inum = (inum << 32) | fh[1];
2387         return ino->i_ino == inum && fh[0] == ino->i_generation;
2388 }
2389
2390 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2391                 struct fid *fid, int fh_len, int fh_type)
2392 {
2393         struct inode *inode;
2394         struct dentry *dentry = NULL;
2395         u64 inum;
2396
2397         if (fh_len < 3)
2398                 return NULL;
2399
2400         inum = fid->raw[2];
2401         inum = (inum << 32) | fid->raw[1];
2402
2403         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2404                         shmem_match, fid->raw);
2405         if (inode) {
2406                 dentry = d_find_alias(inode);
2407                 iput(inode);
2408         }
2409
2410         return dentry;
2411 }
2412
2413 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2414                                 struct inode *parent)
2415 {
2416         if (*len < 3) {
2417                 *len = 3;
2418                 return FILEID_INVALID;
2419         }
2420
2421         if (inode_unhashed(inode)) {
2422                 /* Unfortunately insert_inode_hash is not idempotent,
2423                  * so as we hash inodes here rather than at creation
2424                  * time, we need a lock to ensure we only try
2425                  * to do it once
2426                  */
2427                 static DEFINE_SPINLOCK(lock);
2428                 spin_lock(&lock);
2429                 if (inode_unhashed(inode))
2430                         __insert_inode_hash(inode,
2431                                             inode->i_ino + inode->i_generation);
2432                 spin_unlock(&lock);
2433         }
2434
2435         fh[0] = inode->i_generation;
2436         fh[1] = inode->i_ino;
2437         fh[2] = ((__u64)inode->i_ino) >> 32;
2438
2439         *len = 3;
2440         return 1;
2441 }
2442
2443 static const struct export_operations shmem_export_ops = {
2444         .get_parent     = shmem_get_parent,
2445         .encode_fh      = shmem_encode_fh,
2446         .fh_to_dentry   = shmem_fh_to_dentry,
2447 };
2448
2449 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2450                                bool remount)
2451 {
2452         char *this_char, *value, *rest;
2453         struct mempolicy *mpol = NULL;
2454         uid_t uid;
2455         gid_t gid;
2456
2457         while (options != NULL) {
2458                 this_char = options;
2459                 for (;;) {
2460                         /*
2461                          * NUL-terminate this option: unfortunately,
2462                          * mount options form a comma-separated list,
2463                          * but mpol's nodelist may also contain commas.
2464                          */
2465                         options = strchr(options, ',');
2466                         if (options == NULL)
2467                                 break;
2468                         options++;
2469                         if (!isdigit(*options)) {
2470                                 options[-1] = '\0';
2471                                 break;
2472                         }
2473                 }
2474                 if (!*this_char)
2475                         continue;
2476                 if ((value = strchr(this_char,'=')) != NULL) {
2477                         *value++ = 0;
2478                 } else {
2479                         printk(KERN_ERR
2480                             "tmpfs: No value for mount option '%s'\n",
2481                             this_char);
2482                         goto error;
2483                 }
2484
2485                 if (!strcmp(this_char,"size")) {
2486                         unsigned long long size;
2487                         size = memparse(value,&rest);
2488                         if (*rest == '%') {
2489                                 size <<= PAGE_SHIFT;
2490                                 size *= totalram_pages;
2491                                 do_div(size, 100);
2492                                 rest++;
2493                         }
2494                         if (*rest)
2495                                 goto bad_val;
2496                         sbinfo->max_blocks =
2497                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2498                 } else if (!strcmp(this_char,"nr_blocks")) {
2499                         sbinfo->max_blocks = memparse(value, &rest);
2500                         if (*rest)
2501                                 goto bad_val;
2502                 } else if (!strcmp(this_char,"nr_inodes")) {
2503                         sbinfo->max_inodes = memparse(value, &rest);
2504                         if (*rest)
2505                                 goto bad_val;
2506                 } else if (!strcmp(this_char,"mode")) {
2507                         if (remount)
2508                                 continue;
2509                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2510                         if (*rest)
2511                                 goto bad_val;
2512                 } else if (!strcmp(this_char,"uid")) {
2513                         if (remount)
2514                                 continue;
2515                         uid = simple_strtoul(value, &rest, 0);
2516                         if (*rest)
2517                                 goto bad_val;
2518                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2519                         if (!uid_valid(sbinfo->uid))
2520                                 goto bad_val;
2521                 } else if (!strcmp(this_char,"gid")) {
2522                         if (remount)
2523                                 continue;
2524                         gid = simple_strtoul(value, &rest, 0);
2525                         if (*rest)
2526                                 goto bad_val;
2527                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2528                         if (!gid_valid(sbinfo->gid))
2529                                 goto bad_val;
2530                 } else if (!strcmp(this_char,"mpol")) {
2531                         mpol_put(mpol);
2532                         mpol = NULL;
2533                         if (mpol_parse_str(value, &mpol))
2534                                 goto bad_val;
2535                 } else {
2536                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2537                                this_char);
2538                         goto error;
2539                 }
2540         }
2541         sbinfo->mpol = mpol;
2542         return 0;
2543
2544 bad_val:
2545         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2546                value, this_char);
2547 error:
2548         mpol_put(mpol);
2549         return 1;
2550
2551 }
2552
2553 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2554 {
2555         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2556         struct shmem_sb_info config = *sbinfo;
2557         unsigned long inodes;
2558         int error = -EINVAL;
2559
2560         config.mpol = NULL;
2561         if (shmem_parse_options(data, &config, true))
2562                 return error;
2563
2564         spin_lock(&sbinfo->stat_lock);
2565         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2566         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2567                 goto out;
2568         if (config.max_inodes < inodes)
2569                 goto out;
2570         /*
2571          * Those tests disallow limited->unlimited while any are in use;
2572          * but we must separately disallow unlimited->limited, because
2573          * in that case we have no record of how much is already in use.
2574          */
2575         if (config.max_blocks && !sbinfo->max_blocks)
2576                 goto out;
2577         if (config.max_inodes && !sbinfo->max_inodes)
2578                 goto out;
2579
2580         error = 0;
2581         sbinfo->max_blocks  = config.max_blocks;
2582         sbinfo->max_inodes  = config.max_inodes;
2583         sbinfo->free_inodes = config.max_inodes - inodes;
2584
2585         /*
2586          * Preserve previous mempolicy unless mpol remount option was specified.
2587          */
2588         if (config.mpol) {
2589                 mpol_put(sbinfo->mpol);
2590                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2591         }
2592 out:
2593         spin_unlock(&sbinfo->stat_lock);
2594         return error;
2595 }
2596
2597 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2598 {
2599         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2600
2601         if (sbinfo->max_blocks != shmem_default_max_blocks())
2602                 seq_printf(seq, ",size=%luk",
2603                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2604         if (sbinfo->max_inodes != shmem_default_max_inodes())
2605                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2606         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2607                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2608         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2609                 seq_printf(seq, ",uid=%u",
2610                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2611         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2612                 seq_printf(seq, ",gid=%u",
2613                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2614         shmem_show_mpol(seq, sbinfo->mpol);
2615         return 0;
2616 }
2617 #endif /* CONFIG_TMPFS */
2618
2619 static void shmem_put_super(struct super_block *sb)
2620 {
2621         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2622
2623         percpu_counter_destroy(&sbinfo->used_blocks);
2624         mpol_put(sbinfo->mpol);
2625         kfree(sbinfo);
2626         sb->s_fs_info = NULL;
2627 }
2628
2629 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2630 {
2631         struct inode *inode;
2632         struct shmem_sb_info *sbinfo;
2633         int err = -ENOMEM;
2634
2635         /* Round up to L1_CACHE_BYTES to resist false sharing */
2636         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2637                                 L1_CACHE_BYTES), GFP_KERNEL);
2638         if (!sbinfo)
2639                 return -ENOMEM;
2640
2641         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2642         sbinfo->uid = current_fsuid();
2643         sbinfo->gid = current_fsgid();
2644         sb->s_fs_info = sbinfo;
2645
2646 #ifdef CONFIG_TMPFS
2647         /*
2648          * Per default we only allow half of the physical ram per
2649          * tmpfs instance, limiting inodes to one per page of lowmem;
2650          * but the internal instance is left unlimited.
2651          */
2652         if (!(sb->s_flags & MS_KERNMOUNT)) {
2653                 sbinfo->max_blocks = shmem_default_max_blocks();
2654                 sbinfo->max_inodes = shmem_default_max_inodes();
2655                 if (shmem_parse_options(data, sbinfo, false)) {
2656                         err = -EINVAL;
2657                         goto failed;
2658                 }
2659         } else {
2660                 sb->s_flags |= MS_NOUSER;
2661         }
2662         sb->s_export_op = &shmem_export_ops;
2663         sb->s_flags |= MS_NOSEC;
2664 #else
2665         sb->s_flags |= MS_NOUSER;
2666 #endif
2667
2668         spin_lock_init(&sbinfo->stat_lock);
2669         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2670                 goto failed;
2671         sbinfo->free_inodes = sbinfo->max_inodes;
2672
2673         sb->s_maxbytes = MAX_LFS_FILESIZE;
2674         sb->s_blocksize = PAGE_CACHE_SIZE;
2675         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2676         sb->s_magic = TMPFS_MAGIC;
2677         sb->s_op = &shmem_ops;
2678         sb->s_time_gran = 1;
2679 #ifdef CONFIG_TMPFS_XATTR
2680         sb->s_xattr = shmem_xattr_handlers;
2681 #endif
2682 #ifdef CONFIG_TMPFS_POSIX_ACL
2683         sb->s_flags |= MS_POSIXACL;
2684 #endif
2685
2686         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2687         if (!inode)
2688                 goto failed;
2689         inode->i_uid = sbinfo->uid;
2690         inode->i_gid = sbinfo->gid;
2691         sb->s_root = d_make_root(inode);
2692         if (!sb->s_root)
2693                 goto failed;
2694         return 0;
2695
2696 failed:
2697         shmem_put_super(sb);
2698         return err;
2699 }
2700
2701 static struct kmem_cache *shmem_inode_cachep;
2702
2703 static struct inode *shmem_alloc_inode(struct super_block *sb)
2704 {
2705         struct shmem_inode_info *info;
2706         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2707         if (!info)
2708                 return NULL;
2709         return &info->vfs_inode;
2710 }
2711
2712 static void shmem_destroy_callback(struct rcu_head *head)
2713 {
2714         struct inode *inode = container_of(head, struct inode, i_rcu);
2715         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2716 }
2717
2718 static void shmem_destroy_inode(struct inode *inode)
2719 {
2720         if (S_ISREG(inode->i_mode))
2721                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2722         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2723 }
2724
2725 static void shmem_init_inode(void *foo)
2726 {
2727         struct shmem_inode_info *info = foo;
2728         inode_init_once(&info->vfs_inode);
2729 }
2730
2731 static int shmem_init_inodecache(void)
2732 {
2733         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2734                                 sizeof(struct shmem_inode_info),
2735                                 0, SLAB_PANIC, shmem_init_inode);
2736         return 0;
2737 }
2738
2739 static void shmem_destroy_inodecache(void)
2740 {
2741         kmem_cache_destroy(shmem_inode_cachep);
2742 }
2743
2744 static const struct address_space_operations shmem_aops = {
2745         .writepage      = shmem_writepage,
2746         .set_page_dirty = __set_page_dirty_no_writeback,
2747 #ifdef CONFIG_TMPFS
2748         .write_begin    = shmem_write_begin,
2749         .write_end      = shmem_write_end,
2750 #endif
2751         .migratepage    = migrate_page,
2752         .error_remove_page = generic_error_remove_page,
2753 };
2754
2755 static const struct file_operations shmem_file_operations = {
2756         .mmap           = shmem_mmap,
2757 #ifdef CONFIG_TMPFS
2758         .llseek         = shmem_file_llseek,
2759         .read           = do_sync_read,
2760         .write          = do_sync_write,
2761         .aio_read       = shmem_file_aio_read,
2762         .aio_write      = generic_file_aio_write,
2763         .fsync          = noop_fsync,
2764         .splice_read    = shmem_file_splice_read,
2765         .splice_write   = generic_file_splice_write,
2766         .fallocate      = shmem_fallocate,
2767 #endif
2768 };
2769
2770 static const struct inode_operations shmem_inode_operations = {
2771         .setattr        = shmem_setattr,
2772 #ifdef CONFIG_TMPFS_XATTR
2773         .setxattr       = shmem_setxattr,
2774         .getxattr       = shmem_getxattr,
2775         .listxattr      = shmem_listxattr,
2776         .removexattr    = shmem_removexattr,
2777         .set_acl        = simple_set_acl,
2778 #endif
2779 };
2780
2781 static const struct inode_operations shmem_dir_inode_operations = {
2782 #ifdef CONFIG_TMPFS
2783         .create         = shmem_create,
2784         .lookup         = simple_lookup,
2785         .link           = shmem_link,
2786         .unlink         = shmem_unlink,
2787         .symlink        = shmem_symlink,
2788         .mkdir          = shmem_mkdir,
2789         .rmdir          = shmem_rmdir,
2790         .mknod          = shmem_mknod,
2791         .rename         = shmem_rename,
2792         .tmpfile        = shmem_tmpfile,
2793 #endif
2794 #ifdef CONFIG_TMPFS_XATTR
2795         .setxattr       = shmem_setxattr,
2796         .getxattr       = shmem_getxattr,
2797         .listxattr      = shmem_listxattr,
2798         .removexattr    = shmem_removexattr,
2799 #endif
2800 #ifdef CONFIG_TMPFS_POSIX_ACL
2801         .setattr        = shmem_setattr,
2802         .set_acl        = simple_set_acl,
2803 #endif
2804 };
2805
2806 static const struct inode_operations shmem_special_inode_operations = {
2807 #ifdef CONFIG_TMPFS_XATTR
2808         .setxattr       = shmem_setxattr,
2809         .getxattr       = shmem_getxattr,
2810         .listxattr      = shmem_listxattr,
2811         .removexattr    = shmem_removexattr,
2812 #endif
2813 #ifdef CONFIG_TMPFS_POSIX_ACL
2814         .setattr        = shmem_setattr,
2815         .set_acl        = simple_set_acl,
2816 #endif
2817 };
2818
2819 static const struct super_operations shmem_ops = {
2820         .alloc_inode    = shmem_alloc_inode,
2821         .destroy_inode  = shmem_destroy_inode,
2822 #ifdef CONFIG_TMPFS
2823         .statfs         = shmem_statfs,
2824         .remount_fs     = shmem_remount_fs,
2825         .show_options   = shmem_show_options,
2826 #endif
2827         .evict_inode    = shmem_evict_inode,
2828         .drop_inode     = generic_delete_inode,
2829         .put_super      = shmem_put_super,
2830 };
2831
2832 static const struct vm_operations_struct shmem_vm_ops = {
2833         .fault          = shmem_fault,
2834 #ifdef CONFIG_NUMA
2835         .set_policy     = shmem_set_policy,
2836         .get_policy     = shmem_get_policy,
2837 #endif
2838         .remap_pages    = generic_file_remap_pages,
2839 };
2840
2841 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2842         int flags, const char *dev_name, void *data)
2843 {
2844         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2845 }
2846
2847 static struct file_system_type shmem_fs_type = {
2848         .owner          = THIS_MODULE,
2849         .name           = "tmpfs",
2850         .mount          = shmem_mount,
2851         .kill_sb        = kill_litter_super,
2852         .fs_flags       = FS_USERNS_MOUNT,
2853 };
2854
2855 int __init shmem_init(void)
2856 {
2857         int error;
2858
2859         /* If rootfs called this, don't re-init */
2860         if (shmem_inode_cachep)
2861                 return 0;
2862
2863         error = bdi_init(&shmem_backing_dev_info);
2864         if (error)
2865                 goto out4;
2866
2867         error = shmem_init_inodecache();
2868         if (error)
2869                 goto out3;
2870
2871         error = register_filesystem(&shmem_fs_type);
2872         if (error) {
2873                 printk(KERN_ERR "Could not register tmpfs\n");
2874                 goto out2;
2875         }
2876
2877         shm_mnt = kern_mount(&shmem_fs_type);
2878         if (IS_ERR(shm_mnt)) {
2879                 error = PTR_ERR(shm_mnt);
2880                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2881                 goto out1;
2882         }
2883         return 0;
2884
2885 out1:
2886         unregister_filesystem(&shmem_fs_type);
2887 out2:
2888         shmem_destroy_inodecache();
2889 out3:
2890         bdi_destroy(&shmem_backing_dev_info);
2891 out4:
2892         shm_mnt = ERR_PTR(error);
2893         return error;
2894 }
2895
2896 #else /* !CONFIG_SHMEM */
2897
2898 /*
2899  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2900  *
2901  * This is intended for small system where the benefits of the full
2902  * shmem code (swap-backed and resource-limited) are outweighed by
2903  * their complexity. On systems without swap this code should be
2904  * effectively equivalent, but much lighter weight.
2905  */
2906
2907 static struct file_system_type shmem_fs_type = {
2908         .name           = "tmpfs",
2909         .mount          = ramfs_mount,
2910         .kill_sb        = kill_litter_super,
2911         .fs_flags       = FS_USERNS_MOUNT,
2912 };
2913
2914 int __init shmem_init(void)
2915 {
2916         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2917
2918         shm_mnt = kern_mount(&shmem_fs_type);
2919         BUG_ON(IS_ERR(shm_mnt));
2920
2921         return 0;
2922 }
2923
2924 int shmem_unuse(swp_entry_t swap, struct page *page)
2925 {
2926         return 0;
2927 }
2928
2929 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2930 {
2931         return 0;
2932 }
2933
2934 void shmem_unlock_mapping(struct address_space *mapping)
2935 {
2936 }
2937
2938 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2939 {
2940         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2941 }
2942 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2943
2944 #define shmem_vm_ops                            generic_file_vm_ops
2945 #define shmem_file_operations                   ramfs_file_operations
2946 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2947 #define shmem_acct_size(flags, size)            0
2948 #define shmem_unacct_size(flags, size)          do {} while (0)
2949
2950 #endif /* CONFIG_SHMEM */
2951
2952 /* common code */
2953
2954 static struct dentry_operations anon_ops = {
2955         .d_dname = simple_dname
2956 };
2957
2958 static struct file *__shmem_file_setup(const char *name, loff_t size,
2959                                        unsigned long flags, unsigned int i_flags)
2960 {
2961         struct file *res;
2962         struct inode *inode;
2963         struct path path;
2964         struct super_block *sb;
2965         struct qstr this;
2966
2967         if (IS_ERR(shm_mnt))
2968                 return ERR_CAST(shm_mnt);
2969
2970         if (size < 0 || size > MAX_LFS_FILESIZE)
2971                 return ERR_PTR(-EINVAL);
2972
2973         if (shmem_acct_size(flags, size))
2974                 return ERR_PTR(-ENOMEM);
2975
2976         res = ERR_PTR(-ENOMEM);
2977         this.name = name;
2978         this.len = strlen(name);
2979         this.hash = 0; /* will go */
2980         sb = shm_mnt->mnt_sb;
2981         path.dentry = d_alloc_pseudo(sb, &this);
2982         if (!path.dentry)
2983                 goto put_memory;
2984         d_set_d_op(path.dentry, &anon_ops);
2985         path.mnt = mntget(shm_mnt);
2986
2987         res = ERR_PTR(-ENOSPC);
2988         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2989         if (!inode)
2990                 goto put_dentry;
2991
2992         inode->i_flags |= i_flags;
2993         d_instantiate(path.dentry, inode);
2994         inode->i_size = size;
2995         clear_nlink(inode);     /* It is unlinked */
2996         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2997         if (IS_ERR(res))
2998                 goto put_dentry;
2999
3000         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3001                   &shmem_file_operations);
3002         if (IS_ERR(res))
3003                 goto put_dentry;
3004
3005         return res;
3006
3007 put_dentry:
3008         path_put(&path);
3009 put_memory:
3010         shmem_unacct_size(flags, size);
3011         return res;
3012 }
3013
3014 /**
3015  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3016  *      kernel internal.  There will be NO LSM permission checks against the
3017  *      underlying inode.  So users of this interface must do LSM checks at a
3018  *      higher layer.  The one user is the big_key implementation.  LSM checks
3019  *      are provided at the key level rather than the inode level.
3020  * @name: name for dentry (to be seen in /proc/<pid>/maps
3021  * @size: size to be set for the file
3022  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3023  */
3024 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3025 {
3026         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3027 }
3028
3029 /**
3030  * shmem_file_setup - get an unlinked file living in tmpfs
3031  * @name: name for dentry (to be seen in /proc/<pid>/maps
3032  * @size: size to be set for the file
3033  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3034  */
3035 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3036 {
3037         return __shmem_file_setup(name, size, flags, 0);
3038 }
3039 EXPORT_SYMBOL_GPL(shmem_file_setup);
3040
3041 /**
3042  * shmem_zero_setup - setup a shared anonymous mapping
3043  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3044  */
3045 int shmem_zero_setup(struct vm_area_struct *vma)
3046 {
3047         struct file *file;
3048         loff_t size = vma->vm_end - vma->vm_start;
3049
3050         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3051         if (IS_ERR(file))
3052                 return PTR_ERR(file);
3053
3054         if (vma->vm_file)
3055                 fput(vma->vm_file);
3056         vma->vm_file = file;
3057         vma->vm_ops = &shmem_vm_ops;
3058         return 0;
3059 }
3060
3061 /**
3062  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3063  * @mapping:    the page's address_space
3064  * @index:      the page index
3065  * @gfp:        the page allocator flags to use if allocating
3066  *
3067  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3068  * with any new page allocations done using the specified allocation flags.
3069  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3070  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3071  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3072  *
3073  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3074  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3075  */
3076 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3077                                          pgoff_t index, gfp_t gfp)
3078 {
3079 #ifdef CONFIG_SHMEM
3080         struct inode *inode = mapping->host;
3081         struct page *page;
3082         int error;
3083
3084         BUG_ON(mapping->a_ops != &shmem_aops);
3085         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3086         if (error)
3087                 page = ERR_PTR(error);
3088         else
3089                 unlock_page(page);
3090         return page;
3091 #else
3092         /*
3093          * The tiny !SHMEM case uses ramfs without swap
3094          */
3095         return read_cache_page_gfp(mapping, index, gfp);
3096 #endif
3097 }
3098 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);