2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
83 #include <linux/uaccess.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_rwsem making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 struct folio **foliop, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
146 return sb->s_fs_info;
150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151 * for shared memory and for shared anonymous (/dev/zero) mappings
152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153 * consistent with the pre-accounting of private mappings ...
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
157 return (flags & VM_NORESERVE) ?
158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
163 if (!(flags & VM_NORESERVE))
164 vm_unacct_memory(VM_ACCT(size));
167 static inline int shmem_reacct_size(unsigned long flags,
168 loff_t oldsize, loff_t newsize)
170 if (!(flags & VM_NORESERVE)) {
171 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 return security_vm_enough_memory_mm(current->mm,
173 VM_ACCT(newsize) - VM_ACCT(oldsize));
174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
181 * ... whereas tmpfs objects are accounted incrementally as
182 * pages are allocated, in order to allow large sparse files.
183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
186 static inline int shmem_acct_block(unsigned long flags, long pages)
188 if (!(flags & VM_NORESERVE))
191 return security_vm_enough_memory_mm(current->mm,
192 pages * VM_ACCT(PAGE_SIZE));
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 if (flags & VM_NORESERVE)
198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
203 struct shmem_inode_info *info = SHMEM_I(inode);
204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
206 if (shmem_acct_block(info->flags, pages))
209 if (sbinfo->max_blocks) {
210 if (percpu_counter_compare(&sbinfo->used_blocks,
211 sbinfo->max_blocks - pages) > 0)
213 percpu_counter_add(&sbinfo->used_blocks, pages);
219 shmem_unacct_blocks(info->flags, pages);
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_sub(&sbinfo->used_blocks, pages);
230 shmem_unacct_blocks(info->flags, pages);
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
245 return vma->vm_ops == &shmem_anon_vm_ops;
248 bool vma_is_shmem(struct vm_area_struct *vma)
250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258 * produces a novel ino for the newly allocated inode.
260 * It may also be called when making a hard link to permit the space needed by
261 * each dentry. However, in that case, no new inode number is needed since that
262 * internally draws from another pool of inode numbers (currently global
263 * get_next_ino()). This case is indicated by passing NULL as inop.
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
271 if (!(sb->s_flags & SB_KERNMOUNT)) {
272 raw_spin_lock(&sbinfo->stat_lock);
273 if (sbinfo->max_inodes) {
274 if (!sbinfo->free_inodes) {
275 raw_spin_unlock(&sbinfo->stat_lock);
278 sbinfo->free_inodes--;
281 ino = sbinfo->next_ino++;
282 if (unlikely(is_zero_ino(ino)))
283 ino = sbinfo->next_ino++;
284 if (unlikely(!sbinfo->full_inums &&
287 * Emulate get_next_ino uint wraparound for
290 if (IS_ENABLED(CONFIG_64BIT))
291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 __func__, MINOR(sb->s_dev));
293 sbinfo->next_ino = 1;
294 ino = sbinfo->next_ino++;
298 raw_spin_unlock(&sbinfo->stat_lock);
301 * __shmem_file_setup, one of our callers, is lock-free: it
302 * doesn't hold stat_lock in shmem_reserve_inode since
303 * max_inodes is always 0, and is called from potentially
304 * unknown contexts. As such, use a per-cpu batched allocator
305 * which doesn't require the per-sb stat_lock unless we are at
306 * the batch boundary.
308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 * shmem mounts are not exposed to userspace, so we don't need
310 * to worry about things like glibc compatibility.
314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 raw_spin_lock(&sbinfo->stat_lock);
318 ino = sbinfo->next_ino;
319 sbinfo->next_ino += SHMEM_INO_BATCH;
320 raw_spin_unlock(&sbinfo->stat_lock);
321 if (unlikely(is_zero_ino(ino)))
332 static void shmem_free_inode(struct super_block *sb)
334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 if (sbinfo->max_inodes) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 sbinfo->free_inodes++;
338 raw_spin_unlock(&sbinfo->stat_lock);
343 * shmem_recalc_inode - recalculate the block usage of an inode
344 * @inode: inode to recalc
346 * We have to calculate the free blocks since the mm can drop
347 * undirtied hole pages behind our back.
349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
352 * It has to be called with the spinlock held.
354 static void shmem_recalc_inode(struct inode *inode)
356 struct shmem_inode_info *info = SHMEM_I(inode);
359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
361 info->alloced -= freed;
362 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 shmem_inode_unacct_blocks(inode, freed);
367 bool shmem_charge(struct inode *inode, long pages)
369 struct shmem_inode_info *info = SHMEM_I(inode);
372 if (!shmem_inode_acct_block(inode, pages))
375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 inode->i_mapping->nrpages += pages;
378 spin_lock_irqsave(&info->lock, flags);
379 info->alloced += pages;
380 inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 shmem_recalc_inode(inode);
382 spin_unlock_irqrestore(&info->lock, flags);
387 void shmem_uncharge(struct inode *inode, long pages)
389 struct shmem_inode_info *info = SHMEM_I(inode);
392 /* nrpages adjustment done by __filemap_remove_folio() or caller */
394 spin_lock_irqsave(&info->lock, flags);
395 info->alloced -= pages;
396 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 shmem_recalc_inode(inode);
398 spin_unlock_irqrestore(&info->lock, flags);
400 shmem_inode_unacct_blocks(inode, pages);
404 * Replace item expected in xarray by a new item, while holding xa_lock.
406 static int shmem_replace_entry(struct address_space *mapping,
407 pgoff_t index, void *expected, void *replacement)
409 XA_STATE(xas, &mapping->i_pages, index);
412 VM_BUG_ON(!expected);
413 VM_BUG_ON(!replacement);
414 item = xas_load(&xas);
415 if (item != expected)
417 xas_store(&xas, replacement);
422 * Sometimes, before we decide whether to proceed or to fail, we must check
423 * that an entry was not already brought back from swap by a racing thread.
425 * Checking page is not enough: by the time a SwapCache page is locked, it
426 * might be reused, and again be SwapCache, using the same swap as before.
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 pgoff_t index, swp_entry_t swap)
431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
438 * disables huge pages for the mount;
440 * enables huge pages for the mount;
441 * SHMEM_HUGE_WITHIN_SIZE:
442 * only allocate huge pages if the page will be fully within i_size,
443 * also respect fadvise()/madvise() hints;
445 * only allocate huge pages if requested with fadvise()/madvise();
448 #define SHMEM_HUGE_NEVER 0
449 #define SHMEM_HUGE_ALWAYS 1
450 #define SHMEM_HUGE_WITHIN_SIZE 2
451 #define SHMEM_HUGE_ADVISE 3
455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
458 * disables huge on shm_mnt and all mounts, for emergency use;
460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
463 #define SHMEM_HUGE_DENY (-1)
464 #define SHMEM_HUGE_FORCE (-2)
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
472 pgoff_t index, bool shmem_huge_force)
476 if (!S_ISREG(inode->i_mode))
478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
481 if (shmem_huge == SHMEM_HUGE_DENY)
483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
486 switch (SHMEM_SB(inode->i_sb)->huge) {
487 case SHMEM_HUGE_ALWAYS:
489 case SHMEM_HUGE_WITHIN_SIZE:
490 index = round_up(index + 1, HPAGE_PMD_NR);
491 i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 if (i_size >> PAGE_SHIFT >= index)
495 case SHMEM_HUGE_ADVISE:
496 if (vma && (vma->vm_flags & VM_HUGEPAGE))
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
507 if (!strcmp(str, "never"))
508 return SHMEM_HUGE_NEVER;
509 if (!strcmp(str, "always"))
510 return SHMEM_HUGE_ALWAYS;
511 if (!strcmp(str, "within_size"))
512 return SHMEM_HUGE_WITHIN_SIZE;
513 if (!strcmp(str, "advise"))
514 return SHMEM_HUGE_ADVISE;
515 if (!strcmp(str, "deny"))
516 return SHMEM_HUGE_DENY;
517 if (!strcmp(str, "force"))
518 return SHMEM_HUGE_FORCE;
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
527 case SHMEM_HUGE_NEVER:
529 case SHMEM_HUGE_ALWAYS:
531 case SHMEM_HUGE_WITHIN_SIZE:
532 return "within_size";
533 case SHMEM_HUGE_ADVISE:
535 case SHMEM_HUGE_DENY:
537 case SHMEM_HUGE_FORCE:
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 struct shrink_control *sc, unsigned long nr_to_split)
549 LIST_HEAD(list), *pos, *next;
550 LIST_HEAD(to_remove);
552 struct shmem_inode_info *info;
554 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 if (list_empty(&sbinfo->shrinklist))
560 spin_lock(&sbinfo->shrinklist_lock);
561 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 inode = igrab(&info->vfs_inode);
567 /* inode is about to be evicted */
569 list_del_init(&info->shrinklist);
573 /* Check if there's anything to gain */
574 if (round_up(inode->i_size, PAGE_SIZE) ==
575 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 list_move(&info->shrinklist, &to_remove);
580 list_move(&info->shrinklist, &list);
582 sbinfo->shrinklist_len--;
586 spin_unlock(&sbinfo->shrinklist_lock);
588 list_for_each_safe(pos, next, &to_remove) {
589 info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 inode = &info->vfs_inode;
591 list_del_init(&info->shrinklist);
595 list_for_each_safe(pos, next, &list) {
599 info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 inode = &info->vfs_inode;
602 if (nr_to_split && split >= nr_to_split)
605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 folio = filemap_get_folio(inode->i_mapping, index);
610 /* No huge page at the end of the file: nothing to split */
611 if (!folio_test_large(folio)) {
617 * Move the inode on the list back to shrinklist if we failed
618 * to lock the page at this time.
620 * Waiting for the lock may lead to deadlock in the
623 if (!folio_trylock(folio)) {
628 ret = split_folio(folio);
632 /* If split failed move the inode on the list back to shrinklist */
638 list_del_init(&info->shrinklist);
642 * Make sure the inode is either on the global list or deleted
643 * from any local list before iput() since it could be deleted
644 * in another thread once we put the inode (then the local list
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_move(&info->shrinklist, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len++;
650 spin_unlock(&sbinfo->shrinklist_lock);
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 struct shrink_control *sc)
661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 static long shmem_unused_huge_count(struct super_block *sb,
670 struct shrink_control *sc)
672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 return READ_ONCE(sbinfo->shrinklist_len);
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677 #define shmem_huge SHMEM_HUGE_DENY
679 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
680 pgoff_t index, bool shmem_huge_force)
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 struct shrink_control *sc, unsigned long nr_to_split)
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 * Like filemap_add_folio, but error if expected item has gone.
695 static int shmem_add_to_page_cache(struct folio *folio,
696 struct address_space *mapping,
697 pgoff_t index, void *expected, gfp_t gfp,
698 struct mm_struct *charge_mm)
700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 long nr = folio_nr_pages(folio);
704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 VM_BUG_ON(expected && folio_test_large(folio));
709 folio_ref_add(folio, nr);
710 folio->mapping = mapping;
711 folio->index = index;
713 if (!folio_test_swapcache(folio)) {
714 error = mem_cgroup_charge(folio, charge_mm, gfp);
716 if (folio_test_pmd_mappable(folio)) {
717 count_vm_event(THP_FILE_FALLBACK);
718 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 folio_throttle_swaprate(folio, gfp);
727 if (expected != xas_find_conflict(&xas)) {
728 xas_set_err(&xas, -EEXIST);
731 if (expected && xas_find_conflict(&xas)) {
732 xas_set_err(&xas, -EEXIST);
735 xas_store(&xas, folio);
738 if (folio_test_pmd_mappable(folio)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
742 mapping->nrpages += nr;
743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
756 folio->mapping = NULL;
757 folio_ref_sub(folio, nr);
762 * Like delete_from_page_cache, but substitutes swap for @folio.
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
766 struct address_space *mapping = folio->mapping;
767 long nr = folio_nr_pages(folio);
770 xa_lock_irq(&mapping->i_pages);
771 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 folio->mapping = NULL;
773 mapping->nrpages -= nr;
774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 xa_unlock_irq(&mapping->i_pages);
782 * Remove swap entry from page cache, free the swap and its page cache.
784 static int shmem_free_swap(struct address_space *mapping,
785 pgoff_t index, void *radswap)
789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792 free_swap_and_cache(radix_to_swp_entry(radswap));
797 * Determine (in bytes) how many of the shmem object's pages mapped by the
798 * given offsets are swapped out.
800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801 * as long as the inode doesn't go away and racy results are not a problem.
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 pgoff_t start, pgoff_t end)
806 XA_STATE(xas, &mapping->i_pages, start);
808 unsigned long swapped = 0;
811 xas_for_each(&xas, page, end - 1) {
812 if (xas_retry(&xas, page))
814 if (xa_is_value(page))
817 if (need_resched()) {
825 return swapped << PAGE_SHIFT;
829 * Determine (in bytes) how many of the shmem object's pages mapped by the
830 * given vma is swapped out.
832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833 * as long as the inode doesn't go away and racy results are not a problem.
835 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 struct inode *inode = file_inode(vma->vm_file);
838 struct shmem_inode_info *info = SHMEM_I(inode);
839 struct address_space *mapping = inode->i_mapping;
840 unsigned long swapped;
842 /* Be careful as we don't hold info->lock */
843 swapped = READ_ONCE(info->swapped);
846 * The easier cases are when the shmem object has nothing in swap, or
847 * the vma maps it whole. Then we can simply use the stats that we
853 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 return swapped << PAGE_SHIFT;
856 /* Here comes the more involved part */
857 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 vma->vm_pgoff + vma_pages(vma));
862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864 void shmem_unlock_mapping(struct address_space *mapping)
866 struct folio_batch fbatch;
869 folio_batch_init(&fbatch);
871 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 while (!mapping_unevictable(mapping) &&
874 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 check_move_unevictable_folios(&fbatch);
876 folio_batch_release(&fbatch);
881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 * beyond i_size, and reports fallocated pages as holes.
889 folio = __filemap_get_folio(inode->i_mapping, index,
890 FGP_ENTRY | FGP_LOCK, 0);
891 if (!xa_is_value(folio))
894 * But read a page back from swap if any of it is within i_size
895 * (although in some cases this is just a waste of time).
898 shmem_get_folio(inode, index, &folio, SGP_READ);
903 * Remove range of pages and swap entries from page cache, and free them.
904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
909 struct address_space *mapping = inode->i_mapping;
910 struct shmem_inode_info *info = SHMEM_I(inode);
911 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
912 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
913 struct folio_batch fbatch;
914 pgoff_t indices[PAGEVEC_SIZE];
917 long nr_swaps_freed = 0;
922 end = -1; /* unsigned, so actually very big */
924 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
925 info->fallocend = start;
927 folio_batch_init(&fbatch);
929 while (index < end && find_lock_entries(mapping, &index, end - 1,
931 for (i = 0; i < folio_batch_count(&fbatch); i++) {
932 folio = fbatch.folios[i];
934 if (xa_is_value(folio)) {
937 nr_swaps_freed += !shmem_free_swap(mapping,
942 if (!unfalloc || !folio_test_uptodate(folio))
943 truncate_inode_folio(mapping, folio);
946 folio_batch_remove_exceptionals(&fbatch);
947 folio_batch_release(&fbatch);
952 * When undoing a failed fallocate, we want none of the partial folio
953 * zeroing and splitting below, but shall want to truncate the whole
954 * folio when !uptodate indicates that it was added by this fallocate,
955 * even when [lstart, lend] covers only a part of the folio.
960 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 same_folio = lend < folio_pos(folio) + folio_size(folio);
964 folio_mark_dirty(folio);
965 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 start = folio->index + folio_nr_pages(folio);
976 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 folio_mark_dirty(folio);
979 if (!truncate_inode_partial_folio(folio, lstart, lend))
988 while (index < end) {
991 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
993 /* If all gone or hole-punch or unfalloc, we're done */
994 if (index == start || end != -1)
996 /* But if truncating, restart to make sure all gone */
1000 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001 folio = fbatch.folios[i];
1003 if (xa_is_value(folio)) {
1006 if (shmem_free_swap(mapping, indices[i], folio)) {
1007 /* Swap was replaced by page: retry */
1017 if (!unfalloc || !folio_test_uptodate(folio)) {
1018 if (folio_mapping(folio) != mapping) {
1019 /* Page was replaced by swap: retry */
1020 folio_unlock(folio);
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1026 truncate_inode_folio(mapping, folio);
1028 folio_unlock(folio);
1030 folio_batch_remove_exceptionals(&fbatch);
1031 folio_batch_release(&fbatch);
1034 spin_lock_irq(&info->lock);
1035 info->swapped -= nr_swaps_freed;
1036 shmem_recalc_inode(inode);
1037 spin_unlock_irq(&info->lock);
1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 shmem_undo_range(inode, lstart, lend, false);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 inode_inc_iversion(inode);
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 static int shmem_getattr(struct mnt_idmap *idmap,
1049 const struct path *path, struct kstat *stat,
1050 u32 request_mask, unsigned int query_flags)
1052 struct inode *inode = path->dentry->d_inode;
1053 struct shmem_inode_info *info = SHMEM_I(inode);
1055 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 spin_lock_irq(&info->lock);
1057 shmem_recalc_inode(inode);
1058 spin_unlock_irq(&info->lock);
1060 if (info->fsflags & FS_APPEND_FL)
1061 stat->attributes |= STATX_ATTR_APPEND;
1062 if (info->fsflags & FS_IMMUTABLE_FL)
1063 stat->attributes |= STATX_ATTR_IMMUTABLE;
1064 if (info->fsflags & FS_NODUMP_FL)
1065 stat->attributes |= STATX_ATTR_NODUMP;
1066 stat->attributes_mask |= (STATX_ATTR_APPEND |
1067 STATX_ATTR_IMMUTABLE |
1069 generic_fillattr(idmap, inode, stat);
1071 if (shmem_is_huge(NULL, inode, 0, false))
1072 stat->blksize = HPAGE_PMD_SIZE;
1074 if (request_mask & STATX_BTIME) {
1075 stat->result_mask |= STATX_BTIME;
1076 stat->btime.tv_sec = info->i_crtime.tv_sec;
1077 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1083 static int shmem_setattr(struct mnt_idmap *idmap,
1084 struct dentry *dentry, struct iattr *attr)
1086 struct inode *inode = d_inode(dentry);
1087 struct shmem_inode_info *info = SHMEM_I(inode);
1089 bool update_mtime = false;
1090 bool update_ctime = true;
1092 error = setattr_prepare(idmap, dentry, attr);
1096 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097 loff_t oldsize = inode->i_size;
1098 loff_t newsize = attr->ia_size;
1100 /* protected by i_rwsem */
1101 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1105 if (newsize != oldsize) {
1106 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110 i_size_write(inode, newsize);
1111 update_mtime = true;
1113 update_ctime = false;
1115 if (newsize <= oldsize) {
1116 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117 if (oldsize > holebegin)
1118 unmap_mapping_range(inode->i_mapping,
1121 shmem_truncate_range(inode,
1122 newsize, (loff_t)-1);
1123 /* unmap again to remove racily COWed private pages */
1124 if (oldsize > holebegin)
1125 unmap_mapping_range(inode->i_mapping,
1130 setattr_copy(idmap, inode, attr);
1131 if (attr->ia_valid & ATTR_MODE)
1132 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1133 if (!error && update_ctime) {
1134 inode->i_ctime = current_time(inode);
1136 inode->i_mtime = inode->i_ctime;
1137 inode_inc_iversion(inode);
1142 static void shmem_evict_inode(struct inode *inode)
1144 struct shmem_inode_info *info = SHMEM_I(inode);
1145 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1147 if (shmem_mapping(inode->i_mapping)) {
1148 shmem_unacct_size(info->flags, inode->i_size);
1150 mapping_set_exiting(inode->i_mapping);
1151 shmem_truncate_range(inode, 0, (loff_t)-1);
1152 if (!list_empty(&info->shrinklist)) {
1153 spin_lock(&sbinfo->shrinklist_lock);
1154 if (!list_empty(&info->shrinklist)) {
1155 list_del_init(&info->shrinklist);
1156 sbinfo->shrinklist_len--;
1158 spin_unlock(&sbinfo->shrinklist_lock);
1160 while (!list_empty(&info->swaplist)) {
1161 /* Wait while shmem_unuse() is scanning this inode... */
1162 wait_var_event(&info->stop_eviction,
1163 !atomic_read(&info->stop_eviction));
1164 mutex_lock(&shmem_swaplist_mutex);
1165 /* ...but beware of the race if we peeked too early */
1166 if (!atomic_read(&info->stop_eviction))
1167 list_del_init(&info->swaplist);
1168 mutex_unlock(&shmem_swaplist_mutex);
1172 simple_xattrs_free(&info->xattrs);
1173 WARN_ON(inode->i_blocks);
1174 shmem_free_inode(inode->i_sb);
1178 static int shmem_find_swap_entries(struct address_space *mapping,
1179 pgoff_t start, struct folio_batch *fbatch,
1180 pgoff_t *indices, unsigned int type)
1182 XA_STATE(xas, &mapping->i_pages, start);
1183 struct folio *folio;
1187 xas_for_each(&xas, folio, ULONG_MAX) {
1188 if (xas_retry(&xas, folio))
1191 if (!xa_is_value(folio))
1194 entry = radix_to_swp_entry(folio);
1196 * swapin error entries can be found in the mapping. But they're
1197 * deliberately ignored here as we've done everything we can do.
1199 if (swp_type(entry) != type)
1202 indices[folio_batch_count(fbatch)] = xas.xa_index;
1203 if (!folio_batch_add(fbatch, folio))
1206 if (need_resched()) {
1213 return xas.xa_index;
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1220 static int shmem_unuse_swap_entries(struct inode *inode,
1221 struct folio_batch *fbatch, pgoff_t *indices)
1226 struct address_space *mapping = inode->i_mapping;
1228 for (i = 0; i < folio_batch_count(fbatch); i++) {
1229 struct folio *folio = fbatch->folios[i];
1231 if (!xa_is_value(folio))
1233 error = shmem_swapin_folio(inode, indices[i],
1235 mapping_gfp_mask(mapping),
1238 folio_unlock(folio);
1242 if (error == -ENOMEM)
1246 return error ? error : ret;
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1252 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1254 struct address_space *mapping = inode->i_mapping;
1256 struct folio_batch fbatch;
1257 pgoff_t indices[PAGEVEC_SIZE];
1261 folio_batch_init(&fbatch);
1262 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263 if (folio_batch_count(&fbatch) == 0) {
1268 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1272 start = indices[folio_batch_count(&fbatch) - 1];
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1283 int shmem_unuse(unsigned int type)
1285 struct shmem_inode_info *info, *next;
1288 if (list_empty(&shmem_swaplist))
1291 mutex_lock(&shmem_swaplist_mutex);
1292 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293 if (!info->swapped) {
1294 list_del_init(&info->swaplist);
1298 * Drop the swaplist mutex while searching the inode for swap;
1299 * but before doing so, make sure shmem_evict_inode() will not
1300 * remove placeholder inode from swaplist, nor let it be freed
1301 * (igrab() would protect from unlink, but not from unmount).
1303 atomic_inc(&info->stop_eviction);
1304 mutex_unlock(&shmem_swaplist_mutex);
1306 error = shmem_unuse_inode(&info->vfs_inode, type);
1309 mutex_lock(&shmem_swaplist_mutex);
1310 next = list_next_entry(info, swaplist);
1312 list_del_init(&info->swaplist);
1313 if (atomic_dec_and_test(&info->stop_eviction))
1314 wake_up_var(&info->stop_eviction);
1318 mutex_unlock(&shmem_swaplist_mutex);
1324 * Move the page from the page cache to the swap cache.
1326 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1328 struct folio *folio = page_folio(page);
1329 struct shmem_inode_info *info;
1330 struct address_space *mapping;
1331 struct inode *inode;
1336 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338 * and its shmem_writeback() needs them to be split when swapping.
1340 if (folio_test_large(folio)) {
1341 /* Ensure the subpages are still dirty */
1342 folio_test_set_dirty(folio);
1343 if (split_huge_page(page) < 0)
1345 folio = page_folio(page);
1346 folio_clear_dirty(folio);
1349 BUG_ON(!folio_test_locked(folio));
1350 mapping = folio->mapping;
1351 index = folio->index;
1352 inode = mapping->host;
1353 info = SHMEM_I(inode);
1354 if (info->flags & VM_LOCKED)
1356 if (!total_swap_pages)
1360 * Our capabilities prevent regular writeback or sync from ever calling
1361 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362 * its underlying filesystem, in which case tmpfs should write out to
1363 * swap only in response to memory pressure, and not for the writeback
1366 if (!wbc->for_reclaim) {
1367 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1372 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373 * value into swapfile.c, the only way we can correctly account for a
1374 * fallocated folio arriving here is now to initialize it and write it.
1376 * That's okay for a folio already fallocated earlier, but if we have
1377 * not yet completed the fallocation, then (a) we want to keep track
1378 * of this folio in case we have to undo it, and (b) it may not be a
1379 * good idea to continue anyway, once we're pushing into swap. So
1380 * reactivate the folio, and let shmem_fallocate() quit when too many.
1382 if (!folio_test_uptodate(folio)) {
1383 if (inode->i_private) {
1384 struct shmem_falloc *shmem_falloc;
1385 spin_lock(&inode->i_lock);
1386 shmem_falloc = inode->i_private;
1388 !shmem_falloc->waitq &&
1389 index >= shmem_falloc->start &&
1390 index < shmem_falloc->next)
1391 shmem_falloc->nr_unswapped++;
1393 shmem_falloc = NULL;
1394 spin_unlock(&inode->i_lock);
1398 folio_zero_range(folio, 0, folio_size(folio));
1399 flush_dcache_folio(folio);
1400 folio_mark_uptodate(folio);
1403 swap = folio_alloc_swap(folio);
1408 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409 * if it's not already there. Do it now before the folio is
1410 * moved to swap cache, when its pagelock no longer protects
1411 * the inode from eviction. But don't unlock the mutex until
1412 * we've incremented swapped, because shmem_unuse_inode() will
1413 * prune a !swapped inode from the swaplist under this mutex.
1415 mutex_lock(&shmem_swaplist_mutex);
1416 if (list_empty(&info->swaplist))
1417 list_add(&info->swaplist, &shmem_swaplist);
1419 if (add_to_swap_cache(folio, swap,
1420 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1422 spin_lock_irq(&info->lock);
1423 shmem_recalc_inode(inode);
1425 spin_unlock_irq(&info->lock);
1427 swap_shmem_alloc(swap);
1428 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1430 mutex_unlock(&shmem_swaplist_mutex);
1431 BUG_ON(folio_mapped(folio));
1432 swap_writepage(&folio->page, wbc);
1436 mutex_unlock(&shmem_swaplist_mutex);
1437 put_swap_folio(folio, swap);
1439 folio_mark_dirty(folio);
1440 if (wbc->for_reclaim)
1441 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1442 folio_unlock(folio);
1446 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1451 if (!mpol || mpol->mode == MPOL_DEFAULT)
1452 return; /* show nothing */
1454 mpol_to_str(buffer, sizeof(buffer), mpol);
1456 seq_printf(seq, ",mpol=%s", buffer);
1459 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1461 struct mempolicy *mpol = NULL;
1463 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1464 mpol = sbinfo->mpol;
1466 raw_spin_unlock(&sbinfo->stat_lock);
1470 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1474 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1478 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1480 #define vm_policy vm_private_data
1483 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484 struct shmem_inode_info *info, pgoff_t index)
1486 /* Create a pseudo vma that just contains the policy */
1487 vma_init(vma, NULL);
1488 /* Bias interleave by inode number to distribute better across nodes */
1489 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1493 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1495 /* Drop reference taken by mpol_shared_policy_lookup() */
1496 mpol_cond_put(vma->vm_policy);
1499 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500 struct shmem_inode_info *info, pgoff_t index)
1502 struct vm_area_struct pvma;
1504 struct vm_fault vmf = {
1508 shmem_pseudo_vma_init(&pvma, info, index);
1509 page = swap_cluster_readahead(swap, gfp, &vmf);
1510 shmem_pseudo_vma_destroy(&pvma);
1514 return page_folio(page);
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1521 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1523 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1528 /* Allow allocations only from the originally specified zones. */
1529 result |= zoneflags;
1532 * Minimize the result gfp by taking the union with the deny flags,
1533 * and the intersection of the allow flags.
1535 result |= (limit_gfp & denyflags);
1536 result |= (huge_gfp & limit_gfp) & allowflags;
1541 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1544 struct vm_area_struct pvma;
1545 struct address_space *mapping = info->vfs_inode.i_mapping;
1547 struct folio *folio;
1549 hindex = round_down(index, HPAGE_PMD_NR);
1550 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1554 shmem_pseudo_vma_init(&pvma, info, hindex);
1555 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1556 shmem_pseudo_vma_destroy(&pvma);
1558 count_vm_event(THP_FILE_FALLBACK);
1562 static struct folio *shmem_alloc_folio(gfp_t gfp,
1563 struct shmem_inode_info *info, pgoff_t index)
1565 struct vm_area_struct pvma;
1566 struct folio *folio;
1568 shmem_pseudo_vma_init(&pvma, info, index);
1569 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570 shmem_pseudo_vma_destroy(&pvma);
1575 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1576 pgoff_t index, bool huge)
1578 struct shmem_inode_info *info = SHMEM_I(inode);
1579 struct folio *folio;
1583 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1585 nr = huge ? HPAGE_PMD_NR : 1;
1587 if (!shmem_inode_acct_block(inode, nr))
1591 folio = shmem_alloc_hugefolio(gfp, info, index);
1593 folio = shmem_alloc_folio(gfp, info, index);
1595 __folio_set_locked(folio);
1596 __folio_set_swapbacked(folio);
1601 shmem_inode_unacct_blocks(inode, nr);
1603 return ERR_PTR(err);
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to. If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1618 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1620 return folio_zonenum(folio) > gfp_zone(gfp);
1623 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624 struct shmem_inode_info *info, pgoff_t index)
1626 struct folio *old, *new;
1627 struct address_space *swap_mapping;
1633 entry = folio_swap_entry(old);
1634 swap_index = swp_offset(entry);
1635 swap_mapping = swap_address_space(entry);
1638 * We have arrived here because our zones are constrained, so don't
1639 * limit chance of success by further cpuset and node constraints.
1641 gfp &= ~GFP_CONSTRAINT_MASK;
1642 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643 new = shmem_alloc_folio(gfp, info, index);
1648 folio_copy(new, old);
1649 flush_dcache_folio(new);
1651 __folio_set_locked(new);
1652 __folio_set_swapbacked(new);
1653 folio_mark_uptodate(new);
1654 folio_set_swap_entry(new, entry);
1655 folio_set_swapcache(new);
1658 * Our caller will very soon move newpage out of swapcache, but it's
1659 * a nice clean interface for us to replace oldpage by newpage there.
1661 xa_lock_irq(&swap_mapping->i_pages);
1662 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1664 mem_cgroup_migrate(old, new);
1665 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1670 xa_unlock_irq(&swap_mapping->i_pages);
1672 if (unlikely(error)) {
1674 * Is this possible? I think not, now that our callers check
1675 * both PageSwapCache and page_private after getting page lock;
1676 * but be defensive. Reverse old to newpage for clear and free.
1684 folio_clear_swapcache(old);
1685 old->private = NULL;
1688 folio_put_refs(old, 2);
1692 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693 struct folio *folio, swp_entry_t swap)
1695 struct address_space *mapping = inode->i_mapping;
1696 struct shmem_inode_info *info = SHMEM_I(inode);
1697 swp_entry_t swapin_error;
1700 swapin_error = make_swapin_error_entry();
1701 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702 swp_to_radix_entry(swap),
1703 swp_to_radix_entry(swapin_error), 0);
1704 if (old != swp_to_radix_entry(swap))
1707 folio_wait_writeback(folio);
1708 delete_from_swap_cache(folio);
1709 spin_lock_irq(&info->lock);
1711 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713 * shmem_evict_inode.
1717 shmem_recalc_inode(inode);
1718 spin_unlock_irq(&info->lock);
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1728 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729 struct folio **foliop, enum sgp_type sgp,
1730 gfp_t gfp, struct vm_area_struct *vma,
1731 vm_fault_t *fault_type)
1733 struct address_space *mapping = inode->i_mapping;
1734 struct shmem_inode_info *info = SHMEM_I(inode);
1735 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736 struct folio *folio = NULL;
1740 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741 swap = radix_to_swp_entry(*foliop);
1744 if (is_swapin_error_entry(swap))
1747 /* Look it up and read it in.. */
1748 folio = swap_cache_get_folio(swap, NULL, 0);
1750 /* Or update major stats only when swapin succeeds?? */
1752 *fault_type |= VM_FAULT_MAJOR;
1753 count_vm_event(PGMAJFAULT);
1754 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1756 /* Here we actually start the io */
1757 folio = shmem_swapin(swap, gfp, info, index);
1764 /* We have to do this with folio locked to prevent races */
1766 if (!folio_test_swapcache(folio) ||
1767 folio_swap_entry(folio).val != swap.val ||
1768 !shmem_confirm_swap(mapping, index, swap)) {
1772 if (!folio_test_uptodate(folio)) {
1776 folio_wait_writeback(folio);
1779 * Some architectures may have to restore extra metadata to the
1780 * folio after reading from swap.
1782 arch_swap_restore(swap, folio);
1784 if (shmem_should_replace_folio(folio, gfp)) {
1785 error = shmem_replace_folio(&folio, gfp, info, index);
1790 error = shmem_add_to_page_cache(folio, mapping, index,
1791 swp_to_radix_entry(swap), gfp,
1796 spin_lock_irq(&info->lock);
1798 shmem_recalc_inode(inode);
1799 spin_unlock_irq(&info->lock);
1801 if (sgp == SGP_WRITE)
1802 folio_mark_accessed(folio);
1804 delete_from_swap_cache(folio);
1805 folio_mark_dirty(folio);
1811 if (!shmem_confirm_swap(mapping, index, swap))
1814 shmem_set_folio_swapin_error(inode, index, folio, swap);
1817 folio_unlock(folio);
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1834 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836 struct vm_area_struct *vma, struct vm_fault *vmf,
1837 vm_fault_t *fault_type)
1839 struct address_space *mapping = inode->i_mapping;
1840 struct shmem_inode_info *info = SHMEM_I(inode);
1841 struct shmem_sb_info *sbinfo;
1842 struct mm_struct *charge_mm;
1843 struct folio *folio;
1850 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1853 if (sgp <= SGP_CACHE &&
1854 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1858 sbinfo = SHMEM_SB(inode->i_sb);
1859 charge_mm = vma ? vma->vm_mm : NULL;
1861 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862 if (folio && vma && userfaultfd_minor(vma)) {
1863 if (!xa_is_value(folio)) {
1864 folio_unlock(folio);
1867 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1871 if (xa_is_value(folio)) {
1872 error = shmem_swapin_folio(inode, index, &folio,
1873 sgp, gfp, vma, fault_type);
1874 if (error == -EEXIST)
1882 if (sgp == SGP_WRITE)
1883 folio_mark_accessed(folio);
1884 if (folio_test_uptodate(folio))
1886 /* fallocated folio */
1887 if (sgp != SGP_READ)
1889 folio_unlock(folio);
1894 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1898 if (sgp == SGP_READ)
1900 if (sgp == SGP_NOALLOC)
1904 * Fast cache lookup and swap lookup did not find it: allocate.
1907 if (vma && userfaultfd_missing(vma)) {
1908 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1912 if (!shmem_is_huge(vma, inode, index, false))
1915 huge_gfp = vma_thp_gfp_mask(vma);
1916 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918 if (IS_ERR(folio)) {
1920 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1922 if (IS_ERR(folio)) {
1925 error = PTR_ERR(folio);
1927 if (error != -ENOSPC)
1930 * Try to reclaim some space by splitting a large folio
1931 * beyond i_size on the filesystem.
1936 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937 if (ret == SHRINK_STOP)
1945 hindex = round_down(index, folio_nr_pages(folio));
1947 if (sgp == SGP_WRITE)
1948 __folio_set_referenced(folio);
1950 error = shmem_add_to_page_cache(folio, mapping, hindex,
1951 NULL, gfp & GFP_RECLAIM_MASK,
1955 folio_add_lru(folio);
1957 spin_lock_irq(&info->lock);
1958 info->alloced += folio_nr_pages(folio);
1959 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960 shmem_recalc_inode(inode);
1961 spin_unlock_irq(&info->lock);
1964 if (folio_test_pmd_mappable(folio) &&
1965 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966 folio_next_index(folio) - 1) {
1968 * Part of the large folio is beyond i_size: subject
1969 * to shrink under memory pressure.
1971 spin_lock(&sbinfo->shrinklist_lock);
1973 * _careful to defend against unlocked access to
1974 * ->shrink_list in shmem_unused_huge_shrink()
1976 if (list_empty_careful(&info->shrinklist)) {
1977 list_add_tail(&info->shrinklist,
1978 &sbinfo->shrinklist);
1979 sbinfo->shrinklist_len++;
1981 spin_unlock(&sbinfo->shrinklist_lock);
1985 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1987 if (sgp == SGP_FALLOC)
1991 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993 * it now, lest undo on failure cancel our earlier guarantee.
1995 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996 long i, n = folio_nr_pages(folio);
1998 for (i = 0; i < n; i++)
1999 clear_highpage(folio_page(folio, i));
2000 flush_dcache_folio(folio);
2001 folio_mark_uptodate(folio);
2004 /* Perhaps the file has been truncated since we checked */
2005 if (sgp <= SGP_CACHE &&
2006 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2008 folio_clear_dirty(folio);
2009 filemap_remove_folio(folio);
2010 spin_lock_irq(&info->lock);
2011 shmem_recalc_inode(inode);
2012 spin_unlock_irq(&info->lock);
2025 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2027 if (folio_test_large(folio)) {
2028 folio_unlock(folio);
2034 folio_unlock(folio);
2037 if (error == -ENOSPC && !once++) {
2038 spin_lock_irq(&info->lock);
2039 shmem_recalc_inode(inode);
2040 spin_unlock_irq(&info->lock);
2043 if (error == -EEXIST)
2048 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2051 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2060 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2062 int ret = default_wake_function(wait, mode, sync, key);
2063 list_del_init(&wait->entry);
2067 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2069 struct vm_area_struct *vma = vmf->vma;
2070 struct inode *inode = file_inode(vma->vm_file);
2071 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072 struct folio *folio = NULL;
2074 vm_fault_t ret = VM_FAULT_LOCKED;
2077 * Trinity finds that probing a hole which tmpfs is punching can
2078 * prevent the hole-punch from ever completing: which in turn
2079 * locks writers out with its hold on i_rwsem. So refrain from
2080 * faulting pages into the hole while it's being punched. Although
2081 * shmem_undo_range() does remove the additions, it may be unable to
2082 * keep up, as each new page needs its own unmap_mapping_range() call,
2083 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2085 * It does not matter if we sometimes reach this check just before the
2086 * hole-punch begins, so that one fault then races with the punch:
2087 * we just need to make racing faults a rare case.
2089 * The implementation below would be much simpler if we just used a
2090 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091 * and bloating every shmem inode for this unlikely case would be sad.
2093 if (unlikely(inode->i_private)) {
2094 struct shmem_falloc *shmem_falloc;
2096 spin_lock(&inode->i_lock);
2097 shmem_falloc = inode->i_private;
2099 shmem_falloc->waitq &&
2100 vmf->pgoff >= shmem_falloc->start &&
2101 vmf->pgoff < shmem_falloc->next) {
2103 wait_queue_head_t *shmem_falloc_waitq;
2104 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2106 ret = VM_FAULT_NOPAGE;
2107 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2109 ret = VM_FAULT_RETRY;
2111 shmem_falloc_waitq = shmem_falloc->waitq;
2112 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113 TASK_UNINTERRUPTIBLE);
2114 spin_unlock(&inode->i_lock);
2118 * shmem_falloc_waitq points into the shmem_fallocate()
2119 * stack of the hole-punching task: shmem_falloc_waitq
2120 * is usually invalid by the time we reach here, but
2121 * finish_wait() does not dereference it in that case;
2122 * though i_lock needed lest racing with wake_up_all().
2124 spin_lock(&inode->i_lock);
2125 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126 spin_unlock(&inode->i_lock);
2132 spin_unlock(&inode->i_lock);
2135 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2136 gfp, vma, vmf, &ret);
2138 return vmf_error(err);
2140 vmf->page = folio_file_page(folio, vmf->pgoff);
2144 unsigned long shmem_get_unmapped_area(struct file *file,
2145 unsigned long uaddr, unsigned long len,
2146 unsigned long pgoff, unsigned long flags)
2148 unsigned long (*get_area)(struct file *,
2149 unsigned long, unsigned long, unsigned long, unsigned long);
2151 unsigned long offset;
2152 unsigned long inflated_len;
2153 unsigned long inflated_addr;
2154 unsigned long inflated_offset;
2156 if (len > TASK_SIZE)
2159 get_area = current->mm->get_unmapped_area;
2160 addr = get_area(file, uaddr, len, pgoff, flags);
2162 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2164 if (IS_ERR_VALUE(addr))
2166 if (addr & ~PAGE_MASK)
2168 if (addr > TASK_SIZE - len)
2171 if (shmem_huge == SHMEM_HUGE_DENY)
2173 if (len < HPAGE_PMD_SIZE)
2175 if (flags & MAP_FIXED)
2178 * Our priority is to support MAP_SHARED mapped hugely;
2179 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180 * But if caller specified an address hint and we allocated area there
2181 * successfully, respect that as before.
2186 if (shmem_huge != SHMEM_HUGE_FORCE) {
2187 struct super_block *sb;
2190 VM_BUG_ON(file->f_op != &shmem_file_operations);
2191 sb = file_inode(file)->i_sb;
2194 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195 * for "/dev/zero", to create a shared anonymous object.
2197 if (IS_ERR(shm_mnt))
2199 sb = shm_mnt->mnt_sb;
2201 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2205 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2208 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2211 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212 if (inflated_len > TASK_SIZE)
2214 if (inflated_len < len)
2217 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218 if (IS_ERR_VALUE(inflated_addr))
2220 if (inflated_addr & ~PAGE_MASK)
2223 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224 inflated_addr += offset - inflated_offset;
2225 if (inflated_offset > offset)
2226 inflated_addr += HPAGE_PMD_SIZE;
2228 if (inflated_addr > TASK_SIZE - len)
2230 return inflated_addr;
2234 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2236 struct inode *inode = file_inode(vma->vm_file);
2237 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2240 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2243 struct inode *inode = file_inode(vma->vm_file);
2246 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2251 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2253 struct inode *inode = file_inode(file);
2254 struct shmem_inode_info *info = SHMEM_I(inode);
2255 int retval = -ENOMEM;
2258 * What serializes the accesses to info->flags?
2259 * ipc_lock_object() when called from shmctl_do_lock(),
2260 * no serialization needed when called from shm_destroy().
2262 if (lock && !(info->flags & VM_LOCKED)) {
2263 if (!user_shm_lock(inode->i_size, ucounts))
2265 info->flags |= VM_LOCKED;
2266 mapping_set_unevictable(file->f_mapping);
2268 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269 user_shm_unlock(inode->i_size, ucounts);
2270 info->flags &= ~VM_LOCKED;
2271 mapping_clear_unevictable(file->f_mapping);
2279 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2281 struct inode *inode = file_inode(file);
2282 struct shmem_inode_info *info = SHMEM_I(inode);
2285 ret = seal_check_future_write(info->seals, vma);
2289 /* arm64 - allow memory tagging on RAM-based files */
2290 vma->vm_flags |= VM_MTE_ALLOWED;
2292 file_accessed(file);
2293 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2295 vma->vm_ops = &shmem_vm_ops;
2297 vma->vm_ops = &shmem_anon_vm_ops;
2301 #ifdef CONFIG_TMPFS_XATTR
2302 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2308 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2310 unsigned int i_flags = 0;
2312 if (fsflags & FS_NOATIME_FL)
2313 i_flags |= S_NOATIME;
2314 if (fsflags & FS_APPEND_FL)
2315 i_flags |= S_APPEND;
2316 if (fsflags & FS_IMMUTABLE_FL)
2317 i_flags |= S_IMMUTABLE;
2319 * But FS_NODUMP_FL does not require any action in i_flags.
2321 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2324 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2327 #define shmem_initxattrs NULL
2330 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2331 struct inode *dir, umode_t mode, dev_t dev,
2332 unsigned long flags)
2334 struct inode *inode;
2335 struct shmem_inode_info *info;
2336 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2339 if (shmem_reserve_inode(sb, &ino))
2342 inode = new_inode(sb);
2345 inode_init_owner(idmap, inode, dir, mode);
2346 inode->i_blocks = 0;
2347 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2348 inode->i_generation = get_random_u32();
2349 info = SHMEM_I(inode);
2350 memset(info, 0, (char *)inode - (char *)info);
2351 spin_lock_init(&info->lock);
2352 atomic_set(&info->stop_eviction, 0);
2353 info->seals = F_SEAL_SEAL;
2354 info->flags = flags & VM_NORESERVE;
2355 info->i_crtime = inode->i_mtime;
2356 info->fsflags = (dir == NULL) ? 0 :
2357 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2359 shmem_set_inode_flags(inode, info->fsflags);
2360 INIT_LIST_HEAD(&info->shrinklist);
2361 INIT_LIST_HEAD(&info->swaplist);
2362 simple_xattrs_init(&info->xattrs);
2363 cache_no_acl(inode);
2364 mapping_set_large_folios(inode->i_mapping);
2366 switch (mode & S_IFMT) {
2368 inode->i_op = &shmem_special_inode_operations;
2369 init_special_inode(inode, mode, dev);
2372 inode->i_mapping->a_ops = &shmem_aops;
2373 inode->i_op = &shmem_inode_operations;
2374 inode->i_fop = &shmem_file_operations;
2375 mpol_shared_policy_init(&info->policy,
2376 shmem_get_sbmpol(sbinfo));
2380 /* Some things misbehave if size == 0 on a directory */
2381 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2382 inode->i_op = &shmem_dir_inode_operations;
2383 inode->i_fop = &simple_dir_operations;
2387 * Must not load anything in the rbtree,
2388 * mpol_free_shared_policy will not be called.
2390 mpol_shared_policy_init(&info->policy, NULL);
2394 lockdep_annotate_inode_mutex_key(inode);
2396 shmem_free_inode(sb);
2400 #ifdef CONFIG_USERFAULTFD
2401 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2403 struct vm_area_struct *dst_vma,
2404 unsigned long dst_addr,
2405 unsigned long src_addr,
2406 bool zeropage, bool wp_copy,
2407 struct page **pagep)
2409 struct inode *inode = file_inode(dst_vma->vm_file);
2410 struct shmem_inode_info *info = SHMEM_I(inode);
2411 struct address_space *mapping = inode->i_mapping;
2412 gfp_t gfp = mapping_gfp_mask(mapping);
2413 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2415 struct folio *folio;
2419 if (!shmem_inode_acct_block(inode, 1)) {
2421 * We may have got a page, returned -ENOENT triggering a retry,
2422 * and now we find ourselves with -ENOMEM. Release the page, to
2423 * avoid a BUG_ON in our caller.
2425 if (unlikely(*pagep)) {
2434 folio = shmem_alloc_folio(gfp, info, pgoff);
2436 goto out_unacct_blocks;
2438 if (!zeropage) { /* COPY */
2439 page_kaddr = kmap_local_folio(folio, 0);
2441 * The read mmap_lock is held here. Despite the
2442 * mmap_lock being read recursive a deadlock is still
2443 * possible if a writer has taken a lock. For example:
2445 * process A thread 1 takes read lock on own mmap_lock
2446 * process A thread 2 calls mmap, blocks taking write lock
2447 * process B thread 1 takes page fault, read lock on own mmap lock
2448 * process B thread 2 calls mmap, blocks taking write lock
2449 * process A thread 1 blocks taking read lock on process B
2450 * process B thread 1 blocks taking read lock on process A
2452 * Disable page faults to prevent potential deadlock
2453 * and retry the copy outside the mmap_lock.
2455 pagefault_disable();
2456 ret = copy_from_user(page_kaddr,
2457 (const void __user *)src_addr,
2460 kunmap_local(page_kaddr);
2462 /* fallback to copy_from_user outside mmap_lock */
2463 if (unlikely(ret)) {
2464 *pagep = &folio->page;
2466 /* don't free the page */
2467 goto out_unacct_blocks;
2470 flush_dcache_folio(folio);
2471 } else { /* ZEROPAGE */
2472 clear_user_highpage(&folio->page, dst_addr);
2475 folio = page_folio(*pagep);
2476 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2480 VM_BUG_ON(folio_test_locked(folio));
2481 VM_BUG_ON(folio_test_swapbacked(folio));
2482 __folio_set_locked(folio);
2483 __folio_set_swapbacked(folio);
2484 __folio_mark_uptodate(folio);
2487 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2488 if (unlikely(pgoff >= max_off))
2491 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2492 gfp & GFP_RECLAIM_MASK, dst_mm);
2496 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2497 &folio->page, true, wp_copy);
2499 goto out_delete_from_cache;
2501 spin_lock_irq(&info->lock);
2503 inode->i_blocks += BLOCKS_PER_PAGE;
2504 shmem_recalc_inode(inode);
2505 spin_unlock_irq(&info->lock);
2507 folio_unlock(folio);
2509 out_delete_from_cache:
2510 filemap_remove_folio(folio);
2512 folio_unlock(folio);
2515 shmem_inode_unacct_blocks(inode, 1);
2518 #endif /* CONFIG_USERFAULTFD */
2521 static const struct inode_operations shmem_symlink_inode_operations;
2522 static const struct inode_operations shmem_short_symlink_operations;
2525 shmem_write_begin(struct file *file, struct address_space *mapping,
2526 loff_t pos, unsigned len,
2527 struct page **pagep, void **fsdata)
2529 struct inode *inode = mapping->host;
2530 struct shmem_inode_info *info = SHMEM_I(inode);
2531 pgoff_t index = pos >> PAGE_SHIFT;
2532 struct folio *folio;
2535 /* i_rwsem is held by caller */
2536 if (unlikely(info->seals & (F_SEAL_GROW |
2537 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2538 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2540 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2544 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2549 *pagep = folio_file_page(folio, index);
2550 if (PageHWPoison(*pagep)) {
2551 folio_unlock(folio);
2561 shmem_write_end(struct file *file, struct address_space *mapping,
2562 loff_t pos, unsigned len, unsigned copied,
2563 struct page *page, void *fsdata)
2565 struct inode *inode = mapping->host;
2567 if (pos + copied > inode->i_size)
2568 i_size_write(inode, pos + copied);
2570 if (!PageUptodate(page)) {
2571 struct page *head = compound_head(page);
2572 if (PageTransCompound(page)) {
2575 for (i = 0; i < HPAGE_PMD_NR; i++) {
2576 if (head + i == page)
2578 clear_highpage(head + i);
2579 flush_dcache_page(head + i);
2582 if (copied < PAGE_SIZE) {
2583 unsigned from = pos & (PAGE_SIZE - 1);
2584 zero_user_segments(page, 0, from,
2585 from + copied, PAGE_SIZE);
2587 SetPageUptodate(head);
2589 set_page_dirty(page);
2596 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2598 struct file *file = iocb->ki_filp;
2599 struct inode *inode = file_inode(file);
2600 struct address_space *mapping = inode->i_mapping;
2602 unsigned long offset;
2605 loff_t *ppos = &iocb->ki_pos;
2607 index = *ppos >> PAGE_SHIFT;
2608 offset = *ppos & ~PAGE_MASK;
2611 struct folio *folio = NULL;
2612 struct page *page = NULL;
2614 unsigned long nr, ret;
2615 loff_t i_size = i_size_read(inode);
2617 end_index = i_size >> PAGE_SHIFT;
2618 if (index > end_index)
2620 if (index == end_index) {
2621 nr = i_size & ~PAGE_MASK;
2626 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2628 if (error == -EINVAL)
2633 folio_unlock(folio);
2635 page = folio_file_page(folio, index);
2636 if (PageHWPoison(page)) {
2644 * We must evaluate after, since reads (unlike writes)
2645 * are called without i_rwsem protection against truncate
2648 i_size = i_size_read(inode);
2649 end_index = i_size >> PAGE_SHIFT;
2650 if (index == end_index) {
2651 nr = i_size & ~PAGE_MASK;
2662 * If users can be writing to this page using arbitrary
2663 * virtual addresses, take care about potential aliasing
2664 * before reading the page on the kernel side.
2666 if (mapping_writably_mapped(mapping))
2667 flush_dcache_page(page);
2669 * Mark the page accessed if we read the beginning.
2672 folio_mark_accessed(folio);
2674 * Ok, we have the page, and it's up-to-date, so
2675 * now we can copy it to user space...
2677 ret = copy_page_to_iter(page, offset, nr, to);
2680 } else if (user_backed_iter(to)) {
2682 * Copy to user tends to be so well optimized, but
2683 * clear_user() not so much, that it is noticeably
2684 * faster to copy the zero page instead of clearing.
2686 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2689 * But submitting the same page twice in a row to
2690 * splice() - or others? - can result in confusion:
2691 * so don't attempt that optimization on pipes etc.
2693 ret = iov_iter_zero(nr, to);
2698 index += offset >> PAGE_SHIFT;
2699 offset &= ~PAGE_MASK;
2701 if (!iov_iter_count(to))
2710 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2711 file_accessed(file);
2712 return retval ? retval : error;
2715 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2717 struct address_space *mapping = file->f_mapping;
2718 struct inode *inode = mapping->host;
2720 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2721 return generic_file_llseek_size(file, offset, whence,
2722 MAX_LFS_FILESIZE, i_size_read(inode));
2727 /* We're holding i_rwsem so we can access i_size directly */
2728 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2730 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2731 inode_unlock(inode);
2735 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2738 struct inode *inode = file_inode(file);
2739 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2740 struct shmem_inode_info *info = SHMEM_I(inode);
2741 struct shmem_falloc shmem_falloc;
2742 pgoff_t start, index, end, undo_fallocend;
2745 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2750 if (mode & FALLOC_FL_PUNCH_HOLE) {
2751 struct address_space *mapping = file->f_mapping;
2752 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2753 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2754 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2756 /* protected by i_rwsem */
2757 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2762 shmem_falloc.waitq = &shmem_falloc_waitq;
2763 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2764 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2765 spin_lock(&inode->i_lock);
2766 inode->i_private = &shmem_falloc;
2767 spin_unlock(&inode->i_lock);
2769 if ((u64)unmap_end > (u64)unmap_start)
2770 unmap_mapping_range(mapping, unmap_start,
2771 1 + unmap_end - unmap_start, 0);
2772 shmem_truncate_range(inode, offset, offset + len - 1);
2773 /* No need to unmap again: hole-punching leaves COWed pages */
2775 spin_lock(&inode->i_lock);
2776 inode->i_private = NULL;
2777 wake_up_all(&shmem_falloc_waitq);
2778 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2779 spin_unlock(&inode->i_lock);
2784 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2785 error = inode_newsize_ok(inode, offset + len);
2789 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2794 start = offset >> PAGE_SHIFT;
2795 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2796 /* Try to avoid a swapstorm if len is impossible to satisfy */
2797 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2802 shmem_falloc.waitq = NULL;
2803 shmem_falloc.start = start;
2804 shmem_falloc.next = start;
2805 shmem_falloc.nr_falloced = 0;
2806 shmem_falloc.nr_unswapped = 0;
2807 spin_lock(&inode->i_lock);
2808 inode->i_private = &shmem_falloc;
2809 spin_unlock(&inode->i_lock);
2812 * info->fallocend is only relevant when huge pages might be
2813 * involved: to prevent split_huge_page() freeing fallocated
2814 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2816 undo_fallocend = info->fallocend;
2817 if (info->fallocend < end)
2818 info->fallocend = end;
2820 for (index = start; index < end; ) {
2821 struct folio *folio;
2824 * Good, the fallocate(2) manpage permits EINTR: we may have
2825 * been interrupted because we are using up too much memory.
2827 if (signal_pending(current))
2829 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2832 error = shmem_get_folio(inode, index, &folio,
2835 info->fallocend = undo_fallocend;
2836 /* Remove the !uptodate folios we added */
2837 if (index > start) {
2838 shmem_undo_range(inode,
2839 (loff_t)start << PAGE_SHIFT,
2840 ((loff_t)index << PAGE_SHIFT) - 1, true);
2846 * Here is a more important optimization than it appears:
2847 * a second SGP_FALLOC on the same large folio will clear it,
2848 * making it uptodate and un-undoable if we fail later.
2850 index = folio_next_index(folio);
2851 /* Beware 32-bit wraparound */
2856 * Inform shmem_writepage() how far we have reached.
2857 * No need for lock or barrier: we have the page lock.
2859 if (!folio_test_uptodate(folio))
2860 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2861 shmem_falloc.next = index;
2864 * If !uptodate, leave it that way so that freeable folios
2865 * can be recognized if we need to rollback on error later.
2866 * But mark it dirty so that memory pressure will swap rather
2867 * than free the folios we are allocating (and SGP_CACHE folios
2868 * might still be clean: we now need to mark those dirty too).
2870 folio_mark_dirty(folio);
2871 folio_unlock(folio);
2876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2877 i_size_write(inode, offset + len);
2879 spin_lock(&inode->i_lock);
2880 inode->i_private = NULL;
2881 spin_unlock(&inode->i_lock);
2884 file_modified(file);
2885 inode_unlock(inode);
2889 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893 buf->f_type = TMPFS_MAGIC;
2894 buf->f_bsize = PAGE_SIZE;
2895 buf->f_namelen = NAME_MAX;
2896 if (sbinfo->max_blocks) {
2897 buf->f_blocks = sbinfo->max_blocks;
2899 buf->f_bfree = sbinfo->max_blocks -
2900 percpu_counter_sum(&sbinfo->used_blocks);
2902 if (sbinfo->max_inodes) {
2903 buf->f_files = sbinfo->max_inodes;
2904 buf->f_ffree = sbinfo->free_inodes;
2906 /* else leave those fields 0 like simple_statfs */
2908 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2914 * File creation. Allocate an inode, and we're done..
2917 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
2918 struct dentry *dentry, umode_t mode, dev_t dev)
2920 struct inode *inode;
2921 int error = -ENOSPC;
2923 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
2925 error = simple_acl_create(dir, inode);
2928 error = security_inode_init_security(inode, dir,
2930 shmem_initxattrs, NULL);
2931 if (error && error != -EOPNOTSUPP)
2935 dir->i_size += BOGO_DIRENT_SIZE;
2936 dir->i_ctime = dir->i_mtime = current_time(dir);
2937 inode_inc_iversion(dir);
2938 d_instantiate(dentry, inode);
2939 dget(dentry); /* Extra count - pin the dentry in core */
2948 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
2949 struct file *file, umode_t mode)
2951 struct inode *inode;
2952 int error = -ENOSPC;
2954 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
2956 error = security_inode_init_security(inode, dir,
2958 shmem_initxattrs, NULL);
2959 if (error && error != -EOPNOTSUPP)
2961 error = simple_acl_create(dir, inode);
2964 d_tmpfile(file, inode);
2966 return finish_open_simple(file, error);
2972 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2973 struct dentry *dentry, umode_t mode)
2977 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
2984 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
2985 struct dentry *dentry, umode_t mode, bool excl)
2987 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
2993 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2995 struct inode *inode = d_inode(old_dentry);
2999 * No ordinary (disk based) filesystem counts links as inodes;
3000 * but each new link needs a new dentry, pinning lowmem, and
3001 * tmpfs dentries cannot be pruned until they are unlinked.
3002 * But if an O_TMPFILE file is linked into the tmpfs, the
3003 * first link must skip that, to get the accounting right.
3005 if (inode->i_nlink) {
3006 ret = shmem_reserve_inode(inode->i_sb, NULL);
3011 dir->i_size += BOGO_DIRENT_SIZE;
3012 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3013 inode_inc_iversion(dir);
3015 ihold(inode); /* New dentry reference */
3016 dget(dentry); /* Extra pinning count for the created dentry */
3017 d_instantiate(dentry, inode);
3022 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3024 struct inode *inode = d_inode(dentry);
3026 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3027 shmem_free_inode(inode->i_sb);
3029 dir->i_size -= BOGO_DIRENT_SIZE;
3030 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3031 inode_inc_iversion(dir);
3033 dput(dentry); /* Undo the count from "create" - this does all the work */
3037 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3039 if (!simple_empty(dentry))
3042 drop_nlink(d_inode(dentry));
3044 return shmem_unlink(dir, dentry);
3047 static int shmem_whiteout(struct mnt_idmap *idmap,
3048 struct inode *old_dir, struct dentry *old_dentry)
3050 struct dentry *whiteout;
3053 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3057 error = shmem_mknod(idmap, old_dir, whiteout,
3058 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3064 * Cheat and hash the whiteout while the old dentry is still in
3065 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3067 * d_lookup() will consistently find one of them at this point,
3068 * not sure which one, but that isn't even important.
3075 * The VFS layer already does all the dentry stuff for rename,
3076 * we just have to decrement the usage count for the target if
3077 * it exists so that the VFS layer correctly free's it when it
3080 static int shmem_rename2(struct mnt_idmap *idmap,
3081 struct inode *old_dir, struct dentry *old_dentry,
3082 struct inode *new_dir, struct dentry *new_dentry,
3085 struct inode *inode = d_inode(old_dentry);
3086 int they_are_dirs = S_ISDIR(inode->i_mode);
3088 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3091 if (flags & RENAME_EXCHANGE)
3092 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3094 if (!simple_empty(new_dentry))
3097 if (flags & RENAME_WHITEOUT) {
3100 error = shmem_whiteout(idmap, old_dir, old_dentry);
3105 if (d_really_is_positive(new_dentry)) {
3106 (void) shmem_unlink(new_dir, new_dentry);
3107 if (they_are_dirs) {
3108 drop_nlink(d_inode(new_dentry));
3109 drop_nlink(old_dir);
3111 } else if (they_are_dirs) {
3112 drop_nlink(old_dir);
3116 old_dir->i_size -= BOGO_DIRENT_SIZE;
3117 new_dir->i_size += BOGO_DIRENT_SIZE;
3118 old_dir->i_ctime = old_dir->i_mtime =
3119 new_dir->i_ctime = new_dir->i_mtime =
3120 inode->i_ctime = current_time(old_dir);
3121 inode_inc_iversion(old_dir);
3122 inode_inc_iversion(new_dir);
3126 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3127 struct dentry *dentry, const char *symname)
3131 struct inode *inode;
3132 struct folio *folio;
3134 len = strlen(symname) + 1;
3135 if (len > PAGE_SIZE)
3136 return -ENAMETOOLONG;
3138 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3143 error = security_inode_init_security(inode, dir, &dentry->d_name,
3144 shmem_initxattrs, NULL);
3145 if (error && error != -EOPNOTSUPP) {
3150 inode->i_size = len-1;
3151 if (len <= SHORT_SYMLINK_LEN) {
3152 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3153 if (!inode->i_link) {
3157 inode->i_op = &shmem_short_symlink_operations;
3159 inode_nohighmem(inode);
3160 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3165 inode->i_mapping->a_ops = &shmem_aops;
3166 inode->i_op = &shmem_symlink_inode_operations;
3167 memcpy(folio_address(folio), symname, len);
3168 folio_mark_uptodate(folio);
3169 folio_mark_dirty(folio);
3170 folio_unlock(folio);
3173 dir->i_size += BOGO_DIRENT_SIZE;
3174 dir->i_ctime = dir->i_mtime = current_time(dir);
3175 inode_inc_iversion(dir);
3176 d_instantiate(dentry, inode);
3181 static void shmem_put_link(void *arg)
3183 folio_mark_accessed(arg);
3187 static const char *shmem_get_link(struct dentry *dentry,
3188 struct inode *inode,
3189 struct delayed_call *done)
3191 struct folio *folio = NULL;
3195 folio = filemap_get_folio(inode->i_mapping, 0);
3197 return ERR_PTR(-ECHILD);
3198 if (PageHWPoison(folio_page(folio, 0)) ||
3199 !folio_test_uptodate(folio)) {
3201 return ERR_PTR(-ECHILD);
3204 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3206 return ERR_PTR(error);
3208 return ERR_PTR(-ECHILD);
3209 if (PageHWPoison(folio_page(folio, 0))) {
3210 folio_unlock(folio);
3212 return ERR_PTR(-ECHILD);
3214 folio_unlock(folio);
3216 set_delayed_call(done, shmem_put_link, folio);
3217 return folio_address(folio);
3220 #ifdef CONFIG_TMPFS_XATTR
3222 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3224 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3226 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3231 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3232 struct dentry *dentry, struct fileattr *fa)
3234 struct inode *inode = d_inode(dentry);
3235 struct shmem_inode_info *info = SHMEM_I(inode);
3237 if (fileattr_has_fsx(fa))
3239 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3242 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3243 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3245 shmem_set_inode_flags(inode, info->fsflags);
3246 inode->i_ctime = current_time(inode);
3247 inode_inc_iversion(inode);
3252 * Superblocks without xattr inode operations may get some security.* xattr
3253 * support from the LSM "for free". As soon as we have any other xattrs
3254 * like ACLs, we also need to implement the security.* handlers at
3255 * filesystem level, though.
3259 * Callback for security_inode_init_security() for acquiring xattrs.
3261 static int shmem_initxattrs(struct inode *inode,
3262 const struct xattr *xattr_array,
3265 struct shmem_inode_info *info = SHMEM_I(inode);
3266 const struct xattr *xattr;
3267 struct simple_xattr *new_xattr;
3270 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3271 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3275 len = strlen(xattr->name) + 1;
3276 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3278 if (!new_xattr->name) {
3283 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3284 XATTR_SECURITY_PREFIX_LEN);
3285 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3288 simple_xattr_add(&info->xattrs, new_xattr);
3294 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3295 struct dentry *unused, struct inode *inode,
3296 const char *name, void *buffer, size_t size)
3298 struct shmem_inode_info *info = SHMEM_I(inode);
3300 name = xattr_full_name(handler, name);
3301 return simple_xattr_get(&info->xattrs, name, buffer, size);
3304 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3305 struct mnt_idmap *idmap,
3306 struct dentry *unused, struct inode *inode,
3307 const char *name, const void *value,
3308 size_t size, int flags)
3310 struct shmem_inode_info *info = SHMEM_I(inode);
3313 name = xattr_full_name(handler, name);
3314 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3316 inode->i_ctime = current_time(inode);
3317 inode_inc_iversion(inode);
3322 static const struct xattr_handler shmem_security_xattr_handler = {
3323 .prefix = XATTR_SECURITY_PREFIX,
3324 .get = shmem_xattr_handler_get,
3325 .set = shmem_xattr_handler_set,
3328 static const struct xattr_handler shmem_trusted_xattr_handler = {
3329 .prefix = XATTR_TRUSTED_PREFIX,
3330 .get = shmem_xattr_handler_get,
3331 .set = shmem_xattr_handler_set,
3334 static const struct xattr_handler *shmem_xattr_handlers[] = {
3335 #ifdef CONFIG_TMPFS_POSIX_ACL
3336 &posix_acl_access_xattr_handler,
3337 &posix_acl_default_xattr_handler,
3339 &shmem_security_xattr_handler,
3340 &shmem_trusted_xattr_handler,
3344 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3346 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3347 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3349 #endif /* CONFIG_TMPFS_XATTR */
3351 static const struct inode_operations shmem_short_symlink_operations = {
3352 .getattr = shmem_getattr,
3353 .get_link = simple_get_link,
3354 #ifdef CONFIG_TMPFS_XATTR
3355 .listxattr = shmem_listxattr,
3359 static const struct inode_operations shmem_symlink_inode_operations = {
3360 .getattr = shmem_getattr,
3361 .get_link = shmem_get_link,
3362 #ifdef CONFIG_TMPFS_XATTR
3363 .listxattr = shmem_listxattr,
3367 static struct dentry *shmem_get_parent(struct dentry *child)
3369 return ERR_PTR(-ESTALE);
3372 static int shmem_match(struct inode *ino, void *vfh)
3376 inum = (inum << 32) | fh[1];
3377 return ino->i_ino == inum && fh[0] == ino->i_generation;
3380 /* Find any alias of inode, but prefer a hashed alias */
3381 static struct dentry *shmem_find_alias(struct inode *inode)
3383 struct dentry *alias = d_find_alias(inode);
3385 return alias ?: d_find_any_alias(inode);
3389 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3390 struct fid *fid, int fh_len, int fh_type)
3392 struct inode *inode;
3393 struct dentry *dentry = NULL;
3400 inum = (inum << 32) | fid->raw[1];
3402 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3403 shmem_match, fid->raw);
3405 dentry = shmem_find_alias(inode);
3412 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3413 struct inode *parent)
3417 return FILEID_INVALID;
3420 if (inode_unhashed(inode)) {
3421 /* Unfortunately insert_inode_hash is not idempotent,
3422 * so as we hash inodes here rather than at creation
3423 * time, we need a lock to ensure we only try
3426 static DEFINE_SPINLOCK(lock);
3428 if (inode_unhashed(inode))
3429 __insert_inode_hash(inode,
3430 inode->i_ino + inode->i_generation);
3434 fh[0] = inode->i_generation;
3435 fh[1] = inode->i_ino;
3436 fh[2] = ((__u64)inode->i_ino) >> 32;
3442 static const struct export_operations shmem_export_ops = {
3443 .get_parent = shmem_get_parent,
3444 .encode_fh = shmem_encode_fh,
3445 .fh_to_dentry = shmem_fh_to_dentry,
3461 static const struct constant_table shmem_param_enums_huge[] = {
3462 {"never", SHMEM_HUGE_NEVER },
3463 {"always", SHMEM_HUGE_ALWAYS },
3464 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3465 {"advise", SHMEM_HUGE_ADVISE },
3469 const struct fs_parameter_spec shmem_fs_parameters[] = {
3470 fsparam_u32 ("gid", Opt_gid),
3471 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3472 fsparam_u32oct("mode", Opt_mode),
3473 fsparam_string("mpol", Opt_mpol),
3474 fsparam_string("nr_blocks", Opt_nr_blocks),
3475 fsparam_string("nr_inodes", Opt_nr_inodes),
3476 fsparam_string("size", Opt_size),
3477 fsparam_u32 ("uid", Opt_uid),
3478 fsparam_flag ("inode32", Opt_inode32),
3479 fsparam_flag ("inode64", Opt_inode64),
3483 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3485 struct shmem_options *ctx = fc->fs_private;
3486 struct fs_parse_result result;
3487 unsigned long long size;
3491 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3497 size = memparse(param->string, &rest);
3499 size <<= PAGE_SHIFT;
3500 size *= totalram_pages();
3506 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3507 ctx->seen |= SHMEM_SEEN_BLOCKS;
3510 ctx->blocks = memparse(param->string, &rest);
3511 if (*rest || ctx->blocks > S64_MAX)
3513 ctx->seen |= SHMEM_SEEN_BLOCKS;
3516 ctx->inodes = memparse(param->string, &rest);
3519 ctx->seen |= SHMEM_SEEN_INODES;
3522 ctx->mode = result.uint_32 & 07777;
3525 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3526 if (!uid_valid(ctx->uid))
3530 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3531 if (!gid_valid(ctx->gid))
3535 ctx->huge = result.uint_32;
3536 if (ctx->huge != SHMEM_HUGE_NEVER &&
3537 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3538 has_transparent_hugepage()))
3539 goto unsupported_parameter;
3540 ctx->seen |= SHMEM_SEEN_HUGE;
3543 if (IS_ENABLED(CONFIG_NUMA)) {
3544 mpol_put(ctx->mpol);
3546 if (mpol_parse_str(param->string, &ctx->mpol))
3550 goto unsupported_parameter;
3552 ctx->full_inums = false;
3553 ctx->seen |= SHMEM_SEEN_INUMS;
3556 if (sizeof(ino_t) < 8) {
3558 "Cannot use inode64 with <64bit inums in kernel\n");
3560 ctx->full_inums = true;
3561 ctx->seen |= SHMEM_SEEN_INUMS;
3566 unsupported_parameter:
3567 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3569 return invalfc(fc, "Bad value for '%s'", param->key);
3572 static int shmem_parse_options(struct fs_context *fc, void *data)
3574 char *options = data;
3577 int err = security_sb_eat_lsm_opts(options, &fc->security);
3582 while (options != NULL) {
3583 char *this_char = options;
3586 * NUL-terminate this option: unfortunately,
3587 * mount options form a comma-separated list,
3588 * but mpol's nodelist may also contain commas.
3590 options = strchr(options, ',');
3591 if (options == NULL)
3594 if (!isdigit(*options)) {
3600 char *value = strchr(this_char, '=');
3606 len = strlen(value);
3608 err = vfs_parse_fs_string(fc, this_char, value, len);
3617 * Reconfigure a shmem filesystem.
3619 * Note that we disallow change from limited->unlimited blocks/inodes while any
3620 * are in use; but we must separately disallow unlimited->limited, because in
3621 * that case we have no record of how much is already in use.
3623 static int shmem_reconfigure(struct fs_context *fc)
3625 struct shmem_options *ctx = fc->fs_private;
3626 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3627 unsigned long inodes;
3628 struct mempolicy *mpol = NULL;
3631 raw_spin_lock(&sbinfo->stat_lock);
3632 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3634 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3635 if (!sbinfo->max_blocks) {
3636 err = "Cannot retroactively limit size";
3639 if (percpu_counter_compare(&sbinfo->used_blocks,
3641 err = "Too small a size for current use";
3645 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3646 if (!sbinfo->max_inodes) {
3647 err = "Cannot retroactively limit inodes";
3650 if (ctx->inodes < inodes) {
3651 err = "Too few inodes for current use";
3656 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3657 sbinfo->next_ino > UINT_MAX) {
3658 err = "Current inum too high to switch to 32-bit inums";
3662 if (ctx->seen & SHMEM_SEEN_HUGE)
3663 sbinfo->huge = ctx->huge;
3664 if (ctx->seen & SHMEM_SEEN_INUMS)
3665 sbinfo->full_inums = ctx->full_inums;
3666 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3667 sbinfo->max_blocks = ctx->blocks;
3668 if (ctx->seen & SHMEM_SEEN_INODES) {
3669 sbinfo->max_inodes = ctx->inodes;
3670 sbinfo->free_inodes = ctx->inodes - inodes;
3674 * Preserve previous mempolicy unless mpol remount option was specified.
3677 mpol = sbinfo->mpol;
3678 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3681 raw_spin_unlock(&sbinfo->stat_lock);
3685 raw_spin_unlock(&sbinfo->stat_lock);
3686 return invalfc(fc, "%s", err);
3689 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3691 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3693 if (sbinfo->max_blocks != shmem_default_max_blocks())
3694 seq_printf(seq, ",size=%luk",
3695 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3696 if (sbinfo->max_inodes != shmem_default_max_inodes())
3697 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3698 if (sbinfo->mode != (0777 | S_ISVTX))
3699 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3700 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3701 seq_printf(seq, ",uid=%u",
3702 from_kuid_munged(&init_user_ns, sbinfo->uid));
3703 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3704 seq_printf(seq, ",gid=%u",
3705 from_kgid_munged(&init_user_ns, sbinfo->gid));
3708 * Showing inode{64,32} might be useful even if it's the system default,
3709 * since then people don't have to resort to checking both here and
3710 * /proc/config.gz to confirm 64-bit inums were successfully applied
3711 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3713 * We hide it when inode64 isn't the default and we are using 32-bit
3714 * inodes, since that probably just means the feature isn't even under
3719 * +-----------------+-----------------+
3720 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3721 * +------------------+-----------------+-----------------+
3722 * | full_inums=true | show | show |
3723 * | full_inums=false | show | hide |
3724 * +------------------+-----------------+-----------------+
3727 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3728 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3730 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3732 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3734 shmem_show_mpol(seq, sbinfo->mpol);
3738 #endif /* CONFIG_TMPFS */
3740 static void shmem_put_super(struct super_block *sb)
3742 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3744 free_percpu(sbinfo->ino_batch);
3745 percpu_counter_destroy(&sbinfo->used_blocks);
3746 mpol_put(sbinfo->mpol);
3748 sb->s_fs_info = NULL;
3751 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3753 struct shmem_options *ctx = fc->fs_private;
3754 struct inode *inode;
3755 struct shmem_sb_info *sbinfo;
3757 /* Round up to L1_CACHE_BYTES to resist false sharing */
3758 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3759 L1_CACHE_BYTES), GFP_KERNEL);
3763 sb->s_fs_info = sbinfo;
3767 * Per default we only allow half of the physical ram per
3768 * tmpfs instance, limiting inodes to one per page of lowmem;
3769 * but the internal instance is left unlimited.
3771 if (!(sb->s_flags & SB_KERNMOUNT)) {
3772 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3773 ctx->blocks = shmem_default_max_blocks();
3774 if (!(ctx->seen & SHMEM_SEEN_INODES))
3775 ctx->inodes = shmem_default_max_inodes();
3776 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3777 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3779 sb->s_flags |= SB_NOUSER;
3781 sb->s_export_op = &shmem_export_ops;
3782 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3784 sb->s_flags |= SB_NOUSER;
3786 sbinfo->max_blocks = ctx->blocks;
3787 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3788 if (sb->s_flags & SB_KERNMOUNT) {
3789 sbinfo->ino_batch = alloc_percpu(ino_t);
3790 if (!sbinfo->ino_batch)
3793 sbinfo->uid = ctx->uid;
3794 sbinfo->gid = ctx->gid;
3795 sbinfo->full_inums = ctx->full_inums;
3796 sbinfo->mode = ctx->mode;
3797 sbinfo->huge = ctx->huge;
3798 sbinfo->mpol = ctx->mpol;
3801 raw_spin_lock_init(&sbinfo->stat_lock);
3802 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3804 spin_lock_init(&sbinfo->shrinklist_lock);
3805 INIT_LIST_HEAD(&sbinfo->shrinklist);
3807 sb->s_maxbytes = MAX_LFS_FILESIZE;
3808 sb->s_blocksize = PAGE_SIZE;
3809 sb->s_blocksize_bits = PAGE_SHIFT;
3810 sb->s_magic = TMPFS_MAGIC;
3811 sb->s_op = &shmem_ops;
3812 sb->s_time_gran = 1;
3813 #ifdef CONFIG_TMPFS_XATTR
3814 sb->s_xattr = shmem_xattr_handlers;
3816 #ifdef CONFIG_TMPFS_POSIX_ACL
3817 sb->s_flags |= SB_POSIXACL;
3819 uuid_gen(&sb->s_uuid);
3821 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
3825 inode->i_uid = sbinfo->uid;
3826 inode->i_gid = sbinfo->gid;
3827 sb->s_root = d_make_root(inode);
3833 shmem_put_super(sb);
3837 static int shmem_get_tree(struct fs_context *fc)
3839 return get_tree_nodev(fc, shmem_fill_super);
3842 static void shmem_free_fc(struct fs_context *fc)
3844 struct shmem_options *ctx = fc->fs_private;
3847 mpol_put(ctx->mpol);
3852 static const struct fs_context_operations shmem_fs_context_ops = {
3853 .free = shmem_free_fc,
3854 .get_tree = shmem_get_tree,
3856 .parse_monolithic = shmem_parse_options,
3857 .parse_param = shmem_parse_one,
3858 .reconfigure = shmem_reconfigure,
3862 static struct kmem_cache *shmem_inode_cachep;
3864 static struct inode *shmem_alloc_inode(struct super_block *sb)
3866 struct shmem_inode_info *info;
3867 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3870 return &info->vfs_inode;
3873 static void shmem_free_in_core_inode(struct inode *inode)
3875 if (S_ISLNK(inode->i_mode))
3876 kfree(inode->i_link);
3877 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3880 static void shmem_destroy_inode(struct inode *inode)
3882 if (S_ISREG(inode->i_mode))
3883 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3886 static void shmem_init_inode(void *foo)
3888 struct shmem_inode_info *info = foo;
3889 inode_init_once(&info->vfs_inode);
3892 static void shmem_init_inodecache(void)
3894 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3895 sizeof(struct shmem_inode_info),
3896 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3899 static void shmem_destroy_inodecache(void)
3901 kmem_cache_destroy(shmem_inode_cachep);
3904 /* Keep the page in page cache instead of truncating it */
3905 static int shmem_error_remove_page(struct address_space *mapping,
3911 const struct address_space_operations shmem_aops = {
3912 .writepage = shmem_writepage,
3913 .dirty_folio = noop_dirty_folio,
3915 .write_begin = shmem_write_begin,
3916 .write_end = shmem_write_end,
3918 #ifdef CONFIG_MIGRATION
3919 .migrate_folio = migrate_folio,
3921 .error_remove_page = shmem_error_remove_page,
3923 EXPORT_SYMBOL(shmem_aops);
3925 static const struct file_operations shmem_file_operations = {
3927 .open = generic_file_open,
3928 .get_unmapped_area = shmem_get_unmapped_area,
3930 .llseek = shmem_file_llseek,
3931 .read_iter = shmem_file_read_iter,
3932 .write_iter = generic_file_write_iter,
3933 .fsync = noop_fsync,
3934 .splice_read = generic_file_splice_read,
3935 .splice_write = iter_file_splice_write,
3936 .fallocate = shmem_fallocate,
3940 static const struct inode_operations shmem_inode_operations = {
3941 .getattr = shmem_getattr,
3942 .setattr = shmem_setattr,
3943 #ifdef CONFIG_TMPFS_XATTR
3944 .listxattr = shmem_listxattr,
3945 .set_acl = simple_set_acl,
3946 .fileattr_get = shmem_fileattr_get,
3947 .fileattr_set = shmem_fileattr_set,
3951 static const struct inode_operations shmem_dir_inode_operations = {
3953 .getattr = shmem_getattr,
3954 .create = shmem_create,
3955 .lookup = simple_lookup,
3957 .unlink = shmem_unlink,
3958 .symlink = shmem_symlink,
3959 .mkdir = shmem_mkdir,
3960 .rmdir = shmem_rmdir,
3961 .mknod = shmem_mknod,
3962 .rename = shmem_rename2,
3963 .tmpfile = shmem_tmpfile,
3965 #ifdef CONFIG_TMPFS_XATTR
3966 .listxattr = shmem_listxattr,
3967 .fileattr_get = shmem_fileattr_get,
3968 .fileattr_set = shmem_fileattr_set,
3970 #ifdef CONFIG_TMPFS_POSIX_ACL
3971 .setattr = shmem_setattr,
3972 .set_acl = simple_set_acl,
3976 static const struct inode_operations shmem_special_inode_operations = {
3977 .getattr = shmem_getattr,
3978 #ifdef CONFIG_TMPFS_XATTR
3979 .listxattr = shmem_listxattr,
3981 #ifdef CONFIG_TMPFS_POSIX_ACL
3982 .setattr = shmem_setattr,
3983 .set_acl = simple_set_acl,
3987 static const struct super_operations shmem_ops = {
3988 .alloc_inode = shmem_alloc_inode,
3989 .free_inode = shmem_free_in_core_inode,
3990 .destroy_inode = shmem_destroy_inode,
3992 .statfs = shmem_statfs,
3993 .show_options = shmem_show_options,
3995 .evict_inode = shmem_evict_inode,
3996 .drop_inode = generic_delete_inode,
3997 .put_super = shmem_put_super,
3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 .nr_cached_objects = shmem_unused_huge_count,
4000 .free_cached_objects = shmem_unused_huge_scan,
4004 static const struct vm_operations_struct shmem_vm_ops = {
4005 .fault = shmem_fault,
4006 .map_pages = filemap_map_pages,
4008 .set_policy = shmem_set_policy,
4009 .get_policy = shmem_get_policy,
4013 static const struct vm_operations_struct shmem_anon_vm_ops = {
4014 .fault = shmem_fault,
4015 .map_pages = filemap_map_pages,
4017 .set_policy = shmem_set_policy,
4018 .get_policy = shmem_get_policy,
4022 int shmem_init_fs_context(struct fs_context *fc)
4024 struct shmem_options *ctx;
4026 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4030 ctx->mode = 0777 | S_ISVTX;
4031 ctx->uid = current_fsuid();
4032 ctx->gid = current_fsgid();
4034 fc->fs_private = ctx;
4035 fc->ops = &shmem_fs_context_ops;
4039 static struct file_system_type shmem_fs_type = {
4040 .owner = THIS_MODULE,
4042 .init_fs_context = shmem_init_fs_context,
4044 .parameters = shmem_fs_parameters,
4046 .kill_sb = kill_litter_super,
4048 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4050 .fs_flags = FS_USERNS_MOUNT,
4054 void __init shmem_init(void)
4058 shmem_init_inodecache();
4060 error = register_filesystem(&shmem_fs_type);
4062 pr_err("Could not register tmpfs\n");
4066 shm_mnt = kern_mount(&shmem_fs_type);
4067 if (IS_ERR(shm_mnt)) {
4068 error = PTR_ERR(shm_mnt);
4069 pr_err("Could not kern_mount tmpfs\n");
4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4074 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4075 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4077 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4082 unregister_filesystem(&shmem_fs_type);
4084 shmem_destroy_inodecache();
4085 shm_mnt = ERR_PTR(error);
4088 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4089 static ssize_t shmem_enabled_show(struct kobject *kobj,
4090 struct kobj_attribute *attr, char *buf)
4092 static const int values[] = {
4094 SHMEM_HUGE_WITHIN_SIZE,
4103 for (i = 0; i < ARRAY_SIZE(values); i++) {
4104 len += sysfs_emit_at(buf, len,
4105 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4107 shmem_format_huge(values[i]));
4110 len += sysfs_emit_at(buf, len, "\n");
4115 static ssize_t shmem_enabled_store(struct kobject *kobj,
4116 struct kobj_attribute *attr, const char *buf, size_t count)
4121 if (count + 1 > sizeof(tmp))
4123 memcpy(tmp, buf, count);
4125 if (count && tmp[count - 1] == '\n')
4126 tmp[count - 1] = '\0';
4128 huge = shmem_parse_huge(tmp);
4129 if (huge == -EINVAL)
4131 if (!has_transparent_hugepage() &&
4132 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4136 if (shmem_huge > SHMEM_HUGE_DENY)
4137 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4141 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4144 #else /* !CONFIG_SHMEM */
4147 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4149 * This is intended for small system where the benefits of the full
4150 * shmem code (swap-backed and resource-limited) are outweighed by
4151 * their complexity. On systems without swap this code should be
4152 * effectively equivalent, but much lighter weight.
4155 static struct file_system_type shmem_fs_type = {
4157 .init_fs_context = ramfs_init_fs_context,
4158 .parameters = ramfs_fs_parameters,
4159 .kill_sb = kill_litter_super,
4160 .fs_flags = FS_USERNS_MOUNT,
4163 void __init shmem_init(void)
4165 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4167 shm_mnt = kern_mount(&shmem_fs_type);
4168 BUG_ON(IS_ERR(shm_mnt));
4171 int shmem_unuse(unsigned int type)
4176 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4181 void shmem_unlock_mapping(struct address_space *mapping)
4186 unsigned long shmem_get_unmapped_area(struct file *file,
4187 unsigned long addr, unsigned long len,
4188 unsigned long pgoff, unsigned long flags)
4190 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4194 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4196 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4198 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4200 #define shmem_vm_ops generic_file_vm_ops
4201 #define shmem_anon_vm_ops generic_file_vm_ops
4202 #define shmem_file_operations ramfs_file_operations
4203 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4204 #define shmem_acct_size(flags, size) 0
4205 #define shmem_unacct_size(flags, size) do {} while (0)
4207 #endif /* CONFIG_SHMEM */
4211 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4212 unsigned long flags, unsigned int i_flags)
4214 struct inode *inode;
4218 return ERR_CAST(mnt);
4220 if (size < 0 || size > MAX_LFS_FILESIZE)
4221 return ERR_PTR(-EINVAL);
4223 if (shmem_acct_size(flags, size))
4224 return ERR_PTR(-ENOMEM);
4226 if (is_idmapped_mnt(mnt))
4227 return ERR_PTR(-EINVAL);
4229 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4230 S_IFREG | S_IRWXUGO, 0, flags);
4231 if (unlikely(!inode)) {
4232 shmem_unacct_size(flags, size);
4233 return ERR_PTR(-ENOSPC);
4235 inode->i_flags |= i_flags;
4236 inode->i_size = size;
4237 clear_nlink(inode); /* It is unlinked */
4238 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4240 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4241 &shmem_file_operations);
4248 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4249 * kernel internal. There will be NO LSM permission checks against the
4250 * underlying inode. So users of this interface must do LSM checks at a
4251 * higher layer. The users are the big_key and shm implementations. LSM
4252 * checks are provided at the key or shm level rather than the inode.
4253 * @name: name for dentry (to be seen in /proc/<pid>/maps
4254 * @size: size to be set for the file
4255 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4257 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4259 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4263 * shmem_file_setup - get an unlinked file living in tmpfs
4264 * @name: name for dentry (to be seen in /proc/<pid>/maps
4265 * @size: size to be set for the file
4266 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4268 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4270 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4272 EXPORT_SYMBOL_GPL(shmem_file_setup);
4275 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4276 * @mnt: the tmpfs mount where the file will be created
4277 * @name: name for dentry (to be seen in /proc/<pid>/maps
4278 * @size: size to be set for the file
4279 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4281 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4282 loff_t size, unsigned long flags)
4284 return __shmem_file_setup(mnt, name, size, flags, 0);
4286 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4289 * shmem_zero_setup - setup a shared anonymous mapping
4290 * @vma: the vma to be mmapped is prepared by do_mmap
4292 int shmem_zero_setup(struct vm_area_struct *vma)
4295 loff_t size = vma->vm_end - vma->vm_start;
4298 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4299 * between XFS directory reading and selinux: since this file is only
4300 * accessible to the user through its mapping, use S_PRIVATE flag to
4301 * bypass file security, in the same way as shmem_kernel_file_setup().
4303 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4305 return PTR_ERR(file);
4309 vma->vm_file = file;
4310 vma->vm_ops = &shmem_anon_vm_ops;
4316 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4317 * @mapping: the page's address_space
4318 * @index: the page index
4319 * @gfp: the page allocator flags to use if allocating
4321 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4322 * with any new page allocations done using the specified allocation flags.
4323 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4324 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4325 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4327 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4328 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4330 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4331 pgoff_t index, gfp_t gfp)
4334 struct inode *inode = mapping->host;
4335 struct folio *folio;
4339 BUG_ON(!shmem_mapping(mapping));
4340 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4341 gfp, NULL, NULL, NULL);
4343 return ERR_PTR(error);
4345 folio_unlock(folio);
4346 page = folio_file_page(folio, index);
4347 if (PageHWPoison(page)) {
4349 return ERR_PTR(-EIO);
4355 * The tiny !SHMEM case uses ramfs without swap
4357 return read_cache_page_gfp(mapping, index, gfp);
4360 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);