2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount *shm_mnt;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
95 /* Flag allocation requirements to shmem_getpage */
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages / 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
131 return sb->s_fs_info;
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
158 static inline int shmem_acct_block(unsigned long flags)
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
186 static int shmem_reserve_inode(struct super_block *sb)
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
201 static void shmem_free_inode(struct super_block *sb)
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode *inode)
225 struct shmem_inode_info *info = SHMEM_I(inode);
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
240 * Replace item expected in radix tree by a new item, while holding tree lock.
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
248 VM_BUG_ON(!expected);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 item = radix_tree_deref_slot_protected(pslot,
252 &mapping->tree_lock);
253 if (item != expected)
256 radix_tree_replace_slot(pslot, replacement);
258 radix_tree_delete(&mapping->page_tree, index);
263 * Sometimes, before we decide whether to proceed or to fail, we must check
264 * that an entry was not already brought back from swap by a racing thread.
266 * Checking page is not enough: by the time a SwapCache page is locked, it
267 * might be reused, and again be SwapCache, using the same swap as before.
269 static bool shmem_confirm_swap(struct address_space *mapping,
270 pgoff_t index, swp_entry_t swap)
275 item = radix_tree_lookup(&mapping->page_tree, index);
277 return item == swp_to_radix_entry(swap);
281 * Like add_to_page_cache_locked, but error if expected item has gone.
283 static int shmem_add_to_page_cache(struct page *page,
284 struct address_space *mapping,
285 pgoff_t index, gfp_t gfp, void *expected)
289 VM_BUG_ON_PAGE(!PageLocked(page), page);
290 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
292 page_cache_get(page);
293 page->mapping = mapping;
296 spin_lock_irq(&mapping->tree_lock);
298 error = radix_tree_insert(&mapping->page_tree, index, page);
300 error = shmem_radix_tree_replace(mapping, index, expected,
304 __inc_zone_page_state(page, NR_FILE_PAGES);
305 __inc_zone_page_state(page, NR_SHMEM);
306 spin_unlock_irq(&mapping->tree_lock);
308 page->mapping = NULL;
309 spin_unlock_irq(&mapping->tree_lock);
310 page_cache_release(page);
316 * Like delete_from_page_cache, but substitutes swap for page.
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
320 struct address_space *mapping = page->mapping;
323 spin_lock_irq(&mapping->tree_lock);
324 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325 page->mapping = NULL;
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __dec_zone_page_state(page, NR_SHMEM);
329 spin_unlock_irq(&mapping->tree_lock);
330 page_cache_release(page);
335 * Like find_get_pages, but collecting swap entries as well as pages.
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338 pgoff_t start, unsigned int nr_pages,
339 struct page **pages, pgoff_t *indices)
342 unsigned int ret = 0;
343 struct radix_tree_iter iter;
350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
353 page = radix_tree_deref_slot(slot);
356 if (radix_tree_exception(page)) {
357 if (radix_tree_deref_retry(page))
360 * Otherwise, we must be storing a swap entry
361 * here as an exceptional entry: so return it
362 * without attempting to raise page count.
366 if (!page_cache_get_speculative(page))
369 /* Has the page moved? */
370 if (unlikely(page != *slot)) {
371 page_cache_release(page);
375 indices[ret] = iter.index;
377 if (++ret == nr_pages)
385 * Remove swap entry from radix tree, free the swap and its page cache.
387 static int shmem_free_swap(struct address_space *mapping,
388 pgoff_t index, void *radswap)
392 spin_lock_irq(&mapping->tree_lock);
393 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394 spin_unlock_irq(&mapping->tree_lock);
396 free_swap_and_cache(radix_to_swp_entry(radswap));
401 * Pagevec may contain swap entries, so shuffle up pages before releasing.
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
407 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408 struct page *page = pvec->pages[i];
409 if (!radix_tree_exceptional_entry(page))
410 pvec->pages[j++] = page;
416 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
418 void shmem_unlock_mapping(struct address_space *mapping)
421 pgoff_t indices[PAGEVEC_SIZE];
424 pagevec_init(&pvec, 0);
426 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
428 while (!mapping_unevictable(mapping)) {
430 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
433 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434 PAGEVEC_SIZE, pvec.pages, indices);
437 index = indices[pvec.nr - 1] + 1;
438 shmem_deswap_pagevec(&pvec);
439 check_move_unevictable_pages(pvec.pages, pvec.nr);
440 pagevec_release(&pvec);
446 * Remove range of pages and swap entries from radix tree, and free them.
447 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
452 struct address_space *mapping = inode->i_mapping;
453 struct shmem_inode_info *info = SHMEM_I(inode);
454 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
459 pgoff_t indices[PAGEVEC_SIZE];
460 long nr_swaps_freed = 0;
465 end = -1; /* unsigned, so actually very big */
467 pagevec_init(&pvec, 0);
469 while (index < end) {
470 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472 pvec.pages, indices);
475 mem_cgroup_uncharge_start();
476 for (i = 0; i < pagevec_count(&pvec); i++) {
477 struct page *page = pvec.pages[i];
483 if (radix_tree_exceptional_entry(page)) {
486 nr_swaps_freed += !shmem_free_swap(mapping,
491 if (!trylock_page(page))
493 if (!unfalloc || !PageUptodate(page)) {
494 if (page->mapping == mapping) {
495 VM_BUG_ON_PAGE(PageWriteback(page), page);
496 truncate_inode_page(mapping, page);
501 shmem_deswap_pagevec(&pvec);
502 pagevec_release(&pvec);
503 mem_cgroup_uncharge_end();
509 struct page *page = NULL;
510 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
512 unsigned int top = PAGE_CACHE_SIZE;
517 zero_user_segment(page, partial_start, top);
518 set_page_dirty(page);
520 page_cache_release(page);
524 struct page *page = NULL;
525 shmem_getpage(inode, end, &page, SGP_READ, NULL);
527 zero_user_segment(page, 0, partial_end);
528 set_page_dirty(page);
530 page_cache_release(page);
537 while (index < end) {
539 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541 pvec.pages, indices);
543 /* If all gone or hole-punch or unfalloc, we're done */
544 if (index == start || end != -1)
546 /* But if truncating, restart to make sure all gone */
550 mem_cgroup_uncharge_start();
551 for (i = 0; i < pagevec_count(&pvec); i++) {
552 struct page *page = pvec.pages[i];
558 if (radix_tree_exceptional_entry(page)) {
561 if (shmem_free_swap(mapping, index, page)) {
562 /* Swap was replaced by page: retry */
571 if (!unfalloc || !PageUptodate(page)) {
572 if (page->mapping == mapping) {
573 VM_BUG_ON_PAGE(PageWriteback(page), page);
574 truncate_inode_page(mapping, page);
576 /* Page was replaced by swap: retry */
584 shmem_deswap_pagevec(&pvec);
585 pagevec_release(&pvec);
586 mem_cgroup_uncharge_end();
590 spin_lock(&info->lock);
591 info->swapped -= nr_swaps_freed;
592 shmem_recalc_inode(inode);
593 spin_unlock(&info->lock);
596 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
598 shmem_undo_range(inode, lstart, lend, false);
599 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
603 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
605 struct inode *inode = dentry->d_inode;
608 error = inode_change_ok(inode, attr);
612 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613 loff_t oldsize = inode->i_size;
614 loff_t newsize = attr->ia_size;
616 if (newsize != oldsize) {
617 i_size_write(inode, newsize);
618 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
620 if (newsize < oldsize) {
621 loff_t holebegin = round_up(newsize, PAGE_SIZE);
622 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623 shmem_truncate_range(inode, newsize, (loff_t)-1);
624 /* unmap again to remove racily COWed private pages */
625 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
629 setattr_copy(inode, attr);
630 if (attr->ia_valid & ATTR_MODE)
631 error = posix_acl_chmod(inode, inode->i_mode);
635 static void shmem_evict_inode(struct inode *inode)
637 struct shmem_inode_info *info = SHMEM_I(inode);
639 if (inode->i_mapping->a_ops == &shmem_aops) {
640 shmem_unacct_size(info->flags, inode->i_size);
642 shmem_truncate_range(inode, 0, (loff_t)-1);
643 if (!list_empty(&info->swaplist)) {
644 mutex_lock(&shmem_swaplist_mutex);
645 list_del_init(&info->swaplist);
646 mutex_unlock(&shmem_swaplist_mutex);
649 kfree(info->symlink);
651 simple_xattrs_free(&info->xattrs);
652 WARN_ON(inode->i_blocks);
653 shmem_free_inode(inode->i_sb);
658 * If swap found in inode, free it and move page from swapcache to filecache.
660 static int shmem_unuse_inode(struct shmem_inode_info *info,
661 swp_entry_t swap, struct page **pagep)
663 struct address_space *mapping = info->vfs_inode.i_mapping;
669 radswap = swp_to_radix_entry(swap);
670 index = radix_tree_locate_item(&mapping->page_tree, radswap);
675 * Move _head_ to start search for next from here.
676 * But be careful: shmem_evict_inode checks list_empty without taking
677 * mutex, and there's an instant in list_move_tail when info->swaplist
678 * would appear empty, if it were the only one on shmem_swaplist.
680 if (shmem_swaplist.next != &info->swaplist)
681 list_move_tail(&shmem_swaplist, &info->swaplist);
683 gfp = mapping_gfp_mask(mapping);
684 if (shmem_should_replace_page(*pagep, gfp)) {
685 mutex_unlock(&shmem_swaplist_mutex);
686 error = shmem_replace_page(pagep, gfp, info, index);
687 mutex_lock(&shmem_swaplist_mutex);
689 * We needed to drop mutex to make that restrictive page
690 * allocation, but the inode might have been freed while we
691 * dropped it: although a racing shmem_evict_inode() cannot
692 * complete without emptying the radix_tree, our page lock
693 * on this swapcache page is not enough to prevent that -
694 * free_swap_and_cache() of our swap entry will only
695 * trylock_page(), removing swap from radix_tree whatever.
697 * We must not proceed to shmem_add_to_page_cache() if the
698 * inode has been freed, but of course we cannot rely on
699 * inode or mapping or info to check that. However, we can
700 * safely check if our swap entry is still in use (and here
701 * it can't have got reused for another page): if it's still
702 * in use, then the inode cannot have been freed yet, and we
703 * can safely proceed (if it's no longer in use, that tells
704 * nothing about the inode, but we don't need to unuse swap).
706 if (!page_swapcount(*pagep))
711 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
712 * but also to hold up shmem_evict_inode(): so inode cannot be freed
713 * beneath us (pagelock doesn't help until the page is in pagecache).
716 error = shmem_add_to_page_cache(*pagep, mapping, index,
717 GFP_NOWAIT, radswap);
718 if (error != -ENOMEM) {
720 * Truncation and eviction use free_swap_and_cache(), which
721 * only does trylock page: if we raced, best clean up here.
723 delete_from_swap_cache(*pagep);
724 set_page_dirty(*pagep);
726 spin_lock(&info->lock);
728 spin_unlock(&info->lock);
731 error = 1; /* not an error, but entry was found */
737 * Search through swapped inodes to find and replace swap by page.
739 int shmem_unuse(swp_entry_t swap, struct page *page)
741 struct list_head *this, *next;
742 struct shmem_inode_info *info;
747 * There's a faint possibility that swap page was replaced before
748 * caller locked it: caller will come back later with the right page.
750 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
754 * Charge page using GFP_KERNEL while we can wait, before taking
755 * the shmem_swaplist_mutex which might hold up shmem_writepage().
756 * Charged back to the user (not to caller) when swap account is used.
758 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
761 /* No radix_tree_preload: swap entry keeps a place for page in tree */
763 mutex_lock(&shmem_swaplist_mutex);
764 list_for_each_safe(this, next, &shmem_swaplist) {
765 info = list_entry(this, struct shmem_inode_info, swaplist);
767 found = shmem_unuse_inode(info, swap, &page);
769 list_del_init(&info->swaplist);
774 mutex_unlock(&shmem_swaplist_mutex);
780 page_cache_release(page);
785 * Move the page from the page cache to the swap cache.
787 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
789 struct shmem_inode_info *info;
790 struct address_space *mapping;
795 BUG_ON(!PageLocked(page));
796 mapping = page->mapping;
798 inode = mapping->host;
799 info = SHMEM_I(inode);
800 if (info->flags & VM_LOCKED)
802 if (!total_swap_pages)
806 * shmem_backing_dev_info's capabilities prevent regular writeback or
807 * sync from ever calling shmem_writepage; but a stacking filesystem
808 * might use ->writepage of its underlying filesystem, in which case
809 * tmpfs should write out to swap only in response to memory pressure,
810 * and not for the writeback threads or sync.
812 if (!wbc->for_reclaim) {
813 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
818 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
819 * value into swapfile.c, the only way we can correctly account for a
820 * fallocated page arriving here is now to initialize it and write it.
822 * That's okay for a page already fallocated earlier, but if we have
823 * not yet completed the fallocation, then (a) we want to keep track
824 * of this page in case we have to undo it, and (b) it may not be a
825 * good idea to continue anyway, once we're pushing into swap. So
826 * reactivate the page, and let shmem_fallocate() quit when too many.
828 if (!PageUptodate(page)) {
829 if (inode->i_private) {
830 struct shmem_falloc *shmem_falloc;
831 spin_lock(&inode->i_lock);
832 shmem_falloc = inode->i_private;
834 !shmem_falloc->waitq &&
835 index >= shmem_falloc->start &&
836 index < shmem_falloc->next)
837 shmem_falloc->nr_unswapped++;
840 spin_unlock(&inode->i_lock);
844 clear_highpage(page);
845 flush_dcache_page(page);
846 SetPageUptodate(page);
849 swap = get_swap_page();
854 * Add inode to shmem_unuse()'s list of swapped-out inodes,
855 * if it's not already there. Do it now before the page is
856 * moved to swap cache, when its pagelock no longer protects
857 * the inode from eviction. But don't unlock the mutex until
858 * we've incremented swapped, because shmem_unuse_inode() will
859 * prune a !swapped inode from the swaplist under this mutex.
861 mutex_lock(&shmem_swaplist_mutex);
862 if (list_empty(&info->swaplist))
863 list_add_tail(&info->swaplist, &shmem_swaplist);
865 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
866 swap_shmem_alloc(swap);
867 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
869 spin_lock(&info->lock);
871 shmem_recalc_inode(inode);
872 spin_unlock(&info->lock);
874 mutex_unlock(&shmem_swaplist_mutex);
875 BUG_ON(page_mapped(page));
876 swap_writepage(page, wbc);
880 mutex_unlock(&shmem_swaplist_mutex);
881 swapcache_free(swap, NULL);
883 set_page_dirty(page);
884 if (wbc->for_reclaim)
885 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
892 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
896 if (!mpol || mpol->mode == MPOL_DEFAULT)
897 return; /* show nothing */
899 mpol_to_str(buffer, sizeof(buffer), mpol);
901 seq_printf(seq, ",mpol=%s", buffer);
904 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
906 struct mempolicy *mpol = NULL;
908 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
911 spin_unlock(&sbinfo->stat_lock);
915 #endif /* CONFIG_TMPFS */
917 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
918 struct shmem_inode_info *info, pgoff_t index)
920 struct vm_area_struct pvma;
923 /* Create a pseudo vma that just contains the policy */
925 /* Bias interleave by inode number to distribute better across nodes */
926 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930 page = swapin_readahead(swap, gfp, &pvma, 0);
932 /* Drop reference taken by mpol_shared_policy_lookup() */
933 mpol_cond_put(pvma.vm_policy);
938 static struct page *shmem_alloc_page(gfp_t gfp,
939 struct shmem_inode_info *info, pgoff_t index)
941 struct vm_area_struct pvma;
944 /* Create a pseudo vma that just contains the policy */
946 /* Bias interleave by inode number to distribute better across nodes */
947 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
949 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
951 page = alloc_page_vma(gfp, &pvma, 0);
953 /* Drop reference taken by mpol_shared_policy_lookup() */
954 mpol_cond_put(pvma.vm_policy);
958 #else /* !CONFIG_NUMA */
960 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
963 #endif /* CONFIG_TMPFS */
965 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
966 struct shmem_inode_info *info, pgoff_t index)
968 return swapin_readahead(swap, gfp, NULL, 0);
971 static inline struct page *shmem_alloc_page(gfp_t gfp,
972 struct shmem_inode_info *info, pgoff_t index)
974 return alloc_page(gfp);
976 #endif /* CONFIG_NUMA */
978 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
979 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
986 * When a page is moved from swapcache to shmem filecache (either by the
987 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
988 * shmem_unuse_inode()), it may have been read in earlier from swap, in
989 * ignorance of the mapping it belongs to. If that mapping has special
990 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
991 * we may need to copy to a suitable page before moving to filecache.
993 * In a future release, this may well be extended to respect cpuset and
994 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
995 * but for now it is a simple matter of zone.
997 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
999 return page_zonenum(page) > gfp_zone(gfp);
1002 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1003 struct shmem_inode_info *info, pgoff_t index)
1005 struct page *oldpage, *newpage;
1006 struct address_space *swap_mapping;
1011 swap_index = page_private(oldpage);
1012 swap_mapping = page_mapping(oldpage);
1015 * We have arrived here because our zones are constrained, so don't
1016 * limit chance of success by further cpuset and node constraints.
1018 gfp &= ~GFP_CONSTRAINT_MASK;
1019 newpage = shmem_alloc_page(gfp, info, index);
1023 page_cache_get(newpage);
1024 copy_highpage(newpage, oldpage);
1025 flush_dcache_page(newpage);
1027 __set_page_locked(newpage);
1028 SetPageUptodate(newpage);
1029 SetPageSwapBacked(newpage);
1030 set_page_private(newpage, swap_index);
1031 SetPageSwapCache(newpage);
1034 * Our caller will very soon move newpage out of swapcache, but it's
1035 * a nice clean interface for us to replace oldpage by newpage there.
1037 spin_lock_irq(&swap_mapping->tree_lock);
1038 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1041 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1042 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1044 spin_unlock_irq(&swap_mapping->tree_lock);
1046 if (unlikely(error)) {
1048 * Is this possible? I think not, now that our callers check
1049 * both PageSwapCache and page_private after getting page lock;
1050 * but be defensive. Reverse old to newpage for clear and free.
1054 mem_cgroup_replace_page_cache(oldpage, newpage);
1055 lru_cache_add_anon(newpage);
1059 ClearPageSwapCache(oldpage);
1060 set_page_private(oldpage, 0);
1062 unlock_page(oldpage);
1063 page_cache_release(oldpage);
1064 page_cache_release(oldpage);
1069 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1071 * If we allocate a new one we do not mark it dirty. That's up to the
1072 * vm. If we swap it in we mark it dirty since we also free the swap
1073 * entry since a page cannot live in both the swap and page cache
1075 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1076 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1078 struct address_space *mapping = inode->i_mapping;
1079 struct shmem_inode_info *info;
1080 struct shmem_sb_info *sbinfo;
1087 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1091 page = find_lock_page(mapping, index);
1092 if (radix_tree_exceptional_entry(page)) {
1093 swap = radix_to_swp_entry(page);
1097 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1098 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1103 /* fallocated page? */
1104 if (page && !PageUptodate(page)) {
1105 if (sgp != SGP_READ)
1108 page_cache_release(page);
1111 if (page || (sgp == SGP_READ && !swap.val)) {
1117 * Fast cache lookup did not find it:
1118 * bring it back from swap or allocate.
1120 info = SHMEM_I(inode);
1121 sbinfo = SHMEM_SB(inode->i_sb);
1124 /* Look it up and read it in.. */
1125 page = lookup_swap_cache(swap);
1127 /* here we actually do the io */
1129 *fault_type |= VM_FAULT_MAJOR;
1130 page = shmem_swapin(swap, gfp, info, index);
1137 /* We have to do this with page locked to prevent races */
1139 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1140 !shmem_confirm_swap(mapping, index, swap)) {
1141 error = -EEXIST; /* try again */
1144 if (!PageUptodate(page)) {
1148 wait_on_page_writeback(page);
1150 if (shmem_should_replace_page(page, gfp)) {
1151 error = shmem_replace_page(&page, gfp, info, index);
1156 error = mem_cgroup_cache_charge(page, current->mm,
1157 gfp & GFP_RECLAIM_MASK);
1159 error = shmem_add_to_page_cache(page, mapping, index,
1160 gfp, swp_to_radix_entry(swap));
1162 * We already confirmed swap under page lock, and make
1163 * no memory allocation here, so usually no possibility
1164 * of error; but free_swap_and_cache() only trylocks a
1165 * page, so it is just possible that the entry has been
1166 * truncated or holepunched since swap was confirmed.
1167 * shmem_undo_range() will have done some of the
1168 * unaccounting, now delete_from_swap_cache() will do
1169 * the rest (including mem_cgroup_uncharge_swapcache).
1170 * Reset swap.val? No, leave it so "failed" goes back to
1171 * "repeat": reading a hole and writing should succeed.
1174 delete_from_swap_cache(page);
1179 spin_lock(&info->lock);
1181 shmem_recalc_inode(inode);
1182 spin_unlock(&info->lock);
1184 delete_from_swap_cache(page);
1185 set_page_dirty(page);
1189 if (shmem_acct_block(info->flags)) {
1193 if (sbinfo->max_blocks) {
1194 if (percpu_counter_compare(&sbinfo->used_blocks,
1195 sbinfo->max_blocks) >= 0) {
1199 percpu_counter_inc(&sbinfo->used_blocks);
1202 page = shmem_alloc_page(gfp, info, index);
1208 SetPageSwapBacked(page);
1209 __set_page_locked(page);
1210 error = mem_cgroup_cache_charge(page, current->mm,
1211 gfp & GFP_RECLAIM_MASK);
1214 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1216 error = shmem_add_to_page_cache(page, mapping, index,
1218 radix_tree_preload_end();
1221 mem_cgroup_uncharge_cache_page(page);
1224 lru_cache_add_anon(page);
1226 spin_lock(&info->lock);
1228 inode->i_blocks += BLOCKS_PER_PAGE;
1229 shmem_recalc_inode(inode);
1230 spin_unlock(&info->lock);
1234 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1236 if (sgp == SGP_FALLOC)
1240 * Let SGP_WRITE caller clear ends if write does not fill page;
1241 * but SGP_FALLOC on a page fallocated earlier must initialize
1242 * it now, lest undo on failure cancel our earlier guarantee.
1244 if (sgp != SGP_WRITE) {
1245 clear_highpage(page);
1246 flush_dcache_page(page);
1247 SetPageUptodate(page);
1249 if (sgp == SGP_DIRTY)
1250 set_page_dirty(page);
1253 /* Perhaps the file has been truncated since we checked */
1254 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1255 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1269 info = SHMEM_I(inode);
1270 ClearPageDirty(page);
1271 delete_from_page_cache(page);
1272 spin_lock(&info->lock);
1274 inode->i_blocks -= BLOCKS_PER_PAGE;
1275 spin_unlock(&info->lock);
1277 sbinfo = SHMEM_SB(inode->i_sb);
1278 if (sbinfo->max_blocks)
1279 percpu_counter_add(&sbinfo->used_blocks, -1);
1281 shmem_unacct_blocks(info->flags, 1);
1283 if (swap.val && error != -EINVAL &&
1284 !shmem_confirm_swap(mapping, index, swap))
1289 page_cache_release(page);
1291 if (error == -ENOSPC && !once++) {
1292 info = SHMEM_I(inode);
1293 spin_lock(&info->lock);
1294 shmem_recalc_inode(inode);
1295 spin_unlock(&info->lock);
1298 if (error == -EEXIST) /* from above or from radix_tree_insert */
1303 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1305 struct inode *inode = file_inode(vma->vm_file);
1307 int ret = VM_FAULT_LOCKED;
1310 * Trinity finds that probing a hole which tmpfs is punching can
1311 * prevent the hole-punch from ever completing: which in turn
1312 * locks writers out with its hold on i_mutex. So refrain from
1313 * faulting pages into the hole while it's being punched. Although
1314 * shmem_undo_range() does remove the additions, it may be unable to
1315 * keep up, as each new page needs its own unmap_mapping_range() call,
1316 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1318 * It does not matter if we sometimes reach this check just before the
1319 * hole-punch begins, so that one fault then races with the punch:
1320 * we just need to make racing faults a rare case.
1322 * The implementation below would be much simpler if we just used a
1323 * standard mutex or completion: but we cannot take i_mutex in fault,
1324 * and bloating every shmem inode for this unlikely case would be sad.
1326 if (unlikely(inode->i_private)) {
1327 struct shmem_falloc *shmem_falloc;
1329 spin_lock(&inode->i_lock);
1330 shmem_falloc = inode->i_private;
1332 shmem_falloc->waitq &&
1333 vmf->pgoff >= shmem_falloc->start &&
1334 vmf->pgoff < shmem_falloc->next) {
1335 wait_queue_head_t *shmem_falloc_waitq;
1336 DEFINE_WAIT(shmem_fault_wait);
1338 ret = VM_FAULT_NOPAGE;
1339 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1340 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1341 /* It's polite to up mmap_sem if we can */
1342 up_read(&vma->vm_mm->mmap_sem);
1343 ret = VM_FAULT_RETRY;
1346 shmem_falloc_waitq = shmem_falloc->waitq;
1347 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1348 TASK_UNINTERRUPTIBLE);
1349 spin_unlock(&inode->i_lock);
1353 * shmem_falloc_waitq points into the shmem_fallocate()
1354 * stack of the hole-punching task: shmem_falloc_waitq
1355 * is usually invalid by the time we reach here, but
1356 * finish_wait() does not dereference it in that case;
1357 * though i_lock needed lest racing with wake_up_all().
1359 spin_lock(&inode->i_lock);
1360 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1361 spin_unlock(&inode->i_lock);
1364 spin_unlock(&inode->i_lock);
1367 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1369 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1371 if (ret & VM_FAULT_MAJOR) {
1372 count_vm_event(PGMAJFAULT);
1373 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1379 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1381 struct inode *inode = file_inode(vma->vm_file);
1382 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1385 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1388 struct inode *inode = file_inode(vma->vm_file);
1391 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1392 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1396 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1398 struct inode *inode = file_inode(file);
1399 struct shmem_inode_info *info = SHMEM_I(inode);
1400 int retval = -ENOMEM;
1402 spin_lock(&info->lock);
1403 if (lock && !(info->flags & VM_LOCKED)) {
1404 if (!user_shm_lock(inode->i_size, user))
1406 info->flags |= VM_LOCKED;
1407 mapping_set_unevictable(file->f_mapping);
1409 if (!lock && (info->flags & VM_LOCKED) && user) {
1410 user_shm_unlock(inode->i_size, user);
1411 info->flags &= ~VM_LOCKED;
1412 mapping_clear_unevictable(file->f_mapping);
1417 spin_unlock(&info->lock);
1421 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1423 file_accessed(file);
1424 vma->vm_ops = &shmem_vm_ops;
1428 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1429 umode_t mode, dev_t dev, unsigned long flags)
1431 struct inode *inode;
1432 struct shmem_inode_info *info;
1433 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1435 if (shmem_reserve_inode(sb))
1438 inode = new_inode(sb);
1440 inode->i_ino = get_next_ino();
1441 inode_init_owner(inode, dir, mode);
1442 inode->i_blocks = 0;
1443 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1444 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1445 inode->i_generation = get_seconds();
1446 info = SHMEM_I(inode);
1447 memset(info, 0, (char *)inode - (char *)info);
1448 spin_lock_init(&info->lock);
1449 info->flags = flags & VM_NORESERVE;
1450 INIT_LIST_HEAD(&info->swaplist);
1451 simple_xattrs_init(&info->xattrs);
1452 cache_no_acl(inode);
1454 switch (mode & S_IFMT) {
1456 inode->i_op = &shmem_special_inode_operations;
1457 init_special_inode(inode, mode, dev);
1460 inode->i_mapping->a_ops = &shmem_aops;
1461 inode->i_op = &shmem_inode_operations;
1462 inode->i_fop = &shmem_file_operations;
1463 mpol_shared_policy_init(&info->policy,
1464 shmem_get_sbmpol(sbinfo));
1468 /* Some things misbehave if size == 0 on a directory */
1469 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1470 inode->i_op = &shmem_dir_inode_operations;
1471 inode->i_fop = &simple_dir_operations;
1475 * Must not load anything in the rbtree,
1476 * mpol_free_shared_policy will not be called.
1478 mpol_shared_policy_init(&info->policy, NULL);
1482 shmem_free_inode(sb);
1487 static const struct inode_operations shmem_symlink_inode_operations;
1488 static const struct inode_operations shmem_short_symlink_operations;
1490 #ifdef CONFIG_TMPFS_XATTR
1491 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1493 #define shmem_initxattrs NULL
1497 shmem_write_begin(struct file *file, struct address_space *mapping,
1498 loff_t pos, unsigned len, unsigned flags,
1499 struct page **pagep, void **fsdata)
1501 struct inode *inode = mapping->host;
1502 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1503 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1507 shmem_write_end(struct file *file, struct address_space *mapping,
1508 loff_t pos, unsigned len, unsigned copied,
1509 struct page *page, void *fsdata)
1511 struct inode *inode = mapping->host;
1513 if (pos + copied > inode->i_size)
1514 i_size_write(inode, pos + copied);
1516 if (!PageUptodate(page)) {
1517 if (copied < PAGE_CACHE_SIZE) {
1518 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1519 zero_user_segments(page, 0, from,
1520 from + copied, PAGE_CACHE_SIZE);
1522 SetPageUptodate(page);
1524 set_page_dirty(page);
1526 page_cache_release(page);
1531 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1533 struct inode *inode = file_inode(filp);
1534 struct address_space *mapping = inode->i_mapping;
1536 unsigned long offset;
1537 enum sgp_type sgp = SGP_READ;
1540 * Might this read be for a stacking filesystem? Then when reading
1541 * holes of a sparse file, we actually need to allocate those pages,
1542 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1544 if (segment_eq(get_fs(), KERNEL_DS))
1547 index = *ppos >> PAGE_CACHE_SHIFT;
1548 offset = *ppos & ~PAGE_CACHE_MASK;
1551 struct page *page = NULL;
1553 unsigned long nr, ret;
1554 loff_t i_size = i_size_read(inode);
1556 end_index = i_size >> PAGE_CACHE_SHIFT;
1557 if (index > end_index)
1559 if (index == end_index) {
1560 nr = i_size & ~PAGE_CACHE_MASK;
1565 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1567 if (desc->error == -EINVAL)
1575 * We must evaluate after, since reads (unlike writes)
1576 * are called without i_mutex protection against truncate
1578 nr = PAGE_CACHE_SIZE;
1579 i_size = i_size_read(inode);
1580 end_index = i_size >> PAGE_CACHE_SHIFT;
1581 if (index == end_index) {
1582 nr = i_size & ~PAGE_CACHE_MASK;
1585 page_cache_release(page);
1593 * If users can be writing to this page using arbitrary
1594 * virtual addresses, take care about potential aliasing
1595 * before reading the page on the kernel side.
1597 if (mapping_writably_mapped(mapping))
1598 flush_dcache_page(page);
1600 * Mark the page accessed if we read the beginning.
1603 mark_page_accessed(page);
1605 page = ZERO_PAGE(0);
1606 page_cache_get(page);
1610 * Ok, we have the page, and it's up-to-date, so
1611 * now we can copy it to user space...
1613 * The actor routine returns how many bytes were actually used..
1614 * NOTE! This may not be the same as how much of a user buffer
1615 * we filled up (we may be padding etc), so we can only update
1616 * "pos" here (the actor routine has to update the user buffer
1617 * pointers and the remaining count).
1619 ret = actor(desc, page, offset, nr);
1621 index += offset >> PAGE_CACHE_SHIFT;
1622 offset &= ~PAGE_CACHE_MASK;
1624 page_cache_release(page);
1625 if (ret != nr || !desc->count)
1631 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1632 file_accessed(filp);
1635 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1636 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1638 struct file *filp = iocb->ki_filp;
1642 loff_t *ppos = &iocb->ki_pos;
1644 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1648 for (seg = 0; seg < nr_segs; seg++) {
1649 read_descriptor_t desc;
1652 desc.arg.buf = iov[seg].iov_base;
1653 desc.count = iov[seg].iov_len;
1654 if (desc.count == 0)
1657 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1658 retval += desc.written;
1660 retval = retval ?: desc.error;
1669 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1670 struct pipe_inode_info *pipe, size_t len,
1673 struct address_space *mapping = in->f_mapping;
1674 struct inode *inode = mapping->host;
1675 unsigned int loff, nr_pages, req_pages;
1676 struct page *pages[PIPE_DEF_BUFFERS];
1677 struct partial_page partial[PIPE_DEF_BUFFERS];
1679 pgoff_t index, end_index;
1682 struct splice_pipe_desc spd = {
1685 .nr_pages_max = PIPE_DEF_BUFFERS,
1687 .ops = &page_cache_pipe_buf_ops,
1688 .spd_release = spd_release_page,
1691 isize = i_size_read(inode);
1692 if (unlikely(*ppos >= isize))
1695 left = isize - *ppos;
1696 if (unlikely(left < len))
1699 if (splice_grow_spd(pipe, &spd))
1702 index = *ppos >> PAGE_CACHE_SHIFT;
1703 loff = *ppos & ~PAGE_CACHE_MASK;
1704 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1705 nr_pages = min(req_pages, pipe->buffers);
1707 spd.nr_pages = find_get_pages_contig(mapping, index,
1708 nr_pages, spd.pages);
1709 index += spd.nr_pages;
1712 while (spd.nr_pages < nr_pages) {
1713 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1717 spd.pages[spd.nr_pages++] = page;
1721 index = *ppos >> PAGE_CACHE_SHIFT;
1722 nr_pages = spd.nr_pages;
1725 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1726 unsigned int this_len;
1731 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1732 page = spd.pages[page_nr];
1734 if (!PageUptodate(page) || page->mapping != mapping) {
1735 error = shmem_getpage(inode, index, &page,
1740 page_cache_release(spd.pages[page_nr]);
1741 spd.pages[page_nr] = page;
1744 isize = i_size_read(inode);
1745 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1746 if (unlikely(!isize || index > end_index))
1749 if (end_index == index) {
1752 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1756 this_len = min(this_len, plen - loff);
1760 spd.partial[page_nr].offset = loff;
1761 spd.partial[page_nr].len = this_len;
1768 while (page_nr < nr_pages)
1769 page_cache_release(spd.pages[page_nr++]);
1772 error = splice_to_pipe(pipe, &spd);
1774 splice_shrink_spd(&spd);
1784 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1786 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1787 pgoff_t index, pgoff_t end, int whence)
1790 struct pagevec pvec;
1791 pgoff_t indices[PAGEVEC_SIZE];
1795 pagevec_init(&pvec, 0);
1796 pvec.nr = 1; /* start small: we may be there already */
1798 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1799 pvec.nr, pvec.pages, indices);
1801 if (whence == SEEK_DATA)
1805 for (i = 0; i < pvec.nr; i++, index++) {
1806 if (index < indices[i]) {
1807 if (whence == SEEK_HOLE) {
1813 page = pvec.pages[i];
1814 if (page && !radix_tree_exceptional_entry(page)) {
1815 if (!PageUptodate(page))
1819 (page && whence == SEEK_DATA) ||
1820 (!page && whence == SEEK_HOLE)) {
1825 shmem_deswap_pagevec(&pvec);
1826 pagevec_release(&pvec);
1827 pvec.nr = PAGEVEC_SIZE;
1833 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1835 struct address_space *mapping = file->f_mapping;
1836 struct inode *inode = mapping->host;
1840 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1841 return generic_file_llseek_size(file, offset, whence,
1842 MAX_LFS_FILESIZE, i_size_read(inode));
1843 mutex_lock(&inode->i_mutex);
1844 /* We're holding i_mutex so we can access i_size directly */
1848 else if (offset >= inode->i_size)
1851 start = offset >> PAGE_CACHE_SHIFT;
1852 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1853 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1854 new_offset <<= PAGE_CACHE_SHIFT;
1855 if (new_offset > offset) {
1856 if (new_offset < inode->i_size)
1857 offset = new_offset;
1858 else if (whence == SEEK_DATA)
1861 offset = inode->i_size;
1866 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1867 mutex_unlock(&inode->i_mutex);
1871 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1874 struct inode *inode = file_inode(file);
1875 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1876 struct shmem_falloc shmem_falloc;
1877 pgoff_t start, index, end;
1880 mutex_lock(&inode->i_mutex);
1882 if (mode & FALLOC_FL_PUNCH_HOLE) {
1883 struct address_space *mapping = file->f_mapping;
1884 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1885 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1886 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1888 shmem_falloc.waitq = &shmem_falloc_waitq;
1889 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1890 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1891 spin_lock(&inode->i_lock);
1892 inode->i_private = &shmem_falloc;
1893 spin_unlock(&inode->i_lock);
1895 if ((u64)unmap_end > (u64)unmap_start)
1896 unmap_mapping_range(mapping, unmap_start,
1897 1 + unmap_end - unmap_start, 0);
1898 shmem_truncate_range(inode, offset, offset + len - 1);
1899 /* No need to unmap again: hole-punching leaves COWed pages */
1901 spin_lock(&inode->i_lock);
1902 inode->i_private = NULL;
1903 wake_up_all(&shmem_falloc_waitq);
1904 spin_unlock(&inode->i_lock);
1909 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1910 error = inode_newsize_ok(inode, offset + len);
1914 start = offset >> PAGE_CACHE_SHIFT;
1915 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1916 /* Try to avoid a swapstorm if len is impossible to satisfy */
1917 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1922 shmem_falloc.waitq = NULL;
1923 shmem_falloc.start = start;
1924 shmem_falloc.next = start;
1925 shmem_falloc.nr_falloced = 0;
1926 shmem_falloc.nr_unswapped = 0;
1927 spin_lock(&inode->i_lock);
1928 inode->i_private = &shmem_falloc;
1929 spin_unlock(&inode->i_lock);
1931 for (index = start; index < end; index++) {
1935 * Good, the fallocate(2) manpage permits EINTR: we may have
1936 * been interrupted because we are using up too much memory.
1938 if (signal_pending(current))
1940 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1943 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1946 /* Remove the !PageUptodate pages we added */
1947 shmem_undo_range(inode,
1948 (loff_t)start << PAGE_CACHE_SHIFT,
1949 (loff_t)index << PAGE_CACHE_SHIFT, true);
1954 * Inform shmem_writepage() how far we have reached.
1955 * No need for lock or barrier: we have the page lock.
1957 shmem_falloc.next++;
1958 if (!PageUptodate(page))
1959 shmem_falloc.nr_falloced++;
1962 * If !PageUptodate, leave it that way so that freeable pages
1963 * can be recognized if we need to rollback on error later.
1964 * But set_page_dirty so that memory pressure will swap rather
1965 * than free the pages we are allocating (and SGP_CACHE pages
1966 * might still be clean: we now need to mark those dirty too).
1968 set_page_dirty(page);
1970 page_cache_release(page);
1974 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1975 i_size_write(inode, offset + len);
1976 inode->i_ctime = CURRENT_TIME;
1978 spin_lock(&inode->i_lock);
1979 inode->i_private = NULL;
1980 spin_unlock(&inode->i_lock);
1982 mutex_unlock(&inode->i_mutex);
1986 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1988 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1990 buf->f_type = TMPFS_MAGIC;
1991 buf->f_bsize = PAGE_CACHE_SIZE;
1992 buf->f_namelen = NAME_MAX;
1993 if (sbinfo->max_blocks) {
1994 buf->f_blocks = sbinfo->max_blocks;
1996 buf->f_bfree = sbinfo->max_blocks -
1997 percpu_counter_sum(&sbinfo->used_blocks);
1999 if (sbinfo->max_inodes) {
2000 buf->f_files = sbinfo->max_inodes;
2001 buf->f_ffree = sbinfo->free_inodes;
2003 /* else leave those fields 0 like simple_statfs */
2008 * File creation. Allocate an inode, and we're done..
2011 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2013 struct inode *inode;
2014 int error = -ENOSPC;
2016 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2018 error = simple_acl_create(dir, inode);
2021 error = security_inode_init_security(inode, dir,
2023 shmem_initxattrs, NULL);
2024 if (error && error != -EOPNOTSUPP)
2028 dir->i_size += BOGO_DIRENT_SIZE;
2029 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2030 d_instantiate(dentry, inode);
2031 dget(dentry); /* Extra count - pin the dentry in core */
2040 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2042 struct inode *inode;
2043 int error = -ENOSPC;
2045 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2047 error = security_inode_init_security(inode, dir,
2049 shmem_initxattrs, NULL);
2050 if (error && error != -EOPNOTSUPP)
2052 error = simple_acl_create(dir, inode);
2055 d_tmpfile(dentry, inode);
2063 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2067 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2073 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2076 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2082 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2084 struct inode *inode = old_dentry->d_inode;
2088 * No ordinary (disk based) filesystem counts links as inodes;
2089 * but each new link needs a new dentry, pinning lowmem, and
2090 * tmpfs dentries cannot be pruned until they are unlinked.
2092 ret = shmem_reserve_inode(inode->i_sb);
2096 dir->i_size += BOGO_DIRENT_SIZE;
2097 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2099 ihold(inode); /* New dentry reference */
2100 dget(dentry); /* Extra pinning count for the created dentry */
2101 d_instantiate(dentry, inode);
2106 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2108 struct inode *inode = dentry->d_inode;
2110 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2111 shmem_free_inode(inode->i_sb);
2113 dir->i_size -= BOGO_DIRENT_SIZE;
2114 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2116 dput(dentry); /* Undo the count from "create" - this does all the work */
2120 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2122 if (!simple_empty(dentry))
2125 drop_nlink(dentry->d_inode);
2127 return shmem_unlink(dir, dentry);
2131 * The VFS layer already does all the dentry stuff for rename,
2132 * we just have to decrement the usage count for the target if
2133 * it exists so that the VFS layer correctly free's it when it
2136 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2138 struct inode *inode = old_dentry->d_inode;
2139 int they_are_dirs = S_ISDIR(inode->i_mode);
2141 if (!simple_empty(new_dentry))
2144 if (new_dentry->d_inode) {
2145 (void) shmem_unlink(new_dir, new_dentry);
2147 drop_nlink(old_dir);
2148 } else if (they_are_dirs) {
2149 drop_nlink(old_dir);
2153 old_dir->i_size -= BOGO_DIRENT_SIZE;
2154 new_dir->i_size += BOGO_DIRENT_SIZE;
2155 old_dir->i_ctime = old_dir->i_mtime =
2156 new_dir->i_ctime = new_dir->i_mtime =
2157 inode->i_ctime = CURRENT_TIME;
2161 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2165 struct inode *inode;
2168 struct shmem_inode_info *info;
2170 len = strlen(symname) + 1;
2171 if (len > PAGE_CACHE_SIZE)
2172 return -ENAMETOOLONG;
2174 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2178 error = security_inode_init_security(inode, dir, &dentry->d_name,
2179 shmem_initxattrs, NULL);
2181 if (error != -EOPNOTSUPP) {
2188 info = SHMEM_I(inode);
2189 inode->i_size = len-1;
2190 if (len <= SHORT_SYMLINK_LEN) {
2191 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2192 if (!info->symlink) {
2196 inode->i_op = &shmem_short_symlink_operations;
2198 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2203 inode->i_mapping->a_ops = &shmem_aops;
2204 inode->i_op = &shmem_symlink_inode_operations;
2205 kaddr = kmap_atomic(page);
2206 memcpy(kaddr, symname, len);
2207 kunmap_atomic(kaddr);
2208 SetPageUptodate(page);
2209 set_page_dirty(page);
2211 page_cache_release(page);
2213 dir->i_size += BOGO_DIRENT_SIZE;
2214 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2215 d_instantiate(dentry, inode);
2220 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2222 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2226 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2228 struct page *page = NULL;
2229 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2230 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2236 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2238 if (!IS_ERR(nd_get_link(nd))) {
2239 struct page *page = cookie;
2241 mark_page_accessed(page);
2242 page_cache_release(page);
2246 #ifdef CONFIG_TMPFS_XATTR
2248 * Superblocks without xattr inode operations may get some security.* xattr
2249 * support from the LSM "for free". As soon as we have any other xattrs
2250 * like ACLs, we also need to implement the security.* handlers at
2251 * filesystem level, though.
2255 * Callback for security_inode_init_security() for acquiring xattrs.
2257 static int shmem_initxattrs(struct inode *inode,
2258 const struct xattr *xattr_array,
2261 struct shmem_inode_info *info = SHMEM_I(inode);
2262 const struct xattr *xattr;
2263 struct simple_xattr *new_xattr;
2266 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2267 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2271 len = strlen(xattr->name) + 1;
2272 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2274 if (!new_xattr->name) {
2279 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2280 XATTR_SECURITY_PREFIX_LEN);
2281 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2284 simple_xattr_list_add(&info->xattrs, new_xattr);
2290 static const struct xattr_handler *shmem_xattr_handlers[] = {
2291 #ifdef CONFIG_TMPFS_POSIX_ACL
2292 &posix_acl_access_xattr_handler,
2293 &posix_acl_default_xattr_handler,
2298 static int shmem_xattr_validate(const char *name)
2300 struct { const char *prefix; size_t len; } arr[] = {
2301 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2302 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2306 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2307 size_t preflen = arr[i].len;
2308 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2317 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2318 void *buffer, size_t size)
2320 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2324 * If this is a request for a synthetic attribute in the system.*
2325 * namespace use the generic infrastructure to resolve a handler
2326 * for it via sb->s_xattr.
2328 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2329 return generic_getxattr(dentry, name, buffer, size);
2331 err = shmem_xattr_validate(name);
2335 return simple_xattr_get(&info->xattrs, name, buffer, size);
2338 static int shmem_setxattr(struct dentry *dentry, const char *name,
2339 const void *value, size_t size, int flags)
2341 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2345 * If this is a request for a synthetic attribute in the system.*
2346 * namespace use the generic infrastructure to resolve a handler
2347 * for it via sb->s_xattr.
2349 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2350 return generic_setxattr(dentry, name, value, size, flags);
2352 err = shmem_xattr_validate(name);
2356 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2359 static int shmem_removexattr(struct dentry *dentry, const char *name)
2361 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2365 * If this is a request for a synthetic attribute in the system.*
2366 * namespace use the generic infrastructure to resolve a handler
2367 * for it via sb->s_xattr.
2369 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2370 return generic_removexattr(dentry, name);
2372 err = shmem_xattr_validate(name);
2376 return simple_xattr_remove(&info->xattrs, name);
2379 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2381 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2382 return simple_xattr_list(&info->xattrs, buffer, size);
2384 #endif /* CONFIG_TMPFS_XATTR */
2386 static const struct inode_operations shmem_short_symlink_operations = {
2387 .readlink = generic_readlink,
2388 .follow_link = shmem_follow_short_symlink,
2389 #ifdef CONFIG_TMPFS_XATTR
2390 .setxattr = shmem_setxattr,
2391 .getxattr = shmem_getxattr,
2392 .listxattr = shmem_listxattr,
2393 .removexattr = shmem_removexattr,
2397 static const struct inode_operations shmem_symlink_inode_operations = {
2398 .readlink = generic_readlink,
2399 .follow_link = shmem_follow_link,
2400 .put_link = shmem_put_link,
2401 #ifdef CONFIG_TMPFS_XATTR
2402 .setxattr = shmem_setxattr,
2403 .getxattr = shmem_getxattr,
2404 .listxattr = shmem_listxattr,
2405 .removexattr = shmem_removexattr,
2409 static struct dentry *shmem_get_parent(struct dentry *child)
2411 return ERR_PTR(-ESTALE);
2414 static int shmem_match(struct inode *ino, void *vfh)
2418 inum = (inum << 32) | fh[1];
2419 return ino->i_ino == inum && fh[0] == ino->i_generation;
2422 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2423 struct fid *fid, int fh_len, int fh_type)
2425 struct inode *inode;
2426 struct dentry *dentry = NULL;
2433 inum = (inum << 32) | fid->raw[1];
2435 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2436 shmem_match, fid->raw);
2438 dentry = d_find_alias(inode);
2445 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2446 struct inode *parent)
2450 return FILEID_INVALID;
2453 if (inode_unhashed(inode)) {
2454 /* Unfortunately insert_inode_hash is not idempotent,
2455 * so as we hash inodes here rather than at creation
2456 * time, we need a lock to ensure we only try
2459 static DEFINE_SPINLOCK(lock);
2461 if (inode_unhashed(inode))
2462 __insert_inode_hash(inode,
2463 inode->i_ino + inode->i_generation);
2467 fh[0] = inode->i_generation;
2468 fh[1] = inode->i_ino;
2469 fh[2] = ((__u64)inode->i_ino) >> 32;
2475 static const struct export_operations shmem_export_ops = {
2476 .get_parent = shmem_get_parent,
2477 .encode_fh = shmem_encode_fh,
2478 .fh_to_dentry = shmem_fh_to_dentry,
2481 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2484 char *this_char, *value, *rest;
2485 struct mempolicy *mpol = NULL;
2489 while (options != NULL) {
2490 this_char = options;
2493 * NUL-terminate this option: unfortunately,
2494 * mount options form a comma-separated list,
2495 * but mpol's nodelist may also contain commas.
2497 options = strchr(options, ',');
2498 if (options == NULL)
2501 if (!isdigit(*options)) {
2508 if ((value = strchr(this_char,'=')) != NULL) {
2512 "tmpfs: No value for mount option '%s'\n",
2517 if (!strcmp(this_char,"size")) {
2518 unsigned long long size;
2519 size = memparse(value,&rest);
2521 size <<= PAGE_SHIFT;
2522 size *= totalram_pages;
2528 sbinfo->max_blocks =
2529 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2530 } else if (!strcmp(this_char,"nr_blocks")) {
2531 sbinfo->max_blocks = memparse(value, &rest);
2534 } else if (!strcmp(this_char,"nr_inodes")) {
2535 sbinfo->max_inodes = memparse(value, &rest);
2538 } else if (!strcmp(this_char,"mode")) {
2541 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2544 } else if (!strcmp(this_char,"uid")) {
2547 uid = simple_strtoul(value, &rest, 0);
2550 sbinfo->uid = make_kuid(current_user_ns(), uid);
2551 if (!uid_valid(sbinfo->uid))
2553 } else if (!strcmp(this_char,"gid")) {
2556 gid = simple_strtoul(value, &rest, 0);
2559 sbinfo->gid = make_kgid(current_user_ns(), gid);
2560 if (!gid_valid(sbinfo->gid))
2562 } else if (!strcmp(this_char,"mpol")) {
2565 if (mpol_parse_str(value, &mpol))
2568 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2573 sbinfo->mpol = mpol;
2577 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2585 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2587 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2588 struct shmem_sb_info config = *sbinfo;
2589 unsigned long inodes;
2590 int error = -EINVAL;
2593 if (shmem_parse_options(data, &config, true))
2596 spin_lock(&sbinfo->stat_lock);
2597 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2598 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2600 if (config.max_inodes < inodes)
2603 * Those tests disallow limited->unlimited while any are in use;
2604 * but we must separately disallow unlimited->limited, because
2605 * in that case we have no record of how much is already in use.
2607 if (config.max_blocks && !sbinfo->max_blocks)
2609 if (config.max_inodes && !sbinfo->max_inodes)
2613 sbinfo->max_blocks = config.max_blocks;
2614 sbinfo->max_inodes = config.max_inodes;
2615 sbinfo->free_inodes = config.max_inodes - inodes;
2618 * Preserve previous mempolicy unless mpol remount option was specified.
2621 mpol_put(sbinfo->mpol);
2622 sbinfo->mpol = config.mpol; /* transfers initial ref */
2625 spin_unlock(&sbinfo->stat_lock);
2629 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2631 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2633 if (sbinfo->max_blocks != shmem_default_max_blocks())
2634 seq_printf(seq, ",size=%luk",
2635 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2636 if (sbinfo->max_inodes != shmem_default_max_inodes())
2637 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2638 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2639 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2640 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2641 seq_printf(seq, ",uid=%u",
2642 from_kuid_munged(&init_user_ns, sbinfo->uid));
2643 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2644 seq_printf(seq, ",gid=%u",
2645 from_kgid_munged(&init_user_ns, sbinfo->gid));
2646 shmem_show_mpol(seq, sbinfo->mpol);
2649 #endif /* CONFIG_TMPFS */
2651 static void shmem_put_super(struct super_block *sb)
2653 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2655 percpu_counter_destroy(&sbinfo->used_blocks);
2656 mpol_put(sbinfo->mpol);
2658 sb->s_fs_info = NULL;
2661 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2663 struct inode *inode;
2664 struct shmem_sb_info *sbinfo;
2667 /* Round up to L1_CACHE_BYTES to resist false sharing */
2668 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2669 L1_CACHE_BYTES), GFP_KERNEL);
2673 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2674 sbinfo->uid = current_fsuid();
2675 sbinfo->gid = current_fsgid();
2676 sb->s_fs_info = sbinfo;
2680 * Per default we only allow half of the physical ram per
2681 * tmpfs instance, limiting inodes to one per page of lowmem;
2682 * but the internal instance is left unlimited.
2684 if (!(sb->s_flags & MS_KERNMOUNT)) {
2685 sbinfo->max_blocks = shmem_default_max_blocks();
2686 sbinfo->max_inodes = shmem_default_max_inodes();
2687 if (shmem_parse_options(data, sbinfo, false)) {
2692 sb->s_flags |= MS_NOUSER;
2694 sb->s_export_op = &shmem_export_ops;
2695 sb->s_flags |= MS_NOSEC;
2697 sb->s_flags |= MS_NOUSER;
2700 spin_lock_init(&sbinfo->stat_lock);
2701 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2703 sbinfo->free_inodes = sbinfo->max_inodes;
2705 sb->s_maxbytes = MAX_LFS_FILESIZE;
2706 sb->s_blocksize = PAGE_CACHE_SIZE;
2707 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2708 sb->s_magic = TMPFS_MAGIC;
2709 sb->s_op = &shmem_ops;
2710 sb->s_time_gran = 1;
2711 #ifdef CONFIG_TMPFS_XATTR
2712 sb->s_xattr = shmem_xattr_handlers;
2714 #ifdef CONFIG_TMPFS_POSIX_ACL
2715 sb->s_flags |= MS_POSIXACL;
2718 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2721 inode->i_uid = sbinfo->uid;
2722 inode->i_gid = sbinfo->gid;
2723 sb->s_root = d_make_root(inode);
2729 shmem_put_super(sb);
2733 static struct kmem_cache *shmem_inode_cachep;
2735 static struct inode *shmem_alloc_inode(struct super_block *sb)
2737 struct shmem_inode_info *info;
2738 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2741 return &info->vfs_inode;
2744 static void shmem_destroy_callback(struct rcu_head *head)
2746 struct inode *inode = container_of(head, struct inode, i_rcu);
2747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2750 static void shmem_destroy_inode(struct inode *inode)
2752 if (S_ISREG(inode->i_mode))
2753 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2754 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2757 static void shmem_init_inode(void *foo)
2759 struct shmem_inode_info *info = foo;
2760 inode_init_once(&info->vfs_inode);
2763 static int shmem_init_inodecache(void)
2765 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2766 sizeof(struct shmem_inode_info),
2767 0, SLAB_PANIC, shmem_init_inode);
2771 static void shmem_destroy_inodecache(void)
2773 kmem_cache_destroy(shmem_inode_cachep);
2776 static const struct address_space_operations shmem_aops = {
2777 .writepage = shmem_writepage,
2778 .set_page_dirty = __set_page_dirty_no_writeback,
2780 .write_begin = shmem_write_begin,
2781 .write_end = shmem_write_end,
2783 .migratepage = migrate_page,
2784 .error_remove_page = generic_error_remove_page,
2787 static const struct file_operations shmem_file_operations = {
2790 .llseek = shmem_file_llseek,
2791 .read = do_sync_read,
2792 .write = do_sync_write,
2793 .aio_read = shmem_file_aio_read,
2794 .aio_write = generic_file_aio_write,
2795 .fsync = noop_fsync,
2796 .splice_read = shmem_file_splice_read,
2797 .splice_write = generic_file_splice_write,
2798 .fallocate = shmem_fallocate,
2802 static const struct inode_operations shmem_inode_operations = {
2803 .setattr = shmem_setattr,
2804 #ifdef CONFIG_TMPFS_XATTR
2805 .setxattr = shmem_setxattr,
2806 .getxattr = shmem_getxattr,
2807 .listxattr = shmem_listxattr,
2808 .removexattr = shmem_removexattr,
2809 .set_acl = simple_set_acl,
2813 static const struct inode_operations shmem_dir_inode_operations = {
2815 .create = shmem_create,
2816 .lookup = simple_lookup,
2818 .unlink = shmem_unlink,
2819 .symlink = shmem_symlink,
2820 .mkdir = shmem_mkdir,
2821 .rmdir = shmem_rmdir,
2822 .mknod = shmem_mknod,
2823 .rename = shmem_rename,
2824 .tmpfile = shmem_tmpfile,
2826 #ifdef CONFIG_TMPFS_XATTR
2827 .setxattr = shmem_setxattr,
2828 .getxattr = shmem_getxattr,
2829 .listxattr = shmem_listxattr,
2830 .removexattr = shmem_removexattr,
2832 #ifdef CONFIG_TMPFS_POSIX_ACL
2833 .setattr = shmem_setattr,
2834 .set_acl = simple_set_acl,
2838 static const struct inode_operations shmem_special_inode_operations = {
2839 #ifdef CONFIG_TMPFS_XATTR
2840 .setxattr = shmem_setxattr,
2841 .getxattr = shmem_getxattr,
2842 .listxattr = shmem_listxattr,
2843 .removexattr = shmem_removexattr,
2845 #ifdef CONFIG_TMPFS_POSIX_ACL
2846 .setattr = shmem_setattr,
2847 .set_acl = simple_set_acl,
2851 static const struct super_operations shmem_ops = {
2852 .alloc_inode = shmem_alloc_inode,
2853 .destroy_inode = shmem_destroy_inode,
2855 .statfs = shmem_statfs,
2856 .remount_fs = shmem_remount_fs,
2857 .show_options = shmem_show_options,
2859 .evict_inode = shmem_evict_inode,
2860 .drop_inode = generic_delete_inode,
2861 .put_super = shmem_put_super,
2864 static const struct vm_operations_struct shmem_vm_ops = {
2865 .fault = shmem_fault,
2867 .set_policy = shmem_set_policy,
2868 .get_policy = shmem_get_policy,
2870 .remap_pages = generic_file_remap_pages,
2873 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2874 int flags, const char *dev_name, void *data)
2876 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2879 static struct file_system_type shmem_fs_type = {
2880 .owner = THIS_MODULE,
2882 .mount = shmem_mount,
2883 .kill_sb = kill_litter_super,
2884 .fs_flags = FS_USERNS_MOUNT,
2887 int __init shmem_init(void)
2891 /* If rootfs called this, don't re-init */
2892 if (shmem_inode_cachep)
2895 error = bdi_init(&shmem_backing_dev_info);
2899 error = shmem_init_inodecache();
2903 error = register_filesystem(&shmem_fs_type);
2905 printk(KERN_ERR "Could not register tmpfs\n");
2909 shm_mnt = kern_mount(&shmem_fs_type);
2910 if (IS_ERR(shm_mnt)) {
2911 error = PTR_ERR(shm_mnt);
2912 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2918 unregister_filesystem(&shmem_fs_type);
2920 shmem_destroy_inodecache();
2922 bdi_destroy(&shmem_backing_dev_info);
2924 shm_mnt = ERR_PTR(error);
2928 #else /* !CONFIG_SHMEM */
2931 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2933 * This is intended for small system where the benefits of the full
2934 * shmem code (swap-backed and resource-limited) are outweighed by
2935 * their complexity. On systems without swap this code should be
2936 * effectively equivalent, but much lighter weight.
2939 static struct file_system_type shmem_fs_type = {
2941 .mount = ramfs_mount,
2942 .kill_sb = kill_litter_super,
2943 .fs_flags = FS_USERNS_MOUNT,
2946 int __init shmem_init(void)
2948 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2950 shm_mnt = kern_mount(&shmem_fs_type);
2951 BUG_ON(IS_ERR(shm_mnt));
2956 int shmem_unuse(swp_entry_t swap, struct page *page)
2961 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2966 void shmem_unlock_mapping(struct address_space *mapping)
2970 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2972 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2974 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2976 #define shmem_vm_ops generic_file_vm_ops
2977 #define shmem_file_operations ramfs_file_operations
2978 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2979 #define shmem_acct_size(flags, size) 0
2980 #define shmem_unacct_size(flags, size) do {} while (0)
2982 #endif /* CONFIG_SHMEM */
2986 static struct dentry_operations anon_ops = {
2987 .d_dname = simple_dname
2990 static struct file *__shmem_file_setup(const char *name, loff_t size,
2991 unsigned long flags, unsigned int i_flags)
2994 struct inode *inode;
2996 struct super_block *sb;
2999 if (IS_ERR(shm_mnt))
3000 return ERR_CAST(shm_mnt);
3002 if (size < 0 || size > MAX_LFS_FILESIZE)
3003 return ERR_PTR(-EINVAL);
3005 if (shmem_acct_size(flags, size))
3006 return ERR_PTR(-ENOMEM);
3008 res = ERR_PTR(-ENOMEM);
3010 this.len = strlen(name);
3011 this.hash = 0; /* will go */
3012 sb = shm_mnt->mnt_sb;
3013 path.dentry = d_alloc_pseudo(sb, &this);
3016 d_set_d_op(path.dentry, &anon_ops);
3017 path.mnt = mntget(shm_mnt);
3019 res = ERR_PTR(-ENOSPC);
3020 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3024 inode->i_flags |= i_flags;
3025 d_instantiate(path.dentry, inode);
3026 inode->i_size = size;
3027 clear_nlink(inode); /* It is unlinked */
3028 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3032 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3033 &shmem_file_operations);
3042 shmem_unacct_size(flags, size);
3047 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3048 * kernel internal. There will be NO LSM permission checks against the
3049 * underlying inode. So users of this interface must do LSM checks at a
3050 * higher layer. The one user is the big_key implementation. LSM checks
3051 * are provided at the key level rather than the inode level.
3052 * @name: name for dentry (to be seen in /proc/<pid>/maps
3053 * @size: size to be set for the file
3054 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3056 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3058 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3062 * shmem_file_setup - get an unlinked file living in tmpfs
3063 * @name: name for dentry (to be seen in /proc/<pid>/maps
3064 * @size: size to be set for the file
3065 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3067 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3069 return __shmem_file_setup(name, size, flags, 0);
3071 EXPORT_SYMBOL_GPL(shmem_file_setup);
3074 * shmem_zero_setup - setup a shared anonymous mapping
3075 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3077 int shmem_zero_setup(struct vm_area_struct *vma)
3080 loff_t size = vma->vm_end - vma->vm_start;
3082 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3084 return PTR_ERR(file);
3088 vma->vm_file = file;
3089 vma->vm_ops = &shmem_vm_ops;
3094 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3095 * @mapping: the page's address_space
3096 * @index: the page index
3097 * @gfp: the page allocator flags to use if allocating
3099 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3100 * with any new page allocations done using the specified allocation flags.
3101 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3102 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3103 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3105 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3106 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3108 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3109 pgoff_t index, gfp_t gfp)
3112 struct inode *inode = mapping->host;
3116 BUG_ON(mapping->a_ops != &shmem_aops);
3117 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3119 page = ERR_PTR(error);
3125 * The tiny !SHMEM case uses ramfs without swap
3127 return read_cache_page_gfp(mapping, index, gfp);
3130 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);