packaging: ivi: Do Not Use profile macro
[profile/ivi/kernel-x86-ivi.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON_PAGE(!PageLocked(page), page);
290         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         while (index < end) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         /* If all gone or hole-punch or unfalloc, we're done */
544                         if (index == start || end != -1)
545                                 break;
546                         /* But if truncating, restart to make sure all gone */
547                         index = start;
548                         continue;
549                 }
550                 mem_cgroup_uncharge_start();
551                 for (i = 0; i < pagevec_count(&pvec); i++) {
552                         struct page *page = pvec.pages[i];
553
554                         index = indices[i];
555                         if (index >= end)
556                                 break;
557
558                         if (radix_tree_exceptional_entry(page)) {
559                                 if (unfalloc)
560                                         continue;
561                                 if (shmem_free_swap(mapping, index, page)) {
562                                         /* Swap was replaced by page: retry */
563                                         index--;
564                                         break;
565                                 }
566                                 nr_swaps_freed++;
567                                 continue;
568                         }
569
570                         lock_page(page);
571                         if (!unfalloc || !PageUptodate(page)) {
572                                 if (page->mapping == mapping) {
573                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
574                                         truncate_inode_page(mapping, page);
575                                 } else {
576                                         /* Page was replaced by swap: retry */
577                                         unlock_page(page);
578                                         index--;
579                                         break;
580                                 }
581                         }
582                         unlock_page(page);
583                 }
584                 shmem_deswap_pagevec(&pvec);
585                 pagevec_release(&pvec);
586                 mem_cgroup_uncharge_end();
587                 index++;
588         }
589
590         spin_lock(&info->lock);
591         info->swapped -= nr_swaps_freed;
592         shmem_recalc_inode(inode);
593         spin_unlock(&info->lock);
594 }
595
596 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597 {
598         shmem_undo_range(inode, lstart, lend, false);
599         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
600 }
601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
602
603 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605         struct inode *inode = dentry->d_inode;
606         int error;
607
608         error = inode_change_ok(inode, attr);
609         if (error)
610                 return error;
611
612         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613                 loff_t oldsize = inode->i_size;
614                 loff_t newsize = attr->ia_size;
615
616                 if (newsize != oldsize) {
617                         i_size_write(inode, newsize);
618                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619                 }
620                 if (newsize < oldsize) {
621                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
622                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623                         shmem_truncate_range(inode, newsize, (loff_t)-1);
624                         /* unmap again to remove racily COWed private pages */
625                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
626                 }
627         }
628
629         setattr_copy(inode, attr);
630         if (attr->ia_valid & ATTR_MODE)
631                 error = posix_acl_chmod(inode, inode->i_mode);
632         return error;
633 }
634
635 static void shmem_evict_inode(struct inode *inode)
636 {
637         struct shmem_inode_info *info = SHMEM_I(inode);
638
639         if (inode->i_mapping->a_ops == &shmem_aops) {
640                 shmem_unacct_size(info->flags, inode->i_size);
641                 inode->i_size = 0;
642                 shmem_truncate_range(inode, 0, (loff_t)-1);
643                 if (!list_empty(&info->swaplist)) {
644                         mutex_lock(&shmem_swaplist_mutex);
645                         list_del_init(&info->swaplist);
646                         mutex_unlock(&shmem_swaplist_mutex);
647                 }
648         } else
649                 kfree(info->symlink);
650
651         simple_xattrs_free(&info->xattrs);
652         WARN_ON(inode->i_blocks);
653         shmem_free_inode(inode->i_sb);
654         clear_inode(inode);
655 }
656
657 /*
658  * If swap found in inode, free it and move page from swapcache to filecache.
659  */
660 static int shmem_unuse_inode(struct shmem_inode_info *info,
661                              swp_entry_t swap, struct page **pagep)
662 {
663         struct address_space *mapping = info->vfs_inode.i_mapping;
664         void *radswap;
665         pgoff_t index;
666         gfp_t gfp;
667         int error = 0;
668
669         radswap = swp_to_radix_entry(swap);
670         index = radix_tree_locate_item(&mapping->page_tree, radswap);
671         if (index == -1)
672                 return 0;
673
674         /*
675          * Move _head_ to start search for next from here.
676          * But be careful: shmem_evict_inode checks list_empty without taking
677          * mutex, and there's an instant in list_move_tail when info->swaplist
678          * would appear empty, if it were the only one on shmem_swaplist.
679          */
680         if (shmem_swaplist.next != &info->swaplist)
681                 list_move_tail(&shmem_swaplist, &info->swaplist);
682
683         gfp = mapping_gfp_mask(mapping);
684         if (shmem_should_replace_page(*pagep, gfp)) {
685                 mutex_unlock(&shmem_swaplist_mutex);
686                 error = shmem_replace_page(pagep, gfp, info, index);
687                 mutex_lock(&shmem_swaplist_mutex);
688                 /*
689                  * We needed to drop mutex to make that restrictive page
690                  * allocation, but the inode might have been freed while we
691                  * dropped it: although a racing shmem_evict_inode() cannot
692                  * complete without emptying the radix_tree, our page lock
693                  * on this swapcache page is not enough to prevent that -
694                  * free_swap_and_cache() of our swap entry will only
695                  * trylock_page(), removing swap from radix_tree whatever.
696                  *
697                  * We must not proceed to shmem_add_to_page_cache() if the
698                  * inode has been freed, but of course we cannot rely on
699                  * inode or mapping or info to check that.  However, we can
700                  * safely check if our swap entry is still in use (and here
701                  * it can't have got reused for another page): if it's still
702                  * in use, then the inode cannot have been freed yet, and we
703                  * can safely proceed (if it's no longer in use, that tells
704                  * nothing about the inode, but we don't need to unuse swap).
705                  */
706                 if (!page_swapcount(*pagep))
707                         error = -ENOENT;
708         }
709
710         /*
711          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
712          * but also to hold up shmem_evict_inode(): so inode cannot be freed
713          * beneath us (pagelock doesn't help until the page is in pagecache).
714          */
715         if (!error)
716                 error = shmem_add_to_page_cache(*pagep, mapping, index,
717                                                 GFP_NOWAIT, radswap);
718         if (error != -ENOMEM) {
719                 /*
720                  * Truncation and eviction use free_swap_and_cache(), which
721                  * only does trylock page: if we raced, best clean up here.
722                  */
723                 delete_from_swap_cache(*pagep);
724                 set_page_dirty(*pagep);
725                 if (!error) {
726                         spin_lock(&info->lock);
727                         info->swapped--;
728                         spin_unlock(&info->lock);
729                         swap_free(swap);
730                 }
731                 error = 1;      /* not an error, but entry was found */
732         }
733         return error;
734 }
735
736 /*
737  * Search through swapped inodes to find and replace swap by page.
738  */
739 int shmem_unuse(swp_entry_t swap, struct page *page)
740 {
741         struct list_head *this, *next;
742         struct shmem_inode_info *info;
743         int found = 0;
744         int error = 0;
745
746         /*
747          * There's a faint possibility that swap page was replaced before
748          * caller locked it: caller will come back later with the right page.
749          */
750         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
751                 goto out;
752
753         /*
754          * Charge page using GFP_KERNEL while we can wait, before taking
755          * the shmem_swaplist_mutex which might hold up shmem_writepage().
756          * Charged back to the user (not to caller) when swap account is used.
757          */
758         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
759         if (error)
760                 goto out;
761         /* No radix_tree_preload: swap entry keeps a place for page in tree */
762
763         mutex_lock(&shmem_swaplist_mutex);
764         list_for_each_safe(this, next, &shmem_swaplist) {
765                 info = list_entry(this, struct shmem_inode_info, swaplist);
766                 if (info->swapped)
767                         found = shmem_unuse_inode(info, swap, &page);
768                 else
769                         list_del_init(&info->swaplist);
770                 cond_resched();
771                 if (found)
772                         break;
773         }
774         mutex_unlock(&shmem_swaplist_mutex);
775
776         if (found < 0)
777                 error = found;
778 out:
779         unlock_page(page);
780         page_cache_release(page);
781         return error;
782 }
783
784 /*
785  * Move the page from the page cache to the swap cache.
786  */
787 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
788 {
789         struct shmem_inode_info *info;
790         struct address_space *mapping;
791         struct inode *inode;
792         swp_entry_t swap;
793         pgoff_t index;
794
795         BUG_ON(!PageLocked(page));
796         mapping = page->mapping;
797         index = page->index;
798         inode = mapping->host;
799         info = SHMEM_I(inode);
800         if (info->flags & VM_LOCKED)
801                 goto redirty;
802         if (!total_swap_pages)
803                 goto redirty;
804
805         /*
806          * shmem_backing_dev_info's capabilities prevent regular writeback or
807          * sync from ever calling shmem_writepage; but a stacking filesystem
808          * might use ->writepage of its underlying filesystem, in which case
809          * tmpfs should write out to swap only in response to memory pressure,
810          * and not for the writeback threads or sync.
811          */
812         if (!wbc->for_reclaim) {
813                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
814                 goto redirty;
815         }
816
817         /*
818          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
819          * value into swapfile.c, the only way we can correctly account for a
820          * fallocated page arriving here is now to initialize it and write it.
821          *
822          * That's okay for a page already fallocated earlier, but if we have
823          * not yet completed the fallocation, then (a) we want to keep track
824          * of this page in case we have to undo it, and (b) it may not be a
825          * good idea to continue anyway, once we're pushing into swap.  So
826          * reactivate the page, and let shmem_fallocate() quit when too many.
827          */
828         if (!PageUptodate(page)) {
829                 if (inode->i_private) {
830                         struct shmem_falloc *shmem_falloc;
831                         spin_lock(&inode->i_lock);
832                         shmem_falloc = inode->i_private;
833                         if (shmem_falloc &&
834                             !shmem_falloc->waitq &&
835                             index >= shmem_falloc->start &&
836                             index < shmem_falloc->next)
837                                 shmem_falloc->nr_unswapped++;
838                         else
839                                 shmem_falloc = NULL;
840                         spin_unlock(&inode->i_lock);
841                         if (shmem_falloc)
842                                 goto redirty;
843                 }
844                 clear_highpage(page);
845                 flush_dcache_page(page);
846                 SetPageUptodate(page);
847         }
848
849         swap = get_swap_page();
850         if (!swap.val)
851                 goto redirty;
852
853         /*
854          * Add inode to shmem_unuse()'s list of swapped-out inodes,
855          * if it's not already there.  Do it now before the page is
856          * moved to swap cache, when its pagelock no longer protects
857          * the inode from eviction.  But don't unlock the mutex until
858          * we've incremented swapped, because shmem_unuse_inode() will
859          * prune a !swapped inode from the swaplist under this mutex.
860          */
861         mutex_lock(&shmem_swaplist_mutex);
862         if (list_empty(&info->swaplist))
863                 list_add_tail(&info->swaplist, &shmem_swaplist);
864
865         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
866                 swap_shmem_alloc(swap);
867                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
868
869                 spin_lock(&info->lock);
870                 info->swapped++;
871                 shmem_recalc_inode(inode);
872                 spin_unlock(&info->lock);
873
874                 mutex_unlock(&shmem_swaplist_mutex);
875                 BUG_ON(page_mapped(page));
876                 swap_writepage(page, wbc);
877                 return 0;
878         }
879
880         mutex_unlock(&shmem_swaplist_mutex);
881         swapcache_free(swap, NULL);
882 redirty:
883         set_page_dirty(page);
884         if (wbc->for_reclaim)
885                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
886         unlock_page(page);
887         return 0;
888 }
889
890 #ifdef CONFIG_NUMA
891 #ifdef CONFIG_TMPFS
892 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
893 {
894         char buffer[64];
895
896         if (!mpol || mpol->mode == MPOL_DEFAULT)
897                 return;         /* show nothing */
898
899         mpol_to_str(buffer, sizeof(buffer), mpol);
900
901         seq_printf(seq, ",mpol=%s", buffer);
902 }
903
904 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
905 {
906         struct mempolicy *mpol = NULL;
907         if (sbinfo->mpol) {
908                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
909                 mpol = sbinfo->mpol;
910                 mpol_get(mpol);
911                 spin_unlock(&sbinfo->stat_lock);
912         }
913         return mpol;
914 }
915 #endif /* CONFIG_TMPFS */
916
917 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
918                         struct shmem_inode_info *info, pgoff_t index)
919 {
920         struct vm_area_struct pvma;
921         struct page *page;
922
923         /* Create a pseudo vma that just contains the policy */
924         pvma.vm_start = 0;
925         /* Bias interleave by inode number to distribute better across nodes */
926         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
927         pvma.vm_ops = NULL;
928         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
929
930         page = swapin_readahead(swap, gfp, &pvma, 0);
931
932         /* Drop reference taken by mpol_shared_policy_lookup() */
933         mpol_cond_put(pvma.vm_policy);
934
935         return page;
936 }
937
938 static struct page *shmem_alloc_page(gfp_t gfp,
939                         struct shmem_inode_info *info, pgoff_t index)
940 {
941         struct vm_area_struct pvma;
942         struct page *page;
943
944         /* Create a pseudo vma that just contains the policy */
945         pvma.vm_start = 0;
946         /* Bias interleave by inode number to distribute better across nodes */
947         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
948         pvma.vm_ops = NULL;
949         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
950
951         page = alloc_page_vma(gfp, &pvma, 0);
952
953         /* Drop reference taken by mpol_shared_policy_lookup() */
954         mpol_cond_put(pvma.vm_policy);
955
956         return page;
957 }
958 #else /* !CONFIG_NUMA */
959 #ifdef CONFIG_TMPFS
960 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
961 {
962 }
963 #endif /* CONFIG_TMPFS */
964
965 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
966                         struct shmem_inode_info *info, pgoff_t index)
967 {
968         return swapin_readahead(swap, gfp, NULL, 0);
969 }
970
971 static inline struct page *shmem_alloc_page(gfp_t gfp,
972                         struct shmem_inode_info *info, pgoff_t index)
973 {
974         return alloc_page(gfp);
975 }
976 #endif /* CONFIG_NUMA */
977
978 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
979 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
980 {
981         return NULL;
982 }
983 #endif
984
985 /*
986  * When a page is moved from swapcache to shmem filecache (either by the
987  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
988  * shmem_unuse_inode()), it may have been read in earlier from swap, in
989  * ignorance of the mapping it belongs to.  If that mapping has special
990  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
991  * we may need to copy to a suitable page before moving to filecache.
992  *
993  * In a future release, this may well be extended to respect cpuset and
994  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
995  * but for now it is a simple matter of zone.
996  */
997 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
998 {
999         return page_zonenum(page) > gfp_zone(gfp);
1000 }
1001
1002 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1003                                 struct shmem_inode_info *info, pgoff_t index)
1004 {
1005         struct page *oldpage, *newpage;
1006         struct address_space *swap_mapping;
1007         pgoff_t swap_index;
1008         int error;
1009
1010         oldpage = *pagep;
1011         swap_index = page_private(oldpage);
1012         swap_mapping = page_mapping(oldpage);
1013
1014         /*
1015          * We have arrived here because our zones are constrained, so don't
1016          * limit chance of success by further cpuset and node constraints.
1017          */
1018         gfp &= ~GFP_CONSTRAINT_MASK;
1019         newpage = shmem_alloc_page(gfp, info, index);
1020         if (!newpage)
1021                 return -ENOMEM;
1022
1023         page_cache_get(newpage);
1024         copy_highpage(newpage, oldpage);
1025         flush_dcache_page(newpage);
1026
1027         __set_page_locked(newpage);
1028         SetPageUptodate(newpage);
1029         SetPageSwapBacked(newpage);
1030         set_page_private(newpage, swap_index);
1031         SetPageSwapCache(newpage);
1032
1033         /*
1034          * Our caller will very soon move newpage out of swapcache, but it's
1035          * a nice clean interface for us to replace oldpage by newpage there.
1036          */
1037         spin_lock_irq(&swap_mapping->tree_lock);
1038         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1039                                                                    newpage);
1040         if (!error) {
1041                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1042                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1043         }
1044         spin_unlock_irq(&swap_mapping->tree_lock);
1045
1046         if (unlikely(error)) {
1047                 /*
1048                  * Is this possible?  I think not, now that our callers check
1049                  * both PageSwapCache and page_private after getting page lock;
1050                  * but be defensive.  Reverse old to newpage for clear and free.
1051                  */
1052                 oldpage = newpage;
1053         } else {
1054                 mem_cgroup_replace_page_cache(oldpage, newpage);
1055                 lru_cache_add_anon(newpage);
1056                 *pagep = newpage;
1057         }
1058
1059         ClearPageSwapCache(oldpage);
1060         set_page_private(oldpage, 0);
1061
1062         unlock_page(oldpage);
1063         page_cache_release(oldpage);
1064         page_cache_release(oldpage);
1065         return error;
1066 }
1067
1068 /*
1069  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1070  *
1071  * If we allocate a new one we do not mark it dirty. That's up to the
1072  * vm. If we swap it in we mark it dirty since we also free the swap
1073  * entry since a page cannot live in both the swap and page cache
1074  */
1075 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1076         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1077 {
1078         struct address_space *mapping = inode->i_mapping;
1079         struct shmem_inode_info *info;
1080         struct shmem_sb_info *sbinfo;
1081         struct page *page;
1082         swp_entry_t swap;
1083         int error;
1084         int once = 0;
1085         int alloced = 0;
1086
1087         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1088                 return -EFBIG;
1089 repeat:
1090         swap.val = 0;
1091         page = find_lock_page(mapping, index);
1092         if (radix_tree_exceptional_entry(page)) {
1093                 swap = radix_to_swp_entry(page);
1094                 page = NULL;
1095         }
1096
1097         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1098             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1099                 error = -EINVAL;
1100                 goto failed;
1101         }
1102
1103         /* fallocated page? */
1104         if (page && !PageUptodate(page)) {
1105                 if (sgp != SGP_READ)
1106                         goto clear;
1107                 unlock_page(page);
1108                 page_cache_release(page);
1109                 page = NULL;
1110         }
1111         if (page || (sgp == SGP_READ && !swap.val)) {
1112                 *pagep = page;
1113                 return 0;
1114         }
1115
1116         /*
1117          * Fast cache lookup did not find it:
1118          * bring it back from swap or allocate.
1119          */
1120         info = SHMEM_I(inode);
1121         sbinfo = SHMEM_SB(inode->i_sb);
1122
1123         if (swap.val) {
1124                 /* Look it up and read it in.. */
1125                 page = lookup_swap_cache(swap);
1126                 if (!page) {
1127                         /* here we actually do the io */
1128                         if (fault_type)
1129                                 *fault_type |= VM_FAULT_MAJOR;
1130                         page = shmem_swapin(swap, gfp, info, index);
1131                         if (!page) {
1132                                 error = -ENOMEM;
1133                                 goto failed;
1134                         }
1135                 }
1136
1137                 /* We have to do this with page locked to prevent races */
1138                 lock_page(page);
1139                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1140                     !shmem_confirm_swap(mapping, index, swap)) {
1141                         error = -EEXIST;        /* try again */
1142                         goto unlock;
1143                 }
1144                 if (!PageUptodate(page)) {
1145                         error = -EIO;
1146                         goto failed;
1147                 }
1148                 wait_on_page_writeback(page);
1149
1150                 if (shmem_should_replace_page(page, gfp)) {
1151                         error = shmem_replace_page(&page, gfp, info, index);
1152                         if (error)
1153                                 goto failed;
1154                 }
1155
1156                 error = mem_cgroup_cache_charge(page, current->mm,
1157                                                 gfp & GFP_RECLAIM_MASK);
1158                 if (!error) {
1159                         error = shmem_add_to_page_cache(page, mapping, index,
1160                                                 gfp, swp_to_radix_entry(swap));
1161                         /*
1162                          * We already confirmed swap under page lock, and make
1163                          * no memory allocation here, so usually no possibility
1164                          * of error; but free_swap_and_cache() only trylocks a
1165                          * page, so it is just possible that the entry has been
1166                          * truncated or holepunched since swap was confirmed.
1167                          * shmem_undo_range() will have done some of the
1168                          * unaccounting, now delete_from_swap_cache() will do
1169                          * the rest (including mem_cgroup_uncharge_swapcache).
1170                          * Reset swap.val? No, leave it so "failed" goes back to
1171                          * "repeat": reading a hole and writing should succeed.
1172                          */
1173                         if (error)
1174                                 delete_from_swap_cache(page);
1175                 }
1176                 if (error)
1177                         goto failed;
1178
1179                 spin_lock(&info->lock);
1180                 info->swapped--;
1181                 shmem_recalc_inode(inode);
1182                 spin_unlock(&info->lock);
1183
1184                 delete_from_swap_cache(page);
1185                 set_page_dirty(page);
1186                 swap_free(swap);
1187
1188         } else {
1189                 if (shmem_acct_block(info->flags)) {
1190                         error = -ENOSPC;
1191                         goto failed;
1192                 }
1193                 if (sbinfo->max_blocks) {
1194                         if (percpu_counter_compare(&sbinfo->used_blocks,
1195                                                 sbinfo->max_blocks) >= 0) {
1196                                 error = -ENOSPC;
1197                                 goto unacct;
1198                         }
1199                         percpu_counter_inc(&sbinfo->used_blocks);
1200                 }
1201
1202                 page = shmem_alloc_page(gfp, info, index);
1203                 if (!page) {
1204                         error = -ENOMEM;
1205                         goto decused;
1206                 }
1207
1208                 SetPageSwapBacked(page);
1209                 __set_page_locked(page);
1210                 error = mem_cgroup_cache_charge(page, current->mm,
1211                                                 gfp & GFP_RECLAIM_MASK);
1212                 if (error)
1213                         goto decused;
1214                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1215                 if (!error) {
1216                         error = shmem_add_to_page_cache(page, mapping, index,
1217                                                         gfp, NULL);
1218                         radix_tree_preload_end();
1219                 }
1220                 if (error) {
1221                         mem_cgroup_uncharge_cache_page(page);
1222                         goto decused;
1223                 }
1224                 lru_cache_add_anon(page);
1225
1226                 spin_lock(&info->lock);
1227                 info->alloced++;
1228                 inode->i_blocks += BLOCKS_PER_PAGE;
1229                 shmem_recalc_inode(inode);
1230                 spin_unlock(&info->lock);
1231                 alloced = true;
1232
1233                 /*
1234                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1235                  */
1236                 if (sgp == SGP_FALLOC)
1237                         sgp = SGP_WRITE;
1238 clear:
1239                 /*
1240                  * Let SGP_WRITE caller clear ends if write does not fill page;
1241                  * but SGP_FALLOC on a page fallocated earlier must initialize
1242                  * it now, lest undo on failure cancel our earlier guarantee.
1243                  */
1244                 if (sgp != SGP_WRITE) {
1245                         clear_highpage(page);
1246                         flush_dcache_page(page);
1247                         SetPageUptodate(page);
1248                 }
1249                 if (sgp == SGP_DIRTY)
1250                         set_page_dirty(page);
1251         }
1252
1253         /* Perhaps the file has been truncated since we checked */
1254         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1255             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1256                 error = -EINVAL;
1257                 if (alloced)
1258                         goto trunc;
1259                 else
1260                         goto failed;
1261         }
1262         *pagep = page;
1263         return 0;
1264
1265         /*
1266          * Error recovery.
1267          */
1268 trunc:
1269         info = SHMEM_I(inode);
1270         ClearPageDirty(page);
1271         delete_from_page_cache(page);
1272         spin_lock(&info->lock);
1273         info->alloced--;
1274         inode->i_blocks -= BLOCKS_PER_PAGE;
1275         spin_unlock(&info->lock);
1276 decused:
1277         sbinfo = SHMEM_SB(inode->i_sb);
1278         if (sbinfo->max_blocks)
1279                 percpu_counter_add(&sbinfo->used_blocks, -1);
1280 unacct:
1281         shmem_unacct_blocks(info->flags, 1);
1282 failed:
1283         if (swap.val && error != -EINVAL &&
1284             !shmem_confirm_swap(mapping, index, swap))
1285                 error = -EEXIST;
1286 unlock:
1287         if (page) {
1288                 unlock_page(page);
1289                 page_cache_release(page);
1290         }
1291         if (error == -ENOSPC && !once++) {
1292                 info = SHMEM_I(inode);
1293                 spin_lock(&info->lock);
1294                 shmem_recalc_inode(inode);
1295                 spin_unlock(&info->lock);
1296                 goto repeat;
1297         }
1298         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1299                 goto repeat;
1300         return error;
1301 }
1302
1303 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1304 {
1305         struct inode *inode = file_inode(vma->vm_file);
1306         int error;
1307         int ret = VM_FAULT_LOCKED;
1308
1309         /*
1310          * Trinity finds that probing a hole which tmpfs is punching can
1311          * prevent the hole-punch from ever completing: which in turn
1312          * locks writers out with its hold on i_mutex.  So refrain from
1313          * faulting pages into the hole while it's being punched.  Although
1314          * shmem_undo_range() does remove the additions, it may be unable to
1315          * keep up, as each new page needs its own unmap_mapping_range() call,
1316          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1317          *
1318          * It does not matter if we sometimes reach this check just before the
1319          * hole-punch begins, so that one fault then races with the punch:
1320          * we just need to make racing faults a rare case.
1321          *
1322          * The implementation below would be much simpler if we just used a
1323          * standard mutex or completion: but we cannot take i_mutex in fault,
1324          * and bloating every shmem inode for this unlikely case would be sad.
1325          */
1326         if (unlikely(inode->i_private)) {
1327                 struct shmem_falloc *shmem_falloc;
1328
1329                 spin_lock(&inode->i_lock);
1330                 shmem_falloc = inode->i_private;
1331                 if (shmem_falloc &&
1332                     shmem_falloc->waitq &&
1333                     vmf->pgoff >= shmem_falloc->start &&
1334                     vmf->pgoff < shmem_falloc->next) {
1335                         wait_queue_head_t *shmem_falloc_waitq;
1336                         DEFINE_WAIT(shmem_fault_wait);
1337
1338                         ret = VM_FAULT_NOPAGE;
1339                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1340                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1341                                 /* It's polite to up mmap_sem if we can */
1342                                 up_read(&vma->vm_mm->mmap_sem);
1343                                 ret = VM_FAULT_RETRY;
1344                         }
1345
1346                         shmem_falloc_waitq = shmem_falloc->waitq;
1347                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1348                                         TASK_UNINTERRUPTIBLE);
1349                         spin_unlock(&inode->i_lock);
1350                         schedule();
1351
1352                         /*
1353                          * shmem_falloc_waitq points into the shmem_fallocate()
1354                          * stack of the hole-punching task: shmem_falloc_waitq
1355                          * is usually invalid by the time we reach here, but
1356                          * finish_wait() does not dereference it in that case;
1357                          * though i_lock needed lest racing with wake_up_all().
1358                          */
1359                         spin_lock(&inode->i_lock);
1360                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1361                         spin_unlock(&inode->i_lock);
1362                         return ret;
1363                 }
1364                 spin_unlock(&inode->i_lock);
1365         }
1366
1367         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1368         if (error)
1369                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1370
1371         if (ret & VM_FAULT_MAJOR) {
1372                 count_vm_event(PGMAJFAULT);
1373                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1374         }
1375         return ret;
1376 }
1377
1378 #ifdef CONFIG_NUMA
1379 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1380 {
1381         struct inode *inode = file_inode(vma->vm_file);
1382         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1383 }
1384
1385 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1386                                           unsigned long addr)
1387 {
1388         struct inode *inode = file_inode(vma->vm_file);
1389         pgoff_t index;
1390
1391         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1392         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1393 }
1394 #endif
1395
1396 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1397 {
1398         struct inode *inode = file_inode(file);
1399         struct shmem_inode_info *info = SHMEM_I(inode);
1400         int retval = -ENOMEM;
1401
1402         spin_lock(&info->lock);
1403         if (lock && !(info->flags & VM_LOCKED)) {
1404                 if (!user_shm_lock(inode->i_size, user))
1405                         goto out_nomem;
1406                 info->flags |= VM_LOCKED;
1407                 mapping_set_unevictable(file->f_mapping);
1408         }
1409         if (!lock && (info->flags & VM_LOCKED) && user) {
1410                 user_shm_unlock(inode->i_size, user);
1411                 info->flags &= ~VM_LOCKED;
1412                 mapping_clear_unevictable(file->f_mapping);
1413         }
1414         retval = 0;
1415
1416 out_nomem:
1417         spin_unlock(&info->lock);
1418         return retval;
1419 }
1420
1421 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1422 {
1423         file_accessed(file);
1424         vma->vm_ops = &shmem_vm_ops;
1425         return 0;
1426 }
1427
1428 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1429                                      umode_t mode, dev_t dev, unsigned long flags)
1430 {
1431         struct inode *inode;
1432         struct shmem_inode_info *info;
1433         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1434
1435         if (shmem_reserve_inode(sb))
1436                 return NULL;
1437
1438         inode = new_inode(sb);
1439         if (inode) {
1440                 inode->i_ino = get_next_ino();
1441                 inode_init_owner(inode, dir, mode);
1442                 inode->i_blocks = 0;
1443                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1444                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1445                 inode->i_generation = get_seconds();
1446                 info = SHMEM_I(inode);
1447                 memset(info, 0, (char *)inode - (char *)info);
1448                 spin_lock_init(&info->lock);
1449                 info->flags = flags & VM_NORESERVE;
1450                 INIT_LIST_HEAD(&info->swaplist);
1451                 simple_xattrs_init(&info->xattrs);
1452                 cache_no_acl(inode);
1453
1454                 switch (mode & S_IFMT) {
1455                 default:
1456                         inode->i_op = &shmem_special_inode_operations;
1457                         init_special_inode(inode, mode, dev);
1458                         break;
1459                 case S_IFREG:
1460                         inode->i_mapping->a_ops = &shmem_aops;
1461                         inode->i_op = &shmem_inode_operations;
1462                         inode->i_fop = &shmem_file_operations;
1463                         mpol_shared_policy_init(&info->policy,
1464                                                  shmem_get_sbmpol(sbinfo));
1465                         break;
1466                 case S_IFDIR:
1467                         inc_nlink(inode);
1468                         /* Some things misbehave if size == 0 on a directory */
1469                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1470                         inode->i_op = &shmem_dir_inode_operations;
1471                         inode->i_fop = &simple_dir_operations;
1472                         break;
1473                 case S_IFLNK:
1474                         /*
1475                          * Must not load anything in the rbtree,
1476                          * mpol_free_shared_policy will not be called.
1477                          */
1478                         mpol_shared_policy_init(&info->policy, NULL);
1479                         break;
1480                 }
1481         } else
1482                 shmem_free_inode(sb);
1483         return inode;
1484 }
1485
1486 #ifdef CONFIG_TMPFS
1487 static const struct inode_operations shmem_symlink_inode_operations;
1488 static const struct inode_operations shmem_short_symlink_operations;
1489
1490 #ifdef CONFIG_TMPFS_XATTR
1491 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1492 #else
1493 #define shmem_initxattrs NULL
1494 #endif
1495
1496 static int
1497 shmem_write_begin(struct file *file, struct address_space *mapping,
1498                         loff_t pos, unsigned len, unsigned flags,
1499                         struct page **pagep, void **fsdata)
1500 {
1501         struct inode *inode = mapping->host;
1502         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1503         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1504 }
1505
1506 static int
1507 shmem_write_end(struct file *file, struct address_space *mapping,
1508                         loff_t pos, unsigned len, unsigned copied,
1509                         struct page *page, void *fsdata)
1510 {
1511         struct inode *inode = mapping->host;
1512
1513         if (pos + copied > inode->i_size)
1514                 i_size_write(inode, pos + copied);
1515
1516         if (!PageUptodate(page)) {
1517                 if (copied < PAGE_CACHE_SIZE) {
1518                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1519                         zero_user_segments(page, 0, from,
1520                                         from + copied, PAGE_CACHE_SIZE);
1521                 }
1522                 SetPageUptodate(page);
1523         }
1524         set_page_dirty(page);
1525         unlock_page(page);
1526         page_cache_release(page);
1527
1528         return copied;
1529 }
1530
1531 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1532 {
1533         struct inode *inode = file_inode(filp);
1534         struct address_space *mapping = inode->i_mapping;
1535         pgoff_t index;
1536         unsigned long offset;
1537         enum sgp_type sgp = SGP_READ;
1538
1539         /*
1540          * Might this read be for a stacking filesystem?  Then when reading
1541          * holes of a sparse file, we actually need to allocate those pages,
1542          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1543          */
1544         if (segment_eq(get_fs(), KERNEL_DS))
1545                 sgp = SGP_DIRTY;
1546
1547         index = *ppos >> PAGE_CACHE_SHIFT;
1548         offset = *ppos & ~PAGE_CACHE_MASK;
1549
1550         for (;;) {
1551                 struct page *page = NULL;
1552                 pgoff_t end_index;
1553                 unsigned long nr, ret;
1554                 loff_t i_size = i_size_read(inode);
1555
1556                 end_index = i_size >> PAGE_CACHE_SHIFT;
1557                 if (index > end_index)
1558                         break;
1559                 if (index == end_index) {
1560                         nr = i_size & ~PAGE_CACHE_MASK;
1561                         if (nr <= offset)
1562                                 break;
1563                 }
1564
1565                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1566                 if (desc->error) {
1567                         if (desc->error == -EINVAL)
1568                                 desc->error = 0;
1569                         break;
1570                 }
1571                 if (page)
1572                         unlock_page(page);
1573
1574                 /*
1575                  * We must evaluate after, since reads (unlike writes)
1576                  * are called without i_mutex protection against truncate
1577                  */
1578                 nr = PAGE_CACHE_SIZE;
1579                 i_size = i_size_read(inode);
1580                 end_index = i_size >> PAGE_CACHE_SHIFT;
1581                 if (index == end_index) {
1582                         nr = i_size & ~PAGE_CACHE_MASK;
1583                         if (nr <= offset) {
1584                                 if (page)
1585                                         page_cache_release(page);
1586                                 break;
1587                         }
1588                 }
1589                 nr -= offset;
1590
1591                 if (page) {
1592                         /*
1593                          * If users can be writing to this page using arbitrary
1594                          * virtual addresses, take care about potential aliasing
1595                          * before reading the page on the kernel side.
1596                          */
1597                         if (mapping_writably_mapped(mapping))
1598                                 flush_dcache_page(page);
1599                         /*
1600                          * Mark the page accessed if we read the beginning.
1601                          */
1602                         if (!offset)
1603                                 mark_page_accessed(page);
1604                 } else {
1605                         page = ZERO_PAGE(0);
1606                         page_cache_get(page);
1607                 }
1608
1609                 /*
1610                  * Ok, we have the page, and it's up-to-date, so
1611                  * now we can copy it to user space...
1612                  *
1613                  * The actor routine returns how many bytes were actually used..
1614                  * NOTE! This may not be the same as how much of a user buffer
1615                  * we filled up (we may be padding etc), so we can only update
1616                  * "pos" here (the actor routine has to update the user buffer
1617                  * pointers and the remaining count).
1618                  */
1619                 ret = actor(desc, page, offset, nr);
1620                 offset += ret;
1621                 index += offset >> PAGE_CACHE_SHIFT;
1622                 offset &= ~PAGE_CACHE_MASK;
1623
1624                 page_cache_release(page);
1625                 if (ret != nr || !desc->count)
1626                         break;
1627
1628                 cond_resched();
1629         }
1630
1631         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1632         file_accessed(filp);
1633 }
1634
1635 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1636                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1637 {
1638         struct file *filp = iocb->ki_filp;
1639         ssize_t retval;
1640         unsigned long seg;
1641         size_t count;
1642         loff_t *ppos = &iocb->ki_pos;
1643
1644         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1645         if (retval)
1646                 return retval;
1647
1648         for (seg = 0; seg < nr_segs; seg++) {
1649                 read_descriptor_t desc;
1650
1651                 desc.written = 0;
1652                 desc.arg.buf = iov[seg].iov_base;
1653                 desc.count = iov[seg].iov_len;
1654                 if (desc.count == 0)
1655                         continue;
1656                 desc.error = 0;
1657                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1658                 retval += desc.written;
1659                 if (desc.error) {
1660                         retval = retval ?: desc.error;
1661                         break;
1662                 }
1663                 if (desc.count > 0)
1664                         break;
1665         }
1666         return retval;
1667 }
1668
1669 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1670                                 struct pipe_inode_info *pipe, size_t len,
1671                                 unsigned int flags)
1672 {
1673         struct address_space *mapping = in->f_mapping;
1674         struct inode *inode = mapping->host;
1675         unsigned int loff, nr_pages, req_pages;
1676         struct page *pages[PIPE_DEF_BUFFERS];
1677         struct partial_page partial[PIPE_DEF_BUFFERS];
1678         struct page *page;
1679         pgoff_t index, end_index;
1680         loff_t isize, left;
1681         int error, page_nr;
1682         struct splice_pipe_desc spd = {
1683                 .pages = pages,
1684                 .partial = partial,
1685                 .nr_pages_max = PIPE_DEF_BUFFERS,
1686                 .flags = flags,
1687                 .ops = &page_cache_pipe_buf_ops,
1688                 .spd_release = spd_release_page,
1689         };
1690
1691         isize = i_size_read(inode);
1692         if (unlikely(*ppos >= isize))
1693                 return 0;
1694
1695         left = isize - *ppos;
1696         if (unlikely(left < len))
1697                 len = left;
1698
1699         if (splice_grow_spd(pipe, &spd))
1700                 return -ENOMEM;
1701
1702         index = *ppos >> PAGE_CACHE_SHIFT;
1703         loff = *ppos & ~PAGE_CACHE_MASK;
1704         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1705         nr_pages = min(req_pages, pipe->buffers);
1706
1707         spd.nr_pages = find_get_pages_contig(mapping, index,
1708                                                 nr_pages, spd.pages);
1709         index += spd.nr_pages;
1710         error = 0;
1711
1712         while (spd.nr_pages < nr_pages) {
1713                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1714                 if (error)
1715                         break;
1716                 unlock_page(page);
1717                 spd.pages[spd.nr_pages++] = page;
1718                 index++;
1719         }
1720
1721         index = *ppos >> PAGE_CACHE_SHIFT;
1722         nr_pages = spd.nr_pages;
1723         spd.nr_pages = 0;
1724
1725         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1726                 unsigned int this_len;
1727
1728                 if (!len)
1729                         break;
1730
1731                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1732                 page = spd.pages[page_nr];
1733
1734                 if (!PageUptodate(page) || page->mapping != mapping) {
1735                         error = shmem_getpage(inode, index, &page,
1736                                                         SGP_CACHE, NULL);
1737                         if (error)
1738                                 break;
1739                         unlock_page(page);
1740                         page_cache_release(spd.pages[page_nr]);
1741                         spd.pages[page_nr] = page;
1742                 }
1743
1744                 isize = i_size_read(inode);
1745                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1746                 if (unlikely(!isize || index > end_index))
1747                         break;
1748
1749                 if (end_index == index) {
1750                         unsigned int plen;
1751
1752                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1753                         if (plen <= loff)
1754                                 break;
1755
1756                         this_len = min(this_len, plen - loff);
1757                         len = this_len;
1758                 }
1759
1760                 spd.partial[page_nr].offset = loff;
1761                 spd.partial[page_nr].len = this_len;
1762                 len -= this_len;
1763                 loff = 0;
1764                 spd.nr_pages++;
1765                 index++;
1766         }
1767
1768         while (page_nr < nr_pages)
1769                 page_cache_release(spd.pages[page_nr++]);
1770
1771         if (spd.nr_pages)
1772                 error = splice_to_pipe(pipe, &spd);
1773
1774         splice_shrink_spd(&spd);
1775
1776         if (error > 0) {
1777                 *ppos += error;
1778                 file_accessed(in);
1779         }
1780         return error;
1781 }
1782
1783 /*
1784  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1785  */
1786 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1787                                     pgoff_t index, pgoff_t end, int whence)
1788 {
1789         struct page *page;
1790         struct pagevec pvec;
1791         pgoff_t indices[PAGEVEC_SIZE];
1792         bool done = false;
1793         int i;
1794
1795         pagevec_init(&pvec, 0);
1796         pvec.nr = 1;            /* start small: we may be there already */
1797         while (!done) {
1798                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1799                                         pvec.nr, pvec.pages, indices);
1800                 if (!pvec.nr) {
1801                         if (whence == SEEK_DATA)
1802                                 index = end;
1803                         break;
1804                 }
1805                 for (i = 0; i < pvec.nr; i++, index++) {
1806                         if (index < indices[i]) {
1807                                 if (whence == SEEK_HOLE) {
1808                                         done = true;
1809                                         break;
1810                                 }
1811                                 index = indices[i];
1812                         }
1813                         page = pvec.pages[i];
1814                         if (page && !radix_tree_exceptional_entry(page)) {
1815                                 if (!PageUptodate(page))
1816                                         page = NULL;
1817                         }
1818                         if (index >= end ||
1819                             (page && whence == SEEK_DATA) ||
1820                             (!page && whence == SEEK_HOLE)) {
1821                                 done = true;
1822                                 break;
1823                         }
1824                 }
1825                 shmem_deswap_pagevec(&pvec);
1826                 pagevec_release(&pvec);
1827                 pvec.nr = PAGEVEC_SIZE;
1828                 cond_resched();
1829         }
1830         return index;
1831 }
1832
1833 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1834 {
1835         struct address_space *mapping = file->f_mapping;
1836         struct inode *inode = mapping->host;
1837         pgoff_t start, end;
1838         loff_t new_offset;
1839
1840         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1841                 return generic_file_llseek_size(file, offset, whence,
1842                                         MAX_LFS_FILESIZE, i_size_read(inode));
1843         mutex_lock(&inode->i_mutex);
1844         /* We're holding i_mutex so we can access i_size directly */
1845
1846         if (offset < 0)
1847                 offset = -EINVAL;
1848         else if (offset >= inode->i_size)
1849                 offset = -ENXIO;
1850         else {
1851                 start = offset >> PAGE_CACHE_SHIFT;
1852                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1853                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1854                 new_offset <<= PAGE_CACHE_SHIFT;
1855                 if (new_offset > offset) {
1856                         if (new_offset < inode->i_size)
1857                                 offset = new_offset;
1858                         else if (whence == SEEK_DATA)
1859                                 offset = -ENXIO;
1860                         else
1861                                 offset = inode->i_size;
1862                 }
1863         }
1864
1865         if (offset >= 0)
1866                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1867         mutex_unlock(&inode->i_mutex);
1868         return offset;
1869 }
1870
1871 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1872                                                          loff_t len)
1873 {
1874         struct inode *inode = file_inode(file);
1875         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1876         struct shmem_falloc shmem_falloc;
1877         pgoff_t start, index, end;
1878         int error;
1879
1880         mutex_lock(&inode->i_mutex);
1881
1882         if (mode & FALLOC_FL_PUNCH_HOLE) {
1883                 struct address_space *mapping = file->f_mapping;
1884                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1885                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1886                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1887
1888                 shmem_falloc.waitq = &shmem_falloc_waitq;
1889                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1890                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1891                 spin_lock(&inode->i_lock);
1892                 inode->i_private = &shmem_falloc;
1893                 spin_unlock(&inode->i_lock);
1894
1895                 if ((u64)unmap_end > (u64)unmap_start)
1896                         unmap_mapping_range(mapping, unmap_start,
1897                                             1 + unmap_end - unmap_start, 0);
1898                 shmem_truncate_range(inode, offset, offset + len - 1);
1899                 /* No need to unmap again: hole-punching leaves COWed pages */
1900
1901                 spin_lock(&inode->i_lock);
1902                 inode->i_private = NULL;
1903                 wake_up_all(&shmem_falloc_waitq);
1904                 spin_unlock(&inode->i_lock);
1905                 error = 0;
1906                 goto out;
1907         }
1908
1909         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1910         error = inode_newsize_ok(inode, offset + len);
1911         if (error)
1912                 goto out;
1913
1914         start = offset >> PAGE_CACHE_SHIFT;
1915         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1916         /* Try to avoid a swapstorm if len is impossible to satisfy */
1917         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1918                 error = -ENOSPC;
1919                 goto out;
1920         }
1921
1922         shmem_falloc.waitq = NULL;
1923         shmem_falloc.start = start;
1924         shmem_falloc.next  = start;
1925         shmem_falloc.nr_falloced = 0;
1926         shmem_falloc.nr_unswapped = 0;
1927         spin_lock(&inode->i_lock);
1928         inode->i_private = &shmem_falloc;
1929         spin_unlock(&inode->i_lock);
1930
1931         for (index = start; index < end; index++) {
1932                 struct page *page;
1933
1934                 /*
1935                  * Good, the fallocate(2) manpage permits EINTR: we may have
1936                  * been interrupted because we are using up too much memory.
1937                  */
1938                 if (signal_pending(current))
1939                         error = -EINTR;
1940                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1941                         error = -ENOMEM;
1942                 else
1943                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1944                                                                         NULL);
1945                 if (error) {
1946                         /* Remove the !PageUptodate pages we added */
1947                         shmem_undo_range(inode,
1948                                 (loff_t)start << PAGE_CACHE_SHIFT,
1949                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1950                         goto undone;
1951                 }
1952
1953                 /*
1954                  * Inform shmem_writepage() how far we have reached.
1955                  * No need for lock or barrier: we have the page lock.
1956                  */
1957                 shmem_falloc.next++;
1958                 if (!PageUptodate(page))
1959                         shmem_falloc.nr_falloced++;
1960
1961                 /*
1962                  * If !PageUptodate, leave it that way so that freeable pages
1963                  * can be recognized if we need to rollback on error later.
1964                  * But set_page_dirty so that memory pressure will swap rather
1965                  * than free the pages we are allocating (and SGP_CACHE pages
1966                  * might still be clean: we now need to mark those dirty too).
1967                  */
1968                 set_page_dirty(page);
1969                 unlock_page(page);
1970                 page_cache_release(page);
1971                 cond_resched();
1972         }
1973
1974         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1975                 i_size_write(inode, offset + len);
1976         inode->i_ctime = CURRENT_TIME;
1977 undone:
1978         spin_lock(&inode->i_lock);
1979         inode->i_private = NULL;
1980         spin_unlock(&inode->i_lock);
1981 out:
1982         mutex_unlock(&inode->i_mutex);
1983         return error;
1984 }
1985
1986 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1987 {
1988         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1989
1990         buf->f_type = TMPFS_MAGIC;
1991         buf->f_bsize = PAGE_CACHE_SIZE;
1992         buf->f_namelen = NAME_MAX;
1993         if (sbinfo->max_blocks) {
1994                 buf->f_blocks = sbinfo->max_blocks;
1995                 buf->f_bavail =
1996                 buf->f_bfree  = sbinfo->max_blocks -
1997                                 percpu_counter_sum(&sbinfo->used_blocks);
1998         }
1999         if (sbinfo->max_inodes) {
2000                 buf->f_files = sbinfo->max_inodes;
2001                 buf->f_ffree = sbinfo->free_inodes;
2002         }
2003         /* else leave those fields 0 like simple_statfs */
2004         return 0;
2005 }
2006
2007 /*
2008  * File creation. Allocate an inode, and we're done..
2009  */
2010 static int
2011 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2012 {
2013         struct inode *inode;
2014         int error = -ENOSPC;
2015
2016         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2017         if (inode) {
2018                 error = simple_acl_create(dir, inode);
2019                 if (error)
2020                         goto out_iput;
2021                 error = security_inode_init_security(inode, dir,
2022                                                      &dentry->d_name,
2023                                                      shmem_initxattrs, NULL);
2024                 if (error && error != -EOPNOTSUPP)
2025                         goto out_iput;
2026
2027                 error = 0;
2028                 dir->i_size += BOGO_DIRENT_SIZE;
2029                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2030                 d_instantiate(dentry, inode);
2031                 dget(dentry); /* Extra count - pin the dentry in core */
2032         }
2033         return error;
2034 out_iput:
2035         iput(inode);
2036         return error;
2037 }
2038
2039 static int
2040 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2041 {
2042         struct inode *inode;
2043         int error = -ENOSPC;
2044
2045         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2046         if (inode) {
2047                 error = security_inode_init_security(inode, dir,
2048                                                      NULL,
2049                                                      shmem_initxattrs, NULL);
2050                 if (error && error != -EOPNOTSUPP)
2051                         goto out_iput;
2052                 error = simple_acl_create(dir, inode);
2053                 if (error)
2054                         goto out_iput;
2055                 d_tmpfile(dentry, inode);
2056         }
2057         return error;
2058 out_iput:
2059         iput(inode);
2060         return error;
2061 }
2062
2063 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2064 {
2065         int error;
2066
2067         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2068                 return error;
2069         inc_nlink(dir);
2070         return 0;
2071 }
2072
2073 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2074                 bool excl)
2075 {
2076         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2077 }
2078
2079 /*
2080  * Link a file..
2081  */
2082 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2083 {
2084         struct inode *inode = old_dentry->d_inode;
2085         int ret;
2086
2087         /*
2088          * No ordinary (disk based) filesystem counts links as inodes;
2089          * but each new link needs a new dentry, pinning lowmem, and
2090          * tmpfs dentries cannot be pruned until they are unlinked.
2091          */
2092         ret = shmem_reserve_inode(inode->i_sb);
2093         if (ret)
2094                 goto out;
2095
2096         dir->i_size += BOGO_DIRENT_SIZE;
2097         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2098         inc_nlink(inode);
2099         ihold(inode);   /* New dentry reference */
2100         dget(dentry);           /* Extra pinning count for the created dentry */
2101         d_instantiate(dentry, inode);
2102 out:
2103         return ret;
2104 }
2105
2106 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2107 {
2108         struct inode *inode = dentry->d_inode;
2109
2110         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2111                 shmem_free_inode(inode->i_sb);
2112
2113         dir->i_size -= BOGO_DIRENT_SIZE;
2114         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2115         drop_nlink(inode);
2116         dput(dentry);   /* Undo the count from "create" - this does all the work */
2117         return 0;
2118 }
2119
2120 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2121 {
2122         if (!simple_empty(dentry))
2123                 return -ENOTEMPTY;
2124
2125         drop_nlink(dentry->d_inode);
2126         drop_nlink(dir);
2127         return shmem_unlink(dir, dentry);
2128 }
2129
2130 /*
2131  * The VFS layer already does all the dentry stuff for rename,
2132  * we just have to decrement the usage count for the target if
2133  * it exists so that the VFS layer correctly free's it when it
2134  * gets overwritten.
2135  */
2136 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2137 {
2138         struct inode *inode = old_dentry->d_inode;
2139         int they_are_dirs = S_ISDIR(inode->i_mode);
2140
2141         if (!simple_empty(new_dentry))
2142                 return -ENOTEMPTY;
2143
2144         if (new_dentry->d_inode) {
2145                 (void) shmem_unlink(new_dir, new_dentry);
2146                 if (they_are_dirs)
2147                         drop_nlink(old_dir);
2148         } else if (they_are_dirs) {
2149                 drop_nlink(old_dir);
2150                 inc_nlink(new_dir);
2151         }
2152
2153         old_dir->i_size -= BOGO_DIRENT_SIZE;
2154         new_dir->i_size += BOGO_DIRENT_SIZE;
2155         old_dir->i_ctime = old_dir->i_mtime =
2156         new_dir->i_ctime = new_dir->i_mtime =
2157         inode->i_ctime = CURRENT_TIME;
2158         return 0;
2159 }
2160
2161 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2162 {
2163         int error;
2164         int len;
2165         struct inode *inode;
2166         struct page *page;
2167         char *kaddr;
2168         struct shmem_inode_info *info;
2169
2170         len = strlen(symname) + 1;
2171         if (len > PAGE_CACHE_SIZE)
2172                 return -ENAMETOOLONG;
2173
2174         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2175         if (!inode)
2176                 return -ENOSPC;
2177
2178         error = security_inode_init_security(inode, dir, &dentry->d_name,
2179                                              shmem_initxattrs, NULL);
2180         if (error) {
2181                 if (error != -EOPNOTSUPP) {
2182                         iput(inode);
2183                         return error;
2184                 }
2185                 error = 0;
2186         }
2187
2188         info = SHMEM_I(inode);
2189         inode->i_size = len-1;
2190         if (len <= SHORT_SYMLINK_LEN) {
2191                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2192                 if (!info->symlink) {
2193                         iput(inode);
2194                         return -ENOMEM;
2195                 }
2196                 inode->i_op = &shmem_short_symlink_operations;
2197         } else {
2198                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2199                 if (error) {
2200                         iput(inode);
2201                         return error;
2202                 }
2203                 inode->i_mapping->a_ops = &shmem_aops;
2204                 inode->i_op = &shmem_symlink_inode_operations;
2205                 kaddr = kmap_atomic(page);
2206                 memcpy(kaddr, symname, len);
2207                 kunmap_atomic(kaddr);
2208                 SetPageUptodate(page);
2209                 set_page_dirty(page);
2210                 unlock_page(page);
2211                 page_cache_release(page);
2212         }
2213         dir->i_size += BOGO_DIRENT_SIZE;
2214         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2215         d_instantiate(dentry, inode);
2216         dget(dentry);
2217         return 0;
2218 }
2219
2220 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2221 {
2222         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2223         return NULL;
2224 }
2225
2226 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2227 {
2228         struct page *page = NULL;
2229         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2230         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2231         if (page)
2232                 unlock_page(page);
2233         return page;
2234 }
2235
2236 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2237 {
2238         if (!IS_ERR(nd_get_link(nd))) {
2239                 struct page *page = cookie;
2240                 kunmap(page);
2241                 mark_page_accessed(page);
2242                 page_cache_release(page);
2243         }
2244 }
2245
2246 #ifdef CONFIG_TMPFS_XATTR
2247 /*
2248  * Superblocks without xattr inode operations may get some security.* xattr
2249  * support from the LSM "for free". As soon as we have any other xattrs
2250  * like ACLs, we also need to implement the security.* handlers at
2251  * filesystem level, though.
2252  */
2253
2254 /*
2255  * Callback for security_inode_init_security() for acquiring xattrs.
2256  */
2257 static int shmem_initxattrs(struct inode *inode,
2258                             const struct xattr *xattr_array,
2259                             void *fs_info)
2260 {
2261         struct shmem_inode_info *info = SHMEM_I(inode);
2262         const struct xattr *xattr;
2263         struct simple_xattr *new_xattr;
2264         size_t len;
2265
2266         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2267                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2268                 if (!new_xattr)
2269                         return -ENOMEM;
2270
2271                 len = strlen(xattr->name) + 1;
2272                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2273                                           GFP_KERNEL);
2274                 if (!new_xattr->name) {
2275                         kfree(new_xattr);
2276                         return -ENOMEM;
2277                 }
2278
2279                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2280                        XATTR_SECURITY_PREFIX_LEN);
2281                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2282                        xattr->name, len);
2283
2284                 simple_xattr_list_add(&info->xattrs, new_xattr);
2285         }
2286
2287         return 0;
2288 }
2289
2290 static const struct xattr_handler *shmem_xattr_handlers[] = {
2291 #ifdef CONFIG_TMPFS_POSIX_ACL
2292         &posix_acl_access_xattr_handler,
2293         &posix_acl_default_xattr_handler,
2294 #endif
2295         NULL
2296 };
2297
2298 static int shmem_xattr_validate(const char *name)
2299 {
2300         struct { const char *prefix; size_t len; } arr[] = {
2301                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2302                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2303         };
2304         int i;
2305
2306         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2307                 size_t preflen = arr[i].len;
2308                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2309                         if (!name[preflen])
2310                                 return -EINVAL;
2311                         return 0;
2312                 }
2313         }
2314         return -EOPNOTSUPP;
2315 }
2316
2317 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2318                               void *buffer, size_t size)
2319 {
2320         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2321         int err;
2322
2323         /*
2324          * If this is a request for a synthetic attribute in the system.*
2325          * namespace use the generic infrastructure to resolve a handler
2326          * for it via sb->s_xattr.
2327          */
2328         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2329                 return generic_getxattr(dentry, name, buffer, size);
2330
2331         err = shmem_xattr_validate(name);
2332         if (err)
2333                 return err;
2334
2335         return simple_xattr_get(&info->xattrs, name, buffer, size);
2336 }
2337
2338 static int shmem_setxattr(struct dentry *dentry, const char *name,
2339                           const void *value, size_t size, int flags)
2340 {
2341         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2342         int err;
2343
2344         /*
2345          * If this is a request for a synthetic attribute in the system.*
2346          * namespace use the generic infrastructure to resolve a handler
2347          * for it via sb->s_xattr.
2348          */
2349         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2350                 return generic_setxattr(dentry, name, value, size, flags);
2351
2352         err = shmem_xattr_validate(name);
2353         if (err)
2354                 return err;
2355
2356         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2357 }
2358
2359 static int shmem_removexattr(struct dentry *dentry, const char *name)
2360 {
2361         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2362         int err;
2363
2364         /*
2365          * If this is a request for a synthetic attribute in the system.*
2366          * namespace use the generic infrastructure to resolve a handler
2367          * for it via sb->s_xattr.
2368          */
2369         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2370                 return generic_removexattr(dentry, name);
2371
2372         err = shmem_xattr_validate(name);
2373         if (err)
2374                 return err;
2375
2376         return simple_xattr_remove(&info->xattrs, name);
2377 }
2378
2379 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2380 {
2381         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2382         return simple_xattr_list(&info->xattrs, buffer, size);
2383 }
2384 #endif /* CONFIG_TMPFS_XATTR */
2385
2386 static const struct inode_operations shmem_short_symlink_operations = {
2387         .readlink       = generic_readlink,
2388         .follow_link    = shmem_follow_short_symlink,
2389 #ifdef CONFIG_TMPFS_XATTR
2390         .setxattr       = shmem_setxattr,
2391         .getxattr       = shmem_getxattr,
2392         .listxattr      = shmem_listxattr,
2393         .removexattr    = shmem_removexattr,
2394 #endif
2395 };
2396
2397 static const struct inode_operations shmem_symlink_inode_operations = {
2398         .readlink       = generic_readlink,
2399         .follow_link    = shmem_follow_link,
2400         .put_link       = shmem_put_link,
2401 #ifdef CONFIG_TMPFS_XATTR
2402         .setxattr       = shmem_setxattr,
2403         .getxattr       = shmem_getxattr,
2404         .listxattr      = shmem_listxattr,
2405         .removexattr    = shmem_removexattr,
2406 #endif
2407 };
2408
2409 static struct dentry *shmem_get_parent(struct dentry *child)
2410 {
2411         return ERR_PTR(-ESTALE);
2412 }
2413
2414 static int shmem_match(struct inode *ino, void *vfh)
2415 {
2416         __u32 *fh = vfh;
2417         __u64 inum = fh[2];
2418         inum = (inum << 32) | fh[1];
2419         return ino->i_ino == inum && fh[0] == ino->i_generation;
2420 }
2421
2422 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2423                 struct fid *fid, int fh_len, int fh_type)
2424 {
2425         struct inode *inode;
2426         struct dentry *dentry = NULL;
2427         u64 inum;
2428
2429         if (fh_len < 3)
2430                 return NULL;
2431
2432         inum = fid->raw[2];
2433         inum = (inum << 32) | fid->raw[1];
2434
2435         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2436                         shmem_match, fid->raw);
2437         if (inode) {
2438                 dentry = d_find_alias(inode);
2439                 iput(inode);
2440         }
2441
2442         return dentry;
2443 }
2444
2445 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2446                                 struct inode *parent)
2447 {
2448         if (*len < 3) {
2449                 *len = 3;
2450                 return FILEID_INVALID;
2451         }
2452
2453         if (inode_unhashed(inode)) {
2454                 /* Unfortunately insert_inode_hash is not idempotent,
2455                  * so as we hash inodes here rather than at creation
2456                  * time, we need a lock to ensure we only try
2457                  * to do it once
2458                  */
2459                 static DEFINE_SPINLOCK(lock);
2460                 spin_lock(&lock);
2461                 if (inode_unhashed(inode))
2462                         __insert_inode_hash(inode,
2463                                             inode->i_ino + inode->i_generation);
2464                 spin_unlock(&lock);
2465         }
2466
2467         fh[0] = inode->i_generation;
2468         fh[1] = inode->i_ino;
2469         fh[2] = ((__u64)inode->i_ino) >> 32;
2470
2471         *len = 3;
2472         return 1;
2473 }
2474
2475 static const struct export_operations shmem_export_ops = {
2476         .get_parent     = shmem_get_parent,
2477         .encode_fh      = shmem_encode_fh,
2478         .fh_to_dentry   = shmem_fh_to_dentry,
2479 };
2480
2481 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2482                                bool remount)
2483 {
2484         char *this_char, *value, *rest;
2485         struct mempolicy *mpol = NULL;
2486         uid_t uid;
2487         gid_t gid;
2488
2489         while (options != NULL) {
2490                 this_char = options;
2491                 for (;;) {
2492                         /*
2493                          * NUL-terminate this option: unfortunately,
2494                          * mount options form a comma-separated list,
2495                          * but mpol's nodelist may also contain commas.
2496                          */
2497                         options = strchr(options, ',');
2498                         if (options == NULL)
2499                                 break;
2500                         options++;
2501                         if (!isdigit(*options)) {
2502                                 options[-1] = '\0';
2503                                 break;
2504                         }
2505                 }
2506                 if (!*this_char)
2507                         continue;
2508                 if ((value = strchr(this_char,'=')) != NULL) {
2509                         *value++ = 0;
2510                 } else {
2511                         printk(KERN_ERR
2512                             "tmpfs: No value for mount option '%s'\n",
2513                             this_char);
2514                         goto error;
2515                 }
2516
2517                 if (!strcmp(this_char,"size")) {
2518                         unsigned long long size;
2519                         size = memparse(value,&rest);
2520                         if (*rest == '%') {
2521                                 size <<= PAGE_SHIFT;
2522                                 size *= totalram_pages;
2523                                 do_div(size, 100);
2524                                 rest++;
2525                         }
2526                         if (*rest)
2527                                 goto bad_val;
2528                         sbinfo->max_blocks =
2529                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2530                 } else if (!strcmp(this_char,"nr_blocks")) {
2531                         sbinfo->max_blocks = memparse(value, &rest);
2532                         if (*rest)
2533                                 goto bad_val;
2534                 } else if (!strcmp(this_char,"nr_inodes")) {
2535                         sbinfo->max_inodes = memparse(value, &rest);
2536                         if (*rest)
2537                                 goto bad_val;
2538                 } else if (!strcmp(this_char,"mode")) {
2539                         if (remount)
2540                                 continue;
2541                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2542                         if (*rest)
2543                                 goto bad_val;
2544                 } else if (!strcmp(this_char,"uid")) {
2545                         if (remount)
2546                                 continue;
2547                         uid = simple_strtoul(value, &rest, 0);
2548                         if (*rest)
2549                                 goto bad_val;
2550                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2551                         if (!uid_valid(sbinfo->uid))
2552                                 goto bad_val;
2553                 } else if (!strcmp(this_char,"gid")) {
2554                         if (remount)
2555                                 continue;
2556                         gid = simple_strtoul(value, &rest, 0);
2557                         if (*rest)
2558                                 goto bad_val;
2559                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2560                         if (!gid_valid(sbinfo->gid))
2561                                 goto bad_val;
2562                 } else if (!strcmp(this_char,"mpol")) {
2563                         mpol_put(mpol);
2564                         mpol = NULL;
2565                         if (mpol_parse_str(value, &mpol))
2566                                 goto bad_val;
2567                 } else {
2568                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2569                                this_char);
2570                         goto error;
2571                 }
2572         }
2573         sbinfo->mpol = mpol;
2574         return 0;
2575
2576 bad_val:
2577         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2578                value, this_char);
2579 error:
2580         mpol_put(mpol);
2581         return 1;
2582
2583 }
2584
2585 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2586 {
2587         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2588         struct shmem_sb_info config = *sbinfo;
2589         unsigned long inodes;
2590         int error = -EINVAL;
2591
2592         config.mpol = NULL;
2593         if (shmem_parse_options(data, &config, true))
2594                 return error;
2595
2596         spin_lock(&sbinfo->stat_lock);
2597         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2598         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2599                 goto out;
2600         if (config.max_inodes < inodes)
2601                 goto out;
2602         /*
2603          * Those tests disallow limited->unlimited while any are in use;
2604          * but we must separately disallow unlimited->limited, because
2605          * in that case we have no record of how much is already in use.
2606          */
2607         if (config.max_blocks && !sbinfo->max_blocks)
2608                 goto out;
2609         if (config.max_inodes && !sbinfo->max_inodes)
2610                 goto out;
2611
2612         error = 0;
2613         sbinfo->max_blocks  = config.max_blocks;
2614         sbinfo->max_inodes  = config.max_inodes;
2615         sbinfo->free_inodes = config.max_inodes - inodes;
2616
2617         /*
2618          * Preserve previous mempolicy unless mpol remount option was specified.
2619          */
2620         if (config.mpol) {
2621                 mpol_put(sbinfo->mpol);
2622                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2623         }
2624 out:
2625         spin_unlock(&sbinfo->stat_lock);
2626         return error;
2627 }
2628
2629 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2630 {
2631         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2632
2633         if (sbinfo->max_blocks != shmem_default_max_blocks())
2634                 seq_printf(seq, ",size=%luk",
2635                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2636         if (sbinfo->max_inodes != shmem_default_max_inodes())
2637                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2638         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2639                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2640         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2641                 seq_printf(seq, ",uid=%u",
2642                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2643         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2644                 seq_printf(seq, ",gid=%u",
2645                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2646         shmem_show_mpol(seq, sbinfo->mpol);
2647         return 0;
2648 }
2649 #endif /* CONFIG_TMPFS */
2650
2651 static void shmem_put_super(struct super_block *sb)
2652 {
2653         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2654
2655         percpu_counter_destroy(&sbinfo->used_blocks);
2656         mpol_put(sbinfo->mpol);
2657         kfree(sbinfo);
2658         sb->s_fs_info = NULL;
2659 }
2660
2661 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2662 {
2663         struct inode *inode;
2664         struct shmem_sb_info *sbinfo;
2665         int err = -ENOMEM;
2666
2667         /* Round up to L1_CACHE_BYTES to resist false sharing */
2668         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2669                                 L1_CACHE_BYTES), GFP_KERNEL);
2670         if (!sbinfo)
2671                 return -ENOMEM;
2672
2673         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2674         sbinfo->uid = current_fsuid();
2675         sbinfo->gid = current_fsgid();
2676         sb->s_fs_info = sbinfo;
2677
2678 #ifdef CONFIG_TMPFS
2679         /*
2680          * Per default we only allow half of the physical ram per
2681          * tmpfs instance, limiting inodes to one per page of lowmem;
2682          * but the internal instance is left unlimited.
2683          */
2684         if (!(sb->s_flags & MS_KERNMOUNT)) {
2685                 sbinfo->max_blocks = shmem_default_max_blocks();
2686                 sbinfo->max_inodes = shmem_default_max_inodes();
2687                 if (shmem_parse_options(data, sbinfo, false)) {
2688                         err = -EINVAL;
2689                         goto failed;
2690                 }
2691         } else {
2692                 sb->s_flags |= MS_NOUSER;
2693         }
2694         sb->s_export_op = &shmem_export_ops;
2695         sb->s_flags |= MS_NOSEC;
2696 #else
2697         sb->s_flags |= MS_NOUSER;
2698 #endif
2699
2700         spin_lock_init(&sbinfo->stat_lock);
2701         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2702                 goto failed;
2703         sbinfo->free_inodes = sbinfo->max_inodes;
2704
2705         sb->s_maxbytes = MAX_LFS_FILESIZE;
2706         sb->s_blocksize = PAGE_CACHE_SIZE;
2707         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2708         sb->s_magic = TMPFS_MAGIC;
2709         sb->s_op = &shmem_ops;
2710         sb->s_time_gran = 1;
2711 #ifdef CONFIG_TMPFS_XATTR
2712         sb->s_xattr = shmem_xattr_handlers;
2713 #endif
2714 #ifdef CONFIG_TMPFS_POSIX_ACL
2715         sb->s_flags |= MS_POSIXACL;
2716 #endif
2717
2718         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2719         if (!inode)
2720                 goto failed;
2721         inode->i_uid = sbinfo->uid;
2722         inode->i_gid = sbinfo->gid;
2723         sb->s_root = d_make_root(inode);
2724         if (!sb->s_root)
2725                 goto failed;
2726         return 0;
2727
2728 failed:
2729         shmem_put_super(sb);
2730         return err;
2731 }
2732
2733 static struct kmem_cache *shmem_inode_cachep;
2734
2735 static struct inode *shmem_alloc_inode(struct super_block *sb)
2736 {
2737         struct shmem_inode_info *info;
2738         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2739         if (!info)
2740                 return NULL;
2741         return &info->vfs_inode;
2742 }
2743
2744 static void shmem_destroy_callback(struct rcu_head *head)
2745 {
2746         struct inode *inode = container_of(head, struct inode, i_rcu);
2747         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2748 }
2749
2750 static void shmem_destroy_inode(struct inode *inode)
2751 {
2752         if (S_ISREG(inode->i_mode))
2753                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2754         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2755 }
2756
2757 static void shmem_init_inode(void *foo)
2758 {
2759         struct shmem_inode_info *info = foo;
2760         inode_init_once(&info->vfs_inode);
2761 }
2762
2763 static int shmem_init_inodecache(void)
2764 {
2765         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2766                                 sizeof(struct shmem_inode_info),
2767                                 0, SLAB_PANIC, shmem_init_inode);
2768         return 0;
2769 }
2770
2771 static void shmem_destroy_inodecache(void)
2772 {
2773         kmem_cache_destroy(shmem_inode_cachep);
2774 }
2775
2776 static const struct address_space_operations shmem_aops = {
2777         .writepage      = shmem_writepage,
2778         .set_page_dirty = __set_page_dirty_no_writeback,
2779 #ifdef CONFIG_TMPFS
2780         .write_begin    = shmem_write_begin,
2781         .write_end      = shmem_write_end,
2782 #endif
2783         .migratepage    = migrate_page,
2784         .error_remove_page = generic_error_remove_page,
2785 };
2786
2787 static const struct file_operations shmem_file_operations = {
2788         .mmap           = shmem_mmap,
2789 #ifdef CONFIG_TMPFS
2790         .llseek         = shmem_file_llseek,
2791         .read           = do_sync_read,
2792         .write          = do_sync_write,
2793         .aio_read       = shmem_file_aio_read,
2794         .aio_write      = generic_file_aio_write,
2795         .fsync          = noop_fsync,
2796         .splice_read    = shmem_file_splice_read,
2797         .splice_write   = generic_file_splice_write,
2798         .fallocate      = shmem_fallocate,
2799 #endif
2800 };
2801
2802 static const struct inode_operations shmem_inode_operations = {
2803         .setattr        = shmem_setattr,
2804 #ifdef CONFIG_TMPFS_XATTR
2805         .setxattr       = shmem_setxattr,
2806         .getxattr       = shmem_getxattr,
2807         .listxattr      = shmem_listxattr,
2808         .removexattr    = shmem_removexattr,
2809         .set_acl        = simple_set_acl,
2810 #endif
2811 };
2812
2813 static const struct inode_operations shmem_dir_inode_operations = {
2814 #ifdef CONFIG_TMPFS
2815         .create         = shmem_create,
2816         .lookup         = simple_lookup,
2817         .link           = shmem_link,
2818         .unlink         = shmem_unlink,
2819         .symlink        = shmem_symlink,
2820         .mkdir          = shmem_mkdir,
2821         .rmdir          = shmem_rmdir,
2822         .mknod          = shmem_mknod,
2823         .rename         = shmem_rename,
2824         .tmpfile        = shmem_tmpfile,
2825 #endif
2826 #ifdef CONFIG_TMPFS_XATTR
2827         .setxattr       = shmem_setxattr,
2828         .getxattr       = shmem_getxattr,
2829         .listxattr      = shmem_listxattr,
2830         .removexattr    = shmem_removexattr,
2831 #endif
2832 #ifdef CONFIG_TMPFS_POSIX_ACL
2833         .setattr        = shmem_setattr,
2834         .set_acl        = simple_set_acl,
2835 #endif
2836 };
2837
2838 static const struct inode_operations shmem_special_inode_operations = {
2839 #ifdef CONFIG_TMPFS_XATTR
2840         .setxattr       = shmem_setxattr,
2841         .getxattr       = shmem_getxattr,
2842         .listxattr      = shmem_listxattr,
2843         .removexattr    = shmem_removexattr,
2844 #endif
2845 #ifdef CONFIG_TMPFS_POSIX_ACL
2846         .setattr        = shmem_setattr,
2847         .set_acl        = simple_set_acl,
2848 #endif
2849 };
2850
2851 static const struct super_operations shmem_ops = {
2852         .alloc_inode    = shmem_alloc_inode,
2853         .destroy_inode  = shmem_destroy_inode,
2854 #ifdef CONFIG_TMPFS
2855         .statfs         = shmem_statfs,
2856         .remount_fs     = shmem_remount_fs,
2857         .show_options   = shmem_show_options,
2858 #endif
2859         .evict_inode    = shmem_evict_inode,
2860         .drop_inode     = generic_delete_inode,
2861         .put_super      = shmem_put_super,
2862 };
2863
2864 static const struct vm_operations_struct shmem_vm_ops = {
2865         .fault          = shmem_fault,
2866 #ifdef CONFIG_NUMA
2867         .set_policy     = shmem_set_policy,
2868         .get_policy     = shmem_get_policy,
2869 #endif
2870         .remap_pages    = generic_file_remap_pages,
2871 };
2872
2873 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2874         int flags, const char *dev_name, void *data)
2875 {
2876         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2877 }
2878
2879 static struct file_system_type shmem_fs_type = {
2880         .owner          = THIS_MODULE,
2881         .name           = "tmpfs",
2882         .mount          = shmem_mount,
2883         .kill_sb        = kill_litter_super,
2884         .fs_flags       = FS_USERNS_MOUNT,
2885 };
2886
2887 int __init shmem_init(void)
2888 {
2889         int error;
2890
2891         /* If rootfs called this, don't re-init */
2892         if (shmem_inode_cachep)
2893                 return 0;
2894
2895         error = bdi_init(&shmem_backing_dev_info);
2896         if (error)
2897                 goto out4;
2898
2899         error = shmem_init_inodecache();
2900         if (error)
2901                 goto out3;
2902
2903         error = register_filesystem(&shmem_fs_type);
2904         if (error) {
2905                 printk(KERN_ERR "Could not register tmpfs\n");
2906                 goto out2;
2907         }
2908
2909         shm_mnt = kern_mount(&shmem_fs_type);
2910         if (IS_ERR(shm_mnt)) {
2911                 error = PTR_ERR(shm_mnt);
2912                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2913                 goto out1;
2914         }
2915         return 0;
2916
2917 out1:
2918         unregister_filesystem(&shmem_fs_type);
2919 out2:
2920         shmem_destroy_inodecache();
2921 out3:
2922         bdi_destroy(&shmem_backing_dev_info);
2923 out4:
2924         shm_mnt = ERR_PTR(error);
2925         return error;
2926 }
2927
2928 #else /* !CONFIG_SHMEM */
2929
2930 /*
2931  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2932  *
2933  * This is intended for small system where the benefits of the full
2934  * shmem code (swap-backed and resource-limited) are outweighed by
2935  * their complexity. On systems without swap this code should be
2936  * effectively equivalent, but much lighter weight.
2937  */
2938
2939 static struct file_system_type shmem_fs_type = {
2940         .name           = "tmpfs",
2941         .mount          = ramfs_mount,
2942         .kill_sb        = kill_litter_super,
2943         .fs_flags       = FS_USERNS_MOUNT,
2944 };
2945
2946 int __init shmem_init(void)
2947 {
2948         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2949
2950         shm_mnt = kern_mount(&shmem_fs_type);
2951         BUG_ON(IS_ERR(shm_mnt));
2952
2953         return 0;
2954 }
2955
2956 int shmem_unuse(swp_entry_t swap, struct page *page)
2957 {
2958         return 0;
2959 }
2960
2961 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2962 {
2963         return 0;
2964 }
2965
2966 void shmem_unlock_mapping(struct address_space *mapping)
2967 {
2968 }
2969
2970 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2971 {
2972         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2973 }
2974 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2975
2976 #define shmem_vm_ops                            generic_file_vm_ops
2977 #define shmem_file_operations                   ramfs_file_operations
2978 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2979 #define shmem_acct_size(flags, size)            0
2980 #define shmem_unacct_size(flags, size)          do {} while (0)
2981
2982 #endif /* CONFIG_SHMEM */
2983
2984 /* common code */
2985
2986 static struct dentry_operations anon_ops = {
2987         .d_dname = simple_dname
2988 };
2989
2990 static struct file *__shmem_file_setup(const char *name, loff_t size,
2991                                        unsigned long flags, unsigned int i_flags)
2992 {
2993         struct file *res;
2994         struct inode *inode;
2995         struct path path;
2996         struct super_block *sb;
2997         struct qstr this;
2998
2999         if (IS_ERR(shm_mnt))
3000                 return ERR_CAST(shm_mnt);
3001
3002         if (size < 0 || size > MAX_LFS_FILESIZE)
3003                 return ERR_PTR(-EINVAL);
3004
3005         if (shmem_acct_size(flags, size))
3006                 return ERR_PTR(-ENOMEM);
3007
3008         res = ERR_PTR(-ENOMEM);
3009         this.name = name;
3010         this.len = strlen(name);
3011         this.hash = 0; /* will go */
3012         sb = shm_mnt->mnt_sb;
3013         path.dentry = d_alloc_pseudo(sb, &this);
3014         if (!path.dentry)
3015                 goto put_memory;
3016         d_set_d_op(path.dentry, &anon_ops);
3017         path.mnt = mntget(shm_mnt);
3018
3019         res = ERR_PTR(-ENOSPC);
3020         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3021         if (!inode)
3022                 goto put_dentry;
3023
3024         inode->i_flags |= i_flags;
3025         d_instantiate(path.dentry, inode);
3026         inode->i_size = size;
3027         clear_nlink(inode);     /* It is unlinked */
3028         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3029         if (IS_ERR(res))
3030                 goto put_dentry;
3031
3032         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3033                   &shmem_file_operations);
3034         if (IS_ERR(res))
3035                 goto put_dentry;
3036
3037         return res;
3038
3039 put_dentry:
3040         path_put(&path);
3041 put_memory:
3042         shmem_unacct_size(flags, size);
3043         return res;
3044 }
3045
3046 /**
3047  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3048  *      kernel internal.  There will be NO LSM permission checks against the
3049  *      underlying inode.  So users of this interface must do LSM checks at a
3050  *      higher layer.  The one user is the big_key implementation.  LSM checks
3051  *      are provided at the key level rather than the inode level.
3052  * @name: name for dentry (to be seen in /proc/<pid>/maps
3053  * @size: size to be set for the file
3054  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3055  */
3056 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3057 {
3058         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3059 }
3060
3061 /**
3062  * shmem_file_setup - get an unlinked file living in tmpfs
3063  * @name: name for dentry (to be seen in /proc/<pid>/maps
3064  * @size: size to be set for the file
3065  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3066  */
3067 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3068 {
3069         return __shmem_file_setup(name, size, flags, 0);
3070 }
3071 EXPORT_SYMBOL_GPL(shmem_file_setup);
3072
3073 /**
3074  * shmem_zero_setup - setup a shared anonymous mapping
3075  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3076  */
3077 int shmem_zero_setup(struct vm_area_struct *vma)
3078 {
3079         struct file *file;
3080         loff_t size = vma->vm_end - vma->vm_start;
3081
3082         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3083         if (IS_ERR(file))
3084                 return PTR_ERR(file);
3085
3086         if (vma->vm_file)
3087                 fput(vma->vm_file);
3088         vma->vm_file = file;
3089         vma->vm_ops = &shmem_vm_ops;
3090         return 0;
3091 }
3092
3093 /**
3094  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3095  * @mapping:    the page's address_space
3096  * @index:      the page index
3097  * @gfp:        the page allocator flags to use if allocating
3098  *
3099  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3100  * with any new page allocations done using the specified allocation flags.
3101  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3102  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3103  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3104  *
3105  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3106  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3107  */
3108 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3109                                          pgoff_t index, gfp_t gfp)
3110 {
3111 #ifdef CONFIG_SHMEM
3112         struct inode *inode = mapping->host;
3113         struct page *page;
3114         int error;
3115
3116         BUG_ON(mapping->a_ops != &shmem_aops);
3117         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3118         if (error)
3119                 page = ERR_PTR(error);
3120         else
3121                 unlock_page(page);
3122         return page;
3123 #else
3124         /*
3125          * The tiny !SHMEM case uses ramfs without swap
3126          */
3127         return read_cache_page_gfp(mapping, index, gfp);
3128 #endif
3129 }
3130 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);