2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 /* Flag allocation requirements to shmem_getpage */
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 return sb->s_fs_info;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162 static inline int shmem_acct_block(unsigned long flags)
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
190 static int shmem_reserve_inode(struct super_block *sb)
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
205 static void shmem_free_inode(struct super_block *sb)
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
225 * It has to be called with the spinlock held.
227 static void shmem_recalc_inode(struct inode *inode)
229 struct shmem_inode_info *info = SHMEM_I(inode);
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
244 * Replace item expected in radix tree by a new item, while holding tree lock.
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
260 radix_tree_replace_slot(pslot, replacement);
262 radix_tree_delete(&mapping->page_tree, index);
267 * Like add_to_page_cache_locked, but error if expected item has gone.
269 static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
281 page_cache_get(page);
282 page->mapping = mapping;
285 spin_lock_irq(&mapping->tree_lock);
287 error = radix_tree_insert(&mapping->page_tree,
290 error = shmem_radix_tree_replace(mapping, index,
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
303 radix_tree_preload_end();
306 mem_cgroup_uncharge_cache_page(page);
311 * Like delete_from_page_cache, but substitutes swap for page.
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
315 struct address_space *mapping = page->mapping;
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
330 * Like find_get_pages, but collecting swap entries as well as pages.
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
338 unsigned int nr_found;
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
345 for (i = 0; i < nr_found; i++) {
348 page = radix_tree_deref_slot((void **)pages[i]);
351 if (radix_tree_exception(page)) {
352 if (radix_tree_deref_retry(page))
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
361 if (!page_cache_get_speculative(page))
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
370 indices[ret] = indices[i];
374 if (unlikely(!ret && nr_found))
381 * Remove swap entry from radix tree, free the swap and its page cache.
383 static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
392 free_swap_and_cache(radix_to_swp_entry(radswap));
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
414 void shmem_unlock_mapping(struct address_space *mapping)
417 pgoff_t indices[PAGEVEC_SIZE];
420 pagevec_init(&pvec, 0);
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
424 while (!mapping_unevictable(mapping)) {
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 struct address_space *mapping = inode->i_mapping;
449 struct shmem_inode_info *info = SHMEM_I(inode);
450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
461 end = -1; /* unsigned, so actually very big */
463 pagevec_init(&pvec, 0);
465 while (index < end) {
466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 pvec.pages, indices);
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
479 if (radix_tree_exceptional_entry(page)) {
482 nr_swaps_freed += !shmem_free_swap(mapping,
487 if (!trylock_page(page))
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
499 mem_cgroup_uncharge_end();
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
508 unsigned int top = PAGE_CACHE_SIZE;
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
516 page_cache_release(page);
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
523 zero_user_segment(page, 0, partial_end);
524 set_page_dirty(page);
526 page_cache_release(page);
535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 pvec.pages, indices);
539 if (index == start || unfalloc)
544 if ((index == start || unfalloc) && indices[0] >= end) {
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
557 if (radix_tree_exceptional_entry(page)) {
560 nr_swaps_freed += !shmem_free_swap(mapping,
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
576 mem_cgroup_uncharge_end();
580 spin_lock(&info->lock);
581 info->swapped -= nr_swaps_freed;
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
588 shmem_undo_range(inode, lstart, lend, false);
589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
595 struct inode *inode = dentry->d_inode;
598 error = inode_change_ok(inode, attr);
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619 setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr->ia_valid & ATTR_MODE)
622 error = generic_acl_chmod(inode);
627 static void shmem_evict_inode(struct inode *inode)
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 struct shmem_xattr *xattr, *nxattr;
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
642 kfree(info->symlink);
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
648 BUG_ON(inode->i_blocks);
649 shmem_free_inode(inode->i_sb);
654 * If swap found in inode, free it and move page from swapcache to filecache.
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 swp_entry_t swap, struct page **pagep)
659 struct address_space *mapping = info->vfs_inode.i_mapping;
665 radswap = swp_to_radix_entry(swap);
666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
685 * We needed to drop mutex to make that restrictive page
686 * allocation; but the inode might already be freed by now,
687 * and we cannot refer to inode or mapping or info to check.
688 * However, we do hold page lock on the PageSwapCache page,
689 * so can check if that still has our reference remaining.
691 if (!page_swapcount(*pagep))
696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
697 * but also to hold up shmem_evict_inode(): so inode cannot be freed
698 * beneath us (pagelock doesn't help until the page is in pagecache).
701 error = shmem_add_to_page_cache(*pagep, mapping, index,
702 GFP_NOWAIT, radswap);
703 if (error != -ENOMEM) {
705 * Truncation and eviction use free_swap_and_cache(), which
706 * only does trylock page: if we raced, best clean up here.
708 delete_from_swap_cache(*pagep);
709 set_page_dirty(*pagep);
711 spin_lock(&info->lock);
713 spin_unlock(&info->lock);
716 error = 1; /* not an error, but entry was found */
722 * Search through swapped inodes to find and replace swap by page.
724 int shmem_unuse(swp_entry_t swap, struct page *page)
726 struct list_head *this, *next;
727 struct shmem_inode_info *info;
732 * There's a faint possibility that swap page was replaced before
733 * caller locked it: it will come back later with the right page.
735 if (unlikely(!PageSwapCache(page)))
739 * Charge page using GFP_KERNEL while we can wait, before taking
740 * the shmem_swaplist_mutex which might hold up shmem_writepage().
741 * Charged back to the user (not to caller) when swap account is used.
743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
746 /* No radix_tree_preload: swap entry keeps a place for page in tree */
748 mutex_lock(&shmem_swaplist_mutex);
749 list_for_each_safe(this, next, &shmem_swaplist) {
750 info = list_entry(this, struct shmem_inode_info, swaplist);
752 found = shmem_unuse_inode(info, swap, &page);
754 list_del_init(&info->swaplist);
759 mutex_unlock(&shmem_swaplist_mutex);
765 page_cache_release(page);
770 * Move the page from the page cache to the swap cache.
772 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
774 struct shmem_inode_info *info;
775 struct address_space *mapping;
780 BUG_ON(!PageLocked(page));
781 mapping = page->mapping;
783 inode = mapping->host;
784 info = SHMEM_I(inode);
785 if (info->flags & VM_LOCKED)
787 if (!total_swap_pages)
791 * shmem_backing_dev_info's capabilities prevent regular writeback or
792 * sync from ever calling shmem_writepage; but a stacking filesystem
793 * might use ->writepage of its underlying filesystem, in which case
794 * tmpfs should write out to swap only in response to memory pressure,
795 * and not for the writeback threads or sync.
797 if (!wbc->for_reclaim) {
798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
804 * value into swapfile.c, the only way we can correctly account for a
805 * fallocated page arriving here is now to initialize it and write it.
807 * That's okay for a page already fallocated earlier, but if we have
808 * not yet completed the fallocation, then (a) we want to keep track
809 * of this page in case we have to undo it, and (b) it may not be a
810 * good idea to continue anyway, once we're pushing into swap. So
811 * reactivate the page, and let shmem_fallocate() quit when too many.
813 if (!PageUptodate(page)) {
814 if (inode->i_private) {
815 struct shmem_falloc *shmem_falloc;
816 spin_lock(&inode->i_lock);
817 shmem_falloc = inode->i_private;
819 index >= shmem_falloc->start &&
820 index < shmem_falloc->next)
821 shmem_falloc->nr_unswapped++;
824 spin_unlock(&inode->i_lock);
828 clear_highpage(page);
829 flush_dcache_page(page);
830 SetPageUptodate(page);
833 swap = get_swap_page();
838 * Add inode to shmem_unuse()'s list of swapped-out inodes,
839 * if it's not already there. Do it now before the page is
840 * moved to swap cache, when its pagelock no longer protects
841 * the inode from eviction. But don't unlock the mutex until
842 * we've incremented swapped, because shmem_unuse_inode() will
843 * prune a !swapped inode from the swaplist under this mutex.
845 mutex_lock(&shmem_swaplist_mutex);
846 if (list_empty(&info->swaplist))
847 list_add_tail(&info->swaplist, &shmem_swaplist);
849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
850 swap_shmem_alloc(swap);
851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
853 spin_lock(&info->lock);
855 shmem_recalc_inode(inode);
856 spin_unlock(&info->lock);
858 mutex_unlock(&shmem_swaplist_mutex);
859 BUG_ON(page_mapped(page));
860 swap_writepage(page, wbc);
864 mutex_unlock(&shmem_swaplist_mutex);
865 swapcache_free(swap, NULL);
867 set_page_dirty(page);
868 if (wbc->for_reclaim)
869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
880 if (!mpol || mpol->mode == MPOL_DEFAULT)
881 return; /* show nothing */
883 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
885 seq_printf(seq, ",mpol=%s", buffer);
888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
890 struct mempolicy *mpol = NULL;
892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
895 spin_unlock(&sbinfo->stat_lock);
899 #endif /* CONFIG_TMPFS */
901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
902 struct shmem_inode_info *info, pgoff_t index)
904 struct mempolicy mpol, *spol;
905 struct vm_area_struct pvma;
907 spol = mpol_cond_copy(&mpol,
908 mpol_shared_policy_lookup(&info->policy, index));
910 /* Create a pseudo vma that just contains the policy */
912 pvma.vm_pgoff = index;
914 pvma.vm_policy = spol;
915 return swapin_readahead(swap, gfp, &pvma, 0);
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
921 struct vm_area_struct pvma;
923 /* Create a pseudo vma that just contains the policy */
925 pvma.vm_pgoff = index;
927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930 * alloc_page_vma() will drop the shared policy reference
932 return alloc_page_vma(gfp, &pvma, 0);
934 #else /* !CONFIG_NUMA */
936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
939 #endif /* CONFIG_TMPFS */
941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
942 struct shmem_inode_info *info, pgoff_t index)
944 return swapin_readahead(swap, gfp, NULL, 0);
947 static inline struct page *shmem_alloc_page(gfp_t gfp,
948 struct shmem_inode_info *info, pgoff_t index)
950 return alloc_page(gfp);
952 #endif /* CONFIG_NUMA */
954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
962 * When a page is moved from swapcache to shmem filecache (either by the
963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
964 * shmem_unuse_inode()), it may have been read in earlier from swap, in
965 * ignorance of the mapping it belongs to. If that mapping has special
966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
967 * we may need to copy to a suitable page before moving to filecache.
969 * In a future release, this may well be extended to respect cpuset and
970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
971 * but for now it is a simple matter of zone.
973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
975 return page_zonenum(page) > gfp_zone(gfp);
978 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
981 struct page *oldpage, *newpage;
982 struct address_space *swap_mapping;
987 swap_index = page_private(oldpage);
988 swap_mapping = page_mapping(oldpage);
991 * We have arrived here because our zones are constrained, so don't
992 * limit chance of success by further cpuset and node constraints.
994 gfp &= ~GFP_CONSTRAINT_MASK;
995 newpage = shmem_alloc_page(gfp, info, index);
998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
1001 page_cache_get(newpage);
1002 copy_highpage(newpage, oldpage);
1004 VM_BUG_ON(!PageLocked(oldpage));
1005 __set_page_locked(newpage);
1006 VM_BUG_ON(!PageUptodate(oldpage));
1007 SetPageUptodate(newpage);
1008 VM_BUG_ON(!PageSwapBacked(oldpage));
1009 SetPageSwapBacked(newpage);
1010 VM_BUG_ON(!swap_index);
1011 set_page_private(newpage, swap_index);
1012 VM_BUG_ON(!PageSwapCache(oldpage));
1013 SetPageSwapCache(newpage);
1016 * Our caller will very soon move newpage out of swapcache, but it's
1017 * a nice clean interface for us to replace oldpage by newpage there.
1019 spin_lock_irq(&swap_mapping->tree_lock);
1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1022 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 spin_unlock_irq(&swap_mapping->tree_lock);
1027 mem_cgroup_replace_page_cache(oldpage, newpage);
1028 lru_cache_add_anon(newpage);
1030 ClearPageSwapCache(oldpage);
1031 set_page_private(oldpage, 0);
1033 unlock_page(oldpage);
1034 page_cache_release(oldpage);
1035 page_cache_release(oldpage);
1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1042 * If we allocate a new one we do not mark it dirty. That's up to the
1043 * vm. If we swap it in we mark it dirty since we also free the swap
1044 * entry since a page cannot live in both the swap and page cache
1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1049 struct address_space *mapping = inode->i_mapping;
1050 struct shmem_inode_info *info;
1051 struct shmem_sb_info *sbinfo;
1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1062 page = find_lock_page(mapping, index);
1063 if (radix_tree_exceptional_entry(page)) {
1064 swap = radix_to_swp_entry(page);
1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1074 /* fallocated page? */
1075 if (page && !PageUptodate(page)) {
1076 if (sgp != SGP_READ)
1079 page_cache_release(page);
1082 if (page || (sgp == SGP_READ && !swap.val)) {
1088 * Fast cache lookup did not find it:
1089 * bring it back from swap or allocate.
1091 info = SHMEM_I(inode);
1092 sbinfo = SHMEM_SB(inode->i_sb);
1095 /* Look it up and read it in.. */
1096 page = lookup_swap_cache(swap);
1098 /* here we actually do the io */
1100 *fault_type |= VM_FAULT_MAJOR;
1101 page = shmem_swapin(swap, gfp, info, index);
1108 /* We have to do this with page locked to prevent races */
1110 if (!PageSwapCache(page) || page->mapping) {
1111 error = -EEXIST; /* try again */
1114 if (!PageUptodate(page)) {
1118 wait_on_page_writeback(page);
1120 if (shmem_should_replace_page(page, gfp)) {
1121 error = shmem_replace_page(&page, gfp, info, index);
1126 error = mem_cgroup_cache_charge(page, current->mm,
1127 gfp & GFP_RECLAIM_MASK);
1129 error = shmem_add_to_page_cache(page, mapping, index,
1130 gfp, swp_to_radix_entry(swap));
1134 spin_lock(&info->lock);
1136 shmem_recalc_inode(inode);
1137 spin_unlock(&info->lock);
1139 delete_from_swap_cache(page);
1140 set_page_dirty(page);
1144 if (shmem_acct_block(info->flags)) {
1148 if (sbinfo->max_blocks) {
1149 if (percpu_counter_compare(&sbinfo->used_blocks,
1150 sbinfo->max_blocks) >= 0) {
1154 percpu_counter_inc(&sbinfo->used_blocks);
1157 page = shmem_alloc_page(gfp, info, index);
1163 SetPageSwapBacked(page);
1164 __set_page_locked(page);
1165 error = mem_cgroup_cache_charge(page, current->mm,
1166 gfp & GFP_RECLAIM_MASK);
1168 error = shmem_add_to_page_cache(page, mapping, index,
1172 lru_cache_add_anon(page);
1174 spin_lock(&info->lock);
1176 inode->i_blocks += BLOCKS_PER_PAGE;
1177 shmem_recalc_inode(inode);
1178 spin_unlock(&info->lock);
1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1184 if (sgp == SGP_FALLOC)
1188 * Let SGP_WRITE caller clear ends if write does not fill page;
1189 * but SGP_FALLOC on a page fallocated earlier must initialize
1190 * it now, lest undo on failure cancel our earlier guarantee.
1192 if (sgp != SGP_WRITE) {
1193 clear_highpage(page);
1194 flush_dcache_page(page);
1195 SetPageUptodate(page);
1197 if (sgp == SGP_DIRTY)
1198 set_page_dirty(page);
1201 /* Perhaps the file has been truncated since we checked */
1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1217 info = SHMEM_I(inode);
1218 ClearPageDirty(page);
1219 delete_from_page_cache(page);
1220 spin_lock(&info->lock);
1222 inode->i_blocks -= BLOCKS_PER_PAGE;
1223 spin_unlock(&info->lock);
1225 sbinfo = SHMEM_SB(inode->i_sb);
1226 if (sbinfo->max_blocks)
1227 percpu_counter_add(&sbinfo->used_blocks, -1);
1229 shmem_unacct_blocks(info->flags, 1);
1231 if (swap.val && error != -EINVAL) {
1232 struct page *test = find_get_page(mapping, index);
1233 if (test && !radix_tree_exceptional_entry(test))
1234 page_cache_release(test);
1235 /* Have another try if the entry has changed */
1236 if (test != swp_to_radix_entry(swap))
1241 page_cache_release(page);
1243 if (error == -ENOSPC && !once++) {
1244 info = SHMEM_I(inode);
1245 spin_lock(&info->lock);
1246 shmem_recalc_inode(inode);
1247 spin_unlock(&info->lock);
1250 if (error == -EEXIST)
1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1259 int ret = VM_FAULT_LOCKED;
1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1265 if (ret & VM_FAULT_MAJOR) {
1266 count_vm_event(PGMAJFAULT);
1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1290 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1292 struct inode *inode = file->f_path.dentry->d_inode;
1293 struct shmem_inode_info *info = SHMEM_I(inode);
1294 int retval = -ENOMEM;
1296 spin_lock(&info->lock);
1297 if (lock && !(info->flags & VM_LOCKED)) {
1298 if (!user_shm_lock(inode->i_size, user))
1300 info->flags |= VM_LOCKED;
1301 mapping_set_unevictable(file->f_mapping);
1303 if (!lock && (info->flags & VM_LOCKED) && user) {
1304 user_shm_unlock(inode->i_size, user);
1305 info->flags &= ~VM_LOCKED;
1306 mapping_clear_unevictable(file->f_mapping);
1311 spin_unlock(&info->lock);
1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1317 file_accessed(file);
1318 vma->vm_ops = &shmem_vm_ops;
1319 vma->vm_flags |= VM_CAN_NONLINEAR;
1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1324 umode_t mode, dev_t dev, unsigned long flags)
1326 struct inode *inode;
1327 struct shmem_inode_info *info;
1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1330 if (shmem_reserve_inode(sb))
1333 inode = new_inode(sb);
1335 inode->i_ino = get_next_ino();
1336 inode_init_owner(inode, dir, mode);
1337 inode->i_blocks = 0;
1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1340 inode->i_generation = get_seconds();
1341 info = SHMEM_I(inode);
1342 memset(info, 0, (char *)inode - (char *)info);
1343 spin_lock_init(&info->lock);
1344 info->flags = flags & VM_NORESERVE;
1345 INIT_LIST_HEAD(&info->swaplist);
1346 INIT_LIST_HEAD(&info->xattr_list);
1347 cache_no_acl(inode);
1349 switch (mode & S_IFMT) {
1351 inode->i_op = &shmem_special_inode_operations;
1352 init_special_inode(inode, mode, dev);
1355 inode->i_mapping->a_ops = &shmem_aops;
1356 inode->i_op = &shmem_inode_operations;
1357 inode->i_fop = &shmem_file_operations;
1358 mpol_shared_policy_init(&info->policy,
1359 shmem_get_sbmpol(sbinfo));
1363 /* Some things misbehave if size == 0 on a directory */
1364 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1365 inode->i_op = &shmem_dir_inode_operations;
1366 inode->i_fop = &simple_dir_operations;
1370 * Must not load anything in the rbtree,
1371 * mpol_free_shared_policy will not be called.
1373 mpol_shared_policy_init(&info->policy, NULL);
1377 shmem_free_inode(sb);
1382 static const struct inode_operations shmem_symlink_inode_operations;
1383 static const struct inode_operations shmem_short_symlink_operations;
1385 #ifdef CONFIG_TMPFS_XATTR
1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1388 #define shmem_initxattrs NULL
1392 shmem_write_begin(struct file *file, struct address_space *mapping,
1393 loff_t pos, unsigned len, unsigned flags,
1394 struct page **pagep, void **fsdata)
1396 struct inode *inode = mapping->host;
1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1402 shmem_write_end(struct file *file, struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1406 struct inode *inode = mapping->host;
1408 if (pos + copied > inode->i_size)
1409 i_size_write(inode, pos + copied);
1411 if (!PageUptodate(page)) {
1412 if (copied < PAGE_CACHE_SIZE) {
1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1414 zero_user_segments(page, 0, from,
1415 from + copied, PAGE_CACHE_SIZE);
1417 SetPageUptodate(page);
1419 set_page_dirty(page);
1421 page_cache_release(page);
1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1428 struct inode *inode = filp->f_path.dentry->d_inode;
1429 struct address_space *mapping = inode->i_mapping;
1431 unsigned long offset;
1432 enum sgp_type sgp = SGP_READ;
1435 * Might this read be for a stacking filesystem? Then when reading
1436 * holes of a sparse file, we actually need to allocate those pages,
1437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1439 if (segment_eq(get_fs(), KERNEL_DS))
1442 index = *ppos >> PAGE_CACHE_SHIFT;
1443 offset = *ppos & ~PAGE_CACHE_MASK;
1446 struct page *page = NULL;
1448 unsigned long nr, ret;
1449 loff_t i_size = i_size_read(inode);
1451 end_index = i_size >> PAGE_CACHE_SHIFT;
1452 if (index > end_index)
1454 if (index == end_index) {
1455 nr = i_size & ~PAGE_CACHE_MASK;
1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1462 if (desc->error == -EINVAL)
1470 * We must evaluate after, since reads (unlike writes)
1471 * are called without i_mutex protection against truncate
1473 nr = PAGE_CACHE_SIZE;
1474 i_size = i_size_read(inode);
1475 end_index = i_size >> PAGE_CACHE_SHIFT;
1476 if (index == end_index) {
1477 nr = i_size & ~PAGE_CACHE_MASK;
1480 page_cache_release(page);
1488 * If users can be writing to this page using arbitrary
1489 * virtual addresses, take care about potential aliasing
1490 * before reading the page on the kernel side.
1492 if (mapping_writably_mapped(mapping))
1493 flush_dcache_page(page);
1495 * Mark the page accessed if we read the beginning.
1498 mark_page_accessed(page);
1500 page = ZERO_PAGE(0);
1501 page_cache_get(page);
1505 * Ok, we have the page, and it's up-to-date, so
1506 * now we can copy it to user space...
1508 * The actor routine returns how many bytes were actually used..
1509 * NOTE! This may not be the same as how much of a user buffer
1510 * we filled up (we may be padding etc), so we can only update
1511 * "pos" here (the actor routine has to update the user buffer
1512 * pointers and the remaining count).
1514 ret = actor(desc, page, offset, nr);
1516 index += offset >> PAGE_CACHE_SHIFT;
1517 offset &= ~PAGE_CACHE_MASK;
1519 page_cache_release(page);
1520 if (ret != nr || !desc->count)
1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1527 file_accessed(filp);
1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1533 struct file *filp = iocb->ki_filp;
1537 loff_t *ppos = &iocb->ki_pos;
1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1543 for (seg = 0; seg < nr_segs; seg++) {
1544 read_descriptor_t desc;
1547 desc.arg.buf = iov[seg].iov_base;
1548 desc.count = iov[seg].iov_len;
1549 if (desc.count == 0)
1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1553 retval += desc.written;
1555 retval = retval ?: desc.error;
1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1565 struct pipe_inode_info *pipe, size_t len,
1568 struct address_space *mapping = in->f_mapping;
1569 struct inode *inode = mapping->host;
1570 unsigned int loff, nr_pages, req_pages;
1571 struct page *pages[PIPE_DEF_BUFFERS];
1572 struct partial_page partial[PIPE_DEF_BUFFERS];
1574 pgoff_t index, end_index;
1577 struct splice_pipe_desc spd = {
1581 .ops = &page_cache_pipe_buf_ops,
1582 .spd_release = spd_release_page,
1585 isize = i_size_read(inode);
1586 if (unlikely(*ppos >= isize))
1589 left = isize - *ppos;
1590 if (unlikely(left < len))
1593 if (splice_grow_spd(pipe, &spd))
1596 index = *ppos >> PAGE_CACHE_SHIFT;
1597 loff = *ppos & ~PAGE_CACHE_MASK;
1598 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1599 nr_pages = min(req_pages, pipe->buffers);
1601 spd.nr_pages = find_get_pages_contig(mapping, index,
1602 nr_pages, spd.pages);
1603 index += spd.nr_pages;
1606 while (spd.nr_pages < nr_pages) {
1607 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1611 spd.pages[spd.nr_pages++] = page;
1615 index = *ppos >> PAGE_CACHE_SHIFT;
1616 nr_pages = spd.nr_pages;
1619 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1620 unsigned int this_len;
1625 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1626 page = spd.pages[page_nr];
1628 if (!PageUptodate(page) || page->mapping != mapping) {
1629 error = shmem_getpage(inode, index, &page,
1634 page_cache_release(spd.pages[page_nr]);
1635 spd.pages[page_nr] = page;
1638 isize = i_size_read(inode);
1639 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1640 if (unlikely(!isize || index > end_index))
1643 if (end_index == index) {
1646 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1650 this_len = min(this_len, plen - loff);
1654 spd.partial[page_nr].offset = loff;
1655 spd.partial[page_nr].len = this_len;
1662 while (page_nr < nr_pages)
1663 page_cache_release(spd.pages[page_nr++]);
1666 error = splice_to_pipe(pipe, &spd);
1668 splice_shrink_spd(pipe, &spd);
1678 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1680 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1681 pgoff_t index, pgoff_t end, int origin)
1684 struct pagevec pvec;
1685 pgoff_t indices[PAGEVEC_SIZE];
1689 pagevec_init(&pvec, 0);
1690 pvec.nr = 1; /* start small: we may be there already */
1692 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1693 pvec.nr, pvec.pages, indices);
1695 if (origin == SEEK_DATA)
1699 for (i = 0; i < pvec.nr; i++, index++) {
1700 if (index < indices[i]) {
1701 if (origin == SEEK_HOLE) {
1707 page = pvec.pages[i];
1708 if (page && !radix_tree_exceptional_entry(page)) {
1709 if (!PageUptodate(page))
1713 (page && origin == SEEK_DATA) ||
1714 (!page && origin == SEEK_HOLE)) {
1719 shmem_deswap_pagevec(&pvec);
1720 pagevec_release(&pvec);
1721 pvec.nr = PAGEVEC_SIZE;
1727 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1729 struct address_space *mapping;
1730 struct inode *inode;
1734 if (origin != SEEK_DATA && origin != SEEK_HOLE)
1735 return generic_file_llseek_size(file, offset, origin,
1737 mapping = file->f_mapping;
1738 inode = mapping->host;
1739 mutex_lock(&inode->i_mutex);
1740 /* We're holding i_mutex so we can access i_size directly */
1744 else if (offset >= inode->i_size)
1747 start = offset >> PAGE_CACHE_SHIFT;
1748 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1749 new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1750 new_offset <<= PAGE_CACHE_SHIFT;
1751 if (new_offset > offset) {
1752 if (new_offset < inode->i_size)
1753 offset = new_offset;
1754 else if (origin == SEEK_DATA)
1757 offset = inode->i_size;
1761 if (offset >= 0 && offset != file->f_pos) {
1762 file->f_pos = offset;
1763 file->f_version = 0;
1765 mutex_unlock(&inode->i_mutex);
1769 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1772 struct inode *inode = file->f_path.dentry->d_inode;
1773 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1774 struct shmem_falloc shmem_falloc;
1775 pgoff_t start, index, end;
1778 mutex_lock(&inode->i_mutex);
1780 if (mode & FALLOC_FL_PUNCH_HOLE) {
1781 struct address_space *mapping = file->f_mapping;
1782 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1783 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1785 if ((u64)unmap_end > (u64)unmap_start)
1786 unmap_mapping_range(mapping, unmap_start,
1787 1 + unmap_end - unmap_start, 0);
1788 shmem_truncate_range(inode, offset, offset + len - 1);
1789 /* No need to unmap again: hole-punching leaves COWed pages */
1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 error = inode_newsize_ok(inode, offset + len);
1799 start = offset >> PAGE_CACHE_SHIFT;
1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 /* Try to avoid a swapstorm if len is impossible to satisfy */
1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1807 shmem_falloc.start = start;
1808 shmem_falloc.next = start;
1809 shmem_falloc.nr_falloced = 0;
1810 shmem_falloc.nr_unswapped = 0;
1811 spin_lock(&inode->i_lock);
1812 inode->i_private = &shmem_falloc;
1813 spin_unlock(&inode->i_lock);
1815 for (index = start; index < end; index++) {
1819 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 * been interrupted because we are using up too much memory.
1822 if (signal_pending(current))
1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1830 /* Remove the !PageUptodate pages we added */
1831 shmem_undo_range(inode,
1832 (loff_t)start << PAGE_CACHE_SHIFT,
1833 (loff_t)index << PAGE_CACHE_SHIFT, true);
1838 * Inform shmem_writepage() how far we have reached.
1839 * No need for lock or barrier: we have the page lock.
1841 shmem_falloc.next++;
1842 if (!PageUptodate(page))
1843 shmem_falloc.nr_falloced++;
1846 * If !PageUptodate, leave it that way so that freeable pages
1847 * can be recognized if we need to rollback on error later.
1848 * But set_page_dirty so that memory pressure will swap rather
1849 * than free the pages we are allocating (and SGP_CACHE pages
1850 * might still be clean: we now need to mark those dirty too).
1852 set_page_dirty(page);
1854 page_cache_release(page);
1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 i_size_write(inode, offset + len);
1860 inode->i_ctime = CURRENT_TIME;
1862 spin_lock(&inode->i_lock);
1863 inode->i_private = NULL;
1864 spin_unlock(&inode->i_lock);
1866 mutex_unlock(&inode->i_mutex);
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1874 buf->f_type = TMPFS_MAGIC;
1875 buf->f_bsize = PAGE_CACHE_SIZE;
1876 buf->f_namelen = NAME_MAX;
1877 if (sbinfo->max_blocks) {
1878 buf->f_blocks = sbinfo->max_blocks;
1880 buf->f_bfree = sbinfo->max_blocks -
1881 percpu_counter_sum(&sbinfo->used_blocks);
1883 if (sbinfo->max_inodes) {
1884 buf->f_files = sbinfo->max_inodes;
1885 buf->f_ffree = sbinfo->free_inodes;
1887 /* else leave those fields 0 like simple_statfs */
1892 * File creation. Allocate an inode, and we're done..
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1897 struct inode *inode;
1898 int error = -ENOSPC;
1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1902 error = security_inode_init_security(inode, dir,
1904 shmem_initxattrs, NULL);
1906 if (error != -EOPNOTSUPP) {
1911 #ifdef CONFIG_TMPFS_POSIX_ACL
1912 error = generic_acl_init(inode, dir);
1920 dir->i_size += BOGO_DIRENT_SIZE;
1921 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 d_instantiate(dentry, inode);
1923 dget(dentry); /* Extra count - pin the dentry in core */
1928 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1932 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1938 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1939 struct nameidata *nd)
1941 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1947 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1949 struct inode *inode = old_dentry->d_inode;
1953 * No ordinary (disk based) filesystem counts links as inodes;
1954 * but each new link needs a new dentry, pinning lowmem, and
1955 * tmpfs dentries cannot be pruned until they are unlinked.
1957 ret = shmem_reserve_inode(inode->i_sb);
1961 dir->i_size += BOGO_DIRENT_SIZE;
1962 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1964 ihold(inode); /* New dentry reference */
1965 dget(dentry); /* Extra pinning count for the created dentry */
1966 d_instantiate(dentry, inode);
1971 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1973 struct inode *inode = dentry->d_inode;
1975 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1976 shmem_free_inode(inode->i_sb);
1978 dir->i_size -= BOGO_DIRENT_SIZE;
1979 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1981 dput(dentry); /* Undo the count from "create" - this does all the work */
1985 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1987 if (!simple_empty(dentry))
1990 drop_nlink(dentry->d_inode);
1992 return shmem_unlink(dir, dentry);
1996 * The VFS layer already does all the dentry stuff for rename,
1997 * we just have to decrement the usage count for the target if
1998 * it exists so that the VFS layer correctly free's it when it
2001 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2003 struct inode *inode = old_dentry->d_inode;
2004 int they_are_dirs = S_ISDIR(inode->i_mode);
2006 if (!simple_empty(new_dentry))
2009 if (new_dentry->d_inode) {
2010 (void) shmem_unlink(new_dir, new_dentry);
2012 drop_nlink(old_dir);
2013 } else if (they_are_dirs) {
2014 drop_nlink(old_dir);
2018 old_dir->i_size -= BOGO_DIRENT_SIZE;
2019 new_dir->i_size += BOGO_DIRENT_SIZE;
2020 old_dir->i_ctime = old_dir->i_mtime =
2021 new_dir->i_ctime = new_dir->i_mtime =
2022 inode->i_ctime = CURRENT_TIME;
2026 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2030 struct inode *inode;
2033 struct shmem_inode_info *info;
2035 len = strlen(symname) + 1;
2036 if (len > PAGE_CACHE_SIZE)
2037 return -ENAMETOOLONG;
2039 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2043 error = security_inode_init_security(inode, dir, &dentry->d_name,
2044 shmem_initxattrs, NULL);
2046 if (error != -EOPNOTSUPP) {
2053 info = SHMEM_I(inode);
2054 inode->i_size = len-1;
2055 if (len <= SHORT_SYMLINK_LEN) {
2056 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2057 if (!info->symlink) {
2061 inode->i_op = &shmem_short_symlink_operations;
2063 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2068 inode->i_mapping->a_ops = &shmem_aops;
2069 inode->i_op = &shmem_symlink_inode_operations;
2070 kaddr = kmap_atomic(page);
2071 memcpy(kaddr, symname, len);
2072 kunmap_atomic(kaddr);
2073 SetPageUptodate(page);
2074 set_page_dirty(page);
2076 page_cache_release(page);
2078 dir->i_size += BOGO_DIRENT_SIZE;
2079 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2080 d_instantiate(dentry, inode);
2085 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2087 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2091 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2093 struct page *page = NULL;
2094 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2095 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2101 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2103 if (!IS_ERR(nd_get_link(nd))) {
2104 struct page *page = cookie;
2106 mark_page_accessed(page);
2107 page_cache_release(page);
2111 #ifdef CONFIG_TMPFS_XATTR
2113 * Superblocks without xattr inode operations may get some security.* xattr
2114 * support from the LSM "for free". As soon as we have any other xattrs
2115 * like ACLs, we also need to implement the security.* handlers at
2116 * filesystem level, though.
2120 * Allocate new xattr and copy in the value; but leave the name to callers.
2122 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2124 struct shmem_xattr *new_xattr;
2128 len = sizeof(*new_xattr) + size;
2129 if (len <= sizeof(*new_xattr))
2132 new_xattr = kmalloc(len, GFP_KERNEL);
2136 new_xattr->size = size;
2137 memcpy(new_xattr->value, value, size);
2142 * Callback for security_inode_init_security() for acquiring xattrs.
2144 static int shmem_initxattrs(struct inode *inode,
2145 const struct xattr *xattr_array,
2148 struct shmem_inode_info *info = SHMEM_I(inode);
2149 const struct xattr *xattr;
2150 struct shmem_xattr *new_xattr;
2153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2154 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2158 len = strlen(xattr->name) + 1;
2159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2161 if (!new_xattr->name) {
2166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2167 XATTR_SECURITY_PREFIX_LEN);
2168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2171 spin_lock(&info->lock);
2172 list_add(&new_xattr->list, &info->xattr_list);
2173 spin_unlock(&info->lock);
2179 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2180 void *buffer, size_t size)
2182 struct shmem_inode_info *info;
2183 struct shmem_xattr *xattr;
2186 info = SHMEM_I(dentry->d_inode);
2188 spin_lock(&info->lock);
2189 list_for_each_entry(xattr, &info->xattr_list, list) {
2190 if (strcmp(name, xattr->name))
2195 if (size < xattr->size)
2198 memcpy(buffer, xattr->value, xattr->size);
2202 spin_unlock(&info->lock);
2206 static int shmem_xattr_set(struct inode *inode, const char *name,
2207 const void *value, size_t size, int flags)
2209 struct shmem_inode_info *info = SHMEM_I(inode);
2210 struct shmem_xattr *xattr;
2211 struct shmem_xattr *new_xattr = NULL;
2214 /* value == NULL means remove */
2216 new_xattr = shmem_xattr_alloc(value, size);
2220 new_xattr->name = kstrdup(name, GFP_KERNEL);
2221 if (!new_xattr->name) {
2227 spin_lock(&info->lock);
2228 list_for_each_entry(xattr, &info->xattr_list, list) {
2229 if (!strcmp(name, xattr->name)) {
2230 if (flags & XATTR_CREATE) {
2233 } else if (new_xattr) {
2234 list_replace(&xattr->list, &new_xattr->list);
2236 list_del(&xattr->list);
2241 if (flags & XATTR_REPLACE) {
2245 list_add(&new_xattr->list, &info->xattr_list);
2249 spin_unlock(&info->lock);
2256 static const struct xattr_handler *shmem_xattr_handlers[] = {
2257 #ifdef CONFIG_TMPFS_POSIX_ACL
2258 &generic_acl_access_handler,
2259 &generic_acl_default_handler,
2264 static int shmem_xattr_validate(const char *name)
2266 struct { const char *prefix; size_t len; } arr[] = {
2267 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2268 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2272 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2273 size_t preflen = arr[i].len;
2274 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2283 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2284 void *buffer, size_t size)
2289 * If this is a request for a synthetic attribute in the system.*
2290 * namespace use the generic infrastructure to resolve a handler
2291 * for it via sb->s_xattr.
2293 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2294 return generic_getxattr(dentry, name, buffer, size);
2296 err = shmem_xattr_validate(name);
2300 return shmem_xattr_get(dentry, name, buffer, size);
2303 static int shmem_setxattr(struct dentry *dentry, const char *name,
2304 const void *value, size_t size, int flags)
2309 * If this is a request for a synthetic attribute in the system.*
2310 * namespace use the generic infrastructure to resolve a handler
2311 * for it via sb->s_xattr.
2313 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2314 return generic_setxattr(dentry, name, value, size, flags);
2316 err = shmem_xattr_validate(name);
2321 value = ""; /* empty EA, do not remove */
2323 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2327 static int shmem_removexattr(struct dentry *dentry, const char *name)
2332 * If this is a request for a synthetic attribute in the system.*
2333 * namespace use the generic infrastructure to resolve a handler
2334 * for it via sb->s_xattr.
2336 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2337 return generic_removexattr(dentry, name);
2339 err = shmem_xattr_validate(name);
2343 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2346 static bool xattr_is_trusted(const char *name)
2348 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2353 bool trusted = capable(CAP_SYS_ADMIN);
2354 struct shmem_xattr *xattr;
2355 struct shmem_inode_info *info;
2358 info = SHMEM_I(dentry->d_inode);
2360 spin_lock(&info->lock);
2361 list_for_each_entry(xattr, &info->xattr_list, list) {
2364 /* skip "trusted." attributes for unprivileged callers */
2365 if (!trusted && xattr_is_trusted(xattr->name))
2368 len = strlen(xattr->name) + 1;
2375 memcpy(buffer, xattr->name, len);
2379 spin_unlock(&info->lock);
2383 #endif /* CONFIG_TMPFS_XATTR */
2385 static const struct inode_operations shmem_short_symlink_operations = {
2386 .readlink = generic_readlink,
2387 .follow_link = shmem_follow_short_symlink,
2388 #ifdef CONFIG_TMPFS_XATTR
2389 .setxattr = shmem_setxattr,
2390 .getxattr = shmem_getxattr,
2391 .listxattr = shmem_listxattr,
2392 .removexattr = shmem_removexattr,
2396 static const struct inode_operations shmem_symlink_inode_operations = {
2397 .readlink = generic_readlink,
2398 .follow_link = shmem_follow_link,
2399 .put_link = shmem_put_link,
2400 #ifdef CONFIG_TMPFS_XATTR
2401 .setxattr = shmem_setxattr,
2402 .getxattr = shmem_getxattr,
2403 .listxattr = shmem_listxattr,
2404 .removexattr = shmem_removexattr,
2408 static struct dentry *shmem_get_parent(struct dentry *child)
2410 return ERR_PTR(-ESTALE);
2413 static int shmem_match(struct inode *ino, void *vfh)
2417 inum = (inum << 32) | fh[1];
2418 return ino->i_ino == inum && fh[0] == ino->i_generation;
2421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2422 struct fid *fid, int fh_len, int fh_type)
2424 struct inode *inode;
2425 struct dentry *dentry = NULL;
2426 u64 inum = fid->raw[2];
2427 inum = (inum << 32) | fid->raw[1];
2432 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2433 shmem_match, fid->raw);
2435 dentry = d_find_alias(inode);
2442 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2443 struct inode *parent)
2450 if (inode_unhashed(inode)) {
2451 /* Unfortunately insert_inode_hash is not idempotent,
2452 * so as we hash inodes here rather than at creation
2453 * time, we need a lock to ensure we only try
2456 static DEFINE_SPINLOCK(lock);
2458 if (inode_unhashed(inode))
2459 __insert_inode_hash(inode,
2460 inode->i_ino + inode->i_generation);
2464 fh[0] = inode->i_generation;
2465 fh[1] = inode->i_ino;
2466 fh[2] = ((__u64)inode->i_ino) >> 32;
2472 static const struct export_operations shmem_export_ops = {
2473 .get_parent = shmem_get_parent,
2474 .encode_fh = shmem_encode_fh,
2475 .fh_to_dentry = shmem_fh_to_dentry,
2478 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2481 char *this_char, *value, *rest;
2485 while (options != NULL) {
2486 this_char = options;
2489 * NUL-terminate this option: unfortunately,
2490 * mount options form a comma-separated list,
2491 * but mpol's nodelist may also contain commas.
2493 options = strchr(options, ',');
2494 if (options == NULL)
2497 if (!isdigit(*options)) {
2504 if ((value = strchr(this_char,'=')) != NULL) {
2508 "tmpfs: No value for mount option '%s'\n",
2513 if (!strcmp(this_char,"size")) {
2514 unsigned long long size;
2515 size = memparse(value,&rest);
2517 size <<= PAGE_SHIFT;
2518 size *= totalram_pages;
2524 sbinfo->max_blocks =
2525 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2526 } else if (!strcmp(this_char,"nr_blocks")) {
2527 sbinfo->max_blocks = memparse(value, &rest);
2530 } else if (!strcmp(this_char,"nr_inodes")) {
2531 sbinfo->max_inodes = memparse(value, &rest);
2534 } else if (!strcmp(this_char,"mode")) {
2537 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2540 } else if (!strcmp(this_char,"uid")) {
2543 uid = simple_strtoul(value, &rest, 0);
2546 sbinfo->uid = make_kuid(current_user_ns(), uid);
2547 if (!uid_valid(sbinfo->uid))
2549 } else if (!strcmp(this_char,"gid")) {
2552 gid = simple_strtoul(value, &rest, 0);
2555 sbinfo->gid = make_kgid(current_user_ns(), gid);
2556 if (!gid_valid(sbinfo->gid))
2558 } else if (!strcmp(this_char,"mpol")) {
2559 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2562 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2570 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2576 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2578 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2579 struct shmem_sb_info config = *sbinfo;
2580 unsigned long inodes;
2581 int error = -EINVAL;
2583 if (shmem_parse_options(data, &config, true))
2586 spin_lock(&sbinfo->stat_lock);
2587 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2588 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2590 if (config.max_inodes < inodes)
2593 * Those tests disallow limited->unlimited while any are in use;
2594 * but we must separately disallow unlimited->limited, because
2595 * in that case we have no record of how much is already in use.
2597 if (config.max_blocks && !sbinfo->max_blocks)
2599 if (config.max_inodes && !sbinfo->max_inodes)
2603 sbinfo->max_blocks = config.max_blocks;
2604 sbinfo->max_inodes = config.max_inodes;
2605 sbinfo->free_inodes = config.max_inodes - inodes;
2607 mpol_put(sbinfo->mpol);
2608 sbinfo->mpol = config.mpol; /* transfers initial ref */
2610 spin_unlock(&sbinfo->stat_lock);
2614 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2616 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2618 if (sbinfo->max_blocks != shmem_default_max_blocks())
2619 seq_printf(seq, ",size=%luk",
2620 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2621 if (sbinfo->max_inodes != shmem_default_max_inodes())
2622 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2623 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2624 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2625 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2626 seq_printf(seq, ",uid=%u",
2627 from_kuid_munged(&init_user_ns, sbinfo->uid));
2628 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2629 seq_printf(seq, ",gid=%u",
2630 from_kgid_munged(&init_user_ns, sbinfo->gid));
2631 shmem_show_mpol(seq, sbinfo->mpol);
2634 #endif /* CONFIG_TMPFS */
2636 static void shmem_put_super(struct super_block *sb)
2638 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2640 percpu_counter_destroy(&sbinfo->used_blocks);
2642 sb->s_fs_info = NULL;
2645 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2647 struct inode *inode;
2648 struct shmem_sb_info *sbinfo;
2651 /* Round up to L1_CACHE_BYTES to resist false sharing */
2652 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2653 L1_CACHE_BYTES), GFP_KERNEL);
2657 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2658 sbinfo->uid = current_fsuid();
2659 sbinfo->gid = current_fsgid();
2660 sb->s_fs_info = sbinfo;
2664 * Per default we only allow half of the physical ram per
2665 * tmpfs instance, limiting inodes to one per page of lowmem;
2666 * but the internal instance is left unlimited.
2668 if (!(sb->s_flags & MS_NOUSER)) {
2669 sbinfo->max_blocks = shmem_default_max_blocks();
2670 sbinfo->max_inodes = shmem_default_max_inodes();
2671 if (shmem_parse_options(data, sbinfo, false)) {
2676 sb->s_export_op = &shmem_export_ops;
2677 sb->s_flags |= MS_NOSEC;
2679 sb->s_flags |= MS_NOUSER;
2682 spin_lock_init(&sbinfo->stat_lock);
2683 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2685 sbinfo->free_inodes = sbinfo->max_inodes;
2687 sb->s_maxbytes = MAX_LFS_FILESIZE;
2688 sb->s_blocksize = PAGE_CACHE_SIZE;
2689 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2690 sb->s_magic = TMPFS_MAGIC;
2691 sb->s_op = &shmem_ops;
2692 sb->s_time_gran = 1;
2693 #ifdef CONFIG_TMPFS_XATTR
2694 sb->s_xattr = shmem_xattr_handlers;
2696 #ifdef CONFIG_TMPFS_POSIX_ACL
2697 sb->s_flags |= MS_POSIXACL;
2700 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2703 inode->i_uid = sbinfo->uid;
2704 inode->i_gid = sbinfo->gid;
2705 sb->s_root = d_make_root(inode);
2711 shmem_put_super(sb);
2715 static struct kmem_cache *shmem_inode_cachep;
2717 static struct inode *shmem_alloc_inode(struct super_block *sb)
2719 struct shmem_inode_info *info;
2720 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2723 return &info->vfs_inode;
2726 static void shmem_destroy_callback(struct rcu_head *head)
2728 struct inode *inode = container_of(head, struct inode, i_rcu);
2729 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2732 static void shmem_destroy_inode(struct inode *inode)
2734 if (S_ISREG(inode->i_mode))
2735 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2736 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2739 static void shmem_init_inode(void *foo)
2741 struct shmem_inode_info *info = foo;
2742 inode_init_once(&info->vfs_inode);
2745 static int shmem_init_inodecache(void)
2747 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2748 sizeof(struct shmem_inode_info),
2749 0, SLAB_PANIC, shmem_init_inode);
2753 static void shmem_destroy_inodecache(void)
2755 kmem_cache_destroy(shmem_inode_cachep);
2758 static const struct address_space_operations shmem_aops = {
2759 .writepage = shmem_writepage,
2760 .set_page_dirty = __set_page_dirty_no_writeback,
2762 .write_begin = shmem_write_begin,
2763 .write_end = shmem_write_end,
2765 .migratepage = migrate_page,
2766 .error_remove_page = generic_error_remove_page,
2769 static const struct file_operations shmem_file_operations = {
2772 .llseek = shmem_file_llseek,
2773 .read = do_sync_read,
2774 .write = do_sync_write,
2775 .aio_read = shmem_file_aio_read,
2776 .aio_write = generic_file_aio_write,
2777 .fsync = noop_fsync,
2778 .splice_read = shmem_file_splice_read,
2779 .splice_write = generic_file_splice_write,
2780 .fallocate = shmem_fallocate,
2784 static const struct inode_operations shmem_inode_operations = {
2785 .setattr = shmem_setattr,
2786 #ifdef CONFIG_TMPFS_XATTR
2787 .setxattr = shmem_setxattr,
2788 .getxattr = shmem_getxattr,
2789 .listxattr = shmem_listxattr,
2790 .removexattr = shmem_removexattr,
2794 static const struct inode_operations shmem_dir_inode_operations = {
2796 .create = shmem_create,
2797 .lookup = simple_lookup,
2799 .unlink = shmem_unlink,
2800 .symlink = shmem_symlink,
2801 .mkdir = shmem_mkdir,
2802 .rmdir = shmem_rmdir,
2803 .mknod = shmem_mknod,
2804 .rename = shmem_rename,
2806 #ifdef CONFIG_TMPFS_XATTR
2807 .setxattr = shmem_setxattr,
2808 .getxattr = shmem_getxattr,
2809 .listxattr = shmem_listxattr,
2810 .removexattr = shmem_removexattr,
2812 #ifdef CONFIG_TMPFS_POSIX_ACL
2813 .setattr = shmem_setattr,
2817 static const struct inode_operations shmem_special_inode_operations = {
2818 #ifdef CONFIG_TMPFS_XATTR
2819 .setxattr = shmem_setxattr,
2820 .getxattr = shmem_getxattr,
2821 .listxattr = shmem_listxattr,
2822 .removexattr = shmem_removexattr,
2824 #ifdef CONFIG_TMPFS_POSIX_ACL
2825 .setattr = shmem_setattr,
2829 static const struct super_operations shmem_ops = {
2830 .alloc_inode = shmem_alloc_inode,
2831 .destroy_inode = shmem_destroy_inode,
2833 .statfs = shmem_statfs,
2834 .remount_fs = shmem_remount_fs,
2835 .show_options = shmem_show_options,
2837 .evict_inode = shmem_evict_inode,
2838 .drop_inode = generic_delete_inode,
2839 .put_super = shmem_put_super,
2842 static const struct vm_operations_struct shmem_vm_ops = {
2843 .fault = shmem_fault,
2845 .set_policy = shmem_set_policy,
2846 .get_policy = shmem_get_policy,
2850 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2851 int flags, const char *dev_name, void *data)
2853 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2856 static struct file_system_type shmem_fs_type = {
2857 .owner = THIS_MODULE,
2859 .mount = shmem_mount,
2860 .kill_sb = kill_litter_super,
2863 int __init shmem_init(void)
2867 error = bdi_init(&shmem_backing_dev_info);
2871 error = shmem_init_inodecache();
2875 error = register_filesystem(&shmem_fs_type);
2877 printk(KERN_ERR "Could not register tmpfs\n");
2881 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2882 shmem_fs_type.name, NULL);
2883 if (IS_ERR(shm_mnt)) {
2884 error = PTR_ERR(shm_mnt);
2885 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2891 unregister_filesystem(&shmem_fs_type);
2893 shmem_destroy_inodecache();
2895 bdi_destroy(&shmem_backing_dev_info);
2897 shm_mnt = ERR_PTR(error);
2901 #else /* !CONFIG_SHMEM */
2904 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2906 * This is intended for small system where the benefits of the full
2907 * shmem code (swap-backed and resource-limited) are outweighed by
2908 * their complexity. On systems without swap this code should be
2909 * effectively equivalent, but much lighter weight.
2912 #include <linux/ramfs.h>
2914 static struct file_system_type shmem_fs_type = {
2916 .mount = ramfs_mount,
2917 .kill_sb = kill_litter_super,
2920 int __init shmem_init(void)
2922 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2924 shm_mnt = kern_mount(&shmem_fs_type);
2925 BUG_ON(IS_ERR(shm_mnt));
2930 int shmem_unuse(swp_entry_t swap, struct page *page)
2935 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2940 void shmem_unlock_mapping(struct address_space *mapping)
2944 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2946 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2948 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2950 #define shmem_vm_ops generic_file_vm_ops
2951 #define shmem_file_operations ramfs_file_operations
2952 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2953 #define shmem_acct_size(flags, size) 0
2954 #define shmem_unacct_size(flags, size) do {} while (0)
2956 #endif /* CONFIG_SHMEM */
2961 * shmem_file_setup - get an unlinked file living in tmpfs
2962 * @name: name for dentry (to be seen in /proc/<pid>/maps
2963 * @size: size to be set for the file
2964 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2966 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2970 struct inode *inode;
2972 struct dentry *root;
2975 if (IS_ERR(shm_mnt))
2976 return (void *)shm_mnt;
2978 if (size < 0 || size > MAX_LFS_FILESIZE)
2979 return ERR_PTR(-EINVAL);
2981 if (shmem_acct_size(flags, size))
2982 return ERR_PTR(-ENOMEM);
2986 this.len = strlen(name);
2987 this.hash = 0; /* will go */
2988 root = shm_mnt->mnt_root;
2989 path.dentry = d_alloc(root, &this);
2992 path.mnt = mntget(shm_mnt);
2995 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2999 d_instantiate(path.dentry, inode);
3000 inode->i_size = size;
3001 clear_nlink(inode); /* It is unlinked */
3003 error = ramfs_nommu_expand_for_mapping(inode, size);
3009 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3010 &shmem_file_operations);
3019 shmem_unacct_size(flags, size);
3020 return ERR_PTR(error);
3022 EXPORT_SYMBOL_GPL(shmem_file_setup);
3025 * shmem_zero_setup - setup a shared anonymous mapping
3026 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3028 int shmem_zero_setup(struct vm_area_struct *vma)
3031 loff_t size = vma->vm_end - vma->vm_start;
3033 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3035 return PTR_ERR(file);
3039 vma->vm_file = file;
3040 vma->vm_ops = &shmem_vm_ops;
3041 vma->vm_flags |= VM_CAN_NONLINEAR;
3046 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3047 * @mapping: the page's address_space
3048 * @index: the page index
3049 * @gfp: the page allocator flags to use if allocating
3051 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3052 * with any new page allocations done using the specified allocation flags.
3053 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3054 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3055 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3057 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3058 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3060 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3061 pgoff_t index, gfp_t gfp)
3064 struct inode *inode = mapping->host;
3068 BUG_ON(mapping->a_ops != &shmem_aops);
3069 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3071 page = ERR_PTR(error);
3077 * The tiny !SHMEM case uses ramfs without swap
3079 return read_cache_page_gfp(mapping, index, gfp);
3082 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);