Initial commit
[kernel/linux-3.0.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN     VM_READ
94 #define SHMEM_TRUNCATE   VM_WRITE
95
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT    64
98
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101
102 struct shmem_xattr {
103         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
104         char *name;             /* xattr name */
105         size_t size;
106         char value[0];
107 };
108
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111         SGP_READ,       /* don't exceed i_size, don't allocate page */
112         SGP_CACHE,      /* don't exceed i_size, may allocate page */
113         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
114         SGP_WRITE,      /* may exceed i_size, may allocate page */
115 };
116
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
119 {
120         return totalram_pages / 2;
121 }
122
123 static unsigned long shmem_default_max_inodes(void)
124 {
125         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126 }
127 #endif
128
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130                          struct page **pagep, enum sgp_type sgp, int *type);
131
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133 {
134         /*
135          * The above definition of ENTRIES_PER_PAGE, and the use of
136          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137          * might be reconsidered if it ever diverges from PAGE_SIZE.
138          *
139          * Mobility flags are masked out as swap vectors cannot move
140          */
141         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 }
144
145 static inline void shmem_dir_free(struct page *page)
146 {
147         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148 }
149
150 static struct page **shmem_dir_map(struct page *page)
151 {
152         return (struct page **)kmap_atomic(page, KM_USER0);
153 }
154
155 static inline void shmem_dir_unmap(struct page **dir)
156 {
157         kunmap_atomic(dir, KM_USER0);
158 }
159
160 static swp_entry_t *shmem_swp_map(struct page *page)
161 {
162         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163 }
164
165 static inline void shmem_swp_balance_unmap(void)
166 {
167         /*
168          * When passing a pointer to an i_direct entry, to code which
169          * also handles indirect entries and so will shmem_swp_unmap,
170          * we must arrange for the preempt count to remain in balance.
171          * What kmap_atomic of a lowmem page does depends on config
172          * and architecture, so pretend to kmap_atomic some lowmem page.
173          */
174         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175 }
176
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
178 {
179         kunmap_atomic(entry, KM_USER1);
180 }
181
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183 {
184         return sb->s_fs_info;
185 }
186
187 /*
188  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189  * for shared memory and for shared anonymous (/dev/zero) mappings
190  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191  * consistent with the pre-accounting of private mappings ...
192  */
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
194 {
195         return (flags & VM_NORESERVE) ?
196                 0 : security_vm_enough_memory_kern(VM_ACCT(size));
197 }
198
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200 {
201         if (!(flags & VM_NORESERVE))
202                 vm_unacct_memory(VM_ACCT(size));
203 }
204
205 /*
206  * ... whereas tmpfs objects are accounted incrementally as
207  * pages are allocated, in order to allow huge sparse files.
208  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210  */
211 static inline int shmem_acct_block(unsigned long flags)
212 {
213         return (flags & VM_NORESERVE) ?
214                 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215 }
216
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219         if (flags & VM_NORESERVE)
220                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221 }
222
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
230
231 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232         .ra_pages       = 0,    /* No readahead */
233         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234 };
235
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
238
239 static void shmem_free_blocks(struct inode *inode, long pages)
240 {
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242         if (sbinfo->max_blocks) {
243                 percpu_counter_add(&sbinfo->used_blocks, -pages);
244                 spin_lock(&inode->i_lock);
245                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246                 spin_unlock(&inode->i_lock);
247         }
248 }
249
250 static int shmem_reserve_inode(struct super_block *sb)
251 {
252         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253         if (sbinfo->max_inodes) {
254                 spin_lock(&sbinfo->stat_lock);
255                 if (!sbinfo->free_inodes) {
256                         spin_unlock(&sbinfo->stat_lock);
257                         return -ENOSPC;
258                 }
259                 sbinfo->free_inodes--;
260                 spin_unlock(&sbinfo->stat_lock);
261         }
262         return 0;
263 }
264
265 static void shmem_free_inode(struct super_block *sb)
266 {
267         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268         if (sbinfo->max_inodes) {
269                 spin_lock(&sbinfo->stat_lock);
270                 sbinfo->free_inodes++;
271                 spin_unlock(&sbinfo->stat_lock);
272         }
273 }
274
275 /**
276  * shmem_recalc_inode - recalculate the size of an inode
277  * @inode: inode to recalc
278  *
279  * We have to calculate the free blocks since the mm can drop
280  * undirtied hole pages behind our back.
281  *
282  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
283  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284  *
285  * It has to be called with the spinlock held.
286  */
287 static void shmem_recalc_inode(struct inode *inode)
288 {
289         struct shmem_inode_info *info = SHMEM_I(inode);
290         long freed;
291
292         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293         if (freed > 0) {
294                 info->alloced -= freed;
295                 shmem_unacct_blocks(info->flags, freed);
296                 shmem_free_blocks(inode, freed);
297         }
298 }
299
300 /**
301  * shmem_swp_entry - find the swap vector position in the info structure
302  * @info:  info structure for the inode
303  * @index: index of the page to find
304  * @page:  optional page to add to the structure. Has to be preset to
305  *         all zeros
306  *
307  * If there is no space allocated yet it will return NULL when
308  * page is NULL, else it will use the page for the needed block,
309  * setting it to NULL on return to indicate that it has been used.
310  *
311  * The swap vector is organized the following way:
312  *
313  * There are SHMEM_NR_DIRECT entries directly stored in the
314  * shmem_inode_info structure. So small files do not need an addional
315  * allocation.
316  *
317  * For pages with index > SHMEM_NR_DIRECT there is the pointer
318  * i_indirect which points to a page which holds in the first half
319  * doubly indirect blocks, in the second half triple indirect blocks:
320  *
321  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322  * following layout (for SHMEM_NR_DIRECT == 16):
323  *
324  * i_indirect -> dir --> 16-19
325  *            |      +-> 20-23
326  *            |
327  *            +-->dir2 --> 24-27
328  *            |        +-> 28-31
329  *            |        +-> 32-35
330  *            |        +-> 36-39
331  *            |
332  *            +-->dir3 --> 40-43
333  *                     +-> 44-47
334  *                     +-> 48-51
335  *                     +-> 52-55
336  */
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338 {
339         unsigned long offset;
340         struct page **dir;
341         struct page *subdir;
342
343         if (index < SHMEM_NR_DIRECT) {
344                 shmem_swp_balance_unmap();
345                 return info->i_direct+index;
346         }
347         if (!info->i_indirect) {
348                 if (page) {
349                         info->i_indirect = *page;
350                         *page = NULL;
351                 }
352                 return NULL;                    /* need another page */
353         }
354
355         index -= SHMEM_NR_DIRECT;
356         offset = index % ENTRIES_PER_PAGE;
357         index /= ENTRIES_PER_PAGE;
358         dir = shmem_dir_map(info->i_indirect);
359
360         if (index >= ENTRIES_PER_PAGE/2) {
361                 index -= ENTRIES_PER_PAGE/2;
362                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363                 index %= ENTRIES_PER_PAGE;
364                 subdir = *dir;
365                 if (!subdir) {
366                         if (page) {
367                                 *dir = *page;
368                                 *page = NULL;
369                         }
370                         shmem_dir_unmap(dir);
371                         return NULL;            /* need another page */
372                 }
373                 shmem_dir_unmap(dir);
374                 dir = shmem_dir_map(subdir);
375         }
376
377         dir += index;
378         subdir = *dir;
379         if (!subdir) {
380                 if (!page || !(subdir = *page)) {
381                         shmem_dir_unmap(dir);
382                         return NULL;            /* need a page */
383                 }
384                 *dir = subdir;
385                 *page = NULL;
386         }
387         shmem_dir_unmap(dir);
388         return shmem_swp_map(subdir) + offset;
389 }
390
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392 {
393         long incdec = value? 1: -1;
394
395         entry->val = value;
396         info->swapped += incdec;
397         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398                 struct page *page = kmap_atomic_to_page(entry);
399                 set_page_private(page, page_private(page) + incdec);
400         }
401 }
402
403 /**
404  * shmem_swp_alloc - get the position of the swap entry for the page.
405  * @info:       info structure for the inode
406  * @index:      index of the page to find
407  * @sgp:        check and recheck i_size? skip allocation?
408  *
409  * If the entry does not exist, allocate it.
410  */
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412 {
413         struct inode *inode = &info->vfs_inode;
414         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415         struct page *page = NULL;
416         swp_entry_t *entry;
417
418         if (sgp != SGP_WRITE &&
419             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420                 return ERR_PTR(-EINVAL);
421
422         while (!(entry = shmem_swp_entry(info, index, &page))) {
423                 if (sgp == SGP_READ)
424                         return shmem_swp_map(ZERO_PAGE(0));
425                 /*
426                  * Test used_blocks against 1 less max_blocks, since we have 1 data
427                  * page (and perhaps indirect index pages) yet to allocate:
428                  * a waste to allocate index if we cannot allocate data.
429                  */
430                 if (sbinfo->max_blocks) {
431                         if (percpu_counter_compare(&sbinfo->used_blocks,
432                                                 sbinfo->max_blocks - 1) >= 0)
433                                 return ERR_PTR(-ENOSPC);
434                         percpu_counter_inc(&sbinfo->used_blocks);
435                         spin_lock(&inode->i_lock);
436                         inode->i_blocks += BLOCKS_PER_PAGE;
437                         spin_unlock(&inode->i_lock);
438                 }
439
440                 spin_unlock(&info->lock);
441                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442                 spin_lock(&info->lock);
443
444                 if (!page) {
445                         shmem_free_blocks(inode, 1);
446                         return ERR_PTR(-ENOMEM);
447                 }
448                 if (sgp != SGP_WRITE &&
449                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450                         entry = ERR_PTR(-EINVAL);
451                         break;
452                 }
453                 if (info->next_index <= index)
454                         info->next_index = index + 1;
455         }
456         if (page) {
457                 /* another task gave its page, or truncated the file */
458                 shmem_free_blocks(inode, 1);
459                 shmem_dir_free(page);
460         }
461         if (info->next_index <= index && !IS_ERR(entry))
462                 info->next_index = index + 1;
463         return entry;
464 }
465
466 /**
467  * shmem_free_swp - free some swap entries in a directory
468  * @dir:        pointer to the directory
469  * @edir:       pointer after last entry of the directory
470  * @punch_lock: pointer to spinlock when needed for the holepunch case
471  */
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473                                                 spinlock_t *punch_lock)
474 {
475         spinlock_t *punch_unlock = NULL;
476         swp_entry_t *ptr;
477         int freed = 0;
478
479         for (ptr = dir; ptr < edir; ptr++) {
480                 if (ptr->val) {
481                         if (unlikely(punch_lock)) {
482                                 punch_unlock = punch_lock;
483                                 punch_lock = NULL;
484                                 spin_lock(punch_unlock);
485                                 if (!ptr->val)
486                                         continue;
487                         }
488                         free_swap_and_cache(*ptr);
489                         *ptr = (swp_entry_t){0};
490                         freed++;
491                 }
492         }
493         if (punch_unlock)
494                 spin_unlock(punch_unlock);
495         return freed;
496 }
497
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499                 int limit, struct page ***dir, spinlock_t *punch_lock)
500 {
501         swp_entry_t *ptr;
502         int freed = 0;
503
504         ptr = shmem_swp_map(subdir);
505         for (; offset < limit; offset += LATENCY_LIMIT) {
506                 int size = limit - offset;
507                 if (size > LATENCY_LIMIT)
508                         size = LATENCY_LIMIT;
509                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510                                                         punch_lock);
511                 if (need_resched()) {
512                         shmem_swp_unmap(ptr);
513                         if (*dir) {
514                                 shmem_dir_unmap(*dir);
515                                 *dir = NULL;
516                         }
517                         cond_resched();
518                         ptr = shmem_swp_map(subdir);
519                 }
520         }
521         shmem_swp_unmap(ptr);
522         return freed;
523 }
524
525 static void shmem_free_pages(struct list_head *next)
526 {
527         struct page *page;
528         int freed = 0;
529
530         do {
531                 page = container_of(next, struct page, lru);
532                 next = next->next;
533                 shmem_dir_free(page);
534                 freed++;
535                 if (freed >= LATENCY_LIMIT) {
536                         cond_resched();
537                         freed = 0;
538                 }
539         } while (next);
540 }
541
542 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
543 {
544         struct shmem_inode_info *info = SHMEM_I(inode);
545         unsigned long idx;
546         unsigned long size;
547         unsigned long limit;
548         unsigned long stage;
549         unsigned long diroff;
550         struct page **dir;
551         struct page *topdir;
552         struct page *middir;
553         struct page *subdir;
554         swp_entry_t *ptr;
555         LIST_HEAD(pages_to_free);
556         long nr_pages_to_free = 0;
557         long nr_swaps_freed = 0;
558         int offset;
559         int freed;
560         int punch_hole;
561         spinlock_t *needs_lock;
562         spinlock_t *punch_lock;
563         unsigned long upper_limit;
564
565         truncate_inode_pages_range(inode->i_mapping, start, end);
566
567         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
568         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
569         if (idx >= info->next_index)
570                 return;
571
572         spin_lock(&info->lock);
573         info->flags |= SHMEM_TRUNCATE;
574         if (likely(end == (loff_t) -1)) {
575                 limit = info->next_index;
576                 upper_limit = SHMEM_MAX_INDEX;
577                 info->next_index = idx;
578                 needs_lock = NULL;
579                 punch_hole = 0;
580         } else {
581                 if (end + 1 >= inode->i_size) { /* we may free a little more */
582                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583                                                         PAGE_CACHE_SHIFT;
584                         upper_limit = SHMEM_MAX_INDEX;
585                 } else {
586                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
587                         upper_limit = limit;
588                 }
589                 needs_lock = &info->lock;
590                 punch_hole = 1;
591         }
592
593         topdir = info->i_indirect;
594         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
595                 info->i_indirect = NULL;
596                 nr_pages_to_free++;
597                 list_add(&topdir->lru, &pages_to_free);
598         }
599         spin_unlock(&info->lock);
600
601         if (info->swapped && idx < SHMEM_NR_DIRECT) {
602                 ptr = info->i_direct;
603                 size = limit;
604                 if (size > SHMEM_NR_DIRECT)
605                         size = SHMEM_NR_DIRECT;
606                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
607         }
608
609         /*
610          * If there are no indirect blocks or we are punching a hole
611          * below indirect blocks, nothing to be done.
612          */
613         if (!topdir || limit <= SHMEM_NR_DIRECT)
614                 goto done2;
615
616         /*
617          * The truncation case has already dropped info->lock, and we're safe
618          * because i_size and next_index have already been lowered, preventing
619          * access beyond.  But in the punch_hole case, we still need to take
620          * the lock when updating the swap directory, because there might be
621          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622          * shmem_writepage.  However, whenever we find we can remove a whole
623          * directory page (not at the misaligned start or end of the range),
624          * we first NULLify its pointer in the level above, and then have no
625          * need to take the lock when updating its contents: needs_lock and
626          * punch_lock (either pointing to info->lock or NULL) manage this.
627          */
628
629         upper_limit -= SHMEM_NR_DIRECT;
630         limit -= SHMEM_NR_DIRECT;
631         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632         offset = idx % ENTRIES_PER_PAGE;
633         idx -= offset;
634
635         dir = shmem_dir_map(topdir);
636         stage = ENTRIES_PER_PAGEPAGE/2;
637         if (idx < ENTRIES_PER_PAGEPAGE/2) {
638                 middir = topdir;
639                 diroff = idx/ENTRIES_PER_PAGE;
640         } else {
641                 dir += ENTRIES_PER_PAGE/2;
642                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643                 while (stage <= idx)
644                         stage += ENTRIES_PER_PAGEPAGE;
645                 middir = *dir;
646                 if (*dir) {
647                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
649                         if (!diroff && !offset && upper_limit >= stage) {
650                                 if (needs_lock) {
651                                         spin_lock(needs_lock);
652                                         *dir = NULL;
653                                         spin_unlock(needs_lock);
654                                         needs_lock = NULL;
655                                 } else
656                                         *dir = NULL;
657                                 nr_pages_to_free++;
658                                 list_add(&middir->lru, &pages_to_free);
659                         }
660                         shmem_dir_unmap(dir);
661                         dir = shmem_dir_map(middir);
662                 } else {
663                         diroff = 0;
664                         offset = 0;
665                         idx = stage;
666                 }
667         }
668
669         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670                 if (unlikely(idx == stage)) {
671                         shmem_dir_unmap(dir);
672                         dir = shmem_dir_map(topdir) +
673                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674                         while (!*dir) {
675                                 dir++;
676                                 idx += ENTRIES_PER_PAGEPAGE;
677                                 if (idx >= limit)
678                                         goto done1;
679                         }
680                         stage = idx + ENTRIES_PER_PAGEPAGE;
681                         middir = *dir;
682                         if (punch_hole)
683                                 needs_lock = &info->lock;
684                         if (upper_limit >= stage) {
685                                 if (needs_lock) {
686                                         spin_lock(needs_lock);
687                                         *dir = NULL;
688                                         spin_unlock(needs_lock);
689                                         needs_lock = NULL;
690                                 } else
691                                         *dir = NULL;
692                                 nr_pages_to_free++;
693                                 list_add(&middir->lru, &pages_to_free);
694                         }
695                         shmem_dir_unmap(dir);
696                         cond_resched();
697                         dir = shmem_dir_map(middir);
698                         diroff = 0;
699                 }
700                 punch_lock = needs_lock;
701                 subdir = dir[diroff];
702                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703                         if (needs_lock) {
704                                 spin_lock(needs_lock);
705                                 dir[diroff] = NULL;
706                                 spin_unlock(needs_lock);
707                                 punch_lock = NULL;
708                         } else
709                                 dir[diroff] = NULL;
710                         nr_pages_to_free++;
711                         list_add(&subdir->lru, &pages_to_free);
712                 }
713                 if (subdir && page_private(subdir) /* has swap entries */) {
714                         size = limit - idx;
715                         if (size > ENTRIES_PER_PAGE)
716                                 size = ENTRIES_PER_PAGE;
717                         freed = shmem_map_and_free_swp(subdir,
718                                         offset, size, &dir, punch_lock);
719                         if (!dir)
720                                 dir = shmem_dir_map(middir);
721                         nr_swaps_freed += freed;
722                         if (offset || punch_lock) {
723                                 spin_lock(&info->lock);
724                                 set_page_private(subdir,
725                                         page_private(subdir) - freed);
726                                 spin_unlock(&info->lock);
727                         } else
728                                 BUG_ON(page_private(subdir) != freed);
729                 }
730                 offset = 0;
731         }
732 done1:
733         shmem_dir_unmap(dir);
734 done2:
735         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
736                 /*
737                  * Call truncate_inode_pages again: racing shmem_unuse_inode
738                  * may have swizzled a page in from swap since
739                  * truncate_pagecache or generic_delete_inode did it, before we
740                  * lowered next_index.  Also, though shmem_getpage checks
741                  * i_size before adding to cache, no recheck after: so fix the
742                  * narrow window there too.
743                  */
744                 truncate_inode_pages_range(inode->i_mapping, start, end);
745         }
746
747         spin_lock(&info->lock);
748         info->flags &= ~SHMEM_TRUNCATE;
749         info->swapped -= nr_swaps_freed;
750         if (nr_pages_to_free)
751                 shmem_free_blocks(inode, nr_pages_to_free);
752         shmem_recalc_inode(inode);
753         spin_unlock(&info->lock);
754
755         /*
756          * Empty swap vector directory pages to be freed?
757          */
758         if (!list_empty(&pages_to_free)) {
759                 pages_to_free.prev->next = NULL;
760                 shmem_free_pages(pages_to_free.next);
761         }
762 }
763 EXPORT_SYMBOL_GPL(shmem_truncate_range);
764
765 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
766 {
767         struct inode *inode = dentry->d_inode;
768         int error;
769
770         error = inode_change_ok(inode, attr);
771         if (error)
772                 return error;
773
774         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775                 loff_t oldsize = inode->i_size;
776                 loff_t newsize = attr->ia_size;
777                 struct page *page = NULL;
778
779                 if (newsize < oldsize) {
780                         /*
781                          * If truncating down to a partial page, then
782                          * if that page is already allocated, hold it
783                          * in memory until the truncation is over, so
784                          * truncate_partial_page cannot miss it were
785                          * it assigned to swap.
786                          */
787                         if (newsize & (PAGE_CACHE_SIZE-1)) {
788                                 (void) shmem_getpage(inode,
789                                         newsize >> PAGE_CACHE_SHIFT,
790                                                 &page, SGP_READ, NULL);
791                                 if (page)
792                                         unlock_page(page);
793                         }
794                         /*
795                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796                          * detect if any pages might have been added to cache
797                          * after truncate_inode_pages.  But we needn't bother
798                          * if it's being fully truncated to zero-length: the
799                          * nrpages check is efficient enough in that case.
800                          */
801                         if (newsize) {
802                                 struct shmem_inode_info *info = SHMEM_I(inode);
803                                 spin_lock(&info->lock);
804                                 info->flags &= ~SHMEM_PAGEIN;
805                                 spin_unlock(&info->lock);
806                         }
807                 }
808                 if (newsize != oldsize) {
809                         i_size_write(inode, newsize);
810                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
811                 }
812                 if (newsize < oldsize) {
813                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
814                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815                         shmem_truncate_range(inode, newsize, (loff_t)-1);
816                         /* unmap again to remove racily COWed private pages */
817                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
818                 }
819                 if (page)
820                         page_cache_release(page);
821         }
822
823         setattr_copy(inode, attr);
824 #ifdef CONFIG_TMPFS_POSIX_ACL
825         if (attr->ia_valid & ATTR_MODE)
826                 error = generic_acl_chmod(inode);
827 #endif
828         return error;
829 }
830
831 static void shmem_evict_inode(struct inode *inode)
832 {
833         struct shmem_inode_info *info = SHMEM_I(inode);
834         struct shmem_xattr *xattr, *nxattr;
835
836         if (inode->i_mapping->a_ops == &shmem_aops) {
837                 shmem_unacct_size(info->flags, inode->i_size);
838                 inode->i_size = 0;
839                 shmem_truncate_range(inode, 0, (loff_t)-1);
840                 if (!list_empty(&info->swaplist)) {
841                         mutex_lock(&shmem_swaplist_mutex);
842                         list_del_init(&info->swaplist);
843                         mutex_unlock(&shmem_swaplist_mutex);
844                 }
845         }
846
847         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848                 kfree(xattr->name);
849                 kfree(xattr);
850         }
851         BUG_ON(inode->i_blocks);
852         shmem_free_inode(inode->i_sb);
853         end_writeback(inode);
854 }
855
856 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857 {
858         swp_entry_t *ptr;
859
860         for (ptr = dir; ptr < edir; ptr++) {
861                 if (ptr->val == entry.val)
862                         return ptr - dir;
863         }
864         return -1;
865 }
866
867 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868 {
869         struct address_space *mapping;
870         unsigned long idx;
871         unsigned long size;
872         unsigned long limit;
873         unsigned long stage;
874         struct page **dir;
875         struct page *subdir;
876         swp_entry_t *ptr;
877         int offset;
878         int error;
879
880         idx = 0;
881         ptr = info->i_direct;
882         spin_lock(&info->lock);
883         if (!info->swapped) {
884                 list_del_init(&info->swaplist);
885                 goto lost2;
886         }
887         limit = info->next_index;
888         size = limit;
889         if (size > SHMEM_NR_DIRECT)
890                 size = SHMEM_NR_DIRECT;
891         offset = shmem_find_swp(entry, ptr, ptr+size);
892         if (offset >= 0) {
893                 shmem_swp_balance_unmap();
894                 goto found;
895         }
896         if (!info->i_indirect)
897                 goto lost2;
898
899         dir = shmem_dir_map(info->i_indirect);
900         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901
902         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903                 if (unlikely(idx == stage)) {
904                         shmem_dir_unmap(dir-1);
905                         if (cond_resched_lock(&info->lock)) {
906                                 /* check it has not been truncated */
907                                 if (limit > info->next_index) {
908                                         limit = info->next_index;
909                                         if (idx >= limit)
910                                                 goto lost2;
911                                 }
912                         }
913                         dir = shmem_dir_map(info->i_indirect) +
914                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915                         while (!*dir) {
916                                 dir++;
917                                 idx += ENTRIES_PER_PAGEPAGE;
918                                 if (idx >= limit)
919                                         goto lost1;
920                         }
921                         stage = idx + ENTRIES_PER_PAGEPAGE;
922                         subdir = *dir;
923                         shmem_dir_unmap(dir);
924                         dir = shmem_dir_map(subdir);
925                 }
926                 subdir = *dir;
927                 if (subdir && page_private(subdir)) {
928                         ptr = shmem_swp_map(subdir);
929                         size = limit - idx;
930                         if (size > ENTRIES_PER_PAGE)
931                                 size = ENTRIES_PER_PAGE;
932                         offset = shmem_find_swp(entry, ptr, ptr+size);
933                         shmem_swp_unmap(ptr);
934                         if (offset >= 0) {
935                                 shmem_dir_unmap(dir);
936                                 ptr = shmem_swp_map(subdir);
937                                 goto found;
938                         }
939                 }
940         }
941 lost1:
942         shmem_dir_unmap(dir-1);
943 lost2:
944         spin_unlock(&info->lock);
945         return 0;
946 found:
947         idx += offset;
948         ptr += offset;
949
950         /*
951          * Move _head_ to start search for next from here.
952          * But be careful: shmem_evict_inode checks list_empty without taking
953          * mutex, and there's an instant in list_move_tail when info->swaplist
954          * would appear empty, if it were the only one on shmem_swaplist.  We
955          * could avoid doing it if inode NULL; or use this minor optimization.
956          */
957         if (shmem_swaplist.next != &info->swaplist)
958                 list_move_tail(&shmem_swaplist, &info->swaplist);
959
960         /*
961          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962          * but also to hold up shmem_evict_inode(): so inode cannot be freed
963          * beneath us (pagelock doesn't help until the page is in pagecache).
964          */
965         mapping = info->vfs_inode.i_mapping;
966         error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967         /* which does mem_cgroup_uncharge_cache_page on error */
968
969         if (error == -EEXIST) {
970                 struct page *filepage = find_get_page(mapping, idx);
971                 error = 1;
972                 if (filepage) {
973                         /*
974                          * There might be a more uptodate page coming down
975                          * from a stacked writepage: forget our swappage if so.
976                          */
977                         if (PageUptodate(filepage))
978                                 error = 0;
979                         page_cache_release(filepage);
980                 }
981         }
982         if (!error) {
983                 delete_from_swap_cache(page);
984                 set_page_dirty(page);
985                 info->flags |= SHMEM_PAGEIN;
986                 shmem_swp_set(info, ptr, 0);
987                 swap_free(entry);
988                 error = 1;      /* not an error, but entry was found */
989         }
990         shmem_swp_unmap(ptr);
991         spin_unlock(&info->lock);
992         return error;
993 }
994
995 /*
996  * shmem_unuse() search for an eventually swapped out shmem page.
997  */
998 int shmem_unuse(swp_entry_t entry, struct page *page)
999 {
1000         struct list_head *p, *next;
1001         struct shmem_inode_info *info;
1002         int found = 0;
1003         int error;
1004
1005         /*
1006          * Charge page using GFP_KERNEL while we can wait, before taking
1007          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008          * Charged back to the user (not to caller) when swap account is used.
1009          * add_to_page_cache() will be called with GFP_NOWAIT.
1010          */
1011         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012         if (error)
1013                 goto out;
1014         /*
1015          * Try to preload while we can wait, to not make a habit of
1016          * draining atomic reserves; but don't latch on to this cpu,
1017          * it's okay if sometimes we get rescheduled after this.
1018          */
1019         error = radix_tree_preload(GFP_KERNEL);
1020         if (error)
1021                 goto uncharge;
1022         radix_tree_preload_end();
1023
1024         mutex_lock(&shmem_swaplist_mutex);
1025         list_for_each_safe(p, next, &shmem_swaplist) {
1026                 info = list_entry(p, struct shmem_inode_info, swaplist);
1027                 found = shmem_unuse_inode(info, entry, page);
1028                 cond_resched();
1029                 if (found)
1030                         break;
1031         }
1032         mutex_unlock(&shmem_swaplist_mutex);
1033
1034 uncharge:
1035         if (!found)
1036                 mem_cgroup_uncharge_cache_page(page);
1037         if (found < 0)
1038                 error = found;
1039 out:
1040         unlock_page(page);
1041         page_cache_release(page);
1042         return error;
1043 }
1044
1045 /*
1046  * Move the page from the page cache to the swap cache.
1047  */
1048 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049 {
1050         struct shmem_inode_info *info;
1051         swp_entry_t *entry, swap;
1052         struct address_space *mapping;
1053         unsigned long index;
1054         struct inode *inode;
1055
1056         BUG_ON(!PageLocked(page));
1057         mapping = page->mapping;
1058         index = page->index;
1059         inode = mapping->host;
1060         info = SHMEM_I(inode);
1061         if (info->flags & VM_LOCKED)
1062                 goto redirty;
1063 #ifdef CONFIG_ZRAM_FOR_ANDROID
1064         /*
1065          * Modification for compcache
1066          * shmem_writepage can be reason of kernel panic when using swap.
1067          * This modification prevent using swap by shmem.
1068          */
1069         goto redirty;
1070 #else
1071         if (!total_swap_pages)
1072                 goto redirty;
1073 #endif
1074
1075         /*
1076          * shmem_backing_dev_info's capabilities prevent regular writeback or
1077          * sync from ever calling shmem_writepage; but a stacking filesystem
1078          * may use the ->writepage of its underlying filesystem, in which case
1079          * tmpfs should write out to swap only in response to memory pressure,
1080          * and not for the writeback threads or sync.  However, in those cases,
1081          * we do still want to check if there's a redundant swappage to be
1082          * discarded.
1083          */
1084         if (wbc->for_reclaim)
1085                 swap = get_swap_page();
1086         else
1087                 swap.val = 0;
1088
1089         /*
1090          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1091          * if it's not already there.  Do it now because we cannot take
1092          * mutex while holding spinlock, and must do so before the page
1093          * is moved to swap cache, when its pagelock no longer protects
1094          * the inode from eviction.  But don't unlock the mutex until
1095          * we've taken the spinlock, because shmem_unuse_inode() will
1096          * prune a !swapped inode from the swaplist under both locks.
1097          */
1098         if (swap.val) {
1099                 mutex_lock(&shmem_swaplist_mutex);
1100                 if (list_empty(&info->swaplist))
1101                         list_add_tail(&info->swaplist, &shmem_swaplist);
1102         }
1103
1104         spin_lock(&info->lock);
1105         if (swap.val)
1106                 mutex_unlock(&shmem_swaplist_mutex);
1107
1108         if (index >= info->next_index) {
1109                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1110                 goto unlock;
1111         }
1112         entry = shmem_swp_entry(info, index, NULL);
1113         if (entry->val) {
1114                 /*
1115                  * The more uptodate page coming down from a stacked
1116                  * writepage should replace our old swappage.
1117                  */
1118                 free_swap_and_cache(*entry);
1119                 shmem_swp_set(info, entry, 0);
1120         }
1121         shmem_recalc_inode(inode);
1122
1123         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1124                 delete_from_page_cache(page);
1125                 shmem_swp_set(info, entry, swap.val);
1126                 shmem_swp_unmap(entry);
1127                 swap_shmem_alloc(swap);
1128                 spin_unlock(&info->lock);
1129                 BUG_ON(page_mapped(page));
1130                 swap_writepage(page, wbc);
1131                 return 0;
1132         }
1133
1134         shmem_swp_unmap(entry);
1135 unlock:
1136         spin_unlock(&info->lock);
1137         /*
1138          * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1139          * clear SWAP_HAS_CACHE flag.
1140          */
1141         swapcache_free(swap, NULL);
1142 redirty:
1143         set_page_dirty(page);
1144         if (wbc->for_reclaim)
1145                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1146         unlock_page(page);
1147         return 0;
1148 }
1149
1150 #ifdef CONFIG_NUMA
1151 #ifdef CONFIG_TMPFS
1152 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1153 {
1154         char buffer[64];
1155
1156         if (!mpol || mpol->mode == MPOL_DEFAULT)
1157                 return;         /* show nothing */
1158
1159         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1160
1161         seq_printf(seq, ",mpol=%s", buffer);
1162 }
1163
1164 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1165 {
1166         struct mempolicy *mpol = NULL;
1167         if (sbinfo->mpol) {
1168                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1169                 mpol = sbinfo->mpol;
1170                 mpol_get(mpol);
1171                 spin_unlock(&sbinfo->stat_lock);
1172         }
1173         return mpol;
1174 }
1175 #endif /* CONFIG_TMPFS */
1176
1177 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1178                         struct shmem_inode_info *info, unsigned long idx)
1179 {
1180         struct mempolicy mpol, *spol;
1181         struct vm_area_struct pvma;
1182         struct page *page;
1183
1184         spol = mpol_cond_copy(&mpol,
1185                                 mpol_shared_policy_lookup(&info->policy, idx));
1186
1187         /* Create a pseudo vma that just contains the policy */
1188         pvma.vm_start = 0;
1189         pvma.vm_pgoff = idx;
1190         pvma.vm_ops = NULL;
1191         pvma.vm_policy = spol;
1192         page = swapin_readahead(entry, gfp, &pvma, 0);
1193         return page;
1194 }
1195
1196 static struct page *shmem_alloc_page(gfp_t gfp,
1197                         struct shmem_inode_info *info, unsigned long idx)
1198 {
1199         struct vm_area_struct pvma;
1200
1201         /* Create a pseudo vma that just contains the policy */
1202         pvma.vm_start = 0;
1203         pvma.vm_pgoff = idx;
1204         pvma.vm_ops = NULL;
1205         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1206
1207         /*
1208          * alloc_page_vma() will drop the shared policy reference
1209          */
1210         return alloc_page_vma(gfp, &pvma, 0);
1211 }
1212 #else /* !CONFIG_NUMA */
1213 #ifdef CONFIG_TMPFS
1214 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1215 {
1216 }
1217 #endif /* CONFIG_TMPFS */
1218
1219 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1220                         struct shmem_inode_info *info, unsigned long idx)
1221 {
1222         return swapin_readahead(entry, gfp, NULL, 0);
1223 }
1224
1225 static inline struct page *shmem_alloc_page(gfp_t gfp,
1226                         struct shmem_inode_info *info, unsigned long idx)
1227 {
1228         return alloc_page(gfp);
1229 }
1230 #endif /* CONFIG_NUMA */
1231
1232 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1233 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1234 {
1235         return NULL;
1236 }
1237 #endif
1238
1239 /*
1240  * shmem_getpage - either get the page from swap or allocate a new one
1241  *
1242  * If we allocate a new one we do not mark it dirty. That's up to the
1243  * vm. If we swap it in we mark it dirty since we also free the swap
1244  * entry since a page cannot live in both the swap and page cache
1245  */
1246 static int shmem_getpage(struct inode *inode, unsigned long idx,
1247                         struct page **pagep, enum sgp_type sgp, int *type)
1248 {
1249         struct address_space *mapping = inode->i_mapping;
1250         struct shmem_inode_info *info = SHMEM_I(inode);
1251         struct shmem_sb_info *sbinfo;
1252         struct page *filepage = *pagep;
1253         struct page *swappage;
1254         struct page *prealloc_page = NULL;
1255         swp_entry_t *entry;
1256         swp_entry_t swap;
1257         gfp_t gfp;
1258         int error;
1259
1260         if (idx >= SHMEM_MAX_INDEX)
1261                 return -EFBIG;
1262
1263         if (type)
1264                 *type = 0;
1265
1266         /*
1267          * Normally, filepage is NULL on entry, and either found
1268          * uptodate immediately, or allocated and zeroed, or read
1269          * in under swappage, which is then assigned to filepage.
1270          * But shmem_readpage (required for splice) passes in a locked
1271          * filepage, which may be found not uptodate by other callers
1272          * too, and may need to be copied from the swappage read in.
1273          */
1274 repeat:
1275         if (!filepage)
1276                 filepage = find_lock_page(mapping, idx);
1277         if (filepage && PageUptodate(filepage))
1278                 goto done;
1279         gfp = mapping_gfp_mask(mapping);
1280         if (!filepage) {
1281                 /*
1282                  * Try to preload while we can wait, to not make a habit of
1283                  * draining atomic reserves; but don't latch on to this cpu.
1284                  */
1285                 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1286                 if (error)
1287                         goto failed;
1288                 radix_tree_preload_end();
1289                 if (sgp != SGP_READ && !prealloc_page) {
1290                         /* We don't care if this fails */
1291                         prealloc_page = shmem_alloc_page(gfp, info, idx);
1292                         if (prealloc_page) {
1293                                 if (mem_cgroup_cache_charge(prealloc_page,
1294                                                 current->mm, GFP_KERNEL)) {
1295                                         page_cache_release(prealloc_page);
1296                                         prealloc_page = NULL;
1297                                 }
1298                         }
1299                 }
1300         }
1301         error = 0;
1302
1303         spin_lock(&info->lock);
1304         shmem_recalc_inode(inode);
1305         entry = shmem_swp_alloc(info, idx, sgp);
1306         if (IS_ERR(entry)) {
1307                 spin_unlock(&info->lock);
1308                 error = PTR_ERR(entry);
1309                 goto failed;
1310         }
1311         swap = *entry;
1312
1313         if (swap.val) {
1314                 /* Look it up and read it in.. */
1315                 swappage = lookup_swap_cache(swap);
1316                 if (!swappage) {
1317                         shmem_swp_unmap(entry);
1318                         spin_unlock(&info->lock);
1319                         /* here we actually do the io */
1320                         if (type)
1321                                 *type |= VM_FAULT_MAJOR;
1322                         swappage = shmem_swapin(swap, gfp, info, idx);
1323                         if (!swappage) {
1324                                 spin_lock(&info->lock);
1325                                 entry = shmem_swp_alloc(info, idx, sgp);
1326                                 if (IS_ERR(entry))
1327                                         error = PTR_ERR(entry);
1328                                 else {
1329                                         if (entry->val == swap.val)
1330                                                 error = -ENOMEM;
1331                                         shmem_swp_unmap(entry);
1332                                 }
1333                                 spin_unlock(&info->lock);
1334                                 if (error)
1335                                         goto failed;
1336                                 goto repeat;
1337                         }
1338                         wait_on_page_locked(swappage);
1339                         page_cache_release(swappage);
1340                         goto repeat;
1341                 }
1342
1343                 /* We have to do this with page locked to prevent races */
1344                 if (!trylock_page(swappage)) {
1345                         shmem_swp_unmap(entry);
1346                         spin_unlock(&info->lock);
1347                         wait_on_page_locked(swappage);
1348                         page_cache_release(swappage);
1349                         goto repeat;
1350                 }
1351                 if (PageWriteback(swappage)) {
1352                         shmem_swp_unmap(entry);
1353                         spin_unlock(&info->lock);
1354                         wait_on_page_writeback(swappage);
1355                         unlock_page(swappage);
1356                         page_cache_release(swappage);
1357                         goto repeat;
1358                 }
1359                 if (!PageUptodate(swappage)) {
1360                         shmem_swp_unmap(entry);
1361                         spin_unlock(&info->lock);
1362                         unlock_page(swappage);
1363                         page_cache_release(swappage);
1364                         error = -EIO;
1365                         goto failed;
1366                 }
1367
1368                 if (filepage) {
1369                         shmem_swp_set(info, entry, 0);
1370                         shmem_swp_unmap(entry);
1371                         delete_from_swap_cache(swappage);
1372                         spin_unlock(&info->lock);
1373                         copy_highpage(filepage, swappage);
1374                         unlock_page(swappage);
1375                         page_cache_release(swappage);
1376                         flush_dcache_page(filepage);
1377                         SetPageUptodate(filepage);
1378                         set_page_dirty(filepage);
1379                         swap_free(swap);
1380                 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1381                                         idx, GFP_NOWAIT))) {
1382                         info->flags |= SHMEM_PAGEIN;
1383                         shmem_swp_set(info, entry, 0);
1384                         shmem_swp_unmap(entry);
1385                         delete_from_swap_cache(swappage);
1386                         spin_unlock(&info->lock);
1387                         filepage = swappage;
1388                         set_page_dirty(filepage);
1389                         swap_free(swap);
1390                 } else {
1391                         shmem_swp_unmap(entry);
1392                         spin_unlock(&info->lock);
1393                         if (error == -ENOMEM) {
1394                                 /*
1395                                  * reclaim from proper memory cgroup and
1396                                  * call memcg's OOM if needed.
1397                                  */
1398                                 error = mem_cgroup_shmem_charge_fallback(
1399                                                                 swappage,
1400                                                                 current->mm,
1401                                                                 gfp);
1402                                 if (error) {
1403                                         unlock_page(swappage);
1404                                         page_cache_release(swappage);
1405                                         goto failed;
1406                                 }
1407                         }
1408                         unlock_page(swappage);
1409                         page_cache_release(swappage);
1410                         goto repeat;
1411                 }
1412         } else if (sgp == SGP_READ && !filepage) {
1413                 shmem_swp_unmap(entry);
1414                 filepage = find_get_page(mapping, idx);
1415                 if (filepage &&
1416                     (!PageUptodate(filepage) || !trylock_page(filepage))) {
1417                         spin_unlock(&info->lock);
1418                         wait_on_page_locked(filepage);
1419                         page_cache_release(filepage);
1420                         filepage = NULL;
1421                         goto repeat;
1422                 }
1423                 spin_unlock(&info->lock);
1424         } else {
1425                 shmem_swp_unmap(entry);
1426                 sbinfo = SHMEM_SB(inode->i_sb);
1427                 if (sbinfo->max_blocks) {
1428                         if (percpu_counter_compare(&sbinfo->used_blocks,
1429                                                 sbinfo->max_blocks) >= 0 ||
1430                             shmem_acct_block(info->flags))
1431                                 goto nospace;
1432                         percpu_counter_inc(&sbinfo->used_blocks);
1433                         spin_lock(&inode->i_lock);
1434                         inode->i_blocks += BLOCKS_PER_PAGE;
1435                         spin_unlock(&inode->i_lock);
1436                 } else if (shmem_acct_block(info->flags))
1437                         goto nospace;
1438
1439                 if (!filepage) {
1440                         int ret;
1441
1442                         if (!prealloc_page) {
1443                                 spin_unlock(&info->lock);
1444                                 filepage = shmem_alloc_page(gfp, info, idx);
1445                                 if (!filepage) {
1446                                         shmem_unacct_blocks(info->flags, 1);
1447                                         shmem_free_blocks(inode, 1);
1448                                         error = -ENOMEM;
1449                                         goto failed;
1450                                 }
1451                                 SetPageSwapBacked(filepage);
1452
1453                                 /*
1454                                  * Precharge page while we can wait, compensate
1455                                  * after
1456                                  */
1457                                 error = mem_cgroup_cache_charge(filepage,
1458                                         current->mm, GFP_KERNEL);
1459                                 if (error) {
1460                                         page_cache_release(filepage);
1461                                         shmem_unacct_blocks(info->flags, 1);
1462                                         shmem_free_blocks(inode, 1);
1463                                         filepage = NULL;
1464                                         goto failed;
1465                                 }
1466
1467                                 spin_lock(&info->lock);
1468                         } else {
1469                                 filepage = prealloc_page;
1470                                 prealloc_page = NULL;
1471                                 SetPageSwapBacked(filepage);
1472                         }
1473
1474                         entry = shmem_swp_alloc(info, idx, sgp);
1475                         if (IS_ERR(entry))
1476                                 error = PTR_ERR(entry);
1477                         else {
1478                                 swap = *entry;
1479                                 shmem_swp_unmap(entry);
1480                         }
1481                         ret = error || swap.val;
1482                         if (ret)
1483                                 mem_cgroup_uncharge_cache_page(filepage);
1484                         else
1485                                 ret = add_to_page_cache_lru(filepage, mapping,
1486                                                 idx, GFP_NOWAIT);
1487                         /*
1488                          * At add_to_page_cache_lru() failure, uncharge will
1489                          * be done automatically.
1490                          */
1491                         if (ret) {
1492                                 spin_unlock(&info->lock);
1493                                 page_cache_release(filepage);
1494                                 shmem_unacct_blocks(info->flags, 1);
1495                                 shmem_free_blocks(inode, 1);
1496                                 filepage = NULL;
1497                                 if (error)
1498                                         goto failed;
1499                                 goto repeat;
1500                         }
1501                         info->flags |= SHMEM_PAGEIN;
1502                 }
1503
1504                 info->alloced++;
1505                 spin_unlock(&info->lock);
1506                 clear_highpage(filepage);
1507                 flush_dcache_page(filepage);
1508                 SetPageUptodate(filepage);
1509                 if (sgp == SGP_DIRTY)
1510                         set_page_dirty(filepage);
1511         }
1512 done:
1513         *pagep = filepage;
1514         error = 0;
1515         goto out;
1516
1517 nospace:
1518         /*
1519          * Perhaps the page was brought in from swap between find_lock_page
1520          * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1521          * but must also avoid reporting a spurious ENOSPC while working on a
1522          * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1523          * is already in page cache, which prevents this race from occurring.)
1524          */
1525         if (!filepage) {
1526                 struct page *page = find_get_page(mapping, idx);
1527                 if (page) {
1528                         spin_unlock(&info->lock);
1529                         page_cache_release(page);
1530                         goto repeat;
1531                 }
1532         }
1533         spin_unlock(&info->lock);
1534         error = -ENOSPC;
1535 failed:
1536         if (*pagep != filepage) {
1537                 unlock_page(filepage);
1538                 page_cache_release(filepage);
1539         }
1540 out:
1541         if (prealloc_page) {
1542                 mem_cgroup_uncharge_cache_page(prealloc_page);
1543                 page_cache_release(prealloc_page);
1544         }
1545         return error;
1546 }
1547
1548 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1549 {
1550         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1551         int error;
1552         int ret;
1553
1554         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1555                 return VM_FAULT_SIGBUS;
1556
1557         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1558         if (error)
1559                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1560         if (ret & VM_FAULT_MAJOR) {
1561                 count_vm_event(PGMAJFAULT);
1562                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1563         }
1564         return ret | VM_FAULT_LOCKED;
1565 }
1566
1567 #ifdef CONFIG_NUMA
1568 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1569 {
1570         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1571         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1572 }
1573
1574 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1575                                           unsigned long addr)
1576 {
1577         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1578         unsigned long idx;
1579
1580         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1581         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1582 }
1583 #endif
1584
1585 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1586 {
1587         struct inode *inode = file->f_path.dentry->d_inode;
1588         struct shmem_inode_info *info = SHMEM_I(inode);
1589         int retval = -ENOMEM;
1590
1591         spin_lock(&info->lock);
1592         if (lock && !(info->flags & VM_LOCKED)) {
1593                 if (!user_shm_lock(inode->i_size, user))
1594                         goto out_nomem;
1595                 info->flags |= VM_LOCKED;
1596                 mapping_set_unevictable(file->f_mapping);
1597         }
1598         if (!lock && (info->flags & VM_LOCKED) && user) {
1599                 user_shm_unlock(inode->i_size, user);
1600                 info->flags &= ~VM_LOCKED;
1601                 mapping_clear_unevictable(file->f_mapping);
1602                 scan_mapping_unevictable_pages(file->f_mapping);
1603         }
1604         retval = 0;
1605
1606 out_nomem:
1607         spin_unlock(&info->lock);
1608         return retval;
1609 }
1610
1611 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1612 {
1613         file_accessed(file);
1614         vma->vm_ops = &shmem_vm_ops;
1615         vma->vm_flags |= VM_CAN_NONLINEAR;
1616         return 0;
1617 }
1618
1619 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1620                                      int mode, dev_t dev, unsigned long flags)
1621 {
1622         struct inode *inode;
1623         struct shmem_inode_info *info;
1624         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1625
1626         if (shmem_reserve_inode(sb))
1627                 return NULL;
1628
1629         inode = new_inode(sb);
1630         if (inode) {
1631                 inode->i_ino = get_next_ino();
1632                 inode_init_owner(inode, dir, mode);
1633                 inode->i_blocks = 0;
1634                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1635                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1636                 inode->i_generation = get_seconds();
1637                 info = SHMEM_I(inode);
1638                 memset(info, 0, (char *)inode - (char *)info);
1639                 spin_lock_init(&info->lock);
1640                 info->flags = flags & VM_NORESERVE;
1641                 INIT_LIST_HEAD(&info->swaplist);
1642                 INIT_LIST_HEAD(&info->xattr_list);
1643                 cache_no_acl(inode);
1644
1645                 switch (mode & S_IFMT) {
1646                 default:
1647                         inode->i_op = &shmem_special_inode_operations;
1648                         init_special_inode(inode, mode, dev);
1649                         break;
1650                 case S_IFREG:
1651                         inode->i_mapping->a_ops = &shmem_aops;
1652                         inode->i_op = &shmem_inode_operations;
1653                         inode->i_fop = &shmem_file_operations;
1654                         mpol_shared_policy_init(&info->policy,
1655                                                  shmem_get_sbmpol(sbinfo));
1656                         break;
1657                 case S_IFDIR:
1658                         inc_nlink(inode);
1659                         /* Some things misbehave if size == 0 on a directory */
1660                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1661                         inode->i_op = &shmem_dir_inode_operations;
1662                         inode->i_fop = &simple_dir_operations;
1663                         break;
1664                 case S_IFLNK:
1665                         /*
1666                          * Must not load anything in the rbtree,
1667                          * mpol_free_shared_policy will not be called.
1668                          */
1669                         mpol_shared_policy_init(&info->policy, NULL);
1670                         break;
1671                 }
1672         } else
1673                 shmem_free_inode(sb);
1674         return inode;
1675 }
1676
1677 #ifdef CONFIG_TMPFS
1678 static const struct inode_operations shmem_symlink_inode_operations;
1679 static const struct inode_operations shmem_symlink_inline_operations;
1680
1681 /*
1682  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1683  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1684  * below the loop driver, in the generic fashion that many filesystems support.
1685  */
1686 static int shmem_readpage(struct file *file, struct page *page)
1687 {
1688         struct inode *inode = page->mapping->host;
1689         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1690         unlock_page(page);
1691         return error;
1692 }
1693
1694 static int
1695 shmem_write_begin(struct file *file, struct address_space *mapping,
1696                         loff_t pos, unsigned len, unsigned flags,
1697                         struct page **pagep, void **fsdata)
1698 {
1699         struct inode *inode = mapping->host;
1700         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1701         *pagep = NULL;
1702         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1703 }
1704
1705 static int
1706 shmem_write_end(struct file *file, struct address_space *mapping,
1707                         loff_t pos, unsigned len, unsigned copied,
1708                         struct page *page, void *fsdata)
1709 {
1710         struct inode *inode = mapping->host;
1711
1712         if (pos + copied > inode->i_size)
1713                 i_size_write(inode, pos + copied);
1714
1715         set_page_dirty(page);
1716         unlock_page(page);
1717         page_cache_release(page);
1718
1719         return copied;
1720 }
1721
1722 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1723 {
1724         struct inode *inode = filp->f_path.dentry->d_inode;
1725         struct address_space *mapping = inode->i_mapping;
1726         unsigned long index, offset;
1727         enum sgp_type sgp = SGP_READ;
1728
1729         /*
1730          * Might this read be for a stacking filesystem?  Then when reading
1731          * holes of a sparse file, we actually need to allocate those pages,
1732          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1733          */
1734         if (segment_eq(get_fs(), KERNEL_DS))
1735                 sgp = SGP_DIRTY;
1736
1737         index = *ppos >> PAGE_CACHE_SHIFT;
1738         offset = *ppos & ~PAGE_CACHE_MASK;
1739
1740         for (;;) {
1741                 struct page *page = NULL;
1742                 unsigned long end_index, nr, ret;
1743                 loff_t i_size = i_size_read(inode);
1744
1745                 end_index = i_size >> PAGE_CACHE_SHIFT;
1746                 if (index > end_index)
1747                         break;
1748                 if (index == end_index) {
1749                         nr = i_size & ~PAGE_CACHE_MASK;
1750                         if (nr <= offset)
1751                                 break;
1752                 }
1753
1754                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1755                 if (desc->error) {
1756                         if (desc->error == -EINVAL)
1757                                 desc->error = 0;
1758                         break;
1759                 }
1760                 if (page)
1761                         unlock_page(page);
1762
1763                 /*
1764                  * We must evaluate after, since reads (unlike writes)
1765                  * are called without i_mutex protection against truncate
1766                  */
1767                 nr = PAGE_CACHE_SIZE;
1768                 i_size = i_size_read(inode);
1769                 end_index = i_size >> PAGE_CACHE_SHIFT;
1770                 if (index == end_index) {
1771                         nr = i_size & ~PAGE_CACHE_MASK;
1772                         if (nr <= offset) {
1773                                 if (page)
1774                                         page_cache_release(page);
1775                                 break;
1776                         }
1777                 }
1778                 nr -= offset;
1779
1780                 if (page) {
1781                         /*
1782                          * If users can be writing to this page using arbitrary
1783                          * virtual addresses, take care about potential aliasing
1784                          * before reading the page on the kernel side.
1785                          */
1786                         if (mapping_writably_mapped(mapping))
1787                                 flush_dcache_page(page);
1788                         /*
1789                          * Mark the page accessed if we read the beginning.
1790                          */
1791                         if (!offset)
1792                                 mark_page_accessed(page);
1793                 } else {
1794                         page = ZERO_PAGE(0);
1795                         page_cache_get(page);
1796                 }
1797
1798                 /*
1799                  * Ok, we have the page, and it's up-to-date, so
1800                  * now we can copy it to user space...
1801                  *
1802                  * The actor routine returns how many bytes were actually used..
1803                  * NOTE! This may not be the same as how much of a user buffer
1804                  * we filled up (we may be padding etc), so we can only update
1805                  * "pos" here (the actor routine has to update the user buffer
1806                  * pointers and the remaining count).
1807                  */
1808                 ret = actor(desc, page, offset, nr);
1809                 offset += ret;
1810                 index += offset >> PAGE_CACHE_SHIFT;
1811                 offset &= ~PAGE_CACHE_MASK;
1812
1813                 page_cache_release(page);
1814                 if (ret != nr || !desc->count)
1815                         break;
1816
1817                 cond_resched();
1818         }
1819
1820         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1821         file_accessed(filp);
1822 }
1823
1824 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1825                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1826 {
1827         struct file *filp = iocb->ki_filp;
1828         ssize_t retval;
1829         unsigned long seg;
1830         size_t count;
1831         loff_t *ppos = &iocb->ki_pos;
1832
1833         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1834         if (retval)
1835                 return retval;
1836
1837         for (seg = 0; seg < nr_segs; seg++) {
1838                 read_descriptor_t desc;
1839
1840                 desc.written = 0;
1841                 desc.arg.buf = iov[seg].iov_base;
1842                 desc.count = iov[seg].iov_len;
1843                 if (desc.count == 0)
1844                         continue;
1845                 desc.error = 0;
1846                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1847                 retval += desc.written;
1848                 if (desc.error) {
1849                         retval = retval ?: desc.error;
1850                         break;
1851                 }
1852                 if (desc.count > 0)
1853                         break;
1854         }
1855         return retval;
1856 }
1857
1858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1859 {
1860         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1861
1862         buf->f_type = TMPFS_MAGIC;
1863         buf->f_bsize = PAGE_CACHE_SIZE;
1864         buf->f_namelen = NAME_MAX;
1865         if (sbinfo->max_blocks) {
1866                 buf->f_blocks = sbinfo->max_blocks;
1867                 buf->f_bavail = buf->f_bfree =
1868                                 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1869         }
1870         if (sbinfo->max_inodes) {
1871                 buf->f_files = sbinfo->max_inodes;
1872                 buf->f_ffree = sbinfo->free_inodes;
1873         }
1874         /* else leave those fields 0 like simple_statfs */
1875         return 0;
1876 }
1877
1878 /*
1879  * File creation. Allocate an inode, and we're done..
1880  */
1881 static int
1882 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1883 {
1884         struct inode *inode;
1885         int error = -ENOSPC;
1886
1887         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1888         if (inode) {
1889                 error = security_inode_init_security(inode, dir,
1890                                                      &dentry->d_name, NULL,
1891                                                      NULL, NULL);
1892                 if (error) {
1893                         if (error != -EOPNOTSUPP) {
1894                                 iput(inode);
1895                                 return error;
1896                         }
1897                 }
1898 #ifdef CONFIG_TMPFS_POSIX_ACL
1899                 error = generic_acl_init(inode, dir);
1900                 if (error) {
1901                         iput(inode);
1902                         return error;
1903                 }
1904 #else
1905                 error = 0;
1906 #endif
1907                 dir->i_size += BOGO_DIRENT_SIZE;
1908                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1909                 d_instantiate(dentry, inode);
1910                 dget(dentry); /* Extra count - pin the dentry in core */
1911         }
1912         return error;
1913 }
1914
1915 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1916 {
1917         int error;
1918
1919         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1920                 return error;
1921         inc_nlink(dir);
1922         return 0;
1923 }
1924
1925 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1926                 struct nameidata *nd)
1927 {
1928         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1929 }
1930
1931 /*
1932  * Link a file..
1933  */
1934 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1935 {
1936         struct inode *inode = old_dentry->d_inode;
1937         int ret;
1938
1939         /*
1940          * No ordinary (disk based) filesystem counts links as inodes;
1941          * but each new link needs a new dentry, pinning lowmem, and
1942          * tmpfs dentries cannot be pruned until they are unlinked.
1943          */
1944         ret = shmem_reserve_inode(inode->i_sb);
1945         if (ret)
1946                 goto out;
1947
1948         dir->i_size += BOGO_DIRENT_SIZE;
1949         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1950         inc_nlink(inode);
1951         ihold(inode);   /* New dentry reference */
1952         dget(dentry);           /* Extra pinning count for the created dentry */
1953         d_instantiate(dentry, inode);
1954 out:
1955         return ret;
1956 }
1957
1958 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1959 {
1960         struct inode *inode = dentry->d_inode;
1961
1962         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1963                 shmem_free_inode(inode->i_sb);
1964
1965         dir->i_size -= BOGO_DIRENT_SIZE;
1966         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1967         drop_nlink(inode);
1968         dput(dentry);   /* Undo the count from "create" - this does all the work */
1969         return 0;
1970 }
1971
1972 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1973 {
1974         if (!simple_empty(dentry))
1975                 return -ENOTEMPTY;
1976
1977         drop_nlink(dentry->d_inode);
1978         drop_nlink(dir);
1979         return shmem_unlink(dir, dentry);
1980 }
1981
1982 /*
1983  * The VFS layer already does all the dentry stuff for rename,
1984  * we just have to decrement the usage count for the target if
1985  * it exists so that the VFS layer correctly free's it when it
1986  * gets overwritten.
1987  */
1988 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1989 {
1990         struct inode *inode = old_dentry->d_inode;
1991         int they_are_dirs = S_ISDIR(inode->i_mode);
1992
1993         if (!simple_empty(new_dentry))
1994                 return -ENOTEMPTY;
1995
1996         if (new_dentry->d_inode) {
1997                 (void) shmem_unlink(new_dir, new_dentry);
1998                 if (they_are_dirs)
1999                         drop_nlink(old_dir);
2000         } else if (they_are_dirs) {
2001                 drop_nlink(old_dir);
2002                 inc_nlink(new_dir);
2003         }
2004
2005         old_dir->i_size -= BOGO_DIRENT_SIZE;
2006         new_dir->i_size += BOGO_DIRENT_SIZE;
2007         old_dir->i_ctime = old_dir->i_mtime =
2008         new_dir->i_ctime = new_dir->i_mtime =
2009         inode->i_ctime = CURRENT_TIME;
2010         return 0;
2011 }
2012
2013 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2014 {
2015         int error;
2016         int len;
2017         struct inode *inode;
2018         struct page *page = NULL;
2019         char *kaddr;
2020         struct shmem_inode_info *info;
2021
2022         len = strlen(symname) + 1;
2023         if (len > PAGE_CACHE_SIZE)
2024                 return -ENAMETOOLONG;
2025
2026         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2027         if (!inode)
2028                 return -ENOSPC;
2029
2030         error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2031                                              NULL, NULL);
2032         if (error) {
2033                 if (error != -EOPNOTSUPP) {
2034                         iput(inode);
2035                         return error;
2036                 }
2037                 error = 0;
2038         }
2039
2040         info = SHMEM_I(inode);
2041         inode->i_size = len-1;
2042         if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2043                 /* do it inline */
2044                 memcpy(info->inline_symlink, symname, len);
2045                 inode->i_op = &shmem_symlink_inline_operations;
2046         } else {
2047                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2048                 if (error) {
2049                         iput(inode);
2050                         return error;
2051                 }
2052                 inode->i_mapping->a_ops = &shmem_aops;
2053                 inode->i_op = &shmem_symlink_inode_operations;
2054                 kaddr = kmap_atomic(page, KM_USER0);
2055                 memcpy(kaddr, symname, len);
2056                 kunmap_atomic(kaddr, KM_USER0);
2057                 set_page_dirty(page);
2058                 unlock_page(page);
2059                 page_cache_release(page);
2060         }
2061         dir->i_size += BOGO_DIRENT_SIZE;
2062         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2063         d_instantiate(dentry, inode);
2064         dget(dentry);
2065         return 0;
2066 }
2067
2068 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2069 {
2070         nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2071         return NULL;
2072 }
2073
2074 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2075 {
2076         struct page *page = NULL;
2077         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2078         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2079         if (page)
2080                 unlock_page(page);
2081         return page;
2082 }
2083
2084 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2085 {
2086         if (!IS_ERR(nd_get_link(nd))) {
2087                 struct page *page = cookie;
2088                 kunmap(page);
2089                 mark_page_accessed(page);
2090                 page_cache_release(page);
2091         }
2092 }
2093
2094 #ifdef CONFIG_TMPFS_XATTR
2095 /*
2096  * Superblocks without xattr inode operations may get some security.* xattr
2097  * support from the LSM "for free". As soon as we have any other xattrs
2098  * like ACLs, we also need to implement the security.* handlers at
2099  * filesystem level, though.
2100  */
2101
2102 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2103                            void *buffer, size_t size)
2104 {
2105         struct shmem_inode_info *info;
2106         struct shmem_xattr *xattr;
2107         int ret = -ENODATA;
2108
2109         info = SHMEM_I(dentry->d_inode);
2110
2111         spin_lock(&info->lock);
2112         list_for_each_entry(xattr, &info->xattr_list, list) {
2113                 if (strcmp(name, xattr->name))
2114                         continue;
2115
2116                 ret = xattr->size;
2117                 if (buffer) {
2118                         if (size < xattr->size)
2119                                 ret = -ERANGE;
2120                         else
2121                                 memcpy(buffer, xattr->value, xattr->size);
2122                 }
2123                 break;
2124         }
2125         spin_unlock(&info->lock);
2126         return ret;
2127 }
2128
2129 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2130                            const void *value, size_t size, int flags)
2131 {
2132         struct inode *inode = dentry->d_inode;
2133         struct shmem_inode_info *info = SHMEM_I(inode);
2134         struct shmem_xattr *xattr;
2135         struct shmem_xattr *new_xattr = NULL;
2136         size_t len;
2137         int err = 0;
2138
2139         /* value == NULL means remove */
2140         if (value) {
2141                 /* wrap around? */
2142                 len = sizeof(*new_xattr) + size;
2143                 if (len <= sizeof(*new_xattr))
2144                         return -ENOMEM;
2145
2146                 new_xattr = kmalloc(len, GFP_KERNEL);
2147                 if (!new_xattr)
2148                         return -ENOMEM;
2149
2150                 new_xattr->name = kstrdup(name, GFP_KERNEL);
2151                 if (!new_xattr->name) {
2152                         kfree(new_xattr);
2153                         return -ENOMEM;
2154                 }
2155
2156                 new_xattr->size = size;
2157                 memcpy(new_xattr->value, value, size);
2158         }
2159
2160         spin_lock(&info->lock);
2161         list_for_each_entry(xattr, &info->xattr_list, list) {
2162                 if (!strcmp(name, xattr->name)) {
2163                         if (flags & XATTR_CREATE) {
2164                                 xattr = new_xattr;
2165                                 err = -EEXIST;
2166                         } else if (new_xattr) {
2167                                 list_replace(&xattr->list, &new_xattr->list);
2168                         } else {
2169                                 list_del(&xattr->list);
2170                         }
2171                         goto out;
2172                 }
2173         }
2174         if (flags & XATTR_REPLACE) {
2175                 xattr = new_xattr;
2176                 err = -ENODATA;
2177         } else {
2178                 list_add(&new_xattr->list, &info->xattr_list);
2179                 xattr = NULL;
2180         }
2181 out:
2182         spin_unlock(&info->lock);
2183         if (xattr)
2184                 kfree(xattr->name);
2185         kfree(xattr);
2186         return err;
2187 }
2188
2189
2190 static const struct xattr_handler *shmem_xattr_handlers[] = {
2191 #ifdef CONFIG_TMPFS_POSIX_ACL
2192         &generic_acl_access_handler,
2193         &generic_acl_default_handler,
2194 #endif
2195         NULL
2196 };
2197
2198 static int shmem_xattr_validate(const char *name)
2199 {
2200         struct { const char *prefix; size_t len; } arr[] = {
2201                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2202                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2203         };
2204         int i;
2205
2206         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2207                 size_t preflen = arr[i].len;
2208                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2209                         if (!name[preflen])
2210                                 return -EINVAL;
2211                         return 0;
2212                 }
2213         }
2214         return -EOPNOTSUPP;
2215 }
2216
2217 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2218                               void *buffer, size_t size)
2219 {
2220         int err;
2221
2222         /*
2223          * If this is a request for a synthetic attribute in the system.*
2224          * namespace use the generic infrastructure to resolve a handler
2225          * for it via sb->s_xattr.
2226          */
2227         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2228                 return generic_getxattr(dentry, name, buffer, size);
2229
2230         err = shmem_xattr_validate(name);
2231         if (err)
2232                 return err;
2233
2234         return shmem_xattr_get(dentry, name, buffer, size);
2235 }
2236
2237 static int shmem_setxattr(struct dentry *dentry, const char *name,
2238                           const void *value, size_t size, int flags)
2239 {
2240         int err;
2241
2242         /*
2243          * If this is a request for a synthetic attribute in the system.*
2244          * namespace use the generic infrastructure to resolve a handler
2245          * for it via sb->s_xattr.
2246          */
2247         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2248                 return generic_setxattr(dentry, name, value, size, flags);
2249
2250         err = shmem_xattr_validate(name);
2251         if (err)
2252                 return err;
2253
2254         if (size == 0)
2255                 value = "";  /* empty EA, do not remove */
2256
2257         return shmem_xattr_set(dentry, name, value, size, flags);
2258
2259 }
2260
2261 static int shmem_removexattr(struct dentry *dentry, const char *name)
2262 {
2263         int err;
2264
2265         /*
2266          * If this is a request for a synthetic attribute in the system.*
2267          * namespace use the generic infrastructure to resolve a handler
2268          * for it via sb->s_xattr.
2269          */
2270         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2271                 return generic_removexattr(dentry, name);
2272
2273         err = shmem_xattr_validate(name);
2274         if (err)
2275                 return err;
2276
2277         return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2278 }
2279
2280 static bool xattr_is_trusted(const char *name)
2281 {
2282         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2283 }
2284
2285 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2286 {
2287         bool trusted = capable(CAP_SYS_ADMIN);
2288         struct shmem_xattr *xattr;
2289         struct shmem_inode_info *info;
2290         size_t used = 0;
2291
2292         info = SHMEM_I(dentry->d_inode);
2293
2294         spin_lock(&info->lock);
2295         list_for_each_entry(xattr, &info->xattr_list, list) {
2296                 size_t len;
2297
2298                 /* skip "trusted." attributes for unprivileged callers */
2299                 if (!trusted && xattr_is_trusted(xattr->name))
2300                         continue;
2301
2302                 len = strlen(xattr->name) + 1;
2303                 used += len;
2304                 if (buffer) {
2305                         if (size < used) {
2306                                 used = -ERANGE;
2307                                 break;
2308                         }
2309                         memcpy(buffer, xattr->name, len);
2310                         buffer += len;
2311                 }
2312         }
2313         spin_unlock(&info->lock);
2314
2315         return used;
2316 }
2317 #endif /* CONFIG_TMPFS_XATTR */
2318
2319 static const struct inode_operations shmem_symlink_inline_operations = {
2320         .readlink       = generic_readlink,
2321         .follow_link    = shmem_follow_link_inline,
2322 #ifdef CONFIG_TMPFS_XATTR
2323         .setxattr       = shmem_setxattr,
2324         .getxattr       = shmem_getxattr,
2325         .listxattr      = shmem_listxattr,
2326         .removexattr    = shmem_removexattr,
2327 #endif
2328 };
2329
2330 static const struct inode_operations shmem_symlink_inode_operations = {
2331         .readlink       = generic_readlink,
2332         .follow_link    = shmem_follow_link,
2333         .put_link       = shmem_put_link,
2334 #ifdef CONFIG_TMPFS_XATTR
2335         .setxattr       = shmem_setxattr,
2336         .getxattr       = shmem_getxattr,
2337         .listxattr      = shmem_listxattr,
2338         .removexattr    = shmem_removexattr,
2339 #endif
2340 };
2341
2342 static struct dentry *shmem_get_parent(struct dentry *child)
2343 {
2344         return ERR_PTR(-ESTALE);
2345 }
2346
2347 static int shmem_match(struct inode *ino, void *vfh)
2348 {
2349         __u32 *fh = vfh;
2350         __u64 inum = fh[2];
2351         inum = (inum << 32) | fh[1];
2352         return ino->i_ino == inum && fh[0] == ino->i_generation;
2353 }
2354
2355 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2356                 struct fid *fid, int fh_len, int fh_type)
2357 {
2358         struct inode *inode;
2359         struct dentry *dentry = NULL;
2360         u64 inum = fid->raw[2];
2361         inum = (inum << 32) | fid->raw[1];
2362
2363         if (fh_len < 3)
2364                 return NULL;
2365
2366         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2367                         shmem_match, fid->raw);
2368         if (inode) {
2369                 dentry = d_find_alias(inode);
2370                 iput(inode);
2371         }
2372
2373         return dentry;
2374 }
2375
2376 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2377                                 int connectable)
2378 {
2379         struct inode *inode = dentry->d_inode;
2380
2381         if (*len < 3) {
2382                 *len = 3;
2383                 return 255;
2384         }
2385
2386         if (inode_unhashed(inode)) {
2387                 /* Unfortunately insert_inode_hash is not idempotent,
2388                  * so as we hash inodes here rather than at creation
2389                  * time, we need a lock to ensure we only try
2390                  * to do it once
2391                  */
2392                 static DEFINE_SPINLOCK(lock);
2393                 spin_lock(&lock);
2394                 if (inode_unhashed(inode))
2395                         __insert_inode_hash(inode,
2396                                             inode->i_ino + inode->i_generation);
2397                 spin_unlock(&lock);
2398         }
2399
2400         fh[0] = inode->i_generation;
2401         fh[1] = inode->i_ino;
2402         fh[2] = ((__u64)inode->i_ino) >> 32;
2403
2404         *len = 3;
2405         return 1;
2406 }
2407
2408 static const struct export_operations shmem_export_ops = {
2409         .get_parent     = shmem_get_parent,
2410         .encode_fh      = shmem_encode_fh,
2411         .fh_to_dentry   = shmem_fh_to_dentry,
2412 };
2413
2414 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2415                                bool remount)
2416 {
2417         char *this_char, *value, *rest;
2418
2419         while (options != NULL) {
2420                 this_char = options;
2421                 for (;;) {
2422                         /*
2423                          * NUL-terminate this option: unfortunately,
2424                          * mount options form a comma-separated list,
2425                          * but mpol's nodelist may also contain commas.
2426                          */
2427                         options = strchr(options, ',');
2428                         if (options == NULL)
2429                                 break;
2430                         options++;
2431                         if (!isdigit(*options)) {
2432                                 options[-1] = '\0';
2433                                 break;
2434                         }
2435                 }
2436                 if (!*this_char)
2437                         continue;
2438                 if ((value = strchr(this_char,'=')) != NULL) {
2439                         *value++ = 0;
2440                 } else {
2441                         printk(KERN_ERR
2442                             "tmpfs: No value for mount option '%s'\n",
2443                             this_char);
2444                         return 1;
2445                 }
2446
2447                 if (!strcmp(this_char,"size")) {
2448                         unsigned long long size;
2449                         size = memparse(value,&rest);
2450                         if (*rest == '%') {
2451                                 size <<= PAGE_SHIFT;
2452                                 size *= totalram_pages;
2453                                 do_div(size, 100);
2454                                 rest++;
2455                         }
2456                         if (*rest)
2457                                 goto bad_val;
2458                         sbinfo->max_blocks =
2459                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2460                 } else if (!strcmp(this_char,"nr_blocks")) {
2461                         sbinfo->max_blocks = memparse(value, &rest);
2462                         if (*rest)
2463                                 goto bad_val;
2464                 } else if (!strcmp(this_char,"nr_inodes")) {
2465                         sbinfo->max_inodes = memparse(value, &rest);
2466                         if (*rest)
2467                                 goto bad_val;
2468                 } else if (!strcmp(this_char,"mode")) {
2469                         if (remount)
2470                                 continue;
2471                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2472                         if (*rest)
2473                                 goto bad_val;
2474                 } else if (!strcmp(this_char,"uid")) {
2475                         if (remount)
2476                                 continue;
2477                         sbinfo->uid = simple_strtoul(value, &rest, 0);
2478                         if (*rest)
2479                                 goto bad_val;
2480                 } else if (!strcmp(this_char,"gid")) {
2481                         if (remount)
2482                                 continue;
2483                         sbinfo->gid = simple_strtoul(value, &rest, 0);
2484                         if (*rest)
2485                                 goto bad_val;
2486                 } else if (!strcmp(this_char,"mpol")) {
2487                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2488                                 goto bad_val;
2489                 } else {
2490                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2491                                this_char);
2492                         return 1;
2493                 }
2494         }
2495         return 0;
2496
2497 bad_val:
2498         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2499                value, this_char);
2500         return 1;
2501
2502 }
2503
2504 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2505 {
2506         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2507         struct shmem_sb_info config = *sbinfo;
2508         unsigned long inodes;
2509         int error = -EINVAL;
2510
2511         if (shmem_parse_options(data, &config, true))
2512                 return error;
2513
2514         spin_lock(&sbinfo->stat_lock);
2515         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2516         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2517                 goto out;
2518         if (config.max_inodes < inodes)
2519                 goto out;
2520         /*
2521          * Those tests also disallow limited->unlimited while any are in
2522          * use, so i_blocks will always be zero when max_blocks is zero;
2523          * but we must separately disallow unlimited->limited, because
2524          * in that case we have no record of how much is already in use.
2525          */
2526         if (config.max_blocks && !sbinfo->max_blocks)
2527                 goto out;
2528         if (config.max_inodes && !sbinfo->max_inodes)
2529                 goto out;
2530
2531         error = 0;
2532         sbinfo->max_blocks  = config.max_blocks;
2533         sbinfo->max_inodes  = config.max_inodes;
2534         sbinfo->free_inodes = config.max_inodes - inodes;
2535
2536         mpol_put(sbinfo->mpol);
2537         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2538 out:
2539         spin_unlock(&sbinfo->stat_lock);
2540         return error;
2541 }
2542
2543 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2544 {
2545         struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2546
2547         if (sbinfo->max_blocks != shmem_default_max_blocks())
2548                 seq_printf(seq, ",size=%luk",
2549                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2550         if (sbinfo->max_inodes != shmem_default_max_inodes())
2551                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2552         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2553                 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2554         if (sbinfo->uid != 0)
2555                 seq_printf(seq, ",uid=%u", sbinfo->uid);
2556         if (sbinfo->gid != 0)
2557                 seq_printf(seq, ",gid=%u", sbinfo->gid);
2558         shmem_show_mpol(seq, sbinfo->mpol);
2559         return 0;
2560 }
2561 #endif /* CONFIG_TMPFS */
2562
2563 static void shmem_put_super(struct super_block *sb)
2564 {
2565         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2566
2567         percpu_counter_destroy(&sbinfo->used_blocks);
2568         kfree(sbinfo);
2569         sb->s_fs_info = NULL;
2570 }
2571
2572 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2573 {
2574         struct inode *inode;
2575         struct dentry *root;
2576         struct shmem_sb_info *sbinfo;
2577         int err = -ENOMEM;
2578
2579         /* Round up to L1_CACHE_BYTES to resist false sharing */
2580         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2581                                 L1_CACHE_BYTES), GFP_KERNEL);
2582         if (!sbinfo)
2583                 return -ENOMEM;
2584
2585         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2586         sbinfo->uid = current_fsuid();
2587         sbinfo->gid = current_fsgid();
2588         sb->s_fs_info = sbinfo;
2589
2590 #ifdef CONFIG_TMPFS
2591         /*
2592          * Per default we only allow half of the physical ram per
2593          * tmpfs instance, limiting inodes to one per page of lowmem;
2594          * but the internal instance is left unlimited.
2595          */
2596         if (!(sb->s_flags & MS_NOUSER)) {
2597                 sbinfo->max_blocks = shmem_default_max_blocks();
2598                 sbinfo->max_inodes = shmem_default_max_inodes();
2599                 if (shmem_parse_options(data, sbinfo, false)) {
2600                         err = -EINVAL;
2601                         goto failed;
2602                 }
2603         }
2604         sb->s_export_op = &shmem_export_ops;
2605 #else
2606         sb->s_flags |= MS_NOUSER;
2607 #endif
2608
2609         spin_lock_init(&sbinfo->stat_lock);
2610         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2611                 goto failed;
2612         sbinfo->free_inodes = sbinfo->max_inodes;
2613
2614         sb->s_maxbytes = SHMEM_MAX_BYTES;
2615         sb->s_blocksize = PAGE_CACHE_SIZE;
2616         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2617         sb->s_magic = TMPFS_MAGIC;
2618         sb->s_op = &shmem_ops;
2619         sb->s_time_gran = 1;
2620 #ifdef CONFIG_TMPFS_XATTR
2621         sb->s_xattr = shmem_xattr_handlers;
2622 #endif
2623 #ifdef CONFIG_TMPFS_POSIX_ACL
2624         sb->s_flags |= MS_POSIXACL;
2625 #endif
2626
2627         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2628         if (!inode)
2629                 goto failed;
2630         inode->i_uid = sbinfo->uid;
2631         inode->i_gid = sbinfo->gid;
2632         root = d_alloc_root(inode);
2633         if (!root)
2634                 goto failed_iput;
2635         sb->s_root = root;
2636         return 0;
2637
2638 failed_iput:
2639         iput(inode);
2640 failed:
2641         shmem_put_super(sb);
2642         return err;
2643 }
2644
2645 static struct kmem_cache *shmem_inode_cachep;
2646
2647 static struct inode *shmem_alloc_inode(struct super_block *sb)
2648 {
2649         struct shmem_inode_info *p;
2650         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2651         if (!p)
2652                 return NULL;
2653         return &p->vfs_inode;
2654 }
2655
2656 static void shmem_i_callback(struct rcu_head *head)
2657 {
2658         struct inode *inode = container_of(head, struct inode, i_rcu);
2659         INIT_LIST_HEAD(&inode->i_dentry);
2660         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2661 }
2662
2663 static void shmem_destroy_inode(struct inode *inode)
2664 {
2665         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2666                 /* only struct inode is valid if it's an inline symlink */
2667                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2668         }
2669         call_rcu(&inode->i_rcu, shmem_i_callback);
2670 }
2671
2672 static void init_once(void *foo)
2673 {
2674         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2675
2676         inode_init_once(&p->vfs_inode);
2677 }
2678
2679 static int init_inodecache(void)
2680 {
2681         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2682                                 sizeof(struct shmem_inode_info),
2683                                 0, SLAB_PANIC, init_once);
2684         return 0;
2685 }
2686
2687 static void destroy_inodecache(void)
2688 {
2689         kmem_cache_destroy(shmem_inode_cachep);
2690 }
2691
2692 static const struct address_space_operations shmem_aops = {
2693         .writepage      = shmem_writepage,
2694         .set_page_dirty = __set_page_dirty_no_writeback,
2695 #ifdef CONFIG_TMPFS
2696         .readpage       = shmem_readpage,
2697         .write_begin    = shmem_write_begin,
2698         .write_end      = shmem_write_end,
2699 #endif
2700         .migratepage    = migrate_page,
2701         .error_remove_page = generic_error_remove_page,
2702 };
2703
2704 static const struct file_operations shmem_file_operations = {
2705         .mmap           = shmem_mmap,
2706 #ifdef CONFIG_TMPFS
2707         .llseek         = generic_file_llseek,
2708         .read           = do_sync_read,
2709         .write          = do_sync_write,
2710         .aio_read       = shmem_file_aio_read,
2711         .aio_write      = generic_file_aio_write,
2712         .fsync          = noop_fsync,
2713         .splice_read    = generic_file_splice_read,
2714         .splice_write   = generic_file_splice_write,
2715 #endif
2716 };
2717
2718 static const struct inode_operations shmem_inode_operations = {
2719         .setattr        = shmem_setattr,
2720         .truncate_range = shmem_truncate_range,
2721 #ifdef CONFIG_TMPFS_XATTR
2722         .setxattr       = shmem_setxattr,
2723         .getxattr       = shmem_getxattr,
2724         .listxattr      = shmem_listxattr,
2725         .removexattr    = shmem_removexattr,
2726 #endif
2727 #ifdef CONFIG_TMPFS_POSIX_ACL
2728         .check_acl      = generic_check_acl,
2729 #endif
2730
2731 };
2732
2733 static const struct inode_operations shmem_dir_inode_operations = {
2734 #ifdef CONFIG_TMPFS
2735         .create         = shmem_create,
2736         .lookup         = simple_lookup,
2737         .link           = shmem_link,
2738         .unlink         = shmem_unlink,
2739         .symlink        = shmem_symlink,
2740         .mkdir          = shmem_mkdir,
2741         .rmdir          = shmem_rmdir,
2742         .mknod          = shmem_mknod,
2743         .rename         = shmem_rename,
2744 #endif
2745 #ifdef CONFIG_TMPFS_XATTR
2746         .setxattr       = shmem_setxattr,
2747         .getxattr       = shmem_getxattr,
2748         .listxattr      = shmem_listxattr,
2749         .removexattr    = shmem_removexattr,
2750 #endif
2751 #ifdef CONFIG_TMPFS_POSIX_ACL
2752         .setattr        = shmem_setattr,
2753         .check_acl      = generic_check_acl,
2754 #endif
2755 };
2756
2757 static const struct inode_operations shmem_special_inode_operations = {
2758 #ifdef CONFIG_TMPFS_XATTR
2759         .setxattr       = shmem_setxattr,
2760         .getxattr       = shmem_getxattr,
2761         .listxattr      = shmem_listxattr,
2762         .removexattr    = shmem_removexattr,
2763 #endif
2764 #ifdef CONFIG_TMPFS_POSIX_ACL
2765         .setattr        = shmem_setattr,
2766         .check_acl      = generic_check_acl,
2767 #endif
2768 };
2769
2770 static const struct super_operations shmem_ops = {
2771         .alloc_inode    = shmem_alloc_inode,
2772         .destroy_inode  = shmem_destroy_inode,
2773 #ifdef CONFIG_TMPFS
2774         .statfs         = shmem_statfs,
2775         .remount_fs     = shmem_remount_fs,
2776         .show_options   = shmem_show_options,
2777 #endif
2778         .evict_inode    = shmem_evict_inode,
2779         .drop_inode     = generic_delete_inode,
2780         .put_super      = shmem_put_super,
2781 };
2782
2783 static const struct vm_operations_struct shmem_vm_ops = {
2784         .fault          = shmem_fault,
2785 #ifdef CONFIG_NUMA
2786         .set_policy     = shmem_set_policy,
2787         .get_policy     = shmem_get_policy,
2788 #endif
2789 };
2790
2791
2792 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2793         int flags, const char *dev_name, void *data)
2794 {
2795         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2796 }
2797
2798 static struct file_system_type tmpfs_fs_type = {
2799         .owner          = THIS_MODULE,
2800         .name           = "tmpfs",
2801         .mount          = shmem_mount,
2802         .kill_sb        = kill_litter_super,
2803 };
2804
2805 int __init init_tmpfs(void)
2806 {
2807         int error;
2808
2809         error = bdi_init(&shmem_backing_dev_info);
2810         if (error)
2811                 goto out4;
2812
2813         error = init_inodecache();
2814         if (error)
2815                 goto out3;
2816
2817         error = register_filesystem(&tmpfs_fs_type);
2818         if (error) {
2819                 printk(KERN_ERR "Could not register tmpfs\n");
2820                 goto out2;
2821         }
2822
2823         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2824                                 tmpfs_fs_type.name, NULL);
2825         if (IS_ERR(shm_mnt)) {
2826                 error = PTR_ERR(shm_mnt);
2827                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2828                 goto out1;
2829         }
2830         return 0;
2831
2832 out1:
2833         unregister_filesystem(&tmpfs_fs_type);
2834 out2:
2835         destroy_inodecache();
2836 out3:
2837         bdi_destroy(&shmem_backing_dev_info);
2838 out4:
2839         shm_mnt = ERR_PTR(error);
2840         return error;
2841 }
2842
2843 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2844 /**
2845  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2846  * @inode: the inode to be searched
2847  * @pgoff: the offset to be searched
2848  * @pagep: the pointer for the found page to be stored
2849  * @ent: the pointer for the found swap entry to be stored
2850  *
2851  * If a page is found, refcount of it is incremented. Callers should handle
2852  * these refcount.
2853  */
2854 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2855                                         struct page **pagep, swp_entry_t *ent)
2856 {
2857         swp_entry_t entry = { .val = 0 }, *ptr;
2858         struct page *page = NULL;
2859         struct shmem_inode_info *info = SHMEM_I(inode);
2860
2861         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2862                 goto out;
2863
2864         spin_lock(&info->lock);
2865         ptr = shmem_swp_entry(info, pgoff, NULL);
2866 #ifdef CONFIG_SWAP
2867         if (ptr && ptr->val) {
2868                 entry.val = ptr->val;
2869                 page = find_get_page(&swapper_space, entry.val);
2870         } else
2871 #endif
2872                 page = find_get_page(inode->i_mapping, pgoff);
2873         if (ptr)
2874                 shmem_swp_unmap(ptr);
2875         spin_unlock(&info->lock);
2876 out:
2877         *pagep = page;
2878         *ent = entry;
2879 }
2880 #endif
2881
2882 #else /* !CONFIG_SHMEM */
2883
2884 /*
2885  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2886  *
2887  * This is intended for small system where the benefits of the full
2888  * shmem code (swap-backed and resource-limited) are outweighed by
2889  * their complexity. On systems without swap this code should be
2890  * effectively equivalent, but much lighter weight.
2891  */
2892
2893 #include <linux/ramfs.h>
2894
2895 static struct file_system_type tmpfs_fs_type = {
2896         .name           = "tmpfs",
2897         .mount          = ramfs_mount,
2898         .kill_sb        = kill_litter_super,
2899 };
2900
2901 int __init init_tmpfs(void)
2902 {
2903         BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2904
2905         shm_mnt = kern_mount(&tmpfs_fs_type);
2906         BUG_ON(IS_ERR(shm_mnt));
2907
2908         return 0;
2909 }
2910
2911 int shmem_unuse(swp_entry_t entry, struct page *page)
2912 {
2913         return 0;
2914 }
2915
2916 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2917 {
2918         return 0;
2919 }
2920
2921 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2922 {
2923         truncate_inode_pages_range(inode->i_mapping, start, end);
2924 }
2925 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2926
2927 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2928 /**
2929  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2930  * @inode: the inode to be searched
2931  * @pgoff: the offset to be searched
2932  * @pagep: the pointer for the found page to be stored
2933  * @ent: the pointer for the found swap entry to be stored
2934  *
2935  * If a page is found, refcount of it is incremented. Callers should handle
2936  * these refcount.
2937  */
2938 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2939                                         struct page **pagep, swp_entry_t *ent)
2940 {
2941         struct page *page = NULL;
2942
2943         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2944                 goto out;
2945         page = find_get_page(inode->i_mapping, pgoff);
2946 out:
2947         *pagep = page;
2948         *ent = (swp_entry_t){ .val = 0 };
2949 }
2950 #endif
2951
2952 #define shmem_vm_ops                            generic_file_vm_ops
2953 #define shmem_file_operations                   ramfs_file_operations
2954 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2955 #define shmem_acct_size(flags, size)            0
2956 #define shmem_unacct_size(flags, size)          do {} while (0)
2957 #define SHMEM_MAX_BYTES                         MAX_LFS_FILESIZE
2958
2959 #endif /* CONFIG_SHMEM */
2960
2961 /* common code */
2962
2963 /**
2964  * shmem_file_setup - get an unlinked file living in tmpfs
2965  * @name: name for dentry (to be seen in /proc/<pid>/maps
2966  * @size: size to be set for the file
2967  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2968  */
2969 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2970 {
2971         int error;
2972         struct file *file;
2973         struct inode *inode;
2974         struct path path;
2975         struct dentry *root;
2976         struct qstr this;
2977
2978         if (IS_ERR(shm_mnt))
2979                 return (void *)shm_mnt;
2980
2981         if (size < 0 || size > SHMEM_MAX_BYTES)
2982                 return ERR_PTR(-EINVAL);
2983
2984         if (shmem_acct_size(flags, size))
2985                 return ERR_PTR(-ENOMEM);
2986
2987         error = -ENOMEM;
2988         this.name = name;
2989         this.len = strlen(name);
2990         this.hash = 0; /* will go */
2991         root = shm_mnt->mnt_root;
2992         path.dentry = d_alloc(root, &this);
2993         if (!path.dentry)
2994                 goto put_memory;
2995         path.mnt = mntget(shm_mnt);
2996
2997         error = -ENOSPC;
2998         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2999         if (!inode)
3000                 goto put_dentry;
3001
3002         d_instantiate(path.dentry, inode);
3003         inode->i_size = size;
3004         inode->i_nlink = 0;     /* It is unlinked */
3005 #ifndef CONFIG_MMU
3006         error = ramfs_nommu_expand_for_mapping(inode, size);
3007         if (error)
3008                 goto put_dentry;
3009 #endif
3010
3011         error = -ENFILE;
3012         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3013                   &shmem_file_operations);
3014         if (!file)
3015                 goto put_dentry;
3016
3017         return file;
3018
3019 put_dentry:
3020         path_put(&path);
3021 put_memory:
3022         shmem_unacct_size(flags, size);
3023         return ERR_PTR(error);
3024 }
3025 EXPORT_SYMBOL_GPL(shmem_file_setup);
3026
3027 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3028 {
3029         if (vma->vm_file)
3030                 fput(vma->vm_file);
3031         vma->vm_file = file;
3032         vma->vm_ops = &shmem_vm_ops;
3033         vma->vm_flags |= VM_CAN_NONLINEAR;
3034 }
3035
3036 /**
3037  * shmem_zero_setup - setup a shared anonymous mapping
3038  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3039  */
3040 int shmem_zero_setup(struct vm_area_struct *vma)
3041 {
3042         struct file *file;
3043         loff_t size = vma->vm_end - vma->vm_start;
3044
3045         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3046         if (IS_ERR(file))
3047                 return PTR_ERR(file);
3048
3049         shmem_set_file(vma, file);
3050         return 0;
3051 }
3052
3053 /**
3054  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3055  * @mapping:    the page's address_space
3056  * @index:      the page index
3057  * @gfp:        the page allocator flags to use if allocating
3058  *
3059  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3060  * with any new page allocations done using the specified allocation flags.
3061  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3062  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3063  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3064  *
3065  * Provide a stub for those callers to start using now, then later
3066  * flesh it out to call shmem_getpage() with additional gfp mask, when
3067  * shmem_file_splice_read() is added and shmem_readpage() is removed.
3068  */
3069 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3070                                          pgoff_t index, gfp_t gfp)
3071 {
3072         return read_cache_page_gfp(mapping, index, gfp);
3073 }
3074 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);