tmpfs: do not allocate pages on read
[platform/kernel/linux-starfive.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101         pgoff_t start;          /* start of range currently being fallocated */
102         pgoff_t next;           /* the next page offset to be fallocated */
103         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
104         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
105 };
106
107 struct shmem_options {
108         unsigned long long blocks;
109         unsigned long long inodes;
110         struct mempolicy *mpol;
111         kuid_t uid;
112         kgid_t gid;
113         umode_t mode;
114         bool full_inums;
115         int huge;
116         int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126         return totalram_pages() / 2;
127 }
128
129 static unsigned long shmem_default_max_inodes(void)
130 {
131         unsigned long nr_pages = totalram_pages();
132
133         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138                              struct page **pagep, enum sgp_type sgp,
139                              gfp_t gfp, struct vm_area_struct *vma,
140                              vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142                 struct page **pagep, enum sgp_type sgp,
143                 gfp_t gfp, struct vm_area_struct *vma,
144                 struct vm_fault *vmf, vm_fault_t *fault_type);
145
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp)
148 {
149         return shmem_getpage_gfp(inode, index, pagep, sgp,
150                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155         return sb->s_fs_info;
156 }
157
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166         return (flags & VM_NORESERVE) ?
167                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172         if (!(flags & VM_NORESERVE))
173                 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 static inline int shmem_reacct_size(unsigned long flags,
177                 loff_t oldsize, loff_t newsize)
178 {
179         if (!(flags & VM_NORESERVE)) {
180                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181                         return security_vm_enough_memory_mm(current->mm,
182                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
183                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185         }
186         return 0;
187 }
188
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197         if (!(flags & VM_NORESERVE))
198                 return 0;
199
200         return security_vm_enough_memory_mm(current->mm,
201                         pages * VM_ACCT(PAGE_SIZE));
202 }
203
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206         if (flags & VM_NORESERVE)
207                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212         struct shmem_inode_info *info = SHMEM_I(inode);
213         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215         if (shmem_acct_block(info->flags, pages))
216                 return false;
217
218         if (sbinfo->max_blocks) {
219                 if (percpu_counter_compare(&sbinfo->used_blocks,
220                                            sbinfo->max_blocks - pages) > 0)
221                         goto unacct;
222                 percpu_counter_add(&sbinfo->used_blocks, pages);
223         }
224
225         return true;
226
227 unacct:
228         shmem_unacct_blocks(info->flags, pages);
229         return false;
230 }
231
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234         struct shmem_inode_info *info = SHMEM_I(inode);
235         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237         if (sbinfo->max_blocks)
238                 percpu_counter_sub(&sbinfo->used_blocks, pages);
239         shmem_unacct_blocks(info->flags, pages);
240 }
241
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253         return vma->vm_ops == &shmem_vm_ops;
254 }
255
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272         ino_t ino;
273
274         if (!(sb->s_flags & SB_KERNMOUNT)) {
275                 raw_spin_lock(&sbinfo->stat_lock);
276                 if (sbinfo->max_inodes) {
277                         if (!sbinfo->free_inodes) {
278                                 raw_spin_unlock(&sbinfo->stat_lock);
279                                 return -ENOSPC;
280                         }
281                         sbinfo->free_inodes--;
282                 }
283                 if (inop) {
284                         ino = sbinfo->next_ino++;
285                         if (unlikely(is_zero_ino(ino)))
286                                 ino = sbinfo->next_ino++;
287                         if (unlikely(!sbinfo->full_inums &&
288                                      ino > UINT_MAX)) {
289                                 /*
290                                  * Emulate get_next_ino uint wraparound for
291                                  * compatibility
292                                  */
293                                 if (IS_ENABLED(CONFIG_64BIT))
294                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295                                                 __func__, MINOR(sb->s_dev));
296                                 sbinfo->next_ino = 1;
297                                 ino = sbinfo->next_ino++;
298                         }
299                         *inop = ino;
300                 }
301                 raw_spin_unlock(&sbinfo->stat_lock);
302         } else if (inop) {
303                 /*
304                  * __shmem_file_setup, one of our callers, is lock-free: it
305                  * doesn't hold stat_lock in shmem_reserve_inode since
306                  * max_inodes is always 0, and is called from potentially
307                  * unknown contexts. As such, use a per-cpu batched allocator
308                  * which doesn't require the per-sb stat_lock unless we are at
309                  * the batch boundary.
310                  *
311                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312                  * shmem mounts are not exposed to userspace, so we don't need
313                  * to worry about things like glibc compatibility.
314                  */
315                 ino_t *next_ino;
316
317                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318                 ino = *next_ino;
319                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320                         raw_spin_lock(&sbinfo->stat_lock);
321                         ino = sbinfo->next_ino;
322                         sbinfo->next_ino += SHMEM_INO_BATCH;
323                         raw_spin_unlock(&sbinfo->stat_lock);
324                         if (unlikely(is_zero_ino(ino)))
325                                 ino++;
326                 }
327                 *inop = ino;
328                 *next_ino = ++ino;
329                 put_cpu();
330         }
331
332         return 0;
333 }
334
335 static void shmem_free_inode(struct super_block *sb)
336 {
337         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338         if (sbinfo->max_inodes) {
339                 raw_spin_lock(&sbinfo->stat_lock);
340                 sbinfo->free_inodes++;
341                 raw_spin_unlock(&sbinfo->stat_lock);
342         }
343 }
344
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359         struct shmem_inode_info *info = SHMEM_I(inode);
360         long freed;
361
362         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363         if (freed > 0) {
364                 info->alloced -= freed;
365                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366                 shmem_inode_unacct_blocks(inode, freed);
367         }
368 }
369
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372         struct shmem_inode_info *info = SHMEM_I(inode);
373         unsigned long flags;
374
375         if (!shmem_inode_acct_block(inode, pages))
376                 return false;
377
378         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379         inode->i_mapping->nrpages += pages;
380
381         spin_lock_irqsave(&info->lock, flags);
382         info->alloced += pages;
383         inode->i_blocks += pages * BLOCKS_PER_PAGE;
384         shmem_recalc_inode(inode);
385         spin_unlock_irqrestore(&info->lock, flags);
386
387         return true;
388 }
389
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392         struct shmem_inode_info *info = SHMEM_I(inode);
393         unsigned long flags;
394
395         /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
397         spin_lock_irqsave(&info->lock, flags);
398         info->alloced -= pages;
399         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400         shmem_recalc_inode(inode);
401         spin_unlock_irqrestore(&info->lock, flags);
402
403         shmem_inode_unacct_blocks(inode, pages);
404 }
405
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410                         pgoff_t index, void *expected, void *replacement)
411 {
412         XA_STATE(xas, &mapping->i_pages, index);
413         void *item;
414
415         VM_BUG_ON(!expected);
416         VM_BUG_ON(!replacement);
417         item = xas_load(&xas);
418         if (item != expected)
419                 return -ENOENT;
420         xas_store(&xas, replacement);
421         return 0;
422 }
423
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432                                pgoff_t index, swp_entry_t swap)
433 {
434         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *      disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *      enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *      only allocate huge pages if the page will be fully within i_size,
446  *      also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *      only allocate huge pages if requested with fadvise()/madvise();
449  */
450
451 #define SHMEM_HUGE_NEVER        0
452 #define SHMEM_HUGE_ALWAYS       1
453 #define SHMEM_HUGE_WITHIN_SIZE  2
454 #define SHMEM_HUGE_ADVISE       3
455
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *      disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY         (-1)
467 #define SHMEM_HUGE_FORCE        (-2)
468
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473
474 bool shmem_is_huge(struct vm_area_struct *vma,
475                    struct inode *inode, pgoff_t index)
476 {
477         loff_t i_size;
478
479         if (!S_ISREG(inode->i_mode))
480                 return false;
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index + 1, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >> PAGE_SHIFT >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct page *page;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         goto next;
581                 }
582
583                 list_move(&info->shrinklist, &list);
584 next:
585                 sbinfo->shrinklist_len--;
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto move_back;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Move the inode on the list back to shrinklist if we failed
620                  * to lock the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto move_back;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed move the inode on the list back to shrinklist */
635                 if (ret)
636                         goto move_back;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 goto put;
642 move_back:
643                 /*
644                  * Make sure the inode is either on the global list or deleted
645                  * from any local list before iput() since it could be deleted
646                  * in another thread once we put the inode (then the local list
647                  * is corrupted).
648                  */
649                 spin_lock(&sbinfo->shrinklist_lock);
650                 list_move(&info->shrinklist, &sbinfo->shrinklist);
651                 sbinfo->shrinklist_len++;
652                 spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654                 iput(inode);
655         }
656
657         return split;
658 }
659
660 static long shmem_unused_huge_scan(struct super_block *sb,
661                 struct shrink_control *sc)
662 {
663         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665         if (!READ_ONCE(sbinfo->shrinklist_len))
666                 return SHRINK_STOP;
667
668         return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670
671 static long shmem_unused_huge_count(struct super_block *sb,
672                 struct shrink_control *sc)
673 {
674         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675         return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678
679 #define shmem_huge SHMEM_HUGE_DENY
680
681 bool shmem_is_huge(struct vm_area_struct *vma,
682                    struct inode *inode, pgoff_t index)
683 {
684         return false;
685 }
686
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688                 struct shrink_control *sc, unsigned long nr_to_split)
689 {
690         return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693
694 /*
695  * Like add_to_page_cache_locked, but error if expected item has gone.
696  */
697 static int shmem_add_to_page_cache(struct page *page,
698                                    struct address_space *mapping,
699                                    pgoff_t index, void *expected, gfp_t gfp,
700                                    struct mm_struct *charge_mm)
701 {
702         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703         unsigned long nr = compound_nr(page);
704         int error;
705
706         VM_BUG_ON_PAGE(PageTail(page), page);
707         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
708         VM_BUG_ON_PAGE(!PageLocked(page), page);
709         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
710         VM_BUG_ON(expected && PageTransHuge(page));
711
712         page_ref_add(page, nr);
713         page->mapping = mapping;
714         page->index = index;
715
716         if (!PageSwapCache(page)) {
717                 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
718                 if (error) {
719                         if (PageTransHuge(page)) {
720                                 count_vm_event(THP_FILE_FALLBACK);
721                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722                         }
723                         goto error;
724                 }
725         }
726         cgroup_throttle_swaprate(page, gfp);
727
728         do {
729                 xas_lock_irq(&xas);
730                 if (expected != xas_find_conflict(&xas)) {
731                         xas_set_err(&xas, -EEXIST);
732                         goto unlock;
733                 }
734                 if (expected && xas_find_conflict(&xas)) {
735                         xas_set_err(&xas, -EEXIST);
736                         goto unlock;
737                 }
738                 xas_store(&xas, page);
739                 if (xas_error(&xas))
740                         goto unlock;
741                 if (PageTransHuge(page)) {
742                         count_vm_event(THP_FILE_ALLOC);
743                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
744                 }
745                 mapping->nrpages += nr;
746                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
748 unlock:
749                 xas_unlock_irq(&xas);
750         } while (xas_nomem(&xas, gfp));
751
752         if (xas_error(&xas)) {
753                 error = xas_error(&xas);
754                 goto error;
755         }
756
757         return 0;
758 error:
759         page->mapping = NULL;
760         page_ref_sub(page, nr);
761         return error;
762 }
763
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769         struct address_space *mapping = page->mapping;
770         int error;
771
772         VM_BUG_ON_PAGE(PageCompound(page), page);
773
774         xa_lock_irq(&mapping->i_pages);
775         error = shmem_replace_entry(mapping, page->index, page, radswap);
776         page->mapping = NULL;
777         mapping->nrpages--;
778         __dec_lruvec_page_state(page, NR_FILE_PAGES);
779         __dec_lruvec_page_state(page, NR_SHMEM);
780         xa_unlock_irq(&mapping->i_pages);
781         put_page(page);
782         BUG_ON(error);
783 }
784
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789                            pgoff_t index, void *radswap)
790 {
791         void *old;
792
793         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794         if (old != radswap)
795                 return -ENOENT;
796         free_swap_and_cache(radix_to_swp_entry(radswap));
797         return 0;
798 }
799
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808                                                 pgoff_t start, pgoff_t end)
809 {
810         XA_STATE(xas, &mapping->i_pages, start);
811         struct page *page;
812         unsigned long swapped = 0;
813
814         rcu_read_lock();
815         xas_for_each(&xas, page, end - 1) {
816                 if (xas_retry(&xas, page))
817                         continue;
818                 if (xa_is_value(page))
819                         swapped++;
820
821                 if (need_resched()) {
822                         xas_pause(&xas);
823                         cond_resched_rcu();
824                 }
825         }
826
827         rcu_read_unlock();
828
829         return swapped << PAGE_SHIFT;
830 }
831
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841         struct inode *inode = file_inode(vma->vm_file);
842         struct shmem_inode_info *info = SHMEM_I(inode);
843         struct address_space *mapping = inode->i_mapping;
844         unsigned long swapped;
845
846         /* Be careful as we don't hold info->lock */
847         swapped = READ_ONCE(info->swapped);
848
849         /*
850          * The easier cases are when the shmem object has nothing in swap, or
851          * the vma maps it whole. Then we can simply use the stats that we
852          * already track.
853          */
854         if (!swapped)
855                 return 0;
856
857         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858                 return swapped << PAGE_SHIFT;
859
860         /* Here comes the more involved part */
861         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862                                         vma->vm_pgoff + vma_pages(vma));
863 }
864
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870         struct pagevec pvec;
871         pgoff_t index = 0;
872
873         pagevec_init(&pvec);
874         /*
875          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876          */
877         while (!mapping_unevictable(mapping)) {
878                 if (!pagevec_lookup(&pvec, mapping, &index))
879                         break;
880                 check_move_unevictable_pages(&pvec);
881                 pagevec_release(&pvec);
882                 cond_resched();
883         }
884 }
885
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888         struct folio *folio;
889         struct page *page;
890
891         /*
892          * At first avoid shmem_getpage(,,,SGP_READ): that fails
893          * beyond i_size, and reports fallocated pages as holes.
894          */
895         folio = __filemap_get_folio(inode->i_mapping, index,
896                                         FGP_ENTRY | FGP_LOCK, 0);
897         if (!xa_is_value(folio))
898                 return folio;
899         /*
900          * But read a page back from swap if any of it is within i_size
901          * (although in some cases this is just a waste of time).
902          */
903         page = NULL;
904         shmem_getpage(inode, index, &page, SGP_READ);
905         return page ? page_folio(page) : NULL;
906 }
907
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913                                                                  bool unfalloc)
914 {
915         struct address_space *mapping = inode->i_mapping;
916         struct shmem_inode_info *info = SHMEM_I(inode);
917         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919         struct folio_batch fbatch;
920         pgoff_t indices[PAGEVEC_SIZE];
921         struct folio *folio;
922         bool same_folio;
923         long nr_swaps_freed = 0;
924         pgoff_t index;
925         int i;
926
927         if (lend == -1)
928                 end = -1;       /* unsigned, so actually very big */
929
930         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931                 info->fallocend = start;
932
933         folio_batch_init(&fbatch);
934         index = start;
935         while (index < end && find_lock_entries(mapping, index, end - 1,
936                         &fbatch, indices)) {
937                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938                         folio = fbatch.folios[i];
939
940                         index = indices[i];
941
942                         if (xa_is_value(folio)) {
943                                 if (unfalloc)
944                                         continue;
945                                 nr_swaps_freed += !shmem_free_swap(mapping,
946                                                                 index, folio);
947                                 continue;
948                         }
949                         index += folio_nr_pages(folio) - 1;
950
951                         if (!unfalloc || !folio_test_uptodate(folio))
952                                 truncate_inode_folio(mapping, folio);
953                         folio_unlock(folio);
954                 }
955                 folio_batch_remove_exceptionals(&fbatch);
956                 folio_batch_release(&fbatch);
957                 cond_resched();
958                 index++;
959         }
960
961         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963         if (folio) {
964                 same_folio = lend < folio_pos(folio) + folio_size(folio);
965                 folio_mark_dirty(folio);
966                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967                         start = folio->index + folio_nr_pages(folio);
968                         if (same_folio)
969                                 end = folio->index;
970                 }
971                 folio_unlock(folio);
972                 folio_put(folio);
973                 folio = NULL;
974         }
975
976         if (!same_folio)
977                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978         if (folio) {
979                 folio_mark_dirty(folio);
980                 if (!truncate_inode_partial_folio(folio, lstart, lend))
981                         end = folio->index;
982                 folio_unlock(folio);
983                 folio_put(folio);
984         }
985
986         index = start;
987         while (index < end) {
988                 cond_resched();
989
990                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991                                 indices)) {
992                         /* If all gone or hole-punch or unfalloc, we're done */
993                         if (index == start || end != -1)
994                                 break;
995                         /* But if truncating, restart to make sure all gone */
996                         index = start;
997                         continue;
998                 }
999                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000                         folio = fbatch.folios[i];
1001
1002                         index = indices[i];
1003                         if (xa_is_value(folio)) {
1004                                 if (unfalloc)
1005                                         continue;
1006                                 if (shmem_free_swap(mapping, index, folio)) {
1007                                         /* Swap was replaced by page: retry */
1008                                         index--;
1009                                         break;
1010                                 }
1011                                 nr_swaps_freed++;
1012                                 continue;
1013                         }
1014
1015                         folio_lock(folio);
1016
1017                         if (!unfalloc || !folio_test_uptodate(folio)) {
1018                                 if (folio_mapping(folio) != mapping) {
1019                                         /* Page was replaced by swap: retry */
1020                                         folio_unlock(folio);
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025                                                 folio);
1026                                 truncate_inode_folio(mapping, folio);
1027                         }
1028                         index = folio->index + folio_nr_pages(folio) - 1;
1029                         folio_unlock(folio);
1030                 }
1031                 folio_batch_remove_exceptionals(&fbatch);
1032                 folio_batch_release(&fbatch);
1033                 index++;
1034         }
1035
1036         spin_lock_irq(&info->lock);
1037         info->swapped -= nr_swaps_freed;
1038         shmem_recalc_inode(inode);
1039         spin_unlock_irq(&info->lock);
1040 }
1041
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044         shmem_undo_range(inode, lstart, lend, false);
1045         inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050                          const struct path *path, struct kstat *stat,
1051                          u32 request_mask, unsigned int query_flags)
1052 {
1053         struct inode *inode = path->dentry->d_inode;
1054         struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057                 spin_lock_irq(&info->lock);
1058                 shmem_recalc_inode(inode);
1059                 spin_unlock_irq(&info->lock);
1060         }
1061         generic_fillattr(&init_user_ns, inode, stat);
1062
1063         if (shmem_is_huge(NULL, inode, 0))
1064                 stat->blksize = HPAGE_PMD_SIZE;
1065
1066         if (request_mask & STATX_BTIME) {
1067                 stat->result_mask |= STATX_BTIME;
1068                 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069                 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070         }
1071
1072         return 0;
1073 }
1074
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076                          struct dentry *dentry, struct iattr *attr)
1077 {
1078         struct inode *inode = d_inode(dentry);
1079         struct shmem_inode_info *info = SHMEM_I(inode);
1080         int error;
1081
1082         error = setattr_prepare(&init_user_ns, dentry, attr);
1083         if (error)
1084                 return error;
1085
1086         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087                 loff_t oldsize = inode->i_size;
1088                 loff_t newsize = attr->ia_size;
1089
1090                 /* protected by i_rwsem */
1091                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093                         return -EPERM;
1094
1095                 if (newsize != oldsize) {
1096                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097                                         oldsize, newsize);
1098                         if (error)
1099                                 return error;
1100                         i_size_write(inode, newsize);
1101                         inode->i_ctime = inode->i_mtime = current_time(inode);
1102                 }
1103                 if (newsize <= oldsize) {
1104                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105                         if (oldsize > holebegin)
1106                                 unmap_mapping_range(inode->i_mapping,
1107                                                         holebegin, 0, 1);
1108                         if (info->alloced)
1109                                 shmem_truncate_range(inode,
1110                                                         newsize, (loff_t)-1);
1111                         /* unmap again to remove racily COWed private pages */
1112                         if (oldsize > holebegin)
1113                                 unmap_mapping_range(inode->i_mapping,
1114                                                         holebegin, 0, 1);
1115                 }
1116         }
1117
1118         setattr_copy(&init_user_ns, inode, attr);
1119         if (attr->ia_valid & ATTR_MODE)
1120                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121         return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126         struct shmem_inode_info *info = SHMEM_I(inode);
1127         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129         if (shmem_mapping(inode->i_mapping)) {
1130                 shmem_unacct_size(info->flags, inode->i_size);
1131                 inode->i_size = 0;
1132                 mapping_set_exiting(inode->i_mapping);
1133                 shmem_truncate_range(inode, 0, (loff_t)-1);
1134                 if (!list_empty(&info->shrinklist)) {
1135                         spin_lock(&sbinfo->shrinklist_lock);
1136                         if (!list_empty(&info->shrinklist)) {
1137                                 list_del_init(&info->shrinklist);
1138                                 sbinfo->shrinklist_len--;
1139                         }
1140                         spin_unlock(&sbinfo->shrinklist_lock);
1141                 }
1142                 while (!list_empty(&info->swaplist)) {
1143                         /* Wait while shmem_unuse() is scanning this inode... */
1144                         wait_var_event(&info->stop_eviction,
1145                                        !atomic_read(&info->stop_eviction));
1146                         mutex_lock(&shmem_swaplist_mutex);
1147                         /* ...but beware of the race if we peeked too early */
1148                         if (!atomic_read(&info->stop_eviction))
1149                                 list_del_init(&info->swaplist);
1150                         mutex_unlock(&shmem_swaplist_mutex);
1151                 }
1152         }
1153
1154         simple_xattrs_free(&info->xattrs);
1155         WARN_ON(inode->i_blocks);
1156         shmem_free_inode(inode->i_sb);
1157         clear_inode(inode);
1158 }
1159
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161                                    pgoff_t start, unsigned int nr_entries,
1162                                    struct page **entries, pgoff_t *indices,
1163                                    unsigned int type)
1164 {
1165         XA_STATE(xas, &mapping->i_pages, start);
1166         struct page *page;
1167         swp_entry_t entry;
1168         unsigned int ret = 0;
1169
1170         if (!nr_entries)
1171                 return 0;
1172
1173         rcu_read_lock();
1174         xas_for_each(&xas, page, ULONG_MAX) {
1175                 if (xas_retry(&xas, page))
1176                         continue;
1177
1178                 if (!xa_is_value(page))
1179                         continue;
1180
1181                 entry = radix_to_swp_entry(page);
1182                 if (swp_type(entry) != type)
1183                         continue;
1184
1185                 indices[ret] = xas.xa_index;
1186                 entries[ret] = page;
1187
1188                 if (need_resched()) {
1189                         xas_pause(&xas);
1190                         cond_resched_rcu();
1191                 }
1192                 if (++ret == nr_entries)
1193                         break;
1194         }
1195         rcu_read_unlock();
1196
1197         return ret;
1198 }
1199
1200 /*
1201  * Move the swapped pages for an inode to page cache. Returns the count
1202  * of pages swapped in, or the error in case of failure.
1203  */
1204 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1205                                     pgoff_t *indices)
1206 {
1207         int i = 0;
1208         int ret = 0;
1209         int error = 0;
1210         struct address_space *mapping = inode->i_mapping;
1211
1212         for (i = 0; i < pvec.nr; i++) {
1213                 struct page *page = pvec.pages[i];
1214
1215                 if (!xa_is_value(page))
1216                         continue;
1217                 error = shmem_swapin_page(inode, indices[i],
1218                                           &page, SGP_CACHE,
1219                                           mapping_gfp_mask(mapping),
1220                                           NULL, NULL);
1221                 if (error == 0) {
1222                         unlock_page(page);
1223                         put_page(page);
1224                         ret++;
1225                 }
1226                 if (error == -ENOMEM)
1227                         break;
1228                 error = 0;
1229         }
1230         return error ? error : ret;
1231 }
1232
1233 /*
1234  * If swap found in inode, free it and move page from swapcache to filecache.
1235  */
1236 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1237 {
1238         struct address_space *mapping = inode->i_mapping;
1239         pgoff_t start = 0;
1240         struct pagevec pvec;
1241         pgoff_t indices[PAGEVEC_SIZE];
1242         int ret = 0;
1243
1244         pagevec_init(&pvec);
1245         do {
1246                 unsigned int nr_entries = PAGEVEC_SIZE;
1247
1248                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1249                                                   pvec.pages, indices, type);
1250                 if (pvec.nr == 0) {
1251                         ret = 0;
1252                         break;
1253                 }
1254
1255                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1256                 if (ret < 0)
1257                         break;
1258
1259                 start = indices[pvec.nr - 1];
1260         } while (true);
1261
1262         return ret;
1263 }
1264
1265 /*
1266  * Read all the shared memory data that resides in the swap
1267  * device 'type' back into memory, so the swap device can be
1268  * unused.
1269  */
1270 int shmem_unuse(unsigned int type)
1271 {
1272         struct shmem_inode_info *info, *next;
1273         int error = 0;
1274
1275         if (list_empty(&shmem_swaplist))
1276                 return 0;
1277
1278         mutex_lock(&shmem_swaplist_mutex);
1279         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1280                 if (!info->swapped) {
1281                         list_del_init(&info->swaplist);
1282                         continue;
1283                 }
1284                 /*
1285                  * Drop the swaplist mutex while searching the inode for swap;
1286                  * but before doing so, make sure shmem_evict_inode() will not
1287                  * remove placeholder inode from swaplist, nor let it be freed
1288                  * (igrab() would protect from unlink, but not from unmount).
1289                  */
1290                 atomic_inc(&info->stop_eviction);
1291                 mutex_unlock(&shmem_swaplist_mutex);
1292
1293                 error = shmem_unuse_inode(&info->vfs_inode, type);
1294                 cond_resched();
1295
1296                 mutex_lock(&shmem_swaplist_mutex);
1297                 next = list_next_entry(info, swaplist);
1298                 if (!info->swapped)
1299                         list_del_init(&info->swaplist);
1300                 if (atomic_dec_and_test(&info->stop_eviction))
1301                         wake_up_var(&info->stop_eviction);
1302                 if (error)
1303                         break;
1304         }
1305         mutex_unlock(&shmem_swaplist_mutex);
1306
1307         return error;
1308 }
1309
1310 /*
1311  * Move the page from the page cache to the swap cache.
1312  */
1313 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1314 {
1315         struct shmem_inode_info *info;
1316         struct address_space *mapping;
1317         struct inode *inode;
1318         swp_entry_t swap;
1319         pgoff_t index;
1320
1321         /*
1322          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1323          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1324          * and its shmem_writeback() needs them to be split when swapping.
1325          */
1326         if (PageTransCompound(page)) {
1327                 /* Ensure the subpages are still dirty */
1328                 SetPageDirty(page);
1329                 if (split_huge_page(page) < 0)
1330                         goto redirty;
1331                 ClearPageDirty(page);
1332         }
1333
1334         BUG_ON(!PageLocked(page));
1335         mapping = page->mapping;
1336         index = page->index;
1337         inode = mapping->host;
1338         info = SHMEM_I(inode);
1339         if (info->flags & VM_LOCKED)
1340                 goto redirty;
1341         if (!total_swap_pages)
1342                 goto redirty;
1343
1344         /*
1345          * Our capabilities prevent regular writeback or sync from ever calling
1346          * shmem_writepage; but a stacking filesystem might use ->writepage of
1347          * its underlying filesystem, in which case tmpfs should write out to
1348          * swap only in response to memory pressure, and not for the writeback
1349          * threads or sync.
1350          */
1351         if (!wbc->for_reclaim) {
1352                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1353                 goto redirty;
1354         }
1355
1356         /*
1357          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358          * value into swapfile.c, the only way we can correctly account for a
1359          * fallocated page arriving here is now to initialize it and write it.
1360          *
1361          * That's okay for a page already fallocated earlier, but if we have
1362          * not yet completed the fallocation, then (a) we want to keep track
1363          * of this page in case we have to undo it, and (b) it may not be a
1364          * good idea to continue anyway, once we're pushing into swap.  So
1365          * reactivate the page, and let shmem_fallocate() quit when too many.
1366          */
1367         if (!PageUptodate(page)) {
1368                 if (inode->i_private) {
1369                         struct shmem_falloc *shmem_falloc;
1370                         spin_lock(&inode->i_lock);
1371                         shmem_falloc = inode->i_private;
1372                         if (shmem_falloc &&
1373                             !shmem_falloc->waitq &&
1374                             index >= shmem_falloc->start &&
1375                             index < shmem_falloc->next)
1376                                 shmem_falloc->nr_unswapped++;
1377                         else
1378                                 shmem_falloc = NULL;
1379                         spin_unlock(&inode->i_lock);
1380                         if (shmem_falloc)
1381                                 goto redirty;
1382                 }
1383                 clear_highpage(page);
1384                 flush_dcache_page(page);
1385                 SetPageUptodate(page);
1386         }
1387
1388         swap = get_swap_page(page);
1389         if (!swap.val)
1390                 goto redirty;
1391
1392         /*
1393          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1394          * if it's not already there.  Do it now before the page is
1395          * moved to swap cache, when its pagelock no longer protects
1396          * the inode from eviction.  But don't unlock the mutex until
1397          * we've incremented swapped, because shmem_unuse_inode() will
1398          * prune a !swapped inode from the swaplist under this mutex.
1399          */
1400         mutex_lock(&shmem_swaplist_mutex);
1401         if (list_empty(&info->swaplist))
1402                 list_add(&info->swaplist, &shmem_swaplist);
1403
1404         if (add_to_swap_cache(page, swap,
1405                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406                         NULL) == 0) {
1407                 spin_lock_irq(&info->lock);
1408                 shmem_recalc_inode(inode);
1409                 info->swapped++;
1410                 spin_unlock_irq(&info->lock);
1411
1412                 swap_shmem_alloc(swap);
1413                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1414
1415                 mutex_unlock(&shmem_swaplist_mutex);
1416                 BUG_ON(page_mapped(page));
1417                 swap_writepage(page, wbc);
1418                 return 0;
1419         }
1420
1421         mutex_unlock(&shmem_swaplist_mutex);
1422         put_swap_page(page, swap);
1423 redirty:
1424         set_page_dirty(page);
1425         if (wbc->for_reclaim)
1426                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1427         unlock_page(page);
1428         return 0;
1429 }
1430
1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1433 {
1434         char buffer[64];
1435
1436         if (!mpol || mpol->mode == MPOL_DEFAULT)
1437                 return;         /* show nothing */
1438
1439         mpol_to_str(buffer, sizeof(buffer), mpol);
1440
1441         seq_printf(seq, ",mpol=%s", buffer);
1442 }
1443
1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445 {
1446         struct mempolicy *mpol = NULL;
1447         if (sbinfo->mpol) {
1448                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1449                 mpol = sbinfo->mpol;
1450                 mpol_get(mpol);
1451                 raw_spin_unlock(&sbinfo->stat_lock);
1452         }
1453         return mpol;
1454 }
1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 }
1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460 {
1461         return NULL;
1462 }
1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464 #ifndef CONFIG_NUMA
1465 #define vm_policy vm_private_data
1466 #endif
1467
1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469                 struct shmem_inode_info *info, pgoff_t index)
1470 {
1471         /* Create a pseudo vma that just contains the policy */
1472         vma_init(vma, NULL);
1473         /* Bias interleave by inode number to distribute better across nodes */
1474         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1475         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476 }
1477
1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479 {
1480         /* Drop reference taken by mpol_shared_policy_lookup() */
1481         mpol_cond_put(vma->vm_policy);
1482 }
1483
1484 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485                         struct shmem_inode_info *info, pgoff_t index)
1486 {
1487         struct vm_area_struct pvma;
1488         struct page *page;
1489         struct vm_fault vmf = {
1490                 .vma = &pvma,
1491         };
1492
1493         shmem_pseudo_vma_init(&pvma, info, index);
1494         page = swap_cluster_readahead(swap, gfp, &vmf);
1495         shmem_pseudo_vma_destroy(&pvma);
1496
1497         return page;
1498 }
1499
1500 /*
1501  * Make sure huge_gfp is always more limited than limit_gfp.
1502  * Some of the flags set permissions, while others set limitations.
1503  */
1504 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1505 {
1506         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1507         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1508         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1509         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1510
1511         /* Allow allocations only from the originally specified zones. */
1512         result |= zoneflags;
1513
1514         /*
1515          * Minimize the result gfp by taking the union with the deny flags,
1516          * and the intersection of the allow flags.
1517          */
1518         result |= (limit_gfp & denyflags);
1519         result |= (huge_gfp & limit_gfp) & allowflags;
1520
1521         return result;
1522 }
1523
1524 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1525                 struct shmem_inode_info *info, pgoff_t index)
1526 {
1527         struct vm_area_struct pvma;
1528         struct address_space *mapping = info->vfs_inode.i_mapping;
1529         pgoff_t hindex;
1530         struct page *page;
1531
1532         hindex = round_down(index, HPAGE_PMD_NR);
1533         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1534                                                                 XA_PRESENT))
1535                 return NULL;
1536
1537         shmem_pseudo_vma_init(&pvma, info, hindex);
1538         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1539         shmem_pseudo_vma_destroy(&pvma);
1540         if (page)
1541                 prep_transhuge_page(page);
1542         else
1543                 count_vm_event(THP_FILE_FALLBACK);
1544         return page;
1545 }
1546
1547 static struct page *shmem_alloc_page(gfp_t gfp,
1548                         struct shmem_inode_info *info, pgoff_t index)
1549 {
1550         struct vm_area_struct pvma;
1551         struct page *page;
1552
1553         shmem_pseudo_vma_init(&pvma, info, index);
1554         page = alloc_page_vma(gfp, &pvma, 0);
1555         shmem_pseudo_vma_destroy(&pvma);
1556
1557         return page;
1558 }
1559
1560 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1561                 struct inode *inode,
1562                 pgoff_t index, bool huge)
1563 {
1564         struct shmem_inode_info *info = SHMEM_I(inode);
1565         struct page *page;
1566         int nr;
1567         int err = -ENOSPC;
1568
1569         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1570                 huge = false;
1571         nr = huge ? HPAGE_PMD_NR : 1;
1572
1573         if (!shmem_inode_acct_block(inode, nr))
1574                 goto failed;
1575
1576         if (huge)
1577                 page = shmem_alloc_hugepage(gfp, info, index);
1578         else
1579                 page = shmem_alloc_page(gfp, info, index);
1580         if (page) {
1581                 __SetPageLocked(page);
1582                 __SetPageSwapBacked(page);
1583                 return page;
1584         }
1585
1586         err = -ENOMEM;
1587         shmem_inode_unacct_blocks(inode, nr);
1588 failed:
1589         return ERR_PTR(err);
1590 }
1591
1592 /*
1593  * When a page is moved from swapcache to shmem filecache (either by the
1594  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1595  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1596  * ignorance of the mapping it belongs to.  If that mapping has special
1597  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1598  * we may need to copy to a suitable page before moving to filecache.
1599  *
1600  * In a future release, this may well be extended to respect cpuset and
1601  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1602  * but for now it is a simple matter of zone.
1603  */
1604 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1605 {
1606         return page_zonenum(page) > gfp_zone(gfp);
1607 }
1608
1609 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1610                                 struct shmem_inode_info *info, pgoff_t index)
1611 {
1612         struct page *oldpage, *newpage;
1613         struct folio *old, *new;
1614         struct address_space *swap_mapping;
1615         swp_entry_t entry;
1616         pgoff_t swap_index;
1617         int error;
1618
1619         oldpage = *pagep;
1620         entry.val = page_private(oldpage);
1621         swap_index = swp_offset(entry);
1622         swap_mapping = page_mapping(oldpage);
1623
1624         /*
1625          * We have arrived here because our zones are constrained, so don't
1626          * limit chance of success by further cpuset and node constraints.
1627          */
1628         gfp &= ~GFP_CONSTRAINT_MASK;
1629         newpage = shmem_alloc_page(gfp, info, index);
1630         if (!newpage)
1631                 return -ENOMEM;
1632
1633         get_page(newpage);
1634         copy_highpage(newpage, oldpage);
1635         flush_dcache_page(newpage);
1636
1637         __SetPageLocked(newpage);
1638         __SetPageSwapBacked(newpage);
1639         SetPageUptodate(newpage);
1640         set_page_private(newpage, entry.val);
1641         SetPageSwapCache(newpage);
1642
1643         /*
1644          * Our caller will very soon move newpage out of swapcache, but it's
1645          * a nice clean interface for us to replace oldpage by newpage there.
1646          */
1647         xa_lock_irq(&swap_mapping->i_pages);
1648         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1649         if (!error) {
1650                 old = page_folio(oldpage);
1651                 new = page_folio(newpage);
1652                 mem_cgroup_migrate(old, new);
1653                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1654                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1655         }
1656         xa_unlock_irq(&swap_mapping->i_pages);
1657
1658         if (unlikely(error)) {
1659                 /*
1660                  * Is this possible?  I think not, now that our callers check
1661                  * both PageSwapCache and page_private after getting page lock;
1662                  * but be defensive.  Reverse old to newpage for clear and free.
1663                  */
1664                 oldpage = newpage;
1665         } else {
1666                 lru_cache_add(newpage);
1667                 *pagep = newpage;
1668         }
1669
1670         ClearPageSwapCache(oldpage);
1671         set_page_private(oldpage, 0);
1672
1673         unlock_page(oldpage);
1674         put_page(oldpage);
1675         put_page(oldpage);
1676         return error;
1677 }
1678
1679 /*
1680  * Swap in the page pointed to by *pagep.
1681  * Caller has to make sure that *pagep contains a valid swapped page.
1682  * Returns 0 and the page in pagep if success. On failure, returns the
1683  * error code and NULL in *pagep.
1684  */
1685 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1686                              struct page **pagep, enum sgp_type sgp,
1687                              gfp_t gfp, struct vm_area_struct *vma,
1688                              vm_fault_t *fault_type)
1689 {
1690         struct address_space *mapping = inode->i_mapping;
1691         struct shmem_inode_info *info = SHMEM_I(inode);
1692         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1693         struct page *page;
1694         swp_entry_t swap;
1695         int error;
1696
1697         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1698         swap = radix_to_swp_entry(*pagep);
1699         *pagep = NULL;
1700
1701         /* Look it up and read it in.. */
1702         page = lookup_swap_cache(swap, NULL, 0);
1703         if (!page) {
1704                 /* Or update major stats only when swapin succeeds?? */
1705                 if (fault_type) {
1706                         *fault_type |= VM_FAULT_MAJOR;
1707                         count_vm_event(PGMAJFAULT);
1708                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1709                 }
1710                 /* Here we actually start the io */
1711                 page = shmem_swapin(swap, gfp, info, index);
1712                 if (!page) {
1713                         error = -ENOMEM;
1714                         goto failed;
1715                 }
1716         }
1717
1718         /* We have to do this with page locked to prevent races */
1719         lock_page(page);
1720         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1721             !shmem_confirm_swap(mapping, index, swap)) {
1722                 error = -EEXIST;
1723                 goto unlock;
1724         }
1725         if (!PageUptodate(page)) {
1726                 error = -EIO;
1727                 goto failed;
1728         }
1729         wait_on_page_writeback(page);
1730
1731         /*
1732          * Some architectures may have to restore extra metadata to the
1733          * physical page after reading from swap.
1734          */
1735         arch_swap_restore(swap, page);
1736
1737         if (shmem_should_replace_page(page, gfp)) {
1738                 error = shmem_replace_page(&page, gfp, info, index);
1739                 if (error)
1740                         goto failed;
1741         }
1742
1743         error = shmem_add_to_page_cache(page, mapping, index,
1744                                         swp_to_radix_entry(swap), gfp,
1745                                         charge_mm);
1746         if (error)
1747                 goto failed;
1748
1749         spin_lock_irq(&info->lock);
1750         info->swapped--;
1751         shmem_recalc_inode(inode);
1752         spin_unlock_irq(&info->lock);
1753
1754         if (sgp == SGP_WRITE)
1755                 mark_page_accessed(page);
1756
1757         delete_from_swap_cache(page);
1758         set_page_dirty(page);
1759         swap_free(swap);
1760
1761         *pagep = page;
1762         return 0;
1763 failed:
1764         if (!shmem_confirm_swap(mapping, index, swap))
1765                 error = -EEXIST;
1766 unlock:
1767         if (page) {
1768                 unlock_page(page);
1769                 put_page(page);
1770         }
1771
1772         return error;
1773 }
1774
1775 /*
1776  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777  *
1778  * If we allocate a new one we do not mark it dirty. That's up to the
1779  * vm. If we swap it in we mark it dirty since we also free the swap
1780  * entry since a page cannot live in both the swap and page cache.
1781  *
1782  * vma, vmf, and fault_type are only supplied by shmem_fault:
1783  * otherwise they are NULL.
1784  */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787         struct vm_area_struct *vma, struct vm_fault *vmf,
1788                         vm_fault_t *fault_type)
1789 {
1790         struct address_space *mapping = inode->i_mapping;
1791         struct shmem_inode_info *info = SHMEM_I(inode);
1792         struct shmem_sb_info *sbinfo;
1793         struct mm_struct *charge_mm;
1794         struct page *page;
1795         pgoff_t hindex = index;
1796         gfp_t huge_gfp;
1797         int error;
1798         int once = 0;
1799         int alloced = 0;
1800
1801         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802                 return -EFBIG;
1803 repeat:
1804         if (sgp <= SGP_CACHE &&
1805             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806                 return -EINVAL;
1807         }
1808
1809         sbinfo = SHMEM_SB(inode->i_sb);
1810         charge_mm = vma ? vma->vm_mm : NULL;
1811
1812         page = pagecache_get_page(mapping, index,
1813                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1814
1815         if (page && vma && userfaultfd_minor(vma)) {
1816                 if (!xa_is_value(page)) {
1817                         unlock_page(page);
1818                         put_page(page);
1819                 }
1820                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1821                 return 0;
1822         }
1823
1824         if (xa_is_value(page)) {
1825                 error = shmem_swapin_page(inode, index, &page,
1826                                           sgp, gfp, vma, fault_type);
1827                 if (error == -EEXIST)
1828                         goto repeat;
1829
1830                 *pagep = page;
1831                 return error;
1832         }
1833
1834         if (page) {
1835                 hindex = page->index;
1836                 if (sgp == SGP_WRITE)
1837                         mark_page_accessed(page);
1838                 if (PageUptodate(page))
1839                         goto out;
1840                 /* fallocated page */
1841                 if (sgp != SGP_READ)
1842                         goto clear;
1843                 unlock_page(page);
1844                 put_page(page);
1845         }
1846
1847         /*
1848          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1849          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1850          */
1851         *pagep = NULL;
1852         if (sgp == SGP_READ)
1853                 return 0;
1854         if (sgp == SGP_NOALLOC)
1855                 return -ENOENT;
1856
1857         /*
1858          * Fast cache lookup and swap lookup did not find it: allocate.
1859          */
1860
1861         if (vma && userfaultfd_missing(vma)) {
1862                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1863                 return 0;
1864         }
1865
1866         if (!shmem_is_huge(vma, inode, index))
1867                 goto alloc_nohuge;
1868
1869         huge_gfp = vma_thp_gfp_mask(vma);
1870         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1871         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1872         if (IS_ERR(page)) {
1873 alloc_nohuge:
1874                 page = shmem_alloc_and_acct_page(gfp, inode,
1875                                                  index, false);
1876         }
1877         if (IS_ERR(page)) {
1878                 int retry = 5;
1879
1880                 error = PTR_ERR(page);
1881                 page = NULL;
1882                 if (error != -ENOSPC)
1883                         goto unlock;
1884                 /*
1885                  * Try to reclaim some space by splitting a huge page
1886                  * beyond i_size on the filesystem.
1887                  */
1888                 while (retry--) {
1889                         int ret;
1890
1891                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1892                         if (ret == SHRINK_STOP)
1893                                 break;
1894                         if (ret)
1895                                 goto alloc_nohuge;
1896                 }
1897                 goto unlock;
1898         }
1899
1900         if (PageTransHuge(page))
1901                 hindex = round_down(index, HPAGE_PMD_NR);
1902         else
1903                 hindex = index;
1904
1905         if (sgp == SGP_WRITE)
1906                 __SetPageReferenced(page);
1907
1908         error = shmem_add_to_page_cache(page, mapping, hindex,
1909                                         NULL, gfp & GFP_RECLAIM_MASK,
1910                                         charge_mm);
1911         if (error)
1912                 goto unacct;
1913         lru_cache_add(page);
1914
1915         spin_lock_irq(&info->lock);
1916         info->alloced += compound_nr(page);
1917         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1918         shmem_recalc_inode(inode);
1919         spin_unlock_irq(&info->lock);
1920         alloced = true;
1921
1922         if (PageTransHuge(page) &&
1923             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1924                         hindex + HPAGE_PMD_NR - 1) {
1925                 /*
1926                  * Part of the huge page is beyond i_size: subject
1927                  * to shrink under memory pressure.
1928                  */
1929                 spin_lock(&sbinfo->shrinklist_lock);
1930                 /*
1931                  * _careful to defend against unlocked access to
1932                  * ->shrink_list in shmem_unused_huge_shrink()
1933                  */
1934                 if (list_empty_careful(&info->shrinklist)) {
1935                         list_add_tail(&info->shrinklist,
1936                                       &sbinfo->shrinklist);
1937                         sbinfo->shrinklist_len++;
1938                 }
1939                 spin_unlock(&sbinfo->shrinklist_lock);
1940         }
1941
1942         /*
1943          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1944          */
1945         if (sgp == SGP_FALLOC)
1946                 sgp = SGP_WRITE;
1947 clear:
1948         /*
1949          * Let SGP_WRITE caller clear ends if write does not fill page;
1950          * but SGP_FALLOC on a page fallocated earlier must initialize
1951          * it now, lest undo on failure cancel our earlier guarantee.
1952          */
1953         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1954                 int i;
1955
1956                 for (i = 0; i < compound_nr(page); i++) {
1957                         clear_highpage(page + i);
1958                         flush_dcache_page(page + i);
1959                 }
1960                 SetPageUptodate(page);
1961         }
1962
1963         /* Perhaps the file has been truncated since we checked */
1964         if (sgp <= SGP_CACHE &&
1965             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1966                 if (alloced) {
1967                         ClearPageDirty(page);
1968                         delete_from_page_cache(page);
1969                         spin_lock_irq(&info->lock);
1970                         shmem_recalc_inode(inode);
1971                         spin_unlock_irq(&info->lock);
1972                 }
1973                 error = -EINVAL;
1974                 goto unlock;
1975         }
1976 out:
1977         *pagep = page + index - hindex;
1978         return 0;
1979
1980         /*
1981          * Error recovery.
1982          */
1983 unacct:
1984         shmem_inode_unacct_blocks(inode, compound_nr(page));
1985
1986         if (PageTransHuge(page)) {
1987                 unlock_page(page);
1988                 put_page(page);
1989                 goto alloc_nohuge;
1990         }
1991 unlock:
1992         if (page) {
1993                 unlock_page(page);
1994                 put_page(page);
1995         }
1996         if (error == -ENOSPC && !once++) {
1997                 spin_lock_irq(&info->lock);
1998                 shmem_recalc_inode(inode);
1999                 spin_unlock_irq(&info->lock);
2000                 goto repeat;
2001         }
2002         if (error == -EEXIST)
2003                 goto repeat;
2004         return error;
2005 }
2006
2007 /*
2008  * This is like autoremove_wake_function, but it removes the wait queue
2009  * entry unconditionally - even if something else had already woken the
2010  * target.
2011  */
2012 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2013 {
2014         int ret = default_wake_function(wait, mode, sync, key);
2015         list_del_init(&wait->entry);
2016         return ret;
2017 }
2018
2019 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2020 {
2021         struct vm_area_struct *vma = vmf->vma;
2022         struct inode *inode = file_inode(vma->vm_file);
2023         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2024         int err;
2025         vm_fault_t ret = VM_FAULT_LOCKED;
2026
2027         /*
2028          * Trinity finds that probing a hole which tmpfs is punching can
2029          * prevent the hole-punch from ever completing: which in turn
2030          * locks writers out with its hold on i_rwsem.  So refrain from
2031          * faulting pages into the hole while it's being punched.  Although
2032          * shmem_undo_range() does remove the additions, it may be unable to
2033          * keep up, as each new page needs its own unmap_mapping_range() call,
2034          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2035          *
2036          * It does not matter if we sometimes reach this check just before the
2037          * hole-punch begins, so that one fault then races with the punch:
2038          * we just need to make racing faults a rare case.
2039          *
2040          * The implementation below would be much simpler if we just used a
2041          * standard mutex or completion: but we cannot take i_rwsem in fault,
2042          * and bloating every shmem inode for this unlikely case would be sad.
2043          */
2044         if (unlikely(inode->i_private)) {
2045                 struct shmem_falloc *shmem_falloc;
2046
2047                 spin_lock(&inode->i_lock);
2048                 shmem_falloc = inode->i_private;
2049                 if (shmem_falloc &&
2050                     shmem_falloc->waitq &&
2051                     vmf->pgoff >= shmem_falloc->start &&
2052                     vmf->pgoff < shmem_falloc->next) {
2053                         struct file *fpin;
2054                         wait_queue_head_t *shmem_falloc_waitq;
2055                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2056
2057                         ret = VM_FAULT_NOPAGE;
2058                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2059                         if (fpin)
2060                                 ret = VM_FAULT_RETRY;
2061
2062                         shmem_falloc_waitq = shmem_falloc->waitq;
2063                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2064                                         TASK_UNINTERRUPTIBLE);
2065                         spin_unlock(&inode->i_lock);
2066                         schedule();
2067
2068                         /*
2069                          * shmem_falloc_waitq points into the shmem_fallocate()
2070                          * stack of the hole-punching task: shmem_falloc_waitq
2071                          * is usually invalid by the time we reach here, but
2072                          * finish_wait() does not dereference it in that case;
2073                          * though i_lock needed lest racing with wake_up_all().
2074                          */
2075                         spin_lock(&inode->i_lock);
2076                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2077                         spin_unlock(&inode->i_lock);
2078
2079                         if (fpin)
2080                                 fput(fpin);
2081                         return ret;
2082                 }
2083                 spin_unlock(&inode->i_lock);
2084         }
2085
2086         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2087                                   gfp, vma, vmf, &ret);
2088         if (err)
2089                 return vmf_error(err);
2090         return ret;
2091 }
2092
2093 unsigned long shmem_get_unmapped_area(struct file *file,
2094                                       unsigned long uaddr, unsigned long len,
2095                                       unsigned long pgoff, unsigned long flags)
2096 {
2097         unsigned long (*get_area)(struct file *,
2098                 unsigned long, unsigned long, unsigned long, unsigned long);
2099         unsigned long addr;
2100         unsigned long offset;
2101         unsigned long inflated_len;
2102         unsigned long inflated_addr;
2103         unsigned long inflated_offset;
2104
2105         if (len > TASK_SIZE)
2106                 return -ENOMEM;
2107
2108         get_area = current->mm->get_unmapped_area;
2109         addr = get_area(file, uaddr, len, pgoff, flags);
2110
2111         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2112                 return addr;
2113         if (IS_ERR_VALUE(addr))
2114                 return addr;
2115         if (addr & ~PAGE_MASK)
2116                 return addr;
2117         if (addr > TASK_SIZE - len)
2118                 return addr;
2119
2120         if (shmem_huge == SHMEM_HUGE_DENY)
2121                 return addr;
2122         if (len < HPAGE_PMD_SIZE)
2123                 return addr;
2124         if (flags & MAP_FIXED)
2125                 return addr;
2126         /*
2127          * Our priority is to support MAP_SHARED mapped hugely;
2128          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2129          * But if caller specified an address hint and we allocated area there
2130          * successfully, respect that as before.
2131          */
2132         if (uaddr == addr)
2133                 return addr;
2134
2135         if (shmem_huge != SHMEM_HUGE_FORCE) {
2136                 struct super_block *sb;
2137
2138                 if (file) {
2139                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2140                         sb = file_inode(file)->i_sb;
2141                 } else {
2142                         /*
2143                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2144                          * for "/dev/zero", to create a shared anonymous object.
2145                          */
2146                         if (IS_ERR(shm_mnt))
2147                                 return addr;
2148                         sb = shm_mnt->mnt_sb;
2149                 }
2150                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2151                         return addr;
2152         }
2153
2154         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2155         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2156                 return addr;
2157         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2158                 return addr;
2159
2160         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2161         if (inflated_len > TASK_SIZE)
2162                 return addr;
2163         if (inflated_len < len)
2164                 return addr;
2165
2166         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2167         if (IS_ERR_VALUE(inflated_addr))
2168                 return addr;
2169         if (inflated_addr & ~PAGE_MASK)
2170                 return addr;
2171
2172         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2173         inflated_addr += offset - inflated_offset;
2174         if (inflated_offset > offset)
2175                 inflated_addr += HPAGE_PMD_SIZE;
2176
2177         if (inflated_addr > TASK_SIZE - len)
2178                 return addr;
2179         return inflated_addr;
2180 }
2181
2182 #ifdef CONFIG_NUMA
2183 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2184 {
2185         struct inode *inode = file_inode(vma->vm_file);
2186         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2187 }
2188
2189 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2190                                           unsigned long addr)
2191 {
2192         struct inode *inode = file_inode(vma->vm_file);
2193         pgoff_t index;
2194
2195         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2196         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2197 }
2198 #endif
2199
2200 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2201 {
2202         struct inode *inode = file_inode(file);
2203         struct shmem_inode_info *info = SHMEM_I(inode);
2204         int retval = -ENOMEM;
2205
2206         /*
2207          * What serializes the accesses to info->flags?
2208          * ipc_lock_object() when called from shmctl_do_lock(),
2209          * no serialization needed when called from shm_destroy().
2210          */
2211         if (lock && !(info->flags & VM_LOCKED)) {
2212                 if (!user_shm_lock(inode->i_size, ucounts))
2213                         goto out_nomem;
2214                 info->flags |= VM_LOCKED;
2215                 mapping_set_unevictable(file->f_mapping);
2216         }
2217         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2218                 user_shm_unlock(inode->i_size, ucounts);
2219                 info->flags &= ~VM_LOCKED;
2220                 mapping_clear_unevictable(file->f_mapping);
2221         }
2222         retval = 0;
2223
2224 out_nomem:
2225         return retval;
2226 }
2227
2228 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2229 {
2230         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2231         int ret;
2232
2233         ret = seal_check_future_write(info->seals, vma);
2234         if (ret)
2235                 return ret;
2236
2237         /* arm64 - allow memory tagging on RAM-based files */
2238         vma->vm_flags |= VM_MTE_ALLOWED;
2239
2240         file_accessed(file);
2241         vma->vm_ops = &shmem_vm_ops;
2242         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2243                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2244                         (vma->vm_end & HPAGE_PMD_MASK)) {
2245                 khugepaged_enter(vma, vma->vm_flags);
2246         }
2247         return 0;
2248 }
2249
2250 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2251                                      umode_t mode, dev_t dev, unsigned long flags)
2252 {
2253         struct inode *inode;
2254         struct shmem_inode_info *info;
2255         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2256         ino_t ino;
2257
2258         if (shmem_reserve_inode(sb, &ino))
2259                 return NULL;
2260
2261         inode = new_inode(sb);
2262         if (inode) {
2263                 inode->i_ino = ino;
2264                 inode_init_owner(&init_user_ns, inode, dir, mode);
2265                 inode->i_blocks = 0;
2266                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2267                 inode->i_generation = prandom_u32();
2268                 info = SHMEM_I(inode);
2269                 memset(info, 0, (char *)inode - (char *)info);
2270                 spin_lock_init(&info->lock);
2271                 atomic_set(&info->stop_eviction, 0);
2272                 info->seals = F_SEAL_SEAL;
2273                 info->flags = flags & VM_NORESERVE;
2274                 info->i_crtime = inode->i_mtime;
2275                 INIT_LIST_HEAD(&info->shrinklist);
2276                 INIT_LIST_HEAD(&info->swaplist);
2277                 simple_xattrs_init(&info->xattrs);
2278                 cache_no_acl(inode);
2279                 mapping_set_large_folios(inode->i_mapping);
2280
2281                 switch (mode & S_IFMT) {
2282                 default:
2283                         inode->i_op = &shmem_special_inode_operations;
2284                         init_special_inode(inode, mode, dev);
2285                         break;
2286                 case S_IFREG:
2287                         inode->i_mapping->a_ops = &shmem_aops;
2288                         inode->i_op = &shmem_inode_operations;
2289                         inode->i_fop = &shmem_file_operations;
2290                         mpol_shared_policy_init(&info->policy,
2291                                                  shmem_get_sbmpol(sbinfo));
2292                         break;
2293                 case S_IFDIR:
2294                         inc_nlink(inode);
2295                         /* Some things misbehave if size == 0 on a directory */
2296                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2297                         inode->i_op = &shmem_dir_inode_operations;
2298                         inode->i_fop = &simple_dir_operations;
2299                         break;
2300                 case S_IFLNK:
2301                         /*
2302                          * Must not load anything in the rbtree,
2303                          * mpol_free_shared_policy will not be called.
2304                          */
2305                         mpol_shared_policy_init(&info->policy, NULL);
2306                         break;
2307                 }
2308
2309                 lockdep_annotate_inode_mutex_key(inode);
2310         } else
2311                 shmem_free_inode(sb);
2312         return inode;
2313 }
2314
2315 #ifdef CONFIG_USERFAULTFD
2316 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2317                            pmd_t *dst_pmd,
2318                            struct vm_area_struct *dst_vma,
2319                            unsigned long dst_addr,
2320                            unsigned long src_addr,
2321                            bool zeropage,
2322                            struct page **pagep)
2323 {
2324         struct inode *inode = file_inode(dst_vma->vm_file);
2325         struct shmem_inode_info *info = SHMEM_I(inode);
2326         struct address_space *mapping = inode->i_mapping;
2327         gfp_t gfp = mapping_gfp_mask(mapping);
2328         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2329         void *page_kaddr;
2330         struct page *page;
2331         int ret;
2332         pgoff_t max_off;
2333
2334         if (!shmem_inode_acct_block(inode, 1)) {
2335                 /*
2336                  * We may have got a page, returned -ENOENT triggering a retry,
2337                  * and now we find ourselves with -ENOMEM. Release the page, to
2338                  * avoid a BUG_ON in our caller.
2339                  */
2340                 if (unlikely(*pagep)) {
2341                         put_page(*pagep);
2342                         *pagep = NULL;
2343                 }
2344                 return -ENOMEM;
2345         }
2346
2347         if (!*pagep) {
2348                 ret = -ENOMEM;
2349                 page = shmem_alloc_page(gfp, info, pgoff);
2350                 if (!page)
2351                         goto out_unacct_blocks;
2352
2353                 if (!zeropage) {        /* COPY */
2354                         page_kaddr = kmap_atomic(page);
2355                         ret = copy_from_user(page_kaddr,
2356                                              (const void __user *)src_addr,
2357                                              PAGE_SIZE);
2358                         kunmap_atomic(page_kaddr);
2359
2360                         /* fallback to copy_from_user outside mmap_lock */
2361                         if (unlikely(ret)) {
2362                                 *pagep = page;
2363                                 ret = -ENOENT;
2364                                 /* don't free the page */
2365                                 goto out_unacct_blocks;
2366                         }
2367                 } else {                /* ZEROPAGE */
2368                         clear_highpage(page);
2369                 }
2370         } else {
2371                 page = *pagep;
2372                 *pagep = NULL;
2373         }
2374
2375         VM_BUG_ON(PageLocked(page));
2376         VM_BUG_ON(PageSwapBacked(page));
2377         __SetPageLocked(page);
2378         __SetPageSwapBacked(page);
2379         __SetPageUptodate(page);
2380
2381         ret = -EFAULT;
2382         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2383         if (unlikely(pgoff >= max_off))
2384                 goto out_release;
2385
2386         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2387                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2388         if (ret)
2389                 goto out_release;
2390
2391         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2392                                        page, true, false);
2393         if (ret)
2394                 goto out_delete_from_cache;
2395
2396         spin_lock_irq(&info->lock);
2397         info->alloced++;
2398         inode->i_blocks += BLOCKS_PER_PAGE;
2399         shmem_recalc_inode(inode);
2400         spin_unlock_irq(&info->lock);
2401
2402         unlock_page(page);
2403         return 0;
2404 out_delete_from_cache:
2405         delete_from_page_cache(page);
2406 out_release:
2407         unlock_page(page);
2408         put_page(page);
2409 out_unacct_blocks:
2410         shmem_inode_unacct_blocks(inode, 1);
2411         return ret;
2412 }
2413 #endif /* CONFIG_USERFAULTFD */
2414
2415 #ifdef CONFIG_TMPFS
2416 static const struct inode_operations shmem_symlink_inode_operations;
2417 static const struct inode_operations shmem_short_symlink_operations;
2418
2419 #ifdef CONFIG_TMPFS_XATTR
2420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2421 #else
2422 #define shmem_initxattrs NULL
2423 #endif
2424
2425 static int
2426 shmem_write_begin(struct file *file, struct address_space *mapping,
2427                         loff_t pos, unsigned len, unsigned flags,
2428                         struct page **pagep, void **fsdata)
2429 {
2430         struct inode *inode = mapping->host;
2431         struct shmem_inode_info *info = SHMEM_I(inode);
2432         pgoff_t index = pos >> PAGE_SHIFT;
2433         int ret = 0;
2434
2435         /* i_rwsem is held by caller */
2436         if (unlikely(info->seals & (F_SEAL_GROW |
2437                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2438                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2439                         return -EPERM;
2440                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2441                         return -EPERM;
2442         }
2443
2444         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2445
2446         if (ret)
2447                 return ret;
2448
2449         if (PageHWPoison(*pagep)) {
2450                 unlock_page(*pagep);
2451                 put_page(*pagep);
2452                 *pagep = NULL;
2453                 return -EIO;
2454         }
2455
2456         return 0;
2457 }
2458
2459 static int
2460 shmem_write_end(struct file *file, struct address_space *mapping,
2461                         loff_t pos, unsigned len, unsigned copied,
2462                         struct page *page, void *fsdata)
2463 {
2464         struct inode *inode = mapping->host;
2465
2466         if (pos + copied > inode->i_size)
2467                 i_size_write(inode, pos + copied);
2468
2469         if (!PageUptodate(page)) {
2470                 struct page *head = compound_head(page);
2471                 if (PageTransCompound(page)) {
2472                         int i;
2473
2474                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2475                                 if (head + i == page)
2476                                         continue;
2477                                 clear_highpage(head + i);
2478                                 flush_dcache_page(head + i);
2479                         }
2480                 }
2481                 if (copied < PAGE_SIZE) {
2482                         unsigned from = pos & (PAGE_SIZE - 1);
2483                         zero_user_segments(page, 0, from,
2484                                         from + copied, PAGE_SIZE);
2485                 }
2486                 SetPageUptodate(head);
2487         }
2488         set_page_dirty(page);
2489         unlock_page(page);
2490         put_page(page);
2491
2492         return copied;
2493 }
2494
2495 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2496 {
2497         struct file *file = iocb->ki_filp;
2498         struct inode *inode = file_inode(file);
2499         struct address_space *mapping = inode->i_mapping;
2500         pgoff_t index;
2501         unsigned long offset;
2502         int error = 0;
2503         ssize_t retval = 0;
2504         loff_t *ppos = &iocb->ki_pos;
2505
2506         index = *ppos >> PAGE_SHIFT;
2507         offset = *ppos & ~PAGE_MASK;
2508
2509         for (;;) {
2510                 struct page *page = NULL;
2511                 pgoff_t end_index;
2512                 unsigned long nr, ret;
2513                 loff_t i_size = i_size_read(inode);
2514                 bool got_page;
2515
2516                 end_index = i_size >> PAGE_SHIFT;
2517                 if (index > end_index)
2518                         break;
2519                 if (index == end_index) {
2520                         nr = i_size & ~PAGE_MASK;
2521                         if (nr <= offset)
2522                                 break;
2523                 }
2524
2525                 error = shmem_getpage(inode, index, &page, SGP_READ);
2526                 if (error) {
2527                         if (error == -EINVAL)
2528                                 error = 0;
2529                         break;
2530                 }
2531                 if (page) {
2532                         unlock_page(page);
2533
2534                         if (PageHWPoison(page)) {
2535                                 put_page(page);
2536                                 error = -EIO;
2537                                 break;
2538                         }
2539                 }
2540
2541                 /*
2542                  * We must evaluate after, since reads (unlike writes)
2543                  * are called without i_rwsem protection against truncate
2544                  */
2545                 nr = PAGE_SIZE;
2546                 i_size = i_size_read(inode);
2547                 end_index = i_size >> PAGE_SHIFT;
2548                 if (index == end_index) {
2549                         nr = i_size & ~PAGE_MASK;
2550                         if (nr <= offset) {
2551                                 if (page)
2552                                         put_page(page);
2553                                 break;
2554                         }
2555                 }
2556                 nr -= offset;
2557
2558                 if (page) {
2559                         /*
2560                          * If users can be writing to this page using arbitrary
2561                          * virtual addresses, take care about potential aliasing
2562                          * before reading the page on the kernel side.
2563                          */
2564                         if (mapping_writably_mapped(mapping))
2565                                 flush_dcache_page(page);
2566                         /*
2567                          * Mark the page accessed if we read the beginning.
2568                          */
2569                         if (!offset)
2570                                 mark_page_accessed(page);
2571                         got_page = true;
2572                 } else {
2573                         page = ZERO_PAGE(0);
2574                         got_page = false;
2575                 }
2576
2577                 /*
2578                  * Ok, we have the page, and it's up-to-date, so
2579                  * now we can copy it to user space...
2580                  */
2581                 ret = copy_page_to_iter(page, offset, nr, to);
2582                 retval += ret;
2583                 offset += ret;
2584                 index += offset >> PAGE_SHIFT;
2585                 offset &= ~PAGE_MASK;
2586
2587                 if (got_page)
2588                         put_page(page);
2589                 if (!iov_iter_count(to))
2590                         break;
2591                 if (ret < nr) {
2592                         error = -EFAULT;
2593                         break;
2594                 }
2595                 cond_resched();
2596         }
2597
2598         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2599         file_accessed(file);
2600         return retval ? retval : error;
2601 }
2602
2603 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2604 {
2605         struct address_space *mapping = file->f_mapping;
2606         struct inode *inode = mapping->host;
2607
2608         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2609                 return generic_file_llseek_size(file, offset, whence,
2610                                         MAX_LFS_FILESIZE, i_size_read(inode));
2611         if (offset < 0)
2612                 return -ENXIO;
2613
2614         inode_lock(inode);
2615         /* We're holding i_rwsem so we can access i_size directly */
2616         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2617         if (offset >= 0)
2618                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2619         inode_unlock(inode);
2620         return offset;
2621 }
2622
2623 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2624                                                          loff_t len)
2625 {
2626         struct inode *inode = file_inode(file);
2627         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2628         struct shmem_inode_info *info = SHMEM_I(inode);
2629         struct shmem_falloc shmem_falloc;
2630         pgoff_t start, index, end, undo_fallocend;
2631         int error;
2632
2633         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2634                 return -EOPNOTSUPP;
2635
2636         inode_lock(inode);
2637
2638         if (mode & FALLOC_FL_PUNCH_HOLE) {
2639                 struct address_space *mapping = file->f_mapping;
2640                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2641                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2642                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2643
2644                 /* protected by i_rwsem */
2645                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2646                         error = -EPERM;
2647                         goto out;
2648                 }
2649
2650                 shmem_falloc.waitq = &shmem_falloc_waitq;
2651                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2652                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2653                 spin_lock(&inode->i_lock);
2654                 inode->i_private = &shmem_falloc;
2655                 spin_unlock(&inode->i_lock);
2656
2657                 if ((u64)unmap_end > (u64)unmap_start)
2658                         unmap_mapping_range(mapping, unmap_start,
2659                                             1 + unmap_end - unmap_start, 0);
2660                 shmem_truncate_range(inode, offset, offset + len - 1);
2661                 /* No need to unmap again: hole-punching leaves COWed pages */
2662
2663                 spin_lock(&inode->i_lock);
2664                 inode->i_private = NULL;
2665                 wake_up_all(&shmem_falloc_waitq);
2666                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2667                 spin_unlock(&inode->i_lock);
2668                 error = 0;
2669                 goto out;
2670         }
2671
2672         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2673         error = inode_newsize_ok(inode, offset + len);
2674         if (error)
2675                 goto out;
2676
2677         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2678                 error = -EPERM;
2679                 goto out;
2680         }
2681
2682         start = offset >> PAGE_SHIFT;
2683         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2684         /* Try to avoid a swapstorm if len is impossible to satisfy */
2685         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2686                 error = -ENOSPC;
2687                 goto out;
2688         }
2689
2690         shmem_falloc.waitq = NULL;
2691         shmem_falloc.start = start;
2692         shmem_falloc.next  = start;
2693         shmem_falloc.nr_falloced = 0;
2694         shmem_falloc.nr_unswapped = 0;
2695         spin_lock(&inode->i_lock);
2696         inode->i_private = &shmem_falloc;
2697         spin_unlock(&inode->i_lock);
2698
2699         /*
2700          * info->fallocend is only relevant when huge pages might be
2701          * involved: to prevent split_huge_page() freeing fallocated
2702          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2703          */
2704         undo_fallocend = info->fallocend;
2705         if (info->fallocend < end)
2706                 info->fallocend = end;
2707
2708         for (index = start; index < end; ) {
2709                 struct page *page;
2710
2711                 /*
2712                  * Good, the fallocate(2) manpage permits EINTR: we may have
2713                  * been interrupted because we are using up too much memory.
2714                  */
2715                 if (signal_pending(current))
2716                         error = -EINTR;
2717                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2718                         error = -ENOMEM;
2719                 else
2720                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2721                 if (error) {
2722                         info->fallocend = undo_fallocend;
2723                         /* Remove the !PageUptodate pages we added */
2724                         if (index > start) {
2725                                 shmem_undo_range(inode,
2726                                     (loff_t)start << PAGE_SHIFT,
2727                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2728                         }
2729                         goto undone;
2730                 }
2731
2732                 index++;
2733                 /*
2734                  * Here is a more important optimization than it appears:
2735                  * a second SGP_FALLOC on the same huge page will clear it,
2736                  * making it PageUptodate and un-undoable if we fail later.
2737                  */
2738                 if (PageTransCompound(page)) {
2739                         index = round_up(index, HPAGE_PMD_NR);
2740                         /* Beware 32-bit wraparound */
2741                         if (!index)
2742                                 index--;
2743                 }
2744
2745                 /*
2746                  * Inform shmem_writepage() how far we have reached.
2747                  * No need for lock or barrier: we have the page lock.
2748                  */
2749                 if (!PageUptodate(page))
2750                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2751                 shmem_falloc.next = index;
2752
2753                 /*
2754                  * If !PageUptodate, leave it that way so that freeable pages
2755                  * can be recognized if we need to rollback on error later.
2756                  * But set_page_dirty so that memory pressure will swap rather
2757                  * than free the pages we are allocating (and SGP_CACHE pages
2758                  * might still be clean: we now need to mark those dirty too).
2759                  */
2760                 set_page_dirty(page);
2761                 unlock_page(page);
2762                 put_page(page);
2763                 cond_resched();
2764         }
2765
2766         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2767                 i_size_write(inode, offset + len);
2768         inode->i_ctime = current_time(inode);
2769 undone:
2770         spin_lock(&inode->i_lock);
2771         inode->i_private = NULL;
2772         spin_unlock(&inode->i_lock);
2773 out:
2774         inode_unlock(inode);
2775         return error;
2776 }
2777
2778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2779 {
2780         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2781
2782         buf->f_type = TMPFS_MAGIC;
2783         buf->f_bsize = PAGE_SIZE;
2784         buf->f_namelen = NAME_MAX;
2785         if (sbinfo->max_blocks) {
2786                 buf->f_blocks = sbinfo->max_blocks;
2787                 buf->f_bavail =
2788                 buf->f_bfree  = sbinfo->max_blocks -
2789                                 percpu_counter_sum(&sbinfo->used_blocks);
2790         }
2791         if (sbinfo->max_inodes) {
2792                 buf->f_files = sbinfo->max_inodes;
2793                 buf->f_ffree = sbinfo->free_inodes;
2794         }
2795         /* else leave those fields 0 like simple_statfs */
2796
2797         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2798
2799         return 0;
2800 }
2801
2802 /*
2803  * File creation. Allocate an inode, and we're done..
2804  */
2805 static int
2806 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2807             struct dentry *dentry, umode_t mode, dev_t dev)
2808 {
2809         struct inode *inode;
2810         int error = -ENOSPC;
2811
2812         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2813         if (inode) {
2814                 error = simple_acl_create(dir, inode);
2815                 if (error)
2816                         goto out_iput;
2817                 error = security_inode_init_security(inode, dir,
2818                                                      &dentry->d_name,
2819                                                      shmem_initxattrs, NULL);
2820                 if (error && error != -EOPNOTSUPP)
2821                         goto out_iput;
2822
2823                 error = 0;
2824                 dir->i_size += BOGO_DIRENT_SIZE;
2825                 dir->i_ctime = dir->i_mtime = current_time(dir);
2826                 d_instantiate(dentry, inode);
2827                 dget(dentry); /* Extra count - pin the dentry in core */
2828         }
2829         return error;
2830 out_iput:
2831         iput(inode);
2832         return error;
2833 }
2834
2835 static int
2836 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2837               struct dentry *dentry, umode_t mode)
2838 {
2839         struct inode *inode;
2840         int error = -ENOSPC;
2841
2842         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2843         if (inode) {
2844                 error = security_inode_init_security(inode, dir,
2845                                                      NULL,
2846                                                      shmem_initxattrs, NULL);
2847                 if (error && error != -EOPNOTSUPP)
2848                         goto out_iput;
2849                 error = simple_acl_create(dir, inode);
2850                 if (error)
2851                         goto out_iput;
2852                 d_tmpfile(dentry, inode);
2853         }
2854         return error;
2855 out_iput:
2856         iput(inode);
2857         return error;
2858 }
2859
2860 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2861                        struct dentry *dentry, umode_t mode)
2862 {
2863         int error;
2864
2865         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2866                                  mode | S_IFDIR, 0)))
2867                 return error;
2868         inc_nlink(dir);
2869         return 0;
2870 }
2871
2872 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2873                         struct dentry *dentry, umode_t mode, bool excl)
2874 {
2875         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2876 }
2877
2878 /*
2879  * Link a file..
2880  */
2881 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2882 {
2883         struct inode *inode = d_inode(old_dentry);
2884         int ret = 0;
2885
2886         /*
2887          * No ordinary (disk based) filesystem counts links as inodes;
2888          * but each new link needs a new dentry, pinning lowmem, and
2889          * tmpfs dentries cannot be pruned until they are unlinked.
2890          * But if an O_TMPFILE file is linked into the tmpfs, the
2891          * first link must skip that, to get the accounting right.
2892          */
2893         if (inode->i_nlink) {
2894                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2895                 if (ret)
2896                         goto out;
2897         }
2898
2899         dir->i_size += BOGO_DIRENT_SIZE;
2900         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2901         inc_nlink(inode);
2902         ihold(inode);   /* New dentry reference */
2903         dget(dentry);           /* Extra pinning count for the created dentry */
2904         d_instantiate(dentry, inode);
2905 out:
2906         return ret;
2907 }
2908
2909 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2910 {
2911         struct inode *inode = d_inode(dentry);
2912
2913         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2914                 shmem_free_inode(inode->i_sb);
2915
2916         dir->i_size -= BOGO_DIRENT_SIZE;
2917         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918         drop_nlink(inode);
2919         dput(dentry);   /* Undo the count from "create" - this does all the work */
2920         return 0;
2921 }
2922
2923 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2924 {
2925         if (!simple_empty(dentry))
2926                 return -ENOTEMPTY;
2927
2928         drop_nlink(d_inode(dentry));
2929         drop_nlink(dir);
2930         return shmem_unlink(dir, dentry);
2931 }
2932
2933 static int shmem_whiteout(struct user_namespace *mnt_userns,
2934                           struct inode *old_dir, struct dentry *old_dentry)
2935 {
2936         struct dentry *whiteout;
2937         int error;
2938
2939         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2940         if (!whiteout)
2941                 return -ENOMEM;
2942
2943         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2944                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2945         dput(whiteout);
2946         if (error)
2947                 return error;
2948
2949         /*
2950          * Cheat and hash the whiteout while the old dentry is still in
2951          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2952          *
2953          * d_lookup() will consistently find one of them at this point,
2954          * not sure which one, but that isn't even important.
2955          */
2956         d_rehash(whiteout);
2957         return 0;
2958 }
2959
2960 /*
2961  * The VFS layer already does all the dentry stuff for rename,
2962  * we just have to decrement the usage count for the target if
2963  * it exists so that the VFS layer correctly free's it when it
2964  * gets overwritten.
2965  */
2966 static int shmem_rename2(struct user_namespace *mnt_userns,
2967                          struct inode *old_dir, struct dentry *old_dentry,
2968                          struct inode *new_dir, struct dentry *new_dentry,
2969                          unsigned int flags)
2970 {
2971         struct inode *inode = d_inode(old_dentry);
2972         int they_are_dirs = S_ISDIR(inode->i_mode);
2973
2974         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2975                 return -EINVAL;
2976
2977         if (flags & RENAME_EXCHANGE)
2978                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2979
2980         if (!simple_empty(new_dentry))
2981                 return -ENOTEMPTY;
2982
2983         if (flags & RENAME_WHITEOUT) {
2984                 int error;
2985
2986                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2987                 if (error)
2988                         return error;
2989         }
2990
2991         if (d_really_is_positive(new_dentry)) {
2992                 (void) shmem_unlink(new_dir, new_dentry);
2993                 if (they_are_dirs) {
2994                         drop_nlink(d_inode(new_dentry));
2995                         drop_nlink(old_dir);
2996                 }
2997         } else if (they_are_dirs) {
2998                 drop_nlink(old_dir);
2999                 inc_nlink(new_dir);
3000         }
3001
3002         old_dir->i_size -= BOGO_DIRENT_SIZE;
3003         new_dir->i_size += BOGO_DIRENT_SIZE;
3004         old_dir->i_ctime = old_dir->i_mtime =
3005         new_dir->i_ctime = new_dir->i_mtime =
3006         inode->i_ctime = current_time(old_dir);
3007         return 0;
3008 }
3009
3010 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3011                          struct dentry *dentry, const char *symname)
3012 {
3013         int error;
3014         int len;
3015         struct inode *inode;
3016         struct page *page;
3017
3018         len = strlen(symname) + 1;
3019         if (len > PAGE_SIZE)
3020                 return -ENAMETOOLONG;
3021
3022         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3023                                 VM_NORESERVE);
3024         if (!inode)
3025                 return -ENOSPC;
3026
3027         error = security_inode_init_security(inode, dir, &dentry->d_name,
3028                                              shmem_initxattrs, NULL);
3029         if (error && error != -EOPNOTSUPP) {
3030                 iput(inode);
3031                 return error;
3032         }
3033
3034         inode->i_size = len-1;
3035         if (len <= SHORT_SYMLINK_LEN) {
3036                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3037                 if (!inode->i_link) {
3038                         iput(inode);
3039                         return -ENOMEM;
3040                 }
3041                 inode->i_op = &shmem_short_symlink_operations;
3042         } else {
3043                 inode_nohighmem(inode);
3044                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3045                 if (error) {
3046                         iput(inode);
3047                         return error;
3048                 }
3049                 inode->i_mapping->a_ops = &shmem_aops;
3050                 inode->i_op = &shmem_symlink_inode_operations;
3051                 memcpy(page_address(page), symname, len);
3052                 SetPageUptodate(page);
3053                 set_page_dirty(page);
3054                 unlock_page(page);
3055                 put_page(page);
3056         }
3057         dir->i_size += BOGO_DIRENT_SIZE;
3058         dir->i_ctime = dir->i_mtime = current_time(dir);
3059         d_instantiate(dentry, inode);
3060         dget(dentry);
3061         return 0;
3062 }
3063
3064 static void shmem_put_link(void *arg)
3065 {
3066         mark_page_accessed(arg);
3067         put_page(arg);
3068 }
3069
3070 static const char *shmem_get_link(struct dentry *dentry,
3071                                   struct inode *inode,
3072                                   struct delayed_call *done)
3073 {
3074         struct page *page = NULL;
3075         int error;
3076         if (!dentry) {
3077                 page = find_get_page(inode->i_mapping, 0);
3078                 if (!page)
3079                         return ERR_PTR(-ECHILD);
3080                 if (PageHWPoison(page) ||
3081                     !PageUptodate(page)) {
3082                         put_page(page);
3083                         return ERR_PTR(-ECHILD);
3084                 }
3085         } else {
3086                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3087                 if (error)
3088                         return ERR_PTR(error);
3089                 if (!page)
3090                         return ERR_PTR(-ECHILD);
3091                 if (PageHWPoison(page)) {
3092                         unlock_page(page);
3093                         put_page(page);
3094                         return ERR_PTR(-ECHILD);
3095                 }
3096                 unlock_page(page);
3097         }
3098         set_delayed_call(done, shmem_put_link, page);
3099         return page_address(page);
3100 }
3101
3102 #ifdef CONFIG_TMPFS_XATTR
3103 /*
3104  * Superblocks without xattr inode operations may get some security.* xattr
3105  * support from the LSM "for free". As soon as we have any other xattrs
3106  * like ACLs, we also need to implement the security.* handlers at
3107  * filesystem level, though.
3108  */
3109
3110 /*
3111  * Callback for security_inode_init_security() for acquiring xattrs.
3112  */
3113 static int shmem_initxattrs(struct inode *inode,
3114                             const struct xattr *xattr_array,
3115                             void *fs_info)
3116 {
3117         struct shmem_inode_info *info = SHMEM_I(inode);
3118         const struct xattr *xattr;
3119         struct simple_xattr *new_xattr;
3120         size_t len;
3121
3122         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3123                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3124                 if (!new_xattr)
3125                         return -ENOMEM;
3126
3127                 len = strlen(xattr->name) + 1;
3128                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3129                                           GFP_KERNEL);
3130                 if (!new_xattr->name) {
3131                         kvfree(new_xattr);
3132                         return -ENOMEM;
3133                 }
3134
3135                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3136                        XATTR_SECURITY_PREFIX_LEN);
3137                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3138                        xattr->name, len);
3139
3140                 simple_xattr_list_add(&info->xattrs, new_xattr);
3141         }
3142
3143         return 0;
3144 }
3145
3146 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3147                                    struct dentry *unused, struct inode *inode,
3148                                    const char *name, void *buffer, size_t size)
3149 {
3150         struct shmem_inode_info *info = SHMEM_I(inode);
3151
3152         name = xattr_full_name(handler, name);
3153         return simple_xattr_get(&info->xattrs, name, buffer, size);
3154 }
3155
3156 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3157                                    struct user_namespace *mnt_userns,
3158                                    struct dentry *unused, struct inode *inode,
3159                                    const char *name, const void *value,
3160                                    size_t size, int flags)
3161 {
3162         struct shmem_inode_info *info = SHMEM_I(inode);
3163
3164         name = xattr_full_name(handler, name);
3165         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3166 }
3167
3168 static const struct xattr_handler shmem_security_xattr_handler = {
3169         .prefix = XATTR_SECURITY_PREFIX,
3170         .get = shmem_xattr_handler_get,
3171         .set = shmem_xattr_handler_set,
3172 };
3173
3174 static const struct xattr_handler shmem_trusted_xattr_handler = {
3175         .prefix = XATTR_TRUSTED_PREFIX,
3176         .get = shmem_xattr_handler_get,
3177         .set = shmem_xattr_handler_set,
3178 };
3179
3180 static const struct xattr_handler *shmem_xattr_handlers[] = {
3181 #ifdef CONFIG_TMPFS_POSIX_ACL
3182         &posix_acl_access_xattr_handler,
3183         &posix_acl_default_xattr_handler,
3184 #endif
3185         &shmem_security_xattr_handler,
3186         &shmem_trusted_xattr_handler,
3187         NULL
3188 };
3189
3190 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3191 {
3192         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3193         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3194 }
3195 #endif /* CONFIG_TMPFS_XATTR */
3196
3197 static const struct inode_operations shmem_short_symlink_operations = {
3198         .getattr        = shmem_getattr,
3199         .get_link       = simple_get_link,
3200 #ifdef CONFIG_TMPFS_XATTR
3201         .listxattr      = shmem_listxattr,
3202 #endif
3203 };
3204
3205 static const struct inode_operations shmem_symlink_inode_operations = {
3206         .getattr        = shmem_getattr,
3207         .get_link       = shmem_get_link,
3208 #ifdef CONFIG_TMPFS_XATTR
3209         .listxattr      = shmem_listxattr,
3210 #endif
3211 };
3212
3213 static struct dentry *shmem_get_parent(struct dentry *child)
3214 {
3215         return ERR_PTR(-ESTALE);
3216 }
3217
3218 static int shmem_match(struct inode *ino, void *vfh)
3219 {
3220         __u32 *fh = vfh;
3221         __u64 inum = fh[2];
3222         inum = (inum << 32) | fh[1];
3223         return ino->i_ino == inum && fh[0] == ino->i_generation;
3224 }
3225
3226 /* Find any alias of inode, but prefer a hashed alias */
3227 static struct dentry *shmem_find_alias(struct inode *inode)
3228 {
3229         struct dentry *alias = d_find_alias(inode);
3230
3231         return alias ?: d_find_any_alias(inode);
3232 }
3233
3234
3235 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3236                 struct fid *fid, int fh_len, int fh_type)
3237 {
3238         struct inode *inode;
3239         struct dentry *dentry = NULL;
3240         u64 inum;
3241
3242         if (fh_len < 3)
3243                 return NULL;
3244
3245         inum = fid->raw[2];
3246         inum = (inum << 32) | fid->raw[1];
3247
3248         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3249                         shmem_match, fid->raw);
3250         if (inode) {
3251                 dentry = shmem_find_alias(inode);
3252                 iput(inode);
3253         }
3254
3255         return dentry;
3256 }
3257
3258 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3259                                 struct inode *parent)
3260 {
3261         if (*len < 3) {
3262                 *len = 3;
3263                 return FILEID_INVALID;
3264         }
3265
3266         if (inode_unhashed(inode)) {
3267                 /* Unfortunately insert_inode_hash is not idempotent,
3268                  * so as we hash inodes here rather than at creation
3269                  * time, we need a lock to ensure we only try
3270                  * to do it once
3271                  */
3272                 static DEFINE_SPINLOCK(lock);
3273                 spin_lock(&lock);
3274                 if (inode_unhashed(inode))
3275                         __insert_inode_hash(inode,
3276                                             inode->i_ino + inode->i_generation);
3277                 spin_unlock(&lock);
3278         }
3279
3280         fh[0] = inode->i_generation;
3281         fh[1] = inode->i_ino;
3282         fh[2] = ((__u64)inode->i_ino) >> 32;
3283
3284         *len = 3;
3285         return 1;
3286 }
3287
3288 static const struct export_operations shmem_export_ops = {
3289         .get_parent     = shmem_get_parent,
3290         .encode_fh      = shmem_encode_fh,
3291         .fh_to_dentry   = shmem_fh_to_dentry,
3292 };
3293
3294 enum shmem_param {
3295         Opt_gid,
3296         Opt_huge,
3297         Opt_mode,
3298         Opt_mpol,
3299         Opt_nr_blocks,
3300         Opt_nr_inodes,
3301         Opt_size,
3302         Opt_uid,
3303         Opt_inode32,
3304         Opt_inode64,
3305 };
3306
3307 static const struct constant_table shmem_param_enums_huge[] = {
3308         {"never",       SHMEM_HUGE_NEVER },
3309         {"always",      SHMEM_HUGE_ALWAYS },
3310         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3311         {"advise",      SHMEM_HUGE_ADVISE },
3312         {}
3313 };
3314
3315 const struct fs_parameter_spec shmem_fs_parameters[] = {
3316         fsparam_u32   ("gid",           Opt_gid),
3317         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3318         fsparam_u32oct("mode",          Opt_mode),
3319         fsparam_string("mpol",          Opt_mpol),
3320         fsparam_string("nr_blocks",     Opt_nr_blocks),
3321         fsparam_string("nr_inodes",     Opt_nr_inodes),
3322         fsparam_string("size",          Opt_size),
3323         fsparam_u32   ("uid",           Opt_uid),
3324         fsparam_flag  ("inode32",       Opt_inode32),
3325         fsparam_flag  ("inode64",       Opt_inode64),
3326         {}
3327 };
3328
3329 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3330 {
3331         struct shmem_options *ctx = fc->fs_private;
3332         struct fs_parse_result result;
3333         unsigned long long size;
3334         char *rest;
3335         int opt;
3336
3337         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3338         if (opt < 0)
3339                 return opt;
3340
3341         switch (opt) {
3342         case Opt_size:
3343                 size = memparse(param->string, &rest);
3344                 if (*rest == '%') {
3345                         size <<= PAGE_SHIFT;
3346                         size *= totalram_pages();
3347                         do_div(size, 100);
3348                         rest++;
3349                 }
3350                 if (*rest)
3351                         goto bad_value;
3352                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3353                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3354                 break;
3355         case Opt_nr_blocks:
3356                 ctx->blocks = memparse(param->string, &rest);
3357                 if (*rest)
3358                         goto bad_value;
3359                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3360                 break;
3361         case Opt_nr_inodes:
3362                 ctx->inodes = memparse(param->string, &rest);
3363                 if (*rest)
3364                         goto bad_value;
3365                 ctx->seen |= SHMEM_SEEN_INODES;
3366                 break;
3367         case Opt_mode:
3368                 ctx->mode = result.uint_32 & 07777;
3369                 break;
3370         case Opt_uid:
3371                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3372                 if (!uid_valid(ctx->uid))
3373                         goto bad_value;
3374                 break;
3375         case Opt_gid:
3376                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3377                 if (!gid_valid(ctx->gid))
3378                         goto bad_value;
3379                 break;
3380         case Opt_huge:
3381                 ctx->huge = result.uint_32;
3382                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3383                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3384                       has_transparent_hugepage()))
3385                         goto unsupported_parameter;
3386                 ctx->seen |= SHMEM_SEEN_HUGE;
3387                 break;
3388         case Opt_mpol:
3389                 if (IS_ENABLED(CONFIG_NUMA)) {
3390                         mpol_put(ctx->mpol);
3391                         ctx->mpol = NULL;
3392                         if (mpol_parse_str(param->string, &ctx->mpol))
3393                                 goto bad_value;
3394                         break;
3395                 }
3396                 goto unsupported_parameter;
3397         case Opt_inode32:
3398                 ctx->full_inums = false;
3399                 ctx->seen |= SHMEM_SEEN_INUMS;
3400                 break;
3401         case Opt_inode64:
3402                 if (sizeof(ino_t) < 8) {
3403                         return invalfc(fc,
3404                                        "Cannot use inode64 with <64bit inums in kernel\n");
3405                 }
3406                 ctx->full_inums = true;
3407                 ctx->seen |= SHMEM_SEEN_INUMS;
3408                 break;
3409         }
3410         return 0;
3411
3412 unsupported_parameter:
3413         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3414 bad_value:
3415         return invalfc(fc, "Bad value for '%s'", param->key);
3416 }
3417
3418 static int shmem_parse_options(struct fs_context *fc, void *data)
3419 {
3420         char *options = data;
3421
3422         if (options) {
3423                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3424                 if (err)
3425                         return err;
3426         }
3427
3428         while (options != NULL) {
3429                 char *this_char = options;
3430                 for (;;) {
3431                         /*
3432                          * NUL-terminate this option: unfortunately,
3433                          * mount options form a comma-separated list,
3434                          * but mpol's nodelist may also contain commas.
3435                          */
3436                         options = strchr(options, ',');
3437                         if (options == NULL)
3438                                 break;
3439                         options++;
3440                         if (!isdigit(*options)) {
3441                                 options[-1] = '\0';
3442                                 break;
3443                         }
3444                 }
3445                 if (*this_char) {
3446                         char *value = strchr(this_char, '=');
3447                         size_t len = 0;
3448                         int err;
3449
3450                         if (value) {
3451                                 *value++ = '\0';
3452                                 len = strlen(value);
3453                         }
3454                         err = vfs_parse_fs_string(fc, this_char, value, len);
3455                         if (err < 0)
3456                                 return err;
3457                 }
3458         }
3459         return 0;
3460 }
3461
3462 /*
3463  * Reconfigure a shmem filesystem.
3464  *
3465  * Note that we disallow change from limited->unlimited blocks/inodes while any
3466  * are in use; but we must separately disallow unlimited->limited, because in
3467  * that case we have no record of how much is already in use.
3468  */
3469 static int shmem_reconfigure(struct fs_context *fc)
3470 {
3471         struct shmem_options *ctx = fc->fs_private;
3472         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3473         unsigned long inodes;
3474         struct mempolicy *mpol = NULL;
3475         const char *err;
3476
3477         raw_spin_lock(&sbinfo->stat_lock);
3478         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3479         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3480                 if (!sbinfo->max_blocks) {
3481                         err = "Cannot retroactively limit size";
3482                         goto out;
3483                 }
3484                 if (percpu_counter_compare(&sbinfo->used_blocks,
3485                                            ctx->blocks) > 0) {
3486                         err = "Too small a size for current use";
3487                         goto out;
3488                 }
3489         }
3490         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3491                 if (!sbinfo->max_inodes) {
3492                         err = "Cannot retroactively limit inodes";
3493                         goto out;
3494                 }
3495                 if (ctx->inodes < inodes) {
3496                         err = "Too few inodes for current use";
3497                         goto out;
3498                 }
3499         }
3500
3501         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3502             sbinfo->next_ino > UINT_MAX) {
3503                 err = "Current inum too high to switch to 32-bit inums";
3504                 goto out;
3505         }
3506
3507         if (ctx->seen & SHMEM_SEEN_HUGE)
3508                 sbinfo->huge = ctx->huge;
3509         if (ctx->seen & SHMEM_SEEN_INUMS)
3510                 sbinfo->full_inums = ctx->full_inums;
3511         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3512                 sbinfo->max_blocks  = ctx->blocks;
3513         if (ctx->seen & SHMEM_SEEN_INODES) {
3514                 sbinfo->max_inodes  = ctx->inodes;
3515                 sbinfo->free_inodes = ctx->inodes - inodes;
3516         }
3517
3518         /*
3519          * Preserve previous mempolicy unless mpol remount option was specified.
3520          */
3521         if (ctx->mpol) {
3522                 mpol = sbinfo->mpol;
3523                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3524                 ctx->mpol = NULL;
3525         }
3526         raw_spin_unlock(&sbinfo->stat_lock);
3527         mpol_put(mpol);
3528         return 0;
3529 out:
3530         raw_spin_unlock(&sbinfo->stat_lock);
3531         return invalfc(fc, "%s", err);
3532 }
3533
3534 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3535 {
3536         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3537
3538         if (sbinfo->max_blocks != shmem_default_max_blocks())
3539                 seq_printf(seq, ",size=%luk",
3540                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3541         if (sbinfo->max_inodes != shmem_default_max_inodes())
3542                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3543         if (sbinfo->mode != (0777 | S_ISVTX))
3544                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3545         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3546                 seq_printf(seq, ",uid=%u",
3547                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3548         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3549                 seq_printf(seq, ",gid=%u",
3550                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3551
3552         /*
3553          * Showing inode{64,32} might be useful even if it's the system default,
3554          * since then people don't have to resort to checking both here and
3555          * /proc/config.gz to confirm 64-bit inums were successfully applied
3556          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3557          *
3558          * We hide it when inode64 isn't the default and we are using 32-bit
3559          * inodes, since that probably just means the feature isn't even under
3560          * consideration.
3561          *
3562          * As such:
3563          *
3564          *                     +-----------------+-----------------+
3565          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3566          *  +------------------+-----------------+-----------------+
3567          *  | full_inums=true  | show            | show            |
3568          *  | full_inums=false | show            | hide            |
3569          *  +------------------+-----------------+-----------------+
3570          *
3571          */
3572         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3573                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3575         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3576         if (sbinfo->huge)
3577                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3578 #endif
3579         shmem_show_mpol(seq, sbinfo->mpol);
3580         return 0;
3581 }
3582
3583 #endif /* CONFIG_TMPFS */
3584
3585 static void shmem_put_super(struct super_block *sb)
3586 {
3587         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3588
3589         free_percpu(sbinfo->ino_batch);
3590         percpu_counter_destroy(&sbinfo->used_blocks);
3591         mpol_put(sbinfo->mpol);
3592         kfree(sbinfo);
3593         sb->s_fs_info = NULL;
3594 }
3595
3596 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3597 {
3598         struct shmem_options *ctx = fc->fs_private;
3599         struct inode *inode;
3600         struct shmem_sb_info *sbinfo;
3601
3602         /* Round up to L1_CACHE_BYTES to resist false sharing */
3603         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3604                                 L1_CACHE_BYTES), GFP_KERNEL);
3605         if (!sbinfo)
3606                 return -ENOMEM;
3607
3608         sb->s_fs_info = sbinfo;
3609
3610 #ifdef CONFIG_TMPFS
3611         /*
3612          * Per default we only allow half of the physical ram per
3613          * tmpfs instance, limiting inodes to one per page of lowmem;
3614          * but the internal instance is left unlimited.
3615          */
3616         if (!(sb->s_flags & SB_KERNMOUNT)) {
3617                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3618                         ctx->blocks = shmem_default_max_blocks();
3619                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3620                         ctx->inodes = shmem_default_max_inodes();
3621                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3622                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3623         } else {
3624                 sb->s_flags |= SB_NOUSER;
3625         }
3626         sb->s_export_op = &shmem_export_ops;
3627         sb->s_flags |= SB_NOSEC;
3628 #else
3629         sb->s_flags |= SB_NOUSER;
3630 #endif
3631         sbinfo->max_blocks = ctx->blocks;
3632         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3633         if (sb->s_flags & SB_KERNMOUNT) {
3634                 sbinfo->ino_batch = alloc_percpu(ino_t);
3635                 if (!sbinfo->ino_batch)
3636                         goto failed;
3637         }
3638         sbinfo->uid = ctx->uid;
3639         sbinfo->gid = ctx->gid;
3640         sbinfo->full_inums = ctx->full_inums;
3641         sbinfo->mode = ctx->mode;
3642         sbinfo->huge = ctx->huge;
3643         sbinfo->mpol = ctx->mpol;
3644         ctx->mpol = NULL;
3645
3646         raw_spin_lock_init(&sbinfo->stat_lock);
3647         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3648                 goto failed;
3649         spin_lock_init(&sbinfo->shrinklist_lock);
3650         INIT_LIST_HEAD(&sbinfo->shrinklist);
3651
3652         sb->s_maxbytes = MAX_LFS_FILESIZE;
3653         sb->s_blocksize = PAGE_SIZE;
3654         sb->s_blocksize_bits = PAGE_SHIFT;
3655         sb->s_magic = TMPFS_MAGIC;
3656         sb->s_op = &shmem_ops;
3657         sb->s_time_gran = 1;
3658 #ifdef CONFIG_TMPFS_XATTR
3659         sb->s_xattr = shmem_xattr_handlers;
3660 #endif
3661 #ifdef CONFIG_TMPFS_POSIX_ACL
3662         sb->s_flags |= SB_POSIXACL;
3663 #endif
3664         uuid_gen(&sb->s_uuid);
3665
3666         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3667         if (!inode)
3668                 goto failed;
3669         inode->i_uid = sbinfo->uid;
3670         inode->i_gid = sbinfo->gid;
3671         sb->s_root = d_make_root(inode);
3672         if (!sb->s_root)
3673                 goto failed;
3674         return 0;
3675
3676 failed:
3677         shmem_put_super(sb);
3678         return -ENOMEM;
3679 }
3680
3681 static int shmem_get_tree(struct fs_context *fc)
3682 {
3683         return get_tree_nodev(fc, shmem_fill_super);
3684 }
3685
3686 static void shmem_free_fc(struct fs_context *fc)
3687 {
3688         struct shmem_options *ctx = fc->fs_private;
3689
3690         if (ctx) {
3691                 mpol_put(ctx->mpol);
3692                 kfree(ctx);
3693         }
3694 }
3695
3696 static const struct fs_context_operations shmem_fs_context_ops = {
3697         .free                   = shmem_free_fc,
3698         .get_tree               = shmem_get_tree,
3699 #ifdef CONFIG_TMPFS
3700         .parse_monolithic       = shmem_parse_options,
3701         .parse_param            = shmem_parse_one,
3702         .reconfigure            = shmem_reconfigure,
3703 #endif
3704 };
3705
3706 static struct kmem_cache *shmem_inode_cachep;
3707
3708 static struct inode *shmem_alloc_inode(struct super_block *sb)
3709 {
3710         struct shmem_inode_info *info;
3711         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3712         if (!info)
3713                 return NULL;
3714         return &info->vfs_inode;
3715 }
3716
3717 static void shmem_free_in_core_inode(struct inode *inode)
3718 {
3719         if (S_ISLNK(inode->i_mode))
3720                 kfree(inode->i_link);
3721         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3722 }
3723
3724 static void shmem_destroy_inode(struct inode *inode)
3725 {
3726         if (S_ISREG(inode->i_mode))
3727                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3728 }
3729
3730 static void shmem_init_inode(void *foo)
3731 {
3732         struct shmem_inode_info *info = foo;
3733         inode_init_once(&info->vfs_inode);
3734 }
3735
3736 static void shmem_init_inodecache(void)
3737 {
3738         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3739                                 sizeof(struct shmem_inode_info),
3740                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3741 }
3742
3743 static void shmem_destroy_inodecache(void)
3744 {
3745         kmem_cache_destroy(shmem_inode_cachep);
3746 }
3747
3748 /* Keep the page in page cache instead of truncating it */
3749 static int shmem_error_remove_page(struct address_space *mapping,
3750                                    struct page *page)
3751 {
3752         return 0;
3753 }
3754
3755 const struct address_space_operations shmem_aops = {
3756         .writepage      = shmem_writepage,
3757         .set_page_dirty = __set_page_dirty_no_writeback,
3758 #ifdef CONFIG_TMPFS
3759         .write_begin    = shmem_write_begin,
3760         .write_end      = shmem_write_end,
3761 #endif
3762 #ifdef CONFIG_MIGRATION
3763         .migratepage    = migrate_page,
3764 #endif
3765         .error_remove_page = shmem_error_remove_page,
3766 };
3767 EXPORT_SYMBOL(shmem_aops);
3768
3769 static const struct file_operations shmem_file_operations = {
3770         .mmap           = shmem_mmap,
3771         .get_unmapped_area = shmem_get_unmapped_area,
3772 #ifdef CONFIG_TMPFS
3773         .llseek         = shmem_file_llseek,
3774         .read_iter      = shmem_file_read_iter,
3775         .write_iter     = generic_file_write_iter,
3776         .fsync          = noop_fsync,
3777         .splice_read    = generic_file_splice_read,
3778         .splice_write   = iter_file_splice_write,
3779         .fallocate      = shmem_fallocate,
3780 #endif
3781 };
3782
3783 static const struct inode_operations shmem_inode_operations = {
3784         .getattr        = shmem_getattr,
3785         .setattr        = shmem_setattr,
3786 #ifdef CONFIG_TMPFS_XATTR
3787         .listxattr      = shmem_listxattr,
3788         .set_acl        = simple_set_acl,
3789 #endif
3790 };
3791
3792 static const struct inode_operations shmem_dir_inode_operations = {
3793 #ifdef CONFIG_TMPFS
3794         .getattr        = shmem_getattr,
3795         .create         = shmem_create,
3796         .lookup         = simple_lookup,
3797         .link           = shmem_link,
3798         .unlink         = shmem_unlink,
3799         .symlink        = shmem_symlink,
3800         .mkdir          = shmem_mkdir,
3801         .rmdir          = shmem_rmdir,
3802         .mknod          = shmem_mknod,
3803         .rename         = shmem_rename2,
3804         .tmpfile        = shmem_tmpfile,
3805 #endif
3806 #ifdef CONFIG_TMPFS_XATTR
3807         .listxattr      = shmem_listxattr,
3808 #endif
3809 #ifdef CONFIG_TMPFS_POSIX_ACL
3810         .setattr        = shmem_setattr,
3811         .set_acl        = simple_set_acl,
3812 #endif
3813 };
3814
3815 static const struct inode_operations shmem_special_inode_operations = {
3816         .getattr        = shmem_getattr,
3817 #ifdef CONFIG_TMPFS_XATTR
3818         .listxattr      = shmem_listxattr,
3819 #endif
3820 #ifdef CONFIG_TMPFS_POSIX_ACL
3821         .setattr        = shmem_setattr,
3822         .set_acl        = simple_set_acl,
3823 #endif
3824 };
3825
3826 static const struct super_operations shmem_ops = {
3827         .alloc_inode    = shmem_alloc_inode,
3828         .free_inode     = shmem_free_in_core_inode,
3829         .destroy_inode  = shmem_destroy_inode,
3830 #ifdef CONFIG_TMPFS
3831         .statfs         = shmem_statfs,
3832         .show_options   = shmem_show_options,
3833 #endif
3834         .evict_inode    = shmem_evict_inode,
3835         .drop_inode     = generic_delete_inode,
3836         .put_super      = shmem_put_super,
3837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3838         .nr_cached_objects      = shmem_unused_huge_count,
3839         .free_cached_objects    = shmem_unused_huge_scan,
3840 #endif
3841 };
3842
3843 static const struct vm_operations_struct shmem_vm_ops = {
3844         .fault          = shmem_fault,
3845         .map_pages      = filemap_map_pages,
3846 #ifdef CONFIG_NUMA
3847         .set_policy     = shmem_set_policy,
3848         .get_policy     = shmem_get_policy,
3849 #endif
3850 };
3851
3852 int shmem_init_fs_context(struct fs_context *fc)
3853 {
3854         struct shmem_options *ctx;
3855
3856         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3857         if (!ctx)
3858                 return -ENOMEM;
3859
3860         ctx->mode = 0777 | S_ISVTX;
3861         ctx->uid = current_fsuid();
3862         ctx->gid = current_fsgid();
3863
3864         fc->fs_private = ctx;
3865         fc->ops = &shmem_fs_context_ops;
3866         return 0;
3867 }
3868
3869 static struct file_system_type shmem_fs_type = {
3870         .owner          = THIS_MODULE,
3871         .name           = "tmpfs",
3872         .init_fs_context = shmem_init_fs_context,
3873 #ifdef CONFIG_TMPFS
3874         .parameters     = shmem_fs_parameters,
3875 #endif
3876         .kill_sb        = kill_litter_super,
3877         .fs_flags       = FS_USERNS_MOUNT,
3878 };
3879
3880 int __init shmem_init(void)
3881 {
3882         int error;
3883
3884         shmem_init_inodecache();
3885
3886         error = register_filesystem(&shmem_fs_type);
3887         if (error) {
3888                 pr_err("Could not register tmpfs\n");
3889                 goto out2;
3890         }
3891
3892         shm_mnt = kern_mount(&shmem_fs_type);
3893         if (IS_ERR(shm_mnt)) {
3894                 error = PTR_ERR(shm_mnt);
3895                 pr_err("Could not kern_mount tmpfs\n");
3896                 goto out1;
3897         }
3898
3899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3900         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3901                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3902         else
3903                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3904 #endif
3905         return 0;
3906
3907 out1:
3908         unregister_filesystem(&shmem_fs_type);
3909 out2:
3910         shmem_destroy_inodecache();
3911         shm_mnt = ERR_PTR(error);
3912         return error;
3913 }
3914
3915 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3916 static ssize_t shmem_enabled_show(struct kobject *kobj,
3917                                   struct kobj_attribute *attr, char *buf)
3918 {
3919         static const int values[] = {
3920                 SHMEM_HUGE_ALWAYS,
3921                 SHMEM_HUGE_WITHIN_SIZE,
3922                 SHMEM_HUGE_ADVISE,
3923                 SHMEM_HUGE_NEVER,
3924                 SHMEM_HUGE_DENY,
3925                 SHMEM_HUGE_FORCE,
3926         };
3927         int len = 0;
3928         int i;
3929
3930         for (i = 0; i < ARRAY_SIZE(values); i++) {
3931                 len += sysfs_emit_at(buf, len,
3932                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3933                                      i ? " " : "",
3934                                      shmem_format_huge(values[i]));
3935         }
3936
3937         len += sysfs_emit_at(buf, len, "\n");
3938
3939         return len;
3940 }
3941
3942 static ssize_t shmem_enabled_store(struct kobject *kobj,
3943                 struct kobj_attribute *attr, const char *buf, size_t count)
3944 {
3945         char tmp[16];
3946         int huge;
3947
3948         if (count + 1 > sizeof(tmp))
3949                 return -EINVAL;
3950         memcpy(tmp, buf, count);
3951         tmp[count] = '\0';
3952         if (count && tmp[count - 1] == '\n')
3953                 tmp[count - 1] = '\0';
3954
3955         huge = shmem_parse_huge(tmp);
3956         if (huge == -EINVAL)
3957                 return -EINVAL;
3958         if (!has_transparent_hugepage() &&
3959                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3960                 return -EINVAL;
3961
3962         shmem_huge = huge;
3963         if (shmem_huge > SHMEM_HUGE_DENY)
3964                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3965         return count;
3966 }
3967
3968 struct kobj_attribute shmem_enabled_attr =
3969         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3970 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3971
3972 #else /* !CONFIG_SHMEM */
3973
3974 /*
3975  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3976  *
3977  * This is intended for small system where the benefits of the full
3978  * shmem code (swap-backed and resource-limited) are outweighed by
3979  * their complexity. On systems without swap this code should be
3980  * effectively equivalent, but much lighter weight.
3981  */
3982
3983 static struct file_system_type shmem_fs_type = {
3984         .name           = "tmpfs",
3985         .init_fs_context = ramfs_init_fs_context,
3986         .parameters     = ramfs_fs_parameters,
3987         .kill_sb        = kill_litter_super,
3988         .fs_flags       = FS_USERNS_MOUNT,
3989 };
3990
3991 int __init shmem_init(void)
3992 {
3993         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3994
3995         shm_mnt = kern_mount(&shmem_fs_type);
3996         BUG_ON(IS_ERR(shm_mnt));
3997
3998         return 0;
3999 }
4000
4001 int shmem_unuse(unsigned int type)
4002 {
4003         return 0;
4004 }
4005
4006 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4007 {
4008         return 0;
4009 }
4010
4011 void shmem_unlock_mapping(struct address_space *mapping)
4012 {
4013 }
4014
4015 #ifdef CONFIG_MMU
4016 unsigned long shmem_get_unmapped_area(struct file *file,
4017                                       unsigned long addr, unsigned long len,
4018                                       unsigned long pgoff, unsigned long flags)
4019 {
4020         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4021 }
4022 #endif
4023
4024 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4025 {
4026         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4027 }
4028 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4029
4030 #define shmem_vm_ops                            generic_file_vm_ops
4031 #define shmem_file_operations                   ramfs_file_operations
4032 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4033 #define shmem_acct_size(flags, size)            0
4034 #define shmem_unacct_size(flags, size)          do {} while (0)
4035
4036 #endif /* CONFIG_SHMEM */
4037
4038 /* common code */
4039
4040 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4041                                        unsigned long flags, unsigned int i_flags)
4042 {
4043         struct inode *inode;
4044         struct file *res;
4045
4046         if (IS_ERR(mnt))
4047                 return ERR_CAST(mnt);
4048
4049         if (size < 0 || size > MAX_LFS_FILESIZE)
4050                 return ERR_PTR(-EINVAL);
4051
4052         if (shmem_acct_size(flags, size))
4053                 return ERR_PTR(-ENOMEM);
4054
4055         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4056                                 flags);
4057         if (unlikely(!inode)) {
4058                 shmem_unacct_size(flags, size);
4059                 return ERR_PTR(-ENOSPC);
4060         }
4061         inode->i_flags |= i_flags;
4062         inode->i_size = size;
4063         clear_nlink(inode);     /* It is unlinked */
4064         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4065         if (!IS_ERR(res))
4066                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4067                                 &shmem_file_operations);
4068         if (IS_ERR(res))
4069                 iput(inode);
4070         return res;
4071 }
4072
4073 /**
4074  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4075  *      kernel internal.  There will be NO LSM permission checks against the
4076  *      underlying inode.  So users of this interface must do LSM checks at a
4077  *      higher layer.  The users are the big_key and shm implementations.  LSM
4078  *      checks are provided at the key or shm level rather than the inode.
4079  * @name: name for dentry (to be seen in /proc/<pid>/maps
4080  * @size: size to be set for the file
4081  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4082  */
4083 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4084 {
4085         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4086 }
4087
4088 /**
4089  * shmem_file_setup - get an unlinked file living in tmpfs
4090  * @name: name for dentry (to be seen in /proc/<pid>/maps
4091  * @size: size to be set for the file
4092  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4093  */
4094 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4095 {
4096         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4097 }
4098 EXPORT_SYMBOL_GPL(shmem_file_setup);
4099
4100 /**
4101  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4102  * @mnt: the tmpfs mount where the file will be created
4103  * @name: name for dentry (to be seen in /proc/<pid>/maps
4104  * @size: size to be set for the file
4105  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4106  */
4107 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4108                                        loff_t size, unsigned long flags)
4109 {
4110         return __shmem_file_setup(mnt, name, size, flags, 0);
4111 }
4112 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4113
4114 /**
4115  * shmem_zero_setup - setup a shared anonymous mapping
4116  * @vma: the vma to be mmapped is prepared by do_mmap
4117  */
4118 int shmem_zero_setup(struct vm_area_struct *vma)
4119 {
4120         struct file *file;
4121         loff_t size = vma->vm_end - vma->vm_start;
4122
4123         /*
4124          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4125          * between XFS directory reading and selinux: since this file is only
4126          * accessible to the user through its mapping, use S_PRIVATE flag to
4127          * bypass file security, in the same way as shmem_kernel_file_setup().
4128          */
4129         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4130         if (IS_ERR(file))
4131                 return PTR_ERR(file);
4132
4133         if (vma->vm_file)
4134                 fput(vma->vm_file);
4135         vma->vm_file = file;
4136         vma->vm_ops = &shmem_vm_ops;
4137
4138         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4139                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4140                         (vma->vm_end & HPAGE_PMD_MASK)) {
4141                 khugepaged_enter(vma, vma->vm_flags);
4142         }
4143
4144         return 0;
4145 }
4146
4147 /**
4148  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4149  * @mapping:    the page's address_space
4150  * @index:      the page index
4151  * @gfp:        the page allocator flags to use if allocating
4152  *
4153  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4154  * with any new page allocations done using the specified allocation flags.
4155  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4156  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4157  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4158  *
4159  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4160  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4161  */
4162 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4163                                          pgoff_t index, gfp_t gfp)
4164 {
4165 #ifdef CONFIG_SHMEM
4166         struct inode *inode = mapping->host;
4167         struct page *page;
4168         int error;
4169
4170         BUG_ON(!shmem_mapping(mapping));
4171         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4172                                   gfp, NULL, NULL, NULL);
4173         if (error)
4174                 return ERR_PTR(error);
4175
4176         unlock_page(page);
4177         if (PageHWPoison(page)) {
4178                 put_page(page);
4179                 return ERR_PTR(-EIO);
4180         }
4181
4182         return page;
4183 #else
4184         /*
4185          * The tiny !SHMEM case uses ramfs without swap
4186          */
4187         return read_cache_page_gfp(mapping, index, gfp);
4188 #endif
4189 }
4190 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);