Merge tag 'nfs-for-4.20-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[platform/kernel/linux-starfive.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125                 struct page **pagep, enum sgp_type sgp,
126                 gfp_t gfp, struct vm_area_struct *vma,
127                 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130                 struct page **pagep, enum sgp_type sgp)
131 {
132         return shmem_getpage_gfp(inode, index, pagep, sgp,
133                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_NORESERVE) ?
150                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (!(flags & VM_NORESERVE))
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160                 loff_t oldsize, loff_t newsize)
161 {
162         if (!(flags & VM_NORESERVE)) {
163                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164                         return security_vm_enough_memory_mm(current->mm,
165                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
166                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168         }
169         return 0;
170 }
171
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180         if (!(flags & VM_NORESERVE))
181                 return 0;
182
183         return security_vm_enough_memory_mm(current->mm,
184                         pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189         if (flags & VM_NORESERVE)
190                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195         struct shmem_inode_info *info = SHMEM_I(inode);
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198         if (shmem_acct_block(info->flags, pages))
199                 return false;
200
201         if (sbinfo->max_blocks) {
202                 if (percpu_counter_compare(&sbinfo->used_blocks,
203                                            sbinfo->max_blocks - pages) > 0)
204                         goto unacct;
205                 percpu_counter_add(&sbinfo->used_blocks, pages);
206         }
207
208         return true;
209
210 unacct:
211         shmem_unacct_blocks(info->flags, pages);
212         return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (sbinfo->max_blocks)
221                 percpu_counter_sub(&sbinfo->used_blocks, pages);
222         shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236         return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245         if (sbinfo->max_inodes) {
246                 spin_lock(&sbinfo->stat_lock);
247                 if (!sbinfo->free_inodes) {
248                         spin_unlock(&sbinfo->stat_lock);
249                         return -ENOSPC;
250                 }
251                 sbinfo->free_inodes--;
252                 spin_unlock(&sbinfo->stat_lock);
253         }
254         return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260         if (sbinfo->max_inodes) {
261                 spin_lock(&sbinfo->stat_lock);
262                 sbinfo->free_inodes++;
263                 spin_unlock(&sbinfo->stat_lock);
264         }
265 }
266
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         long freed;
283
284         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285         if (freed > 0) {
286                 info->alloced -= freed;
287                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288                 shmem_inode_unacct_blocks(inode, freed);
289         }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         unsigned long flags;
296
297         if (!shmem_inode_acct_block(inode, pages))
298                 return false;
299
300         spin_lock_irqsave(&info->lock, flags);
301         info->alloced += pages;
302         inode->i_blocks += pages * BLOCKS_PER_PAGE;
303         shmem_recalc_inode(inode);
304         spin_unlock_irqrestore(&info->lock, flags);
305         inode->i_mapping->nrpages += pages;
306
307         return true;
308 }
309
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312         struct shmem_inode_info *info = SHMEM_I(inode);
313         unsigned long flags;
314
315         spin_lock_irqsave(&info->lock, flags);
316         info->alloced -= pages;
317         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318         shmem_recalc_inode(inode);
319         spin_unlock_irqrestore(&info->lock, flags);
320
321         shmem_inode_unacct_blocks(inode, pages);
322 }
323
324 /*
325  * Replace item expected in xarray by a new item, while holding xa_lock.
326  */
327 static int shmem_replace_entry(struct address_space *mapping,
328                         pgoff_t index, void *expected, void *replacement)
329 {
330         XA_STATE(xas, &mapping->i_pages, index);
331         void *item;
332
333         VM_BUG_ON(!expected);
334         VM_BUG_ON(!replacement);
335         item = xas_load(&xas);
336         if (item != expected)
337                 return -ENOENT;
338         xas_store(&xas, replacement);
339         return 0;
340 }
341
342 /*
343  * Sometimes, before we decide whether to proceed or to fail, we must check
344  * that an entry was not already brought back from swap by a racing thread.
345  *
346  * Checking page is not enough: by the time a SwapCache page is locked, it
347  * might be reused, and again be SwapCache, using the same swap as before.
348  */
349 static bool shmem_confirm_swap(struct address_space *mapping,
350                                pgoff_t index, swp_entry_t swap)
351 {
352         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
353 }
354
355 /*
356  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
357  *
358  * SHMEM_HUGE_NEVER:
359  *      disables huge pages for the mount;
360  * SHMEM_HUGE_ALWAYS:
361  *      enables huge pages for the mount;
362  * SHMEM_HUGE_WITHIN_SIZE:
363  *      only allocate huge pages if the page will be fully within i_size,
364  *      also respect fadvise()/madvise() hints;
365  * SHMEM_HUGE_ADVISE:
366  *      only allocate huge pages if requested with fadvise()/madvise();
367  */
368
369 #define SHMEM_HUGE_NEVER        0
370 #define SHMEM_HUGE_ALWAYS       1
371 #define SHMEM_HUGE_WITHIN_SIZE  2
372 #define SHMEM_HUGE_ADVISE       3
373
374 /*
375  * Special values.
376  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
377  *
378  * SHMEM_HUGE_DENY:
379  *      disables huge on shm_mnt and all mounts, for emergency use;
380  * SHMEM_HUGE_FORCE:
381  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382  *
383  */
384 #define SHMEM_HUGE_DENY         (-1)
385 #define SHMEM_HUGE_FORCE        (-2)
386
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
389
390 static int shmem_huge __read_mostly;
391
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str)
394 {
395         if (!strcmp(str, "never"))
396                 return SHMEM_HUGE_NEVER;
397         if (!strcmp(str, "always"))
398                 return SHMEM_HUGE_ALWAYS;
399         if (!strcmp(str, "within_size"))
400                 return SHMEM_HUGE_WITHIN_SIZE;
401         if (!strcmp(str, "advise"))
402                 return SHMEM_HUGE_ADVISE;
403         if (!strcmp(str, "deny"))
404                 return SHMEM_HUGE_DENY;
405         if (!strcmp(str, "force"))
406                 return SHMEM_HUGE_FORCE;
407         return -EINVAL;
408 }
409
410 static const char *shmem_format_huge(int huge)
411 {
412         switch (huge) {
413         case SHMEM_HUGE_NEVER:
414                 return "never";
415         case SHMEM_HUGE_ALWAYS:
416                 return "always";
417         case SHMEM_HUGE_WITHIN_SIZE:
418                 return "within_size";
419         case SHMEM_HUGE_ADVISE:
420                 return "advise";
421         case SHMEM_HUGE_DENY:
422                 return "deny";
423         case SHMEM_HUGE_FORCE:
424                 return "force";
425         default:
426                 VM_BUG_ON(1);
427                 return "bad_val";
428         }
429 }
430 #endif
431
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
433                 struct shrink_control *sc, unsigned long nr_to_split)
434 {
435         LIST_HEAD(list), *pos, *next;
436         LIST_HEAD(to_remove);
437         struct inode *inode;
438         struct shmem_inode_info *info;
439         struct page *page;
440         unsigned long batch = sc ? sc->nr_to_scan : 128;
441         int removed = 0, split = 0;
442
443         if (list_empty(&sbinfo->shrinklist))
444                 return SHRINK_STOP;
445
446         spin_lock(&sbinfo->shrinklist_lock);
447         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
448                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
449
450                 /* pin the inode */
451                 inode = igrab(&info->vfs_inode);
452
453                 /* inode is about to be evicted */
454                 if (!inode) {
455                         list_del_init(&info->shrinklist);
456                         removed++;
457                         goto next;
458                 }
459
460                 /* Check if there's anything to gain */
461                 if (round_up(inode->i_size, PAGE_SIZE) ==
462                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
463                         list_move(&info->shrinklist, &to_remove);
464                         removed++;
465                         goto next;
466                 }
467
468                 list_move(&info->shrinklist, &list);
469 next:
470                 if (!--batch)
471                         break;
472         }
473         spin_unlock(&sbinfo->shrinklist_lock);
474
475         list_for_each_safe(pos, next, &to_remove) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477                 inode = &info->vfs_inode;
478                 list_del_init(&info->shrinklist);
479                 iput(inode);
480         }
481
482         list_for_each_safe(pos, next, &list) {
483                 int ret;
484
485                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
486                 inode = &info->vfs_inode;
487
488                 if (nr_to_split && split >= nr_to_split)
489                         goto leave;
490
491                 page = find_get_page(inode->i_mapping,
492                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
493                 if (!page)
494                         goto drop;
495
496                 /* No huge page at the end of the file: nothing to split */
497                 if (!PageTransHuge(page)) {
498                         put_page(page);
499                         goto drop;
500                 }
501
502                 /*
503                  * Leave the inode on the list if we failed to lock
504                  * the page at this time.
505                  *
506                  * Waiting for the lock may lead to deadlock in the
507                  * reclaim path.
508                  */
509                 if (!trylock_page(page)) {
510                         put_page(page);
511                         goto leave;
512                 }
513
514                 ret = split_huge_page(page);
515                 unlock_page(page);
516                 put_page(page);
517
518                 /* If split failed leave the inode on the list */
519                 if (ret)
520                         goto leave;
521
522                 split++;
523 drop:
524                 list_del_init(&info->shrinklist);
525                 removed++;
526 leave:
527                 iput(inode);
528         }
529
530         spin_lock(&sbinfo->shrinklist_lock);
531         list_splice_tail(&list, &sbinfo->shrinklist);
532         sbinfo->shrinklist_len -= removed;
533         spin_unlock(&sbinfo->shrinklist_lock);
534
535         return split;
536 }
537
538 static long shmem_unused_huge_scan(struct super_block *sb,
539                 struct shrink_control *sc)
540 {
541         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
542
543         if (!READ_ONCE(sbinfo->shrinklist_len))
544                 return SHRINK_STOP;
545
546         return shmem_unused_huge_shrink(sbinfo, sc, 0);
547 }
548
549 static long shmem_unused_huge_count(struct super_block *sb,
550                 struct shrink_control *sc)
551 {
552         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553         return READ_ONCE(sbinfo->shrinklist_len);
554 }
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
556
557 #define shmem_huge SHMEM_HUGE_DENY
558
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
560                 struct shrink_control *sc, unsigned long nr_to_split)
561 {
562         return 0;
563 }
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565
566 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
567 {
568         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
569             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
570             shmem_huge != SHMEM_HUGE_DENY)
571                 return true;
572         return false;
573 }
574
575 /*
576  * Like add_to_page_cache_locked, but error if expected item has gone.
577  */
578 static int shmem_add_to_page_cache(struct page *page,
579                                    struct address_space *mapping,
580                                    pgoff_t index, void *expected, gfp_t gfp)
581 {
582         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
583         unsigned long i = 0;
584         unsigned long nr = 1UL << compound_order(page);
585
586         VM_BUG_ON_PAGE(PageTail(page), page);
587         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
588         VM_BUG_ON_PAGE(!PageLocked(page), page);
589         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
590         VM_BUG_ON(expected && PageTransHuge(page));
591
592         page_ref_add(page, nr);
593         page->mapping = mapping;
594         page->index = index;
595
596         do {
597                 void *entry;
598                 xas_lock_irq(&xas);
599                 entry = xas_find_conflict(&xas);
600                 if (entry != expected)
601                         xas_set_err(&xas, -EEXIST);
602                 xas_create_range(&xas);
603                 if (xas_error(&xas))
604                         goto unlock;
605 next:
606                 xas_store(&xas, page + i);
607                 if (++i < nr) {
608                         xas_next(&xas);
609                         goto next;
610                 }
611                 if (PageTransHuge(page)) {
612                         count_vm_event(THP_FILE_ALLOC);
613                         __inc_node_page_state(page, NR_SHMEM_THPS);
614                 }
615                 mapping->nrpages += nr;
616                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
617                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
618 unlock:
619                 xas_unlock_irq(&xas);
620         } while (xas_nomem(&xas, gfp));
621
622         if (xas_error(&xas)) {
623                 page->mapping = NULL;
624                 page_ref_sub(page, nr);
625                 return xas_error(&xas);
626         }
627
628         return 0;
629 }
630
631 /*
632  * Like delete_from_page_cache, but substitutes swap for page.
633  */
634 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
635 {
636         struct address_space *mapping = page->mapping;
637         int error;
638
639         VM_BUG_ON_PAGE(PageCompound(page), page);
640
641         xa_lock_irq(&mapping->i_pages);
642         error = shmem_replace_entry(mapping, page->index, page, radswap);
643         page->mapping = NULL;
644         mapping->nrpages--;
645         __dec_node_page_state(page, NR_FILE_PAGES);
646         __dec_node_page_state(page, NR_SHMEM);
647         xa_unlock_irq(&mapping->i_pages);
648         put_page(page);
649         BUG_ON(error);
650 }
651
652 /*
653  * Remove swap entry from page cache, free the swap and its page cache.
654  */
655 static int shmem_free_swap(struct address_space *mapping,
656                            pgoff_t index, void *radswap)
657 {
658         void *old;
659
660         xa_lock_irq(&mapping->i_pages);
661         old = __xa_cmpxchg(&mapping->i_pages, index, radswap, NULL, 0);
662         xa_unlock_irq(&mapping->i_pages);
663         if (old != radswap)
664                 return -ENOENT;
665         free_swap_and_cache(radix_to_swp_entry(radswap));
666         return 0;
667 }
668
669 /*
670  * Determine (in bytes) how many of the shmem object's pages mapped by the
671  * given offsets are swapped out.
672  *
673  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
674  * as long as the inode doesn't go away and racy results are not a problem.
675  */
676 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
677                                                 pgoff_t start, pgoff_t end)
678 {
679         XA_STATE(xas, &mapping->i_pages, start);
680         struct page *page;
681         unsigned long swapped = 0;
682
683         rcu_read_lock();
684         xas_for_each(&xas, page, end - 1) {
685                 if (xas_retry(&xas, page))
686                         continue;
687                 if (xa_is_value(page))
688                         swapped++;
689
690                 if (need_resched()) {
691                         xas_pause(&xas);
692                         cond_resched_rcu();
693                 }
694         }
695
696         rcu_read_unlock();
697
698         return swapped << PAGE_SHIFT;
699 }
700
701 /*
702  * Determine (in bytes) how many of the shmem object's pages mapped by the
703  * given vma is swapped out.
704  *
705  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
706  * as long as the inode doesn't go away and racy results are not a problem.
707  */
708 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
709 {
710         struct inode *inode = file_inode(vma->vm_file);
711         struct shmem_inode_info *info = SHMEM_I(inode);
712         struct address_space *mapping = inode->i_mapping;
713         unsigned long swapped;
714
715         /* Be careful as we don't hold info->lock */
716         swapped = READ_ONCE(info->swapped);
717
718         /*
719          * The easier cases are when the shmem object has nothing in swap, or
720          * the vma maps it whole. Then we can simply use the stats that we
721          * already track.
722          */
723         if (!swapped)
724                 return 0;
725
726         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
727                 return swapped << PAGE_SHIFT;
728
729         /* Here comes the more involved part */
730         return shmem_partial_swap_usage(mapping,
731                         linear_page_index(vma, vma->vm_start),
732                         linear_page_index(vma, vma->vm_end));
733 }
734
735 /*
736  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
737  */
738 void shmem_unlock_mapping(struct address_space *mapping)
739 {
740         struct pagevec pvec;
741         pgoff_t indices[PAGEVEC_SIZE];
742         pgoff_t index = 0;
743
744         pagevec_init(&pvec);
745         /*
746          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
747          */
748         while (!mapping_unevictable(mapping)) {
749                 /*
750                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
751                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
752                  */
753                 pvec.nr = find_get_entries(mapping, index,
754                                            PAGEVEC_SIZE, pvec.pages, indices);
755                 if (!pvec.nr)
756                         break;
757                 index = indices[pvec.nr - 1] + 1;
758                 pagevec_remove_exceptionals(&pvec);
759                 check_move_unevictable_pages(pvec.pages, pvec.nr);
760                 pagevec_release(&pvec);
761                 cond_resched();
762         }
763 }
764
765 /*
766  * Remove range of pages and swap entries from page cache, and free them.
767  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
768  */
769 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
770                                                                  bool unfalloc)
771 {
772         struct address_space *mapping = inode->i_mapping;
773         struct shmem_inode_info *info = SHMEM_I(inode);
774         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
775         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
776         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
777         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
778         struct pagevec pvec;
779         pgoff_t indices[PAGEVEC_SIZE];
780         long nr_swaps_freed = 0;
781         pgoff_t index;
782         int i;
783
784         if (lend == -1)
785                 end = -1;       /* unsigned, so actually very big */
786
787         pagevec_init(&pvec);
788         index = start;
789         while (index < end) {
790                 pvec.nr = find_get_entries(mapping, index,
791                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
792                         pvec.pages, indices);
793                 if (!pvec.nr)
794                         break;
795                 for (i = 0; i < pagevec_count(&pvec); i++) {
796                         struct page *page = pvec.pages[i];
797
798                         index = indices[i];
799                         if (index >= end)
800                                 break;
801
802                         if (xa_is_value(page)) {
803                                 if (unfalloc)
804                                         continue;
805                                 nr_swaps_freed += !shmem_free_swap(mapping,
806                                                                 index, page);
807                                 continue;
808                         }
809
810                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
811
812                         if (!trylock_page(page))
813                                 continue;
814
815                         if (PageTransTail(page)) {
816                                 /* Middle of THP: zero out the page */
817                                 clear_highpage(page);
818                                 unlock_page(page);
819                                 continue;
820                         } else if (PageTransHuge(page)) {
821                                 if (index == round_down(end, HPAGE_PMD_NR)) {
822                                         /*
823                                          * Range ends in the middle of THP:
824                                          * zero out the page
825                                          */
826                                         clear_highpage(page);
827                                         unlock_page(page);
828                                         continue;
829                                 }
830                                 index += HPAGE_PMD_NR - 1;
831                                 i += HPAGE_PMD_NR - 1;
832                         }
833
834                         if (!unfalloc || !PageUptodate(page)) {
835                                 VM_BUG_ON_PAGE(PageTail(page), page);
836                                 if (page_mapping(page) == mapping) {
837                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
838                                         truncate_inode_page(mapping, page);
839                                 }
840                         }
841                         unlock_page(page);
842                 }
843                 pagevec_remove_exceptionals(&pvec);
844                 pagevec_release(&pvec);
845                 cond_resched();
846                 index++;
847         }
848
849         if (partial_start) {
850                 struct page *page = NULL;
851                 shmem_getpage(inode, start - 1, &page, SGP_READ);
852                 if (page) {
853                         unsigned int top = PAGE_SIZE;
854                         if (start > end) {
855                                 top = partial_end;
856                                 partial_end = 0;
857                         }
858                         zero_user_segment(page, partial_start, top);
859                         set_page_dirty(page);
860                         unlock_page(page);
861                         put_page(page);
862                 }
863         }
864         if (partial_end) {
865                 struct page *page = NULL;
866                 shmem_getpage(inode, end, &page, SGP_READ);
867                 if (page) {
868                         zero_user_segment(page, 0, partial_end);
869                         set_page_dirty(page);
870                         unlock_page(page);
871                         put_page(page);
872                 }
873         }
874         if (start >= end)
875                 return;
876
877         index = start;
878         while (index < end) {
879                 cond_resched();
880
881                 pvec.nr = find_get_entries(mapping, index,
882                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
883                                 pvec.pages, indices);
884                 if (!pvec.nr) {
885                         /* If all gone or hole-punch or unfalloc, we're done */
886                         if (index == start || end != -1)
887                                 break;
888                         /* But if truncating, restart to make sure all gone */
889                         index = start;
890                         continue;
891                 }
892                 for (i = 0; i < pagevec_count(&pvec); i++) {
893                         struct page *page = pvec.pages[i];
894
895                         index = indices[i];
896                         if (index >= end)
897                                 break;
898
899                         if (xa_is_value(page)) {
900                                 if (unfalloc)
901                                         continue;
902                                 if (shmem_free_swap(mapping, index, page)) {
903                                         /* Swap was replaced by page: retry */
904                                         index--;
905                                         break;
906                                 }
907                                 nr_swaps_freed++;
908                                 continue;
909                         }
910
911                         lock_page(page);
912
913                         if (PageTransTail(page)) {
914                                 /* Middle of THP: zero out the page */
915                                 clear_highpage(page);
916                                 unlock_page(page);
917                                 /*
918                                  * Partial thp truncate due 'start' in middle
919                                  * of THP: don't need to look on these pages
920                                  * again on !pvec.nr restart.
921                                  */
922                                 if (index != round_down(end, HPAGE_PMD_NR))
923                                         start++;
924                                 continue;
925                         } else if (PageTransHuge(page)) {
926                                 if (index == round_down(end, HPAGE_PMD_NR)) {
927                                         /*
928                                          * Range ends in the middle of THP:
929                                          * zero out the page
930                                          */
931                                         clear_highpage(page);
932                                         unlock_page(page);
933                                         continue;
934                                 }
935                                 index += HPAGE_PMD_NR - 1;
936                                 i += HPAGE_PMD_NR - 1;
937                         }
938
939                         if (!unfalloc || !PageUptodate(page)) {
940                                 VM_BUG_ON_PAGE(PageTail(page), page);
941                                 if (page_mapping(page) == mapping) {
942                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
943                                         truncate_inode_page(mapping, page);
944                                 } else {
945                                         /* Page was replaced by swap: retry */
946                                         unlock_page(page);
947                                         index--;
948                                         break;
949                                 }
950                         }
951                         unlock_page(page);
952                 }
953                 pagevec_remove_exceptionals(&pvec);
954                 pagevec_release(&pvec);
955                 index++;
956         }
957
958         spin_lock_irq(&info->lock);
959         info->swapped -= nr_swaps_freed;
960         shmem_recalc_inode(inode);
961         spin_unlock_irq(&info->lock);
962 }
963
964 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
965 {
966         shmem_undo_range(inode, lstart, lend, false);
967         inode->i_ctime = inode->i_mtime = current_time(inode);
968 }
969 EXPORT_SYMBOL_GPL(shmem_truncate_range);
970
971 static int shmem_getattr(const struct path *path, struct kstat *stat,
972                          u32 request_mask, unsigned int query_flags)
973 {
974         struct inode *inode = path->dentry->d_inode;
975         struct shmem_inode_info *info = SHMEM_I(inode);
976         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
977
978         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
979                 spin_lock_irq(&info->lock);
980                 shmem_recalc_inode(inode);
981                 spin_unlock_irq(&info->lock);
982         }
983         generic_fillattr(inode, stat);
984
985         if (is_huge_enabled(sb_info))
986                 stat->blksize = HPAGE_PMD_SIZE;
987
988         return 0;
989 }
990
991 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
992 {
993         struct inode *inode = d_inode(dentry);
994         struct shmem_inode_info *info = SHMEM_I(inode);
995         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
996         int error;
997
998         error = setattr_prepare(dentry, attr);
999         if (error)
1000                 return error;
1001
1002         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1003                 loff_t oldsize = inode->i_size;
1004                 loff_t newsize = attr->ia_size;
1005
1006                 /* protected by i_mutex */
1007                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1008                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1009                         return -EPERM;
1010
1011                 if (newsize != oldsize) {
1012                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1013                                         oldsize, newsize);
1014                         if (error)
1015                                 return error;
1016                         i_size_write(inode, newsize);
1017                         inode->i_ctime = inode->i_mtime = current_time(inode);
1018                 }
1019                 if (newsize <= oldsize) {
1020                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1021                         if (oldsize > holebegin)
1022                                 unmap_mapping_range(inode->i_mapping,
1023                                                         holebegin, 0, 1);
1024                         if (info->alloced)
1025                                 shmem_truncate_range(inode,
1026                                                         newsize, (loff_t)-1);
1027                         /* unmap again to remove racily COWed private pages */
1028                         if (oldsize > holebegin)
1029                                 unmap_mapping_range(inode->i_mapping,
1030                                                         holebegin, 0, 1);
1031
1032                         /*
1033                          * Part of the huge page can be beyond i_size: subject
1034                          * to shrink under memory pressure.
1035                          */
1036                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1037                                 spin_lock(&sbinfo->shrinklist_lock);
1038                                 /*
1039                                  * _careful to defend against unlocked access to
1040                                  * ->shrink_list in shmem_unused_huge_shrink()
1041                                  */
1042                                 if (list_empty_careful(&info->shrinklist)) {
1043                                         list_add_tail(&info->shrinklist,
1044                                                         &sbinfo->shrinklist);
1045                                         sbinfo->shrinklist_len++;
1046                                 }
1047                                 spin_unlock(&sbinfo->shrinklist_lock);
1048                         }
1049                 }
1050         }
1051
1052         setattr_copy(inode, attr);
1053         if (attr->ia_valid & ATTR_MODE)
1054                 error = posix_acl_chmod(inode, inode->i_mode);
1055         return error;
1056 }
1057
1058 static void shmem_evict_inode(struct inode *inode)
1059 {
1060         struct shmem_inode_info *info = SHMEM_I(inode);
1061         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062
1063         if (inode->i_mapping->a_ops == &shmem_aops) {
1064                 shmem_unacct_size(info->flags, inode->i_size);
1065                 inode->i_size = 0;
1066                 shmem_truncate_range(inode, 0, (loff_t)-1);
1067                 if (!list_empty(&info->shrinklist)) {
1068                         spin_lock(&sbinfo->shrinklist_lock);
1069                         if (!list_empty(&info->shrinklist)) {
1070                                 list_del_init(&info->shrinklist);
1071                                 sbinfo->shrinklist_len--;
1072                         }
1073                         spin_unlock(&sbinfo->shrinklist_lock);
1074                 }
1075                 if (!list_empty(&info->swaplist)) {
1076                         mutex_lock(&shmem_swaplist_mutex);
1077                         list_del_init(&info->swaplist);
1078                         mutex_unlock(&shmem_swaplist_mutex);
1079                 }
1080         }
1081
1082         simple_xattrs_free(&info->xattrs);
1083         WARN_ON(inode->i_blocks);
1084         shmem_free_inode(inode->i_sb);
1085         clear_inode(inode);
1086 }
1087
1088 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1089 {
1090         XA_STATE(xas, xa, 0);
1091         unsigned int checked = 0;
1092         void *entry;
1093
1094         rcu_read_lock();
1095         xas_for_each(&xas, entry, ULONG_MAX) {
1096                 if (xas_retry(&xas, entry))
1097                         continue;
1098                 if (entry == item)
1099                         break;
1100                 checked++;
1101                 if ((checked % XA_CHECK_SCHED) != 0)
1102                         continue;
1103                 xas_pause(&xas);
1104                 cond_resched_rcu();
1105         }
1106         rcu_read_unlock();
1107
1108         return entry ? xas.xa_index : -1;
1109 }
1110
1111 /*
1112  * If swap found in inode, free it and move page from swapcache to filecache.
1113  */
1114 static int shmem_unuse_inode(struct shmem_inode_info *info,
1115                              swp_entry_t swap, struct page **pagep)
1116 {
1117         struct address_space *mapping = info->vfs_inode.i_mapping;
1118         void *radswap;
1119         pgoff_t index;
1120         gfp_t gfp;
1121         int error = 0;
1122
1123         radswap = swp_to_radix_entry(swap);
1124         index = find_swap_entry(&mapping->i_pages, radswap);
1125         if (index == -1)
1126                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1127
1128         /*
1129          * Move _head_ to start search for next from here.
1130          * But be careful: shmem_evict_inode checks list_empty without taking
1131          * mutex, and there's an instant in list_move_tail when info->swaplist
1132          * would appear empty, if it were the only one on shmem_swaplist.
1133          */
1134         if (shmem_swaplist.next != &info->swaplist)
1135                 list_move_tail(&shmem_swaplist, &info->swaplist);
1136
1137         gfp = mapping_gfp_mask(mapping);
1138         if (shmem_should_replace_page(*pagep, gfp)) {
1139                 mutex_unlock(&shmem_swaplist_mutex);
1140                 error = shmem_replace_page(pagep, gfp, info, index);
1141                 mutex_lock(&shmem_swaplist_mutex);
1142                 /*
1143                  * We needed to drop mutex to make that restrictive page
1144                  * allocation, but the inode might have been freed while we
1145                  * dropped it: although a racing shmem_evict_inode() cannot
1146                  * complete without emptying the page cache, our page lock
1147                  * on this swapcache page is not enough to prevent that -
1148                  * free_swap_and_cache() of our swap entry will only
1149                  * trylock_page(), removing swap from page cache whatever.
1150                  *
1151                  * We must not proceed to shmem_add_to_page_cache() if the
1152                  * inode has been freed, but of course we cannot rely on
1153                  * inode or mapping or info to check that.  However, we can
1154                  * safely check if our swap entry is still in use (and here
1155                  * it can't have got reused for another page): if it's still
1156                  * in use, then the inode cannot have been freed yet, and we
1157                  * can safely proceed (if it's no longer in use, that tells
1158                  * nothing about the inode, but we don't need to unuse swap).
1159                  */
1160                 if (!page_swapcount(*pagep))
1161                         error = -ENOENT;
1162         }
1163
1164         /*
1165          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1166          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1167          * beneath us (pagelock doesn't help until the page is in pagecache).
1168          */
1169         if (!error)
1170                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1171                                                 radswap, gfp);
1172         if (error != -ENOMEM) {
1173                 /*
1174                  * Truncation and eviction use free_swap_and_cache(), which
1175                  * only does trylock page: if we raced, best clean up here.
1176                  */
1177                 delete_from_swap_cache(*pagep);
1178                 set_page_dirty(*pagep);
1179                 if (!error) {
1180                         spin_lock_irq(&info->lock);
1181                         info->swapped--;
1182                         spin_unlock_irq(&info->lock);
1183                         swap_free(swap);
1184                 }
1185         }
1186         return error;
1187 }
1188
1189 /*
1190  * Search through swapped inodes to find and replace swap by page.
1191  */
1192 int shmem_unuse(swp_entry_t swap, struct page *page)
1193 {
1194         struct list_head *this, *next;
1195         struct shmem_inode_info *info;
1196         struct mem_cgroup *memcg;
1197         int error = 0;
1198
1199         /*
1200          * There's a faint possibility that swap page was replaced before
1201          * caller locked it: caller will come back later with the right page.
1202          */
1203         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1204                 goto out;
1205
1206         /*
1207          * Charge page using GFP_KERNEL while we can wait, before taking
1208          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1209          * Charged back to the user (not to caller) when swap account is used.
1210          */
1211         error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1212                                             &memcg, false);
1213         if (error)
1214                 goto out;
1215         /* No memory allocation: swap entry occupies the slot for the page */
1216         error = -EAGAIN;
1217
1218         mutex_lock(&shmem_swaplist_mutex);
1219         list_for_each_safe(this, next, &shmem_swaplist) {
1220                 info = list_entry(this, struct shmem_inode_info, swaplist);
1221                 if (info->swapped)
1222                         error = shmem_unuse_inode(info, swap, &page);
1223                 else
1224                         list_del_init(&info->swaplist);
1225                 cond_resched();
1226                 if (error != -EAGAIN)
1227                         break;
1228                 /* found nothing in this: move on to search the next */
1229         }
1230         mutex_unlock(&shmem_swaplist_mutex);
1231
1232         if (error) {
1233                 if (error != -ENOMEM)
1234                         error = 0;
1235                 mem_cgroup_cancel_charge(page, memcg, false);
1236         } else
1237                 mem_cgroup_commit_charge(page, memcg, true, false);
1238 out:
1239         unlock_page(page);
1240         put_page(page);
1241         return error;
1242 }
1243
1244 /*
1245  * Move the page from the page cache to the swap cache.
1246  */
1247 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1248 {
1249         struct shmem_inode_info *info;
1250         struct address_space *mapping;
1251         struct inode *inode;
1252         swp_entry_t swap;
1253         pgoff_t index;
1254
1255         VM_BUG_ON_PAGE(PageCompound(page), page);
1256         BUG_ON(!PageLocked(page));
1257         mapping = page->mapping;
1258         index = page->index;
1259         inode = mapping->host;
1260         info = SHMEM_I(inode);
1261         if (info->flags & VM_LOCKED)
1262                 goto redirty;
1263         if (!total_swap_pages)
1264                 goto redirty;
1265
1266         /*
1267          * Our capabilities prevent regular writeback or sync from ever calling
1268          * shmem_writepage; but a stacking filesystem might use ->writepage of
1269          * its underlying filesystem, in which case tmpfs should write out to
1270          * swap only in response to memory pressure, and not for the writeback
1271          * threads or sync.
1272          */
1273         if (!wbc->for_reclaim) {
1274                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1275                 goto redirty;
1276         }
1277
1278         /*
1279          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1280          * value into swapfile.c, the only way we can correctly account for a
1281          * fallocated page arriving here is now to initialize it and write it.
1282          *
1283          * That's okay for a page already fallocated earlier, but if we have
1284          * not yet completed the fallocation, then (a) we want to keep track
1285          * of this page in case we have to undo it, and (b) it may not be a
1286          * good idea to continue anyway, once we're pushing into swap.  So
1287          * reactivate the page, and let shmem_fallocate() quit when too many.
1288          */
1289         if (!PageUptodate(page)) {
1290                 if (inode->i_private) {
1291                         struct shmem_falloc *shmem_falloc;
1292                         spin_lock(&inode->i_lock);
1293                         shmem_falloc = inode->i_private;
1294                         if (shmem_falloc &&
1295                             !shmem_falloc->waitq &&
1296                             index >= shmem_falloc->start &&
1297                             index < shmem_falloc->next)
1298                                 shmem_falloc->nr_unswapped++;
1299                         else
1300                                 shmem_falloc = NULL;
1301                         spin_unlock(&inode->i_lock);
1302                         if (shmem_falloc)
1303                                 goto redirty;
1304                 }
1305                 clear_highpage(page);
1306                 flush_dcache_page(page);
1307                 SetPageUptodate(page);
1308         }
1309
1310         swap = get_swap_page(page);
1311         if (!swap.val)
1312                 goto redirty;
1313
1314         /*
1315          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1316          * if it's not already there.  Do it now before the page is
1317          * moved to swap cache, when its pagelock no longer protects
1318          * the inode from eviction.  But don't unlock the mutex until
1319          * we've incremented swapped, because shmem_unuse_inode() will
1320          * prune a !swapped inode from the swaplist under this mutex.
1321          */
1322         mutex_lock(&shmem_swaplist_mutex);
1323         if (list_empty(&info->swaplist))
1324                 list_add_tail(&info->swaplist, &shmem_swaplist);
1325
1326         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1327                 spin_lock_irq(&info->lock);
1328                 shmem_recalc_inode(inode);
1329                 info->swapped++;
1330                 spin_unlock_irq(&info->lock);
1331
1332                 swap_shmem_alloc(swap);
1333                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1334
1335                 mutex_unlock(&shmem_swaplist_mutex);
1336                 BUG_ON(page_mapped(page));
1337                 swap_writepage(page, wbc);
1338                 return 0;
1339         }
1340
1341         mutex_unlock(&shmem_swaplist_mutex);
1342         put_swap_page(page, swap);
1343 redirty:
1344         set_page_dirty(page);
1345         if (wbc->for_reclaim)
1346                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1347         unlock_page(page);
1348         return 0;
1349 }
1350
1351 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1352 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1353 {
1354         char buffer[64];
1355
1356         if (!mpol || mpol->mode == MPOL_DEFAULT)
1357                 return;         /* show nothing */
1358
1359         mpol_to_str(buffer, sizeof(buffer), mpol);
1360
1361         seq_printf(seq, ",mpol=%s", buffer);
1362 }
1363
1364 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1365 {
1366         struct mempolicy *mpol = NULL;
1367         if (sbinfo->mpol) {
1368                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1369                 mpol = sbinfo->mpol;
1370                 mpol_get(mpol);
1371                 spin_unlock(&sbinfo->stat_lock);
1372         }
1373         return mpol;
1374 }
1375 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1376 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1377 {
1378 }
1379 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381         return NULL;
1382 }
1383 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1384 #ifndef CONFIG_NUMA
1385 #define vm_policy vm_private_data
1386 #endif
1387
1388 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1389                 struct shmem_inode_info *info, pgoff_t index)
1390 {
1391         /* Create a pseudo vma that just contains the policy */
1392         vma_init(vma, NULL);
1393         /* Bias interleave by inode number to distribute better across nodes */
1394         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1395         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1396 }
1397
1398 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1399 {
1400         /* Drop reference taken by mpol_shared_policy_lookup() */
1401         mpol_cond_put(vma->vm_policy);
1402 }
1403
1404 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1405                         struct shmem_inode_info *info, pgoff_t index)
1406 {
1407         struct vm_area_struct pvma;
1408         struct page *page;
1409         struct vm_fault vmf;
1410
1411         shmem_pseudo_vma_init(&pvma, info, index);
1412         vmf.vma = &pvma;
1413         vmf.address = 0;
1414         page = swap_cluster_readahead(swap, gfp, &vmf);
1415         shmem_pseudo_vma_destroy(&pvma);
1416
1417         return page;
1418 }
1419
1420 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1421                 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423         struct vm_area_struct pvma;
1424         struct address_space *mapping = info->vfs_inode.i_mapping;
1425         pgoff_t hindex;
1426         struct page *page;
1427
1428         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1429                 return NULL;
1430
1431         hindex = round_down(index, HPAGE_PMD_NR);
1432         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1433                                                                 XA_PRESENT))
1434                 return NULL;
1435
1436         shmem_pseudo_vma_init(&pvma, info, hindex);
1437         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1438                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
1439         shmem_pseudo_vma_destroy(&pvma);
1440         if (page)
1441                 prep_transhuge_page(page);
1442         return page;
1443 }
1444
1445 static struct page *shmem_alloc_page(gfp_t gfp,
1446                         struct shmem_inode_info *info, pgoff_t index)
1447 {
1448         struct vm_area_struct pvma;
1449         struct page *page;
1450
1451         shmem_pseudo_vma_init(&pvma, info, index);
1452         page = alloc_page_vma(gfp, &pvma, 0);
1453         shmem_pseudo_vma_destroy(&pvma);
1454
1455         return page;
1456 }
1457
1458 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1459                 struct inode *inode,
1460                 pgoff_t index, bool huge)
1461 {
1462         struct shmem_inode_info *info = SHMEM_I(inode);
1463         struct page *page;
1464         int nr;
1465         int err = -ENOSPC;
1466
1467         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1468                 huge = false;
1469         nr = huge ? HPAGE_PMD_NR : 1;
1470
1471         if (!shmem_inode_acct_block(inode, nr))
1472                 goto failed;
1473
1474         if (huge)
1475                 page = shmem_alloc_hugepage(gfp, info, index);
1476         else
1477                 page = shmem_alloc_page(gfp, info, index);
1478         if (page) {
1479                 __SetPageLocked(page);
1480                 __SetPageSwapBacked(page);
1481                 return page;
1482         }
1483
1484         err = -ENOMEM;
1485         shmem_inode_unacct_blocks(inode, nr);
1486 failed:
1487         return ERR_PTR(err);
1488 }
1489
1490 /*
1491  * When a page is moved from swapcache to shmem filecache (either by the
1492  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494  * ignorance of the mapping it belongs to.  If that mapping has special
1495  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496  * we may need to copy to a suitable page before moving to filecache.
1497  *
1498  * In a future release, this may well be extended to respect cpuset and
1499  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500  * but for now it is a simple matter of zone.
1501  */
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1503 {
1504         return page_zonenum(page) > gfp_zone(gfp);
1505 }
1506
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508                                 struct shmem_inode_info *info, pgoff_t index)
1509 {
1510         struct page *oldpage, *newpage;
1511         struct address_space *swap_mapping;
1512         pgoff_t swap_index;
1513         int error;
1514
1515         oldpage = *pagep;
1516         swap_index = page_private(oldpage);
1517         swap_mapping = page_mapping(oldpage);
1518
1519         /*
1520          * We have arrived here because our zones are constrained, so don't
1521          * limit chance of success by further cpuset and node constraints.
1522          */
1523         gfp &= ~GFP_CONSTRAINT_MASK;
1524         newpage = shmem_alloc_page(gfp, info, index);
1525         if (!newpage)
1526                 return -ENOMEM;
1527
1528         get_page(newpage);
1529         copy_highpage(newpage, oldpage);
1530         flush_dcache_page(newpage);
1531
1532         __SetPageLocked(newpage);
1533         __SetPageSwapBacked(newpage);
1534         SetPageUptodate(newpage);
1535         set_page_private(newpage, swap_index);
1536         SetPageSwapCache(newpage);
1537
1538         /*
1539          * Our caller will very soon move newpage out of swapcache, but it's
1540          * a nice clean interface for us to replace oldpage by newpage there.
1541          */
1542         xa_lock_irq(&swap_mapping->i_pages);
1543         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1544         if (!error) {
1545                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1546                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1547         }
1548         xa_unlock_irq(&swap_mapping->i_pages);
1549
1550         if (unlikely(error)) {
1551                 /*
1552                  * Is this possible?  I think not, now that our callers check
1553                  * both PageSwapCache and page_private after getting page lock;
1554                  * but be defensive.  Reverse old to newpage for clear and free.
1555                  */
1556                 oldpage = newpage;
1557         } else {
1558                 mem_cgroup_migrate(oldpage, newpage);
1559                 lru_cache_add_anon(newpage);
1560                 *pagep = newpage;
1561         }
1562
1563         ClearPageSwapCache(oldpage);
1564         set_page_private(oldpage, 0);
1565
1566         unlock_page(oldpage);
1567         put_page(oldpage);
1568         put_page(oldpage);
1569         return error;
1570 }
1571
1572 /*
1573  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1574  *
1575  * If we allocate a new one we do not mark it dirty. That's up to the
1576  * vm. If we swap it in we mark it dirty since we also free the swap
1577  * entry since a page cannot live in both the swap and page cache.
1578  *
1579  * fault_mm and fault_type are only supplied by shmem_fault:
1580  * otherwise they are NULL.
1581  */
1582 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1583         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1584         struct vm_area_struct *vma, struct vm_fault *vmf,
1585                         vm_fault_t *fault_type)
1586 {
1587         struct address_space *mapping = inode->i_mapping;
1588         struct shmem_inode_info *info = SHMEM_I(inode);
1589         struct shmem_sb_info *sbinfo;
1590         struct mm_struct *charge_mm;
1591         struct mem_cgroup *memcg;
1592         struct page *page;
1593         swp_entry_t swap;
1594         enum sgp_type sgp_huge = sgp;
1595         pgoff_t hindex = index;
1596         int error;
1597         int once = 0;
1598         int alloced = 0;
1599
1600         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1601                 return -EFBIG;
1602         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1603                 sgp = SGP_CACHE;
1604 repeat:
1605         swap.val = 0;
1606         page = find_lock_entry(mapping, index);
1607         if (xa_is_value(page)) {
1608                 swap = radix_to_swp_entry(page);
1609                 page = NULL;
1610         }
1611
1612         if (sgp <= SGP_CACHE &&
1613             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1614                 error = -EINVAL;
1615                 goto unlock;
1616         }
1617
1618         if (page && sgp == SGP_WRITE)
1619                 mark_page_accessed(page);
1620
1621         /* fallocated page? */
1622         if (page && !PageUptodate(page)) {
1623                 if (sgp != SGP_READ)
1624                         goto clear;
1625                 unlock_page(page);
1626                 put_page(page);
1627                 page = NULL;
1628         }
1629         if (page || (sgp == SGP_READ && !swap.val)) {
1630                 *pagep = page;
1631                 return 0;
1632         }
1633
1634         /*
1635          * Fast cache lookup did not find it:
1636          * bring it back from swap or allocate.
1637          */
1638         sbinfo = SHMEM_SB(inode->i_sb);
1639         charge_mm = vma ? vma->vm_mm : current->mm;
1640
1641         if (swap.val) {
1642                 /* Look it up and read it in.. */
1643                 page = lookup_swap_cache(swap, NULL, 0);
1644                 if (!page) {
1645                         /* Or update major stats only when swapin succeeds?? */
1646                         if (fault_type) {
1647                                 *fault_type |= VM_FAULT_MAJOR;
1648                                 count_vm_event(PGMAJFAULT);
1649                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1650                         }
1651                         /* Here we actually start the io */
1652                         page = shmem_swapin(swap, gfp, info, index);
1653                         if (!page) {
1654                                 error = -ENOMEM;
1655                                 goto failed;
1656                         }
1657                 }
1658
1659                 /* We have to do this with page locked to prevent races */
1660                 lock_page(page);
1661                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1662                     !shmem_confirm_swap(mapping, index, swap)) {
1663                         error = -EEXIST;        /* try again */
1664                         goto unlock;
1665                 }
1666                 if (!PageUptodate(page)) {
1667                         error = -EIO;
1668                         goto failed;
1669                 }
1670                 wait_on_page_writeback(page);
1671
1672                 if (shmem_should_replace_page(page, gfp)) {
1673                         error = shmem_replace_page(&page, gfp, info, index);
1674                         if (error)
1675                                 goto failed;
1676                 }
1677
1678                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1679                                 false);
1680                 if (!error) {
1681                         error = shmem_add_to_page_cache(page, mapping, index,
1682                                                 swp_to_radix_entry(swap), gfp);
1683                         /*
1684                          * We already confirmed swap under page lock, and make
1685                          * no memory allocation here, so usually no possibility
1686                          * of error; but free_swap_and_cache() only trylocks a
1687                          * page, so it is just possible that the entry has been
1688                          * truncated or holepunched since swap was confirmed.
1689                          * shmem_undo_range() will have done some of the
1690                          * unaccounting, now delete_from_swap_cache() will do
1691                          * the rest.
1692                          * Reset swap.val? No, leave it so "failed" goes back to
1693                          * "repeat": reading a hole and writing should succeed.
1694                          */
1695                         if (error) {
1696                                 mem_cgroup_cancel_charge(page, memcg, false);
1697                                 delete_from_swap_cache(page);
1698                         }
1699                 }
1700                 if (error)
1701                         goto failed;
1702
1703                 mem_cgroup_commit_charge(page, memcg, true, false);
1704
1705                 spin_lock_irq(&info->lock);
1706                 info->swapped--;
1707                 shmem_recalc_inode(inode);
1708                 spin_unlock_irq(&info->lock);
1709
1710                 if (sgp == SGP_WRITE)
1711                         mark_page_accessed(page);
1712
1713                 delete_from_swap_cache(page);
1714                 set_page_dirty(page);
1715                 swap_free(swap);
1716
1717         } else {
1718                 if (vma && userfaultfd_missing(vma)) {
1719                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720                         return 0;
1721                 }
1722
1723                 /* shmem_symlink() */
1724                 if (mapping->a_ops != &shmem_aops)
1725                         goto alloc_nohuge;
1726                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1727                         goto alloc_nohuge;
1728                 if (shmem_huge == SHMEM_HUGE_FORCE)
1729                         goto alloc_huge;
1730                 switch (sbinfo->huge) {
1731                         loff_t i_size;
1732                         pgoff_t off;
1733                 case SHMEM_HUGE_NEVER:
1734                         goto alloc_nohuge;
1735                 case SHMEM_HUGE_WITHIN_SIZE:
1736                         off = round_up(index, HPAGE_PMD_NR);
1737                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738                         if (i_size >= HPAGE_PMD_SIZE &&
1739                                         i_size >> PAGE_SHIFT >= off)
1740                                 goto alloc_huge;
1741                         /* fallthrough */
1742                 case SHMEM_HUGE_ADVISE:
1743                         if (sgp_huge == SGP_HUGE)
1744                                 goto alloc_huge;
1745                         /* TODO: implement fadvise() hints */
1746                         goto alloc_nohuge;
1747                 }
1748
1749 alloc_huge:
1750                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1751                 if (IS_ERR(page)) {
1752 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1753                                         index, false);
1754                 }
1755                 if (IS_ERR(page)) {
1756                         int retry = 5;
1757                         error = PTR_ERR(page);
1758                         page = NULL;
1759                         if (error != -ENOSPC)
1760                                 goto failed;
1761                         /*
1762                          * Try to reclaim some spece by splitting a huge page
1763                          * beyond i_size on the filesystem.
1764                          */
1765                         while (retry--) {
1766                                 int ret;
1767                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1768                                 if (ret == SHRINK_STOP)
1769                                         break;
1770                                 if (ret)
1771                                         goto alloc_nohuge;
1772                         }
1773                         goto failed;
1774                 }
1775
1776                 if (PageTransHuge(page))
1777                         hindex = round_down(index, HPAGE_PMD_NR);
1778                 else
1779                         hindex = index;
1780
1781                 if (sgp == SGP_WRITE)
1782                         __SetPageReferenced(page);
1783
1784                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1785                                 PageTransHuge(page));
1786                 if (error)
1787                         goto unacct;
1788                 error = shmem_add_to_page_cache(page, mapping, hindex,
1789                                                 NULL, gfp & GFP_RECLAIM_MASK);
1790                 if (error) {
1791                         mem_cgroup_cancel_charge(page, memcg,
1792                                         PageTransHuge(page));
1793                         goto unacct;
1794                 }
1795                 mem_cgroup_commit_charge(page, memcg, false,
1796                                 PageTransHuge(page));
1797                 lru_cache_add_anon(page);
1798
1799                 spin_lock_irq(&info->lock);
1800                 info->alloced += 1 << compound_order(page);
1801                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1802                 shmem_recalc_inode(inode);
1803                 spin_unlock_irq(&info->lock);
1804                 alloced = true;
1805
1806                 if (PageTransHuge(page) &&
1807                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1808                                 hindex + HPAGE_PMD_NR - 1) {
1809                         /*
1810                          * Part of the huge page is beyond i_size: subject
1811                          * to shrink under memory pressure.
1812                          */
1813                         spin_lock(&sbinfo->shrinklist_lock);
1814                         /*
1815                          * _careful to defend against unlocked access to
1816                          * ->shrink_list in shmem_unused_huge_shrink()
1817                          */
1818                         if (list_empty_careful(&info->shrinklist)) {
1819                                 list_add_tail(&info->shrinklist,
1820                                                 &sbinfo->shrinklist);
1821                                 sbinfo->shrinklist_len++;
1822                         }
1823                         spin_unlock(&sbinfo->shrinklist_lock);
1824                 }
1825
1826                 /*
1827                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1828                  */
1829                 if (sgp == SGP_FALLOC)
1830                         sgp = SGP_WRITE;
1831 clear:
1832                 /*
1833                  * Let SGP_WRITE caller clear ends if write does not fill page;
1834                  * but SGP_FALLOC on a page fallocated earlier must initialize
1835                  * it now, lest undo on failure cancel our earlier guarantee.
1836                  */
1837                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1838                         struct page *head = compound_head(page);
1839                         int i;
1840
1841                         for (i = 0; i < (1 << compound_order(head)); i++) {
1842                                 clear_highpage(head + i);
1843                                 flush_dcache_page(head + i);
1844                         }
1845                         SetPageUptodate(head);
1846                 }
1847         }
1848
1849         /* Perhaps the file has been truncated since we checked */
1850         if (sgp <= SGP_CACHE &&
1851             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1852                 if (alloced) {
1853                         ClearPageDirty(page);
1854                         delete_from_page_cache(page);
1855                         spin_lock_irq(&info->lock);
1856                         shmem_recalc_inode(inode);
1857                         spin_unlock_irq(&info->lock);
1858                 }
1859                 error = -EINVAL;
1860                 goto unlock;
1861         }
1862         *pagep = page + index - hindex;
1863         return 0;
1864
1865         /*
1866          * Error recovery.
1867          */
1868 unacct:
1869         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1870
1871         if (PageTransHuge(page)) {
1872                 unlock_page(page);
1873                 put_page(page);
1874                 goto alloc_nohuge;
1875         }
1876 failed:
1877         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1878                 error = -EEXIST;
1879 unlock:
1880         if (page) {
1881                 unlock_page(page);
1882                 put_page(page);
1883         }
1884         if (error == -ENOSPC && !once++) {
1885                 spin_lock_irq(&info->lock);
1886                 shmem_recalc_inode(inode);
1887                 spin_unlock_irq(&info->lock);
1888                 goto repeat;
1889         }
1890         if (error == -EEXIST)
1891                 goto repeat;
1892         return error;
1893 }
1894
1895 /*
1896  * This is like autoremove_wake_function, but it removes the wait queue
1897  * entry unconditionally - even if something else had already woken the
1898  * target.
1899  */
1900 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1901 {
1902         int ret = default_wake_function(wait, mode, sync, key);
1903         list_del_init(&wait->entry);
1904         return ret;
1905 }
1906
1907 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1908 {
1909         struct vm_area_struct *vma = vmf->vma;
1910         struct inode *inode = file_inode(vma->vm_file);
1911         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1912         enum sgp_type sgp;
1913         int err;
1914         vm_fault_t ret = VM_FAULT_LOCKED;
1915
1916         /*
1917          * Trinity finds that probing a hole which tmpfs is punching can
1918          * prevent the hole-punch from ever completing: which in turn
1919          * locks writers out with its hold on i_mutex.  So refrain from
1920          * faulting pages into the hole while it's being punched.  Although
1921          * shmem_undo_range() does remove the additions, it may be unable to
1922          * keep up, as each new page needs its own unmap_mapping_range() call,
1923          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1924          *
1925          * It does not matter if we sometimes reach this check just before the
1926          * hole-punch begins, so that one fault then races with the punch:
1927          * we just need to make racing faults a rare case.
1928          *
1929          * The implementation below would be much simpler if we just used a
1930          * standard mutex or completion: but we cannot take i_mutex in fault,
1931          * and bloating every shmem inode for this unlikely case would be sad.
1932          */
1933         if (unlikely(inode->i_private)) {
1934                 struct shmem_falloc *shmem_falloc;
1935
1936                 spin_lock(&inode->i_lock);
1937                 shmem_falloc = inode->i_private;
1938                 if (shmem_falloc &&
1939                     shmem_falloc->waitq &&
1940                     vmf->pgoff >= shmem_falloc->start &&
1941                     vmf->pgoff < shmem_falloc->next) {
1942                         wait_queue_head_t *shmem_falloc_waitq;
1943                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1944
1945                         ret = VM_FAULT_NOPAGE;
1946                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1947                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1948                                 /* It's polite to up mmap_sem if we can */
1949                                 up_read(&vma->vm_mm->mmap_sem);
1950                                 ret = VM_FAULT_RETRY;
1951                         }
1952
1953                         shmem_falloc_waitq = shmem_falloc->waitq;
1954                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1955                                         TASK_UNINTERRUPTIBLE);
1956                         spin_unlock(&inode->i_lock);
1957                         schedule();
1958
1959                         /*
1960                          * shmem_falloc_waitq points into the shmem_fallocate()
1961                          * stack of the hole-punching task: shmem_falloc_waitq
1962                          * is usually invalid by the time we reach here, but
1963                          * finish_wait() does not dereference it in that case;
1964                          * though i_lock needed lest racing with wake_up_all().
1965                          */
1966                         spin_lock(&inode->i_lock);
1967                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1968                         spin_unlock(&inode->i_lock);
1969                         return ret;
1970                 }
1971                 spin_unlock(&inode->i_lock);
1972         }
1973
1974         sgp = SGP_CACHE;
1975
1976         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1977             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1978                 sgp = SGP_NOHUGE;
1979         else if (vma->vm_flags & VM_HUGEPAGE)
1980                 sgp = SGP_HUGE;
1981
1982         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1983                                   gfp, vma, vmf, &ret);
1984         if (err)
1985                 return vmf_error(err);
1986         return ret;
1987 }
1988
1989 unsigned long shmem_get_unmapped_area(struct file *file,
1990                                       unsigned long uaddr, unsigned long len,
1991                                       unsigned long pgoff, unsigned long flags)
1992 {
1993         unsigned long (*get_area)(struct file *,
1994                 unsigned long, unsigned long, unsigned long, unsigned long);
1995         unsigned long addr;
1996         unsigned long offset;
1997         unsigned long inflated_len;
1998         unsigned long inflated_addr;
1999         unsigned long inflated_offset;
2000
2001         if (len > TASK_SIZE)
2002                 return -ENOMEM;
2003
2004         get_area = current->mm->get_unmapped_area;
2005         addr = get_area(file, uaddr, len, pgoff, flags);
2006
2007         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2008                 return addr;
2009         if (IS_ERR_VALUE(addr))
2010                 return addr;
2011         if (addr & ~PAGE_MASK)
2012                 return addr;
2013         if (addr > TASK_SIZE - len)
2014                 return addr;
2015
2016         if (shmem_huge == SHMEM_HUGE_DENY)
2017                 return addr;
2018         if (len < HPAGE_PMD_SIZE)
2019                 return addr;
2020         if (flags & MAP_FIXED)
2021                 return addr;
2022         /*
2023          * Our priority is to support MAP_SHARED mapped hugely;
2024          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2025          * But if caller specified an address hint, respect that as before.
2026          */
2027         if (uaddr)
2028                 return addr;
2029
2030         if (shmem_huge != SHMEM_HUGE_FORCE) {
2031                 struct super_block *sb;
2032
2033                 if (file) {
2034                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2035                         sb = file_inode(file)->i_sb;
2036                 } else {
2037                         /*
2038                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2039                          * for "/dev/zero", to create a shared anonymous object.
2040                          */
2041                         if (IS_ERR(shm_mnt))
2042                                 return addr;
2043                         sb = shm_mnt->mnt_sb;
2044                 }
2045                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2046                         return addr;
2047         }
2048
2049         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2050         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2051                 return addr;
2052         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2053                 return addr;
2054
2055         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2056         if (inflated_len > TASK_SIZE)
2057                 return addr;
2058         if (inflated_len < len)
2059                 return addr;
2060
2061         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2062         if (IS_ERR_VALUE(inflated_addr))
2063                 return addr;
2064         if (inflated_addr & ~PAGE_MASK)
2065                 return addr;
2066
2067         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2068         inflated_addr += offset - inflated_offset;
2069         if (inflated_offset > offset)
2070                 inflated_addr += HPAGE_PMD_SIZE;
2071
2072         if (inflated_addr > TASK_SIZE - len)
2073                 return addr;
2074         return inflated_addr;
2075 }
2076
2077 #ifdef CONFIG_NUMA
2078 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2079 {
2080         struct inode *inode = file_inode(vma->vm_file);
2081         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2082 }
2083
2084 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2085                                           unsigned long addr)
2086 {
2087         struct inode *inode = file_inode(vma->vm_file);
2088         pgoff_t index;
2089
2090         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2091         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2092 }
2093 #endif
2094
2095 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2096 {
2097         struct inode *inode = file_inode(file);
2098         struct shmem_inode_info *info = SHMEM_I(inode);
2099         int retval = -ENOMEM;
2100
2101         spin_lock_irq(&info->lock);
2102         if (lock && !(info->flags & VM_LOCKED)) {
2103                 if (!user_shm_lock(inode->i_size, user))
2104                         goto out_nomem;
2105                 info->flags |= VM_LOCKED;
2106                 mapping_set_unevictable(file->f_mapping);
2107         }
2108         if (!lock && (info->flags & VM_LOCKED) && user) {
2109                 user_shm_unlock(inode->i_size, user);
2110                 info->flags &= ~VM_LOCKED;
2111                 mapping_clear_unevictable(file->f_mapping);
2112         }
2113         retval = 0;
2114
2115 out_nomem:
2116         spin_unlock_irq(&info->lock);
2117         return retval;
2118 }
2119
2120 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2121 {
2122         file_accessed(file);
2123         vma->vm_ops = &shmem_vm_ops;
2124         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2125                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2126                         (vma->vm_end & HPAGE_PMD_MASK)) {
2127                 khugepaged_enter(vma, vma->vm_flags);
2128         }
2129         return 0;
2130 }
2131
2132 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2133                                      umode_t mode, dev_t dev, unsigned long flags)
2134 {
2135         struct inode *inode;
2136         struct shmem_inode_info *info;
2137         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139         if (shmem_reserve_inode(sb))
2140                 return NULL;
2141
2142         inode = new_inode(sb);
2143         if (inode) {
2144                 inode->i_ino = get_next_ino();
2145                 inode_init_owner(inode, dir, mode);
2146                 inode->i_blocks = 0;
2147                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2148                 inode->i_generation = prandom_u32();
2149                 info = SHMEM_I(inode);
2150                 memset(info, 0, (char *)inode - (char *)info);
2151                 spin_lock_init(&info->lock);
2152                 info->seals = F_SEAL_SEAL;
2153                 info->flags = flags & VM_NORESERVE;
2154                 INIT_LIST_HEAD(&info->shrinklist);
2155                 INIT_LIST_HEAD(&info->swaplist);
2156                 simple_xattrs_init(&info->xattrs);
2157                 cache_no_acl(inode);
2158
2159                 switch (mode & S_IFMT) {
2160                 default:
2161                         inode->i_op = &shmem_special_inode_operations;
2162                         init_special_inode(inode, mode, dev);
2163                         break;
2164                 case S_IFREG:
2165                         inode->i_mapping->a_ops = &shmem_aops;
2166                         inode->i_op = &shmem_inode_operations;
2167                         inode->i_fop = &shmem_file_operations;
2168                         mpol_shared_policy_init(&info->policy,
2169                                                  shmem_get_sbmpol(sbinfo));
2170                         break;
2171                 case S_IFDIR:
2172                         inc_nlink(inode);
2173                         /* Some things misbehave if size == 0 on a directory */
2174                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2175                         inode->i_op = &shmem_dir_inode_operations;
2176                         inode->i_fop = &simple_dir_operations;
2177                         break;
2178                 case S_IFLNK:
2179                         /*
2180                          * Must not load anything in the rbtree,
2181                          * mpol_free_shared_policy will not be called.
2182                          */
2183                         mpol_shared_policy_init(&info->policy, NULL);
2184                         break;
2185                 }
2186
2187                 lockdep_annotate_inode_mutex_key(inode);
2188         } else
2189                 shmem_free_inode(sb);
2190         return inode;
2191 }
2192
2193 bool shmem_mapping(struct address_space *mapping)
2194 {
2195         return mapping->a_ops == &shmem_aops;
2196 }
2197
2198 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2199                                   pmd_t *dst_pmd,
2200                                   struct vm_area_struct *dst_vma,
2201                                   unsigned long dst_addr,
2202                                   unsigned long src_addr,
2203                                   bool zeropage,
2204                                   struct page **pagep)
2205 {
2206         struct inode *inode = file_inode(dst_vma->vm_file);
2207         struct shmem_inode_info *info = SHMEM_I(inode);
2208         struct address_space *mapping = inode->i_mapping;
2209         gfp_t gfp = mapping_gfp_mask(mapping);
2210         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2211         struct mem_cgroup *memcg;
2212         spinlock_t *ptl;
2213         void *page_kaddr;
2214         struct page *page;
2215         pte_t _dst_pte, *dst_pte;
2216         int ret;
2217
2218         ret = -ENOMEM;
2219         if (!shmem_inode_acct_block(inode, 1))
2220                 goto out;
2221
2222         if (!*pagep) {
2223                 page = shmem_alloc_page(gfp, info, pgoff);
2224                 if (!page)
2225                         goto out_unacct_blocks;
2226
2227                 if (!zeropage) {        /* mcopy_atomic */
2228                         page_kaddr = kmap_atomic(page);
2229                         ret = copy_from_user(page_kaddr,
2230                                              (const void __user *)src_addr,
2231                                              PAGE_SIZE);
2232                         kunmap_atomic(page_kaddr);
2233
2234                         /* fallback to copy_from_user outside mmap_sem */
2235                         if (unlikely(ret)) {
2236                                 *pagep = page;
2237                                 shmem_inode_unacct_blocks(inode, 1);
2238                                 /* don't free the page */
2239                                 return -EFAULT;
2240                         }
2241                 } else {                /* mfill_zeropage_atomic */
2242                         clear_highpage(page);
2243                 }
2244         } else {
2245                 page = *pagep;
2246                 *pagep = NULL;
2247         }
2248
2249         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2250         __SetPageLocked(page);
2251         __SetPageSwapBacked(page);
2252         __SetPageUptodate(page);
2253
2254         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2255         if (ret)
2256                 goto out_release;
2257
2258         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2259                                                 gfp & GFP_RECLAIM_MASK);
2260         if (ret)
2261                 goto out_release_uncharge;
2262
2263         mem_cgroup_commit_charge(page, memcg, false, false);
2264
2265         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2266         if (dst_vma->vm_flags & VM_WRITE)
2267                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2268
2269         ret = -EEXIST;
2270         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2271         if (!pte_none(*dst_pte))
2272                 goto out_release_uncharge_unlock;
2273
2274         lru_cache_add_anon(page);
2275
2276         spin_lock(&info->lock);
2277         info->alloced++;
2278         inode->i_blocks += BLOCKS_PER_PAGE;
2279         shmem_recalc_inode(inode);
2280         spin_unlock(&info->lock);
2281
2282         inc_mm_counter(dst_mm, mm_counter_file(page));
2283         page_add_file_rmap(page, false);
2284         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2285
2286         /* No need to invalidate - it was non-present before */
2287         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2288         unlock_page(page);
2289         pte_unmap_unlock(dst_pte, ptl);
2290         ret = 0;
2291 out:
2292         return ret;
2293 out_release_uncharge_unlock:
2294         pte_unmap_unlock(dst_pte, ptl);
2295 out_release_uncharge:
2296         mem_cgroup_cancel_charge(page, memcg, false);
2297 out_release:
2298         unlock_page(page);
2299         put_page(page);
2300 out_unacct_blocks:
2301         shmem_inode_unacct_blocks(inode, 1);
2302         goto out;
2303 }
2304
2305 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2306                            pmd_t *dst_pmd,
2307                            struct vm_area_struct *dst_vma,
2308                            unsigned long dst_addr,
2309                            unsigned long src_addr,
2310                            struct page **pagep)
2311 {
2312         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2313                                       dst_addr, src_addr, false, pagep);
2314 }
2315
2316 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2317                              pmd_t *dst_pmd,
2318                              struct vm_area_struct *dst_vma,
2319                              unsigned long dst_addr)
2320 {
2321         struct page *page = NULL;
2322
2323         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2324                                       dst_addr, 0, true, &page);
2325 }
2326
2327 #ifdef CONFIG_TMPFS
2328 static const struct inode_operations shmem_symlink_inode_operations;
2329 static const struct inode_operations shmem_short_symlink_operations;
2330
2331 #ifdef CONFIG_TMPFS_XATTR
2332 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2333 #else
2334 #define shmem_initxattrs NULL
2335 #endif
2336
2337 static int
2338 shmem_write_begin(struct file *file, struct address_space *mapping,
2339                         loff_t pos, unsigned len, unsigned flags,
2340                         struct page **pagep, void **fsdata)
2341 {
2342         struct inode *inode = mapping->host;
2343         struct shmem_inode_info *info = SHMEM_I(inode);
2344         pgoff_t index = pos >> PAGE_SHIFT;
2345
2346         /* i_mutex is held by caller */
2347         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2348                 if (info->seals & F_SEAL_WRITE)
2349                         return -EPERM;
2350                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2351                         return -EPERM;
2352         }
2353
2354         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2355 }
2356
2357 static int
2358 shmem_write_end(struct file *file, struct address_space *mapping,
2359                         loff_t pos, unsigned len, unsigned copied,
2360                         struct page *page, void *fsdata)
2361 {
2362         struct inode *inode = mapping->host;
2363
2364         if (pos + copied > inode->i_size)
2365                 i_size_write(inode, pos + copied);
2366
2367         if (!PageUptodate(page)) {
2368                 struct page *head = compound_head(page);
2369                 if (PageTransCompound(page)) {
2370                         int i;
2371
2372                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2373                                 if (head + i == page)
2374                                         continue;
2375                                 clear_highpage(head + i);
2376                                 flush_dcache_page(head + i);
2377                         }
2378                 }
2379                 if (copied < PAGE_SIZE) {
2380                         unsigned from = pos & (PAGE_SIZE - 1);
2381                         zero_user_segments(page, 0, from,
2382                                         from + copied, PAGE_SIZE);
2383                 }
2384                 SetPageUptodate(head);
2385         }
2386         set_page_dirty(page);
2387         unlock_page(page);
2388         put_page(page);
2389
2390         return copied;
2391 }
2392
2393 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2394 {
2395         struct file *file = iocb->ki_filp;
2396         struct inode *inode = file_inode(file);
2397         struct address_space *mapping = inode->i_mapping;
2398         pgoff_t index;
2399         unsigned long offset;
2400         enum sgp_type sgp = SGP_READ;
2401         int error = 0;
2402         ssize_t retval = 0;
2403         loff_t *ppos = &iocb->ki_pos;
2404
2405         /*
2406          * Might this read be for a stacking filesystem?  Then when reading
2407          * holes of a sparse file, we actually need to allocate those pages,
2408          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2409          */
2410         if (!iter_is_iovec(to))
2411                 sgp = SGP_CACHE;
2412
2413         index = *ppos >> PAGE_SHIFT;
2414         offset = *ppos & ~PAGE_MASK;
2415
2416         for (;;) {
2417                 struct page *page = NULL;
2418                 pgoff_t end_index;
2419                 unsigned long nr, ret;
2420                 loff_t i_size = i_size_read(inode);
2421
2422                 end_index = i_size >> PAGE_SHIFT;
2423                 if (index > end_index)
2424                         break;
2425                 if (index == end_index) {
2426                         nr = i_size & ~PAGE_MASK;
2427                         if (nr <= offset)
2428                                 break;
2429                 }
2430
2431                 error = shmem_getpage(inode, index, &page, sgp);
2432                 if (error) {
2433                         if (error == -EINVAL)
2434                                 error = 0;
2435                         break;
2436                 }
2437                 if (page) {
2438                         if (sgp == SGP_CACHE)
2439                                 set_page_dirty(page);
2440                         unlock_page(page);
2441                 }
2442
2443                 /*
2444                  * We must evaluate after, since reads (unlike writes)
2445                  * are called without i_mutex protection against truncate
2446                  */
2447                 nr = PAGE_SIZE;
2448                 i_size = i_size_read(inode);
2449                 end_index = i_size >> PAGE_SHIFT;
2450                 if (index == end_index) {
2451                         nr = i_size & ~PAGE_MASK;
2452                         if (nr <= offset) {
2453                                 if (page)
2454                                         put_page(page);
2455                                 break;
2456                         }
2457                 }
2458                 nr -= offset;
2459
2460                 if (page) {
2461                         /*
2462                          * If users can be writing to this page using arbitrary
2463                          * virtual addresses, take care about potential aliasing
2464                          * before reading the page on the kernel side.
2465                          */
2466                         if (mapping_writably_mapped(mapping))
2467                                 flush_dcache_page(page);
2468                         /*
2469                          * Mark the page accessed if we read the beginning.
2470                          */
2471                         if (!offset)
2472                                 mark_page_accessed(page);
2473                 } else {
2474                         page = ZERO_PAGE(0);
2475                         get_page(page);
2476                 }
2477
2478                 /*
2479                  * Ok, we have the page, and it's up-to-date, so
2480                  * now we can copy it to user space...
2481                  */
2482                 ret = copy_page_to_iter(page, offset, nr, to);
2483                 retval += ret;
2484                 offset += ret;
2485                 index += offset >> PAGE_SHIFT;
2486                 offset &= ~PAGE_MASK;
2487
2488                 put_page(page);
2489                 if (!iov_iter_count(to))
2490                         break;
2491                 if (ret < nr) {
2492                         error = -EFAULT;
2493                         break;
2494                 }
2495                 cond_resched();
2496         }
2497
2498         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2499         file_accessed(file);
2500         return retval ? retval : error;
2501 }
2502
2503 /*
2504  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2505  */
2506 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2507                                     pgoff_t index, pgoff_t end, int whence)
2508 {
2509         struct page *page;
2510         struct pagevec pvec;
2511         pgoff_t indices[PAGEVEC_SIZE];
2512         bool done = false;
2513         int i;
2514
2515         pagevec_init(&pvec);
2516         pvec.nr = 1;            /* start small: we may be there already */
2517         while (!done) {
2518                 pvec.nr = find_get_entries(mapping, index,
2519                                         pvec.nr, pvec.pages, indices);
2520                 if (!pvec.nr) {
2521                         if (whence == SEEK_DATA)
2522                                 index = end;
2523                         break;
2524                 }
2525                 for (i = 0; i < pvec.nr; i++, index++) {
2526                         if (index < indices[i]) {
2527                                 if (whence == SEEK_HOLE) {
2528                                         done = true;
2529                                         break;
2530                                 }
2531                                 index = indices[i];
2532                         }
2533                         page = pvec.pages[i];
2534                         if (page && !xa_is_value(page)) {
2535                                 if (!PageUptodate(page))
2536                                         page = NULL;
2537                         }
2538                         if (index >= end ||
2539                             (page && whence == SEEK_DATA) ||
2540                             (!page && whence == SEEK_HOLE)) {
2541                                 done = true;
2542                                 break;
2543                         }
2544                 }
2545                 pagevec_remove_exceptionals(&pvec);
2546                 pagevec_release(&pvec);
2547                 pvec.nr = PAGEVEC_SIZE;
2548                 cond_resched();
2549         }
2550         return index;
2551 }
2552
2553 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2554 {
2555         struct address_space *mapping = file->f_mapping;
2556         struct inode *inode = mapping->host;
2557         pgoff_t start, end;
2558         loff_t new_offset;
2559
2560         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2561                 return generic_file_llseek_size(file, offset, whence,
2562                                         MAX_LFS_FILESIZE, i_size_read(inode));
2563         inode_lock(inode);
2564         /* We're holding i_mutex so we can access i_size directly */
2565
2566         if (offset < 0)
2567                 offset = -EINVAL;
2568         else if (offset >= inode->i_size)
2569                 offset = -ENXIO;
2570         else {
2571                 start = offset >> PAGE_SHIFT;
2572                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2573                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2574                 new_offset <<= PAGE_SHIFT;
2575                 if (new_offset > offset) {
2576                         if (new_offset < inode->i_size)
2577                                 offset = new_offset;
2578                         else if (whence == SEEK_DATA)
2579                                 offset = -ENXIO;
2580                         else
2581                                 offset = inode->i_size;
2582                 }
2583         }
2584
2585         if (offset >= 0)
2586                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2587         inode_unlock(inode);
2588         return offset;
2589 }
2590
2591 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2592                                                          loff_t len)
2593 {
2594         struct inode *inode = file_inode(file);
2595         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2596         struct shmem_inode_info *info = SHMEM_I(inode);
2597         struct shmem_falloc shmem_falloc;
2598         pgoff_t start, index, end;
2599         int error;
2600
2601         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2602                 return -EOPNOTSUPP;
2603
2604         inode_lock(inode);
2605
2606         if (mode & FALLOC_FL_PUNCH_HOLE) {
2607                 struct address_space *mapping = file->f_mapping;
2608                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2609                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2610                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2611
2612                 /* protected by i_mutex */
2613                 if (info->seals & F_SEAL_WRITE) {
2614                         error = -EPERM;
2615                         goto out;
2616                 }
2617
2618                 shmem_falloc.waitq = &shmem_falloc_waitq;
2619                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2620                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2621                 spin_lock(&inode->i_lock);
2622                 inode->i_private = &shmem_falloc;
2623                 spin_unlock(&inode->i_lock);
2624
2625                 if ((u64)unmap_end > (u64)unmap_start)
2626                         unmap_mapping_range(mapping, unmap_start,
2627                                             1 + unmap_end - unmap_start, 0);
2628                 shmem_truncate_range(inode, offset, offset + len - 1);
2629                 /* No need to unmap again: hole-punching leaves COWed pages */
2630
2631                 spin_lock(&inode->i_lock);
2632                 inode->i_private = NULL;
2633                 wake_up_all(&shmem_falloc_waitq);
2634                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2635                 spin_unlock(&inode->i_lock);
2636                 error = 0;
2637                 goto out;
2638         }
2639
2640         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2641         error = inode_newsize_ok(inode, offset + len);
2642         if (error)
2643                 goto out;
2644
2645         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2646                 error = -EPERM;
2647                 goto out;
2648         }
2649
2650         start = offset >> PAGE_SHIFT;
2651         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2652         /* Try to avoid a swapstorm if len is impossible to satisfy */
2653         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2654                 error = -ENOSPC;
2655                 goto out;
2656         }
2657
2658         shmem_falloc.waitq = NULL;
2659         shmem_falloc.start = start;
2660         shmem_falloc.next  = start;
2661         shmem_falloc.nr_falloced = 0;
2662         shmem_falloc.nr_unswapped = 0;
2663         spin_lock(&inode->i_lock);
2664         inode->i_private = &shmem_falloc;
2665         spin_unlock(&inode->i_lock);
2666
2667         for (index = start; index < end; index++) {
2668                 struct page *page;
2669
2670                 /*
2671                  * Good, the fallocate(2) manpage permits EINTR: we may have
2672                  * been interrupted because we are using up too much memory.
2673                  */
2674                 if (signal_pending(current))
2675                         error = -EINTR;
2676                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2677                         error = -ENOMEM;
2678                 else
2679                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2680                 if (error) {
2681                         /* Remove the !PageUptodate pages we added */
2682                         if (index > start) {
2683                                 shmem_undo_range(inode,
2684                                     (loff_t)start << PAGE_SHIFT,
2685                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2686                         }
2687                         goto undone;
2688                 }
2689
2690                 /*
2691                  * Inform shmem_writepage() how far we have reached.
2692                  * No need for lock or barrier: we have the page lock.
2693                  */
2694                 shmem_falloc.next++;
2695                 if (!PageUptodate(page))
2696                         shmem_falloc.nr_falloced++;
2697
2698                 /*
2699                  * If !PageUptodate, leave it that way so that freeable pages
2700                  * can be recognized if we need to rollback on error later.
2701                  * But set_page_dirty so that memory pressure will swap rather
2702                  * than free the pages we are allocating (and SGP_CACHE pages
2703                  * might still be clean: we now need to mark those dirty too).
2704                  */
2705                 set_page_dirty(page);
2706                 unlock_page(page);
2707                 put_page(page);
2708                 cond_resched();
2709         }
2710
2711         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2712                 i_size_write(inode, offset + len);
2713         inode->i_ctime = current_time(inode);
2714 undone:
2715         spin_lock(&inode->i_lock);
2716         inode->i_private = NULL;
2717         spin_unlock(&inode->i_lock);
2718 out:
2719         inode_unlock(inode);
2720         return error;
2721 }
2722
2723 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2724 {
2725         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2726
2727         buf->f_type = TMPFS_MAGIC;
2728         buf->f_bsize = PAGE_SIZE;
2729         buf->f_namelen = NAME_MAX;
2730         if (sbinfo->max_blocks) {
2731                 buf->f_blocks = sbinfo->max_blocks;
2732                 buf->f_bavail =
2733                 buf->f_bfree  = sbinfo->max_blocks -
2734                                 percpu_counter_sum(&sbinfo->used_blocks);
2735         }
2736         if (sbinfo->max_inodes) {
2737                 buf->f_files = sbinfo->max_inodes;
2738                 buf->f_ffree = sbinfo->free_inodes;
2739         }
2740         /* else leave those fields 0 like simple_statfs */
2741         return 0;
2742 }
2743
2744 /*
2745  * File creation. Allocate an inode, and we're done..
2746  */
2747 static int
2748 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2749 {
2750         struct inode *inode;
2751         int error = -ENOSPC;
2752
2753         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2754         if (inode) {
2755                 error = simple_acl_create(dir, inode);
2756                 if (error)
2757                         goto out_iput;
2758                 error = security_inode_init_security(inode, dir,
2759                                                      &dentry->d_name,
2760                                                      shmem_initxattrs, NULL);
2761                 if (error && error != -EOPNOTSUPP)
2762                         goto out_iput;
2763
2764                 error = 0;
2765                 dir->i_size += BOGO_DIRENT_SIZE;
2766                 dir->i_ctime = dir->i_mtime = current_time(dir);
2767                 d_instantiate(dentry, inode);
2768                 dget(dentry); /* Extra count - pin the dentry in core */
2769         }
2770         return error;
2771 out_iput:
2772         iput(inode);
2773         return error;
2774 }
2775
2776 static int
2777 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2778 {
2779         struct inode *inode;
2780         int error = -ENOSPC;
2781
2782         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2783         if (inode) {
2784                 error = security_inode_init_security(inode, dir,
2785                                                      NULL,
2786                                                      shmem_initxattrs, NULL);
2787                 if (error && error != -EOPNOTSUPP)
2788                         goto out_iput;
2789                 error = simple_acl_create(dir, inode);
2790                 if (error)
2791                         goto out_iput;
2792                 d_tmpfile(dentry, inode);
2793         }
2794         return error;
2795 out_iput:
2796         iput(inode);
2797         return error;
2798 }
2799
2800 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2801 {
2802         int error;
2803
2804         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2805                 return error;
2806         inc_nlink(dir);
2807         return 0;
2808 }
2809
2810 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2811                 bool excl)
2812 {
2813         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2814 }
2815
2816 /*
2817  * Link a file..
2818  */
2819 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2820 {
2821         struct inode *inode = d_inode(old_dentry);
2822         int ret;
2823
2824         /*
2825          * No ordinary (disk based) filesystem counts links as inodes;
2826          * but each new link needs a new dentry, pinning lowmem, and
2827          * tmpfs dentries cannot be pruned until they are unlinked.
2828          */
2829         ret = shmem_reserve_inode(inode->i_sb);
2830         if (ret)
2831                 goto out;
2832
2833         dir->i_size += BOGO_DIRENT_SIZE;
2834         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2835         inc_nlink(inode);
2836         ihold(inode);   /* New dentry reference */
2837         dget(dentry);           /* Extra pinning count for the created dentry */
2838         d_instantiate(dentry, inode);
2839 out:
2840         return ret;
2841 }
2842
2843 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2844 {
2845         struct inode *inode = d_inode(dentry);
2846
2847         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2848                 shmem_free_inode(inode->i_sb);
2849
2850         dir->i_size -= BOGO_DIRENT_SIZE;
2851         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2852         drop_nlink(inode);
2853         dput(dentry);   /* Undo the count from "create" - this does all the work */
2854         return 0;
2855 }
2856
2857 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2858 {
2859         if (!simple_empty(dentry))
2860                 return -ENOTEMPTY;
2861
2862         drop_nlink(d_inode(dentry));
2863         drop_nlink(dir);
2864         return shmem_unlink(dir, dentry);
2865 }
2866
2867 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2868 {
2869         bool old_is_dir = d_is_dir(old_dentry);
2870         bool new_is_dir = d_is_dir(new_dentry);
2871
2872         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2873                 if (old_is_dir) {
2874                         drop_nlink(old_dir);
2875                         inc_nlink(new_dir);
2876                 } else {
2877                         drop_nlink(new_dir);
2878                         inc_nlink(old_dir);
2879                 }
2880         }
2881         old_dir->i_ctime = old_dir->i_mtime =
2882         new_dir->i_ctime = new_dir->i_mtime =
2883         d_inode(old_dentry)->i_ctime =
2884         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2885
2886         return 0;
2887 }
2888
2889 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2890 {
2891         struct dentry *whiteout;
2892         int error;
2893
2894         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2895         if (!whiteout)
2896                 return -ENOMEM;
2897
2898         error = shmem_mknod(old_dir, whiteout,
2899                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2900         dput(whiteout);
2901         if (error)
2902                 return error;
2903
2904         /*
2905          * Cheat and hash the whiteout while the old dentry is still in
2906          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2907          *
2908          * d_lookup() will consistently find one of them at this point,
2909          * not sure which one, but that isn't even important.
2910          */
2911         d_rehash(whiteout);
2912         return 0;
2913 }
2914
2915 /*
2916  * The VFS layer already does all the dentry stuff for rename,
2917  * we just have to decrement the usage count for the target if
2918  * it exists so that the VFS layer correctly free's it when it
2919  * gets overwritten.
2920  */
2921 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2922 {
2923         struct inode *inode = d_inode(old_dentry);
2924         int they_are_dirs = S_ISDIR(inode->i_mode);
2925
2926         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2927                 return -EINVAL;
2928
2929         if (flags & RENAME_EXCHANGE)
2930                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2931
2932         if (!simple_empty(new_dentry))
2933                 return -ENOTEMPTY;
2934
2935         if (flags & RENAME_WHITEOUT) {
2936                 int error;
2937
2938                 error = shmem_whiteout(old_dir, old_dentry);
2939                 if (error)
2940                         return error;
2941         }
2942
2943         if (d_really_is_positive(new_dentry)) {
2944                 (void) shmem_unlink(new_dir, new_dentry);
2945                 if (they_are_dirs) {
2946                         drop_nlink(d_inode(new_dentry));
2947                         drop_nlink(old_dir);
2948                 }
2949         } else if (they_are_dirs) {
2950                 drop_nlink(old_dir);
2951                 inc_nlink(new_dir);
2952         }
2953
2954         old_dir->i_size -= BOGO_DIRENT_SIZE;
2955         new_dir->i_size += BOGO_DIRENT_SIZE;
2956         old_dir->i_ctime = old_dir->i_mtime =
2957         new_dir->i_ctime = new_dir->i_mtime =
2958         inode->i_ctime = current_time(old_dir);
2959         return 0;
2960 }
2961
2962 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2963 {
2964         int error;
2965         int len;
2966         struct inode *inode;
2967         struct page *page;
2968
2969         len = strlen(symname) + 1;
2970         if (len > PAGE_SIZE)
2971                 return -ENAMETOOLONG;
2972
2973         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
2974                                 VM_NORESERVE);
2975         if (!inode)
2976                 return -ENOSPC;
2977
2978         error = security_inode_init_security(inode, dir, &dentry->d_name,
2979                                              shmem_initxattrs, NULL);
2980         if (error) {
2981                 if (error != -EOPNOTSUPP) {
2982                         iput(inode);
2983                         return error;
2984                 }
2985                 error = 0;
2986         }
2987
2988         inode->i_size = len-1;
2989         if (len <= SHORT_SYMLINK_LEN) {
2990                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2991                 if (!inode->i_link) {
2992                         iput(inode);
2993                         return -ENOMEM;
2994                 }
2995                 inode->i_op = &shmem_short_symlink_operations;
2996         } else {
2997                 inode_nohighmem(inode);
2998                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2999                 if (error) {
3000                         iput(inode);
3001                         return error;
3002                 }
3003                 inode->i_mapping->a_ops = &shmem_aops;
3004                 inode->i_op = &shmem_symlink_inode_operations;
3005                 memcpy(page_address(page), symname, len);
3006                 SetPageUptodate(page);
3007                 set_page_dirty(page);
3008                 unlock_page(page);
3009                 put_page(page);
3010         }
3011         dir->i_size += BOGO_DIRENT_SIZE;
3012         dir->i_ctime = dir->i_mtime = current_time(dir);
3013         d_instantiate(dentry, inode);
3014         dget(dentry);
3015         return 0;
3016 }
3017
3018 static void shmem_put_link(void *arg)
3019 {
3020         mark_page_accessed(arg);
3021         put_page(arg);
3022 }
3023
3024 static const char *shmem_get_link(struct dentry *dentry,
3025                                   struct inode *inode,
3026                                   struct delayed_call *done)
3027 {
3028         struct page *page = NULL;
3029         int error;
3030         if (!dentry) {
3031                 page = find_get_page(inode->i_mapping, 0);
3032                 if (!page)
3033                         return ERR_PTR(-ECHILD);
3034                 if (!PageUptodate(page)) {
3035                         put_page(page);
3036                         return ERR_PTR(-ECHILD);
3037                 }
3038         } else {
3039                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3040                 if (error)
3041                         return ERR_PTR(error);
3042                 unlock_page(page);
3043         }
3044         set_delayed_call(done, shmem_put_link, page);
3045         return page_address(page);
3046 }
3047
3048 #ifdef CONFIG_TMPFS_XATTR
3049 /*
3050  * Superblocks without xattr inode operations may get some security.* xattr
3051  * support from the LSM "for free". As soon as we have any other xattrs
3052  * like ACLs, we also need to implement the security.* handlers at
3053  * filesystem level, though.
3054  */
3055
3056 /*
3057  * Callback for security_inode_init_security() for acquiring xattrs.
3058  */
3059 static int shmem_initxattrs(struct inode *inode,
3060                             const struct xattr *xattr_array,
3061                             void *fs_info)
3062 {
3063         struct shmem_inode_info *info = SHMEM_I(inode);
3064         const struct xattr *xattr;
3065         struct simple_xattr *new_xattr;
3066         size_t len;
3067
3068         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3069                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3070                 if (!new_xattr)
3071                         return -ENOMEM;
3072
3073                 len = strlen(xattr->name) + 1;
3074                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3075                                           GFP_KERNEL);
3076                 if (!new_xattr->name) {
3077                         kfree(new_xattr);
3078                         return -ENOMEM;
3079                 }
3080
3081                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3082                        XATTR_SECURITY_PREFIX_LEN);
3083                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3084                        xattr->name, len);
3085
3086                 simple_xattr_list_add(&info->xattrs, new_xattr);
3087         }
3088
3089         return 0;
3090 }
3091
3092 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3093                                    struct dentry *unused, struct inode *inode,
3094                                    const char *name, void *buffer, size_t size)
3095 {
3096         struct shmem_inode_info *info = SHMEM_I(inode);
3097
3098         name = xattr_full_name(handler, name);
3099         return simple_xattr_get(&info->xattrs, name, buffer, size);
3100 }
3101
3102 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3103                                    struct dentry *unused, struct inode *inode,
3104                                    const char *name, const void *value,
3105                                    size_t size, int flags)
3106 {
3107         struct shmem_inode_info *info = SHMEM_I(inode);
3108
3109         name = xattr_full_name(handler, name);
3110         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3111 }
3112
3113 static const struct xattr_handler shmem_security_xattr_handler = {
3114         .prefix = XATTR_SECURITY_PREFIX,
3115         .get = shmem_xattr_handler_get,
3116         .set = shmem_xattr_handler_set,
3117 };
3118
3119 static const struct xattr_handler shmem_trusted_xattr_handler = {
3120         .prefix = XATTR_TRUSTED_PREFIX,
3121         .get = shmem_xattr_handler_get,
3122         .set = shmem_xattr_handler_set,
3123 };
3124
3125 static const struct xattr_handler *shmem_xattr_handlers[] = {
3126 #ifdef CONFIG_TMPFS_POSIX_ACL
3127         &posix_acl_access_xattr_handler,
3128         &posix_acl_default_xattr_handler,
3129 #endif
3130         &shmem_security_xattr_handler,
3131         &shmem_trusted_xattr_handler,
3132         NULL
3133 };
3134
3135 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3136 {
3137         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3138         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3139 }
3140 #endif /* CONFIG_TMPFS_XATTR */
3141
3142 static const struct inode_operations shmem_short_symlink_operations = {
3143         .get_link       = simple_get_link,
3144 #ifdef CONFIG_TMPFS_XATTR
3145         .listxattr      = shmem_listxattr,
3146 #endif
3147 };
3148
3149 static const struct inode_operations shmem_symlink_inode_operations = {
3150         .get_link       = shmem_get_link,
3151 #ifdef CONFIG_TMPFS_XATTR
3152         .listxattr      = shmem_listxattr,
3153 #endif
3154 };
3155
3156 static struct dentry *shmem_get_parent(struct dentry *child)
3157 {
3158         return ERR_PTR(-ESTALE);
3159 }
3160
3161 static int shmem_match(struct inode *ino, void *vfh)
3162 {
3163         __u32 *fh = vfh;
3164         __u64 inum = fh[2];
3165         inum = (inum << 32) | fh[1];
3166         return ino->i_ino == inum && fh[0] == ino->i_generation;
3167 }
3168
3169 /* Find any alias of inode, but prefer a hashed alias */
3170 static struct dentry *shmem_find_alias(struct inode *inode)
3171 {
3172         struct dentry *alias = d_find_alias(inode);
3173
3174         return alias ?: d_find_any_alias(inode);
3175 }
3176
3177
3178 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3179                 struct fid *fid, int fh_len, int fh_type)
3180 {
3181         struct inode *inode;
3182         struct dentry *dentry = NULL;
3183         u64 inum;
3184
3185         if (fh_len < 3)
3186                 return NULL;
3187
3188         inum = fid->raw[2];
3189         inum = (inum << 32) | fid->raw[1];
3190
3191         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3192                         shmem_match, fid->raw);
3193         if (inode) {
3194                 dentry = shmem_find_alias(inode);
3195                 iput(inode);
3196         }
3197
3198         return dentry;
3199 }
3200
3201 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3202                                 struct inode *parent)
3203 {
3204         if (*len < 3) {
3205                 *len = 3;
3206                 return FILEID_INVALID;
3207         }
3208
3209         if (inode_unhashed(inode)) {
3210                 /* Unfortunately insert_inode_hash is not idempotent,
3211                  * so as we hash inodes here rather than at creation
3212                  * time, we need a lock to ensure we only try
3213                  * to do it once
3214                  */
3215                 static DEFINE_SPINLOCK(lock);
3216                 spin_lock(&lock);
3217                 if (inode_unhashed(inode))
3218                         __insert_inode_hash(inode,
3219                                             inode->i_ino + inode->i_generation);
3220                 spin_unlock(&lock);
3221         }
3222
3223         fh[0] = inode->i_generation;
3224         fh[1] = inode->i_ino;
3225         fh[2] = ((__u64)inode->i_ino) >> 32;
3226
3227         *len = 3;
3228         return 1;
3229 }
3230
3231 static const struct export_operations shmem_export_ops = {
3232         .get_parent     = shmem_get_parent,
3233         .encode_fh      = shmem_encode_fh,
3234         .fh_to_dentry   = shmem_fh_to_dentry,
3235 };
3236
3237 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3238                                bool remount)
3239 {
3240         char *this_char, *value, *rest;
3241         struct mempolicy *mpol = NULL;
3242         uid_t uid;
3243         gid_t gid;
3244
3245         while (options != NULL) {
3246                 this_char = options;
3247                 for (;;) {
3248                         /*
3249                          * NUL-terminate this option: unfortunately,
3250                          * mount options form a comma-separated list,
3251                          * but mpol's nodelist may also contain commas.
3252                          */
3253                         options = strchr(options, ',');
3254                         if (options == NULL)
3255                                 break;
3256                         options++;
3257                         if (!isdigit(*options)) {
3258                                 options[-1] = '\0';
3259                                 break;
3260                         }
3261                 }
3262                 if (!*this_char)
3263                         continue;
3264                 if ((value = strchr(this_char,'=')) != NULL) {
3265                         *value++ = 0;
3266                 } else {
3267                         pr_err("tmpfs: No value for mount option '%s'\n",
3268                                this_char);
3269                         goto error;
3270                 }
3271
3272                 if (!strcmp(this_char,"size")) {
3273                         unsigned long long size;
3274                         size = memparse(value,&rest);
3275                         if (*rest == '%') {
3276                                 size <<= PAGE_SHIFT;
3277                                 size *= totalram_pages;
3278                                 do_div(size, 100);
3279                                 rest++;
3280                         }
3281                         if (*rest)
3282                                 goto bad_val;
3283                         sbinfo->max_blocks =
3284                                 DIV_ROUND_UP(size, PAGE_SIZE);
3285                 } else if (!strcmp(this_char,"nr_blocks")) {
3286                         sbinfo->max_blocks = memparse(value, &rest);
3287                         if (*rest)
3288                                 goto bad_val;
3289                 } else if (!strcmp(this_char,"nr_inodes")) {
3290                         sbinfo->max_inodes = memparse(value, &rest);
3291                         if (*rest)
3292                                 goto bad_val;
3293                 } else if (!strcmp(this_char,"mode")) {
3294                         if (remount)
3295                                 continue;
3296                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3297                         if (*rest)
3298                                 goto bad_val;
3299                 } else if (!strcmp(this_char,"uid")) {
3300                         if (remount)
3301                                 continue;
3302                         uid = simple_strtoul(value, &rest, 0);
3303                         if (*rest)
3304                                 goto bad_val;
3305                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3306                         if (!uid_valid(sbinfo->uid))
3307                                 goto bad_val;
3308                 } else if (!strcmp(this_char,"gid")) {
3309                         if (remount)
3310                                 continue;
3311                         gid = simple_strtoul(value, &rest, 0);
3312                         if (*rest)
3313                                 goto bad_val;
3314                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3315                         if (!gid_valid(sbinfo->gid))
3316                                 goto bad_val;
3317 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3318                 } else if (!strcmp(this_char, "huge")) {
3319                         int huge;
3320                         huge = shmem_parse_huge(value);
3321                         if (huge < 0)
3322                                 goto bad_val;
3323                         if (!has_transparent_hugepage() &&
3324                                         huge != SHMEM_HUGE_NEVER)
3325                                 goto bad_val;
3326                         sbinfo->huge = huge;
3327 #endif
3328 #ifdef CONFIG_NUMA
3329                 } else if (!strcmp(this_char,"mpol")) {
3330                         mpol_put(mpol);
3331                         mpol = NULL;
3332                         if (mpol_parse_str(value, &mpol))
3333                                 goto bad_val;
3334 #endif
3335                 } else {
3336                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3337                         goto error;
3338                 }
3339         }
3340         sbinfo->mpol = mpol;
3341         return 0;
3342
3343 bad_val:
3344         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3345                value, this_char);
3346 error:
3347         mpol_put(mpol);
3348         return 1;
3349
3350 }
3351
3352 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3353 {
3354         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3355         struct shmem_sb_info config = *sbinfo;
3356         unsigned long inodes;
3357         int error = -EINVAL;
3358
3359         config.mpol = NULL;
3360         if (shmem_parse_options(data, &config, true))
3361                 return error;
3362
3363         spin_lock(&sbinfo->stat_lock);
3364         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3365         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3366                 goto out;
3367         if (config.max_inodes < inodes)
3368                 goto out;
3369         /*
3370          * Those tests disallow limited->unlimited while any are in use;
3371          * but we must separately disallow unlimited->limited, because
3372          * in that case we have no record of how much is already in use.
3373          */
3374         if (config.max_blocks && !sbinfo->max_blocks)
3375                 goto out;
3376         if (config.max_inodes && !sbinfo->max_inodes)
3377                 goto out;
3378
3379         error = 0;
3380         sbinfo->huge = config.huge;
3381         sbinfo->max_blocks  = config.max_blocks;
3382         sbinfo->max_inodes  = config.max_inodes;
3383         sbinfo->free_inodes = config.max_inodes - inodes;
3384
3385         /*
3386          * Preserve previous mempolicy unless mpol remount option was specified.
3387          */
3388         if (config.mpol) {
3389                 mpol_put(sbinfo->mpol);
3390                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3391         }
3392 out:
3393         spin_unlock(&sbinfo->stat_lock);
3394         return error;
3395 }
3396
3397 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3398 {
3399         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3400
3401         if (sbinfo->max_blocks != shmem_default_max_blocks())
3402                 seq_printf(seq, ",size=%luk",
3403                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3404         if (sbinfo->max_inodes != shmem_default_max_inodes())
3405                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3406         if (sbinfo->mode != (0777 | S_ISVTX))
3407                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3408         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3409                 seq_printf(seq, ",uid=%u",
3410                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3411         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3412                 seq_printf(seq, ",gid=%u",
3413                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3414 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3415         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3416         if (sbinfo->huge)
3417                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3418 #endif
3419         shmem_show_mpol(seq, sbinfo->mpol);
3420         return 0;
3421 }
3422
3423 #endif /* CONFIG_TMPFS */
3424
3425 static void shmem_put_super(struct super_block *sb)
3426 {
3427         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3428
3429         percpu_counter_destroy(&sbinfo->used_blocks);
3430         mpol_put(sbinfo->mpol);
3431         kfree(sbinfo);
3432         sb->s_fs_info = NULL;
3433 }
3434
3435 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3436 {
3437         struct inode *inode;
3438         struct shmem_sb_info *sbinfo;
3439         int err = -ENOMEM;
3440
3441         /* Round up to L1_CACHE_BYTES to resist false sharing */
3442         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3443                                 L1_CACHE_BYTES), GFP_KERNEL);
3444         if (!sbinfo)
3445                 return -ENOMEM;
3446
3447         sbinfo->mode = 0777 | S_ISVTX;
3448         sbinfo->uid = current_fsuid();
3449         sbinfo->gid = current_fsgid();
3450         sb->s_fs_info = sbinfo;
3451
3452 #ifdef CONFIG_TMPFS
3453         /*
3454          * Per default we only allow half of the physical ram per
3455          * tmpfs instance, limiting inodes to one per page of lowmem;
3456          * but the internal instance is left unlimited.
3457          */
3458         if (!(sb->s_flags & SB_KERNMOUNT)) {
3459                 sbinfo->max_blocks = shmem_default_max_blocks();
3460                 sbinfo->max_inodes = shmem_default_max_inodes();
3461                 if (shmem_parse_options(data, sbinfo, false)) {
3462                         err = -EINVAL;
3463                         goto failed;
3464                 }
3465         } else {
3466                 sb->s_flags |= SB_NOUSER;
3467         }
3468         sb->s_export_op = &shmem_export_ops;
3469         sb->s_flags |= SB_NOSEC;
3470 #else
3471         sb->s_flags |= SB_NOUSER;
3472 #endif
3473
3474         spin_lock_init(&sbinfo->stat_lock);
3475         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3476                 goto failed;
3477         sbinfo->free_inodes = sbinfo->max_inodes;
3478         spin_lock_init(&sbinfo->shrinklist_lock);
3479         INIT_LIST_HEAD(&sbinfo->shrinklist);
3480
3481         sb->s_maxbytes = MAX_LFS_FILESIZE;
3482         sb->s_blocksize = PAGE_SIZE;
3483         sb->s_blocksize_bits = PAGE_SHIFT;
3484         sb->s_magic = TMPFS_MAGIC;
3485         sb->s_op = &shmem_ops;
3486         sb->s_time_gran = 1;
3487 #ifdef CONFIG_TMPFS_XATTR
3488         sb->s_xattr = shmem_xattr_handlers;
3489 #endif
3490 #ifdef CONFIG_TMPFS_POSIX_ACL
3491         sb->s_flags |= SB_POSIXACL;
3492 #endif
3493         uuid_gen(&sb->s_uuid);
3494
3495         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3496         if (!inode)
3497                 goto failed;
3498         inode->i_uid = sbinfo->uid;
3499         inode->i_gid = sbinfo->gid;
3500         sb->s_root = d_make_root(inode);
3501         if (!sb->s_root)
3502                 goto failed;
3503         return 0;
3504
3505 failed:
3506         shmem_put_super(sb);
3507         return err;
3508 }
3509
3510 static struct kmem_cache *shmem_inode_cachep;
3511
3512 static struct inode *shmem_alloc_inode(struct super_block *sb)
3513 {
3514         struct shmem_inode_info *info;
3515         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3516         if (!info)
3517                 return NULL;
3518         return &info->vfs_inode;
3519 }
3520
3521 static void shmem_destroy_callback(struct rcu_head *head)
3522 {
3523         struct inode *inode = container_of(head, struct inode, i_rcu);
3524         if (S_ISLNK(inode->i_mode))
3525                 kfree(inode->i_link);
3526         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3527 }
3528
3529 static void shmem_destroy_inode(struct inode *inode)
3530 {
3531         if (S_ISREG(inode->i_mode))
3532                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3533         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3534 }
3535
3536 static void shmem_init_inode(void *foo)
3537 {
3538         struct shmem_inode_info *info = foo;
3539         inode_init_once(&info->vfs_inode);
3540 }
3541
3542 static void shmem_init_inodecache(void)
3543 {
3544         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3545                                 sizeof(struct shmem_inode_info),
3546                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3547 }
3548
3549 static void shmem_destroy_inodecache(void)
3550 {
3551         kmem_cache_destroy(shmem_inode_cachep);
3552 }
3553
3554 static const struct address_space_operations shmem_aops = {
3555         .writepage      = shmem_writepage,
3556         .set_page_dirty = __set_page_dirty_no_writeback,
3557 #ifdef CONFIG_TMPFS
3558         .write_begin    = shmem_write_begin,
3559         .write_end      = shmem_write_end,
3560 #endif
3561 #ifdef CONFIG_MIGRATION
3562         .migratepage    = migrate_page,
3563 #endif
3564         .error_remove_page = generic_error_remove_page,
3565 };
3566
3567 static const struct file_operations shmem_file_operations = {
3568         .mmap           = shmem_mmap,
3569         .get_unmapped_area = shmem_get_unmapped_area,
3570 #ifdef CONFIG_TMPFS
3571         .llseek         = shmem_file_llseek,
3572         .read_iter      = shmem_file_read_iter,
3573         .write_iter     = generic_file_write_iter,
3574         .fsync          = noop_fsync,
3575         .splice_read    = generic_file_splice_read,
3576         .splice_write   = iter_file_splice_write,
3577         .fallocate      = shmem_fallocate,
3578 #endif
3579 };
3580
3581 static const struct inode_operations shmem_inode_operations = {
3582         .getattr        = shmem_getattr,
3583         .setattr        = shmem_setattr,
3584 #ifdef CONFIG_TMPFS_XATTR
3585         .listxattr      = shmem_listxattr,
3586         .set_acl        = simple_set_acl,
3587 #endif
3588 };
3589
3590 static const struct inode_operations shmem_dir_inode_operations = {
3591 #ifdef CONFIG_TMPFS
3592         .create         = shmem_create,
3593         .lookup         = simple_lookup,
3594         .link           = shmem_link,
3595         .unlink         = shmem_unlink,
3596         .symlink        = shmem_symlink,
3597         .mkdir          = shmem_mkdir,
3598         .rmdir          = shmem_rmdir,
3599         .mknod          = shmem_mknod,
3600         .rename         = shmem_rename2,
3601         .tmpfile        = shmem_tmpfile,
3602 #endif
3603 #ifdef CONFIG_TMPFS_XATTR
3604         .listxattr      = shmem_listxattr,
3605 #endif
3606 #ifdef CONFIG_TMPFS_POSIX_ACL
3607         .setattr        = shmem_setattr,
3608         .set_acl        = simple_set_acl,
3609 #endif
3610 };
3611
3612 static const struct inode_operations shmem_special_inode_operations = {
3613 #ifdef CONFIG_TMPFS_XATTR
3614         .listxattr      = shmem_listxattr,
3615 #endif
3616 #ifdef CONFIG_TMPFS_POSIX_ACL
3617         .setattr        = shmem_setattr,
3618         .set_acl        = simple_set_acl,
3619 #endif
3620 };
3621
3622 static const struct super_operations shmem_ops = {
3623         .alloc_inode    = shmem_alloc_inode,
3624         .destroy_inode  = shmem_destroy_inode,
3625 #ifdef CONFIG_TMPFS
3626         .statfs         = shmem_statfs,
3627         .remount_fs     = shmem_remount_fs,
3628         .show_options   = shmem_show_options,
3629 #endif
3630         .evict_inode    = shmem_evict_inode,
3631         .drop_inode     = generic_delete_inode,
3632         .put_super      = shmem_put_super,
3633 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3634         .nr_cached_objects      = shmem_unused_huge_count,
3635         .free_cached_objects    = shmem_unused_huge_scan,
3636 #endif
3637 };
3638
3639 static const struct vm_operations_struct shmem_vm_ops = {
3640         .fault          = shmem_fault,
3641         .map_pages      = filemap_map_pages,
3642 #ifdef CONFIG_NUMA
3643         .set_policy     = shmem_set_policy,
3644         .get_policy     = shmem_get_policy,
3645 #endif
3646 };
3647
3648 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3649         int flags, const char *dev_name, void *data)
3650 {
3651         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3652 }
3653
3654 static struct file_system_type shmem_fs_type = {
3655         .owner          = THIS_MODULE,
3656         .name           = "tmpfs",
3657         .mount          = shmem_mount,
3658         .kill_sb        = kill_litter_super,
3659         .fs_flags       = FS_USERNS_MOUNT,
3660 };
3661
3662 int __init shmem_init(void)
3663 {
3664         int error;
3665
3666         /* If rootfs called this, don't re-init */
3667         if (shmem_inode_cachep)
3668                 return 0;
3669
3670         shmem_init_inodecache();
3671
3672         error = register_filesystem(&shmem_fs_type);
3673         if (error) {
3674                 pr_err("Could not register tmpfs\n");
3675                 goto out2;
3676         }
3677
3678         shm_mnt = kern_mount(&shmem_fs_type);
3679         if (IS_ERR(shm_mnt)) {
3680                 error = PTR_ERR(shm_mnt);
3681                 pr_err("Could not kern_mount tmpfs\n");
3682                 goto out1;
3683         }
3684
3685 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3686         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3687                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3688         else
3689                 shmem_huge = 0; /* just in case it was patched */
3690 #endif
3691         return 0;
3692
3693 out1:
3694         unregister_filesystem(&shmem_fs_type);
3695 out2:
3696         shmem_destroy_inodecache();
3697         shm_mnt = ERR_PTR(error);
3698         return error;
3699 }
3700
3701 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3702 static ssize_t shmem_enabled_show(struct kobject *kobj,
3703                 struct kobj_attribute *attr, char *buf)
3704 {
3705         int values[] = {
3706                 SHMEM_HUGE_ALWAYS,
3707                 SHMEM_HUGE_WITHIN_SIZE,
3708                 SHMEM_HUGE_ADVISE,
3709                 SHMEM_HUGE_NEVER,
3710                 SHMEM_HUGE_DENY,
3711                 SHMEM_HUGE_FORCE,
3712         };
3713         int i, count;
3714
3715         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3716                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3717
3718                 count += sprintf(buf + count, fmt,
3719                                 shmem_format_huge(values[i]));
3720         }
3721         buf[count - 1] = '\n';
3722         return count;
3723 }
3724
3725 static ssize_t shmem_enabled_store(struct kobject *kobj,
3726                 struct kobj_attribute *attr, const char *buf, size_t count)
3727 {
3728         char tmp[16];
3729         int huge;
3730
3731         if (count + 1 > sizeof(tmp))
3732                 return -EINVAL;
3733         memcpy(tmp, buf, count);
3734         tmp[count] = '\0';
3735         if (count && tmp[count - 1] == '\n')
3736                 tmp[count - 1] = '\0';
3737
3738         huge = shmem_parse_huge(tmp);
3739         if (huge == -EINVAL)
3740                 return -EINVAL;
3741         if (!has_transparent_hugepage() &&
3742                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3743                 return -EINVAL;
3744
3745         shmem_huge = huge;
3746         if (shmem_huge > SHMEM_HUGE_DENY)
3747                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3748         return count;
3749 }
3750
3751 struct kobj_attribute shmem_enabled_attr =
3752         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3753 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3754
3755 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3756 bool shmem_huge_enabled(struct vm_area_struct *vma)
3757 {
3758         struct inode *inode = file_inode(vma->vm_file);
3759         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3760         loff_t i_size;
3761         pgoff_t off;
3762
3763         if (shmem_huge == SHMEM_HUGE_FORCE)
3764                 return true;
3765         if (shmem_huge == SHMEM_HUGE_DENY)
3766                 return false;
3767         switch (sbinfo->huge) {
3768                 case SHMEM_HUGE_NEVER:
3769                         return false;
3770                 case SHMEM_HUGE_ALWAYS:
3771                         return true;
3772                 case SHMEM_HUGE_WITHIN_SIZE:
3773                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3774                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3775                         if (i_size >= HPAGE_PMD_SIZE &&
3776                                         i_size >> PAGE_SHIFT >= off)
3777                                 return true;
3778                         /* fall through */
3779                 case SHMEM_HUGE_ADVISE:
3780                         /* TODO: implement fadvise() hints */
3781                         return (vma->vm_flags & VM_HUGEPAGE);
3782                 default:
3783                         VM_BUG_ON(1);
3784                         return false;
3785         }
3786 }
3787 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3788
3789 #else /* !CONFIG_SHMEM */
3790
3791 /*
3792  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3793  *
3794  * This is intended for small system where the benefits of the full
3795  * shmem code (swap-backed and resource-limited) are outweighed by
3796  * their complexity. On systems without swap this code should be
3797  * effectively equivalent, but much lighter weight.
3798  */
3799
3800 static struct file_system_type shmem_fs_type = {
3801         .name           = "tmpfs",
3802         .mount          = ramfs_mount,
3803         .kill_sb        = kill_litter_super,
3804         .fs_flags       = FS_USERNS_MOUNT,
3805 };
3806
3807 int __init shmem_init(void)
3808 {
3809         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3810
3811         shm_mnt = kern_mount(&shmem_fs_type);
3812         BUG_ON(IS_ERR(shm_mnt));
3813
3814         return 0;
3815 }
3816
3817 int shmem_unuse(swp_entry_t swap, struct page *page)
3818 {
3819         return 0;
3820 }
3821
3822 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3823 {
3824         return 0;
3825 }
3826
3827 void shmem_unlock_mapping(struct address_space *mapping)
3828 {
3829 }
3830
3831 #ifdef CONFIG_MMU
3832 unsigned long shmem_get_unmapped_area(struct file *file,
3833                                       unsigned long addr, unsigned long len,
3834                                       unsigned long pgoff, unsigned long flags)
3835 {
3836         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3837 }
3838 #endif
3839
3840 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3841 {
3842         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3843 }
3844 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3845
3846 #define shmem_vm_ops                            generic_file_vm_ops
3847 #define shmem_file_operations                   ramfs_file_operations
3848 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3849 #define shmem_acct_size(flags, size)            0
3850 #define shmem_unacct_size(flags, size)          do {} while (0)
3851
3852 #endif /* CONFIG_SHMEM */
3853
3854 /* common code */
3855
3856 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3857                                        unsigned long flags, unsigned int i_flags)
3858 {
3859         struct inode *inode;
3860         struct file *res;
3861
3862         if (IS_ERR(mnt))
3863                 return ERR_CAST(mnt);
3864
3865         if (size < 0 || size > MAX_LFS_FILESIZE)
3866                 return ERR_PTR(-EINVAL);
3867
3868         if (shmem_acct_size(flags, size))
3869                 return ERR_PTR(-ENOMEM);
3870
3871         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3872                                 flags);
3873         if (unlikely(!inode)) {
3874                 shmem_unacct_size(flags, size);
3875                 return ERR_PTR(-ENOSPC);
3876         }
3877         inode->i_flags |= i_flags;
3878         inode->i_size = size;
3879         clear_nlink(inode);     /* It is unlinked */
3880         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3881         if (!IS_ERR(res))
3882                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3883                                 &shmem_file_operations);
3884         if (IS_ERR(res))
3885                 iput(inode);
3886         return res;
3887 }
3888
3889 /**
3890  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3891  *      kernel internal.  There will be NO LSM permission checks against the
3892  *      underlying inode.  So users of this interface must do LSM checks at a
3893  *      higher layer.  The users are the big_key and shm implementations.  LSM
3894  *      checks are provided at the key or shm level rather than the inode.
3895  * @name: name for dentry (to be seen in /proc/<pid>/maps
3896  * @size: size to be set for the file
3897  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3898  */
3899 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3900 {
3901         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3902 }
3903
3904 /**
3905  * shmem_file_setup - get an unlinked file living in tmpfs
3906  * @name: name for dentry (to be seen in /proc/<pid>/maps
3907  * @size: size to be set for the file
3908  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3909  */
3910 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3911 {
3912         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3913 }
3914 EXPORT_SYMBOL_GPL(shmem_file_setup);
3915
3916 /**
3917  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3918  * @mnt: the tmpfs mount where the file will be created
3919  * @name: name for dentry (to be seen in /proc/<pid>/maps
3920  * @size: size to be set for the file
3921  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3922  */
3923 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3924                                        loff_t size, unsigned long flags)
3925 {
3926         return __shmem_file_setup(mnt, name, size, flags, 0);
3927 }
3928 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3929
3930 /**
3931  * shmem_zero_setup - setup a shared anonymous mapping
3932  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3933  */
3934 int shmem_zero_setup(struct vm_area_struct *vma)
3935 {
3936         struct file *file;
3937         loff_t size = vma->vm_end - vma->vm_start;
3938
3939         /*
3940          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3941          * between XFS directory reading and selinux: since this file is only
3942          * accessible to the user through its mapping, use S_PRIVATE flag to
3943          * bypass file security, in the same way as shmem_kernel_file_setup().
3944          */
3945         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3946         if (IS_ERR(file))
3947                 return PTR_ERR(file);
3948
3949         if (vma->vm_file)
3950                 fput(vma->vm_file);
3951         vma->vm_file = file;
3952         vma->vm_ops = &shmem_vm_ops;
3953
3954         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3955                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3956                         (vma->vm_end & HPAGE_PMD_MASK)) {
3957                 khugepaged_enter(vma, vma->vm_flags);
3958         }
3959
3960         return 0;
3961 }
3962
3963 /**
3964  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3965  * @mapping:    the page's address_space
3966  * @index:      the page index
3967  * @gfp:        the page allocator flags to use if allocating
3968  *
3969  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3970  * with any new page allocations done using the specified allocation flags.
3971  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3972  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3973  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3974  *
3975  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3976  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3977  */
3978 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3979                                          pgoff_t index, gfp_t gfp)
3980 {
3981 #ifdef CONFIG_SHMEM
3982         struct inode *inode = mapping->host;
3983         struct page *page;
3984         int error;
3985
3986         BUG_ON(mapping->a_ops != &shmem_aops);
3987         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3988                                   gfp, NULL, NULL, NULL);
3989         if (error)
3990                 page = ERR_PTR(error);
3991         else
3992                 unlock_page(page);
3993         return page;
3994 #else
3995         /*
3996          * The tiny !SHMEM case uses ramfs without swap
3997          */
3998         return read_cache_page_gfp(mapping, index, gfp);
3999 #endif
4000 }
4001 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);