Merge branch 'cleanup' into for-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
82         char *name;             /* xattr name */
83         size_t size;
84         char value[0];
85 };
86
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         pgoff_t start;          /* start of range currently being fallocated */
94         pgoff_t next;           /* the next page offset to be fallocated */
95         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
96         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101         SGP_READ,       /* don't exceed i_size, don't allocate page */
102         SGP_CACHE,      /* don't exceed i_size, may allocate page */
103         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
104         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
105         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127         struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129         return shmem_getpage_gfp(inode, index, pagep, sgp,
130                         mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135         return sb->s_fs_info;
136 }
137
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146         return (flags & VM_NORESERVE) ?
147                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152         if (!(flags & VM_NORESERVE))
153                 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164         return (flags & VM_NORESERVE) ?
165                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170         if (flags & VM_NORESERVE)
171                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183         .ra_pages       = 0,    /* No readahead */
184         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193         if (sbinfo->max_inodes) {
194                 spin_lock(&sbinfo->stat_lock);
195                 if (!sbinfo->free_inodes) {
196                         spin_unlock(&sbinfo->stat_lock);
197                         return -ENOSPC;
198                 }
199                 sbinfo->free_inodes--;
200                 spin_unlock(&sbinfo->stat_lock);
201         }
202         return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208         if (sbinfo->max_inodes) {
209                 spin_lock(&sbinfo->stat_lock);
210                 sbinfo->free_inodes++;
211                 spin_unlock(&sbinfo->stat_lock);
212         }
213 }
214
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229         struct shmem_inode_info *info = SHMEM_I(inode);
230         long freed;
231
232         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233         if (freed > 0) {
234                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235                 if (sbinfo->max_blocks)
236                         percpu_counter_add(&sbinfo->used_blocks, -freed);
237                 info->alloced -= freed;
238                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239                 shmem_unacct_blocks(info->flags, freed);
240         }
241 }
242
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247                         pgoff_t index, void *expected, void *replacement)
248 {
249         void **pslot;
250         void *item = NULL;
251
252         VM_BUG_ON(!expected);
253         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254         if (pslot)
255                 item = radix_tree_deref_slot_protected(pslot,
256                                                         &mapping->tree_lock);
257         if (item != expected)
258                 return -ENOENT;
259         if (replacement)
260                 radix_tree_replace_slot(pslot, replacement);
261         else
262                 radix_tree_delete(&mapping->page_tree, index);
263         return 0;
264 }
265
266 /*
267  * Sometimes, before we decide whether to proceed or to fail, we must check
268  * that an entry was not already brought back from swap by a racing thread.
269  *
270  * Checking page is not enough: by the time a SwapCache page is locked, it
271  * might be reused, and again be SwapCache, using the same swap as before.
272  */
273 static bool shmem_confirm_swap(struct address_space *mapping,
274                                pgoff_t index, swp_entry_t swap)
275 {
276         void *item;
277
278         rcu_read_lock();
279         item = radix_tree_lookup(&mapping->page_tree, index);
280         rcu_read_unlock();
281         return item == swp_to_radix_entry(swap);
282 }
283
284 /*
285  * Like add_to_page_cache_locked, but error if expected item has gone.
286  */
287 static int shmem_add_to_page_cache(struct page *page,
288                                    struct address_space *mapping,
289                                    pgoff_t index, gfp_t gfp, void *expected)
290 {
291         int error;
292
293         VM_BUG_ON(!PageLocked(page));
294         VM_BUG_ON(!PageSwapBacked(page));
295
296         page_cache_get(page);
297         page->mapping = mapping;
298         page->index = index;
299
300         spin_lock_irq(&mapping->tree_lock);
301         if (!expected)
302                 error = radix_tree_insert(&mapping->page_tree, index, page);
303         else
304                 error = shmem_radix_tree_replace(mapping, index, expected,
305                                                                  page);
306         if (!error) {
307                 mapping->nrpages++;
308                 __inc_zone_page_state(page, NR_FILE_PAGES);
309                 __inc_zone_page_state(page, NR_SHMEM);
310                 spin_unlock_irq(&mapping->tree_lock);
311         } else {
312                 page->mapping = NULL;
313                 spin_unlock_irq(&mapping->tree_lock);
314                 page_cache_release(page);
315         }
316         return error;
317 }
318
319 /*
320  * Like delete_from_page_cache, but substitutes swap for page.
321  */
322 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
323 {
324         struct address_space *mapping = page->mapping;
325         int error;
326
327         spin_lock_irq(&mapping->tree_lock);
328         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329         page->mapping = NULL;
330         mapping->nrpages--;
331         __dec_zone_page_state(page, NR_FILE_PAGES);
332         __dec_zone_page_state(page, NR_SHMEM);
333         spin_unlock_irq(&mapping->tree_lock);
334         page_cache_release(page);
335         BUG_ON(error);
336 }
337
338 /*
339  * Like find_get_pages, but collecting swap entries as well as pages.
340  */
341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342                                         pgoff_t start, unsigned int nr_pages,
343                                         struct page **pages, pgoff_t *indices)
344 {
345         unsigned int i;
346         unsigned int ret;
347         unsigned int nr_found;
348
349         rcu_read_lock();
350 restart:
351         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352                                 (void ***)pages, indices, start, nr_pages);
353         ret = 0;
354         for (i = 0; i < nr_found; i++) {
355                 struct page *page;
356 repeat:
357                 page = radix_tree_deref_slot((void **)pages[i]);
358                 if (unlikely(!page))
359                         continue;
360                 if (radix_tree_exception(page)) {
361                         if (radix_tree_deref_retry(page))
362                                 goto restart;
363                         /*
364                          * Otherwise, we must be storing a swap entry
365                          * here as an exceptional entry: so return it
366                          * without attempting to raise page count.
367                          */
368                         goto export;
369                 }
370                 if (!page_cache_get_speculative(page))
371                         goto repeat;
372
373                 /* Has the page moved? */
374                 if (unlikely(page != *((void **)pages[i]))) {
375                         page_cache_release(page);
376                         goto repeat;
377                 }
378 export:
379                 indices[ret] = indices[i];
380                 pages[ret] = page;
381                 ret++;
382         }
383         if (unlikely(!ret && nr_found))
384                 goto restart;
385         rcu_read_unlock();
386         return ret;
387 }
388
389 /*
390  * Remove swap entry from radix tree, free the swap and its page cache.
391  */
392 static int shmem_free_swap(struct address_space *mapping,
393                            pgoff_t index, void *radswap)
394 {
395         int error;
396
397         spin_lock_irq(&mapping->tree_lock);
398         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399         spin_unlock_irq(&mapping->tree_lock);
400         if (!error)
401                 free_swap_and_cache(radix_to_swp_entry(radswap));
402         return error;
403 }
404
405 /*
406  * Pagevec may contain swap entries, so shuffle up pages before releasing.
407  */
408 static void shmem_deswap_pagevec(struct pagevec *pvec)
409 {
410         int i, j;
411
412         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413                 struct page *page = pvec->pages[i];
414                 if (!radix_tree_exceptional_entry(page))
415                         pvec->pages[j++] = page;
416         }
417         pvec->nr = j;
418 }
419
420 /*
421  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
422  */
423 void shmem_unlock_mapping(struct address_space *mapping)
424 {
425         struct pagevec pvec;
426         pgoff_t indices[PAGEVEC_SIZE];
427         pgoff_t index = 0;
428
429         pagevec_init(&pvec, 0);
430         /*
431          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
432          */
433         while (!mapping_unevictable(mapping)) {
434                 /*
435                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
437                  */
438                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439                                         PAGEVEC_SIZE, pvec.pages, indices);
440                 if (!pvec.nr)
441                         break;
442                 index = indices[pvec.nr - 1] + 1;
443                 shmem_deswap_pagevec(&pvec);
444                 check_move_unevictable_pages(pvec.pages, pvec.nr);
445                 pagevec_release(&pvec);
446                 cond_resched();
447         }
448 }
449
450 /*
451  * Remove range of pages and swap entries from radix tree, and free them.
452  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
453  */
454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455                                                                  bool unfalloc)
456 {
457         struct address_space *mapping = inode->i_mapping;
458         struct shmem_inode_info *info = SHMEM_I(inode);
459         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463         struct pagevec pvec;
464         pgoff_t indices[PAGEVEC_SIZE];
465         long nr_swaps_freed = 0;
466         pgoff_t index;
467         int i;
468
469         if (lend == -1)
470                 end = -1;       /* unsigned, so actually very big */
471
472         pagevec_init(&pvec, 0);
473         index = start;
474         while (index < end) {
475                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
477                                                         pvec.pages, indices);
478                 if (!pvec.nr)
479                         break;
480                 mem_cgroup_uncharge_start();
481                 for (i = 0; i < pagevec_count(&pvec); i++) {
482                         struct page *page = pvec.pages[i];
483
484                         index = indices[i];
485                         if (index >= end)
486                                 break;
487
488                         if (radix_tree_exceptional_entry(page)) {
489                                 if (unfalloc)
490                                         continue;
491                                 nr_swaps_freed += !shmem_free_swap(mapping,
492                                                                 index, page);
493                                 continue;
494                         }
495
496                         if (!trylock_page(page))
497                                 continue;
498                         if (!unfalloc || !PageUptodate(page)) {
499                                 if (page->mapping == mapping) {
500                                         VM_BUG_ON(PageWriteback(page));
501                                         truncate_inode_page(mapping, page);
502                                 }
503                         }
504                         unlock_page(page);
505                 }
506                 shmem_deswap_pagevec(&pvec);
507                 pagevec_release(&pvec);
508                 mem_cgroup_uncharge_end();
509                 cond_resched();
510                 index++;
511         }
512
513         if (partial_start) {
514                 struct page *page = NULL;
515                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516                 if (page) {
517                         unsigned int top = PAGE_CACHE_SIZE;
518                         if (start > end) {
519                                 top = partial_end;
520                                 partial_end = 0;
521                         }
522                         zero_user_segment(page, partial_start, top);
523                         set_page_dirty(page);
524                         unlock_page(page);
525                         page_cache_release(page);
526                 }
527         }
528         if (partial_end) {
529                 struct page *page = NULL;
530                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
531                 if (page) {
532                         zero_user_segment(page, 0, partial_end);
533                         set_page_dirty(page);
534                         unlock_page(page);
535                         page_cache_release(page);
536                 }
537         }
538         if (start >= end)
539                 return;
540
541         index = start;
542         for ( ; ; ) {
543                 cond_resched();
544                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
546                                                         pvec.pages, indices);
547                 if (!pvec.nr) {
548                         if (index == start || unfalloc)
549                                 break;
550                         index = start;
551                         continue;
552                 }
553                 if ((index == start || unfalloc) && indices[0] >= end) {
554                         shmem_deswap_pagevec(&pvec);
555                         pagevec_release(&pvec);
556                         break;
557                 }
558                 mem_cgroup_uncharge_start();
559                 for (i = 0; i < pagevec_count(&pvec); i++) {
560                         struct page *page = pvec.pages[i];
561
562                         index = indices[i];
563                         if (index >= end)
564                                 break;
565
566                         if (radix_tree_exceptional_entry(page)) {
567                                 if (unfalloc)
568                                         continue;
569                                 nr_swaps_freed += !shmem_free_swap(mapping,
570                                                                 index, page);
571                                 continue;
572                         }
573
574                         lock_page(page);
575                         if (!unfalloc || !PageUptodate(page)) {
576                                 if (page->mapping == mapping) {
577                                         VM_BUG_ON(PageWriteback(page));
578                                         truncate_inode_page(mapping, page);
579                                 }
580                         }
581                         unlock_page(page);
582                 }
583                 shmem_deswap_pagevec(&pvec);
584                 pagevec_release(&pvec);
585                 mem_cgroup_uncharge_end();
586                 index++;
587         }
588
589         spin_lock(&info->lock);
590         info->swapped -= nr_swaps_freed;
591         shmem_recalc_inode(inode);
592         spin_unlock(&info->lock);
593 }
594
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596 {
597         shmem_undo_range(inode, lstart, lend, false);
598         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599 }
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
601
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603 {
604         struct inode *inode = dentry->d_inode;
605         int error;
606
607         error = inode_change_ok(inode, attr);
608         if (error)
609                 return error;
610
611         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612                 loff_t oldsize = inode->i_size;
613                 loff_t newsize = attr->ia_size;
614
615                 if (newsize != oldsize) {
616                         i_size_write(inode, newsize);
617                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618                 }
619                 if (newsize < oldsize) {
620                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
621                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622                         shmem_truncate_range(inode, newsize, (loff_t)-1);
623                         /* unmap again to remove racily COWed private pages */
624                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625                 }
626         }
627
628         setattr_copy(inode, attr);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630         if (attr->ia_valid & ATTR_MODE)
631                 error = generic_acl_chmod(inode);
632 #endif
633         return error;
634 }
635
636 static void shmem_evict_inode(struct inode *inode)
637 {
638         struct shmem_inode_info *info = SHMEM_I(inode);
639         struct shmem_xattr *xattr, *nxattr;
640
641         if (inode->i_mapping->a_ops == &shmem_aops) {
642                 shmem_unacct_size(info->flags, inode->i_size);
643                 inode->i_size = 0;
644                 shmem_truncate_range(inode, 0, (loff_t)-1);
645                 if (!list_empty(&info->swaplist)) {
646                         mutex_lock(&shmem_swaplist_mutex);
647                         list_del_init(&info->swaplist);
648                         mutex_unlock(&shmem_swaplist_mutex);
649                 }
650         } else
651                 kfree(info->symlink);
652
653         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654                 kfree(xattr->name);
655                 kfree(xattr);
656         }
657         BUG_ON(inode->i_blocks);
658         shmem_free_inode(inode->i_sb);
659         clear_inode(inode);
660 }
661
662 /*
663  * If swap found in inode, free it and move page from swapcache to filecache.
664  */
665 static int shmem_unuse_inode(struct shmem_inode_info *info,
666                              swp_entry_t swap, struct page **pagep)
667 {
668         struct address_space *mapping = info->vfs_inode.i_mapping;
669         void *radswap;
670         pgoff_t index;
671         gfp_t gfp;
672         int error = 0;
673
674         radswap = swp_to_radix_entry(swap);
675         index = radix_tree_locate_item(&mapping->page_tree, radswap);
676         if (index == -1)
677                 return 0;
678
679         /*
680          * Move _head_ to start search for next from here.
681          * But be careful: shmem_evict_inode checks list_empty without taking
682          * mutex, and there's an instant in list_move_tail when info->swaplist
683          * would appear empty, if it were the only one on shmem_swaplist.
684          */
685         if (shmem_swaplist.next != &info->swaplist)
686                 list_move_tail(&shmem_swaplist, &info->swaplist);
687
688         gfp = mapping_gfp_mask(mapping);
689         if (shmem_should_replace_page(*pagep, gfp)) {
690                 mutex_unlock(&shmem_swaplist_mutex);
691                 error = shmem_replace_page(pagep, gfp, info, index);
692                 mutex_lock(&shmem_swaplist_mutex);
693                 /*
694                  * We needed to drop mutex to make that restrictive page
695                  * allocation, but the inode might have been freed while we
696                  * dropped it: although a racing shmem_evict_inode() cannot
697                  * complete without emptying the radix_tree, our page lock
698                  * on this swapcache page is not enough to prevent that -
699                  * free_swap_and_cache() of our swap entry will only
700                  * trylock_page(), removing swap from radix_tree whatever.
701                  *
702                  * We must not proceed to shmem_add_to_page_cache() if the
703                  * inode has been freed, but of course we cannot rely on
704                  * inode or mapping or info to check that.  However, we can
705                  * safely check if our swap entry is still in use (and here
706                  * it can't have got reused for another page): if it's still
707                  * in use, then the inode cannot have been freed yet, and we
708                  * can safely proceed (if it's no longer in use, that tells
709                  * nothing about the inode, but we don't need to unuse swap).
710                  */
711                 if (!page_swapcount(*pagep))
712                         error = -ENOENT;
713         }
714
715         /*
716          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717          * but also to hold up shmem_evict_inode(): so inode cannot be freed
718          * beneath us (pagelock doesn't help until the page is in pagecache).
719          */
720         if (!error)
721                 error = shmem_add_to_page_cache(*pagep, mapping, index,
722                                                 GFP_NOWAIT, radswap);
723         if (error != -ENOMEM) {
724                 /*
725                  * Truncation and eviction use free_swap_and_cache(), which
726                  * only does trylock page: if we raced, best clean up here.
727                  */
728                 delete_from_swap_cache(*pagep);
729                 set_page_dirty(*pagep);
730                 if (!error) {
731                         spin_lock(&info->lock);
732                         info->swapped--;
733                         spin_unlock(&info->lock);
734                         swap_free(swap);
735                 }
736                 error = 1;      /* not an error, but entry was found */
737         }
738         return error;
739 }
740
741 /*
742  * Search through swapped inodes to find and replace swap by page.
743  */
744 int shmem_unuse(swp_entry_t swap, struct page *page)
745 {
746         struct list_head *this, *next;
747         struct shmem_inode_info *info;
748         int found = 0;
749         int error = 0;
750
751         /*
752          * There's a faint possibility that swap page was replaced before
753          * caller locked it: caller will come back later with the right page.
754          */
755         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756                 goto out;
757
758         /*
759          * Charge page using GFP_KERNEL while we can wait, before taking
760          * the shmem_swaplist_mutex which might hold up shmem_writepage().
761          * Charged back to the user (not to caller) when swap account is used.
762          */
763         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764         if (error)
765                 goto out;
766         /* No radix_tree_preload: swap entry keeps a place for page in tree */
767
768         mutex_lock(&shmem_swaplist_mutex);
769         list_for_each_safe(this, next, &shmem_swaplist) {
770                 info = list_entry(this, struct shmem_inode_info, swaplist);
771                 if (info->swapped)
772                         found = shmem_unuse_inode(info, swap, &page);
773                 else
774                         list_del_init(&info->swaplist);
775                 cond_resched();
776                 if (found)
777                         break;
778         }
779         mutex_unlock(&shmem_swaplist_mutex);
780
781         if (found < 0)
782                 error = found;
783 out:
784         unlock_page(page);
785         page_cache_release(page);
786         return error;
787 }
788
789 /*
790  * Move the page from the page cache to the swap cache.
791  */
792 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
793 {
794         struct shmem_inode_info *info;
795         struct address_space *mapping;
796         struct inode *inode;
797         swp_entry_t swap;
798         pgoff_t index;
799
800         BUG_ON(!PageLocked(page));
801         mapping = page->mapping;
802         index = page->index;
803         inode = mapping->host;
804         info = SHMEM_I(inode);
805         if (info->flags & VM_LOCKED)
806                 goto redirty;
807         if (!total_swap_pages)
808                 goto redirty;
809
810         /*
811          * shmem_backing_dev_info's capabilities prevent regular writeback or
812          * sync from ever calling shmem_writepage; but a stacking filesystem
813          * might use ->writepage of its underlying filesystem, in which case
814          * tmpfs should write out to swap only in response to memory pressure,
815          * and not for the writeback threads or sync.
816          */
817         if (!wbc->for_reclaim) {
818                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
819                 goto redirty;
820         }
821
822         /*
823          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824          * value into swapfile.c, the only way we can correctly account for a
825          * fallocated page arriving here is now to initialize it and write it.
826          *
827          * That's okay for a page already fallocated earlier, but if we have
828          * not yet completed the fallocation, then (a) we want to keep track
829          * of this page in case we have to undo it, and (b) it may not be a
830          * good idea to continue anyway, once we're pushing into swap.  So
831          * reactivate the page, and let shmem_fallocate() quit when too many.
832          */
833         if (!PageUptodate(page)) {
834                 if (inode->i_private) {
835                         struct shmem_falloc *shmem_falloc;
836                         spin_lock(&inode->i_lock);
837                         shmem_falloc = inode->i_private;
838                         if (shmem_falloc &&
839                             index >= shmem_falloc->start &&
840                             index < shmem_falloc->next)
841                                 shmem_falloc->nr_unswapped++;
842                         else
843                                 shmem_falloc = NULL;
844                         spin_unlock(&inode->i_lock);
845                         if (shmem_falloc)
846                                 goto redirty;
847                 }
848                 clear_highpage(page);
849                 flush_dcache_page(page);
850                 SetPageUptodate(page);
851         }
852
853         swap = get_swap_page();
854         if (!swap.val)
855                 goto redirty;
856
857         /*
858          * Add inode to shmem_unuse()'s list of swapped-out inodes,
859          * if it's not already there.  Do it now before the page is
860          * moved to swap cache, when its pagelock no longer protects
861          * the inode from eviction.  But don't unlock the mutex until
862          * we've incremented swapped, because shmem_unuse_inode() will
863          * prune a !swapped inode from the swaplist under this mutex.
864          */
865         mutex_lock(&shmem_swaplist_mutex);
866         if (list_empty(&info->swaplist))
867                 list_add_tail(&info->swaplist, &shmem_swaplist);
868
869         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870                 swap_shmem_alloc(swap);
871                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
872
873                 spin_lock(&info->lock);
874                 info->swapped++;
875                 shmem_recalc_inode(inode);
876                 spin_unlock(&info->lock);
877
878                 mutex_unlock(&shmem_swaplist_mutex);
879                 BUG_ON(page_mapped(page));
880                 swap_writepage(page, wbc);
881                 return 0;
882         }
883
884         mutex_unlock(&shmem_swaplist_mutex);
885         swapcache_free(swap, NULL);
886 redirty:
887         set_page_dirty(page);
888         if (wbc->for_reclaim)
889                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
890         unlock_page(page);
891         return 0;
892 }
893
894 #ifdef CONFIG_NUMA
895 #ifdef CONFIG_TMPFS
896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
897 {
898         char buffer[64];
899
900         if (!mpol || mpol->mode == MPOL_DEFAULT)
901                 return;         /* show nothing */
902
903         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
904
905         seq_printf(seq, ",mpol=%s", buffer);
906 }
907
908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910         struct mempolicy *mpol = NULL;
911         if (sbinfo->mpol) {
912                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
913                 mpol = sbinfo->mpol;
914                 mpol_get(mpol);
915                 spin_unlock(&sbinfo->stat_lock);
916         }
917         return mpol;
918 }
919 #endif /* CONFIG_TMPFS */
920
921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922                         struct shmem_inode_info *info, pgoff_t index)
923 {
924         struct mempolicy mpol, *spol;
925         struct vm_area_struct pvma;
926
927         spol = mpol_cond_copy(&mpol,
928                         mpol_shared_policy_lookup(&info->policy, index));
929
930         /* Create a pseudo vma that just contains the policy */
931         pvma.vm_start = 0;
932         /* Bias interleave by inode number to distribute better across nodes */
933         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
934         pvma.vm_ops = NULL;
935         pvma.vm_policy = spol;
936         return swapin_readahead(swap, gfp, &pvma, 0);
937 }
938
939 static struct page *shmem_alloc_page(gfp_t gfp,
940                         struct shmem_inode_info *info, pgoff_t index)
941 {
942         struct vm_area_struct pvma;
943
944         /* Create a pseudo vma that just contains the policy */
945         pvma.vm_start = 0;
946         /* Bias interleave by inode number to distribute better across nodes */
947         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
948         pvma.vm_ops = NULL;
949         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
950
951         /*
952          * alloc_page_vma() will drop the shared policy reference
953          */
954         return alloc_page_vma(gfp, &pvma, 0);
955 }
956 #else /* !CONFIG_NUMA */
957 #ifdef CONFIG_TMPFS
958 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
959 {
960 }
961 #endif /* CONFIG_TMPFS */
962
963 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
964                         struct shmem_inode_info *info, pgoff_t index)
965 {
966         return swapin_readahead(swap, gfp, NULL, 0);
967 }
968
969 static inline struct page *shmem_alloc_page(gfp_t gfp,
970                         struct shmem_inode_info *info, pgoff_t index)
971 {
972         return alloc_page(gfp);
973 }
974 #endif /* CONFIG_NUMA */
975
976 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
978 {
979         return NULL;
980 }
981 #endif
982
983 /*
984  * When a page is moved from swapcache to shmem filecache (either by the
985  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
986  * shmem_unuse_inode()), it may have been read in earlier from swap, in
987  * ignorance of the mapping it belongs to.  If that mapping has special
988  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
989  * we may need to copy to a suitable page before moving to filecache.
990  *
991  * In a future release, this may well be extended to respect cpuset and
992  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
993  * but for now it is a simple matter of zone.
994  */
995 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
996 {
997         return page_zonenum(page) > gfp_zone(gfp);
998 }
999
1000 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1001                                 struct shmem_inode_info *info, pgoff_t index)
1002 {
1003         struct page *oldpage, *newpage;
1004         struct address_space *swap_mapping;
1005         pgoff_t swap_index;
1006         int error;
1007
1008         oldpage = *pagep;
1009         swap_index = page_private(oldpage);
1010         swap_mapping = page_mapping(oldpage);
1011
1012         /*
1013          * We have arrived here because our zones are constrained, so don't
1014          * limit chance of success by further cpuset and node constraints.
1015          */
1016         gfp &= ~GFP_CONSTRAINT_MASK;
1017         newpage = shmem_alloc_page(gfp, info, index);
1018         if (!newpage)
1019                 return -ENOMEM;
1020
1021         page_cache_get(newpage);
1022         copy_highpage(newpage, oldpage);
1023         flush_dcache_page(newpage);
1024
1025         __set_page_locked(newpage);
1026         SetPageUptodate(newpage);
1027         SetPageSwapBacked(newpage);
1028         set_page_private(newpage, swap_index);
1029         SetPageSwapCache(newpage);
1030
1031         /*
1032          * Our caller will very soon move newpage out of swapcache, but it's
1033          * a nice clean interface for us to replace oldpage by newpage there.
1034          */
1035         spin_lock_irq(&swap_mapping->tree_lock);
1036         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1037                                                                    newpage);
1038         if (!error) {
1039                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1040                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1041         }
1042         spin_unlock_irq(&swap_mapping->tree_lock);
1043
1044         if (unlikely(error)) {
1045                 /*
1046                  * Is this possible?  I think not, now that our callers check
1047                  * both PageSwapCache and page_private after getting page lock;
1048                  * but be defensive.  Reverse old to newpage for clear and free.
1049                  */
1050                 oldpage = newpage;
1051         } else {
1052                 mem_cgroup_replace_page_cache(oldpage, newpage);
1053                 lru_cache_add_anon(newpage);
1054                 *pagep = newpage;
1055         }
1056
1057         ClearPageSwapCache(oldpage);
1058         set_page_private(oldpage, 0);
1059
1060         unlock_page(oldpage);
1061         page_cache_release(oldpage);
1062         page_cache_release(oldpage);
1063         return error;
1064 }
1065
1066 /*
1067  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1068  *
1069  * If we allocate a new one we do not mark it dirty. That's up to the
1070  * vm. If we swap it in we mark it dirty since we also free the swap
1071  * entry since a page cannot live in both the swap and page cache
1072  */
1073 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1074         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1075 {
1076         struct address_space *mapping = inode->i_mapping;
1077         struct shmem_inode_info *info;
1078         struct shmem_sb_info *sbinfo;
1079         struct page *page;
1080         swp_entry_t swap;
1081         int error;
1082         int once = 0;
1083         int alloced = 0;
1084
1085         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1086                 return -EFBIG;
1087 repeat:
1088         swap.val = 0;
1089         page = find_lock_page(mapping, index);
1090         if (radix_tree_exceptional_entry(page)) {
1091                 swap = radix_to_swp_entry(page);
1092                 page = NULL;
1093         }
1094
1095         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1096             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1097                 error = -EINVAL;
1098                 goto failed;
1099         }
1100
1101         /* fallocated page? */
1102         if (page && !PageUptodate(page)) {
1103                 if (sgp != SGP_READ)
1104                         goto clear;
1105                 unlock_page(page);
1106                 page_cache_release(page);
1107                 page = NULL;
1108         }
1109         if (page || (sgp == SGP_READ && !swap.val)) {
1110                 *pagep = page;
1111                 return 0;
1112         }
1113
1114         /*
1115          * Fast cache lookup did not find it:
1116          * bring it back from swap or allocate.
1117          */
1118         info = SHMEM_I(inode);
1119         sbinfo = SHMEM_SB(inode->i_sb);
1120
1121         if (swap.val) {
1122                 /* Look it up and read it in.. */
1123                 page = lookup_swap_cache(swap);
1124                 if (!page) {
1125                         /* here we actually do the io */
1126                         if (fault_type)
1127                                 *fault_type |= VM_FAULT_MAJOR;
1128                         page = shmem_swapin(swap, gfp, info, index);
1129                         if (!page) {
1130                                 error = -ENOMEM;
1131                                 goto failed;
1132                         }
1133                 }
1134
1135                 /* We have to do this with page locked to prevent races */
1136                 lock_page(page);
1137                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1138                     !shmem_confirm_swap(mapping, index, swap)) {
1139                         error = -EEXIST;        /* try again */
1140                         goto unlock;
1141                 }
1142                 if (!PageUptodate(page)) {
1143                         error = -EIO;
1144                         goto failed;
1145                 }
1146                 wait_on_page_writeback(page);
1147
1148                 if (shmem_should_replace_page(page, gfp)) {
1149                         error = shmem_replace_page(&page, gfp, info, index);
1150                         if (error)
1151                                 goto failed;
1152                 }
1153
1154                 error = mem_cgroup_cache_charge(page, current->mm,
1155                                                 gfp & GFP_RECLAIM_MASK);
1156                 if (!error) {
1157                         error = shmem_add_to_page_cache(page, mapping, index,
1158                                                 gfp, swp_to_radix_entry(swap));
1159                         /* We already confirmed swap, and make no allocation */
1160                         VM_BUG_ON(error);
1161                 }
1162                 if (error)
1163                         goto failed;
1164
1165                 spin_lock(&info->lock);
1166                 info->swapped--;
1167                 shmem_recalc_inode(inode);
1168                 spin_unlock(&info->lock);
1169
1170                 delete_from_swap_cache(page);
1171                 set_page_dirty(page);
1172                 swap_free(swap);
1173
1174         } else {
1175                 if (shmem_acct_block(info->flags)) {
1176                         error = -ENOSPC;
1177                         goto failed;
1178                 }
1179                 if (sbinfo->max_blocks) {
1180                         if (percpu_counter_compare(&sbinfo->used_blocks,
1181                                                 sbinfo->max_blocks) >= 0) {
1182                                 error = -ENOSPC;
1183                                 goto unacct;
1184                         }
1185                         percpu_counter_inc(&sbinfo->used_blocks);
1186                 }
1187
1188                 page = shmem_alloc_page(gfp, info, index);
1189                 if (!page) {
1190                         error = -ENOMEM;
1191                         goto decused;
1192                 }
1193
1194                 SetPageSwapBacked(page);
1195                 __set_page_locked(page);
1196                 error = mem_cgroup_cache_charge(page, current->mm,
1197                                                 gfp & GFP_RECLAIM_MASK);
1198                 if (error)
1199                         goto decused;
1200                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1201                 if (!error) {
1202                         error = shmem_add_to_page_cache(page, mapping, index,
1203                                                         gfp, NULL);
1204                         radix_tree_preload_end();
1205                 }
1206                 if (error) {
1207                         mem_cgroup_uncharge_cache_page(page);
1208                         goto decused;
1209                 }
1210                 lru_cache_add_anon(page);
1211
1212                 spin_lock(&info->lock);
1213                 info->alloced++;
1214                 inode->i_blocks += BLOCKS_PER_PAGE;
1215                 shmem_recalc_inode(inode);
1216                 spin_unlock(&info->lock);
1217                 alloced = true;
1218
1219                 /*
1220                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1221                  */
1222                 if (sgp == SGP_FALLOC)
1223                         sgp = SGP_WRITE;
1224 clear:
1225                 /*
1226                  * Let SGP_WRITE caller clear ends if write does not fill page;
1227                  * but SGP_FALLOC on a page fallocated earlier must initialize
1228                  * it now, lest undo on failure cancel our earlier guarantee.
1229                  */
1230                 if (sgp != SGP_WRITE) {
1231                         clear_highpage(page);
1232                         flush_dcache_page(page);
1233                         SetPageUptodate(page);
1234                 }
1235                 if (sgp == SGP_DIRTY)
1236                         set_page_dirty(page);
1237         }
1238
1239         /* Perhaps the file has been truncated since we checked */
1240         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1241             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1242                 error = -EINVAL;
1243                 if (alloced)
1244                         goto trunc;
1245                 else
1246                         goto failed;
1247         }
1248         *pagep = page;
1249         return 0;
1250
1251         /*
1252          * Error recovery.
1253          */
1254 trunc:
1255         info = SHMEM_I(inode);
1256         ClearPageDirty(page);
1257         delete_from_page_cache(page);
1258         spin_lock(&info->lock);
1259         info->alloced--;
1260         inode->i_blocks -= BLOCKS_PER_PAGE;
1261         spin_unlock(&info->lock);
1262 decused:
1263         sbinfo = SHMEM_SB(inode->i_sb);
1264         if (sbinfo->max_blocks)
1265                 percpu_counter_add(&sbinfo->used_blocks, -1);
1266 unacct:
1267         shmem_unacct_blocks(info->flags, 1);
1268 failed:
1269         if (swap.val && error != -EINVAL &&
1270             !shmem_confirm_swap(mapping, index, swap))
1271                 error = -EEXIST;
1272 unlock:
1273         if (page) {
1274                 unlock_page(page);
1275                 page_cache_release(page);
1276         }
1277         if (error == -ENOSPC && !once++) {
1278                 info = SHMEM_I(inode);
1279                 spin_lock(&info->lock);
1280                 shmem_recalc_inode(inode);
1281                 spin_unlock(&info->lock);
1282                 goto repeat;
1283         }
1284         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1285                 goto repeat;
1286         return error;
1287 }
1288
1289 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290 {
1291         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1292         int error;
1293         int ret = VM_FAULT_LOCKED;
1294
1295         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1296         if (error)
1297                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1298
1299         if (ret & VM_FAULT_MAJOR) {
1300                 count_vm_event(PGMAJFAULT);
1301                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1302         }
1303         return ret;
1304 }
1305
1306 #ifdef CONFIG_NUMA
1307 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1308 {
1309         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1310         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1311 }
1312
1313 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1314                                           unsigned long addr)
1315 {
1316         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317         pgoff_t index;
1318
1319         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1320         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1321 }
1322 #endif
1323
1324 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1325 {
1326         struct inode *inode = file->f_path.dentry->d_inode;
1327         struct shmem_inode_info *info = SHMEM_I(inode);
1328         int retval = -ENOMEM;
1329
1330         spin_lock(&info->lock);
1331         if (lock && !(info->flags & VM_LOCKED)) {
1332                 if (!user_shm_lock(inode->i_size, user))
1333                         goto out_nomem;
1334                 info->flags |= VM_LOCKED;
1335                 mapping_set_unevictable(file->f_mapping);
1336         }
1337         if (!lock && (info->flags & VM_LOCKED) && user) {
1338                 user_shm_unlock(inode->i_size, user);
1339                 info->flags &= ~VM_LOCKED;
1340                 mapping_clear_unevictable(file->f_mapping);
1341         }
1342         retval = 0;
1343
1344 out_nomem:
1345         spin_unlock(&info->lock);
1346         return retval;
1347 }
1348
1349 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1350 {
1351         file_accessed(file);
1352         vma->vm_ops = &shmem_vm_ops;
1353         vma->vm_flags |= VM_CAN_NONLINEAR;
1354         return 0;
1355 }
1356
1357 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1358                                      umode_t mode, dev_t dev, unsigned long flags)
1359 {
1360         struct inode *inode;
1361         struct shmem_inode_info *info;
1362         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1363
1364         if (shmem_reserve_inode(sb))
1365                 return NULL;
1366
1367         inode = new_inode(sb);
1368         if (inode) {
1369                 inode->i_ino = get_next_ino();
1370                 inode_init_owner(inode, dir, mode);
1371                 inode->i_blocks = 0;
1372                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1374                 inode->i_generation = get_seconds();
1375                 info = SHMEM_I(inode);
1376                 memset(info, 0, (char *)inode - (char *)info);
1377                 spin_lock_init(&info->lock);
1378                 info->flags = flags & VM_NORESERVE;
1379                 INIT_LIST_HEAD(&info->swaplist);
1380                 INIT_LIST_HEAD(&info->xattr_list);
1381                 cache_no_acl(inode);
1382
1383                 switch (mode & S_IFMT) {
1384                 default:
1385                         inode->i_op = &shmem_special_inode_operations;
1386                         init_special_inode(inode, mode, dev);
1387                         break;
1388                 case S_IFREG:
1389                         inode->i_mapping->a_ops = &shmem_aops;
1390                         inode->i_op = &shmem_inode_operations;
1391                         inode->i_fop = &shmem_file_operations;
1392                         mpol_shared_policy_init(&info->policy,
1393                                                  shmem_get_sbmpol(sbinfo));
1394                         break;
1395                 case S_IFDIR:
1396                         inc_nlink(inode);
1397                         /* Some things misbehave if size == 0 on a directory */
1398                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399                         inode->i_op = &shmem_dir_inode_operations;
1400                         inode->i_fop = &simple_dir_operations;
1401                         break;
1402                 case S_IFLNK:
1403                         /*
1404                          * Must not load anything in the rbtree,
1405                          * mpol_free_shared_policy will not be called.
1406                          */
1407                         mpol_shared_policy_init(&info->policy, NULL);
1408                         break;
1409                 }
1410         } else
1411                 shmem_free_inode(sb);
1412         return inode;
1413 }
1414
1415 #ifdef CONFIG_TMPFS
1416 static const struct inode_operations shmem_symlink_inode_operations;
1417 static const struct inode_operations shmem_short_symlink_operations;
1418
1419 #ifdef CONFIG_TMPFS_XATTR
1420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421 #else
1422 #define shmem_initxattrs NULL
1423 #endif
1424
1425 static int
1426 shmem_write_begin(struct file *file, struct address_space *mapping,
1427                         loff_t pos, unsigned len, unsigned flags,
1428                         struct page **pagep, void **fsdata)
1429 {
1430         struct inode *inode = mapping->host;
1431         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1432         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1433 }
1434
1435 static int
1436 shmem_write_end(struct file *file, struct address_space *mapping,
1437                         loff_t pos, unsigned len, unsigned copied,
1438                         struct page *page, void *fsdata)
1439 {
1440         struct inode *inode = mapping->host;
1441
1442         if (pos + copied > inode->i_size)
1443                 i_size_write(inode, pos + copied);
1444
1445         if (!PageUptodate(page)) {
1446                 if (copied < PAGE_CACHE_SIZE) {
1447                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448                         zero_user_segments(page, 0, from,
1449                                         from + copied, PAGE_CACHE_SIZE);
1450                 }
1451                 SetPageUptodate(page);
1452         }
1453         set_page_dirty(page);
1454         unlock_page(page);
1455         page_cache_release(page);
1456
1457         return copied;
1458 }
1459
1460 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1461 {
1462         struct inode *inode = filp->f_path.dentry->d_inode;
1463         struct address_space *mapping = inode->i_mapping;
1464         pgoff_t index;
1465         unsigned long offset;
1466         enum sgp_type sgp = SGP_READ;
1467
1468         /*
1469          * Might this read be for a stacking filesystem?  Then when reading
1470          * holes of a sparse file, we actually need to allocate those pages,
1471          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1472          */
1473         if (segment_eq(get_fs(), KERNEL_DS))
1474                 sgp = SGP_DIRTY;
1475
1476         index = *ppos >> PAGE_CACHE_SHIFT;
1477         offset = *ppos & ~PAGE_CACHE_MASK;
1478
1479         for (;;) {
1480                 struct page *page = NULL;
1481                 pgoff_t end_index;
1482                 unsigned long nr, ret;
1483                 loff_t i_size = i_size_read(inode);
1484
1485                 end_index = i_size >> PAGE_CACHE_SHIFT;
1486                 if (index > end_index)
1487                         break;
1488                 if (index == end_index) {
1489                         nr = i_size & ~PAGE_CACHE_MASK;
1490                         if (nr <= offset)
1491                                 break;
1492                 }
1493
1494                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1495                 if (desc->error) {
1496                         if (desc->error == -EINVAL)
1497                                 desc->error = 0;
1498                         break;
1499                 }
1500                 if (page)
1501                         unlock_page(page);
1502
1503                 /*
1504                  * We must evaluate after, since reads (unlike writes)
1505                  * are called without i_mutex protection against truncate
1506                  */
1507                 nr = PAGE_CACHE_SIZE;
1508                 i_size = i_size_read(inode);
1509                 end_index = i_size >> PAGE_CACHE_SHIFT;
1510                 if (index == end_index) {
1511                         nr = i_size & ~PAGE_CACHE_MASK;
1512                         if (nr <= offset) {
1513                                 if (page)
1514                                         page_cache_release(page);
1515                                 break;
1516                         }
1517                 }
1518                 nr -= offset;
1519
1520                 if (page) {
1521                         /*
1522                          * If users can be writing to this page using arbitrary
1523                          * virtual addresses, take care about potential aliasing
1524                          * before reading the page on the kernel side.
1525                          */
1526                         if (mapping_writably_mapped(mapping))
1527                                 flush_dcache_page(page);
1528                         /*
1529                          * Mark the page accessed if we read the beginning.
1530                          */
1531                         if (!offset)
1532                                 mark_page_accessed(page);
1533                 } else {
1534                         page = ZERO_PAGE(0);
1535                         page_cache_get(page);
1536                 }
1537
1538                 /*
1539                  * Ok, we have the page, and it's up-to-date, so
1540                  * now we can copy it to user space...
1541                  *
1542                  * The actor routine returns how many bytes were actually used..
1543                  * NOTE! This may not be the same as how much of a user buffer
1544                  * we filled up (we may be padding etc), so we can only update
1545                  * "pos" here (the actor routine has to update the user buffer
1546                  * pointers and the remaining count).
1547                  */
1548                 ret = actor(desc, page, offset, nr);
1549                 offset += ret;
1550                 index += offset >> PAGE_CACHE_SHIFT;
1551                 offset &= ~PAGE_CACHE_MASK;
1552
1553                 page_cache_release(page);
1554                 if (ret != nr || !desc->count)
1555                         break;
1556
1557                 cond_resched();
1558         }
1559
1560         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561         file_accessed(filp);
1562 }
1563
1564 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1566 {
1567         struct file *filp = iocb->ki_filp;
1568         ssize_t retval;
1569         unsigned long seg;
1570         size_t count;
1571         loff_t *ppos = &iocb->ki_pos;
1572
1573         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574         if (retval)
1575                 return retval;
1576
1577         for (seg = 0; seg < nr_segs; seg++) {
1578                 read_descriptor_t desc;
1579
1580                 desc.written = 0;
1581                 desc.arg.buf = iov[seg].iov_base;
1582                 desc.count = iov[seg].iov_len;
1583                 if (desc.count == 0)
1584                         continue;
1585                 desc.error = 0;
1586                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587                 retval += desc.written;
1588                 if (desc.error) {
1589                         retval = retval ?: desc.error;
1590                         break;
1591                 }
1592                 if (desc.count > 0)
1593                         break;
1594         }
1595         return retval;
1596 }
1597
1598 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599                                 struct pipe_inode_info *pipe, size_t len,
1600                                 unsigned int flags)
1601 {
1602         struct address_space *mapping = in->f_mapping;
1603         struct inode *inode = mapping->host;
1604         unsigned int loff, nr_pages, req_pages;
1605         struct page *pages[PIPE_DEF_BUFFERS];
1606         struct partial_page partial[PIPE_DEF_BUFFERS];
1607         struct page *page;
1608         pgoff_t index, end_index;
1609         loff_t isize, left;
1610         int error, page_nr;
1611         struct splice_pipe_desc spd = {
1612                 .pages = pages,
1613                 .partial = partial,
1614                 .nr_pages_max = PIPE_DEF_BUFFERS,
1615                 .flags = flags,
1616                 .ops = &page_cache_pipe_buf_ops,
1617                 .spd_release = spd_release_page,
1618         };
1619
1620         isize = i_size_read(inode);
1621         if (unlikely(*ppos >= isize))
1622                 return 0;
1623
1624         left = isize - *ppos;
1625         if (unlikely(left < len))
1626                 len = left;
1627
1628         if (splice_grow_spd(pipe, &spd))
1629                 return -ENOMEM;
1630
1631         index = *ppos >> PAGE_CACHE_SHIFT;
1632         loff = *ppos & ~PAGE_CACHE_MASK;
1633         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634         nr_pages = min(req_pages, pipe->buffers);
1635
1636         spd.nr_pages = find_get_pages_contig(mapping, index,
1637                                                 nr_pages, spd.pages);
1638         index += spd.nr_pages;
1639         error = 0;
1640
1641         while (spd.nr_pages < nr_pages) {
1642                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643                 if (error)
1644                         break;
1645                 unlock_page(page);
1646                 spd.pages[spd.nr_pages++] = page;
1647                 index++;
1648         }
1649
1650         index = *ppos >> PAGE_CACHE_SHIFT;
1651         nr_pages = spd.nr_pages;
1652         spd.nr_pages = 0;
1653
1654         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655                 unsigned int this_len;
1656
1657                 if (!len)
1658                         break;
1659
1660                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661                 page = spd.pages[page_nr];
1662
1663                 if (!PageUptodate(page) || page->mapping != mapping) {
1664                         error = shmem_getpage(inode, index, &page,
1665                                                         SGP_CACHE, NULL);
1666                         if (error)
1667                                 break;
1668                         unlock_page(page);
1669                         page_cache_release(spd.pages[page_nr]);
1670                         spd.pages[page_nr] = page;
1671                 }
1672
1673                 isize = i_size_read(inode);
1674                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675                 if (unlikely(!isize || index > end_index))
1676                         break;
1677
1678                 if (end_index == index) {
1679                         unsigned int plen;
1680
1681                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682                         if (plen <= loff)
1683                                 break;
1684
1685                         this_len = min(this_len, plen - loff);
1686                         len = this_len;
1687                 }
1688
1689                 spd.partial[page_nr].offset = loff;
1690                 spd.partial[page_nr].len = this_len;
1691                 len -= this_len;
1692                 loff = 0;
1693                 spd.nr_pages++;
1694                 index++;
1695         }
1696
1697         while (page_nr < nr_pages)
1698                 page_cache_release(spd.pages[page_nr++]);
1699
1700         if (spd.nr_pages)
1701                 error = splice_to_pipe(pipe, &spd);
1702
1703         splice_shrink_spd(&spd);
1704
1705         if (error > 0) {
1706                 *ppos += error;
1707                 file_accessed(in);
1708         }
1709         return error;
1710 }
1711
1712 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713                                                          loff_t len)
1714 {
1715         struct inode *inode = file->f_path.dentry->d_inode;
1716         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1717         struct shmem_falloc shmem_falloc;
1718         pgoff_t start, index, end;
1719         int error;
1720
1721         mutex_lock(&inode->i_mutex);
1722
1723         if (mode & FALLOC_FL_PUNCH_HOLE) {
1724                 struct address_space *mapping = file->f_mapping;
1725                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1727
1728                 if ((u64)unmap_end > (u64)unmap_start)
1729                         unmap_mapping_range(mapping, unmap_start,
1730                                             1 + unmap_end - unmap_start, 0);
1731                 shmem_truncate_range(inode, offset, offset + len - 1);
1732                 /* No need to unmap again: hole-punching leaves COWed pages */
1733                 error = 0;
1734                 goto out;
1735         }
1736
1737         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738         error = inode_newsize_ok(inode, offset + len);
1739         if (error)
1740                 goto out;
1741
1742         start = offset >> PAGE_CACHE_SHIFT;
1743         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744         /* Try to avoid a swapstorm if len is impossible to satisfy */
1745         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746                 error = -ENOSPC;
1747                 goto out;
1748         }
1749
1750         shmem_falloc.start = start;
1751         shmem_falloc.next  = start;
1752         shmem_falloc.nr_falloced = 0;
1753         shmem_falloc.nr_unswapped = 0;
1754         spin_lock(&inode->i_lock);
1755         inode->i_private = &shmem_falloc;
1756         spin_unlock(&inode->i_lock);
1757
1758         for (index = start; index < end; index++) {
1759                 struct page *page;
1760
1761                 /*
1762                  * Good, the fallocate(2) manpage permits EINTR: we may have
1763                  * been interrupted because we are using up too much memory.
1764                  */
1765                 if (signal_pending(current))
1766                         error = -EINTR;
1767                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768                         error = -ENOMEM;
1769                 else
1770                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1771                                                                         NULL);
1772                 if (error) {
1773                         /* Remove the !PageUptodate pages we added */
1774                         shmem_undo_range(inode,
1775                                 (loff_t)start << PAGE_CACHE_SHIFT,
1776                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1777                         goto undone;
1778                 }
1779
1780                 /*
1781                  * Inform shmem_writepage() how far we have reached.
1782                  * No need for lock or barrier: we have the page lock.
1783                  */
1784                 shmem_falloc.next++;
1785                 if (!PageUptodate(page))
1786                         shmem_falloc.nr_falloced++;
1787
1788                 /*
1789                  * If !PageUptodate, leave it that way so that freeable pages
1790                  * can be recognized if we need to rollback on error later.
1791                  * But set_page_dirty so that memory pressure will swap rather
1792                  * than free the pages we are allocating (and SGP_CACHE pages
1793                  * might still be clean: we now need to mark those dirty too).
1794                  */
1795                 set_page_dirty(page);
1796                 unlock_page(page);
1797                 page_cache_release(page);
1798                 cond_resched();
1799         }
1800
1801         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802                 i_size_write(inode, offset + len);
1803         inode->i_ctime = CURRENT_TIME;
1804 undone:
1805         spin_lock(&inode->i_lock);
1806         inode->i_private = NULL;
1807         spin_unlock(&inode->i_lock);
1808 out:
1809         mutex_unlock(&inode->i_mutex);
1810         return error;
1811 }
1812
1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1814 {
1815         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1816
1817         buf->f_type = TMPFS_MAGIC;
1818         buf->f_bsize = PAGE_CACHE_SIZE;
1819         buf->f_namelen = NAME_MAX;
1820         if (sbinfo->max_blocks) {
1821                 buf->f_blocks = sbinfo->max_blocks;
1822                 buf->f_bavail =
1823                 buf->f_bfree  = sbinfo->max_blocks -
1824                                 percpu_counter_sum(&sbinfo->used_blocks);
1825         }
1826         if (sbinfo->max_inodes) {
1827                 buf->f_files = sbinfo->max_inodes;
1828                 buf->f_ffree = sbinfo->free_inodes;
1829         }
1830         /* else leave those fields 0 like simple_statfs */
1831         return 0;
1832 }
1833
1834 /*
1835  * File creation. Allocate an inode, and we're done..
1836  */
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1839 {
1840         struct inode *inode;
1841         int error = -ENOSPC;
1842
1843         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844         if (inode) {
1845                 error = security_inode_init_security(inode, dir,
1846                                                      &dentry->d_name,
1847                                                      shmem_initxattrs, NULL);
1848                 if (error) {
1849                         if (error != -EOPNOTSUPP) {
1850                                 iput(inode);
1851                                 return error;
1852                         }
1853                 }
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855                 error = generic_acl_init(inode, dir);
1856                 if (error) {
1857                         iput(inode);
1858                         return error;
1859                 }
1860 #else
1861                 error = 0;
1862 #endif
1863                 dir->i_size += BOGO_DIRENT_SIZE;
1864                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865                 d_instantiate(dentry, inode);
1866                 dget(dentry); /* Extra count - pin the dentry in core */
1867         }
1868         return error;
1869 }
1870
1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1872 {
1873         int error;
1874
1875         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876                 return error;
1877         inc_nlink(dir);
1878         return 0;
1879 }
1880
1881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1882                 bool excl)
1883 {
1884         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885 }
1886
1887 /*
1888  * Link a file..
1889  */
1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891 {
1892         struct inode *inode = old_dentry->d_inode;
1893         int ret;
1894
1895         /*
1896          * No ordinary (disk based) filesystem counts links as inodes;
1897          * but each new link needs a new dentry, pinning lowmem, and
1898          * tmpfs dentries cannot be pruned until they are unlinked.
1899          */
1900         ret = shmem_reserve_inode(inode->i_sb);
1901         if (ret)
1902                 goto out;
1903
1904         dir->i_size += BOGO_DIRENT_SIZE;
1905         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906         inc_nlink(inode);
1907         ihold(inode);   /* New dentry reference */
1908         dget(dentry);           /* Extra pinning count for the created dentry */
1909         d_instantiate(dentry, inode);
1910 out:
1911         return ret;
1912 }
1913
1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915 {
1916         struct inode *inode = dentry->d_inode;
1917
1918         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919                 shmem_free_inode(inode->i_sb);
1920
1921         dir->i_size -= BOGO_DIRENT_SIZE;
1922         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923         drop_nlink(inode);
1924         dput(dentry);   /* Undo the count from "create" - this does all the work */
1925         return 0;
1926 }
1927
1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929 {
1930         if (!simple_empty(dentry))
1931                 return -ENOTEMPTY;
1932
1933         drop_nlink(dentry->d_inode);
1934         drop_nlink(dir);
1935         return shmem_unlink(dir, dentry);
1936 }
1937
1938 /*
1939  * The VFS layer already does all the dentry stuff for rename,
1940  * we just have to decrement the usage count for the target if
1941  * it exists so that the VFS layer correctly free's it when it
1942  * gets overwritten.
1943  */
1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945 {
1946         struct inode *inode = old_dentry->d_inode;
1947         int they_are_dirs = S_ISDIR(inode->i_mode);
1948
1949         if (!simple_empty(new_dentry))
1950                 return -ENOTEMPTY;
1951
1952         if (new_dentry->d_inode) {
1953                 (void) shmem_unlink(new_dir, new_dentry);
1954                 if (they_are_dirs)
1955                         drop_nlink(old_dir);
1956         } else if (they_are_dirs) {
1957                 drop_nlink(old_dir);
1958                 inc_nlink(new_dir);
1959         }
1960
1961         old_dir->i_size -= BOGO_DIRENT_SIZE;
1962         new_dir->i_size += BOGO_DIRENT_SIZE;
1963         old_dir->i_ctime = old_dir->i_mtime =
1964         new_dir->i_ctime = new_dir->i_mtime =
1965         inode->i_ctime = CURRENT_TIME;
1966         return 0;
1967 }
1968
1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 {
1971         int error;
1972         int len;
1973         struct inode *inode;
1974         struct page *page;
1975         char *kaddr;
1976         struct shmem_inode_info *info;
1977
1978         len = strlen(symname) + 1;
1979         if (len > PAGE_CACHE_SIZE)
1980                 return -ENAMETOOLONG;
1981
1982         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983         if (!inode)
1984                 return -ENOSPC;
1985
1986         error = security_inode_init_security(inode, dir, &dentry->d_name,
1987                                              shmem_initxattrs, NULL);
1988         if (error) {
1989                 if (error != -EOPNOTSUPP) {
1990                         iput(inode);
1991                         return error;
1992                 }
1993                 error = 0;
1994         }
1995
1996         info = SHMEM_I(inode);
1997         inode->i_size = len-1;
1998         if (len <= SHORT_SYMLINK_LEN) {
1999                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000                 if (!info->symlink) {
2001                         iput(inode);
2002                         return -ENOMEM;
2003                 }
2004                 inode->i_op = &shmem_short_symlink_operations;
2005         } else {
2006                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007                 if (error) {
2008                         iput(inode);
2009                         return error;
2010                 }
2011                 inode->i_mapping->a_ops = &shmem_aops;
2012                 inode->i_op = &shmem_symlink_inode_operations;
2013                 kaddr = kmap_atomic(page);
2014                 memcpy(kaddr, symname, len);
2015                 kunmap_atomic(kaddr);
2016                 SetPageUptodate(page);
2017                 set_page_dirty(page);
2018                 unlock_page(page);
2019                 page_cache_release(page);
2020         }
2021         dir->i_size += BOGO_DIRENT_SIZE;
2022         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023         d_instantiate(dentry, inode);
2024         dget(dentry);
2025         return 0;
2026 }
2027
2028 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2029 {
2030         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2031         return NULL;
2032 }
2033
2034 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2035 {
2036         struct page *page = NULL;
2037         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2039         if (page)
2040                 unlock_page(page);
2041         return page;
2042 }
2043
2044 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2045 {
2046         if (!IS_ERR(nd_get_link(nd))) {
2047                 struct page *page = cookie;
2048                 kunmap(page);
2049                 mark_page_accessed(page);
2050                 page_cache_release(page);
2051         }
2052 }
2053
2054 #ifdef CONFIG_TMPFS_XATTR
2055 /*
2056  * Superblocks without xattr inode operations may get some security.* xattr
2057  * support from the LSM "for free". As soon as we have any other xattrs
2058  * like ACLs, we also need to implement the security.* handlers at
2059  * filesystem level, though.
2060  */
2061
2062 /*
2063  * Allocate new xattr and copy in the value; but leave the name to callers.
2064  */
2065 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2066 {
2067         struct shmem_xattr *new_xattr;
2068         size_t len;
2069
2070         /* wrap around? */
2071         len = sizeof(*new_xattr) + size;
2072         if (len <= sizeof(*new_xattr))
2073                 return NULL;
2074
2075         new_xattr = kmalloc(len, GFP_KERNEL);
2076         if (!new_xattr)
2077                 return NULL;
2078
2079         new_xattr->size = size;
2080         memcpy(new_xattr->value, value, size);
2081         return new_xattr;
2082 }
2083
2084 /*
2085  * Callback for security_inode_init_security() for acquiring xattrs.
2086  */
2087 static int shmem_initxattrs(struct inode *inode,
2088                             const struct xattr *xattr_array,
2089                             void *fs_info)
2090 {
2091         struct shmem_inode_info *info = SHMEM_I(inode);
2092         const struct xattr *xattr;
2093         struct shmem_xattr *new_xattr;
2094         size_t len;
2095
2096         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2097                 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2098                 if (!new_xattr)
2099                         return -ENOMEM;
2100
2101                 len = strlen(xattr->name) + 1;
2102                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2103                                           GFP_KERNEL);
2104                 if (!new_xattr->name) {
2105                         kfree(new_xattr);
2106                         return -ENOMEM;
2107                 }
2108
2109                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2110                        XATTR_SECURITY_PREFIX_LEN);
2111                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2112                        xattr->name, len);
2113
2114                 spin_lock(&info->lock);
2115                 list_add(&new_xattr->list, &info->xattr_list);
2116                 spin_unlock(&info->lock);
2117         }
2118
2119         return 0;
2120 }
2121
2122 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2123                            void *buffer, size_t size)
2124 {
2125         struct shmem_inode_info *info;
2126         struct shmem_xattr *xattr;
2127         int ret = -ENODATA;
2128
2129         info = SHMEM_I(dentry->d_inode);
2130
2131         spin_lock(&info->lock);
2132         list_for_each_entry(xattr, &info->xattr_list, list) {
2133                 if (strcmp(name, xattr->name))
2134                         continue;
2135
2136                 ret = xattr->size;
2137                 if (buffer) {
2138                         if (size < xattr->size)
2139                                 ret = -ERANGE;
2140                         else
2141                                 memcpy(buffer, xattr->value, xattr->size);
2142                 }
2143                 break;
2144         }
2145         spin_unlock(&info->lock);
2146         return ret;
2147 }
2148
2149 static int shmem_xattr_set(struct inode *inode, const char *name,
2150                            const void *value, size_t size, int flags)
2151 {
2152         struct shmem_inode_info *info = SHMEM_I(inode);
2153         struct shmem_xattr *xattr;
2154         struct shmem_xattr *new_xattr = NULL;
2155         int err = 0;
2156
2157         /* value == NULL means remove */
2158         if (value) {
2159                 new_xattr = shmem_xattr_alloc(value, size);
2160                 if (!new_xattr)
2161                         return -ENOMEM;
2162
2163                 new_xattr->name = kstrdup(name, GFP_KERNEL);
2164                 if (!new_xattr->name) {
2165                         kfree(new_xattr);
2166                         return -ENOMEM;
2167                 }
2168         }
2169
2170         spin_lock(&info->lock);
2171         list_for_each_entry(xattr, &info->xattr_list, list) {
2172                 if (!strcmp(name, xattr->name)) {
2173                         if (flags & XATTR_CREATE) {
2174                                 xattr = new_xattr;
2175                                 err = -EEXIST;
2176                         } else if (new_xattr) {
2177                                 list_replace(&xattr->list, &new_xattr->list);
2178                         } else {
2179                                 list_del(&xattr->list);
2180                         }
2181                         goto out;
2182                 }
2183         }
2184         if (flags & XATTR_REPLACE) {
2185                 xattr = new_xattr;
2186                 err = -ENODATA;
2187         } else {
2188                 list_add(&new_xattr->list, &info->xattr_list);
2189                 xattr = NULL;
2190         }
2191 out:
2192         spin_unlock(&info->lock);
2193         if (xattr)
2194                 kfree(xattr->name);
2195         kfree(xattr);
2196         return err;
2197 }
2198
2199 static const struct xattr_handler *shmem_xattr_handlers[] = {
2200 #ifdef CONFIG_TMPFS_POSIX_ACL
2201         &generic_acl_access_handler,
2202         &generic_acl_default_handler,
2203 #endif
2204         NULL
2205 };
2206
2207 static int shmem_xattr_validate(const char *name)
2208 {
2209         struct { const char *prefix; size_t len; } arr[] = {
2210                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2211                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2212         };
2213         int i;
2214
2215         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2216                 size_t preflen = arr[i].len;
2217                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2218                         if (!name[preflen])
2219                                 return -EINVAL;
2220                         return 0;
2221                 }
2222         }
2223         return -EOPNOTSUPP;
2224 }
2225
2226 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2227                               void *buffer, size_t size)
2228 {
2229         int err;
2230
2231         /*
2232          * If this is a request for a synthetic attribute in the system.*
2233          * namespace use the generic infrastructure to resolve a handler
2234          * for it via sb->s_xattr.
2235          */
2236         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2237                 return generic_getxattr(dentry, name, buffer, size);
2238
2239         err = shmem_xattr_validate(name);
2240         if (err)
2241                 return err;
2242
2243         return shmem_xattr_get(dentry, name, buffer, size);
2244 }
2245
2246 static int shmem_setxattr(struct dentry *dentry, const char *name,
2247                           const void *value, size_t size, int flags)
2248 {
2249         int err;
2250
2251         /*
2252          * If this is a request for a synthetic attribute in the system.*
2253          * namespace use the generic infrastructure to resolve a handler
2254          * for it via sb->s_xattr.
2255          */
2256         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2257                 return generic_setxattr(dentry, name, value, size, flags);
2258
2259         err = shmem_xattr_validate(name);
2260         if (err)
2261                 return err;
2262
2263         if (size == 0)
2264                 value = "";  /* empty EA, do not remove */
2265
2266         return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2267
2268 }
2269
2270 static int shmem_removexattr(struct dentry *dentry, const char *name)
2271 {
2272         int err;
2273
2274         /*
2275          * If this is a request for a synthetic attribute in the system.*
2276          * namespace use the generic infrastructure to resolve a handler
2277          * for it via sb->s_xattr.
2278          */
2279         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2280                 return generic_removexattr(dentry, name);
2281
2282         err = shmem_xattr_validate(name);
2283         if (err)
2284                 return err;
2285
2286         return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2287 }
2288
2289 static bool xattr_is_trusted(const char *name)
2290 {
2291         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2292 }
2293
2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295 {
2296         bool trusted = capable(CAP_SYS_ADMIN);
2297         struct shmem_xattr *xattr;
2298         struct shmem_inode_info *info;
2299         size_t used = 0;
2300
2301         info = SHMEM_I(dentry->d_inode);
2302
2303         spin_lock(&info->lock);
2304         list_for_each_entry(xattr, &info->xattr_list, list) {
2305                 size_t len;
2306
2307                 /* skip "trusted." attributes for unprivileged callers */
2308                 if (!trusted && xattr_is_trusted(xattr->name))
2309                         continue;
2310
2311                 len = strlen(xattr->name) + 1;
2312                 used += len;
2313                 if (buffer) {
2314                         if (size < used) {
2315                                 used = -ERANGE;
2316                                 break;
2317                         }
2318                         memcpy(buffer, xattr->name, len);
2319                         buffer += len;
2320                 }
2321         }
2322         spin_unlock(&info->lock);
2323
2324         return used;
2325 }
2326 #endif /* CONFIG_TMPFS_XATTR */
2327
2328 static const struct inode_operations shmem_short_symlink_operations = {
2329         .readlink       = generic_readlink,
2330         .follow_link    = shmem_follow_short_symlink,
2331 #ifdef CONFIG_TMPFS_XATTR
2332         .setxattr       = shmem_setxattr,
2333         .getxattr       = shmem_getxattr,
2334         .listxattr      = shmem_listxattr,
2335         .removexattr    = shmem_removexattr,
2336 #endif
2337 };
2338
2339 static const struct inode_operations shmem_symlink_inode_operations = {
2340         .readlink       = generic_readlink,
2341         .follow_link    = shmem_follow_link,
2342         .put_link       = shmem_put_link,
2343 #ifdef CONFIG_TMPFS_XATTR
2344         .setxattr       = shmem_setxattr,
2345         .getxattr       = shmem_getxattr,
2346         .listxattr      = shmem_listxattr,
2347         .removexattr    = shmem_removexattr,
2348 #endif
2349 };
2350
2351 static struct dentry *shmem_get_parent(struct dentry *child)
2352 {
2353         return ERR_PTR(-ESTALE);
2354 }
2355
2356 static int shmem_match(struct inode *ino, void *vfh)
2357 {
2358         __u32 *fh = vfh;
2359         __u64 inum = fh[2];
2360         inum = (inum << 32) | fh[1];
2361         return ino->i_ino == inum && fh[0] == ino->i_generation;
2362 }
2363
2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365                 struct fid *fid, int fh_len, int fh_type)
2366 {
2367         struct inode *inode;
2368         struct dentry *dentry = NULL;
2369         u64 inum = fid->raw[2];
2370         inum = (inum << 32) | fid->raw[1];
2371
2372         if (fh_len < 3)
2373                 return NULL;
2374
2375         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2376                         shmem_match, fid->raw);
2377         if (inode) {
2378                 dentry = d_find_alias(inode);
2379                 iput(inode);
2380         }
2381
2382         return dentry;
2383 }
2384
2385 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2386                                 struct inode *parent)
2387 {
2388         if (*len < 3) {
2389                 *len = 3;
2390                 return 255;
2391         }
2392
2393         if (inode_unhashed(inode)) {
2394                 /* Unfortunately insert_inode_hash is not idempotent,
2395                  * so as we hash inodes here rather than at creation
2396                  * time, we need a lock to ensure we only try
2397                  * to do it once
2398                  */
2399                 static DEFINE_SPINLOCK(lock);
2400                 spin_lock(&lock);
2401                 if (inode_unhashed(inode))
2402                         __insert_inode_hash(inode,
2403                                             inode->i_ino + inode->i_generation);
2404                 spin_unlock(&lock);
2405         }
2406
2407         fh[0] = inode->i_generation;
2408         fh[1] = inode->i_ino;
2409         fh[2] = ((__u64)inode->i_ino) >> 32;
2410
2411         *len = 3;
2412         return 1;
2413 }
2414
2415 static const struct export_operations shmem_export_ops = {
2416         .get_parent     = shmem_get_parent,
2417         .encode_fh      = shmem_encode_fh,
2418         .fh_to_dentry   = shmem_fh_to_dentry,
2419 };
2420
2421 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2422                                bool remount)
2423 {
2424         char *this_char, *value, *rest;
2425         uid_t uid;
2426         gid_t gid;
2427
2428         while (options != NULL) {
2429                 this_char = options;
2430                 for (;;) {
2431                         /*
2432                          * NUL-terminate this option: unfortunately,
2433                          * mount options form a comma-separated list,
2434                          * but mpol's nodelist may also contain commas.
2435                          */
2436                         options = strchr(options, ',');
2437                         if (options == NULL)
2438                                 break;
2439                         options++;
2440                         if (!isdigit(*options)) {
2441                                 options[-1] = '\0';
2442                                 break;
2443                         }
2444                 }
2445                 if (!*this_char)
2446                         continue;
2447                 if ((value = strchr(this_char,'=')) != NULL) {
2448                         *value++ = 0;
2449                 } else {
2450                         printk(KERN_ERR
2451                             "tmpfs: No value for mount option '%s'\n",
2452                             this_char);
2453                         return 1;
2454                 }
2455
2456                 if (!strcmp(this_char,"size")) {
2457                         unsigned long long size;
2458                         size = memparse(value,&rest);
2459                         if (*rest == '%') {
2460                                 size <<= PAGE_SHIFT;
2461                                 size *= totalram_pages;
2462                                 do_div(size, 100);
2463                                 rest++;
2464                         }
2465                         if (*rest)
2466                                 goto bad_val;
2467                         sbinfo->max_blocks =
2468                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2469                 } else if (!strcmp(this_char,"nr_blocks")) {
2470                         sbinfo->max_blocks = memparse(value, &rest);
2471                         if (*rest)
2472                                 goto bad_val;
2473                 } else if (!strcmp(this_char,"nr_inodes")) {
2474                         sbinfo->max_inodes = memparse(value, &rest);
2475                         if (*rest)
2476                                 goto bad_val;
2477                 } else if (!strcmp(this_char,"mode")) {
2478                         if (remount)
2479                                 continue;
2480                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2481                         if (*rest)
2482                                 goto bad_val;
2483                 } else if (!strcmp(this_char,"uid")) {
2484                         if (remount)
2485                                 continue;
2486                         uid = simple_strtoul(value, &rest, 0);
2487                         if (*rest)
2488                                 goto bad_val;
2489                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2490                         if (!uid_valid(sbinfo->uid))
2491                                 goto bad_val;
2492                 } else if (!strcmp(this_char,"gid")) {
2493                         if (remount)
2494                                 continue;
2495                         gid = simple_strtoul(value, &rest, 0);
2496                         if (*rest)
2497                                 goto bad_val;
2498                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2499                         if (!gid_valid(sbinfo->gid))
2500                                 goto bad_val;
2501                 } else if (!strcmp(this_char,"mpol")) {
2502                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2503                                 goto bad_val;
2504                 } else {
2505                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2506                                this_char);
2507                         return 1;
2508                 }
2509         }
2510         return 0;
2511
2512 bad_val:
2513         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2514                value, this_char);
2515         return 1;
2516
2517 }
2518
2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2520 {
2521         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2522         struct shmem_sb_info config = *sbinfo;
2523         unsigned long inodes;
2524         int error = -EINVAL;
2525
2526         if (shmem_parse_options(data, &config, true))
2527                 return error;
2528
2529         spin_lock(&sbinfo->stat_lock);
2530         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2531         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2532                 goto out;
2533         if (config.max_inodes < inodes)
2534                 goto out;
2535         /*
2536          * Those tests disallow limited->unlimited while any are in use;
2537          * but we must separately disallow unlimited->limited, because
2538          * in that case we have no record of how much is already in use.
2539          */
2540         if (config.max_blocks && !sbinfo->max_blocks)
2541                 goto out;
2542         if (config.max_inodes && !sbinfo->max_inodes)
2543                 goto out;
2544
2545         error = 0;
2546         sbinfo->max_blocks  = config.max_blocks;
2547         sbinfo->max_inodes  = config.max_inodes;
2548         sbinfo->free_inodes = config.max_inodes - inodes;
2549
2550         mpol_put(sbinfo->mpol);
2551         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2552 out:
2553         spin_unlock(&sbinfo->stat_lock);
2554         return error;
2555 }
2556
2557 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2558 {
2559         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2560
2561         if (sbinfo->max_blocks != shmem_default_max_blocks())
2562                 seq_printf(seq, ",size=%luk",
2563                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2564         if (sbinfo->max_inodes != shmem_default_max_inodes())
2565                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2566         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2567                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2568         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2569                 seq_printf(seq, ",uid=%u",
2570                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2571         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2572                 seq_printf(seq, ",gid=%u",
2573                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2574         shmem_show_mpol(seq, sbinfo->mpol);
2575         return 0;
2576 }
2577 #endif /* CONFIG_TMPFS */
2578
2579 static void shmem_put_super(struct super_block *sb)
2580 {
2581         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2582
2583         percpu_counter_destroy(&sbinfo->used_blocks);
2584         kfree(sbinfo);
2585         sb->s_fs_info = NULL;
2586 }
2587
2588 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2589 {
2590         struct inode *inode;
2591         struct shmem_sb_info *sbinfo;
2592         int err = -ENOMEM;
2593
2594         /* Round up to L1_CACHE_BYTES to resist false sharing */
2595         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2596                                 L1_CACHE_BYTES), GFP_KERNEL);
2597         if (!sbinfo)
2598                 return -ENOMEM;
2599
2600         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2601         sbinfo->uid = current_fsuid();
2602         sbinfo->gid = current_fsgid();
2603         sb->s_fs_info = sbinfo;
2604
2605 #ifdef CONFIG_TMPFS
2606         /*
2607          * Per default we only allow half of the physical ram per
2608          * tmpfs instance, limiting inodes to one per page of lowmem;
2609          * but the internal instance is left unlimited.
2610          */
2611         if (!(sb->s_flags & MS_NOUSER)) {
2612                 sbinfo->max_blocks = shmem_default_max_blocks();
2613                 sbinfo->max_inodes = shmem_default_max_inodes();
2614                 if (shmem_parse_options(data, sbinfo, false)) {
2615                         err = -EINVAL;
2616                         goto failed;
2617                 }
2618         }
2619         sb->s_export_op = &shmem_export_ops;
2620         sb->s_flags |= MS_NOSEC;
2621 #else
2622         sb->s_flags |= MS_NOUSER;
2623 #endif
2624
2625         spin_lock_init(&sbinfo->stat_lock);
2626         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2627                 goto failed;
2628         sbinfo->free_inodes = sbinfo->max_inodes;
2629
2630         sb->s_maxbytes = MAX_LFS_FILESIZE;
2631         sb->s_blocksize = PAGE_CACHE_SIZE;
2632         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2633         sb->s_magic = TMPFS_MAGIC;
2634         sb->s_op = &shmem_ops;
2635         sb->s_time_gran = 1;
2636 #ifdef CONFIG_TMPFS_XATTR
2637         sb->s_xattr = shmem_xattr_handlers;
2638 #endif
2639 #ifdef CONFIG_TMPFS_POSIX_ACL
2640         sb->s_flags |= MS_POSIXACL;
2641 #endif
2642
2643         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2644         if (!inode)
2645                 goto failed;
2646         inode->i_uid = sbinfo->uid;
2647         inode->i_gid = sbinfo->gid;
2648         sb->s_root = d_make_root(inode);
2649         if (!sb->s_root)
2650                 goto failed;
2651         return 0;
2652
2653 failed:
2654         shmem_put_super(sb);
2655         return err;
2656 }
2657
2658 static struct kmem_cache *shmem_inode_cachep;
2659
2660 static struct inode *shmem_alloc_inode(struct super_block *sb)
2661 {
2662         struct shmem_inode_info *info;
2663         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2664         if (!info)
2665                 return NULL;
2666         return &info->vfs_inode;
2667 }
2668
2669 static void shmem_destroy_callback(struct rcu_head *head)
2670 {
2671         struct inode *inode = container_of(head, struct inode, i_rcu);
2672         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2673 }
2674
2675 static void shmem_destroy_inode(struct inode *inode)
2676 {
2677         if (S_ISREG(inode->i_mode))
2678                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2679         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2680 }
2681
2682 static void shmem_init_inode(void *foo)
2683 {
2684         struct shmem_inode_info *info = foo;
2685         inode_init_once(&info->vfs_inode);
2686 }
2687
2688 static int shmem_init_inodecache(void)
2689 {
2690         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2691                                 sizeof(struct shmem_inode_info),
2692                                 0, SLAB_PANIC, shmem_init_inode);
2693         return 0;
2694 }
2695
2696 static void shmem_destroy_inodecache(void)
2697 {
2698         kmem_cache_destroy(shmem_inode_cachep);
2699 }
2700
2701 static const struct address_space_operations shmem_aops = {
2702         .writepage      = shmem_writepage,
2703         .set_page_dirty = __set_page_dirty_no_writeback,
2704 #ifdef CONFIG_TMPFS
2705         .write_begin    = shmem_write_begin,
2706         .write_end      = shmem_write_end,
2707 #endif
2708         .migratepage    = migrate_page,
2709         .error_remove_page = generic_error_remove_page,
2710 };
2711
2712 static const struct file_operations shmem_file_operations = {
2713         .mmap           = shmem_mmap,
2714 #ifdef CONFIG_TMPFS
2715         .llseek         = generic_file_llseek,
2716         .read           = do_sync_read,
2717         .write          = do_sync_write,
2718         .aio_read       = shmem_file_aio_read,
2719         .aio_write      = generic_file_aio_write,
2720         .fsync          = noop_fsync,
2721         .splice_read    = shmem_file_splice_read,
2722         .splice_write   = generic_file_splice_write,
2723         .fallocate      = shmem_fallocate,
2724 #endif
2725 };
2726
2727 static const struct inode_operations shmem_inode_operations = {
2728         .setattr        = shmem_setattr,
2729 #ifdef CONFIG_TMPFS_XATTR
2730         .setxattr       = shmem_setxattr,
2731         .getxattr       = shmem_getxattr,
2732         .listxattr      = shmem_listxattr,
2733         .removexattr    = shmem_removexattr,
2734 #endif
2735 };
2736
2737 static const struct inode_operations shmem_dir_inode_operations = {
2738 #ifdef CONFIG_TMPFS
2739         .create         = shmem_create,
2740         .lookup         = simple_lookup,
2741         .link           = shmem_link,
2742         .unlink         = shmem_unlink,
2743         .symlink        = shmem_symlink,
2744         .mkdir          = shmem_mkdir,
2745         .rmdir          = shmem_rmdir,
2746         .mknod          = shmem_mknod,
2747         .rename         = shmem_rename,
2748 #endif
2749 #ifdef CONFIG_TMPFS_XATTR
2750         .setxattr       = shmem_setxattr,
2751         .getxattr       = shmem_getxattr,
2752         .listxattr      = shmem_listxattr,
2753         .removexattr    = shmem_removexattr,
2754 #endif
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756         .setattr        = shmem_setattr,
2757 #endif
2758 };
2759
2760 static const struct inode_operations shmem_special_inode_operations = {
2761 #ifdef CONFIG_TMPFS_XATTR
2762         .setxattr       = shmem_setxattr,
2763         .getxattr       = shmem_getxattr,
2764         .listxattr      = shmem_listxattr,
2765         .removexattr    = shmem_removexattr,
2766 #endif
2767 #ifdef CONFIG_TMPFS_POSIX_ACL
2768         .setattr        = shmem_setattr,
2769 #endif
2770 };
2771
2772 static const struct super_operations shmem_ops = {
2773         .alloc_inode    = shmem_alloc_inode,
2774         .destroy_inode  = shmem_destroy_inode,
2775 #ifdef CONFIG_TMPFS
2776         .statfs         = shmem_statfs,
2777         .remount_fs     = shmem_remount_fs,
2778         .show_options   = shmem_show_options,
2779 #endif
2780         .evict_inode    = shmem_evict_inode,
2781         .drop_inode     = generic_delete_inode,
2782         .put_super      = shmem_put_super,
2783 };
2784
2785 static const struct vm_operations_struct shmem_vm_ops = {
2786         .fault          = shmem_fault,
2787 #ifdef CONFIG_NUMA
2788         .set_policy     = shmem_set_policy,
2789         .get_policy     = shmem_get_policy,
2790 #endif
2791 };
2792
2793 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794         int flags, const char *dev_name, void *data)
2795 {
2796         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2797 }
2798
2799 static struct file_system_type shmem_fs_type = {
2800         .owner          = THIS_MODULE,
2801         .name           = "tmpfs",
2802         .mount          = shmem_mount,
2803         .kill_sb        = kill_litter_super,
2804 };
2805
2806 int __init shmem_init(void)
2807 {
2808         int error;
2809
2810         error = bdi_init(&shmem_backing_dev_info);
2811         if (error)
2812                 goto out4;
2813
2814         error = shmem_init_inodecache();
2815         if (error)
2816                 goto out3;
2817
2818         error = register_filesystem(&shmem_fs_type);
2819         if (error) {
2820                 printk(KERN_ERR "Could not register tmpfs\n");
2821                 goto out2;
2822         }
2823
2824         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2825                                  shmem_fs_type.name, NULL);
2826         if (IS_ERR(shm_mnt)) {
2827                 error = PTR_ERR(shm_mnt);
2828                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829                 goto out1;
2830         }
2831         return 0;
2832
2833 out1:
2834         unregister_filesystem(&shmem_fs_type);
2835 out2:
2836         shmem_destroy_inodecache();
2837 out3:
2838         bdi_destroy(&shmem_backing_dev_info);
2839 out4:
2840         shm_mnt = ERR_PTR(error);
2841         return error;
2842 }
2843
2844 #else /* !CONFIG_SHMEM */
2845
2846 /*
2847  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848  *
2849  * This is intended for small system where the benefits of the full
2850  * shmem code (swap-backed and resource-limited) are outweighed by
2851  * their complexity. On systems without swap this code should be
2852  * effectively equivalent, but much lighter weight.
2853  */
2854
2855 #include <linux/ramfs.h>
2856
2857 static struct file_system_type shmem_fs_type = {
2858         .name           = "tmpfs",
2859         .mount          = ramfs_mount,
2860         .kill_sb        = kill_litter_super,
2861 };
2862
2863 int __init shmem_init(void)
2864 {
2865         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2866
2867         shm_mnt = kern_mount(&shmem_fs_type);
2868         BUG_ON(IS_ERR(shm_mnt));
2869
2870         return 0;
2871 }
2872
2873 int shmem_unuse(swp_entry_t swap, struct page *page)
2874 {
2875         return 0;
2876 }
2877
2878 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2879 {
2880         return 0;
2881 }
2882
2883 void shmem_unlock_mapping(struct address_space *mapping)
2884 {
2885 }
2886
2887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2888 {
2889         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2890 }
2891 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2892
2893 #define shmem_vm_ops                            generic_file_vm_ops
2894 #define shmem_file_operations                   ramfs_file_operations
2895 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2896 #define shmem_acct_size(flags, size)            0
2897 #define shmem_unacct_size(flags, size)          do {} while (0)
2898
2899 #endif /* CONFIG_SHMEM */
2900
2901 /* common code */
2902
2903 /**
2904  * shmem_file_setup - get an unlinked file living in tmpfs
2905  * @name: name for dentry (to be seen in /proc/<pid>/maps
2906  * @size: size to be set for the file
2907  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2908  */
2909 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2910 {
2911         int error;
2912         struct file *file;
2913         struct inode *inode;
2914         struct path path;
2915         struct dentry *root;
2916         struct qstr this;
2917
2918         if (IS_ERR(shm_mnt))
2919                 return (void *)shm_mnt;
2920
2921         if (size < 0 || size > MAX_LFS_FILESIZE)
2922                 return ERR_PTR(-EINVAL);
2923
2924         if (shmem_acct_size(flags, size))
2925                 return ERR_PTR(-ENOMEM);
2926
2927         error = -ENOMEM;
2928         this.name = name;
2929         this.len = strlen(name);
2930         this.hash = 0; /* will go */
2931         root = shm_mnt->mnt_root;
2932         path.dentry = d_alloc(root, &this);
2933         if (!path.dentry)
2934                 goto put_memory;
2935         path.mnt = mntget(shm_mnt);
2936
2937         error = -ENOSPC;
2938         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2939         if (!inode)
2940                 goto put_dentry;
2941
2942         d_instantiate(path.dentry, inode);
2943         inode->i_size = size;
2944         clear_nlink(inode);     /* It is unlinked */
2945 #ifndef CONFIG_MMU
2946         error = ramfs_nommu_expand_for_mapping(inode, size);
2947         if (error)
2948                 goto put_dentry;
2949 #endif
2950
2951         error = -ENFILE;
2952         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2953                   &shmem_file_operations);
2954         if (!file)
2955                 goto put_dentry;
2956
2957         return file;
2958
2959 put_dentry:
2960         path_put(&path);
2961 put_memory:
2962         shmem_unacct_size(flags, size);
2963         return ERR_PTR(error);
2964 }
2965 EXPORT_SYMBOL_GPL(shmem_file_setup);
2966
2967 /**
2968  * shmem_zero_setup - setup a shared anonymous mapping
2969  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2970  */
2971 int shmem_zero_setup(struct vm_area_struct *vma)
2972 {
2973         struct file *file;
2974         loff_t size = vma->vm_end - vma->vm_start;
2975
2976         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2977         if (IS_ERR(file))
2978                 return PTR_ERR(file);
2979
2980         if (vma->vm_file)
2981                 fput(vma->vm_file);
2982         vma->vm_file = file;
2983         vma->vm_ops = &shmem_vm_ops;
2984         vma->vm_flags |= VM_CAN_NONLINEAR;
2985         return 0;
2986 }
2987
2988 /**
2989  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2990  * @mapping:    the page's address_space
2991  * @index:      the page index
2992  * @gfp:        the page allocator flags to use if allocating
2993  *
2994  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2995  * with any new page allocations done using the specified allocation flags.
2996  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2997  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2998  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2999  *
3000  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3001  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3002  */
3003 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3004                                          pgoff_t index, gfp_t gfp)
3005 {
3006 #ifdef CONFIG_SHMEM
3007         struct inode *inode = mapping->host;
3008         struct page *page;
3009         int error;
3010
3011         BUG_ON(mapping->a_ops != &shmem_aops);
3012         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3013         if (error)
3014                 page = ERR_PTR(error);
3015         else
3016                 unlock_page(page);
3017         return page;
3018 #else
3019         /*
3020          * The tiny !SHMEM case uses ramfs without swap
3021          */
3022         return read_cache_page_gfp(mapping, index, gfp);
3023 #endif
3024 }
3025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);