2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
45 static struct vfsmount *shm_mnt;
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_rwsem making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 #define SHMEM_SEEN_NOSWAP 16
127 static unsigned long shmem_default_max_blocks(void)
129 return totalram_pages() / 2;
132 static unsigned long shmem_default_max_inodes(void)
134 unsigned long nr_pages = totalram_pages();
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
140 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
141 struct folio **foliop, enum sgp_type sgp,
142 gfp_t gfp, struct vm_area_struct *vma,
143 vm_fault_t *fault_type);
145 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
147 return sb->s_fs_info;
151 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
152 * for shared memory and for shared anonymous (/dev/zero) mappings
153 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
154 * consistent with the pre-accounting of private mappings ...
156 static inline int shmem_acct_size(unsigned long flags, loff_t size)
158 return (flags & VM_NORESERVE) ?
159 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
162 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
164 if (!(flags & VM_NORESERVE))
165 vm_unacct_memory(VM_ACCT(size));
168 static inline int shmem_reacct_size(unsigned long flags,
169 loff_t oldsize, loff_t newsize)
171 if (!(flags & VM_NORESERVE)) {
172 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
173 return security_vm_enough_memory_mm(current->mm,
174 VM_ACCT(newsize) - VM_ACCT(oldsize));
175 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
176 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
182 * ... whereas tmpfs objects are accounted incrementally as
183 * pages are allocated, in order to allow large sparse files.
184 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
185 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
187 static inline int shmem_acct_block(unsigned long flags, long pages)
189 if (!(flags & VM_NORESERVE))
192 return security_vm_enough_memory_mm(current->mm,
193 pages * VM_ACCT(PAGE_SIZE));
196 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
198 if (flags & VM_NORESERVE)
199 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
202 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
204 struct shmem_inode_info *info = SHMEM_I(inode);
205 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
207 if (shmem_acct_block(info->flags, pages))
210 if (sbinfo->max_blocks) {
211 if (percpu_counter_compare(&sbinfo->used_blocks,
212 sbinfo->max_blocks - pages) > 0)
214 percpu_counter_add(&sbinfo->used_blocks, pages);
220 shmem_unacct_blocks(info->flags, pages);
224 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
226 struct shmem_inode_info *info = SHMEM_I(inode);
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
229 if (sbinfo->max_blocks)
230 percpu_counter_sub(&sbinfo->used_blocks, pages);
231 shmem_unacct_blocks(info->flags, pages);
234 static const struct super_operations shmem_ops;
235 const struct address_space_operations shmem_aops;
236 static const struct file_operations shmem_file_operations;
237 static const struct inode_operations shmem_inode_operations;
238 static const struct inode_operations shmem_dir_inode_operations;
239 static const struct inode_operations shmem_special_inode_operations;
240 static const struct vm_operations_struct shmem_vm_ops;
241 static const struct vm_operations_struct shmem_anon_vm_ops;
242 static struct file_system_type shmem_fs_type;
244 bool vma_is_anon_shmem(struct vm_area_struct *vma)
246 return vma->vm_ops == &shmem_anon_vm_ops;
249 bool vma_is_shmem(struct vm_area_struct *vma)
251 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
254 static LIST_HEAD(shmem_swaplist);
255 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
259 * produces a novel ino for the newly allocated inode.
261 * It may also be called when making a hard link to permit the space needed by
262 * each dentry. However, in that case, no new inode number is needed since that
263 * internally draws from another pool of inode numbers (currently global
264 * get_next_ino()). This case is indicated by passing NULL as inop.
266 #define SHMEM_INO_BATCH 1024
267 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 if (!(sb->s_flags & SB_KERNMOUNT)) {
273 raw_spin_lock(&sbinfo->stat_lock);
274 if (sbinfo->max_inodes) {
275 if (!sbinfo->free_inodes) {
276 raw_spin_unlock(&sbinfo->stat_lock);
279 sbinfo->free_inodes--;
282 ino = sbinfo->next_ino++;
283 if (unlikely(is_zero_ino(ino)))
284 ino = sbinfo->next_ino++;
285 if (unlikely(!sbinfo->full_inums &&
288 * Emulate get_next_ino uint wraparound for
291 if (IS_ENABLED(CONFIG_64BIT))
292 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
293 __func__, MINOR(sb->s_dev));
294 sbinfo->next_ino = 1;
295 ino = sbinfo->next_ino++;
299 raw_spin_unlock(&sbinfo->stat_lock);
302 * __shmem_file_setup, one of our callers, is lock-free: it
303 * doesn't hold stat_lock in shmem_reserve_inode since
304 * max_inodes is always 0, and is called from potentially
305 * unknown contexts. As such, use a per-cpu batched allocator
306 * which doesn't require the per-sb stat_lock unless we are at
307 * the batch boundary.
309 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
310 * shmem mounts are not exposed to userspace, so we don't need
311 * to worry about things like glibc compatibility.
315 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
317 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
318 raw_spin_lock(&sbinfo->stat_lock);
319 ino = sbinfo->next_ino;
320 sbinfo->next_ino += SHMEM_INO_BATCH;
321 raw_spin_unlock(&sbinfo->stat_lock);
322 if (unlikely(is_zero_ino(ino)))
333 static void shmem_free_inode(struct super_block *sb)
335 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
336 if (sbinfo->max_inodes) {
337 raw_spin_lock(&sbinfo->stat_lock);
338 sbinfo->free_inodes++;
339 raw_spin_unlock(&sbinfo->stat_lock);
344 * shmem_recalc_inode - recalculate the block usage of an inode
345 * @inode: inode to recalc
347 * We have to calculate the free blocks since the mm can drop
348 * undirtied hole pages behind our back.
350 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
351 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
353 * It has to be called with the spinlock held.
355 static void shmem_recalc_inode(struct inode *inode)
357 struct shmem_inode_info *info = SHMEM_I(inode);
360 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
362 info->alloced -= freed;
363 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
364 shmem_inode_unacct_blocks(inode, freed);
368 bool shmem_charge(struct inode *inode, long pages)
370 struct shmem_inode_info *info = SHMEM_I(inode);
373 if (!shmem_inode_acct_block(inode, pages))
376 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
377 inode->i_mapping->nrpages += pages;
379 spin_lock_irqsave(&info->lock, flags);
380 info->alloced += pages;
381 inode->i_blocks += pages * BLOCKS_PER_PAGE;
382 shmem_recalc_inode(inode);
383 spin_unlock_irqrestore(&info->lock, flags);
388 void shmem_uncharge(struct inode *inode, long pages)
390 struct shmem_inode_info *info = SHMEM_I(inode);
393 /* nrpages adjustment done by __filemap_remove_folio() or caller */
395 spin_lock_irqsave(&info->lock, flags);
396 info->alloced -= pages;
397 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
398 shmem_recalc_inode(inode);
399 spin_unlock_irqrestore(&info->lock, flags);
401 shmem_inode_unacct_blocks(inode, pages);
405 * Replace item expected in xarray by a new item, while holding xa_lock.
407 static int shmem_replace_entry(struct address_space *mapping,
408 pgoff_t index, void *expected, void *replacement)
410 XA_STATE(xas, &mapping->i_pages, index);
413 VM_BUG_ON(!expected);
414 VM_BUG_ON(!replacement);
415 item = xas_load(&xas);
416 if (item != expected)
418 xas_store(&xas, replacement);
423 * Sometimes, before we decide whether to proceed or to fail, we must check
424 * that an entry was not already brought back from swap by a racing thread.
426 * Checking page is not enough: by the time a SwapCache page is locked, it
427 * might be reused, and again be SwapCache, using the same swap as before.
429 static bool shmem_confirm_swap(struct address_space *mapping,
430 pgoff_t index, swp_entry_t swap)
432 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 * disables huge pages for the mount;
441 * enables huge pages for the mount;
442 * SHMEM_HUGE_WITHIN_SIZE:
443 * only allocate huge pages if the page will be fully within i_size,
444 * also respect fadvise()/madvise() hints;
446 * only allocate huge pages if requested with fadvise()/madvise();
449 #define SHMEM_HUGE_NEVER 0
450 #define SHMEM_HUGE_ALWAYS 1
451 #define SHMEM_HUGE_WITHIN_SIZE 2
452 #define SHMEM_HUGE_ADVISE 3
456 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 * disables huge on shm_mnt and all mounts, for emergency use;
461 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 #define SHMEM_HUGE_DENY (-1)
465 #define SHMEM_HUGE_FORCE (-2)
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 /* ifdef here to avoid bloating shmem.o when not necessary */
470 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
472 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
473 struct mm_struct *mm, unsigned long vm_flags)
477 if (!S_ISREG(inode->i_mode))
479 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
481 if (shmem_huge == SHMEM_HUGE_DENY)
483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
486 switch (SHMEM_SB(inode->i_sb)->huge) {
487 case SHMEM_HUGE_ALWAYS:
489 case SHMEM_HUGE_WITHIN_SIZE:
490 index = round_up(index + 1, HPAGE_PMD_NR);
491 i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 if (i_size >> PAGE_SHIFT >= index)
495 case SHMEM_HUGE_ADVISE:
496 if (mm && (vm_flags & VM_HUGEPAGE))
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
507 if (!strcmp(str, "never"))
508 return SHMEM_HUGE_NEVER;
509 if (!strcmp(str, "always"))
510 return SHMEM_HUGE_ALWAYS;
511 if (!strcmp(str, "within_size"))
512 return SHMEM_HUGE_WITHIN_SIZE;
513 if (!strcmp(str, "advise"))
514 return SHMEM_HUGE_ADVISE;
515 if (!strcmp(str, "deny"))
516 return SHMEM_HUGE_DENY;
517 if (!strcmp(str, "force"))
518 return SHMEM_HUGE_FORCE;
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
527 case SHMEM_HUGE_NEVER:
529 case SHMEM_HUGE_ALWAYS:
531 case SHMEM_HUGE_WITHIN_SIZE:
532 return "within_size";
533 case SHMEM_HUGE_ADVISE:
535 case SHMEM_HUGE_DENY:
537 case SHMEM_HUGE_FORCE:
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 struct shrink_control *sc, unsigned long nr_to_split)
549 LIST_HEAD(list), *pos, *next;
550 LIST_HEAD(to_remove);
552 struct shmem_inode_info *info;
554 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 if (list_empty(&sbinfo->shrinklist))
560 spin_lock(&sbinfo->shrinklist_lock);
561 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 inode = igrab(&info->vfs_inode);
567 /* inode is about to be evicted */
569 list_del_init(&info->shrinklist);
573 /* Check if there's anything to gain */
574 if (round_up(inode->i_size, PAGE_SIZE) ==
575 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 list_move(&info->shrinklist, &to_remove);
580 list_move(&info->shrinklist, &list);
582 sbinfo->shrinklist_len--;
586 spin_unlock(&sbinfo->shrinklist_lock);
588 list_for_each_safe(pos, next, &to_remove) {
589 info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 inode = &info->vfs_inode;
591 list_del_init(&info->shrinklist);
595 list_for_each_safe(pos, next, &list) {
599 info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 inode = &info->vfs_inode;
602 if (nr_to_split && split >= nr_to_split)
605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 folio = filemap_get_folio(inode->i_mapping, index);
610 /* No huge page at the end of the file: nothing to split */
611 if (!folio_test_large(folio)) {
617 * Move the inode on the list back to shrinklist if we failed
618 * to lock the page at this time.
620 * Waiting for the lock may lead to deadlock in the
623 if (!folio_trylock(folio)) {
628 ret = split_folio(folio);
632 /* If split failed move the inode on the list back to shrinklist */
638 list_del_init(&info->shrinklist);
642 * Make sure the inode is either on the global list or deleted
643 * from any local list before iput() since it could be deleted
644 * in another thread once we put the inode (then the local list
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_move(&info->shrinklist, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len++;
650 spin_unlock(&sbinfo->shrinklist_lock);
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 struct shrink_control *sc)
661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 static long shmem_unused_huge_count(struct super_block *sb,
670 struct shrink_control *sc)
672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 return READ_ONCE(sbinfo->shrinklist_len);
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677 #define shmem_huge SHMEM_HUGE_DENY
679 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
680 struct mm_struct *mm, unsigned long vm_flags)
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 struct shrink_control *sc, unsigned long nr_to_split)
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 * Like filemap_add_folio, but error if expected item has gone.
695 static int shmem_add_to_page_cache(struct folio *folio,
696 struct address_space *mapping,
697 pgoff_t index, void *expected, gfp_t gfp,
698 struct mm_struct *charge_mm)
700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 long nr = folio_nr_pages(folio);
704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 VM_BUG_ON(expected && folio_test_large(folio));
709 folio_ref_add(folio, nr);
710 folio->mapping = mapping;
711 folio->index = index;
713 if (!folio_test_swapcache(folio)) {
714 error = mem_cgroup_charge(folio, charge_mm, gfp);
716 if (folio_test_pmd_mappable(folio)) {
717 count_vm_event(THP_FILE_FALLBACK);
718 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 folio_throttle_swaprate(folio, gfp);
727 if (expected != xas_find_conflict(&xas)) {
728 xas_set_err(&xas, -EEXIST);
731 if (expected && xas_find_conflict(&xas)) {
732 xas_set_err(&xas, -EEXIST);
735 xas_store(&xas, folio);
738 if (folio_test_pmd_mappable(folio)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
742 mapping->nrpages += nr;
743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
756 folio->mapping = NULL;
757 folio_ref_sub(folio, nr);
762 * Like delete_from_page_cache, but substitutes swap for @folio.
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
766 struct address_space *mapping = folio->mapping;
767 long nr = folio_nr_pages(folio);
770 xa_lock_irq(&mapping->i_pages);
771 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 folio->mapping = NULL;
773 mapping->nrpages -= nr;
774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 xa_unlock_irq(&mapping->i_pages);
782 * Remove swap entry from page cache, free the swap and its page cache.
784 static int shmem_free_swap(struct address_space *mapping,
785 pgoff_t index, void *radswap)
789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792 free_swap_and_cache(radix_to_swp_entry(radswap));
797 * Determine (in bytes) how many of the shmem object's pages mapped by the
798 * given offsets are swapped out.
800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801 * as long as the inode doesn't go away and racy results are not a problem.
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 pgoff_t start, pgoff_t end)
806 XA_STATE(xas, &mapping->i_pages, start);
808 unsigned long swapped = 0;
811 xas_for_each(&xas, page, end - 1) {
812 if (xas_retry(&xas, page))
814 if (xa_is_value(page))
817 if (need_resched()) {
825 return swapped << PAGE_SHIFT;
829 * Determine (in bytes) how many of the shmem object's pages mapped by the
830 * given vma is swapped out.
832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833 * as long as the inode doesn't go away and racy results are not a problem.
835 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 struct inode *inode = file_inode(vma->vm_file);
838 struct shmem_inode_info *info = SHMEM_I(inode);
839 struct address_space *mapping = inode->i_mapping;
840 unsigned long swapped;
842 /* Be careful as we don't hold info->lock */
843 swapped = READ_ONCE(info->swapped);
846 * The easier cases are when the shmem object has nothing in swap, or
847 * the vma maps it whole. Then we can simply use the stats that we
853 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 return swapped << PAGE_SHIFT;
856 /* Here comes the more involved part */
857 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 vma->vm_pgoff + vma_pages(vma));
862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864 void shmem_unlock_mapping(struct address_space *mapping)
866 struct folio_batch fbatch;
869 folio_batch_init(&fbatch);
871 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 while (!mapping_unevictable(mapping) &&
874 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 check_move_unevictable_folios(&fbatch);
876 folio_batch_release(&fbatch);
881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 * beyond i_size, and reports fallocated folios as holes.
889 folio = filemap_get_entry(inode->i_mapping, index);
892 if (!xa_is_value(folio)) {
894 if (folio->mapping == inode->i_mapping)
896 /* The folio has been swapped out */
901 * But read a folio back from swap if any of it is within i_size
902 * (although in some cases this is just a waste of time).
905 shmem_get_folio(inode, index, &folio, SGP_READ);
910 * Remove range of pages and swap entries from page cache, and free them.
911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916 struct address_space *mapping = inode->i_mapping;
917 struct shmem_inode_info *info = SHMEM_I(inode);
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 struct folio_batch fbatch;
921 pgoff_t indices[PAGEVEC_SIZE];
924 long nr_swaps_freed = 0;
929 end = -1; /* unsigned, so actually very big */
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
934 folio_batch_init(&fbatch);
936 while (index < end && find_lock_entries(mapping, &index, end - 1,
938 for (i = 0; i < folio_batch_count(&fbatch); i++) {
939 folio = fbatch.folios[i];
941 if (xa_is_value(folio)) {
944 nr_swaps_freed += !shmem_free_swap(mapping,
949 if (!unfalloc || !folio_test_uptodate(folio))
950 truncate_inode_folio(mapping, folio);
953 folio_batch_remove_exceptionals(&fbatch);
954 folio_batch_release(&fbatch);
959 * When undoing a failed fallocate, we want none of the partial folio
960 * zeroing and splitting below, but shall want to truncate the whole
961 * folio when !uptodate indicates that it was added by this fallocate,
962 * even when [lstart, lend] covers only a part of the folio.
967 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
968 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
970 same_folio = lend < folio_pos(folio) + folio_size(folio);
971 folio_mark_dirty(folio);
972 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
973 start = folio->index + folio_nr_pages(folio);
983 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
985 folio_mark_dirty(folio);
986 if (!truncate_inode_partial_folio(folio, lstart, lend))
995 while (index < end) {
998 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1000 /* If all gone or hole-punch or unfalloc, we're done */
1001 if (index == start || end != -1)
1003 /* But if truncating, restart to make sure all gone */
1007 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1008 folio = fbatch.folios[i];
1010 if (xa_is_value(folio)) {
1013 if (shmem_free_swap(mapping, indices[i], folio)) {
1014 /* Swap was replaced by page: retry */
1024 if (!unfalloc || !folio_test_uptodate(folio)) {
1025 if (folio_mapping(folio) != mapping) {
1026 /* Page was replaced by swap: retry */
1027 folio_unlock(folio);
1031 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1033 truncate_inode_folio(mapping, folio);
1035 folio_unlock(folio);
1037 folio_batch_remove_exceptionals(&fbatch);
1038 folio_batch_release(&fbatch);
1041 spin_lock_irq(&info->lock);
1042 info->swapped -= nr_swaps_freed;
1043 shmem_recalc_inode(inode);
1044 spin_unlock_irq(&info->lock);
1047 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1049 shmem_undo_range(inode, lstart, lend, false);
1050 inode->i_ctime = inode->i_mtime = current_time(inode);
1051 inode_inc_iversion(inode);
1053 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1055 static int shmem_getattr(struct mnt_idmap *idmap,
1056 const struct path *path, struct kstat *stat,
1057 u32 request_mask, unsigned int query_flags)
1059 struct inode *inode = path->dentry->d_inode;
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1062 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1063 spin_lock_irq(&info->lock);
1064 shmem_recalc_inode(inode);
1065 spin_unlock_irq(&info->lock);
1067 if (info->fsflags & FS_APPEND_FL)
1068 stat->attributes |= STATX_ATTR_APPEND;
1069 if (info->fsflags & FS_IMMUTABLE_FL)
1070 stat->attributes |= STATX_ATTR_IMMUTABLE;
1071 if (info->fsflags & FS_NODUMP_FL)
1072 stat->attributes |= STATX_ATTR_NODUMP;
1073 stat->attributes_mask |= (STATX_ATTR_APPEND |
1074 STATX_ATTR_IMMUTABLE |
1076 generic_fillattr(idmap, inode, stat);
1078 if (shmem_is_huge(inode, 0, false, NULL, 0))
1079 stat->blksize = HPAGE_PMD_SIZE;
1081 if (request_mask & STATX_BTIME) {
1082 stat->result_mask |= STATX_BTIME;
1083 stat->btime.tv_sec = info->i_crtime.tv_sec;
1084 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1090 static int shmem_setattr(struct mnt_idmap *idmap,
1091 struct dentry *dentry, struct iattr *attr)
1093 struct inode *inode = d_inode(dentry);
1094 struct shmem_inode_info *info = SHMEM_I(inode);
1096 bool update_mtime = false;
1097 bool update_ctime = true;
1099 error = setattr_prepare(idmap, dentry, attr);
1103 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1104 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1109 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1110 loff_t oldsize = inode->i_size;
1111 loff_t newsize = attr->ia_size;
1113 /* protected by i_rwsem */
1114 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1115 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1118 if (newsize != oldsize) {
1119 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1123 i_size_write(inode, newsize);
1124 update_mtime = true;
1126 update_ctime = false;
1128 if (newsize <= oldsize) {
1129 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1130 if (oldsize > holebegin)
1131 unmap_mapping_range(inode->i_mapping,
1134 shmem_truncate_range(inode,
1135 newsize, (loff_t)-1);
1136 /* unmap again to remove racily COWed private pages */
1137 if (oldsize > holebegin)
1138 unmap_mapping_range(inode->i_mapping,
1143 setattr_copy(idmap, inode, attr);
1144 if (attr->ia_valid & ATTR_MODE)
1145 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1146 if (!error && update_ctime) {
1147 inode->i_ctime = current_time(inode);
1149 inode->i_mtime = inode->i_ctime;
1150 inode_inc_iversion(inode);
1155 static void shmem_evict_inode(struct inode *inode)
1157 struct shmem_inode_info *info = SHMEM_I(inode);
1158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1160 if (shmem_mapping(inode->i_mapping)) {
1161 shmem_unacct_size(info->flags, inode->i_size);
1163 mapping_set_exiting(inode->i_mapping);
1164 shmem_truncate_range(inode, 0, (loff_t)-1);
1165 if (!list_empty(&info->shrinklist)) {
1166 spin_lock(&sbinfo->shrinklist_lock);
1167 if (!list_empty(&info->shrinklist)) {
1168 list_del_init(&info->shrinklist);
1169 sbinfo->shrinklist_len--;
1171 spin_unlock(&sbinfo->shrinklist_lock);
1173 while (!list_empty(&info->swaplist)) {
1174 /* Wait while shmem_unuse() is scanning this inode... */
1175 wait_var_event(&info->stop_eviction,
1176 !atomic_read(&info->stop_eviction));
1177 mutex_lock(&shmem_swaplist_mutex);
1178 /* ...but beware of the race if we peeked too early */
1179 if (!atomic_read(&info->stop_eviction))
1180 list_del_init(&info->swaplist);
1181 mutex_unlock(&shmem_swaplist_mutex);
1185 simple_xattrs_free(&info->xattrs);
1186 WARN_ON(inode->i_blocks);
1187 shmem_free_inode(inode->i_sb);
1191 static int shmem_find_swap_entries(struct address_space *mapping,
1192 pgoff_t start, struct folio_batch *fbatch,
1193 pgoff_t *indices, unsigned int type)
1195 XA_STATE(xas, &mapping->i_pages, start);
1196 struct folio *folio;
1200 xas_for_each(&xas, folio, ULONG_MAX) {
1201 if (xas_retry(&xas, folio))
1204 if (!xa_is_value(folio))
1207 entry = radix_to_swp_entry(folio);
1209 * swapin error entries can be found in the mapping. But they're
1210 * deliberately ignored here as we've done everything we can do.
1212 if (swp_type(entry) != type)
1215 indices[folio_batch_count(fbatch)] = xas.xa_index;
1216 if (!folio_batch_add(fbatch, folio))
1219 if (need_resched()) {
1226 return xas.xa_index;
1230 * Move the swapped pages for an inode to page cache. Returns the count
1231 * of pages swapped in, or the error in case of failure.
1233 static int shmem_unuse_swap_entries(struct inode *inode,
1234 struct folio_batch *fbatch, pgoff_t *indices)
1239 struct address_space *mapping = inode->i_mapping;
1241 for (i = 0; i < folio_batch_count(fbatch); i++) {
1242 struct folio *folio = fbatch->folios[i];
1244 if (!xa_is_value(folio))
1246 error = shmem_swapin_folio(inode, indices[i],
1248 mapping_gfp_mask(mapping),
1251 folio_unlock(folio);
1255 if (error == -ENOMEM)
1259 return error ? error : ret;
1263 * If swap found in inode, free it and move page from swapcache to filecache.
1265 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1267 struct address_space *mapping = inode->i_mapping;
1269 struct folio_batch fbatch;
1270 pgoff_t indices[PAGEVEC_SIZE];
1274 folio_batch_init(&fbatch);
1275 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1276 if (folio_batch_count(&fbatch) == 0) {
1281 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1285 start = indices[folio_batch_count(&fbatch) - 1];
1292 * Read all the shared memory data that resides in the swap
1293 * device 'type' back into memory, so the swap device can be
1296 int shmem_unuse(unsigned int type)
1298 struct shmem_inode_info *info, *next;
1301 if (list_empty(&shmem_swaplist))
1304 mutex_lock(&shmem_swaplist_mutex);
1305 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1306 if (!info->swapped) {
1307 list_del_init(&info->swaplist);
1311 * Drop the swaplist mutex while searching the inode for swap;
1312 * but before doing so, make sure shmem_evict_inode() will not
1313 * remove placeholder inode from swaplist, nor let it be freed
1314 * (igrab() would protect from unlink, but not from unmount).
1316 atomic_inc(&info->stop_eviction);
1317 mutex_unlock(&shmem_swaplist_mutex);
1319 error = shmem_unuse_inode(&info->vfs_inode, type);
1322 mutex_lock(&shmem_swaplist_mutex);
1323 next = list_next_entry(info, swaplist);
1325 list_del_init(&info->swaplist);
1326 if (atomic_dec_and_test(&info->stop_eviction))
1327 wake_up_var(&info->stop_eviction);
1331 mutex_unlock(&shmem_swaplist_mutex);
1337 * Move the page from the page cache to the swap cache.
1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1341 struct folio *folio = page_folio(page);
1342 struct address_space *mapping = folio->mapping;
1343 struct inode *inode = mapping->host;
1344 struct shmem_inode_info *info = SHMEM_I(inode);
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1350 * Our capabilities prevent regular writeback or sync from ever calling
1351 * shmem_writepage; but a stacking filesystem might use ->writepage of
1352 * its underlying filesystem, in which case tmpfs should write out to
1353 * swap only in response to memory pressure, and not for the writeback
1356 if (WARN_ON_ONCE(!wbc->for_reclaim))
1359 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1362 if (!total_swap_pages)
1366 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1367 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1368 * and its shmem_writeback() needs them to be split when swapping.
1370 if (folio_test_large(folio)) {
1371 /* Ensure the subpages are still dirty */
1372 folio_test_set_dirty(folio);
1373 if (split_huge_page(page) < 0)
1375 folio = page_folio(page);
1376 folio_clear_dirty(folio);
1379 index = folio->index;
1382 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 * value into swapfile.c, the only way we can correctly account for a
1384 * fallocated folio arriving here is now to initialize it and write it.
1386 * That's okay for a folio already fallocated earlier, but if we have
1387 * not yet completed the fallocation, then (a) we want to keep track
1388 * of this folio in case we have to undo it, and (b) it may not be a
1389 * good idea to continue anyway, once we're pushing into swap. So
1390 * reactivate the folio, and let shmem_fallocate() quit when too many.
1392 if (!folio_test_uptodate(folio)) {
1393 if (inode->i_private) {
1394 struct shmem_falloc *shmem_falloc;
1395 spin_lock(&inode->i_lock);
1396 shmem_falloc = inode->i_private;
1398 !shmem_falloc->waitq &&
1399 index >= shmem_falloc->start &&
1400 index < shmem_falloc->next)
1401 shmem_falloc->nr_unswapped++;
1403 shmem_falloc = NULL;
1404 spin_unlock(&inode->i_lock);
1408 folio_zero_range(folio, 0, folio_size(folio));
1409 flush_dcache_folio(folio);
1410 folio_mark_uptodate(folio);
1413 swap = folio_alloc_swap(folio);
1418 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 * if it's not already there. Do it now before the folio is
1420 * moved to swap cache, when its pagelock no longer protects
1421 * the inode from eviction. But don't unlock the mutex until
1422 * we've incremented swapped, because shmem_unuse_inode() will
1423 * prune a !swapped inode from the swaplist under this mutex.
1425 mutex_lock(&shmem_swaplist_mutex);
1426 if (list_empty(&info->swaplist))
1427 list_add(&info->swaplist, &shmem_swaplist);
1429 if (add_to_swap_cache(folio, swap,
1430 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1432 spin_lock_irq(&info->lock);
1433 shmem_recalc_inode(inode);
1435 spin_unlock_irq(&info->lock);
1437 swap_shmem_alloc(swap);
1438 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1440 mutex_unlock(&shmem_swaplist_mutex);
1441 BUG_ON(folio_mapped(folio));
1442 swap_writepage(&folio->page, wbc);
1446 mutex_unlock(&shmem_swaplist_mutex);
1447 put_swap_folio(folio, swap);
1449 folio_mark_dirty(folio);
1450 if (wbc->for_reclaim)
1451 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1452 folio_unlock(folio);
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1461 if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 return; /* show nothing */
1464 mpol_to_str(buffer, sizeof(buffer), mpol);
1466 seq_printf(seq, ",mpol=%s", buffer);
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 struct mempolicy *mpol = NULL;
1473 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1474 mpol = sbinfo->mpol;
1476 raw_spin_unlock(&sbinfo->stat_lock);
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1490 #define vm_policy vm_private_data
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 struct shmem_inode_info *info, pgoff_t index)
1496 /* Create a pseudo vma that just contains the policy */
1497 vma_init(vma, NULL);
1498 /* Bias interleave by inode number to distribute better across nodes */
1499 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1505 /* Drop reference taken by mpol_shared_policy_lookup() */
1506 mpol_cond_put(vma->vm_policy);
1509 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1512 struct vm_area_struct pvma;
1514 struct vm_fault vmf = {
1518 shmem_pseudo_vma_init(&pvma, info, index);
1519 page = swap_cluster_readahead(swap, gfp, &vmf);
1520 shmem_pseudo_vma_destroy(&pvma);
1524 return page_folio(page);
1528 * Make sure huge_gfp is always more limited than limit_gfp.
1529 * Some of the flags set permissions, while others set limitations.
1531 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1533 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1534 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1535 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1536 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1538 /* Allow allocations only from the originally specified zones. */
1539 result |= zoneflags;
1542 * Minimize the result gfp by taking the union with the deny flags,
1543 * and the intersection of the allow flags.
1545 result |= (limit_gfp & denyflags);
1546 result |= (huge_gfp & limit_gfp) & allowflags;
1551 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1552 struct shmem_inode_info *info, pgoff_t index)
1554 struct vm_area_struct pvma;
1555 struct address_space *mapping = info->vfs_inode.i_mapping;
1557 struct folio *folio;
1559 hindex = round_down(index, HPAGE_PMD_NR);
1560 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1564 shmem_pseudo_vma_init(&pvma, info, hindex);
1565 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1566 shmem_pseudo_vma_destroy(&pvma);
1568 count_vm_event(THP_FILE_FALLBACK);
1572 static struct folio *shmem_alloc_folio(gfp_t gfp,
1573 struct shmem_inode_info *info, pgoff_t index)
1575 struct vm_area_struct pvma;
1576 struct folio *folio;
1578 shmem_pseudo_vma_init(&pvma, info, index);
1579 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1580 shmem_pseudo_vma_destroy(&pvma);
1585 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1586 pgoff_t index, bool huge)
1588 struct shmem_inode_info *info = SHMEM_I(inode);
1589 struct folio *folio;
1593 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1595 nr = huge ? HPAGE_PMD_NR : 1;
1597 if (!shmem_inode_acct_block(inode, nr))
1601 folio = shmem_alloc_hugefolio(gfp, info, index);
1603 folio = shmem_alloc_folio(gfp, info, index);
1605 __folio_set_locked(folio);
1606 __folio_set_swapbacked(folio);
1611 shmem_inode_unacct_blocks(inode, nr);
1613 return ERR_PTR(err);
1617 * When a page is moved from swapcache to shmem filecache (either by the
1618 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1619 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1620 * ignorance of the mapping it belongs to. If that mapping has special
1621 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1622 * we may need to copy to a suitable page before moving to filecache.
1624 * In a future release, this may well be extended to respect cpuset and
1625 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1626 * but for now it is a simple matter of zone.
1628 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1630 return folio_zonenum(folio) > gfp_zone(gfp);
1633 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1634 struct shmem_inode_info *info, pgoff_t index)
1636 struct folio *old, *new;
1637 struct address_space *swap_mapping;
1643 entry = folio_swap_entry(old);
1644 swap_index = swp_offset(entry);
1645 swap_mapping = swap_address_space(entry);
1648 * We have arrived here because our zones are constrained, so don't
1649 * limit chance of success by further cpuset and node constraints.
1651 gfp &= ~GFP_CONSTRAINT_MASK;
1652 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1653 new = shmem_alloc_folio(gfp, info, index);
1658 folio_copy(new, old);
1659 flush_dcache_folio(new);
1661 __folio_set_locked(new);
1662 __folio_set_swapbacked(new);
1663 folio_mark_uptodate(new);
1664 folio_set_swap_entry(new, entry);
1665 folio_set_swapcache(new);
1668 * Our caller will very soon move newpage out of swapcache, but it's
1669 * a nice clean interface for us to replace oldpage by newpage there.
1671 xa_lock_irq(&swap_mapping->i_pages);
1672 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1674 mem_cgroup_migrate(old, new);
1675 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1676 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1677 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1678 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1680 xa_unlock_irq(&swap_mapping->i_pages);
1682 if (unlikely(error)) {
1684 * Is this possible? I think not, now that our callers check
1685 * both PageSwapCache and page_private after getting page lock;
1686 * but be defensive. Reverse old to newpage for clear and free.
1694 folio_clear_swapcache(old);
1695 old->private = NULL;
1698 folio_put_refs(old, 2);
1702 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1703 struct folio *folio, swp_entry_t swap)
1705 struct address_space *mapping = inode->i_mapping;
1706 struct shmem_inode_info *info = SHMEM_I(inode);
1707 swp_entry_t swapin_error;
1710 swapin_error = make_swapin_error_entry();
1711 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1712 swp_to_radix_entry(swap),
1713 swp_to_radix_entry(swapin_error), 0);
1714 if (old != swp_to_radix_entry(swap))
1717 folio_wait_writeback(folio);
1718 delete_from_swap_cache(folio);
1719 spin_lock_irq(&info->lock);
1721 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1722 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1723 * shmem_evict_inode.
1727 shmem_recalc_inode(inode);
1728 spin_unlock_irq(&info->lock);
1733 * Swap in the folio pointed to by *foliop.
1734 * Caller has to make sure that *foliop contains a valid swapped folio.
1735 * Returns 0 and the folio in foliop if success. On failure, returns the
1736 * error code and NULL in *foliop.
1738 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1739 struct folio **foliop, enum sgp_type sgp,
1740 gfp_t gfp, struct vm_area_struct *vma,
1741 vm_fault_t *fault_type)
1743 struct address_space *mapping = inode->i_mapping;
1744 struct shmem_inode_info *info = SHMEM_I(inode);
1745 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1746 struct swap_info_struct *si;
1747 struct folio *folio = NULL;
1751 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1752 swap = radix_to_swp_entry(*foliop);
1755 if (is_swapin_error_entry(swap))
1758 si = get_swap_device(swap);
1760 if (!shmem_confirm_swap(mapping, index, swap))
1766 /* Look it up and read it in.. */
1767 folio = swap_cache_get_folio(swap, NULL, 0);
1769 /* Or update major stats only when swapin succeeds?? */
1771 *fault_type |= VM_FAULT_MAJOR;
1772 count_vm_event(PGMAJFAULT);
1773 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1775 /* Here we actually start the io */
1776 folio = shmem_swapin(swap, gfp, info, index);
1783 /* We have to do this with folio locked to prevent races */
1785 if (!folio_test_swapcache(folio) ||
1786 folio_swap_entry(folio).val != swap.val ||
1787 !shmem_confirm_swap(mapping, index, swap)) {
1791 if (!folio_test_uptodate(folio)) {
1795 folio_wait_writeback(folio);
1798 * Some architectures may have to restore extra metadata to the
1799 * folio after reading from swap.
1801 arch_swap_restore(swap, folio);
1803 if (shmem_should_replace_folio(folio, gfp)) {
1804 error = shmem_replace_folio(&folio, gfp, info, index);
1809 error = shmem_add_to_page_cache(folio, mapping, index,
1810 swp_to_radix_entry(swap), gfp,
1815 spin_lock_irq(&info->lock);
1817 shmem_recalc_inode(inode);
1818 spin_unlock_irq(&info->lock);
1820 if (sgp == SGP_WRITE)
1821 folio_mark_accessed(folio);
1823 delete_from_swap_cache(folio);
1824 folio_mark_dirty(folio);
1826 put_swap_device(si);
1831 if (!shmem_confirm_swap(mapping, index, swap))
1834 shmem_set_folio_swapin_error(inode, index, folio, swap);
1837 folio_unlock(folio);
1840 put_swap_device(si);
1846 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1848 * If we allocate a new one we do not mark it dirty. That's up to the
1849 * vm. If we swap it in we mark it dirty since we also free the swap
1850 * entry since a page cannot live in both the swap and page cache.
1852 * vma, vmf, and fault_type are only supplied by shmem_fault:
1853 * otherwise they are NULL.
1855 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1856 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1857 struct vm_area_struct *vma, struct vm_fault *vmf,
1858 vm_fault_t *fault_type)
1860 struct address_space *mapping = inode->i_mapping;
1861 struct shmem_inode_info *info = SHMEM_I(inode);
1862 struct shmem_sb_info *sbinfo;
1863 struct mm_struct *charge_mm;
1864 struct folio *folio;
1871 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1874 if (sgp <= SGP_CACHE &&
1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1879 sbinfo = SHMEM_SB(inode->i_sb);
1880 charge_mm = vma ? vma->vm_mm : NULL;
1882 folio = filemap_get_entry(mapping, index);
1883 if (folio && vma && userfaultfd_minor(vma)) {
1884 if (!xa_is_value(folio))
1886 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1890 if (xa_is_value(folio)) {
1891 error = shmem_swapin_folio(inode, index, &folio,
1892 sgp, gfp, vma, fault_type);
1893 if (error == -EEXIST)
1903 /* Has the folio been truncated or swapped out? */
1904 if (unlikely(folio->mapping != mapping)) {
1905 folio_unlock(folio);
1909 if (sgp == SGP_WRITE)
1910 folio_mark_accessed(folio);
1911 if (folio_test_uptodate(folio))
1913 /* fallocated folio */
1914 if (sgp != SGP_READ)
1916 folio_unlock(folio);
1921 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1922 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1925 if (sgp == SGP_READ)
1927 if (sgp == SGP_NOALLOC)
1931 * Fast cache lookup and swap lookup did not find it: allocate.
1934 if (vma && userfaultfd_missing(vma)) {
1935 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1939 if (!shmem_is_huge(inode, index, false,
1940 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1943 huge_gfp = vma_thp_gfp_mask(vma);
1944 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1945 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1946 if (IS_ERR(folio)) {
1948 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1950 if (IS_ERR(folio)) {
1953 error = PTR_ERR(folio);
1955 if (error != -ENOSPC)
1958 * Try to reclaim some space by splitting a large folio
1959 * beyond i_size on the filesystem.
1964 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1965 if (ret == SHRINK_STOP)
1973 hindex = round_down(index, folio_nr_pages(folio));
1975 if (sgp == SGP_WRITE)
1976 __folio_set_referenced(folio);
1978 error = shmem_add_to_page_cache(folio, mapping, hindex,
1979 NULL, gfp & GFP_RECLAIM_MASK,
1983 folio_add_lru(folio);
1985 spin_lock_irq(&info->lock);
1986 info->alloced += folio_nr_pages(folio);
1987 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1988 shmem_recalc_inode(inode);
1989 spin_unlock_irq(&info->lock);
1992 if (folio_test_pmd_mappable(folio) &&
1993 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1994 folio_next_index(folio) - 1) {
1996 * Part of the large folio is beyond i_size: subject
1997 * to shrink under memory pressure.
1999 spin_lock(&sbinfo->shrinklist_lock);
2001 * _careful to defend against unlocked access to
2002 * ->shrink_list in shmem_unused_huge_shrink()
2004 if (list_empty_careful(&info->shrinklist)) {
2005 list_add_tail(&info->shrinklist,
2006 &sbinfo->shrinklist);
2007 sbinfo->shrinklist_len++;
2009 spin_unlock(&sbinfo->shrinklist_lock);
2013 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2015 if (sgp == SGP_FALLOC)
2019 * Let SGP_WRITE caller clear ends if write does not fill folio;
2020 * but SGP_FALLOC on a folio fallocated earlier must initialize
2021 * it now, lest undo on failure cancel our earlier guarantee.
2023 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2024 long i, n = folio_nr_pages(folio);
2026 for (i = 0; i < n; i++)
2027 clear_highpage(folio_page(folio, i));
2028 flush_dcache_folio(folio);
2029 folio_mark_uptodate(folio);
2032 /* Perhaps the file has been truncated since we checked */
2033 if (sgp <= SGP_CACHE &&
2034 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2036 folio_clear_dirty(folio);
2037 filemap_remove_folio(folio);
2038 spin_lock_irq(&info->lock);
2039 shmem_recalc_inode(inode);
2040 spin_unlock_irq(&info->lock);
2053 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2055 if (folio_test_large(folio)) {
2056 folio_unlock(folio);
2062 folio_unlock(folio);
2065 if (error == -ENOSPC && !once++) {
2066 spin_lock_irq(&info->lock);
2067 shmem_recalc_inode(inode);
2068 spin_unlock_irq(&info->lock);
2071 if (error == -EEXIST)
2076 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2079 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2080 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2084 * This is like autoremove_wake_function, but it removes the wait queue
2085 * entry unconditionally - even if something else had already woken the
2088 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2090 int ret = default_wake_function(wait, mode, sync, key);
2091 list_del_init(&wait->entry);
2095 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2097 struct vm_area_struct *vma = vmf->vma;
2098 struct inode *inode = file_inode(vma->vm_file);
2099 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2100 struct folio *folio = NULL;
2102 vm_fault_t ret = VM_FAULT_LOCKED;
2105 * Trinity finds that probing a hole which tmpfs is punching can
2106 * prevent the hole-punch from ever completing: which in turn
2107 * locks writers out with its hold on i_rwsem. So refrain from
2108 * faulting pages into the hole while it's being punched. Although
2109 * shmem_undo_range() does remove the additions, it may be unable to
2110 * keep up, as each new page needs its own unmap_mapping_range() call,
2111 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2113 * It does not matter if we sometimes reach this check just before the
2114 * hole-punch begins, so that one fault then races with the punch:
2115 * we just need to make racing faults a rare case.
2117 * The implementation below would be much simpler if we just used a
2118 * standard mutex or completion: but we cannot take i_rwsem in fault,
2119 * and bloating every shmem inode for this unlikely case would be sad.
2121 if (unlikely(inode->i_private)) {
2122 struct shmem_falloc *shmem_falloc;
2124 spin_lock(&inode->i_lock);
2125 shmem_falloc = inode->i_private;
2127 shmem_falloc->waitq &&
2128 vmf->pgoff >= shmem_falloc->start &&
2129 vmf->pgoff < shmem_falloc->next) {
2131 wait_queue_head_t *shmem_falloc_waitq;
2132 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2134 ret = VM_FAULT_NOPAGE;
2135 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2137 ret = VM_FAULT_RETRY;
2139 shmem_falloc_waitq = shmem_falloc->waitq;
2140 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2141 TASK_UNINTERRUPTIBLE);
2142 spin_unlock(&inode->i_lock);
2146 * shmem_falloc_waitq points into the shmem_fallocate()
2147 * stack of the hole-punching task: shmem_falloc_waitq
2148 * is usually invalid by the time we reach here, but
2149 * finish_wait() does not dereference it in that case;
2150 * though i_lock needed lest racing with wake_up_all().
2152 spin_lock(&inode->i_lock);
2153 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2154 spin_unlock(&inode->i_lock);
2160 spin_unlock(&inode->i_lock);
2163 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2164 gfp, vma, vmf, &ret);
2166 return vmf_error(err);
2168 vmf->page = folio_file_page(folio, vmf->pgoff);
2172 unsigned long shmem_get_unmapped_area(struct file *file,
2173 unsigned long uaddr, unsigned long len,
2174 unsigned long pgoff, unsigned long flags)
2176 unsigned long (*get_area)(struct file *,
2177 unsigned long, unsigned long, unsigned long, unsigned long);
2179 unsigned long offset;
2180 unsigned long inflated_len;
2181 unsigned long inflated_addr;
2182 unsigned long inflated_offset;
2184 if (len > TASK_SIZE)
2187 get_area = current->mm->get_unmapped_area;
2188 addr = get_area(file, uaddr, len, pgoff, flags);
2190 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2192 if (IS_ERR_VALUE(addr))
2194 if (addr & ~PAGE_MASK)
2196 if (addr > TASK_SIZE - len)
2199 if (shmem_huge == SHMEM_HUGE_DENY)
2201 if (len < HPAGE_PMD_SIZE)
2203 if (flags & MAP_FIXED)
2206 * Our priority is to support MAP_SHARED mapped hugely;
2207 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2208 * But if caller specified an address hint and we allocated area there
2209 * successfully, respect that as before.
2214 if (shmem_huge != SHMEM_HUGE_FORCE) {
2215 struct super_block *sb;
2218 VM_BUG_ON(file->f_op != &shmem_file_operations);
2219 sb = file_inode(file)->i_sb;
2222 * Called directly from mm/mmap.c, or drivers/char/mem.c
2223 * for "/dev/zero", to create a shared anonymous object.
2225 if (IS_ERR(shm_mnt))
2227 sb = shm_mnt->mnt_sb;
2229 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2233 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2234 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2236 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2239 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2240 if (inflated_len > TASK_SIZE)
2242 if (inflated_len < len)
2245 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2246 if (IS_ERR_VALUE(inflated_addr))
2248 if (inflated_addr & ~PAGE_MASK)
2251 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2252 inflated_addr += offset - inflated_offset;
2253 if (inflated_offset > offset)
2254 inflated_addr += HPAGE_PMD_SIZE;
2256 if (inflated_addr > TASK_SIZE - len)
2258 return inflated_addr;
2262 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2264 struct inode *inode = file_inode(vma->vm_file);
2265 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2268 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2271 struct inode *inode = file_inode(vma->vm_file);
2274 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2275 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2279 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2281 struct inode *inode = file_inode(file);
2282 struct shmem_inode_info *info = SHMEM_I(inode);
2283 int retval = -ENOMEM;
2286 * What serializes the accesses to info->flags?
2287 * ipc_lock_object() when called from shmctl_do_lock(),
2288 * no serialization needed when called from shm_destroy().
2290 if (lock && !(info->flags & VM_LOCKED)) {
2291 if (!user_shm_lock(inode->i_size, ucounts))
2293 info->flags |= VM_LOCKED;
2294 mapping_set_unevictable(file->f_mapping);
2296 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2297 user_shm_unlock(inode->i_size, ucounts);
2298 info->flags &= ~VM_LOCKED;
2299 mapping_clear_unevictable(file->f_mapping);
2307 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2309 struct inode *inode = file_inode(file);
2310 struct shmem_inode_info *info = SHMEM_I(inode);
2313 ret = seal_check_future_write(info->seals, vma);
2317 /* arm64 - allow memory tagging on RAM-based files */
2318 vm_flags_set(vma, VM_MTE_ALLOWED);
2320 file_accessed(file);
2321 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2323 vma->vm_ops = &shmem_vm_ops;
2325 vma->vm_ops = &shmem_anon_vm_ops;
2329 #ifdef CONFIG_TMPFS_XATTR
2330 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2333 * chattr's fsflags are unrelated to extended attributes,
2334 * but tmpfs has chosen to enable them under the same config option.
2336 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2338 unsigned int i_flags = 0;
2340 if (fsflags & FS_NOATIME_FL)
2341 i_flags |= S_NOATIME;
2342 if (fsflags & FS_APPEND_FL)
2343 i_flags |= S_APPEND;
2344 if (fsflags & FS_IMMUTABLE_FL)
2345 i_flags |= S_IMMUTABLE;
2347 * But FS_NODUMP_FL does not require any action in i_flags.
2349 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2352 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2355 #define shmem_initxattrs NULL
2358 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2359 struct inode *dir, umode_t mode, dev_t dev,
2360 unsigned long flags)
2362 struct inode *inode;
2363 struct shmem_inode_info *info;
2364 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2367 if (shmem_reserve_inode(sb, &ino))
2370 inode = new_inode(sb);
2373 inode_init_owner(idmap, inode, dir, mode);
2374 inode->i_blocks = 0;
2375 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2376 inode->i_generation = get_random_u32();
2377 info = SHMEM_I(inode);
2378 memset(info, 0, (char *)inode - (char *)info);
2379 spin_lock_init(&info->lock);
2380 atomic_set(&info->stop_eviction, 0);
2381 info->seals = F_SEAL_SEAL;
2382 info->flags = flags & VM_NORESERVE;
2383 info->i_crtime = inode->i_mtime;
2384 info->fsflags = (dir == NULL) ? 0 :
2385 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2387 shmem_set_inode_flags(inode, info->fsflags);
2388 INIT_LIST_HEAD(&info->shrinklist);
2389 INIT_LIST_HEAD(&info->swaplist);
2391 mapping_set_unevictable(inode->i_mapping);
2392 simple_xattrs_init(&info->xattrs);
2393 cache_no_acl(inode);
2394 mapping_set_large_folios(inode->i_mapping);
2396 switch (mode & S_IFMT) {
2398 inode->i_op = &shmem_special_inode_operations;
2399 init_special_inode(inode, mode, dev);
2402 inode->i_mapping->a_ops = &shmem_aops;
2403 inode->i_op = &shmem_inode_operations;
2404 inode->i_fop = &shmem_file_operations;
2405 mpol_shared_policy_init(&info->policy,
2406 shmem_get_sbmpol(sbinfo));
2410 /* Some things misbehave if size == 0 on a directory */
2411 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2412 inode->i_op = &shmem_dir_inode_operations;
2413 inode->i_fop = &simple_dir_operations;
2417 * Must not load anything in the rbtree,
2418 * mpol_free_shared_policy will not be called.
2420 mpol_shared_policy_init(&info->policy, NULL);
2424 lockdep_annotate_inode_mutex_key(inode);
2426 shmem_free_inode(sb);
2430 #ifdef CONFIG_USERFAULTFD
2431 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2432 struct vm_area_struct *dst_vma,
2433 unsigned long dst_addr,
2434 unsigned long src_addr,
2436 struct folio **foliop)
2438 struct inode *inode = file_inode(dst_vma->vm_file);
2439 struct shmem_inode_info *info = SHMEM_I(inode);
2440 struct address_space *mapping = inode->i_mapping;
2441 gfp_t gfp = mapping_gfp_mask(mapping);
2442 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2444 struct folio *folio;
2448 if (!shmem_inode_acct_block(inode, 1)) {
2450 * We may have got a page, returned -ENOENT triggering a retry,
2451 * and now we find ourselves with -ENOMEM. Release the page, to
2452 * avoid a BUG_ON in our caller.
2454 if (unlikely(*foliop)) {
2463 folio = shmem_alloc_folio(gfp, info, pgoff);
2465 goto out_unacct_blocks;
2467 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2468 page_kaddr = kmap_local_folio(folio, 0);
2470 * The read mmap_lock is held here. Despite the
2471 * mmap_lock being read recursive a deadlock is still
2472 * possible if a writer has taken a lock. For example:
2474 * process A thread 1 takes read lock on own mmap_lock
2475 * process A thread 2 calls mmap, blocks taking write lock
2476 * process B thread 1 takes page fault, read lock on own mmap lock
2477 * process B thread 2 calls mmap, blocks taking write lock
2478 * process A thread 1 blocks taking read lock on process B
2479 * process B thread 1 blocks taking read lock on process A
2481 * Disable page faults to prevent potential deadlock
2482 * and retry the copy outside the mmap_lock.
2484 pagefault_disable();
2485 ret = copy_from_user(page_kaddr,
2486 (const void __user *)src_addr,
2489 kunmap_local(page_kaddr);
2491 /* fallback to copy_from_user outside mmap_lock */
2492 if (unlikely(ret)) {
2495 /* don't free the page */
2496 goto out_unacct_blocks;
2499 flush_dcache_folio(folio);
2500 } else { /* ZEROPAGE */
2501 clear_user_highpage(&folio->page, dst_addr);
2505 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2509 VM_BUG_ON(folio_test_locked(folio));
2510 VM_BUG_ON(folio_test_swapbacked(folio));
2511 __folio_set_locked(folio);
2512 __folio_set_swapbacked(folio);
2513 __folio_mark_uptodate(folio);
2516 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2517 if (unlikely(pgoff >= max_off))
2520 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2521 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2525 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2526 &folio->page, true, flags);
2528 goto out_delete_from_cache;
2530 spin_lock_irq(&info->lock);
2532 inode->i_blocks += BLOCKS_PER_PAGE;
2533 shmem_recalc_inode(inode);
2534 spin_unlock_irq(&info->lock);
2536 folio_unlock(folio);
2538 out_delete_from_cache:
2539 filemap_remove_folio(folio);
2541 folio_unlock(folio);
2544 shmem_inode_unacct_blocks(inode, 1);
2547 #endif /* CONFIG_USERFAULTFD */
2550 static const struct inode_operations shmem_symlink_inode_operations;
2551 static const struct inode_operations shmem_short_symlink_operations;
2554 shmem_write_begin(struct file *file, struct address_space *mapping,
2555 loff_t pos, unsigned len,
2556 struct page **pagep, void **fsdata)
2558 struct inode *inode = mapping->host;
2559 struct shmem_inode_info *info = SHMEM_I(inode);
2560 pgoff_t index = pos >> PAGE_SHIFT;
2561 struct folio *folio;
2564 /* i_rwsem is held by caller */
2565 if (unlikely(info->seals & (F_SEAL_GROW |
2566 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2567 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2569 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2573 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2578 *pagep = folio_file_page(folio, index);
2579 if (PageHWPoison(*pagep)) {
2580 folio_unlock(folio);
2590 shmem_write_end(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned copied,
2592 struct page *page, void *fsdata)
2594 struct folio *folio = page_folio(page);
2595 struct inode *inode = mapping->host;
2597 if (pos + copied > inode->i_size)
2598 i_size_write(inode, pos + copied);
2600 if (!folio_test_uptodate(folio)) {
2601 if (copied < folio_size(folio)) {
2602 size_t from = offset_in_folio(folio, pos);
2603 folio_zero_segments(folio, 0, from,
2604 from + copied, folio_size(folio));
2606 folio_mark_uptodate(folio);
2608 folio_mark_dirty(folio);
2609 folio_unlock(folio);
2615 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2617 struct file *file = iocb->ki_filp;
2618 struct inode *inode = file_inode(file);
2619 struct address_space *mapping = inode->i_mapping;
2621 unsigned long offset;
2624 loff_t *ppos = &iocb->ki_pos;
2626 index = *ppos >> PAGE_SHIFT;
2627 offset = *ppos & ~PAGE_MASK;
2630 struct folio *folio = NULL;
2631 struct page *page = NULL;
2633 unsigned long nr, ret;
2634 loff_t i_size = i_size_read(inode);
2636 end_index = i_size >> PAGE_SHIFT;
2637 if (index > end_index)
2639 if (index == end_index) {
2640 nr = i_size & ~PAGE_MASK;
2645 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2647 if (error == -EINVAL)
2652 folio_unlock(folio);
2654 page = folio_file_page(folio, index);
2655 if (PageHWPoison(page)) {
2663 * We must evaluate after, since reads (unlike writes)
2664 * are called without i_rwsem protection against truncate
2667 i_size = i_size_read(inode);
2668 end_index = i_size >> PAGE_SHIFT;
2669 if (index == end_index) {
2670 nr = i_size & ~PAGE_MASK;
2681 * If users can be writing to this page using arbitrary
2682 * virtual addresses, take care about potential aliasing
2683 * before reading the page on the kernel side.
2685 if (mapping_writably_mapped(mapping))
2686 flush_dcache_page(page);
2688 * Mark the page accessed if we read the beginning.
2691 folio_mark_accessed(folio);
2693 * Ok, we have the page, and it's up-to-date, so
2694 * now we can copy it to user space...
2696 ret = copy_page_to_iter(page, offset, nr, to);
2699 } else if (user_backed_iter(to)) {
2701 * Copy to user tends to be so well optimized, but
2702 * clear_user() not so much, that it is noticeably
2703 * faster to copy the zero page instead of clearing.
2705 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2708 * But submitting the same page twice in a row to
2709 * splice() - or others? - can result in confusion:
2710 * so don't attempt that optimization on pipes etc.
2712 ret = iov_iter_zero(nr, to);
2717 index += offset >> PAGE_SHIFT;
2718 offset &= ~PAGE_MASK;
2720 if (!iov_iter_count(to))
2729 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2730 file_accessed(file);
2731 return retval ? retval : error;
2734 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2735 struct pipe_buffer *buf)
2740 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2741 struct pipe_buffer *buf)
2745 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2746 struct pipe_buffer *buf)
2751 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2752 .release = zero_pipe_buf_release,
2753 .try_steal = zero_pipe_buf_try_steal,
2754 .get = zero_pipe_buf_get,
2757 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2758 loff_t fpos, size_t size)
2760 size_t offset = fpos & ~PAGE_MASK;
2762 size = min_t(size_t, size, PAGE_SIZE - offset);
2764 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2765 struct pipe_buffer *buf = pipe_head_buf(pipe);
2767 *buf = (struct pipe_buffer) {
2768 .ops = &zero_pipe_buf_ops,
2769 .page = ZERO_PAGE(0),
2779 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2780 struct pipe_inode_info *pipe,
2781 size_t len, unsigned int flags)
2783 struct inode *inode = file_inode(in);
2784 struct address_space *mapping = inode->i_mapping;
2785 struct folio *folio = NULL;
2786 size_t total_spliced = 0, used, npages, n, part;
2790 /* Work out how much data we can actually add into the pipe */
2791 used = pipe_occupancy(pipe->head, pipe->tail);
2792 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2793 len = min_t(size_t, len, npages * PAGE_SIZE);
2796 if (*ppos >= i_size_read(inode))
2799 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, SGP_READ);
2801 if (error == -EINVAL)
2806 folio_unlock(folio);
2808 if (folio_test_hwpoison(folio)) {
2815 * i_size must be checked after we know the pages are Uptodate.
2817 * Checking i_size after the check allows us to calculate
2818 * the correct value for "nr", which means the zero-filled
2819 * part of the page is not copied back to userspace (unless
2820 * another truncate extends the file - this is desired though).
2822 isize = i_size_read(inode);
2823 if (unlikely(*ppos >= isize))
2825 part = min_t(loff_t, isize - *ppos, len);
2829 * If users can be writing to this page using arbitrary
2830 * virtual addresses, take care about potential aliasing
2831 * before reading the page on the kernel side.
2833 if (mapping_writably_mapped(mapping))
2834 flush_dcache_folio(folio);
2835 folio_mark_accessed(folio);
2837 * Ok, we have the page, and it's up-to-date, so we can
2838 * now splice it into the pipe.
2840 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2844 n = splice_zeropage_into_pipe(pipe, *ppos, len);
2852 in->f_ra.prev_pos = *ppos;
2853 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2863 return total_spliced ? total_spliced : error;
2866 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2868 struct address_space *mapping = file->f_mapping;
2869 struct inode *inode = mapping->host;
2871 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2872 return generic_file_llseek_size(file, offset, whence,
2873 MAX_LFS_FILESIZE, i_size_read(inode));
2878 /* We're holding i_rwsem so we can access i_size directly */
2879 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2881 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2882 inode_unlock(inode);
2886 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2889 struct inode *inode = file_inode(file);
2890 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2891 struct shmem_inode_info *info = SHMEM_I(inode);
2892 struct shmem_falloc shmem_falloc;
2893 pgoff_t start, index, end, undo_fallocend;
2896 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2901 if (mode & FALLOC_FL_PUNCH_HOLE) {
2902 struct address_space *mapping = file->f_mapping;
2903 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2904 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2905 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2907 /* protected by i_rwsem */
2908 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2913 shmem_falloc.waitq = &shmem_falloc_waitq;
2914 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2915 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2916 spin_lock(&inode->i_lock);
2917 inode->i_private = &shmem_falloc;
2918 spin_unlock(&inode->i_lock);
2920 if ((u64)unmap_end > (u64)unmap_start)
2921 unmap_mapping_range(mapping, unmap_start,
2922 1 + unmap_end - unmap_start, 0);
2923 shmem_truncate_range(inode, offset, offset + len - 1);
2924 /* No need to unmap again: hole-punching leaves COWed pages */
2926 spin_lock(&inode->i_lock);
2927 inode->i_private = NULL;
2928 wake_up_all(&shmem_falloc_waitq);
2929 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2930 spin_unlock(&inode->i_lock);
2935 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2936 error = inode_newsize_ok(inode, offset + len);
2940 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2945 start = offset >> PAGE_SHIFT;
2946 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2947 /* Try to avoid a swapstorm if len is impossible to satisfy */
2948 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2953 shmem_falloc.waitq = NULL;
2954 shmem_falloc.start = start;
2955 shmem_falloc.next = start;
2956 shmem_falloc.nr_falloced = 0;
2957 shmem_falloc.nr_unswapped = 0;
2958 spin_lock(&inode->i_lock);
2959 inode->i_private = &shmem_falloc;
2960 spin_unlock(&inode->i_lock);
2963 * info->fallocend is only relevant when huge pages might be
2964 * involved: to prevent split_huge_page() freeing fallocated
2965 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2967 undo_fallocend = info->fallocend;
2968 if (info->fallocend < end)
2969 info->fallocend = end;
2971 for (index = start; index < end; ) {
2972 struct folio *folio;
2975 * Good, the fallocate(2) manpage permits EINTR: we may have
2976 * been interrupted because we are using up too much memory.
2978 if (signal_pending(current))
2980 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2983 error = shmem_get_folio(inode, index, &folio,
2986 info->fallocend = undo_fallocend;
2987 /* Remove the !uptodate folios we added */
2988 if (index > start) {
2989 shmem_undo_range(inode,
2990 (loff_t)start << PAGE_SHIFT,
2991 ((loff_t)index << PAGE_SHIFT) - 1, true);
2997 * Here is a more important optimization than it appears:
2998 * a second SGP_FALLOC on the same large folio will clear it,
2999 * making it uptodate and un-undoable if we fail later.
3001 index = folio_next_index(folio);
3002 /* Beware 32-bit wraparound */
3007 * Inform shmem_writepage() how far we have reached.
3008 * No need for lock or barrier: we have the page lock.
3010 if (!folio_test_uptodate(folio))
3011 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3012 shmem_falloc.next = index;
3015 * If !uptodate, leave it that way so that freeable folios
3016 * can be recognized if we need to rollback on error later.
3017 * But mark it dirty so that memory pressure will swap rather
3018 * than free the folios we are allocating (and SGP_CACHE folios
3019 * might still be clean: we now need to mark those dirty too).
3021 folio_mark_dirty(folio);
3022 folio_unlock(folio);
3027 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3028 i_size_write(inode, offset + len);
3030 spin_lock(&inode->i_lock);
3031 inode->i_private = NULL;
3032 spin_unlock(&inode->i_lock);
3035 file_modified(file);
3036 inode_unlock(inode);
3040 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3042 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3044 buf->f_type = TMPFS_MAGIC;
3045 buf->f_bsize = PAGE_SIZE;
3046 buf->f_namelen = NAME_MAX;
3047 if (sbinfo->max_blocks) {
3048 buf->f_blocks = sbinfo->max_blocks;
3050 buf->f_bfree = sbinfo->max_blocks -
3051 percpu_counter_sum(&sbinfo->used_blocks);
3053 if (sbinfo->max_inodes) {
3054 buf->f_files = sbinfo->max_inodes;
3055 buf->f_ffree = sbinfo->free_inodes;
3057 /* else leave those fields 0 like simple_statfs */
3059 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3065 * File creation. Allocate an inode, and we're done..
3068 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3069 struct dentry *dentry, umode_t mode, dev_t dev)
3071 struct inode *inode;
3072 int error = -ENOSPC;
3074 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3076 error = simple_acl_create(dir, inode);
3079 error = security_inode_init_security(inode, dir,
3081 shmem_initxattrs, NULL);
3082 if (error && error != -EOPNOTSUPP)
3086 dir->i_size += BOGO_DIRENT_SIZE;
3087 dir->i_ctime = dir->i_mtime = current_time(dir);
3088 inode_inc_iversion(dir);
3089 d_instantiate(dentry, inode);
3090 dget(dentry); /* Extra count - pin the dentry in core */
3099 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3100 struct file *file, umode_t mode)
3102 struct inode *inode;
3103 int error = -ENOSPC;
3105 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3107 error = security_inode_init_security(inode, dir,
3109 shmem_initxattrs, NULL);
3110 if (error && error != -EOPNOTSUPP)
3112 error = simple_acl_create(dir, inode);
3115 d_tmpfile(file, inode);
3117 return finish_open_simple(file, error);
3123 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3124 struct dentry *dentry, umode_t mode)
3128 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3135 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3136 struct dentry *dentry, umode_t mode, bool excl)
3138 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3144 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3146 struct inode *inode = d_inode(old_dentry);
3150 * No ordinary (disk based) filesystem counts links as inodes;
3151 * but each new link needs a new dentry, pinning lowmem, and
3152 * tmpfs dentries cannot be pruned until they are unlinked.
3153 * But if an O_TMPFILE file is linked into the tmpfs, the
3154 * first link must skip that, to get the accounting right.
3156 if (inode->i_nlink) {
3157 ret = shmem_reserve_inode(inode->i_sb, NULL);
3162 dir->i_size += BOGO_DIRENT_SIZE;
3163 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3164 inode_inc_iversion(dir);
3166 ihold(inode); /* New dentry reference */
3167 dget(dentry); /* Extra pinning count for the created dentry */
3168 d_instantiate(dentry, inode);
3173 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3175 struct inode *inode = d_inode(dentry);
3177 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3178 shmem_free_inode(inode->i_sb);
3180 dir->i_size -= BOGO_DIRENT_SIZE;
3181 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3182 inode_inc_iversion(dir);
3184 dput(dentry); /* Undo the count from "create" - this does all the work */
3188 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3190 if (!simple_empty(dentry))
3193 drop_nlink(d_inode(dentry));
3195 return shmem_unlink(dir, dentry);
3198 static int shmem_whiteout(struct mnt_idmap *idmap,
3199 struct inode *old_dir, struct dentry *old_dentry)
3201 struct dentry *whiteout;
3204 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3208 error = shmem_mknod(idmap, old_dir, whiteout,
3209 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3215 * Cheat and hash the whiteout while the old dentry is still in
3216 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3218 * d_lookup() will consistently find one of them at this point,
3219 * not sure which one, but that isn't even important.
3226 * The VFS layer already does all the dentry stuff for rename,
3227 * we just have to decrement the usage count for the target if
3228 * it exists so that the VFS layer correctly free's it when it
3231 static int shmem_rename2(struct mnt_idmap *idmap,
3232 struct inode *old_dir, struct dentry *old_dentry,
3233 struct inode *new_dir, struct dentry *new_dentry,
3236 struct inode *inode = d_inode(old_dentry);
3237 int they_are_dirs = S_ISDIR(inode->i_mode);
3239 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3242 if (flags & RENAME_EXCHANGE)
3243 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3245 if (!simple_empty(new_dentry))
3248 if (flags & RENAME_WHITEOUT) {
3251 error = shmem_whiteout(idmap, old_dir, old_dentry);
3256 if (d_really_is_positive(new_dentry)) {
3257 (void) shmem_unlink(new_dir, new_dentry);
3258 if (they_are_dirs) {
3259 drop_nlink(d_inode(new_dentry));
3260 drop_nlink(old_dir);
3262 } else if (they_are_dirs) {
3263 drop_nlink(old_dir);
3267 old_dir->i_size -= BOGO_DIRENT_SIZE;
3268 new_dir->i_size += BOGO_DIRENT_SIZE;
3269 old_dir->i_ctime = old_dir->i_mtime =
3270 new_dir->i_ctime = new_dir->i_mtime =
3271 inode->i_ctime = current_time(old_dir);
3272 inode_inc_iversion(old_dir);
3273 inode_inc_iversion(new_dir);
3277 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3278 struct dentry *dentry, const char *symname)
3282 struct inode *inode;
3283 struct folio *folio;
3285 len = strlen(symname) + 1;
3286 if (len > PAGE_SIZE)
3287 return -ENAMETOOLONG;
3289 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3294 error = security_inode_init_security(inode, dir, &dentry->d_name,
3295 shmem_initxattrs, NULL);
3296 if (error && error != -EOPNOTSUPP) {
3301 inode->i_size = len-1;
3302 if (len <= SHORT_SYMLINK_LEN) {
3303 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3304 if (!inode->i_link) {
3308 inode->i_op = &shmem_short_symlink_operations;
3310 inode_nohighmem(inode);
3311 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3316 inode->i_mapping->a_ops = &shmem_aops;
3317 inode->i_op = &shmem_symlink_inode_operations;
3318 memcpy(folio_address(folio), symname, len);
3319 folio_mark_uptodate(folio);
3320 folio_mark_dirty(folio);
3321 folio_unlock(folio);
3324 dir->i_size += BOGO_DIRENT_SIZE;
3325 dir->i_ctime = dir->i_mtime = current_time(dir);
3326 inode_inc_iversion(dir);
3327 d_instantiate(dentry, inode);
3332 static void shmem_put_link(void *arg)
3334 folio_mark_accessed(arg);
3338 static const char *shmem_get_link(struct dentry *dentry,
3339 struct inode *inode,
3340 struct delayed_call *done)
3342 struct folio *folio = NULL;
3346 folio = filemap_get_folio(inode->i_mapping, 0);
3348 return ERR_PTR(-ECHILD);
3349 if (PageHWPoison(folio_page(folio, 0)) ||
3350 !folio_test_uptodate(folio)) {
3352 return ERR_PTR(-ECHILD);
3355 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3357 return ERR_PTR(error);
3359 return ERR_PTR(-ECHILD);
3360 if (PageHWPoison(folio_page(folio, 0))) {
3361 folio_unlock(folio);
3363 return ERR_PTR(-ECHILD);
3365 folio_unlock(folio);
3367 set_delayed_call(done, shmem_put_link, folio);
3368 return folio_address(folio);
3371 #ifdef CONFIG_TMPFS_XATTR
3373 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3375 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3377 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3382 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3383 struct dentry *dentry, struct fileattr *fa)
3385 struct inode *inode = d_inode(dentry);
3386 struct shmem_inode_info *info = SHMEM_I(inode);
3388 if (fileattr_has_fsx(fa))
3390 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3393 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3394 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3396 shmem_set_inode_flags(inode, info->fsflags);
3397 inode->i_ctime = current_time(inode);
3398 inode_inc_iversion(inode);
3403 * Superblocks without xattr inode operations may get some security.* xattr
3404 * support from the LSM "for free". As soon as we have any other xattrs
3405 * like ACLs, we also need to implement the security.* handlers at
3406 * filesystem level, though.
3410 * Callback for security_inode_init_security() for acquiring xattrs.
3412 static int shmem_initxattrs(struct inode *inode,
3413 const struct xattr *xattr_array,
3416 struct shmem_inode_info *info = SHMEM_I(inode);
3417 const struct xattr *xattr;
3418 struct simple_xattr *new_xattr;
3421 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3422 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3426 len = strlen(xattr->name) + 1;
3427 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3429 if (!new_xattr->name) {
3434 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3435 XATTR_SECURITY_PREFIX_LEN);
3436 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3439 simple_xattr_add(&info->xattrs, new_xattr);
3445 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3446 struct dentry *unused, struct inode *inode,
3447 const char *name, void *buffer, size_t size)
3449 struct shmem_inode_info *info = SHMEM_I(inode);
3451 name = xattr_full_name(handler, name);
3452 return simple_xattr_get(&info->xattrs, name, buffer, size);
3455 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3456 struct mnt_idmap *idmap,
3457 struct dentry *unused, struct inode *inode,
3458 const char *name, const void *value,
3459 size_t size, int flags)
3461 struct shmem_inode_info *info = SHMEM_I(inode);
3464 name = xattr_full_name(handler, name);
3465 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3467 inode->i_ctime = current_time(inode);
3468 inode_inc_iversion(inode);
3473 static const struct xattr_handler shmem_security_xattr_handler = {
3474 .prefix = XATTR_SECURITY_PREFIX,
3475 .get = shmem_xattr_handler_get,
3476 .set = shmem_xattr_handler_set,
3479 static const struct xattr_handler shmem_trusted_xattr_handler = {
3480 .prefix = XATTR_TRUSTED_PREFIX,
3481 .get = shmem_xattr_handler_get,
3482 .set = shmem_xattr_handler_set,
3485 static const struct xattr_handler *shmem_xattr_handlers[] = {
3486 &shmem_security_xattr_handler,
3487 &shmem_trusted_xattr_handler,
3491 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3493 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3494 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3496 #endif /* CONFIG_TMPFS_XATTR */
3498 static const struct inode_operations shmem_short_symlink_operations = {
3499 .getattr = shmem_getattr,
3500 .get_link = simple_get_link,
3501 #ifdef CONFIG_TMPFS_XATTR
3502 .listxattr = shmem_listxattr,
3506 static const struct inode_operations shmem_symlink_inode_operations = {
3507 .getattr = shmem_getattr,
3508 .get_link = shmem_get_link,
3509 #ifdef CONFIG_TMPFS_XATTR
3510 .listxattr = shmem_listxattr,
3514 static struct dentry *shmem_get_parent(struct dentry *child)
3516 return ERR_PTR(-ESTALE);
3519 static int shmem_match(struct inode *ino, void *vfh)
3523 inum = (inum << 32) | fh[1];
3524 return ino->i_ino == inum && fh[0] == ino->i_generation;
3527 /* Find any alias of inode, but prefer a hashed alias */
3528 static struct dentry *shmem_find_alias(struct inode *inode)
3530 struct dentry *alias = d_find_alias(inode);
3532 return alias ?: d_find_any_alias(inode);
3536 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3537 struct fid *fid, int fh_len, int fh_type)
3539 struct inode *inode;
3540 struct dentry *dentry = NULL;
3547 inum = (inum << 32) | fid->raw[1];
3549 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3550 shmem_match, fid->raw);
3552 dentry = shmem_find_alias(inode);
3559 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3560 struct inode *parent)
3564 return FILEID_INVALID;
3567 if (inode_unhashed(inode)) {
3568 /* Unfortunately insert_inode_hash is not idempotent,
3569 * so as we hash inodes here rather than at creation
3570 * time, we need a lock to ensure we only try
3573 static DEFINE_SPINLOCK(lock);
3575 if (inode_unhashed(inode))
3576 __insert_inode_hash(inode,
3577 inode->i_ino + inode->i_generation);
3581 fh[0] = inode->i_generation;
3582 fh[1] = inode->i_ino;
3583 fh[2] = ((__u64)inode->i_ino) >> 32;
3589 static const struct export_operations shmem_export_ops = {
3590 .get_parent = shmem_get_parent,
3591 .encode_fh = shmem_encode_fh,
3592 .fh_to_dentry = shmem_fh_to_dentry,
3609 static const struct constant_table shmem_param_enums_huge[] = {
3610 {"never", SHMEM_HUGE_NEVER },
3611 {"always", SHMEM_HUGE_ALWAYS },
3612 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3613 {"advise", SHMEM_HUGE_ADVISE },
3617 const struct fs_parameter_spec shmem_fs_parameters[] = {
3618 fsparam_u32 ("gid", Opt_gid),
3619 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3620 fsparam_u32oct("mode", Opt_mode),
3621 fsparam_string("mpol", Opt_mpol),
3622 fsparam_string("nr_blocks", Opt_nr_blocks),
3623 fsparam_string("nr_inodes", Opt_nr_inodes),
3624 fsparam_string("size", Opt_size),
3625 fsparam_u32 ("uid", Opt_uid),
3626 fsparam_flag ("inode32", Opt_inode32),
3627 fsparam_flag ("inode64", Opt_inode64),
3628 fsparam_flag ("noswap", Opt_noswap),
3632 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3634 struct shmem_options *ctx = fc->fs_private;
3635 struct fs_parse_result result;
3636 unsigned long long size;
3640 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3646 size = memparse(param->string, &rest);
3648 size <<= PAGE_SHIFT;
3649 size *= totalram_pages();
3655 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3656 ctx->seen |= SHMEM_SEEN_BLOCKS;
3659 ctx->blocks = memparse(param->string, &rest);
3660 if (*rest || ctx->blocks > S64_MAX)
3662 ctx->seen |= SHMEM_SEEN_BLOCKS;
3665 ctx->inodes = memparse(param->string, &rest);
3668 ctx->seen |= SHMEM_SEEN_INODES;
3671 ctx->mode = result.uint_32 & 07777;
3674 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3675 if (!uid_valid(ctx->uid))
3679 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3680 if (!gid_valid(ctx->gid))
3684 ctx->huge = result.uint_32;
3685 if (ctx->huge != SHMEM_HUGE_NEVER &&
3686 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3687 has_transparent_hugepage()))
3688 goto unsupported_parameter;
3689 ctx->seen |= SHMEM_SEEN_HUGE;
3692 if (IS_ENABLED(CONFIG_NUMA)) {
3693 mpol_put(ctx->mpol);
3695 if (mpol_parse_str(param->string, &ctx->mpol))
3699 goto unsupported_parameter;
3701 ctx->full_inums = false;
3702 ctx->seen |= SHMEM_SEEN_INUMS;
3705 if (sizeof(ino_t) < 8) {
3707 "Cannot use inode64 with <64bit inums in kernel\n");
3709 ctx->full_inums = true;
3710 ctx->seen |= SHMEM_SEEN_INUMS;
3713 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3715 "Turning off swap in unprivileged tmpfs mounts unsupported");
3718 ctx->seen |= SHMEM_SEEN_NOSWAP;
3723 unsupported_parameter:
3724 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3726 return invalfc(fc, "Bad value for '%s'", param->key);
3729 static int shmem_parse_options(struct fs_context *fc, void *data)
3731 char *options = data;
3734 int err = security_sb_eat_lsm_opts(options, &fc->security);
3739 while (options != NULL) {
3740 char *this_char = options;
3743 * NUL-terminate this option: unfortunately,
3744 * mount options form a comma-separated list,
3745 * but mpol's nodelist may also contain commas.
3747 options = strchr(options, ',');
3748 if (options == NULL)
3751 if (!isdigit(*options)) {
3757 char *value = strchr(this_char, '=');
3763 len = strlen(value);
3765 err = vfs_parse_fs_string(fc, this_char, value, len);
3774 * Reconfigure a shmem filesystem.
3776 * Note that we disallow change from limited->unlimited blocks/inodes while any
3777 * are in use; but we must separately disallow unlimited->limited, because in
3778 * that case we have no record of how much is already in use.
3780 static int shmem_reconfigure(struct fs_context *fc)
3782 struct shmem_options *ctx = fc->fs_private;
3783 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3784 unsigned long inodes;
3785 struct mempolicy *mpol = NULL;
3788 raw_spin_lock(&sbinfo->stat_lock);
3789 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3791 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3792 if (!sbinfo->max_blocks) {
3793 err = "Cannot retroactively limit size";
3796 if (percpu_counter_compare(&sbinfo->used_blocks,
3798 err = "Too small a size for current use";
3802 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3803 if (!sbinfo->max_inodes) {
3804 err = "Cannot retroactively limit inodes";
3807 if (ctx->inodes < inodes) {
3808 err = "Too few inodes for current use";
3813 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3814 sbinfo->next_ino > UINT_MAX) {
3815 err = "Current inum too high to switch to 32-bit inums";
3818 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
3819 err = "Cannot disable swap on remount";
3822 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
3823 err = "Cannot enable swap on remount if it was disabled on first mount";
3827 if (ctx->seen & SHMEM_SEEN_HUGE)
3828 sbinfo->huge = ctx->huge;
3829 if (ctx->seen & SHMEM_SEEN_INUMS)
3830 sbinfo->full_inums = ctx->full_inums;
3831 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3832 sbinfo->max_blocks = ctx->blocks;
3833 if (ctx->seen & SHMEM_SEEN_INODES) {
3834 sbinfo->max_inodes = ctx->inodes;
3835 sbinfo->free_inodes = ctx->inodes - inodes;
3839 * Preserve previous mempolicy unless mpol remount option was specified.
3842 mpol = sbinfo->mpol;
3843 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3848 sbinfo->noswap = true;
3850 raw_spin_unlock(&sbinfo->stat_lock);
3854 raw_spin_unlock(&sbinfo->stat_lock);
3855 return invalfc(fc, "%s", err);
3858 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3860 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3861 struct mempolicy *mpol;
3863 if (sbinfo->max_blocks != shmem_default_max_blocks())
3864 seq_printf(seq, ",size=%luk",
3865 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3866 if (sbinfo->max_inodes != shmem_default_max_inodes())
3867 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3868 if (sbinfo->mode != (0777 | S_ISVTX))
3869 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3870 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3871 seq_printf(seq, ",uid=%u",
3872 from_kuid_munged(&init_user_ns, sbinfo->uid));
3873 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3874 seq_printf(seq, ",gid=%u",
3875 from_kgid_munged(&init_user_ns, sbinfo->gid));
3878 * Showing inode{64,32} might be useful even if it's the system default,
3879 * since then people don't have to resort to checking both here and
3880 * /proc/config.gz to confirm 64-bit inums were successfully applied
3881 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3883 * We hide it when inode64 isn't the default and we are using 32-bit
3884 * inodes, since that probably just means the feature isn't even under
3889 * +-----------------+-----------------+
3890 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3891 * +------------------+-----------------+-----------------+
3892 * | full_inums=true | show | show |
3893 * | full_inums=false | show | hide |
3894 * +------------------+-----------------+-----------------+
3897 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3898 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3900 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3902 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3904 mpol = shmem_get_sbmpol(sbinfo);
3905 shmem_show_mpol(seq, mpol);
3908 seq_printf(seq, ",noswap");
3912 #endif /* CONFIG_TMPFS */
3914 static void shmem_put_super(struct super_block *sb)
3916 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3918 free_percpu(sbinfo->ino_batch);
3919 percpu_counter_destroy(&sbinfo->used_blocks);
3920 mpol_put(sbinfo->mpol);
3922 sb->s_fs_info = NULL;
3925 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3927 struct shmem_options *ctx = fc->fs_private;
3928 struct inode *inode;
3929 struct shmem_sb_info *sbinfo;
3931 /* Round up to L1_CACHE_BYTES to resist false sharing */
3932 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3933 L1_CACHE_BYTES), GFP_KERNEL);
3937 sb->s_fs_info = sbinfo;
3941 * Per default we only allow half of the physical ram per
3942 * tmpfs instance, limiting inodes to one per page of lowmem;
3943 * but the internal instance is left unlimited.
3945 if (!(sb->s_flags & SB_KERNMOUNT)) {
3946 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3947 ctx->blocks = shmem_default_max_blocks();
3948 if (!(ctx->seen & SHMEM_SEEN_INODES))
3949 ctx->inodes = shmem_default_max_inodes();
3950 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3951 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3952 sbinfo->noswap = ctx->noswap;
3954 sb->s_flags |= SB_NOUSER;
3956 sb->s_export_op = &shmem_export_ops;
3957 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3959 sb->s_flags |= SB_NOUSER;
3961 sbinfo->max_blocks = ctx->blocks;
3962 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3963 if (sb->s_flags & SB_KERNMOUNT) {
3964 sbinfo->ino_batch = alloc_percpu(ino_t);
3965 if (!sbinfo->ino_batch)
3968 sbinfo->uid = ctx->uid;
3969 sbinfo->gid = ctx->gid;
3970 sbinfo->full_inums = ctx->full_inums;
3971 sbinfo->mode = ctx->mode;
3972 sbinfo->huge = ctx->huge;
3973 sbinfo->mpol = ctx->mpol;
3976 raw_spin_lock_init(&sbinfo->stat_lock);
3977 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3979 spin_lock_init(&sbinfo->shrinklist_lock);
3980 INIT_LIST_HEAD(&sbinfo->shrinklist);
3982 sb->s_maxbytes = MAX_LFS_FILESIZE;
3983 sb->s_blocksize = PAGE_SIZE;
3984 sb->s_blocksize_bits = PAGE_SHIFT;
3985 sb->s_magic = TMPFS_MAGIC;
3986 sb->s_op = &shmem_ops;
3987 sb->s_time_gran = 1;
3988 #ifdef CONFIG_TMPFS_XATTR
3989 sb->s_xattr = shmem_xattr_handlers;
3991 #ifdef CONFIG_TMPFS_POSIX_ACL
3992 sb->s_flags |= SB_POSIXACL;
3994 uuid_gen(&sb->s_uuid);
3996 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4000 inode->i_uid = sbinfo->uid;
4001 inode->i_gid = sbinfo->gid;
4002 sb->s_root = d_make_root(inode);
4008 shmem_put_super(sb);
4012 static int shmem_get_tree(struct fs_context *fc)
4014 return get_tree_nodev(fc, shmem_fill_super);
4017 static void shmem_free_fc(struct fs_context *fc)
4019 struct shmem_options *ctx = fc->fs_private;
4022 mpol_put(ctx->mpol);
4027 static const struct fs_context_operations shmem_fs_context_ops = {
4028 .free = shmem_free_fc,
4029 .get_tree = shmem_get_tree,
4031 .parse_monolithic = shmem_parse_options,
4032 .parse_param = shmem_parse_one,
4033 .reconfigure = shmem_reconfigure,
4037 static struct kmem_cache *shmem_inode_cachep;
4039 static struct inode *shmem_alloc_inode(struct super_block *sb)
4041 struct shmem_inode_info *info;
4042 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4045 return &info->vfs_inode;
4048 static void shmem_free_in_core_inode(struct inode *inode)
4050 if (S_ISLNK(inode->i_mode))
4051 kfree(inode->i_link);
4052 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4055 static void shmem_destroy_inode(struct inode *inode)
4057 if (S_ISREG(inode->i_mode))
4058 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4061 static void shmem_init_inode(void *foo)
4063 struct shmem_inode_info *info = foo;
4064 inode_init_once(&info->vfs_inode);
4067 static void shmem_init_inodecache(void)
4069 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4070 sizeof(struct shmem_inode_info),
4071 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4074 static void shmem_destroy_inodecache(void)
4076 kmem_cache_destroy(shmem_inode_cachep);
4079 /* Keep the page in page cache instead of truncating it */
4080 static int shmem_error_remove_page(struct address_space *mapping,
4086 const struct address_space_operations shmem_aops = {
4087 .writepage = shmem_writepage,
4088 .dirty_folio = noop_dirty_folio,
4090 .write_begin = shmem_write_begin,
4091 .write_end = shmem_write_end,
4093 #ifdef CONFIG_MIGRATION
4094 .migrate_folio = migrate_folio,
4096 .error_remove_page = shmem_error_remove_page,
4098 EXPORT_SYMBOL(shmem_aops);
4100 static const struct file_operations shmem_file_operations = {
4102 .open = generic_file_open,
4103 .get_unmapped_area = shmem_get_unmapped_area,
4105 .llseek = shmem_file_llseek,
4106 .read_iter = shmem_file_read_iter,
4107 .write_iter = generic_file_write_iter,
4108 .fsync = noop_fsync,
4109 .splice_read = shmem_file_splice_read,
4110 .splice_write = iter_file_splice_write,
4111 .fallocate = shmem_fallocate,
4115 static const struct inode_operations shmem_inode_operations = {
4116 .getattr = shmem_getattr,
4117 .setattr = shmem_setattr,
4118 #ifdef CONFIG_TMPFS_XATTR
4119 .listxattr = shmem_listxattr,
4120 .set_acl = simple_set_acl,
4121 .fileattr_get = shmem_fileattr_get,
4122 .fileattr_set = shmem_fileattr_set,
4126 static const struct inode_operations shmem_dir_inode_operations = {
4128 .getattr = shmem_getattr,
4129 .create = shmem_create,
4130 .lookup = simple_lookup,
4132 .unlink = shmem_unlink,
4133 .symlink = shmem_symlink,
4134 .mkdir = shmem_mkdir,
4135 .rmdir = shmem_rmdir,
4136 .mknod = shmem_mknod,
4137 .rename = shmem_rename2,
4138 .tmpfile = shmem_tmpfile,
4140 #ifdef CONFIG_TMPFS_XATTR
4141 .listxattr = shmem_listxattr,
4142 .fileattr_get = shmem_fileattr_get,
4143 .fileattr_set = shmem_fileattr_set,
4145 #ifdef CONFIG_TMPFS_POSIX_ACL
4146 .setattr = shmem_setattr,
4147 .set_acl = simple_set_acl,
4151 static const struct inode_operations shmem_special_inode_operations = {
4152 .getattr = shmem_getattr,
4153 #ifdef CONFIG_TMPFS_XATTR
4154 .listxattr = shmem_listxattr,
4156 #ifdef CONFIG_TMPFS_POSIX_ACL
4157 .setattr = shmem_setattr,
4158 .set_acl = simple_set_acl,
4162 static const struct super_operations shmem_ops = {
4163 .alloc_inode = shmem_alloc_inode,
4164 .free_inode = shmem_free_in_core_inode,
4165 .destroy_inode = shmem_destroy_inode,
4167 .statfs = shmem_statfs,
4168 .show_options = shmem_show_options,
4170 .evict_inode = shmem_evict_inode,
4171 .drop_inode = generic_delete_inode,
4172 .put_super = shmem_put_super,
4173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4174 .nr_cached_objects = shmem_unused_huge_count,
4175 .free_cached_objects = shmem_unused_huge_scan,
4179 static const struct vm_operations_struct shmem_vm_ops = {
4180 .fault = shmem_fault,
4181 .map_pages = filemap_map_pages,
4183 .set_policy = shmem_set_policy,
4184 .get_policy = shmem_get_policy,
4188 static const struct vm_operations_struct shmem_anon_vm_ops = {
4189 .fault = shmem_fault,
4190 .map_pages = filemap_map_pages,
4192 .set_policy = shmem_set_policy,
4193 .get_policy = shmem_get_policy,
4197 int shmem_init_fs_context(struct fs_context *fc)
4199 struct shmem_options *ctx;
4201 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4205 ctx->mode = 0777 | S_ISVTX;
4206 ctx->uid = current_fsuid();
4207 ctx->gid = current_fsgid();
4209 fc->fs_private = ctx;
4210 fc->ops = &shmem_fs_context_ops;
4214 static struct file_system_type shmem_fs_type = {
4215 .owner = THIS_MODULE,
4217 .init_fs_context = shmem_init_fs_context,
4219 .parameters = shmem_fs_parameters,
4221 .kill_sb = kill_litter_super,
4223 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4225 .fs_flags = FS_USERNS_MOUNT,
4229 void __init shmem_init(void)
4233 shmem_init_inodecache();
4235 error = register_filesystem(&shmem_fs_type);
4237 pr_err("Could not register tmpfs\n");
4241 shm_mnt = kern_mount(&shmem_fs_type);
4242 if (IS_ERR(shm_mnt)) {
4243 error = PTR_ERR(shm_mnt);
4244 pr_err("Could not kern_mount tmpfs\n");
4248 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4249 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4250 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4252 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4257 unregister_filesystem(&shmem_fs_type);
4259 shmem_destroy_inodecache();
4260 shm_mnt = ERR_PTR(error);
4263 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4264 static ssize_t shmem_enabled_show(struct kobject *kobj,
4265 struct kobj_attribute *attr, char *buf)
4267 static const int values[] = {
4269 SHMEM_HUGE_WITHIN_SIZE,
4278 for (i = 0; i < ARRAY_SIZE(values); i++) {
4279 len += sysfs_emit_at(buf, len,
4280 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4282 shmem_format_huge(values[i]));
4285 len += sysfs_emit_at(buf, len, "\n");
4290 static ssize_t shmem_enabled_store(struct kobject *kobj,
4291 struct kobj_attribute *attr, const char *buf, size_t count)
4296 if (count + 1 > sizeof(tmp))
4298 memcpy(tmp, buf, count);
4300 if (count && tmp[count - 1] == '\n')
4301 tmp[count - 1] = '\0';
4303 huge = shmem_parse_huge(tmp);
4304 if (huge == -EINVAL)
4306 if (!has_transparent_hugepage() &&
4307 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4311 if (shmem_huge > SHMEM_HUGE_DENY)
4312 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4316 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4317 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4319 #else /* !CONFIG_SHMEM */
4322 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4324 * This is intended for small system where the benefits of the full
4325 * shmem code (swap-backed and resource-limited) are outweighed by
4326 * their complexity. On systems without swap this code should be
4327 * effectively equivalent, but much lighter weight.
4330 static struct file_system_type shmem_fs_type = {
4332 .init_fs_context = ramfs_init_fs_context,
4333 .parameters = ramfs_fs_parameters,
4334 .kill_sb = ramfs_kill_sb,
4335 .fs_flags = FS_USERNS_MOUNT,
4338 void __init shmem_init(void)
4340 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4342 shm_mnt = kern_mount(&shmem_fs_type);
4343 BUG_ON(IS_ERR(shm_mnt));
4346 int shmem_unuse(unsigned int type)
4351 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4356 void shmem_unlock_mapping(struct address_space *mapping)
4361 unsigned long shmem_get_unmapped_area(struct file *file,
4362 unsigned long addr, unsigned long len,
4363 unsigned long pgoff, unsigned long flags)
4365 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4369 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4371 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4373 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4375 #define shmem_vm_ops generic_file_vm_ops
4376 #define shmem_anon_vm_ops generic_file_vm_ops
4377 #define shmem_file_operations ramfs_file_operations
4378 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4379 #define shmem_acct_size(flags, size) 0
4380 #define shmem_unacct_size(flags, size) do {} while (0)
4382 #endif /* CONFIG_SHMEM */
4386 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4387 unsigned long flags, unsigned int i_flags)
4389 struct inode *inode;
4393 return ERR_CAST(mnt);
4395 if (size < 0 || size > MAX_LFS_FILESIZE)
4396 return ERR_PTR(-EINVAL);
4398 if (shmem_acct_size(flags, size))
4399 return ERR_PTR(-ENOMEM);
4401 if (is_idmapped_mnt(mnt))
4402 return ERR_PTR(-EINVAL);
4404 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4405 S_IFREG | S_IRWXUGO, 0, flags);
4406 if (unlikely(!inode)) {
4407 shmem_unacct_size(flags, size);
4408 return ERR_PTR(-ENOSPC);
4410 inode->i_flags |= i_flags;
4411 inode->i_size = size;
4412 clear_nlink(inode); /* It is unlinked */
4413 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4415 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4416 &shmem_file_operations);
4423 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4424 * kernel internal. There will be NO LSM permission checks against the
4425 * underlying inode. So users of this interface must do LSM checks at a
4426 * higher layer. The users are the big_key and shm implementations. LSM
4427 * checks are provided at the key or shm level rather than the inode.
4428 * @name: name for dentry (to be seen in /proc/<pid>/maps
4429 * @size: size to be set for the file
4430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4432 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4434 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4438 * shmem_file_setup - get an unlinked file living in tmpfs
4439 * @name: name for dentry (to be seen in /proc/<pid>/maps
4440 * @size: size to be set for the file
4441 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4443 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4445 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4447 EXPORT_SYMBOL_GPL(shmem_file_setup);
4450 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4451 * @mnt: the tmpfs mount where the file will be created
4452 * @name: name for dentry (to be seen in /proc/<pid>/maps
4453 * @size: size to be set for the file
4454 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4456 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4457 loff_t size, unsigned long flags)
4459 return __shmem_file_setup(mnt, name, size, flags, 0);
4461 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4464 * shmem_zero_setup - setup a shared anonymous mapping
4465 * @vma: the vma to be mmapped is prepared by do_mmap
4467 int shmem_zero_setup(struct vm_area_struct *vma)
4470 loff_t size = vma->vm_end - vma->vm_start;
4473 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4474 * between XFS directory reading and selinux: since this file is only
4475 * accessible to the user through its mapping, use S_PRIVATE flag to
4476 * bypass file security, in the same way as shmem_kernel_file_setup().
4478 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4480 return PTR_ERR(file);
4484 vma->vm_file = file;
4485 vma->vm_ops = &shmem_anon_vm_ops;
4491 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4492 * @mapping: the folio's address_space
4493 * @index: the folio index
4494 * @gfp: the page allocator flags to use if allocating
4496 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4497 * with any new page allocations done using the specified allocation flags.
4498 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4499 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4500 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4502 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4503 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4505 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4506 pgoff_t index, gfp_t gfp)
4509 struct inode *inode = mapping->host;
4510 struct folio *folio;
4513 BUG_ON(!shmem_mapping(mapping));
4514 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4515 gfp, NULL, NULL, NULL);
4517 return ERR_PTR(error);
4519 folio_unlock(folio);
4523 * The tiny !SHMEM case uses ramfs without swap
4525 return mapping_read_folio_gfp(mapping, index, gfp);
4528 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4530 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4531 pgoff_t index, gfp_t gfp)
4533 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4537 return &folio->page;
4539 page = folio_file_page(folio, index);
4540 if (PageHWPoison(page)) {
4542 return ERR_PTR(-EIO);
4547 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);