mm/shmem: tmpfs fallocate use file_modified()
[platform/kernel/linux-starfive.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139                              struct folio **foliop, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __filemap_remove_folio() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (!S_ISREG(inode->i_mode))
481                 return false;
482         if (shmem_huge == SHMEM_HUGE_DENY)
483                 return false;
484         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486                 return false;
487         if (shmem_huge == SHMEM_HUGE_FORCE)
488                 return true;
489
490         switch (SHMEM_SB(inode->i_sb)->huge) {
491         case SHMEM_HUGE_ALWAYS:
492                 return true;
493         case SHMEM_HUGE_WITHIN_SIZE:
494                 index = round_up(index + 1, HPAGE_PMD_NR);
495                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
496                 if (i_size >> PAGE_SHIFT >= index)
497                         return true;
498                 fallthrough;
499         case SHMEM_HUGE_ADVISE:
500                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
501                         return true;
502                 fallthrough;
503         default:
504                 return false;
505         }
506 }
507
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511         if (!strcmp(str, "never"))
512                 return SHMEM_HUGE_NEVER;
513         if (!strcmp(str, "always"))
514                 return SHMEM_HUGE_ALWAYS;
515         if (!strcmp(str, "within_size"))
516                 return SHMEM_HUGE_WITHIN_SIZE;
517         if (!strcmp(str, "advise"))
518                 return SHMEM_HUGE_ADVISE;
519         if (!strcmp(str, "deny"))
520                 return SHMEM_HUGE_DENY;
521         if (!strcmp(str, "force"))
522                 return SHMEM_HUGE_FORCE;
523         return -EINVAL;
524 }
525 #endif
526
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530         switch (huge) {
531         case SHMEM_HUGE_NEVER:
532                 return "never";
533         case SHMEM_HUGE_ALWAYS:
534                 return "always";
535         case SHMEM_HUGE_WITHIN_SIZE:
536                 return "within_size";
537         case SHMEM_HUGE_ADVISE:
538                 return "advise";
539         case SHMEM_HUGE_DENY:
540                 return "deny";
541         case SHMEM_HUGE_FORCE:
542                 return "force";
543         default:
544                 VM_BUG_ON(1);
545                 return "bad_val";
546         }
547 }
548 #endif
549
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551                 struct shrink_control *sc, unsigned long nr_to_split)
552 {
553         LIST_HEAD(list), *pos, *next;
554         LIST_HEAD(to_remove);
555         struct inode *inode;
556         struct shmem_inode_info *info;
557         struct folio *folio;
558         unsigned long batch = sc ? sc->nr_to_scan : 128;
559         int split = 0;
560
561         if (list_empty(&sbinfo->shrinklist))
562                 return SHRINK_STOP;
563
564         spin_lock(&sbinfo->shrinklist_lock);
565         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567
568                 /* pin the inode */
569                 inode = igrab(&info->vfs_inode);
570
571                 /* inode is about to be evicted */
572                 if (!inode) {
573                         list_del_init(&info->shrinklist);
574                         goto next;
575                 }
576
577                 /* Check if there's anything to gain */
578                 if (round_up(inode->i_size, PAGE_SIZE) ==
579                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580                         list_move(&info->shrinklist, &to_remove);
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 sbinfo->shrinklist_len--;
587                 if (!--batch)
588                         break;
589         }
590         spin_unlock(&sbinfo->shrinklist_lock);
591
592         list_for_each_safe(pos, next, &to_remove) {
593                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594                 inode = &info->vfs_inode;
595                 list_del_init(&info->shrinklist);
596                 iput(inode);
597         }
598
599         list_for_each_safe(pos, next, &list) {
600                 int ret;
601                 pgoff_t index;
602
603                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
604                 inode = &info->vfs_inode;
605
606                 if (nr_to_split && split >= nr_to_split)
607                         goto move_back;
608
609                 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
610                 folio = filemap_get_folio(inode->i_mapping, index);
611                 if (!folio)
612                         goto drop;
613
614                 /* No huge page at the end of the file: nothing to split */
615                 if (!folio_test_large(folio)) {
616                         folio_put(folio);
617                         goto drop;
618                 }
619
620                 /*
621                  * Move the inode on the list back to shrinklist if we failed
622                  * to lock the page at this time.
623                  *
624                  * Waiting for the lock may lead to deadlock in the
625                  * reclaim path.
626                  */
627                 if (!folio_trylock(folio)) {
628                         folio_put(folio);
629                         goto move_back;
630                 }
631
632                 ret = split_huge_page(&folio->page);
633                 folio_unlock(folio);
634                 folio_put(folio);
635
636                 /* If split failed move the inode on the list back to shrinklist */
637                 if (ret)
638                         goto move_back;
639
640                 split++;
641 drop:
642                 list_del_init(&info->shrinklist);
643                 goto put;
644 move_back:
645                 /*
646                  * Make sure the inode is either on the global list or deleted
647                  * from any local list before iput() since it could be deleted
648                  * in another thread once we put the inode (then the local list
649                  * is corrupted).
650                  */
651                 spin_lock(&sbinfo->shrinklist_lock);
652                 list_move(&info->shrinklist, &sbinfo->shrinklist);
653                 sbinfo->shrinklist_len++;
654                 spin_unlock(&sbinfo->shrinklist_lock);
655 put:
656                 iput(inode);
657         }
658
659         return split;
660 }
661
662 static long shmem_unused_huge_scan(struct super_block *sb,
663                 struct shrink_control *sc)
664 {
665         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666
667         if (!READ_ONCE(sbinfo->shrinklist_len))
668                 return SHRINK_STOP;
669
670         return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 }
672
673 static long shmem_unused_huge_count(struct super_block *sb,
674                 struct shrink_control *sc)
675 {
676         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
677         return READ_ONCE(sbinfo->shrinklist_len);
678 }
679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680
681 #define shmem_huge SHMEM_HUGE_DENY
682
683 bool shmem_is_huge(struct vm_area_struct *vma,
684                    struct inode *inode, pgoff_t index)
685 {
686         return false;
687 }
688
689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
690                 struct shrink_control *sc, unsigned long nr_to_split)
691 {
692         return 0;
693 }
694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695
696 /*
697  * Like filemap_add_folio, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct folio *folio,
700                                    struct address_space *mapping,
701                                    pgoff_t index, void *expected, gfp_t gfp,
702                                    struct mm_struct *charge_mm)
703 {
704         XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
705         long nr = folio_nr_pages(folio);
706         int error;
707
708         VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
709         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
710         VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
711         VM_BUG_ON(expected && folio_test_large(folio));
712
713         folio_ref_add(folio, nr);
714         folio->mapping = mapping;
715         folio->index = index;
716
717         if (!folio_test_swapcache(folio)) {
718                 error = mem_cgroup_charge(folio, charge_mm, gfp);
719                 if (error) {
720                         if (folio_test_pmd_mappable(folio)) {
721                                 count_vm_event(THP_FILE_FALLBACK);
722                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723                         }
724                         goto error;
725                 }
726         }
727         folio_throttle_swaprate(folio, gfp);
728
729         do {
730                 xas_lock_irq(&xas);
731                 if (expected != xas_find_conflict(&xas)) {
732                         xas_set_err(&xas, -EEXIST);
733                         goto unlock;
734                 }
735                 if (expected && xas_find_conflict(&xas)) {
736                         xas_set_err(&xas, -EEXIST);
737                         goto unlock;
738                 }
739                 xas_store(&xas, folio);
740                 if (xas_error(&xas))
741                         goto unlock;
742                 if (folio_test_pmd_mappable(folio)) {
743                         count_vm_event(THP_FILE_ALLOC);
744                         __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745                 }
746                 mapping->nrpages += nr;
747                 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
748                 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 unlock:
750                 xas_unlock_irq(&xas);
751         } while (xas_nomem(&xas, gfp));
752
753         if (xas_error(&xas)) {
754                 error = xas_error(&xas);
755                 goto error;
756         }
757
758         return 0;
759 error:
760         folio->mapping = NULL;
761         folio_ref_sub(folio, nr);
762         return error;
763 }
764
765 /*
766  * Like delete_from_page_cache, but substitutes swap for page.
767  */
768 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 {
770         struct address_space *mapping = page->mapping;
771         int error;
772
773         VM_BUG_ON_PAGE(PageCompound(page), page);
774
775         xa_lock_irq(&mapping->i_pages);
776         error = shmem_replace_entry(mapping, page->index, page, radswap);
777         page->mapping = NULL;
778         mapping->nrpages--;
779         __dec_lruvec_page_state(page, NR_FILE_PAGES);
780         __dec_lruvec_page_state(page, NR_SHMEM);
781         xa_unlock_irq(&mapping->i_pages);
782         put_page(page);
783         BUG_ON(error);
784 }
785
786 /*
787  * Remove swap entry from page cache, free the swap and its page cache.
788  */
789 static int shmem_free_swap(struct address_space *mapping,
790                            pgoff_t index, void *radswap)
791 {
792         void *old;
793
794         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
795         if (old != radswap)
796                 return -ENOENT;
797         free_swap_and_cache(radix_to_swp_entry(radswap));
798         return 0;
799 }
800
801 /*
802  * Determine (in bytes) how many of the shmem object's pages mapped by the
803  * given offsets are swapped out.
804  *
805  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
806  * as long as the inode doesn't go away and racy results are not a problem.
807  */
808 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809                                                 pgoff_t start, pgoff_t end)
810 {
811         XA_STATE(xas, &mapping->i_pages, start);
812         struct page *page;
813         unsigned long swapped = 0;
814
815         rcu_read_lock();
816         xas_for_each(&xas, page, end - 1) {
817                 if (xas_retry(&xas, page))
818                         continue;
819                 if (xa_is_value(page))
820                         swapped++;
821
822                 if (need_resched()) {
823                         xas_pause(&xas);
824                         cond_resched_rcu();
825                 }
826         }
827
828         rcu_read_unlock();
829
830         return swapped << PAGE_SHIFT;
831 }
832
833 /*
834  * Determine (in bytes) how many of the shmem object's pages mapped by the
835  * given vma is swapped out.
836  *
837  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
838  * as long as the inode doesn't go away and racy results are not a problem.
839  */
840 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 {
842         struct inode *inode = file_inode(vma->vm_file);
843         struct shmem_inode_info *info = SHMEM_I(inode);
844         struct address_space *mapping = inode->i_mapping;
845         unsigned long swapped;
846
847         /* Be careful as we don't hold info->lock */
848         swapped = READ_ONCE(info->swapped);
849
850         /*
851          * The easier cases are when the shmem object has nothing in swap, or
852          * the vma maps it whole. Then we can simply use the stats that we
853          * already track.
854          */
855         if (!swapped)
856                 return 0;
857
858         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859                 return swapped << PAGE_SHIFT;
860
861         /* Here comes the more involved part */
862         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863                                         vma->vm_pgoff + vma_pages(vma));
864 }
865
866 /*
867  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868  */
869 void shmem_unlock_mapping(struct address_space *mapping)
870 {
871         struct folio_batch fbatch;
872         pgoff_t index = 0;
873
874         folio_batch_init(&fbatch);
875         /*
876          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877          */
878         while (!mapping_unevictable(mapping) &&
879                filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
880                 check_move_unevictable_folios(&fbatch);
881                 folio_batch_release(&fbatch);
882                 cond_resched();
883         }
884 }
885
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888         struct folio *folio;
889         struct page *page;
890
891         /*
892          * At first avoid shmem_getpage(,,,SGP_READ): that fails
893          * beyond i_size, and reports fallocated pages as holes.
894          */
895         folio = __filemap_get_folio(inode->i_mapping, index,
896                                         FGP_ENTRY | FGP_LOCK, 0);
897         if (!xa_is_value(folio))
898                 return folio;
899         /*
900          * But read a page back from swap if any of it is within i_size
901          * (although in some cases this is just a waste of time).
902          */
903         page = NULL;
904         shmem_getpage(inode, index, &page, SGP_READ);
905         return page ? page_folio(page) : NULL;
906 }
907
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913                                                                  bool unfalloc)
914 {
915         struct address_space *mapping = inode->i_mapping;
916         struct shmem_inode_info *info = SHMEM_I(inode);
917         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919         struct folio_batch fbatch;
920         pgoff_t indices[PAGEVEC_SIZE];
921         struct folio *folio;
922         bool same_folio;
923         long nr_swaps_freed = 0;
924         pgoff_t index;
925         int i;
926
927         if (lend == -1)
928                 end = -1;       /* unsigned, so actually very big */
929
930         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931                 info->fallocend = start;
932
933         folio_batch_init(&fbatch);
934         index = start;
935         while (index < end && find_lock_entries(mapping, index, end - 1,
936                         &fbatch, indices)) {
937                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938                         folio = fbatch.folios[i];
939
940                         index = indices[i];
941
942                         if (xa_is_value(folio)) {
943                                 if (unfalloc)
944                                         continue;
945                                 nr_swaps_freed += !shmem_free_swap(mapping,
946                                                                 index, folio);
947                                 continue;
948                         }
949                         index += folio_nr_pages(folio) - 1;
950
951                         if (!unfalloc || !folio_test_uptodate(folio))
952                                 truncate_inode_folio(mapping, folio);
953                         folio_unlock(folio);
954                 }
955                 folio_batch_remove_exceptionals(&fbatch);
956                 folio_batch_release(&fbatch);
957                 cond_resched();
958                 index++;
959         }
960
961         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963         if (folio) {
964                 same_folio = lend < folio_pos(folio) + folio_size(folio);
965                 folio_mark_dirty(folio);
966                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967                         start = folio->index + folio_nr_pages(folio);
968                         if (same_folio)
969                                 end = folio->index;
970                 }
971                 folio_unlock(folio);
972                 folio_put(folio);
973                 folio = NULL;
974         }
975
976         if (!same_folio)
977                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978         if (folio) {
979                 folio_mark_dirty(folio);
980                 if (!truncate_inode_partial_folio(folio, lstart, lend))
981                         end = folio->index;
982                 folio_unlock(folio);
983                 folio_put(folio);
984         }
985
986         index = start;
987         while (index < end) {
988                 cond_resched();
989
990                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991                                 indices)) {
992                         /* If all gone or hole-punch or unfalloc, we're done */
993                         if (index == start || end != -1)
994                                 break;
995                         /* But if truncating, restart to make sure all gone */
996                         index = start;
997                         continue;
998                 }
999                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000                         folio = fbatch.folios[i];
1001
1002                         index = indices[i];
1003                         if (xa_is_value(folio)) {
1004                                 if (unfalloc)
1005                                         continue;
1006                                 if (shmem_free_swap(mapping, index, folio)) {
1007                                         /* Swap was replaced by page: retry */
1008                                         index--;
1009                                         break;
1010                                 }
1011                                 nr_swaps_freed++;
1012                                 continue;
1013                         }
1014
1015                         folio_lock(folio);
1016
1017                         if (!unfalloc || !folio_test_uptodate(folio)) {
1018                                 if (folio_mapping(folio) != mapping) {
1019                                         /* Page was replaced by swap: retry */
1020                                         folio_unlock(folio);
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025                                                 folio);
1026                                 truncate_inode_folio(mapping, folio);
1027                         }
1028                         index = folio->index + folio_nr_pages(folio) - 1;
1029                         folio_unlock(folio);
1030                 }
1031                 folio_batch_remove_exceptionals(&fbatch);
1032                 folio_batch_release(&fbatch);
1033                 index++;
1034         }
1035
1036         spin_lock_irq(&info->lock);
1037         info->swapped -= nr_swaps_freed;
1038         shmem_recalc_inode(inode);
1039         spin_unlock_irq(&info->lock);
1040 }
1041
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044         shmem_undo_range(inode, lstart, lend, false);
1045         inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050                          const struct path *path, struct kstat *stat,
1051                          u32 request_mask, unsigned int query_flags)
1052 {
1053         struct inode *inode = path->dentry->d_inode;
1054         struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057                 spin_lock_irq(&info->lock);
1058                 shmem_recalc_inode(inode);
1059                 spin_unlock_irq(&info->lock);
1060         }
1061         if (info->fsflags & FS_APPEND_FL)
1062                 stat->attributes |= STATX_ATTR_APPEND;
1063         if (info->fsflags & FS_IMMUTABLE_FL)
1064                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1065         if (info->fsflags & FS_NODUMP_FL)
1066                 stat->attributes |= STATX_ATTR_NODUMP;
1067         stat->attributes_mask |= (STATX_ATTR_APPEND |
1068                         STATX_ATTR_IMMUTABLE |
1069                         STATX_ATTR_NODUMP);
1070         generic_fillattr(&init_user_ns, inode, stat);
1071
1072         if (shmem_is_huge(NULL, inode, 0))
1073                 stat->blksize = HPAGE_PMD_SIZE;
1074
1075         if (request_mask & STATX_BTIME) {
1076                 stat->result_mask |= STATX_BTIME;
1077                 stat->btime.tv_sec = info->i_crtime.tv_sec;
1078                 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1079         }
1080
1081         return 0;
1082 }
1083
1084 static int shmem_setattr(struct user_namespace *mnt_userns,
1085                          struct dentry *dentry, struct iattr *attr)
1086 {
1087         struct inode *inode = d_inode(dentry);
1088         struct shmem_inode_info *info = SHMEM_I(inode);
1089         int error;
1090
1091         error = setattr_prepare(&init_user_ns, dentry, attr);
1092         if (error)
1093                 return error;
1094
1095         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1096                 loff_t oldsize = inode->i_size;
1097                 loff_t newsize = attr->ia_size;
1098
1099                 /* protected by i_rwsem */
1100                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1101                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1102                         return -EPERM;
1103
1104                 if (newsize != oldsize) {
1105                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1106                                         oldsize, newsize);
1107                         if (error)
1108                                 return error;
1109                         i_size_write(inode, newsize);
1110                         inode->i_ctime = inode->i_mtime = current_time(inode);
1111                 }
1112                 if (newsize <= oldsize) {
1113                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1114                         if (oldsize > holebegin)
1115                                 unmap_mapping_range(inode->i_mapping,
1116                                                         holebegin, 0, 1);
1117                         if (info->alloced)
1118                                 shmem_truncate_range(inode,
1119                                                         newsize, (loff_t)-1);
1120                         /* unmap again to remove racily COWed private pages */
1121                         if (oldsize > holebegin)
1122                                 unmap_mapping_range(inode->i_mapping,
1123                                                         holebegin, 0, 1);
1124                 }
1125         }
1126
1127         setattr_copy(&init_user_ns, inode, attr);
1128         if (attr->ia_valid & ATTR_MODE)
1129                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1130         return error;
1131 }
1132
1133 static void shmem_evict_inode(struct inode *inode)
1134 {
1135         struct shmem_inode_info *info = SHMEM_I(inode);
1136         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1137
1138         if (shmem_mapping(inode->i_mapping)) {
1139                 shmem_unacct_size(info->flags, inode->i_size);
1140                 inode->i_size = 0;
1141                 mapping_set_exiting(inode->i_mapping);
1142                 shmem_truncate_range(inode, 0, (loff_t)-1);
1143                 if (!list_empty(&info->shrinklist)) {
1144                         spin_lock(&sbinfo->shrinklist_lock);
1145                         if (!list_empty(&info->shrinklist)) {
1146                                 list_del_init(&info->shrinklist);
1147                                 sbinfo->shrinklist_len--;
1148                         }
1149                         spin_unlock(&sbinfo->shrinklist_lock);
1150                 }
1151                 while (!list_empty(&info->swaplist)) {
1152                         /* Wait while shmem_unuse() is scanning this inode... */
1153                         wait_var_event(&info->stop_eviction,
1154                                        !atomic_read(&info->stop_eviction));
1155                         mutex_lock(&shmem_swaplist_mutex);
1156                         /* ...but beware of the race if we peeked too early */
1157                         if (!atomic_read(&info->stop_eviction))
1158                                 list_del_init(&info->swaplist);
1159                         mutex_unlock(&shmem_swaplist_mutex);
1160                 }
1161         }
1162
1163         simple_xattrs_free(&info->xattrs);
1164         WARN_ON(inode->i_blocks);
1165         shmem_free_inode(inode->i_sb);
1166         clear_inode(inode);
1167 }
1168
1169 static int shmem_find_swap_entries(struct address_space *mapping,
1170                                    pgoff_t start, struct folio_batch *fbatch,
1171                                    pgoff_t *indices, unsigned int type)
1172 {
1173         XA_STATE(xas, &mapping->i_pages, start);
1174         struct folio *folio;
1175         swp_entry_t entry;
1176
1177         rcu_read_lock();
1178         xas_for_each(&xas, folio, ULONG_MAX) {
1179                 if (xas_retry(&xas, folio))
1180                         continue;
1181
1182                 if (!xa_is_value(folio))
1183                         continue;
1184
1185                 entry = radix_to_swp_entry(folio);
1186                 /*
1187                  * swapin error entries can be found in the mapping. But they're
1188                  * deliberately ignored here as we've done everything we can do.
1189                  */
1190                 if (swp_type(entry) != type)
1191                         continue;
1192
1193                 indices[folio_batch_count(fbatch)] = xas.xa_index;
1194                 if (!folio_batch_add(fbatch, folio))
1195                         break;
1196
1197                 if (need_resched()) {
1198                         xas_pause(&xas);
1199                         cond_resched_rcu();
1200                 }
1201         }
1202         rcu_read_unlock();
1203
1204         return xas.xa_index;
1205 }
1206
1207 /*
1208  * Move the swapped pages for an inode to page cache. Returns the count
1209  * of pages swapped in, or the error in case of failure.
1210  */
1211 static int shmem_unuse_swap_entries(struct inode *inode,
1212                 struct folio_batch *fbatch, pgoff_t *indices)
1213 {
1214         int i = 0;
1215         int ret = 0;
1216         int error = 0;
1217         struct address_space *mapping = inode->i_mapping;
1218
1219         for (i = 0; i < folio_batch_count(fbatch); i++) {
1220                 struct folio *folio = fbatch->folios[i];
1221
1222                 if (!xa_is_value(folio))
1223                         continue;
1224                 error = shmem_swapin_folio(inode, indices[i],
1225                                           &folio, SGP_CACHE,
1226                                           mapping_gfp_mask(mapping),
1227                                           NULL, NULL);
1228                 if (error == 0) {
1229                         folio_unlock(folio);
1230                         folio_put(folio);
1231                         ret++;
1232                 }
1233                 if (error == -ENOMEM)
1234                         break;
1235                 error = 0;
1236         }
1237         return error ? error : ret;
1238 }
1239
1240 /*
1241  * If swap found in inode, free it and move page from swapcache to filecache.
1242  */
1243 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1244 {
1245         struct address_space *mapping = inode->i_mapping;
1246         pgoff_t start = 0;
1247         struct folio_batch fbatch;
1248         pgoff_t indices[PAGEVEC_SIZE];
1249         int ret = 0;
1250
1251         do {
1252                 folio_batch_init(&fbatch);
1253                 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1254                 if (folio_batch_count(&fbatch) == 0) {
1255                         ret = 0;
1256                         break;
1257                 }
1258
1259                 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1260                 if (ret < 0)
1261                         break;
1262
1263                 start = indices[folio_batch_count(&fbatch) - 1];
1264         } while (true);
1265
1266         return ret;
1267 }
1268
1269 /*
1270  * Read all the shared memory data that resides in the swap
1271  * device 'type' back into memory, so the swap device can be
1272  * unused.
1273  */
1274 int shmem_unuse(unsigned int type)
1275 {
1276         struct shmem_inode_info *info, *next;
1277         int error = 0;
1278
1279         if (list_empty(&shmem_swaplist))
1280                 return 0;
1281
1282         mutex_lock(&shmem_swaplist_mutex);
1283         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1284                 if (!info->swapped) {
1285                         list_del_init(&info->swaplist);
1286                         continue;
1287                 }
1288                 /*
1289                  * Drop the swaplist mutex while searching the inode for swap;
1290                  * but before doing so, make sure shmem_evict_inode() will not
1291                  * remove placeholder inode from swaplist, nor let it be freed
1292                  * (igrab() would protect from unlink, but not from unmount).
1293                  */
1294                 atomic_inc(&info->stop_eviction);
1295                 mutex_unlock(&shmem_swaplist_mutex);
1296
1297                 error = shmem_unuse_inode(&info->vfs_inode, type);
1298                 cond_resched();
1299
1300                 mutex_lock(&shmem_swaplist_mutex);
1301                 next = list_next_entry(info, swaplist);
1302                 if (!info->swapped)
1303                         list_del_init(&info->swaplist);
1304                 if (atomic_dec_and_test(&info->stop_eviction))
1305                         wake_up_var(&info->stop_eviction);
1306                 if (error)
1307                         break;
1308         }
1309         mutex_unlock(&shmem_swaplist_mutex);
1310
1311         return error;
1312 }
1313
1314 /*
1315  * Move the page from the page cache to the swap cache.
1316  */
1317 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1318 {
1319         struct folio *folio = page_folio(page);
1320         struct shmem_inode_info *info;
1321         struct address_space *mapping;
1322         struct inode *inode;
1323         swp_entry_t swap;
1324         pgoff_t index;
1325
1326         /*
1327          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1328          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1329          * and its shmem_writeback() needs them to be split when swapping.
1330          */
1331         if (PageTransCompound(page)) {
1332                 /* Ensure the subpages are still dirty */
1333                 SetPageDirty(page);
1334                 if (split_huge_page(page) < 0)
1335                         goto redirty;
1336                 ClearPageDirty(page);
1337         }
1338
1339         BUG_ON(!PageLocked(page));
1340         mapping = page->mapping;
1341         index = page->index;
1342         inode = mapping->host;
1343         info = SHMEM_I(inode);
1344         if (info->flags & VM_LOCKED)
1345                 goto redirty;
1346         if (!total_swap_pages)
1347                 goto redirty;
1348
1349         /*
1350          * Our capabilities prevent regular writeback or sync from ever calling
1351          * shmem_writepage; but a stacking filesystem might use ->writepage of
1352          * its underlying filesystem, in which case tmpfs should write out to
1353          * swap only in response to memory pressure, and not for the writeback
1354          * threads or sync.
1355          */
1356         if (!wbc->for_reclaim) {
1357                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1358                 goto redirty;
1359         }
1360
1361         /*
1362          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1363          * value into swapfile.c, the only way we can correctly account for a
1364          * fallocated page arriving here is now to initialize it and write it.
1365          *
1366          * That's okay for a page already fallocated earlier, but if we have
1367          * not yet completed the fallocation, then (a) we want to keep track
1368          * of this page in case we have to undo it, and (b) it may not be a
1369          * good idea to continue anyway, once we're pushing into swap.  So
1370          * reactivate the page, and let shmem_fallocate() quit when too many.
1371          */
1372         if (!PageUptodate(page)) {
1373                 if (inode->i_private) {
1374                         struct shmem_falloc *shmem_falloc;
1375                         spin_lock(&inode->i_lock);
1376                         shmem_falloc = inode->i_private;
1377                         if (shmem_falloc &&
1378                             !shmem_falloc->waitq &&
1379                             index >= shmem_falloc->start &&
1380                             index < shmem_falloc->next)
1381                                 shmem_falloc->nr_unswapped++;
1382                         else
1383                                 shmem_falloc = NULL;
1384                         spin_unlock(&inode->i_lock);
1385                         if (shmem_falloc)
1386                                 goto redirty;
1387                 }
1388                 clear_highpage(page);
1389                 flush_dcache_page(page);
1390                 SetPageUptodate(page);
1391         }
1392
1393         swap = folio_alloc_swap(folio);
1394         if (!swap.val)
1395                 goto redirty;
1396
1397         /*
1398          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1399          * if it's not already there.  Do it now before the page is
1400          * moved to swap cache, when its pagelock no longer protects
1401          * the inode from eviction.  But don't unlock the mutex until
1402          * we've incremented swapped, because shmem_unuse_inode() will
1403          * prune a !swapped inode from the swaplist under this mutex.
1404          */
1405         mutex_lock(&shmem_swaplist_mutex);
1406         if (list_empty(&info->swaplist))
1407                 list_add(&info->swaplist, &shmem_swaplist);
1408
1409         if (add_to_swap_cache(page, swap,
1410                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1411                         NULL) == 0) {
1412                 spin_lock_irq(&info->lock);
1413                 shmem_recalc_inode(inode);
1414                 info->swapped++;
1415                 spin_unlock_irq(&info->lock);
1416
1417                 swap_shmem_alloc(swap);
1418                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1419
1420                 mutex_unlock(&shmem_swaplist_mutex);
1421                 BUG_ON(page_mapped(page));
1422                 swap_writepage(page, wbc);
1423                 return 0;
1424         }
1425
1426         mutex_unlock(&shmem_swaplist_mutex);
1427         put_swap_page(page, swap);
1428 redirty:
1429         set_page_dirty(page);
1430         if (wbc->for_reclaim)
1431                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1432         unlock_page(page);
1433         return 0;
1434 }
1435
1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1438 {
1439         char buffer[64];
1440
1441         if (!mpol || mpol->mode == MPOL_DEFAULT)
1442                 return;         /* show nothing */
1443
1444         mpol_to_str(buffer, sizeof(buffer), mpol);
1445
1446         seq_printf(seq, ",mpol=%s", buffer);
1447 }
1448
1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1450 {
1451         struct mempolicy *mpol = NULL;
1452         if (sbinfo->mpol) {
1453                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1454                 mpol = sbinfo->mpol;
1455                 mpol_get(mpol);
1456                 raw_spin_unlock(&sbinfo->stat_lock);
1457         }
1458         return mpol;
1459 }
1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1462 {
1463 }
1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466         return NULL;
1467 }
1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1469 #ifndef CONFIG_NUMA
1470 #define vm_policy vm_private_data
1471 #endif
1472
1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1474                 struct shmem_inode_info *info, pgoff_t index)
1475 {
1476         /* Create a pseudo vma that just contains the policy */
1477         vma_init(vma, NULL);
1478         /* Bias interleave by inode number to distribute better across nodes */
1479         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1480         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1481 }
1482
1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1484 {
1485         /* Drop reference taken by mpol_shared_policy_lookup() */
1486         mpol_cond_put(vma->vm_policy);
1487 }
1488
1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1490                         struct shmem_inode_info *info, pgoff_t index)
1491 {
1492         struct vm_area_struct pvma;
1493         struct page *page;
1494         struct vm_fault vmf = {
1495                 .vma = &pvma,
1496         };
1497
1498         shmem_pseudo_vma_init(&pvma, info, index);
1499         page = swap_cluster_readahead(swap, gfp, &vmf);
1500         shmem_pseudo_vma_destroy(&pvma);
1501
1502         return page;
1503 }
1504
1505 /*
1506  * Make sure huge_gfp is always more limited than limit_gfp.
1507  * Some of the flags set permissions, while others set limitations.
1508  */
1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1510 {
1511         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1512         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1513         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1514         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1515
1516         /* Allow allocations only from the originally specified zones. */
1517         result |= zoneflags;
1518
1519         /*
1520          * Minimize the result gfp by taking the union with the deny flags,
1521          * and the intersection of the allow flags.
1522          */
1523         result |= (limit_gfp & denyflags);
1524         result |= (huge_gfp & limit_gfp) & allowflags;
1525
1526         return result;
1527 }
1528
1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1530                 struct shmem_inode_info *info, pgoff_t index)
1531 {
1532         struct vm_area_struct pvma;
1533         struct address_space *mapping = info->vfs_inode.i_mapping;
1534         pgoff_t hindex;
1535         struct folio *folio;
1536
1537         hindex = round_down(index, HPAGE_PMD_NR);
1538         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1539                                                                 XA_PRESENT))
1540                 return NULL;
1541
1542         shmem_pseudo_vma_init(&pvma, info, hindex);
1543         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1544         shmem_pseudo_vma_destroy(&pvma);
1545         if (!folio)
1546                 count_vm_event(THP_FILE_FALLBACK);
1547         return folio;
1548 }
1549
1550 static struct folio *shmem_alloc_folio(gfp_t gfp,
1551                         struct shmem_inode_info *info, pgoff_t index)
1552 {
1553         struct vm_area_struct pvma;
1554         struct folio *folio;
1555
1556         shmem_pseudo_vma_init(&pvma, info, index);
1557         folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1558         shmem_pseudo_vma_destroy(&pvma);
1559
1560         return folio;
1561 }
1562
1563 static struct page *shmem_alloc_page(gfp_t gfp,
1564                         struct shmem_inode_info *info, pgoff_t index)
1565 {
1566         return &shmem_alloc_folio(gfp, info, index)->page;
1567 }
1568
1569 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1570                 pgoff_t index, bool huge)
1571 {
1572         struct shmem_inode_info *info = SHMEM_I(inode);
1573         struct folio *folio;
1574         int nr;
1575         int err = -ENOSPC;
1576
1577         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578                 huge = false;
1579         nr = huge ? HPAGE_PMD_NR : 1;
1580
1581         if (!shmem_inode_acct_block(inode, nr))
1582                 goto failed;
1583
1584         if (huge)
1585                 folio = shmem_alloc_hugefolio(gfp, info, index);
1586         else
1587                 folio = shmem_alloc_folio(gfp, info, index);
1588         if (folio) {
1589                 __folio_set_locked(folio);
1590                 __folio_set_swapbacked(folio);
1591                 return folio;
1592         }
1593
1594         err = -ENOMEM;
1595         shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597         return ERR_PTR(err);
1598 }
1599
1600 /*
1601  * When a page is moved from swapcache to shmem filecache (either by the
1602  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604  * ignorance of the mapping it belongs to.  If that mapping has special
1605  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606  * we may need to copy to a suitable page before moving to filecache.
1607  *
1608  * In a future release, this may well be extended to respect cpuset and
1609  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610  * but for now it is a simple matter of zone.
1611  */
1612 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1613 {
1614         return folio_zonenum(folio) > gfp_zone(gfp);
1615 }
1616
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618                                 struct shmem_inode_info *info, pgoff_t index)
1619 {
1620         struct page *oldpage, *newpage;
1621         struct folio *old, *new;
1622         struct address_space *swap_mapping;
1623         swp_entry_t entry;
1624         pgoff_t swap_index;
1625         int error;
1626
1627         oldpage = *pagep;
1628         entry.val = page_private(oldpage);
1629         swap_index = swp_offset(entry);
1630         swap_mapping = page_mapping(oldpage);
1631
1632         /*
1633          * We have arrived here because our zones are constrained, so don't
1634          * limit chance of success by further cpuset and node constraints.
1635          */
1636         gfp &= ~GFP_CONSTRAINT_MASK;
1637         newpage = shmem_alloc_page(gfp, info, index);
1638         if (!newpage)
1639                 return -ENOMEM;
1640
1641         get_page(newpage);
1642         copy_highpage(newpage, oldpage);
1643         flush_dcache_page(newpage);
1644
1645         __SetPageLocked(newpage);
1646         __SetPageSwapBacked(newpage);
1647         SetPageUptodate(newpage);
1648         set_page_private(newpage, entry.val);
1649         SetPageSwapCache(newpage);
1650
1651         /*
1652          * Our caller will very soon move newpage out of swapcache, but it's
1653          * a nice clean interface for us to replace oldpage by newpage there.
1654          */
1655         xa_lock_irq(&swap_mapping->i_pages);
1656         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657         if (!error) {
1658                 old = page_folio(oldpage);
1659                 new = page_folio(newpage);
1660                 mem_cgroup_migrate(old, new);
1661                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663         }
1664         xa_unlock_irq(&swap_mapping->i_pages);
1665
1666         if (unlikely(error)) {
1667                 /*
1668                  * Is this possible?  I think not, now that our callers check
1669                  * both PageSwapCache and page_private after getting page lock;
1670                  * but be defensive.  Reverse old to newpage for clear and free.
1671                  */
1672                 oldpage = newpage;
1673         } else {
1674                 lru_cache_add(newpage);
1675                 *pagep = newpage;
1676         }
1677
1678         ClearPageSwapCache(oldpage);
1679         set_page_private(oldpage, 0);
1680
1681         unlock_page(oldpage);
1682         put_page(oldpage);
1683         put_page(oldpage);
1684         return error;
1685 }
1686
1687 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1688                                          struct folio *folio, swp_entry_t swap)
1689 {
1690         struct address_space *mapping = inode->i_mapping;
1691         struct shmem_inode_info *info = SHMEM_I(inode);
1692         swp_entry_t swapin_error;
1693         void *old;
1694
1695         swapin_error = make_swapin_error_entry(&folio->page);
1696         old = xa_cmpxchg_irq(&mapping->i_pages, index,
1697                              swp_to_radix_entry(swap),
1698                              swp_to_radix_entry(swapin_error), 0);
1699         if (old != swp_to_radix_entry(swap))
1700                 return;
1701
1702         folio_wait_writeback(folio);
1703         delete_from_swap_cache(folio);
1704         spin_lock_irq(&info->lock);
1705         /*
1706          * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1707          * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1708          * shmem_evict_inode.
1709          */
1710         info->alloced--;
1711         info->swapped--;
1712         shmem_recalc_inode(inode);
1713         spin_unlock_irq(&info->lock);
1714         swap_free(swap);
1715 }
1716
1717 /*
1718  * Swap in the folio pointed to by *foliop.
1719  * Caller has to make sure that *foliop contains a valid swapped folio.
1720  * Returns 0 and the folio in foliop if success. On failure, returns the
1721  * error code and NULL in *foliop.
1722  */
1723 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1724                              struct folio **foliop, enum sgp_type sgp,
1725                              gfp_t gfp, struct vm_area_struct *vma,
1726                              vm_fault_t *fault_type)
1727 {
1728         struct address_space *mapping = inode->i_mapping;
1729         struct shmem_inode_info *info = SHMEM_I(inode);
1730         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1731         struct page *page;
1732         struct folio *folio = NULL;
1733         swp_entry_t swap;
1734         int error;
1735
1736         VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1737         swap = radix_to_swp_entry(*foliop);
1738         *foliop = NULL;
1739
1740         if (is_swapin_error_entry(swap))
1741                 return -EIO;
1742
1743         /* Look it up and read it in.. */
1744         page = lookup_swap_cache(swap, NULL, 0);
1745         if (!page) {
1746                 /* Or update major stats only when swapin succeeds?? */
1747                 if (fault_type) {
1748                         *fault_type |= VM_FAULT_MAJOR;
1749                         count_vm_event(PGMAJFAULT);
1750                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1751                 }
1752                 /* Here we actually start the io */
1753                 page = shmem_swapin(swap, gfp, info, index);
1754                 if (!page) {
1755                         error = -ENOMEM;
1756                         goto failed;
1757                 }
1758         }
1759         folio = page_folio(page);
1760
1761         /* We have to do this with folio locked to prevent races */
1762         folio_lock(folio);
1763         if (!folio_test_swapcache(folio) ||
1764             folio_swap_entry(folio).val != swap.val ||
1765             !shmem_confirm_swap(mapping, index, swap)) {
1766                 error = -EEXIST;
1767                 goto unlock;
1768         }
1769         if (!folio_test_uptodate(folio)) {
1770                 error = -EIO;
1771                 goto failed;
1772         }
1773         folio_wait_writeback(folio);
1774
1775         /*
1776          * Some architectures may have to restore extra metadata to the
1777          * folio after reading from swap.
1778          */
1779         arch_swap_restore(swap, folio);
1780
1781         if (shmem_should_replace_folio(folio, gfp)) {
1782                 error = shmem_replace_page(&page, gfp, info, index);
1783                 if (error)
1784                         goto failed;
1785         }
1786
1787         error = shmem_add_to_page_cache(folio, mapping, index,
1788                                         swp_to_radix_entry(swap), gfp,
1789                                         charge_mm);
1790         if (error)
1791                 goto failed;
1792
1793         spin_lock_irq(&info->lock);
1794         info->swapped--;
1795         shmem_recalc_inode(inode);
1796         spin_unlock_irq(&info->lock);
1797
1798         if (sgp == SGP_WRITE)
1799                 folio_mark_accessed(folio);
1800
1801         delete_from_swap_cache(folio);
1802         folio_mark_dirty(folio);
1803         swap_free(swap);
1804
1805         *foliop = folio;
1806         return 0;
1807 failed:
1808         if (!shmem_confirm_swap(mapping, index, swap))
1809                 error = -EEXIST;
1810         if (error == -EIO)
1811                 shmem_set_folio_swapin_error(inode, index, folio, swap);
1812 unlock:
1813         if (folio) {
1814                 folio_unlock(folio);
1815                 folio_put(folio);
1816         }
1817
1818         return error;
1819 }
1820
1821 /*
1822  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1823  *
1824  * If we allocate a new one we do not mark it dirty. That's up to the
1825  * vm. If we swap it in we mark it dirty since we also free the swap
1826  * entry since a page cannot live in both the swap and page cache.
1827  *
1828  * vma, vmf, and fault_type are only supplied by shmem_fault:
1829  * otherwise they are NULL.
1830  */
1831 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1832         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1833         struct vm_area_struct *vma, struct vm_fault *vmf,
1834                         vm_fault_t *fault_type)
1835 {
1836         struct address_space *mapping = inode->i_mapping;
1837         struct shmem_inode_info *info = SHMEM_I(inode);
1838         struct shmem_sb_info *sbinfo;
1839         struct mm_struct *charge_mm;
1840         struct folio *folio;
1841         pgoff_t hindex = index;
1842         gfp_t huge_gfp;
1843         int error;
1844         int once = 0;
1845         int alloced = 0;
1846
1847         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1848                 return -EFBIG;
1849 repeat:
1850         if (sgp <= SGP_CACHE &&
1851             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1852                 return -EINVAL;
1853         }
1854
1855         sbinfo = SHMEM_SB(inode->i_sb);
1856         charge_mm = vma ? vma->vm_mm : NULL;
1857
1858         folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1859         if (folio && vma && userfaultfd_minor(vma)) {
1860                 if (!xa_is_value(folio)) {
1861                         folio_unlock(folio);
1862                         folio_put(folio);
1863                 }
1864                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1865                 return 0;
1866         }
1867
1868         if (xa_is_value(folio)) {
1869                 error = shmem_swapin_folio(inode, index, &folio,
1870                                           sgp, gfp, vma, fault_type);
1871                 if (error == -EEXIST)
1872                         goto repeat;
1873
1874                 *pagep = &folio->page;
1875                 return error;
1876         }
1877
1878         if (folio) {
1879                 hindex = folio->index;
1880                 if (sgp == SGP_WRITE)
1881                         folio_mark_accessed(folio);
1882                 if (folio_test_uptodate(folio))
1883                         goto out;
1884                 /* fallocated page */
1885                 if (sgp != SGP_READ)
1886                         goto clear;
1887                 folio_unlock(folio);
1888                 folio_put(folio);
1889         }
1890
1891         /*
1892          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1893          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1894          */
1895         *pagep = NULL;
1896         if (sgp == SGP_READ)
1897                 return 0;
1898         if (sgp == SGP_NOALLOC)
1899                 return -ENOENT;
1900
1901         /*
1902          * Fast cache lookup and swap lookup did not find it: allocate.
1903          */
1904
1905         if (vma && userfaultfd_missing(vma)) {
1906                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1907                 return 0;
1908         }
1909
1910         if (!shmem_is_huge(vma, inode, index))
1911                 goto alloc_nohuge;
1912
1913         huge_gfp = vma_thp_gfp_mask(vma);
1914         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1915         folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1916         if (IS_ERR(folio)) {
1917 alloc_nohuge:
1918                 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1919         }
1920         if (IS_ERR(folio)) {
1921                 int retry = 5;
1922
1923                 error = PTR_ERR(folio);
1924                 folio = NULL;
1925                 if (error != -ENOSPC)
1926                         goto unlock;
1927                 /*
1928                  * Try to reclaim some space by splitting a huge page
1929                  * beyond i_size on the filesystem.
1930                  */
1931                 while (retry--) {
1932                         int ret;
1933
1934                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935                         if (ret == SHRINK_STOP)
1936                                 break;
1937                         if (ret)
1938                                 goto alloc_nohuge;
1939                 }
1940                 goto unlock;
1941         }
1942
1943         hindex = round_down(index, folio_nr_pages(folio));
1944
1945         if (sgp == SGP_WRITE)
1946                 __folio_set_referenced(folio);
1947
1948         error = shmem_add_to_page_cache(folio, mapping, hindex,
1949                                         NULL, gfp & GFP_RECLAIM_MASK,
1950                                         charge_mm);
1951         if (error)
1952                 goto unacct;
1953         folio_add_lru(folio);
1954
1955         spin_lock_irq(&info->lock);
1956         info->alloced += folio_nr_pages(folio);
1957         inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1958         shmem_recalc_inode(inode);
1959         spin_unlock_irq(&info->lock);
1960         alloced = true;
1961
1962         if (folio_test_pmd_mappable(folio) &&
1963             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1964                         hindex + HPAGE_PMD_NR - 1) {
1965                 /*
1966                  * Part of the huge page is beyond i_size: subject
1967                  * to shrink under memory pressure.
1968                  */
1969                 spin_lock(&sbinfo->shrinklist_lock);
1970                 /*
1971                  * _careful to defend against unlocked access to
1972                  * ->shrink_list in shmem_unused_huge_shrink()
1973                  */
1974                 if (list_empty_careful(&info->shrinklist)) {
1975                         list_add_tail(&info->shrinklist,
1976                                       &sbinfo->shrinklist);
1977                         sbinfo->shrinklist_len++;
1978                 }
1979                 spin_unlock(&sbinfo->shrinklist_lock);
1980         }
1981
1982         /*
1983          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1984          */
1985         if (sgp == SGP_FALLOC)
1986                 sgp = SGP_WRITE;
1987 clear:
1988         /*
1989          * Let SGP_WRITE caller clear ends if write does not fill page;
1990          * but SGP_FALLOC on a page fallocated earlier must initialize
1991          * it now, lest undo on failure cancel our earlier guarantee.
1992          */
1993         if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1994                 long i, n = folio_nr_pages(folio);
1995
1996                 for (i = 0; i < n; i++)
1997                         clear_highpage(folio_page(folio, i));
1998                 flush_dcache_folio(folio);
1999                 folio_mark_uptodate(folio);
2000         }
2001
2002         /* Perhaps the file has been truncated since we checked */
2003         if (sgp <= SGP_CACHE &&
2004             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2005                 if (alloced) {
2006                         folio_clear_dirty(folio);
2007                         filemap_remove_folio(folio);
2008                         spin_lock_irq(&info->lock);
2009                         shmem_recalc_inode(inode);
2010                         spin_unlock_irq(&info->lock);
2011                 }
2012                 error = -EINVAL;
2013                 goto unlock;
2014         }
2015 out:
2016         *pagep = folio_page(folio, index - hindex);
2017         return 0;
2018
2019         /*
2020          * Error recovery.
2021          */
2022 unacct:
2023         shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2024
2025         if (folio_test_large(folio)) {
2026                 folio_unlock(folio);
2027                 folio_put(folio);
2028                 goto alloc_nohuge;
2029         }
2030 unlock:
2031         if (folio) {
2032                 folio_unlock(folio);
2033                 folio_put(folio);
2034         }
2035         if (error == -ENOSPC && !once++) {
2036                 spin_lock_irq(&info->lock);
2037                 shmem_recalc_inode(inode);
2038                 spin_unlock_irq(&info->lock);
2039                 goto repeat;
2040         }
2041         if (error == -EEXIST)
2042                 goto repeat;
2043         return error;
2044 }
2045
2046 /*
2047  * This is like autoremove_wake_function, but it removes the wait queue
2048  * entry unconditionally - even if something else had already woken the
2049  * target.
2050  */
2051 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2052 {
2053         int ret = default_wake_function(wait, mode, sync, key);
2054         list_del_init(&wait->entry);
2055         return ret;
2056 }
2057
2058 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2059 {
2060         struct vm_area_struct *vma = vmf->vma;
2061         struct inode *inode = file_inode(vma->vm_file);
2062         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2063         int err;
2064         vm_fault_t ret = VM_FAULT_LOCKED;
2065
2066         /*
2067          * Trinity finds that probing a hole which tmpfs is punching can
2068          * prevent the hole-punch from ever completing: which in turn
2069          * locks writers out with its hold on i_rwsem.  So refrain from
2070          * faulting pages into the hole while it's being punched.  Although
2071          * shmem_undo_range() does remove the additions, it may be unable to
2072          * keep up, as each new page needs its own unmap_mapping_range() call,
2073          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2074          *
2075          * It does not matter if we sometimes reach this check just before the
2076          * hole-punch begins, so that one fault then races with the punch:
2077          * we just need to make racing faults a rare case.
2078          *
2079          * The implementation below would be much simpler if we just used a
2080          * standard mutex or completion: but we cannot take i_rwsem in fault,
2081          * and bloating every shmem inode for this unlikely case would be sad.
2082          */
2083         if (unlikely(inode->i_private)) {
2084                 struct shmem_falloc *shmem_falloc;
2085
2086                 spin_lock(&inode->i_lock);
2087                 shmem_falloc = inode->i_private;
2088                 if (shmem_falloc &&
2089                     shmem_falloc->waitq &&
2090                     vmf->pgoff >= shmem_falloc->start &&
2091                     vmf->pgoff < shmem_falloc->next) {
2092                         struct file *fpin;
2093                         wait_queue_head_t *shmem_falloc_waitq;
2094                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2095
2096                         ret = VM_FAULT_NOPAGE;
2097                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2098                         if (fpin)
2099                                 ret = VM_FAULT_RETRY;
2100
2101                         shmem_falloc_waitq = shmem_falloc->waitq;
2102                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2103                                         TASK_UNINTERRUPTIBLE);
2104                         spin_unlock(&inode->i_lock);
2105                         schedule();
2106
2107                         /*
2108                          * shmem_falloc_waitq points into the shmem_fallocate()
2109                          * stack of the hole-punching task: shmem_falloc_waitq
2110                          * is usually invalid by the time we reach here, but
2111                          * finish_wait() does not dereference it in that case;
2112                          * though i_lock needed lest racing with wake_up_all().
2113                          */
2114                         spin_lock(&inode->i_lock);
2115                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2116                         spin_unlock(&inode->i_lock);
2117
2118                         if (fpin)
2119                                 fput(fpin);
2120                         return ret;
2121                 }
2122                 spin_unlock(&inode->i_lock);
2123         }
2124
2125         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2126                                   gfp, vma, vmf, &ret);
2127         if (err)
2128                 return vmf_error(err);
2129         return ret;
2130 }
2131
2132 unsigned long shmem_get_unmapped_area(struct file *file,
2133                                       unsigned long uaddr, unsigned long len,
2134                                       unsigned long pgoff, unsigned long flags)
2135 {
2136         unsigned long (*get_area)(struct file *,
2137                 unsigned long, unsigned long, unsigned long, unsigned long);
2138         unsigned long addr;
2139         unsigned long offset;
2140         unsigned long inflated_len;
2141         unsigned long inflated_addr;
2142         unsigned long inflated_offset;
2143
2144         if (len > TASK_SIZE)
2145                 return -ENOMEM;
2146
2147         get_area = current->mm->get_unmapped_area;
2148         addr = get_area(file, uaddr, len, pgoff, flags);
2149
2150         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2151                 return addr;
2152         if (IS_ERR_VALUE(addr))
2153                 return addr;
2154         if (addr & ~PAGE_MASK)
2155                 return addr;
2156         if (addr > TASK_SIZE - len)
2157                 return addr;
2158
2159         if (shmem_huge == SHMEM_HUGE_DENY)
2160                 return addr;
2161         if (len < HPAGE_PMD_SIZE)
2162                 return addr;
2163         if (flags & MAP_FIXED)
2164                 return addr;
2165         /*
2166          * Our priority is to support MAP_SHARED mapped hugely;
2167          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2168          * But if caller specified an address hint and we allocated area there
2169          * successfully, respect that as before.
2170          */
2171         if (uaddr == addr)
2172                 return addr;
2173
2174         if (shmem_huge != SHMEM_HUGE_FORCE) {
2175                 struct super_block *sb;
2176
2177                 if (file) {
2178                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2179                         sb = file_inode(file)->i_sb;
2180                 } else {
2181                         /*
2182                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2183                          * for "/dev/zero", to create a shared anonymous object.
2184                          */
2185                         if (IS_ERR(shm_mnt))
2186                                 return addr;
2187                         sb = shm_mnt->mnt_sb;
2188                 }
2189                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2190                         return addr;
2191         }
2192
2193         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2194         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2195                 return addr;
2196         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2197                 return addr;
2198
2199         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2200         if (inflated_len > TASK_SIZE)
2201                 return addr;
2202         if (inflated_len < len)
2203                 return addr;
2204
2205         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2206         if (IS_ERR_VALUE(inflated_addr))
2207                 return addr;
2208         if (inflated_addr & ~PAGE_MASK)
2209                 return addr;
2210
2211         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2212         inflated_addr += offset - inflated_offset;
2213         if (inflated_offset > offset)
2214                 inflated_addr += HPAGE_PMD_SIZE;
2215
2216         if (inflated_addr > TASK_SIZE - len)
2217                 return addr;
2218         return inflated_addr;
2219 }
2220
2221 #ifdef CONFIG_NUMA
2222 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2223 {
2224         struct inode *inode = file_inode(vma->vm_file);
2225         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2226 }
2227
2228 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2229                                           unsigned long addr)
2230 {
2231         struct inode *inode = file_inode(vma->vm_file);
2232         pgoff_t index;
2233
2234         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2235         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2236 }
2237 #endif
2238
2239 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2240 {
2241         struct inode *inode = file_inode(file);
2242         struct shmem_inode_info *info = SHMEM_I(inode);
2243         int retval = -ENOMEM;
2244
2245         /*
2246          * What serializes the accesses to info->flags?
2247          * ipc_lock_object() when called from shmctl_do_lock(),
2248          * no serialization needed when called from shm_destroy().
2249          */
2250         if (lock && !(info->flags & VM_LOCKED)) {
2251                 if (!user_shm_lock(inode->i_size, ucounts))
2252                         goto out_nomem;
2253                 info->flags |= VM_LOCKED;
2254                 mapping_set_unevictable(file->f_mapping);
2255         }
2256         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2257                 user_shm_unlock(inode->i_size, ucounts);
2258                 info->flags &= ~VM_LOCKED;
2259                 mapping_clear_unevictable(file->f_mapping);
2260         }
2261         retval = 0;
2262
2263 out_nomem:
2264         return retval;
2265 }
2266
2267 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2268 {
2269         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2270         int ret;
2271
2272         ret = seal_check_future_write(info->seals, vma);
2273         if (ret)
2274                 return ret;
2275
2276         /* arm64 - allow memory tagging on RAM-based files */
2277         vma->vm_flags |= VM_MTE_ALLOWED;
2278
2279         file_accessed(file);
2280         vma->vm_ops = &shmem_vm_ops;
2281         return 0;
2282 }
2283
2284 #ifdef CONFIG_TMPFS_XATTR
2285 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2286
2287 /*
2288  * chattr's fsflags are unrelated to extended attributes,
2289  * but tmpfs has chosen to enable them under the same config option.
2290  */
2291 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2292 {
2293         unsigned int i_flags = 0;
2294
2295         if (fsflags & FS_NOATIME_FL)
2296                 i_flags |= S_NOATIME;
2297         if (fsflags & FS_APPEND_FL)
2298                 i_flags |= S_APPEND;
2299         if (fsflags & FS_IMMUTABLE_FL)
2300                 i_flags |= S_IMMUTABLE;
2301         /*
2302          * But FS_NODUMP_FL does not require any action in i_flags.
2303          */
2304         inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2305 }
2306 #else
2307 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2308 {
2309 }
2310 #define shmem_initxattrs NULL
2311 #endif
2312
2313 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2314                                      umode_t mode, dev_t dev, unsigned long flags)
2315 {
2316         struct inode *inode;
2317         struct shmem_inode_info *info;
2318         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2319         ino_t ino;
2320
2321         if (shmem_reserve_inode(sb, &ino))
2322                 return NULL;
2323
2324         inode = new_inode(sb);
2325         if (inode) {
2326                 inode->i_ino = ino;
2327                 inode_init_owner(&init_user_ns, inode, dir, mode);
2328                 inode->i_blocks = 0;
2329                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2330                 inode->i_generation = prandom_u32();
2331                 info = SHMEM_I(inode);
2332                 memset(info, 0, (char *)inode - (char *)info);
2333                 spin_lock_init(&info->lock);
2334                 atomic_set(&info->stop_eviction, 0);
2335                 info->seals = F_SEAL_SEAL;
2336                 info->flags = flags & VM_NORESERVE;
2337                 info->i_crtime = inode->i_mtime;
2338                 info->fsflags = (dir == NULL) ? 0 :
2339                         SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2340                 if (info->fsflags)
2341                         shmem_set_inode_flags(inode, info->fsflags);
2342                 INIT_LIST_HEAD(&info->shrinklist);
2343                 INIT_LIST_HEAD(&info->swaplist);
2344                 simple_xattrs_init(&info->xattrs);
2345                 cache_no_acl(inode);
2346                 mapping_set_large_folios(inode->i_mapping);
2347
2348                 switch (mode & S_IFMT) {
2349                 default:
2350                         inode->i_op = &shmem_special_inode_operations;
2351                         init_special_inode(inode, mode, dev);
2352                         break;
2353                 case S_IFREG:
2354                         inode->i_mapping->a_ops = &shmem_aops;
2355                         inode->i_op = &shmem_inode_operations;
2356                         inode->i_fop = &shmem_file_operations;
2357                         mpol_shared_policy_init(&info->policy,
2358                                                  shmem_get_sbmpol(sbinfo));
2359                         break;
2360                 case S_IFDIR:
2361                         inc_nlink(inode);
2362                         /* Some things misbehave if size == 0 on a directory */
2363                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2364                         inode->i_op = &shmem_dir_inode_operations;
2365                         inode->i_fop = &simple_dir_operations;
2366                         break;
2367                 case S_IFLNK:
2368                         /*
2369                          * Must not load anything in the rbtree,
2370                          * mpol_free_shared_policy will not be called.
2371                          */
2372                         mpol_shared_policy_init(&info->policy, NULL);
2373                         break;
2374                 }
2375
2376                 lockdep_annotate_inode_mutex_key(inode);
2377         } else
2378                 shmem_free_inode(sb);
2379         return inode;
2380 }
2381
2382 #ifdef CONFIG_USERFAULTFD
2383 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2384                            pmd_t *dst_pmd,
2385                            struct vm_area_struct *dst_vma,
2386                            unsigned long dst_addr,
2387                            unsigned long src_addr,
2388                            bool zeropage, bool wp_copy,
2389                            struct page **pagep)
2390 {
2391         struct inode *inode = file_inode(dst_vma->vm_file);
2392         struct shmem_inode_info *info = SHMEM_I(inode);
2393         struct address_space *mapping = inode->i_mapping;
2394         gfp_t gfp = mapping_gfp_mask(mapping);
2395         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2396         void *page_kaddr;
2397         struct folio *folio;
2398         struct page *page;
2399         int ret;
2400         pgoff_t max_off;
2401
2402         if (!shmem_inode_acct_block(inode, 1)) {
2403                 /*
2404                  * We may have got a page, returned -ENOENT triggering a retry,
2405                  * and now we find ourselves with -ENOMEM. Release the page, to
2406                  * avoid a BUG_ON in our caller.
2407                  */
2408                 if (unlikely(*pagep)) {
2409                         put_page(*pagep);
2410                         *pagep = NULL;
2411                 }
2412                 return -ENOMEM;
2413         }
2414
2415         if (!*pagep) {
2416                 ret = -ENOMEM;
2417                 page = shmem_alloc_page(gfp, info, pgoff);
2418                 if (!page)
2419                         goto out_unacct_blocks;
2420
2421                 if (!zeropage) {        /* COPY */
2422                         page_kaddr = kmap_atomic(page);
2423                         ret = copy_from_user(page_kaddr,
2424                                              (const void __user *)src_addr,
2425                                              PAGE_SIZE);
2426                         kunmap_atomic(page_kaddr);
2427
2428                         /* fallback to copy_from_user outside mmap_lock */
2429                         if (unlikely(ret)) {
2430                                 *pagep = page;
2431                                 ret = -ENOENT;
2432                                 /* don't free the page */
2433                                 goto out_unacct_blocks;
2434                         }
2435
2436                         flush_dcache_page(page);
2437                 } else {                /* ZEROPAGE */
2438                         clear_user_highpage(page, dst_addr);
2439                 }
2440         } else {
2441                 page = *pagep;
2442                 *pagep = NULL;
2443         }
2444
2445         VM_BUG_ON(PageLocked(page));
2446         VM_BUG_ON(PageSwapBacked(page));
2447         __SetPageLocked(page);
2448         __SetPageSwapBacked(page);
2449         __SetPageUptodate(page);
2450
2451         ret = -EFAULT;
2452         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2453         if (unlikely(pgoff >= max_off))
2454                 goto out_release;
2455
2456         folio = page_folio(page);
2457         ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2458                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2459         if (ret)
2460                 goto out_release;
2461
2462         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2463                                        page, true, wp_copy);
2464         if (ret)
2465                 goto out_delete_from_cache;
2466
2467         spin_lock_irq(&info->lock);
2468         info->alloced++;
2469         inode->i_blocks += BLOCKS_PER_PAGE;
2470         shmem_recalc_inode(inode);
2471         spin_unlock_irq(&info->lock);
2472
2473         unlock_page(page);
2474         return 0;
2475 out_delete_from_cache:
2476         delete_from_page_cache(page);
2477 out_release:
2478         unlock_page(page);
2479         put_page(page);
2480 out_unacct_blocks:
2481         shmem_inode_unacct_blocks(inode, 1);
2482         return ret;
2483 }
2484 #endif /* CONFIG_USERFAULTFD */
2485
2486 #ifdef CONFIG_TMPFS
2487 static const struct inode_operations shmem_symlink_inode_operations;
2488 static const struct inode_operations shmem_short_symlink_operations;
2489
2490 static int
2491 shmem_write_begin(struct file *file, struct address_space *mapping,
2492                         loff_t pos, unsigned len,
2493                         struct page **pagep, void **fsdata)
2494 {
2495         struct inode *inode = mapping->host;
2496         struct shmem_inode_info *info = SHMEM_I(inode);
2497         pgoff_t index = pos >> PAGE_SHIFT;
2498         int ret = 0;
2499
2500         /* i_rwsem is held by caller */
2501         if (unlikely(info->seals & (F_SEAL_GROW |
2502                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2503                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2504                         return -EPERM;
2505                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2506                         return -EPERM;
2507         }
2508
2509         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2510
2511         if (ret)
2512                 return ret;
2513
2514         if (PageHWPoison(*pagep)) {
2515                 unlock_page(*pagep);
2516                 put_page(*pagep);
2517                 *pagep = NULL;
2518                 return -EIO;
2519         }
2520
2521         return 0;
2522 }
2523
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526                         loff_t pos, unsigned len, unsigned copied,
2527                         struct page *page, void *fsdata)
2528 {
2529         struct inode *inode = mapping->host;
2530
2531         if (pos + copied > inode->i_size)
2532                 i_size_write(inode, pos + copied);
2533
2534         if (!PageUptodate(page)) {
2535                 struct page *head = compound_head(page);
2536                 if (PageTransCompound(page)) {
2537                         int i;
2538
2539                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2540                                 if (head + i == page)
2541                                         continue;
2542                                 clear_highpage(head + i);
2543                                 flush_dcache_page(head + i);
2544                         }
2545                 }
2546                 if (copied < PAGE_SIZE) {
2547                         unsigned from = pos & (PAGE_SIZE - 1);
2548                         zero_user_segments(page, 0, from,
2549                                         from + copied, PAGE_SIZE);
2550                 }
2551                 SetPageUptodate(head);
2552         }
2553         set_page_dirty(page);
2554         unlock_page(page);
2555         put_page(page);
2556
2557         return copied;
2558 }
2559
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562         struct file *file = iocb->ki_filp;
2563         struct inode *inode = file_inode(file);
2564         struct address_space *mapping = inode->i_mapping;
2565         pgoff_t index;
2566         unsigned long offset;
2567         int error = 0;
2568         ssize_t retval = 0;
2569         loff_t *ppos = &iocb->ki_pos;
2570
2571         index = *ppos >> PAGE_SHIFT;
2572         offset = *ppos & ~PAGE_MASK;
2573
2574         for (;;) {
2575                 struct page *page = NULL;
2576                 pgoff_t end_index;
2577                 unsigned long nr, ret;
2578                 loff_t i_size = i_size_read(inode);
2579
2580                 end_index = i_size >> PAGE_SHIFT;
2581                 if (index > end_index)
2582                         break;
2583                 if (index == end_index) {
2584                         nr = i_size & ~PAGE_MASK;
2585                         if (nr <= offset)
2586                                 break;
2587                 }
2588
2589                 error = shmem_getpage(inode, index, &page, SGP_READ);
2590                 if (error) {
2591                         if (error == -EINVAL)
2592                                 error = 0;
2593                         break;
2594                 }
2595                 if (page) {
2596                         unlock_page(page);
2597
2598                         if (PageHWPoison(page)) {
2599                                 put_page(page);
2600                                 error = -EIO;
2601                                 break;
2602                         }
2603                 }
2604
2605                 /*
2606                  * We must evaluate after, since reads (unlike writes)
2607                  * are called without i_rwsem protection against truncate
2608                  */
2609                 nr = PAGE_SIZE;
2610                 i_size = i_size_read(inode);
2611                 end_index = i_size >> PAGE_SHIFT;
2612                 if (index == end_index) {
2613                         nr = i_size & ~PAGE_MASK;
2614                         if (nr <= offset) {
2615                                 if (page)
2616                                         put_page(page);
2617                                 break;
2618                         }
2619                 }
2620                 nr -= offset;
2621
2622                 if (page) {
2623                         /*
2624                          * If users can be writing to this page using arbitrary
2625                          * virtual addresses, take care about potential aliasing
2626                          * before reading the page on the kernel side.
2627                          */
2628                         if (mapping_writably_mapped(mapping))
2629                                 flush_dcache_page(page);
2630                         /*
2631                          * Mark the page accessed if we read the beginning.
2632                          */
2633                         if (!offset)
2634                                 mark_page_accessed(page);
2635                         /*
2636                          * Ok, we have the page, and it's up-to-date, so
2637                          * now we can copy it to user space...
2638                          */
2639                         ret = copy_page_to_iter(page, offset, nr, to);
2640                         put_page(page);
2641
2642                 } else if (user_backed_iter(to)) {
2643                         /*
2644                          * Copy to user tends to be so well optimized, but
2645                          * clear_user() not so much, that it is noticeably
2646                          * faster to copy the zero page instead of clearing.
2647                          */
2648                         ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2649                 } else {
2650                         /*
2651                          * But submitting the same page twice in a row to
2652                          * splice() - or others? - can result in confusion:
2653                          * so don't attempt that optimization on pipes etc.
2654                          */
2655                         ret = iov_iter_zero(nr, to);
2656                 }
2657
2658                 retval += ret;
2659                 offset += ret;
2660                 index += offset >> PAGE_SHIFT;
2661                 offset &= ~PAGE_MASK;
2662
2663                 if (!iov_iter_count(to))
2664                         break;
2665                 if (ret < nr) {
2666                         error = -EFAULT;
2667                         break;
2668                 }
2669                 cond_resched();
2670         }
2671
2672         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2673         file_accessed(file);
2674         return retval ? retval : error;
2675 }
2676
2677 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2678 {
2679         struct address_space *mapping = file->f_mapping;
2680         struct inode *inode = mapping->host;
2681
2682         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2683                 return generic_file_llseek_size(file, offset, whence,
2684                                         MAX_LFS_FILESIZE, i_size_read(inode));
2685         if (offset < 0)
2686                 return -ENXIO;
2687
2688         inode_lock(inode);
2689         /* We're holding i_rwsem so we can access i_size directly */
2690         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2691         if (offset >= 0)
2692                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2693         inode_unlock(inode);
2694         return offset;
2695 }
2696
2697 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2698                                                          loff_t len)
2699 {
2700         struct inode *inode = file_inode(file);
2701         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2702         struct shmem_inode_info *info = SHMEM_I(inode);
2703         struct shmem_falloc shmem_falloc;
2704         pgoff_t start, index, end, undo_fallocend;
2705         int error;
2706
2707         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2708                 return -EOPNOTSUPP;
2709
2710         inode_lock(inode);
2711
2712         if (mode & FALLOC_FL_PUNCH_HOLE) {
2713                 struct address_space *mapping = file->f_mapping;
2714                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2715                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2716                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2717
2718                 /* protected by i_rwsem */
2719                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2720                         error = -EPERM;
2721                         goto out;
2722                 }
2723
2724                 shmem_falloc.waitq = &shmem_falloc_waitq;
2725                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2726                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2727                 spin_lock(&inode->i_lock);
2728                 inode->i_private = &shmem_falloc;
2729                 spin_unlock(&inode->i_lock);
2730
2731                 if ((u64)unmap_end > (u64)unmap_start)
2732                         unmap_mapping_range(mapping, unmap_start,
2733                                             1 + unmap_end - unmap_start, 0);
2734                 shmem_truncate_range(inode, offset, offset + len - 1);
2735                 /* No need to unmap again: hole-punching leaves COWed pages */
2736
2737                 spin_lock(&inode->i_lock);
2738                 inode->i_private = NULL;
2739                 wake_up_all(&shmem_falloc_waitq);
2740                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2741                 spin_unlock(&inode->i_lock);
2742                 error = 0;
2743                 goto out;
2744         }
2745
2746         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2747         error = inode_newsize_ok(inode, offset + len);
2748         if (error)
2749                 goto out;
2750
2751         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2752                 error = -EPERM;
2753                 goto out;
2754         }
2755
2756         start = offset >> PAGE_SHIFT;
2757         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2758         /* Try to avoid a swapstorm if len is impossible to satisfy */
2759         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2760                 error = -ENOSPC;
2761                 goto out;
2762         }
2763
2764         shmem_falloc.waitq = NULL;
2765         shmem_falloc.start = start;
2766         shmem_falloc.next  = start;
2767         shmem_falloc.nr_falloced = 0;
2768         shmem_falloc.nr_unswapped = 0;
2769         spin_lock(&inode->i_lock);
2770         inode->i_private = &shmem_falloc;
2771         spin_unlock(&inode->i_lock);
2772
2773         /*
2774          * info->fallocend is only relevant when huge pages might be
2775          * involved: to prevent split_huge_page() freeing fallocated
2776          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2777          */
2778         undo_fallocend = info->fallocend;
2779         if (info->fallocend < end)
2780                 info->fallocend = end;
2781
2782         for (index = start; index < end; ) {
2783                 struct page *page;
2784
2785                 /*
2786                  * Good, the fallocate(2) manpage permits EINTR: we may have
2787                  * been interrupted because we are using up too much memory.
2788                  */
2789                 if (signal_pending(current))
2790                         error = -EINTR;
2791                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2792                         error = -ENOMEM;
2793                 else
2794                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2795                 if (error) {
2796                         info->fallocend = undo_fallocend;
2797                         /* Remove the !PageUptodate pages we added */
2798                         if (index > start) {
2799                                 shmem_undo_range(inode,
2800                                     (loff_t)start << PAGE_SHIFT,
2801                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2802                         }
2803                         goto undone;
2804                 }
2805
2806                 index++;
2807                 /*
2808                  * Here is a more important optimization than it appears:
2809                  * a second SGP_FALLOC on the same huge page will clear it,
2810                  * making it PageUptodate and un-undoable if we fail later.
2811                  */
2812                 if (PageTransCompound(page)) {
2813                         index = round_up(index, HPAGE_PMD_NR);
2814                         /* Beware 32-bit wraparound */
2815                         if (!index)
2816                                 index--;
2817                 }
2818
2819                 /*
2820                  * Inform shmem_writepage() how far we have reached.
2821                  * No need for lock or barrier: we have the page lock.
2822                  */
2823                 if (!PageUptodate(page))
2824                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2825                 shmem_falloc.next = index;
2826
2827                 /*
2828                  * If !PageUptodate, leave it that way so that freeable pages
2829                  * can be recognized if we need to rollback on error later.
2830                  * But set_page_dirty so that memory pressure will swap rather
2831                  * than free the pages we are allocating (and SGP_CACHE pages
2832                  * might still be clean: we now need to mark those dirty too).
2833                  */
2834                 set_page_dirty(page);
2835                 unlock_page(page);
2836                 put_page(page);
2837                 cond_resched();
2838         }
2839
2840         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2841                 i_size_write(inode, offset + len);
2842 undone:
2843         spin_lock(&inode->i_lock);
2844         inode->i_private = NULL;
2845         spin_unlock(&inode->i_lock);
2846 out:
2847         if (!error)
2848                 file_modified(file);
2849         inode_unlock(inode);
2850         return error;
2851 }
2852
2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2854 {
2855         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2856
2857         buf->f_type = TMPFS_MAGIC;
2858         buf->f_bsize = PAGE_SIZE;
2859         buf->f_namelen = NAME_MAX;
2860         if (sbinfo->max_blocks) {
2861                 buf->f_blocks = sbinfo->max_blocks;
2862                 buf->f_bavail =
2863                 buf->f_bfree  = sbinfo->max_blocks -
2864                                 percpu_counter_sum(&sbinfo->used_blocks);
2865         }
2866         if (sbinfo->max_inodes) {
2867                 buf->f_files = sbinfo->max_inodes;
2868                 buf->f_ffree = sbinfo->free_inodes;
2869         }
2870         /* else leave those fields 0 like simple_statfs */
2871
2872         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2873
2874         return 0;
2875 }
2876
2877 /*
2878  * File creation. Allocate an inode, and we're done..
2879  */
2880 static int
2881 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2882             struct dentry *dentry, umode_t mode, dev_t dev)
2883 {
2884         struct inode *inode;
2885         int error = -ENOSPC;
2886
2887         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2888         if (inode) {
2889                 error = simple_acl_create(dir, inode);
2890                 if (error)
2891                         goto out_iput;
2892                 error = security_inode_init_security(inode, dir,
2893                                                      &dentry->d_name,
2894                                                      shmem_initxattrs, NULL);
2895                 if (error && error != -EOPNOTSUPP)
2896                         goto out_iput;
2897
2898                 error = 0;
2899                 dir->i_size += BOGO_DIRENT_SIZE;
2900                 dir->i_ctime = dir->i_mtime = current_time(dir);
2901                 d_instantiate(dentry, inode);
2902                 dget(dentry); /* Extra count - pin the dentry in core */
2903         }
2904         return error;
2905 out_iput:
2906         iput(inode);
2907         return error;
2908 }
2909
2910 static int
2911 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2912               struct dentry *dentry, umode_t mode)
2913 {
2914         struct inode *inode;
2915         int error = -ENOSPC;
2916
2917         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2918         if (inode) {
2919                 error = security_inode_init_security(inode, dir,
2920                                                      NULL,
2921                                                      shmem_initxattrs, NULL);
2922                 if (error && error != -EOPNOTSUPP)
2923                         goto out_iput;
2924                 error = simple_acl_create(dir, inode);
2925                 if (error)
2926                         goto out_iput;
2927                 d_tmpfile(dentry, inode);
2928         }
2929         return error;
2930 out_iput:
2931         iput(inode);
2932         return error;
2933 }
2934
2935 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2936                        struct dentry *dentry, umode_t mode)
2937 {
2938         int error;
2939
2940         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2941                                  mode | S_IFDIR, 0)))
2942                 return error;
2943         inc_nlink(dir);
2944         return 0;
2945 }
2946
2947 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2948                         struct dentry *dentry, umode_t mode, bool excl)
2949 {
2950         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2951 }
2952
2953 /*
2954  * Link a file..
2955  */
2956 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2957 {
2958         struct inode *inode = d_inode(old_dentry);
2959         int ret = 0;
2960
2961         /*
2962          * No ordinary (disk based) filesystem counts links as inodes;
2963          * but each new link needs a new dentry, pinning lowmem, and
2964          * tmpfs dentries cannot be pruned until they are unlinked.
2965          * But if an O_TMPFILE file is linked into the tmpfs, the
2966          * first link must skip that, to get the accounting right.
2967          */
2968         if (inode->i_nlink) {
2969                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2970                 if (ret)
2971                         goto out;
2972         }
2973
2974         dir->i_size += BOGO_DIRENT_SIZE;
2975         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2976         inc_nlink(inode);
2977         ihold(inode);   /* New dentry reference */
2978         dget(dentry);           /* Extra pinning count for the created dentry */
2979         d_instantiate(dentry, inode);
2980 out:
2981         return ret;
2982 }
2983
2984 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2985 {
2986         struct inode *inode = d_inode(dentry);
2987
2988         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2989                 shmem_free_inode(inode->i_sb);
2990
2991         dir->i_size -= BOGO_DIRENT_SIZE;
2992         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2993         drop_nlink(inode);
2994         dput(dentry);   /* Undo the count from "create" - this does all the work */
2995         return 0;
2996 }
2997
2998 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2999 {
3000         if (!simple_empty(dentry))
3001                 return -ENOTEMPTY;
3002
3003         drop_nlink(d_inode(dentry));
3004         drop_nlink(dir);
3005         return shmem_unlink(dir, dentry);
3006 }
3007
3008 static int shmem_whiteout(struct user_namespace *mnt_userns,
3009                           struct inode *old_dir, struct dentry *old_dentry)
3010 {
3011         struct dentry *whiteout;
3012         int error;
3013
3014         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3015         if (!whiteout)
3016                 return -ENOMEM;
3017
3018         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3019                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3020         dput(whiteout);
3021         if (error)
3022                 return error;
3023
3024         /*
3025          * Cheat and hash the whiteout while the old dentry is still in
3026          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3027          *
3028          * d_lookup() will consistently find one of them at this point,
3029          * not sure which one, but that isn't even important.
3030          */
3031         d_rehash(whiteout);
3032         return 0;
3033 }
3034
3035 /*
3036  * The VFS layer already does all the dentry stuff for rename,
3037  * we just have to decrement the usage count for the target if
3038  * it exists so that the VFS layer correctly free's it when it
3039  * gets overwritten.
3040  */
3041 static int shmem_rename2(struct user_namespace *mnt_userns,
3042                          struct inode *old_dir, struct dentry *old_dentry,
3043                          struct inode *new_dir, struct dentry *new_dentry,
3044                          unsigned int flags)
3045 {
3046         struct inode *inode = d_inode(old_dentry);
3047         int they_are_dirs = S_ISDIR(inode->i_mode);
3048
3049         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3050                 return -EINVAL;
3051
3052         if (flags & RENAME_EXCHANGE)
3053                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3054
3055         if (!simple_empty(new_dentry))
3056                 return -ENOTEMPTY;
3057
3058         if (flags & RENAME_WHITEOUT) {
3059                 int error;
3060
3061                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3062                 if (error)
3063                         return error;
3064         }
3065
3066         if (d_really_is_positive(new_dentry)) {
3067                 (void) shmem_unlink(new_dir, new_dentry);
3068                 if (they_are_dirs) {
3069                         drop_nlink(d_inode(new_dentry));
3070                         drop_nlink(old_dir);
3071                 }
3072         } else if (they_are_dirs) {
3073                 drop_nlink(old_dir);
3074                 inc_nlink(new_dir);
3075         }
3076
3077         old_dir->i_size -= BOGO_DIRENT_SIZE;
3078         new_dir->i_size += BOGO_DIRENT_SIZE;
3079         old_dir->i_ctime = old_dir->i_mtime =
3080         new_dir->i_ctime = new_dir->i_mtime =
3081         inode->i_ctime = current_time(old_dir);
3082         return 0;
3083 }
3084
3085 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3086                          struct dentry *dentry, const char *symname)
3087 {
3088         int error;
3089         int len;
3090         struct inode *inode;
3091         struct page *page;
3092
3093         len = strlen(symname) + 1;
3094         if (len > PAGE_SIZE)
3095                 return -ENAMETOOLONG;
3096
3097         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3098                                 VM_NORESERVE);
3099         if (!inode)
3100                 return -ENOSPC;
3101
3102         error = security_inode_init_security(inode, dir, &dentry->d_name,
3103                                              shmem_initxattrs, NULL);
3104         if (error && error != -EOPNOTSUPP) {
3105                 iput(inode);
3106                 return error;
3107         }
3108
3109         inode->i_size = len-1;
3110         if (len <= SHORT_SYMLINK_LEN) {
3111                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3112                 if (!inode->i_link) {
3113                         iput(inode);
3114                         return -ENOMEM;
3115                 }
3116                 inode->i_op = &shmem_short_symlink_operations;
3117         } else {
3118                 inode_nohighmem(inode);
3119                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3120                 if (error) {
3121                         iput(inode);
3122                         return error;
3123                 }
3124                 inode->i_mapping->a_ops = &shmem_aops;
3125                 inode->i_op = &shmem_symlink_inode_operations;
3126                 memcpy(page_address(page), symname, len);
3127                 SetPageUptodate(page);
3128                 set_page_dirty(page);
3129                 unlock_page(page);
3130                 put_page(page);
3131         }
3132         dir->i_size += BOGO_DIRENT_SIZE;
3133         dir->i_ctime = dir->i_mtime = current_time(dir);
3134         d_instantiate(dentry, inode);
3135         dget(dentry);
3136         return 0;
3137 }
3138
3139 static void shmem_put_link(void *arg)
3140 {
3141         mark_page_accessed(arg);
3142         put_page(arg);
3143 }
3144
3145 static const char *shmem_get_link(struct dentry *dentry,
3146                                   struct inode *inode,
3147                                   struct delayed_call *done)
3148 {
3149         struct page *page = NULL;
3150         int error;
3151         if (!dentry) {
3152                 page = find_get_page(inode->i_mapping, 0);
3153                 if (!page)
3154                         return ERR_PTR(-ECHILD);
3155                 if (PageHWPoison(page) ||
3156                     !PageUptodate(page)) {
3157                         put_page(page);
3158                         return ERR_PTR(-ECHILD);
3159                 }
3160         } else {
3161                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3162                 if (error)
3163                         return ERR_PTR(error);
3164                 if (!page)
3165                         return ERR_PTR(-ECHILD);
3166                 if (PageHWPoison(page)) {
3167                         unlock_page(page);
3168                         put_page(page);
3169                         return ERR_PTR(-ECHILD);
3170                 }
3171                 unlock_page(page);
3172         }
3173         set_delayed_call(done, shmem_put_link, page);
3174         return page_address(page);
3175 }
3176
3177 #ifdef CONFIG_TMPFS_XATTR
3178
3179 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3180 {
3181         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3182
3183         fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3184
3185         return 0;
3186 }
3187
3188 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3189                               struct dentry *dentry, struct fileattr *fa)
3190 {
3191         struct inode *inode = d_inode(dentry);
3192         struct shmem_inode_info *info = SHMEM_I(inode);
3193
3194         if (fileattr_has_fsx(fa))
3195                 return -EOPNOTSUPP;
3196         if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3197                 return -EOPNOTSUPP;
3198
3199         info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3200                 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3201
3202         shmem_set_inode_flags(inode, info->fsflags);
3203         inode->i_ctime = current_time(inode);
3204         return 0;
3205 }
3206
3207 /*
3208  * Superblocks without xattr inode operations may get some security.* xattr
3209  * support from the LSM "for free". As soon as we have any other xattrs
3210  * like ACLs, we also need to implement the security.* handlers at
3211  * filesystem level, though.
3212  */
3213
3214 /*
3215  * Callback for security_inode_init_security() for acquiring xattrs.
3216  */
3217 static int shmem_initxattrs(struct inode *inode,
3218                             const struct xattr *xattr_array,
3219                             void *fs_info)
3220 {
3221         struct shmem_inode_info *info = SHMEM_I(inode);
3222         const struct xattr *xattr;
3223         struct simple_xattr *new_xattr;
3224         size_t len;
3225
3226         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3227                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3228                 if (!new_xattr)
3229                         return -ENOMEM;
3230
3231                 len = strlen(xattr->name) + 1;
3232                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3233                                           GFP_KERNEL);
3234                 if (!new_xattr->name) {
3235                         kvfree(new_xattr);
3236                         return -ENOMEM;
3237                 }
3238
3239                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3240                        XATTR_SECURITY_PREFIX_LEN);
3241                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3242                        xattr->name, len);
3243
3244                 simple_xattr_list_add(&info->xattrs, new_xattr);
3245         }
3246
3247         return 0;
3248 }
3249
3250 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3251                                    struct dentry *unused, struct inode *inode,
3252                                    const char *name, void *buffer, size_t size)
3253 {
3254         struct shmem_inode_info *info = SHMEM_I(inode);
3255
3256         name = xattr_full_name(handler, name);
3257         return simple_xattr_get(&info->xattrs, name, buffer, size);
3258 }
3259
3260 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3261                                    struct user_namespace *mnt_userns,
3262                                    struct dentry *unused, struct inode *inode,
3263                                    const char *name, const void *value,
3264                                    size_t size, int flags)
3265 {
3266         struct shmem_inode_info *info = SHMEM_I(inode);
3267
3268         name = xattr_full_name(handler, name);
3269         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3270 }
3271
3272 static const struct xattr_handler shmem_security_xattr_handler = {
3273         .prefix = XATTR_SECURITY_PREFIX,
3274         .get = shmem_xattr_handler_get,
3275         .set = shmem_xattr_handler_set,
3276 };
3277
3278 static const struct xattr_handler shmem_trusted_xattr_handler = {
3279         .prefix = XATTR_TRUSTED_PREFIX,
3280         .get = shmem_xattr_handler_get,
3281         .set = shmem_xattr_handler_set,
3282 };
3283
3284 static const struct xattr_handler *shmem_xattr_handlers[] = {
3285 #ifdef CONFIG_TMPFS_POSIX_ACL
3286         &posix_acl_access_xattr_handler,
3287         &posix_acl_default_xattr_handler,
3288 #endif
3289         &shmem_security_xattr_handler,
3290         &shmem_trusted_xattr_handler,
3291         NULL
3292 };
3293
3294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3295 {
3296         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3297         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3298 }
3299 #endif /* CONFIG_TMPFS_XATTR */
3300
3301 static const struct inode_operations shmem_short_symlink_operations = {
3302         .getattr        = shmem_getattr,
3303         .get_link       = simple_get_link,
3304 #ifdef CONFIG_TMPFS_XATTR
3305         .listxattr      = shmem_listxattr,
3306 #endif
3307 };
3308
3309 static const struct inode_operations shmem_symlink_inode_operations = {
3310         .getattr        = shmem_getattr,
3311         .get_link       = shmem_get_link,
3312 #ifdef CONFIG_TMPFS_XATTR
3313         .listxattr      = shmem_listxattr,
3314 #endif
3315 };
3316
3317 static struct dentry *shmem_get_parent(struct dentry *child)
3318 {
3319         return ERR_PTR(-ESTALE);
3320 }
3321
3322 static int shmem_match(struct inode *ino, void *vfh)
3323 {
3324         __u32 *fh = vfh;
3325         __u64 inum = fh[2];
3326         inum = (inum << 32) | fh[1];
3327         return ino->i_ino == inum && fh[0] == ino->i_generation;
3328 }
3329
3330 /* Find any alias of inode, but prefer a hashed alias */
3331 static struct dentry *shmem_find_alias(struct inode *inode)
3332 {
3333         struct dentry *alias = d_find_alias(inode);
3334
3335         return alias ?: d_find_any_alias(inode);
3336 }
3337
3338
3339 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3340                 struct fid *fid, int fh_len, int fh_type)
3341 {
3342         struct inode *inode;
3343         struct dentry *dentry = NULL;
3344         u64 inum;
3345
3346         if (fh_len < 3)
3347                 return NULL;
3348
3349         inum = fid->raw[2];
3350         inum = (inum << 32) | fid->raw[1];
3351
3352         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3353                         shmem_match, fid->raw);
3354         if (inode) {
3355                 dentry = shmem_find_alias(inode);
3356                 iput(inode);
3357         }
3358
3359         return dentry;
3360 }
3361
3362 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3363                                 struct inode *parent)
3364 {
3365         if (*len < 3) {
3366                 *len = 3;
3367                 return FILEID_INVALID;
3368         }
3369
3370         if (inode_unhashed(inode)) {
3371                 /* Unfortunately insert_inode_hash is not idempotent,
3372                  * so as we hash inodes here rather than at creation
3373                  * time, we need a lock to ensure we only try
3374                  * to do it once
3375                  */
3376                 static DEFINE_SPINLOCK(lock);
3377                 spin_lock(&lock);
3378                 if (inode_unhashed(inode))
3379                         __insert_inode_hash(inode,
3380                                             inode->i_ino + inode->i_generation);
3381                 spin_unlock(&lock);
3382         }
3383
3384         fh[0] = inode->i_generation;
3385         fh[1] = inode->i_ino;
3386         fh[2] = ((__u64)inode->i_ino) >> 32;
3387
3388         *len = 3;
3389         return 1;
3390 }
3391
3392 static const struct export_operations shmem_export_ops = {
3393         .get_parent     = shmem_get_parent,
3394         .encode_fh      = shmem_encode_fh,
3395         .fh_to_dentry   = shmem_fh_to_dentry,
3396 };
3397
3398 enum shmem_param {
3399         Opt_gid,
3400         Opt_huge,
3401         Opt_mode,
3402         Opt_mpol,
3403         Opt_nr_blocks,
3404         Opt_nr_inodes,
3405         Opt_size,
3406         Opt_uid,
3407         Opt_inode32,
3408         Opt_inode64,
3409 };
3410
3411 static const struct constant_table shmem_param_enums_huge[] = {
3412         {"never",       SHMEM_HUGE_NEVER },
3413         {"always",      SHMEM_HUGE_ALWAYS },
3414         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3415         {"advise",      SHMEM_HUGE_ADVISE },
3416         {}
3417 };
3418
3419 const struct fs_parameter_spec shmem_fs_parameters[] = {
3420         fsparam_u32   ("gid",           Opt_gid),
3421         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3422         fsparam_u32oct("mode",          Opt_mode),
3423         fsparam_string("mpol",          Opt_mpol),
3424         fsparam_string("nr_blocks",     Opt_nr_blocks),
3425         fsparam_string("nr_inodes",     Opt_nr_inodes),
3426         fsparam_string("size",          Opt_size),
3427         fsparam_u32   ("uid",           Opt_uid),
3428         fsparam_flag  ("inode32",       Opt_inode32),
3429         fsparam_flag  ("inode64",       Opt_inode64),
3430         {}
3431 };
3432
3433 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3434 {
3435         struct shmem_options *ctx = fc->fs_private;
3436         struct fs_parse_result result;
3437         unsigned long long size;
3438         char *rest;
3439         int opt;
3440
3441         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3442         if (opt < 0)
3443                 return opt;
3444
3445         switch (opt) {
3446         case Opt_size:
3447                 size = memparse(param->string, &rest);
3448                 if (*rest == '%') {
3449                         size <<= PAGE_SHIFT;
3450                         size *= totalram_pages();
3451                         do_div(size, 100);
3452                         rest++;
3453                 }
3454                 if (*rest)
3455                         goto bad_value;
3456                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3457                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3458                 break;
3459         case Opt_nr_blocks:
3460                 ctx->blocks = memparse(param->string, &rest);
3461                 if (*rest || ctx->blocks > S64_MAX)
3462                         goto bad_value;
3463                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3464                 break;
3465         case Opt_nr_inodes:
3466                 ctx->inodes = memparse(param->string, &rest);
3467                 if (*rest)
3468                         goto bad_value;
3469                 ctx->seen |= SHMEM_SEEN_INODES;
3470                 break;
3471         case Opt_mode:
3472                 ctx->mode = result.uint_32 & 07777;
3473                 break;
3474         case Opt_uid:
3475                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3476                 if (!uid_valid(ctx->uid))
3477                         goto bad_value;
3478                 break;
3479         case Opt_gid:
3480                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3481                 if (!gid_valid(ctx->gid))
3482                         goto bad_value;
3483                 break;
3484         case Opt_huge:
3485                 ctx->huge = result.uint_32;
3486                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3487                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3488                       has_transparent_hugepage()))
3489                         goto unsupported_parameter;
3490                 ctx->seen |= SHMEM_SEEN_HUGE;
3491                 break;
3492         case Opt_mpol:
3493                 if (IS_ENABLED(CONFIG_NUMA)) {
3494                         mpol_put(ctx->mpol);
3495                         ctx->mpol = NULL;
3496                         if (mpol_parse_str(param->string, &ctx->mpol))
3497                                 goto bad_value;
3498                         break;
3499                 }
3500                 goto unsupported_parameter;
3501         case Opt_inode32:
3502                 ctx->full_inums = false;
3503                 ctx->seen |= SHMEM_SEEN_INUMS;
3504                 break;
3505         case Opt_inode64:
3506                 if (sizeof(ino_t) < 8) {
3507                         return invalfc(fc,
3508                                        "Cannot use inode64 with <64bit inums in kernel\n");
3509                 }
3510                 ctx->full_inums = true;
3511                 ctx->seen |= SHMEM_SEEN_INUMS;
3512                 break;
3513         }
3514         return 0;
3515
3516 unsupported_parameter:
3517         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3518 bad_value:
3519         return invalfc(fc, "Bad value for '%s'", param->key);
3520 }
3521
3522 static int shmem_parse_options(struct fs_context *fc, void *data)
3523 {
3524         char *options = data;
3525
3526         if (options) {
3527                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3528                 if (err)
3529                         return err;
3530         }
3531
3532         while (options != NULL) {
3533                 char *this_char = options;
3534                 for (;;) {
3535                         /*
3536                          * NUL-terminate this option: unfortunately,
3537                          * mount options form a comma-separated list,
3538                          * but mpol's nodelist may also contain commas.
3539                          */
3540                         options = strchr(options, ',');
3541                         if (options == NULL)
3542                                 break;
3543                         options++;
3544                         if (!isdigit(*options)) {
3545                                 options[-1] = '\0';
3546                                 break;
3547                         }
3548                 }
3549                 if (*this_char) {
3550                         char *value = strchr(this_char, '=');
3551                         size_t len = 0;
3552                         int err;
3553
3554                         if (value) {
3555                                 *value++ = '\0';
3556                                 len = strlen(value);
3557                         }
3558                         err = vfs_parse_fs_string(fc, this_char, value, len);
3559                         if (err < 0)
3560                                 return err;
3561                 }
3562         }
3563         return 0;
3564 }
3565
3566 /*
3567  * Reconfigure a shmem filesystem.
3568  *
3569  * Note that we disallow change from limited->unlimited blocks/inodes while any
3570  * are in use; but we must separately disallow unlimited->limited, because in
3571  * that case we have no record of how much is already in use.
3572  */
3573 static int shmem_reconfigure(struct fs_context *fc)
3574 {
3575         struct shmem_options *ctx = fc->fs_private;
3576         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3577         unsigned long inodes;
3578         struct mempolicy *mpol = NULL;
3579         const char *err;
3580
3581         raw_spin_lock(&sbinfo->stat_lock);
3582         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3583
3584         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3585                 if (!sbinfo->max_blocks) {
3586                         err = "Cannot retroactively limit size";
3587                         goto out;
3588                 }
3589                 if (percpu_counter_compare(&sbinfo->used_blocks,
3590                                            ctx->blocks) > 0) {
3591                         err = "Too small a size for current use";
3592                         goto out;
3593                 }
3594         }
3595         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3596                 if (!sbinfo->max_inodes) {
3597                         err = "Cannot retroactively limit inodes";
3598                         goto out;
3599                 }
3600                 if (ctx->inodes < inodes) {
3601                         err = "Too few inodes for current use";
3602                         goto out;
3603                 }
3604         }
3605
3606         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3607             sbinfo->next_ino > UINT_MAX) {
3608                 err = "Current inum too high to switch to 32-bit inums";
3609                 goto out;
3610         }
3611
3612         if (ctx->seen & SHMEM_SEEN_HUGE)
3613                 sbinfo->huge = ctx->huge;
3614         if (ctx->seen & SHMEM_SEEN_INUMS)
3615                 sbinfo->full_inums = ctx->full_inums;
3616         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3617                 sbinfo->max_blocks  = ctx->blocks;
3618         if (ctx->seen & SHMEM_SEEN_INODES) {
3619                 sbinfo->max_inodes  = ctx->inodes;
3620                 sbinfo->free_inodes = ctx->inodes - inodes;
3621         }
3622
3623         /*
3624          * Preserve previous mempolicy unless mpol remount option was specified.
3625          */
3626         if (ctx->mpol) {
3627                 mpol = sbinfo->mpol;
3628                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3629                 ctx->mpol = NULL;
3630         }
3631         raw_spin_unlock(&sbinfo->stat_lock);
3632         mpol_put(mpol);
3633         return 0;
3634 out:
3635         raw_spin_unlock(&sbinfo->stat_lock);
3636         return invalfc(fc, "%s", err);
3637 }
3638
3639 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3640 {
3641         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3642
3643         if (sbinfo->max_blocks != shmem_default_max_blocks())
3644                 seq_printf(seq, ",size=%luk",
3645                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3646         if (sbinfo->max_inodes != shmem_default_max_inodes())
3647                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3648         if (sbinfo->mode != (0777 | S_ISVTX))
3649                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3650         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3651                 seq_printf(seq, ",uid=%u",
3652                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3653         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3654                 seq_printf(seq, ",gid=%u",
3655                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3656
3657         /*
3658          * Showing inode{64,32} might be useful even if it's the system default,
3659          * since then people don't have to resort to checking both here and
3660          * /proc/config.gz to confirm 64-bit inums were successfully applied
3661          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3662          *
3663          * We hide it when inode64 isn't the default and we are using 32-bit
3664          * inodes, since that probably just means the feature isn't even under
3665          * consideration.
3666          *
3667          * As such:
3668          *
3669          *                     +-----------------+-----------------+
3670          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3671          *  +------------------+-----------------+-----------------+
3672          *  | full_inums=true  | show            | show            |
3673          *  | full_inums=false | show            | hide            |
3674          *  +------------------+-----------------+-----------------+
3675          *
3676          */
3677         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3678                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3680         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3681         if (sbinfo->huge)
3682                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3683 #endif
3684         shmem_show_mpol(seq, sbinfo->mpol);
3685         return 0;
3686 }
3687
3688 #endif /* CONFIG_TMPFS */
3689
3690 static void shmem_put_super(struct super_block *sb)
3691 {
3692         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3693
3694         free_percpu(sbinfo->ino_batch);
3695         percpu_counter_destroy(&sbinfo->used_blocks);
3696         mpol_put(sbinfo->mpol);
3697         kfree(sbinfo);
3698         sb->s_fs_info = NULL;
3699 }
3700
3701 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3702 {
3703         struct shmem_options *ctx = fc->fs_private;
3704         struct inode *inode;
3705         struct shmem_sb_info *sbinfo;
3706
3707         /* Round up to L1_CACHE_BYTES to resist false sharing */
3708         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3709                                 L1_CACHE_BYTES), GFP_KERNEL);
3710         if (!sbinfo)
3711                 return -ENOMEM;
3712
3713         sb->s_fs_info = sbinfo;
3714
3715 #ifdef CONFIG_TMPFS
3716         /*
3717          * Per default we only allow half of the physical ram per
3718          * tmpfs instance, limiting inodes to one per page of lowmem;
3719          * but the internal instance is left unlimited.
3720          */
3721         if (!(sb->s_flags & SB_KERNMOUNT)) {
3722                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3723                         ctx->blocks = shmem_default_max_blocks();
3724                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3725                         ctx->inodes = shmem_default_max_inodes();
3726                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3727                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3728         } else {
3729                 sb->s_flags |= SB_NOUSER;
3730         }
3731         sb->s_export_op = &shmem_export_ops;
3732         sb->s_flags |= SB_NOSEC;
3733 #else
3734         sb->s_flags |= SB_NOUSER;
3735 #endif
3736         sbinfo->max_blocks = ctx->blocks;
3737         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3738         if (sb->s_flags & SB_KERNMOUNT) {
3739                 sbinfo->ino_batch = alloc_percpu(ino_t);
3740                 if (!sbinfo->ino_batch)
3741                         goto failed;
3742         }
3743         sbinfo->uid = ctx->uid;
3744         sbinfo->gid = ctx->gid;
3745         sbinfo->full_inums = ctx->full_inums;
3746         sbinfo->mode = ctx->mode;
3747         sbinfo->huge = ctx->huge;
3748         sbinfo->mpol = ctx->mpol;
3749         ctx->mpol = NULL;
3750
3751         raw_spin_lock_init(&sbinfo->stat_lock);
3752         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3753                 goto failed;
3754         spin_lock_init(&sbinfo->shrinklist_lock);
3755         INIT_LIST_HEAD(&sbinfo->shrinklist);
3756
3757         sb->s_maxbytes = MAX_LFS_FILESIZE;
3758         sb->s_blocksize = PAGE_SIZE;
3759         sb->s_blocksize_bits = PAGE_SHIFT;
3760         sb->s_magic = TMPFS_MAGIC;
3761         sb->s_op = &shmem_ops;
3762         sb->s_time_gran = 1;
3763 #ifdef CONFIG_TMPFS_XATTR
3764         sb->s_xattr = shmem_xattr_handlers;
3765 #endif
3766 #ifdef CONFIG_TMPFS_POSIX_ACL
3767         sb->s_flags |= SB_POSIXACL;
3768 #endif
3769         uuid_gen(&sb->s_uuid);
3770
3771         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3772         if (!inode)
3773                 goto failed;
3774         inode->i_uid = sbinfo->uid;
3775         inode->i_gid = sbinfo->gid;
3776         sb->s_root = d_make_root(inode);
3777         if (!sb->s_root)
3778                 goto failed;
3779         return 0;
3780
3781 failed:
3782         shmem_put_super(sb);
3783         return -ENOMEM;
3784 }
3785
3786 static int shmem_get_tree(struct fs_context *fc)
3787 {
3788         return get_tree_nodev(fc, shmem_fill_super);
3789 }
3790
3791 static void shmem_free_fc(struct fs_context *fc)
3792 {
3793         struct shmem_options *ctx = fc->fs_private;
3794
3795         if (ctx) {
3796                 mpol_put(ctx->mpol);
3797                 kfree(ctx);
3798         }
3799 }
3800
3801 static const struct fs_context_operations shmem_fs_context_ops = {
3802         .free                   = shmem_free_fc,
3803         .get_tree               = shmem_get_tree,
3804 #ifdef CONFIG_TMPFS
3805         .parse_monolithic       = shmem_parse_options,
3806         .parse_param            = shmem_parse_one,
3807         .reconfigure            = shmem_reconfigure,
3808 #endif
3809 };
3810
3811 static struct kmem_cache *shmem_inode_cachep;
3812
3813 static struct inode *shmem_alloc_inode(struct super_block *sb)
3814 {
3815         struct shmem_inode_info *info;
3816         info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3817         if (!info)
3818                 return NULL;
3819         return &info->vfs_inode;
3820 }
3821
3822 static void shmem_free_in_core_inode(struct inode *inode)
3823 {
3824         if (S_ISLNK(inode->i_mode))
3825                 kfree(inode->i_link);
3826         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3827 }
3828
3829 static void shmem_destroy_inode(struct inode *inode)
3830 {
3831         if (S_ISREG(inode->i_mode))
3832                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3833 }
3834
3835 static void shmem_init_inode(void *foo)
3836 {
3837         struct shmem_inode_info *info = foo;
3838         inode_init_once(&info->vfs_inode);
3839 }
3840
3841 static void shmem_init_inodecache(void)
3842 {
3843         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3844                                 sizeof(struct shmem_inode_info),
3845                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3846 }
3847
3848 static void shmem_destroy_inodecache(void)
3849 {
3850         kmem_cache_destroy(shmem_inode_cachep);
3851 }
3852
3853 /* Keep the page in page cache instead of truncating it */
3854 static int shmem_error_remove_page(struct address_space *mapping,
3855                                    struct page *page)
3856 {
3857         return 0;
3858 }
3859
3860 const struct address_space_operations shmem_aops = {
3861         .writepage      = shmem_writepage,
3862         .dirty_folio    = noop_dirty_folio,
3863 #ifdef CONFIG_TMPFS
3864         .write_begin    = shmem_write_begin,
3865         .write_end      = shmem_write_end,
3866 #endif
3867 #ifdef CONFIG_MIGRATION
3868         .migrate_folio  = migrate_folio,
3869 #endif
3870         .error_remove_page = shmem_error_remove_page,
3871 };
3872 EXPORT_SYMBOL(shmem_aops);
3873
3874 static const struct file_operations shmem_file_operations = {
3875         .mmap           = shmem_mmap,
3876         .get_unmapped_area = shmem_get_unmapped_area,
3877 #ifdef CONFIG_TMPFS
3878         .llseek         = shmem_file_llseek,
3879         .read_iter      = shmem_file_read_iter,
3880         .write_iter     = generic_file_write_iter,
3881         .fsync          = noop_fsync,
3882         .splice_read    = generic_file_splice_read,
3883         .splice_write   = iter_file_splice_write,
3884         .fallocate      = shmem_fallocate,
3885 #endif
3886 };
3887
3888 static const struct inode_operations shmem_inode_operations = {
3889         .getattr        = shmem_getattr,
3890         .setattr        = shmem_setattr,
3891 #ifdef CONFIG_TMPFS_XATTR
3892         .listxattr      = shmem_listxattr,
3893         .set_acl        = simple_set_acl,
3894         .fileattr_get   = shmem_fileattr_get,
3895         .fileattr_set   = shmem_fileattr_set,
3896 #endif
3897 };
3898
3899 static const struct inode_operations shmem_dir_inode_operations = {
3900 #ifdef CONFIG_TMPFS
3901         .getattr        = shmem_getattr,
3902         .create         = shmem_create,
3903         .lookup         = simple_lookup,
3904         .link           = shmem_link,
3905         .unlink         = shmem_unlink,
3906         .symlink        = shmem_symlink,
3907         .mkdir          = shmem_mkdir,
3908         .rmdir          = shmem_rmdir,
3909         .mknod          = shmem_mknod,
3910         .rename         = shmem_rename2,
3911         .tmpfile        = shmem_tmpfile,
3912 #endif
3913 #ifdef CONFIG_TMPFS_XATTR
3914         .listxattr      = shmem_listxattr,
3915         .fileattr_get   = shmem_fileattr_get,
3916         .fileattr_set   = shmem_fileattr_set,
3917 #endif
3918 #ifdef CONFIG_TMPFS_POSIX_ACL
3919         .setattr        = shmem_setattr,
3920         .set_acl        = simple_set_acl,
3921 #endif
3922 };
3923
3924 static const struct inode_operations shmem_special_inode_operations = {
3925         .getattr        = shmem_getattr,
3926 #ifdef CONFIG_TMPFS_XATTR
3927         .listxattr      = shmem_listxattr,
3928 #endif
3929 #ifdef CONFIG_TMPFS_POSIX_ACL
3930         .setattr        = shmem_setattr,
3931         .set_acl        = simple_set_acl,
3932 #endif
3933 };
3934
3935 static const struct super_operations shmem_ops = {
3936         .alloc_inode    = shmem_alloc_inode,
3937         .free_inode     = shmem_free_in_core_inode,
3938         .destroy_inode  = shmem_destroy_inode,
3939 #ifdef CONFIG_TMPFS
3940         .statfs         = shmem_statfs,
3941         .show_options   = shmem_show_options,
3942 #endif
3943         .evict_inode    = shmem_evict_inode,
3944         .drop_inode     = generic_delete_inode,
3945         .put_super      = shmem_put_super,
3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3947         .nr_cached_objects      = shmem_unused_huge_count,
3948         .free_cached_objects    = shmem_unused_huge_scan,
3949 #endif
3950 };
3951
3952 static const struct vm_operations_struct shmem_vm_ops = {
3953         .fault          = shmem_fault,
3954         .map_pages      = filemap_map_pages,
3955 #ifdef CONFIG_NUMA
3956         .set_policy     = shmem_set_policy,
3957         .get_policy     = shmem_get_policy,
3958 #endif
3959 };
3960
3961 int shmem_init_fs_context(struct fs_context *fc)
3962 {
3963         struct shmem_options *ctx;
3964
3965         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3966         if (!ctx)
3967                 return -ENOMEM;
3968
3969         ctx->mode = 0777 | S_ISVTX;
3970         ctx->uid = current_fsuid();
3971         ctx->gid = current_fsgid();
3972
3973         fc->fs_private = ctx;
3974         fc->ops = &shmem_fs_context_ops;
3975         return 0;
3976 }
3977
3978 static struct file_system_type shmem_fs_type = {
3979         .owner          = THIS_MODULE,
3980         .name           = "tmpfs",
3981         .init_fs_context = shmem_init_fs_context,
3982 #ifdef CONFIG_TMPFS
3983         .parameters     = shmem_fs_parameters,
3984 #endif
3985         .kill_sb        = kill_litter_super,
3986         .fs_flags       = FS_USERNS_MOUNT,
3987 };
3988
3989 void __init shmem_init(void)
3990 {
3991         int error;
3992
3993         shmem_init_inodecache();
3994
3995         error = register_filesystem(&shmem_fs_type);
3996         if (error) {
3997                 pr_err("Could not register tmpfs\n");
3998                 goto out2;
3999         }
4000
4001         shm_mnt = kern_mount(&shmem_fs_type);
4002         if (IS_ERR(shm_mnt)) {
4003                 error = PTR_ERR(shm_mnt);
4004                 pr_err("Could not kern_mount tmpfs\n");
4005                 goto out1;
4006         }
4007
4008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4009         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4010                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4011         else
4012                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4013 #endif
4014         return;
4015
4016 out1:
4017         unregister_filesystem(&shmem_fs_type);
4018 out2:
4019         shmem_destroy_inodecache();
4020         shm_mnt = ERR_PTR(error);
4021 }
4022
4023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4024 static ssize_t shmem_enabled_show(struct kobject *kobj,
4025                                   struct kobj_attribute *attr, char *buf)
4026 {
4027         static const int values[] = {
4028                 SHMEM_HUGE_ALWAYS,
4029                 SHMEM_HUGE_WITHIN_SIZE,
4030                 SHMEM_HUGE_ADVISE,
4031                 SHMEM_HUGE_NEVER,
4032                 SHMEM_HUGE_DENY,
4033                 SHMEM_HUGE_FORCE,
4034         };
4035         int len = 0;
4036         int i;
4037
4038         for (i = 0; i < ARRAY_SIZE(values); i++) {
4039                 len += sysfs_emit_at(buf, len,
4040                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4041                                      i ? " " : "",
4042                                      shmem_format_huge(values[i]));
4043         }
4044
4045         len += sysfs_emit_at(buf, len, "\n");
4046
4047         return len;
4048 }
4049
4050 static ssize_t shmem_enabled_store(struct kobject *kobj,
4051                 struct kobj_attribute *attr, const char *buf, size_t count)
4052 {
4053         char tmp[16];
4054         int huge;
4055
4056         if (count + 1 > sizeof(tmp))
4057                 return -EINVAL;
4058         memcpy(tmp, buf, count);
4059         tmp[count] = '\0';
4060         if (count && tmp[count - 1] == '\n')
4061                 tmp[count - 1] = '\0';
4062
4063         huge = shmem_parse_huge(tmp);
4064         if (huge == -EINVAL)
4065                 return -EINVAL;
4066         if (!has_transparent_hugepage() &&
4067                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4068                 return -EINVAL;
4069
4070         shmem_huge = huge;
4071         if (shmem_huge > SHMEM_HUGE_DENY)
4072                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4073         return count;
4074 }
4075
4076 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4078
4079 #else /* !CONFIG_SHMEM */
4080
4081 /*
4082  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4083  *
4084  * This is intended for small system where the benefits of the full
4085  * shmem code (swap-backed and resource-limited) are outweighed by
4086  * their complexity. On systems without swap this code should be
4087  * effectively equivalent, but much lighter weight.
4088  */
4089
4090 static struct file_system_type shmem_fs_type = {
4091         .name           = "tmpfs",
4092         .init_fs_context = ramfs_init_fs_context,
4093         .parameters     = ramfs_fs_parameters,
4094         .kill_sb        = kill_litter_super,
4095         .fs_flags       = FS_USERNS_MOUNT,
4096 };
4097
4098 void __init shmem_init(void)
4099 {
4100         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4101
4102         shm_mnt = kern_mount(&shmem_fs_type);
4103         BUG_ON(IS_ERR(shm_mnt));
4104 }
4105
4106 int shmem_unuse(unsigned int type)
4107 {
4108         return 0;
4109 }
4110
4111 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4112 {
4113         return 0;
4114 }
4115
4116 void shmem_unlock_mapping(struct address_space *mapping)
4117 {
4118 }
4119
4120 #ifdef CONFIG_MMU
4121 unsigned long shmem_get_unmapped_area(struct file *file,
4122                                       unsigned long addr, unsigned long len,
4123                                       unsigned long pgoff, unsigned long flags)
4124 {
4125         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4126 }
4127 #endif
4128
4129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4130 {
4131         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4132 }
4133 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4134
4135 #define shmem_vm_ops                            generic_file_vm_ops
4136 #define shmem_file_operations                   ramfs_file_operations
4137 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4138 #define shmem_acct_size(flags, size)            0
4139 #define shmem_unacct_size(flags, size)          do {} while (0)
4140
4141 #endif /* CONFIG_SHMEM */
4142
4143 /* common code */
4144
4145 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4146                                        unsigned long flags, unsigned int i_flags)
4147 {
4148         struct inode *inode;
4149         struct file *res;
4150
4151         if (IS_ERR(mnt))
4152                 return ERR_CAST(mnt);
4153
4154         if (size < 0 || size > MAX_LFS_FILESIZE)
4155                 return ERR_PTR(-EINVAL);
4156
4157         if (shmem_acct_size(flags, size))
4158                 return ERR_PTR(-ENOMEM);
4159
4160         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4161                                 flags);
4162         if (unlikely(!inode)) {
4163                 shmem_unacct_size(flags, size);
4164                 return ERR_PTR(-ENOSPC);
4165         }
4166         inode->i_flags |= i_flags;
4167         inode->i_size = size;
4168         clear_nlink(inode);     /* It is unlinked */
4169         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4170         if (!IS_ERR(res))
4171                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4172                                 &shmem_file_operations);
4173         if (IS_ERR(res))
4174                 iput(inode);
4175         return res;
4176 }
4177
4178 /**
4179  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4180  *      kernel internal.  There will be NO LSM permission checks against the
4181  *      underlying inode.  So users of this interface must do LSM checks at a
4182  *      higher layer.  The users are the big_key and shm implementations.  LSM
4183  *      checks are provided at the key or shm level rather than the inode.
4184  * @name: name for dentry (to be seen in /proc/<pid>/maps
4185  * @size: size to be set for the file
4186  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4187  */
4188 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4189 {
4190         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4191 }
4192
4193 /**
4194  * shmem_file_setup - get an unlinked file living in tmpfs
4195  * @name: name for dentry (to be seen in /proc/<pid>/maps
4196  * @size: size to be set for the file
4197  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4198  */
4199 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4200 {
4201         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4202 }
4203 EXPORT_SYMBOL_GPL(shmem_file_setup);
4204
4205 /**
4206  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4207  * @mnt: the tmpfs mount where the file will be created
4208  * @name: name for dentry (to be seen in /proc/<pid>/maps
4209  * @size: size to be set for the file
4210  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4211  */
4212 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4213                                        loff_t size, unsigned long flags)
4214 {
4215         return __shmem_file_setup(mnt, name, size, flags, 0);
4216 }
4217 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4218
4219 /**
4220  * shmem_zero_setup - setup a shared anonymous mapping
4221  * @vma: the vma to be mmapped is prepared by do_mmap
4222  */
4223 int shmem_zero_setup(struct vm_area_struct *vma)
4224 {
4225         struct file *file;
4226         loff_t size = vma->vm_end - vma->vm_start;
4227
4228         /*
4229          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4230          * between XFS directory reading and selinux: since this file is only
4231          * accessible to the user through its mapping, use S_PRIVATE flag to
4232          * bypass file security, in the same way as shmem_kernel_file_setup().
4233          */
4234         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4235         if (IS_ERR(file))
4236                 return PTR_ERR(file);
4237
4238         if (vma->vm_file)
4239                 fput(vma->vm_file);
4240         vma->vm_file = file;
4241         vma->vm_ops = &shmem_vm_ops;
4242
4243         return 0;
4244 }
4245
4246 /**
4247  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4248  * @mapping:    the page's address_space
4249  * @index:      the page index
4250  * @gfp:        the page allocator flags to use if allocating
4251  *
4252  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4253  * with any new page allocations done using the specified allocation flags.
4254  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4255  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4256  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4257  *
4258  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4259  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4260  */
4261 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4262                                          pgoff_t index, gfp_t gfp)
4263 {
4264 #ifdef CONFIG_SHMEM
4265         struct inode *inode = mapping->host;
4266         struct page *page;
4267         int error;
4268
4269         BUG_ON(!shmem_mapping(mapping));
4270         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4271                                   gfp, NULL, NULL, NULL);
4272         if (error)
4273                 return ERR_PTR(error);
4274
4275         unlock_page(page);
4276         if (PageHWPoison(page)) {
4277                 put_page(page);
4278                 return ERR_PTR(-EIO);
4279         }
4280
4281         return page;
4282 #else
4283         /*
4284          * The tiny !SHMEM case uses ramfs without swap
4285          */
4286         return read_cache_page_gfp(mapping, index, gfp);
4287 #endif
4288 }
4289 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);