2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
83 #include <linux/uaccess.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_rwsem making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 struct folio **foliop, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
146 return sb->s_fs_info;
150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151 * for shared memory and for shared anonymous (/dev/zero) mappings
152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153 * consistent with the pre-accounting of private mappings ...
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
157 return (flags & VM_NORESERVE) ?
158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
163 if (!(flags & VM_NORESERVE))
164 vm_unacct_memory(VM_ACCT(size));
167 static inline int shmem_reacct_size(unsigned long flags,
168 loff_t oldsize, loff_t newsize)
170 if (!(flags & VM_NORESERVE)) {
171 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 return security_vm_enough_memory_mm(current->mm,
173 VM_ACCT(newsize) - VM_ACCT(oldsize));
174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
181 * ... whereas tmpfs objects are accounted incrementally as
182 * pages are allocated, in order to allow large sparse files.
183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
186 static inline int shmem_acct_block(unsigned long flags, long pages)
188 if (!(flags & VM_NORESERVE))
191 return security_vm_enough_memory_mm(current->mm,
192 pages * VM_ACCT(PAGE_SIZE));
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 if (flags & VM_NORESERVE)
198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
203 struct shmem_inode_info *info = SHMEM_I(inode);
204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
206 if (shmem_acct_block(info->flags, pages))
209 if (sbinfo->max_blocks) {
210 if (percpu_counter_compare(&sbinfo->used_blocks,
211 sbinfo->max_blocks - pages) > 0)
213 percpu_counter_add(&sbinfo->used_blocks, pages);
219 shmem_unacct_blocks(info->flags, pages);
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_sub(&sbinfo->used_blocks, pages);
230 shmem_unacct_blocks(info->flags, pages);
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
245 return vma->vm_ops == &shmem_anon_vm_ops;
248 bool vma_is_shmem(struct vm_area_struct *vma)
250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258 * produces a novel ino for the newly allocated inode.
260 * It may also be called when making a hard link to permit the space needed by
261 * each dentry. However, in that case, no new inode number is needed since that
262 * internally draws from another pool of inode numbers (currently global
263 * get_next_ino()). This case is indicated by passing NULL as inop.
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
271 if (!(sb->s_flags & SB_KERNMOUNT)) {
272 raw_spin_lock(&sbinfo->stat_lock);
273 if (sbinfo->max_inodes) {
274 if (!sbinfo->free_inodes) {
275 raw_spin_unlock(&sbinfo->stat_lock);
278 sbinfo->free_inodes--;
281 ino = sbinfo->next_ino++;
282 if (unlikely(is_zero_ino(ino)))
283 ino = sbinfo->next_ino++;
284 if (unlikely(!sbinfo->full_inums &&
287 * Emulate get_next_ino uint wraparound for
290 if (IS_ENABLED(CONFIG_64BIT))
291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 __func__, MINOR(sb->s_dev));
293 sbinfo->next_ino = 1;
294 ino = sbinfo->next_ino++;
298 raw_spin_unlock(&sbinfo->stat_lock);
301 * __shmem_file_setup, one of our callers, is lock-free: it
302 * doesn't hold stat_lock in shmem_reserve_inode since
303 * max_inodes is always 0, and is called from potentially
304 * unknown contexts. As such, use a per-cpu batched allocator
305 * which doesn't require the per-sb stat_lock unless we are at
306 * the batch boundary.
308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 * shmem mounts are not exposed to userspace, so we don't need
310 * to worry about things like glibc compatibility.
314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 raw_spin_lock(&sbinfo->stat_lock);
318 ino = sbinfo->next_ino;
319 sbinfo->next_ino += SHMEM_INO_BATCH;
320 raw_spin_unlock(&sbinfo->stat_lock);
321 if (unlikely(is_zero_ino(ino)))
332 static void shmem_free_inode(struct super_block *sb)
334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 if (sbinfo->max_inodes) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 sbinfo->free_inodes++;
338 raw_spin_unlock(&sbinfo->stat_lock);
343 * shmem_recalc_inode - recalculate the block usage of an inode
344 * @inode: inode to recalc
346 * We have to calculate the free blocks since the mm can drop
347 * undirtied hole pages behind our back.
349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
352 * It has to be called with the spinlock held.
354 static void shmem_recalc_inode(struct inode *inode)
356 struct shmem_inode_info *info = SHMEM_I(inode);
359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
361 info->alloced -= freed;
362 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 shmem_inode_unacct_blocks(inode, freed);
367 bool shmem_charge(struct inode *inode, long pages)
369 struct shmem_inode_info *info = SHMEM_I(inode);
372 if (!shmem_inode_acct_block(inode, pages))
375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 inode->i_mapping->nrpages += pages;
378 spin_lock_irqsave(&info->lock, flags);
379 info->alloced += pages;
380 inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 shmem_recalc_inode(inode);
382 spin_unlock_irqrestore(&info->lock, flags);
387 void shmem_uncharge(struct inode *inode, long pages)
389 struct shmem_inode_info *info = SHMEM_I(inode);
392 /* nrpages adjustment done by __filemap_remove_folio() or caller */
394 spin_lock_irqsave(&info->lock, flags);
395 info->alloced -= pages;
396 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 shmem_recalc_inode(inode);
398 spin_unlock_irqrestore(&info->lock, flags);
400 shmem_inode_unacct_blocks(inode, pages);
404 * Replace item expected in xarray by a new item, while holding xa_lock.
406 static int shmem_replace_entry(struct address_space *mapping,
407 pgoff_t index, void *expected, void *replacement)
409 XA_STATE(xas, &mapping->i_pages, index);
412 VM_BUG_ON(!expected);
413 VM_BUG_ON(!replacement);
414 item = xas_load(&xas);
415 if (item != expected)
417 xas_store(&xas, replacement);
422 * Sometimes, before we decide whether to proceed or to fail, we must check
423 * that an entry was not already brought back from swap by a racing thread.
425 * Checking page is not enough: by the time a SwapCache page is locked, it
426 * might be reused, and again be SwapCache, using the same swap as before.
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 pgoff_t index, swp_entry_t swap)
431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
438 * disables huge pages for the mount;
440 * enables huge pages for the mount;
441 * SHMEM_HUGE_WITHIN_SIZE:
442 * only allocate huge pages if the page will be fully within i_size,
443 * also respect fadvise()/madvise() hints;
445 * only allocate huge pages if requested with fadvise()/madvise();
448 #define SHMEM_HUGE_NEVER 0
449 #define SHMEM_HUGE_ALWAYS 1
450 #define SHMEM_HUGE_WITHIN_SIZE 2
451 #define SHMEM_HUGE_ADVISE 3
455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
458 * disables huge on shm_mnt and all mounts, for emergency use;
460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
463 #define SHMEM_HUGE_DENY (-1)
464 #define SHMEM_HUGE_FORCE (-2)
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
472 pgoff_t index, bool shmem_huge_force)
476 if (!S_ISREG(inode->i_mode))
478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
481 if (shmem_huge_force)
483 if (shmem_huge == SHMEM_HUGE_FORCE)
485 if (shmem_huge == SHMEM_HUGE_DENY)
488 switch (SHMEM_SB(inode->i_sb)->huge) {
489 case SHMEM_HUGE_ALWAYS:
491 case SHMEM_HUGE_WITHIN_SIZE:
492 index = round_up(index + 1, HPAGE_PMD_NR);
493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 if (i_size >> PAGE_SHIFT >= index)
497 case SHMEM_HUGE_ADVISE:
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
529 case SHMEM_HUGE_NEVER:
531 case SHMEM_HUGE_ALWAYS:
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
537 case SHMEM_HUGE_DENY:
539 case SHMEM_HUGE_FORCE:
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
551 LIST_HEAD(list), *pos, *next;
552 LIST_HEAD(to_remove);
554 struct shmem_inode_info *info;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
559 if (list_empty(&sbinfo->shrinklist))
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 inode = igrab(&info->vfs_inode);
569 /* inode is about to be evicted */
571 list_del_init(&info->shrinklist);
575 /* Check if there's anything to gain */
576 if (round_up(inode->i_size, PAGE_SIZE) ==
577 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
578 list_move(&info->shrinklist, &to_remove);
582 list_move(&info->shrinklist, &list);
584 sbinfo->shrinklist_len--;
588 spin_unlock(&sbinfo->shrinklist_lock);
590 list_for_each_safe(pos, next, &to_remove) {
591 info = list_entry(pos, struct shmem_inode_info, shrinklist);
592 inode = &info->vfs_inode;
593 list_del_init(&info->shrinklist);
597 list_for_each_safe(pos, next, &list) {
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
604 if (nr_to_split && split >= nr_to_split)
607 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
608 folio = filemap_get_folio(inode->i_mapping, index);
612 /* No huge page at the end of the file: nothing to split */
613 if (!folio_test_large(folio)) {
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
622 * Waiting for the lock may lead to deadlock in the
625 if (!folio_trylock(folio)) {
630 ret = split_folio(folio);
634 /* If split failed move the inode on the list back to shrinklist */
640 list_del_init(&info->shrinklist);
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 if (!READ_ONCE(sbinfo->shrinklist_len))
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 #define shmem_huge SHMEM_HUGE_DENY
681 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
682 pgoff_t index, bool shmem_huge_force)
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695 * Like filemap_add_folio, but error if expected item has gone.
697 static int shmem_add_to_page_cache(struct folio *folio,
698 struct address_space *mapping,
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
702 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
703 long nr = folio_nr_pages(folio);
706 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
707 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
708 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
709 VM_BUG_ON(expected && folio_test_large(folio));
711 folio_ref_add(folio, nr);
712 folio->mapping = mapping;
713 folio->index = index;
715 if (!folio_test_swapcache(folio)) {
716 error = mem_cgroup_charge(folio, charge_mm, gfp);
718 if (folio_test_pmd_mappable(folio)) {
719 count_vm_event(THP_FILE_FALLBACK);
720 count_vm_event(THP_FILE_FALLBACK_CHARGE);
725 folio_throttle_swaprate(folio, gfp);
729 if (expected != xas_find_conflict(&xas)) {
730 xas_set_err(&xas, -EEXIST);
733 if (expected && xas_find_conflict(&xas)) {
734 xas_set_err(&xas, -EEXIST);
737 xas_store(&xas, folio);
740 if (folio_test_pmd_mappable(folio)) {
741 count_vm_event(THP_FILE_ALLOC);
742 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 mapping->nrpages += nr;
745 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
746 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 xas_unlock_irq(&xas);
749 } while (xas_nomem(&xas, gfp));
751 if (xas_error(&xas)) {
752 error = xas_error(&xas);
758 folio->mapping = NULL;
759 folio_ref_sub(folio, nr);
764 * Like delete_from_page_cache, but substitutes swap for @folio.
766 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
768 struct address_space *mapping = folio->mapping;
769 long nr = folio_nr_pages(folio);
772 xa_lock_irq(&mapping->i_pages);
773 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
774 folio->mapping = NULL;
775 mapping->nrpages -= nr;
776 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
777 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
778 xa_unlock_irq(&mapping->i_pages);
784 * Remove swap entry from page cache, free the swap and its page cache.
786 static int shmem_free_swap(struct address_space *mapping,
787 pgoff_t index, void *radswap)
791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 free_swap_and_cache(radix_to_swp_entry(radswap));
799 * Determine (in bytes) how many of the shmem object's pages mapped by the
800 * given offsets are swapped out.
802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803 * as long as the inode doesn't go away and racy results are not a problem.
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 pgoff_t start, pgoff_t end)
808 XA_STATE(xas, &mapping->i_pages, start);
810 unsigned long swapped = 0;
813 xas_for_each(&xas, page, end - 1) {
814 if (xas_retry(&xas, page))
816 if (xa_is_value(page))
819 if (need_resched()) {
827 return swapped << PAGE_SHIFT;
831 * Determine (in bytes) how many of the shmem object's pages mapped by the
832 * given vma is swapped out.
834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835 * as long as the inode doesn't go away and racy results are not a problem.
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
839 struct inode *inode = file_inode(vma->vm_file);
840 struct shmem_inode_info *info = SHMEM_I(inode);
841 struct address_space *mapping = inode->i_mapping;
842 unsigned long swapped;
844 /* Be careful as we don't hold info->lock */
845 swapped = READ_ONCE(info->swapped);
848 * The easier cases are when the shmem object has nothing in swap, or
849 * the vma maps it whole. Then we can simply use the stats that we
855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 return swapped << PAGE_SHIFT;
858 /* Here comes the more involved part */
859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 vma->vm_pgoff + vma_pages(vma));
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866 void shmem_unlock_mapping(struct address_space *mapping)
868 struct folio_batch fbatch;
871 folio_batch_init(&fbatch);
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875 while (!mapping_unevictable(mapping) &&
876 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
877 check_move_unevictable_folios(&fbatch);
878 folio_batch_release(&fbatch);
883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
888 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
889 * beyond i_size, and reports fallocated pages as holes.
891 folio = __filemap_get_folio(inode->i_mapping, index,
892 FGP_ENTRY | FGP_LOCK, 0);
893 if (!xa_is_value(folio))
896 * But read a page back from swap if any of it is within i_size
897 * (although in some cases this is just a waste of time).
900 shmem_get_folio(inode, index, &folio, SGP_READ);
905 * Remove range of pages and swap entries from page cache, and free them.
906 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
908 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
911 struct address_space *mapping = inode->i_mapping;
912 struct shmem_inode_info *info = SHMEM_I(inode);
913 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
914 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
915 struct folio_batch fbatch;
916 pgoff_t indices[PAGEVEC_SIZE];
919 long nr_swaps_freed = 0;
924 end = -1; /* unsigned, so actually very big */
926 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
927 info->fallocend = start;
929 folio_batch_init(&fbatch);
931 while (index < end && find_lock_entries(mapping, &index, end - 1,
933 for (i = 0; i < folio_batch_count(&fbatch); i++) {
934 folio = fbatch.folios[i];
936 if (xa_is_value(folio)) {
939 nr_swaps_freed += !shmem_free_swap(mapping,
944 if (!unfalloc || !folio_test_uptodate(folio))
945 truncate_inode_folio(mapping, folio);
948 folio_batch_remove_exceptionals(&fbatch);
949 folio_batch_release(&fbatch);
954 * When undoing a failed fallocate, we want none of the partial folio
955 * zeroing and splitting below, but shall want to truncate the whole
956 * folio when !uptodate indicates that it was added by this fallocate,
957 * even when [lstart, lend] covers only a part of the folio.
962 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
963 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
965 same_folio = lend < folio_pos(folio) + folio_size(folio);
966 folio_mark_dirty(folio);
967 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
968 start = folio->index + folio_nr_pages(folio);
978 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
980 folio_mark_dirty(folio);
981 if (!truncate_inode_partial_folio(folio, lstart, lend))
990 while (index < end) {
993 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
995 /* If all gone or hole-punch or unfalloc, we're done */
996 if (index == start || end != -1)
998 /* But if truncating, restart to make sure all gone */
1002 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1003 folio = fbatch.folios[i];
1005 if (xa_is_value(folio)) {
1008 if (shmem_free_swap(mapping, indices[i], folio)) {
1009 /* Swap was replaced by page: retry */
1019 if (!unfalloc || !folio_test_uptodate(folio)) {
1020 if (folio_mapping(folio) != mapping) {
1021 /* Page was replaced by swap: retry */
1022 folio_unlock(folio);
1026 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1028 truncate_inode_folio(mapping, folio);
1030 folio_unlock(folio);
1032 folio_batch_remove_exceptionals(&fbatch);
1033 folio_batch_release(&fbatch);
1036 spin_lock_irq(&info->lock);
1037 info->swapped -= nr_swaps_freed;
1038 shmem_recalc_inode(inode);
1039 spin_unlock_irq(&info->lock);
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044 shmem_undo_range(inode, lstart, lend, false);
1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1046 inode_inc_iversion(inode);
1048 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1050 static int shmem_getattr(struct user_namespace *mnt_userns,
1051 const struct path *path, struct kstat *stat,
1052 u32 request_mask, unsigned int query_flags)
1054 struct inode *inode = path->dentry->d_inode;
1055 struct shmem_inode_info *info = SHMEM_I(inode);
1057 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1058 spin_lock_irq(&info->lock);
1059 shmem_recalc_inode(inode);
1060 spin_unlock_irq(&info->lock);
1062 if (info->fsflags & FS_APPEND_FL)
1063 stat->attributes |= STATX_ATTR_APPEND;
1064 if (info->fsflags & FS_IMMUTABLE_FL)
1065 stat->attributes |= STATX_ATTR_IMMUTABLE;
1066 if (info->fsflags & FS_NODUMP_FL)
1067 stat->attributes |= STATX_ATTR_NODUMP;
1068 stat->attributes_mask |= (STATX_ATTR_APPEND |
1069 STATX_ATTR_IMMUTABLE |
1071 generic_fillattr(&init_user_ns, inode, stat);
1073 if (shmem_is_huge(NULL, inode, 0, false))
1074 stat->blksize = HPAGE_PMD_SIZE;
1076 if (request_mask & STATX_BTIME) {
1077 stat->result_mask |= STATX_BTIME;
1078 stat->btime.tv_sec = info->i_crtime.tv_sec;
1079 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1085 static int shmem_setattr(struct user_namespace *mnt_userns,
1086 struct dentry *dentry, struct iattr *attr)
1088 struct inode *inode = d_inode(dentry);
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1091 bool update_mtime = false;
1092 bool update_ctime = true;
1094 error = setattr_prepare(&init_user_ns, dentry, attr);
1098 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1099 loff_t oldsize = inode->i_size;
1100 loff_t newsize = attr->ia_size;
1102 /* protected by i_rwsem */
1103 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1104 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1107 if (newsize != oldsize) {
1108 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1112 i_size_write(inode, newsize);
1113 update_mtime = true;
1115 update_ctime = false;
1117 if (newsize <= oldsize) {
1118 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1119 if (oldsize > holebegin)
1120 unmap_mapping_range(inode->i_mapping,
1123 shmem_truncate_range(inode,
1124 newsize, (loff_t)-1);
1125 /* unmap again to remove racily COWed private pages */
1126 if (oldsize > holebegin)
1127 unmap_mapping_range(inode->i_mapping,
1132 setattr_copy(&init_user_ns, inode, attr);
1133 if (attr->ia_valid & ATTR_MODE)
1134 error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1135 if (!error && update_ctime) {
1136 inode->i_ctime = current_time(inode);
1138 inode->i_mtime = inode->i_ctime;
1139 inode_inc_iversion(inode);
1144 static void shmem_evict_inode(struct inode *inode)
1146 struct shmem_inode_info *info = SHMEM_I(inode);
1147 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1149 if (shmem_mapping(inode->i_mapping)) {
1150 shmem_unacct_size(info->flags, inode->i_size);
1152 mapping_set_exiting(inode->i_mapping);
1153 shmem_truncate_range(inode, 0, (loff_t)-1);
1154 if (!list_empty(&info->shrinklist)) {
1155 spin_lock(&sbinfo->shrinklist_lock);
1156 if (!list_empty(&info->shrinklist)) {
1157 list_del_init(&info->shrinklist);
1158 sbinfo->shrinklist_len--;
1160 spin_unlock(&sbinfo->shrinklist_lock);
1162 while (!list_empty(&info->swaplist)) {
1163 /* Wait while shmem_unuse() is scanning this inode... */
1164 wait_var_event(&info->stop_eviction,
1165 !atomic_read(&info->stop_eviction));
1166 mutex_lock(&shmem_swaplist_mutex);
1167 /* ...but beware of the race if we peeked too early */
1168 if (!atomic_read(&info->stop_eviction))
1169 list_del_init(&info->swaplist);
1170 mutex_unlock(&shmem_swaplist_mutex);
1174 simple_xattrs_free(&info->xattrs);
1175 WARN_ON(inode->i_blocks);
1176 shmem_free_inode(inode->i_sb);
1180 static int shmem_find_swap_entries(struct address_space *mapping,
1181 pgoff_t start, struct folio_batch *fbatch,
1182 pgoff_t *indices, unsigned int type)
1184 XA_STATE(xas, &mapping->i_pages, start);
1185 struct folio *folio;
1189 xas_for_each(&xas, folio, ULONG_MAX) {
1190 if (xas_retry(&xas, folio))
1193 if (!xa_is_value(folio))
1196 entry = radix_to_swp_entry(folio);
1198 * swapin error entries can be found in the mapping. But they're
1199 * deliberately ignored here as we've done everything we can do.
1201 if (swp_type(entry) != type)
1204 indices[folio_batch_count(fbatch)] = xas.xa_index;
1205 if (!folio_batch_add(fbatch, folio))
1208 if (need_resched()) {
1215 return xas.xa_index;
1219 * Move the swapped pages for an inode to page cache. Returns the count
1220 * of pages swapped in, or the error in case of failure.
1222 static int shmem_unuse_swap_entries(struct inode *inode,
1223 struct folio_batch *fbatch, pgoff_t *indices)
1228 struct address_space *mapping = inode->i_mapping;
1230 for (i = 0; i < folio_batch_count(fbatch); i++) {
1231 struct folio *folio = fbatch->folios[i];
1233 if (!xa_is_value(folio))
1235 error = shmem_swapin_folio(inode, indices[i],
1237 mapping_gfp_mask(mapping),
1240 folio_unlock(folio);
1244 if (error == -ENOMEM)
1248 return error ? error : ret;
1252 * If swap found in inode, free it and move page from swapcache to filecache.
1254 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1256 struct address_space *mapping = inode->i_mapping;
1258 struct folio_batch fbatch;
1259 pgoff_t indices[PAGEVEC_SIZE];
1263 folio_batch_init(&fbatch);
1264 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1265 if (folio_batch_count(&fbatch) == 0) {
1270 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1274 start = indices[folio_batch_count(&fbatch) - 1];
1281 * Read all the shared memory data that resides in the swap
1282 * device 'type' back into memory, so the swap device can be
1285 int shmem_unuse(unsigned int type)
1287 struct shmem_inode_info *info, *next;
1290 if (list_empty(&shmem_swaplist))
1293 mutex_lock(&shmem_swaplist_mutex);
1294 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1295 if (!info->swapped) {
1296 list_del_init(&info->swaplist);
1300 * Drop the swaplist mutex while searching the inode for swap;
1301 * but before doing so, make sure shmem_evict_inode() will not
1302 * remove placeholder inode from swaplist, nor let it be freed
1303 * (igrab() would protect from unlink, but not from unmount).
1305 atomic_inc(&info->stop_eviction);
1306 mutex_unlock(&shmem_swaplist_mutex);
1308 error = shmem_unuse_inode(&info->vfs_inode, type);
1311 mutex_lock(&shmem_swaplist_mutex);
1312 next = list_next_entry(info, swaplist);
1314 list_del_init(&info->swaplist);
1315 if (atomic_dec_and_test(&info->stop_eviction))
1316 wake_up_var(&info->stop_eviction);
1320 mutex_unlock(&shmem_swaplist_mutex);
1326 * Move the page from the page cache to the swap cache.
1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1330 struct folio *folio = page_folio(page);
1331 struct shmem_inode_info *info;
1332 struct address_space *mapping;
1333 struct inode *inode;
1338 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1339 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1340 * and its shmem_writeback() needs them to be split when swapping.
1342 if (folio_test_large(folio)) {
1343 /* Ensure the subpages are still dirty */
1344 folio_test_set_dirty(folio);
1345 if (split_huge_page(page) < 0)
1347 folio = page_folio(page);
1348 folio_clear_dirty(folio);
1351 BUG_ON(!folio_test_locked(folio));
1352 mapping = folio->mapping;
1353 index = folio->index;
1354 inode = mapping->host;
1355 info = SHMEM_I(inode);
1356 if (info->flags & VM_LOCKED)
1358 if (!total_swap_pages)
1362 * Our capabilities prevent regular writeback or sync from ever calling
1363 * shmem_writepage; but a stacking filesystem might use ->writepage of
1364 * its underlying filesystem, in which case tmpfs should write out to
1365 * swap only in response to memory pressure, and not for the writeback
1368 if (!wbc->for_reclaim) {
1369 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1374 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1375 * value into swapfile.c, the only way we can correctly account for a
1376 * fallocated folio arriving here is now to initialize it and write it.
1378 * That's okay for a folio already fallocated earlier, but if we have
1379 * not yet completed the fallocation, then (a) we want to keep track
1380 * of this folio in case we have to undo it, and (b) it may not be a
1381 * good idea to continue anyway, once we're pushing into swap. So
1382 * reactivate the folio, and let shmem_fallocate() quit when too many.
1384 if (!folio_test_uptodate(folio)) {
1385 if (inode->i_private) {
1386 struct shmem_falloc *shmem_falloc;
1387 spin_lock(&inode->i_lock);
1388 shmem_falloc = inode->i_private;
1390 !shmem_falloc->waitq &&
1391 index >= shmem_falloc->start &&
1392 index < shmem_falloc->next)
1393 shmem_falloc->nr_unswapped++;
1395 shmem_falloc = NULL;
1396 spin_unlock(&inode->i_lock);
1400 folio_zero_range(folio, 0, folio_size(folio));
1401 flush_dcache_folio(folio);
1402 folio_mark_uptodate(folio);
1405 swap = folio_alloc_swap(folio);
1410 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1411 * if it's not already there. Do it now before the folio is
1412 * moved to swap cache, when its pagelock no longer protects
1413 * the inode from eviction. But don't unlock the mutex until
1414 * we've incremented swapped, because shmem_unuse_inode() will
1415 * prune a !swapped inode from the swaplist under this mutex.
1417 mutex_lock(&shmem_swaplist_mutex);
1418 if (list_empty(&info->swaplist))
1419 list_add(&info->swaplist, &shmem_swaplist);
1421 if (add_to_swap_cache(folio, swap,
1422 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1424 spin_lock_irq(&info->lock);
1425 shmem_recalc_inode(inode);
1427 spin_unlock_irq(&info->lock);
1429 swap_shmem_alloc(swap);
1430 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1432 mutex_unlock(&shmem_swaplist_mutex);
1433 BUG_ON(folio_mapped(folio));
1434 swap_writepage(&folio->page, wbc);
1438 mutex_unlock(&shmem_swaplist_mutex);
1439 put_swap_folio(folio, swap);
1441 folio_mark_dirty(folio);
1442 if (wbc->for_reclaim)
1443 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1444 folio_unlock(folio);
1448 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1449 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 if (!mpol || mpol->mode == MPOL_DEFAULT)
1454 return; /* show nothing */
1456 mpol_to_str(buffer, sizeof(buffer), mpol);
1458 seq_printf(seq, ",mpol=%s", buffer);
1461 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1463 struct mempolicy *mpol = NULL;
1465 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1466 mpol = sbinfo->mpol;
1468 raw_spin_unlock(&sbinfo->stat_lock);
1472 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1473 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1476 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1480 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1482 #define vm_policy vm_private_data
1485 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1486 struct shmem_inode_info *info, pgoff_t index)
1488 /* Create a pseudo vma that just contains the policy */
1489 vma_init(vma, NULL);
1490 /* Bias interleave by inode number to distribute better across nodes */
1491 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1492 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1495 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1497 /* Drop reference taken by mpol_shared_policy_lookup() */
1498 mpol_cond_put(vma->vm_policy);
1501 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1502 struct shmem_inode_info *info, pgoff_t index)
1504 struct vm_area_struct pvma;
1506 struct vm_fault vmf = {
1510 shmem_pseudo_vma_init(&pvma, info, index);
1511 page = swap_cluster_readahead(swap, gfp, &vmf);
1512 shmem_pseudo_vma_destroy(&pvma);
1516 return page_folio(page);
1520 * Make sure huge_gfp is always more limited than limit_gfp.
1521 * Some of the flags set permissions, while others set limitations.
1523 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1525 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1526 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1527 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1528 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1530 /* Allow allocations only from the originally specified zones. */
1531 result |= zoneflags;
1534 * Minimize the result gfp by taking the union with the deny flags,
1535 * and the intersection of the allow flags.
1537 result |= (limit_gfp & denyflags);
1538 result |= (huge_gfp & limit_gfp) & allowflags;
1543 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1544 struct shmem_inode_info *info, pgoff_t index)
1546 struct vm_area_struct pvma;
1547 struct address_space *mapping = info->vfs_inode.i_mapping;
1549 struct folio *folio;
1551 hindex = round_down(index, HPAGE_PMD_NR);
1552 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556 shmem_pseudo_vma_init(&pvma, info, hindex);
1557 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1558 shmem_pseudo_vma_destroy(&pvma);
1560 count_vm_event(THP_FILE_FALLBACK);
1564 static struct folio *shmem_alloc_folio(gfp_t gfp,
1565 struct shmem_inode_info *info, pgoff_t index)
1567 struct vm_area_struct pvma;
1568 struct folio *folio;
1570 shmem_pseudo_vma_init(&pvma, info, index);
1571 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1572 shmem_pseudo_vma_destroy(&pvma);
1577 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1578 pgoff_t index, bool huge)
1580 struct shmem_inode_info *info = SHMEM_I(inode);
1581 struct folio *folio;
1585 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1587 nr = huge ? HPAGE_PMD_NR : 1;
1589 if (!shmem_inode_acct_block(inode, nr))
1593 folio = shmem_alloc_hugefolio(gfp, info, index);
1595 folio = shmem_alloc_folio(gfp, info, index);
1597 __folio_set_locked(folio);
1598 __folio_set_swapbacked(folio);
1603 shmem_inode_unacct_blocks(inode, nr);
1605 return ERR_PTR(err);
1609 * When a page is moved from swapcache to shmem filecache (either by the
1610 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1611 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1612 * ignorance of the mapping it belongs to. If that mapping has special
1613 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1614 * we may need to copy to a suitable page before moving to filecache.
1616 * In a future release, this may well be extended to respect cpuset and
1617 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1618 * but for now it is a simple matter of zone.
1620 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1622 return folio_zonenum(folio) > gfp_zone(gfp);
1625 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1626 struct shmem_inode_info *info, pgoff_t index)
1628 struct folio *old, *new;
1629 struct address_space *swap_mapping;
1635 entry = folio_swap_entry(old);
1636 swap_index = swp_offset(entry);
1637 swap_mapping = swap_address_space(entry);
1640 * We have arrived here because our zones are constrained, so don't
1641 * limit chance of success by further cpuset and node constraints.
1643 gfp &= ~GFP_CONSTRAINT_MASK;
1644 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1645 new = shmem_alloc_folio(gfp, info, index);
1650 folio_copy(new, old);
1651 flush_dcache_folio(new);
1653 __folio_set_locked(new);
1654 __folio_set_swapbacked(new);
1655 folio_mark_uptodate(new);
1656 folio_set_swap_entry(new, entry);
1657 folio_set_swapcache(new);
1660 * Our caller will very soon move newpage out of swapcache, but it's
1661 * a nice clean interface for us to replace oldpage by newpage there.
1663 xa_lock_irq(&swap_mapping->i_pages);
1664 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1666 mem_cgroup_migrate(old, new);
1667 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1668 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1669 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1670 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1672 xa_unlock_irq(&swap_mapping->i_pages);
1674 if (unlikely(error)) {
1676 * Is this possible? I think not, now that our callers check
1677 * both PageSwapCache and page_private after getting page lock;
1678 * but be defensive. Reverse old to newpage for clear and free.
1686 folio_clear_swapcache(old);
1687 old->private = NULL;
1690 folio_put_refs(old, 2);
1694 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1695 struct folio *folio, swp_entry_t swap)
1697 struct address_space *mapping = inode->i_mapping;
1698 struct shmem_inode_info *info = SHMEM_I(inode);
1699 swp_entry_t swapin_error;
1702 swapin_error = make_swapin_error_entry();
1703 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1704 swp_to_radix_entry(swap),
1705 swp_to_radix_entry(swapin_error), 0);
1706 if (old != swp_to_radix_entry(swap))
1709 folio_wait_writeback(folio);
1710 delete_from_swap_cache(folio);
1711 spin_lock_irq(&info->lock);
1713 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1714 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1715 * shmem_evict_inode.
1719 shmem_recalc_inode(inode);
1720 spin_unlock_irq(&info->lock);
1725 * Swap in the folio pointed to by *foliop.
1726 * Caller has to make sure that *foliop contains a valid swapped folio.
1727 * Returns 0 and the folio in foliop if success. On failure, returns the
1728 * error code and NULL in *foliop.
1730 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1731 struct folio **foliop, enum sgp_type sgp,
1732 gfp_t gfp, struct vm_area_struct *vma,
1733 vm_fault_t *fault_type)
1735 struct address_space *mapping = inode->i_mapping;
1736 struct shmem_inode_info *info = SHMEM_I(inode);
1737 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1738 struct folio *folio = NULL;
1742 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1743 swap = radix_to_swp_entry(*foliop);
1746 if (is_swapin_error_entry(swap))
1749 /* Look it up and read it in.. */
1750 folio = swap_cache_get_folio(swap, NULL, 0);
1752 /* Or update major stats only when swapin succeeds?? */
1754 *fault_type |= VM_FAULT_MAJOR;
1755 count_vm_event(PGMAJFAULT);
1756 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1758 /* Here we actually start the io */
1759 folio = shmem_swapin(swap, gfp, info, index);
1766 /* We have to do this with folio locked to prevent races */
1768 if (!folio_test_swapcache(folio) ||
1769 folio_swap_entry(folio).val != swap.val ||
1770 !shmem_confirm_swap(mapping, index, swap)) {
1774 if (!folio_test_uptodate(folio)) {
1778 folio_wait_writeback(folio);
1781 * Some architectures may have to restore extra metadata to the
1782 * folio after reading from swap.
1784 arch_swap_restore(swap, folio);
1786 if (shmem_should_replace_folio(folio, gfp)) {
1787 error = shmem_replace_folio(&folio, gfp, info, index);
1792 error = shmem_add_to_page_cache(folio, mapping, index,
1793 swp_to_radix_entry(swap), gfp,
1798 spin_lock_irq(&info->lock);
1800 shmem_recalc_inode(inode);
1801 spin_unlock_irq(&info->lock);
1803 if (sgp == SGP_WRITE)
1804 folio_mark_accessed(folio);
1806 delete_from_swap_cache(folio);
1807 folio_mark_dirty(folio);
1813 if (!shmem_confirm_swap(mapping, index, swap))
1816 shmem_set_folio_swapin_error(inode, index, folio, swap);
1819 folio_unlock(folio);
1827 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1829 * If we allocate a new one we do not mark it dirty. That's up to the
1830 * vm. If we swap it in we mark it dirty since we also free the swap
1831 * entry since a page cannot live in both the swap and page cache.
1833 * vma, vmf, and fault_type are only supplied by shmem_fault:
1834 * otherwise they are NULL.
1836 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1837 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1838 struct vm_area_struct *vma, struct vm_fault *vmf,
1839 vm_fault_t *fault_type)
1841 struct address_space *mapping = inode->i_mapping;
1842 struct shmem_inode_info *info = SHMEM_I(inode);
1843 struct shmem_sb_info *sbinfo;
1844 struct mm_struct *charge_mm;
1845 struct folio *folio;
1852 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1855 if (sgp <= SGP_CACHE &&
1856 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1860 sbinfo = SHMEM_SB(inode->i_sb);
1861 charge_mm = vma ? vma->vm_mm : NULL;
1863 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1864 if (folio && vma && userfaultfd_minor(vma)) {
1865 if (!xa_is_value(folio)) {
1866 folio_unlock(folio);
1869 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1873 if (xa_is_value(folio)) {
1874 error = shmem_swapin_folio(inode, index, &folio,
1875 sgp, gfp, vma, fault_type);
1876 if (error == -EEXIST)
1884 if (sgp == SGP_WRITE)
1885 folio_mark_accessed(folio);
1886 if (folio_test_uptodate(folio))
1888 /* fallocated folio */
1889 if (sgp != SGP_READ)
1891 folio_unlock(folio);
1896 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1897 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1900 if (sgp == SGP_READ)
1902 if (sgp == SGP_NOALLOC)
1906 * Fast cache lookup and swap lookup did not find it: allocate.
1909 if (vma && userfaultfd_missing(vma)) {
1910 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1914 if (!shmem_is_huge(vma, inode, index, false))
1917 huge_gfp = vma_thp_gfp_mask(vma);
1918 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1919 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1920 if (IS_ERR(folio)) {
1922 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1924 if (IS_ERR(folio)) {
1927 error = PTR_ERR(folio);
1929 if (error != -ENOSPC)
1932 * Try to reclaim some space by splitting a large folio
1933 * beyond i_size on the filesystem.
1938 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1939 if (ret == SHRINK_STOP)
1947 hindex = round_down(index, folio_nr_pages(folio));
1949 if (sgp == SGP_WRITE)
1950 __folio_set_referenced(folio);
1952 error = shmem_add_to_page_cache(folio, mapping, hindex,
1953 NULL, gfp & GFP_RECLAIM_MASK,
1957 folio_add_lru(folio);
1959 spin_lock_irq(&info->lock);
1960 info->alloced += folio_nr_pages(folio);
1961 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1962 shmem_recalc_inode(inode);
1963 spin_unlock_irq(&info->lock);
1966 if (folio_test_pmd_mappable(folio) &&
1967 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1968 folio_next_index(folio) - 1) {
1970 * Part of the large folio is beyond i_size: subject
1971 * to shrink under memory pressure.
1973 spin_lock(&sbinfo->shrinklist_lock);
1975 * _careful to defend against unlocked access to
1976 * ->shrink_list in shmem_unused_huge_shrink()
1978 if (list_empty_careful(&info->shrinklist)) {
1979 list_add_tail(&info->shrinklist,
1980 &sbinfo->shrinklist);
1981 sbinfo->shrinklist_len++;
1983 spin_unlock(&sbinfo->shrinklist_lock);
1987 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1989 if (sgp == SGP_FALLOC)
1993 * Let SGP_WRITE caller clear ends if write does not fill folio;
1994 * but SGP_FALLOC on a folio fallocated earlier must initialize
1995 * it now, lest undo on failure cancel our earlier guarantee.
1997 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1998 long i, n = folio_nr_pages(folio);
2000 for (i = 0; i < n; i++)
2001 clear_highpage(folio_page(folio, i));
2002 flush_dcache_folio(folio);
2003 folio_mark_uptodate(folio);
2006 /* Perhaps the file has been truncated since we checked */
2007 if (sgp <= SGP_CACHE &&
2008 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2010 folio_clear_dirty(folio);
2011 filemap_remove_folio(folio);
2012 spin_lock_irq(&info->lock);
2013 shmem_recalc_inode(inode);
2014 spin_unlock_irq(&info->lock);
2027 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2029 if (folio_test_large(folio)) {
2030 folio_unlock(folio);
2036 folio_unlock(folio);
2039 if (error == -ENOSPC && !once++) {
2040 spin_lock_irq(&info->lock);
2041 shmem_recalc_inode(inode);
2042 spin_unlock_irq(&info->lock);
2045 if (error == -EEXIST)
2050 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2053 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2054 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2058 * This is like autoremove_wake_function, but it removes the wait queue
2059 * entry unconditionally - even if something else had already woken the
2062 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2064 int ret = default_wake_function(wait, mode, sync, key);
2065 list_del_init(&wait->entry);
2069 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2071 struct vm_area_struct *vma = vmf->vma;
2072 struct inode *inode = file_inode(vma->vm_file);
2073 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2074 struct folio *folio = NULL;
2076 vm_fault_t ret = VM_FAULT_LOCKED;
2079 * Trinity finds that probing a hole which tmpfs is punching can
2080 * prevent the hole-punch from ever completing: which in turn
2081 * locks writers out with its hold on i_rwsem. So refrain from
2082 * faulting pages into the hole while it's being punched. Although
2083 * shmem_undo_range() does remove the additions, it may be unable to
2084 * keep up, as each new page needs its own unmap_mapping_range() call,
2085 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2087 * It does not matter if we sometimes reach this check just before the
2088 * hole-punch begins, so that one fault then races with the punch:
2089 * we just need to make racing faults a rare case.
2091 * The implementation below would be much simpler if we just used a
2092 * standard mutex or completion: but we cannot take i_rwsem in fault,
2093 * and bloating every shmem inode for this unlikely case would be sad.
2095 if (unlikely(inode->i_private)) {
2096 struct shmem_falloc *shmem_falloc;
2098 spin_lock(&inode->i_lock);
2099 shmem_falloc = inode->i_private;
2101 shmem_falloc->waitq &&
2102 vmf->pgoff >= shmem_falloc->start &&
2103 vmf->pgoff < shmem_falloc->next) {
2105 wait_queue_head_t *shmem_falloc_waitq;
2106 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2108 ret = VM_FAULT_NOPAGE;
2109 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2111 ret = VM_FAULT_RETRY;
2113 shmem_falloc_waitq = shmem_falloc->waitq;
2114 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2115 TASK_UNINTERRUPTIBLE);
2116 spin_unlock(&inode->i_lock);
2120 * shmem_falloc_waitq points into the shmem_fallocate()
2121 * stack of the hole-punching task: shmem_falloc_waitq
2122 * is usually invalid by the time we reach here, but
2123 * finish_wait() does not dereference it in that case;
2124 * though i_lock needed lest racing with wake_up_all().
2126 spin_lock(&inode->i_lock);
2127 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2128 spin_unlock(&inode->i_lock);
2134 spin_unlock(&inode->i_lock);
2137 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2138 gfp, vma, vmf, &ret);
2140 return vmf_error(err);
2142 vmf->page = folio_file_page(folio, vmf->pgoff);
2146 unsigned long shmem_get_unmapped_area(struct file *file,
2147 unsigned long uaddr, unsigned long len,
2148 unsigned long pgoff, unsigned long flags)
2150 unsigned long (*get_area)(struct file *,
2151 unsigned long, unsigned long, unsigned long, unsigned long);
2153 unsigned long offset;
2154 unsigned long inflated_len;
2155 unsigned long inflated_addr;
2156 unsigned long inflated_offset;
2158 if (len > TASK_SIZE)
2161 get_area = current->mm->get_unmapped_area;
2162 addr = get_area(file, uaddr, len, pgoff, flags);
2164 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2166 if (IS_ERR_VALUE(addr))
2168 if (addr & ~PAGE_MASK)
2170 if (addr > TASK_SIZE - len)
2173 if (shmem_huge == SHMEM_HUGE_DENY)
2175 if (len < HPAGE_PMD_SIZE)
2177 if (flags & MAP_FIXED)
2180 * Our priority is to support MAP_SHARED mapped hugely;
2181 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2182 * But if caller specified an address hint and we allocated area there
2183 * successfully, respect that as before.
2188 if (shmem_huge != SHMEM_HUGE_FORCE) {
2189 struct super_block *sb;
2192 VM_BUG_ON(file->f_op != &shmem_file_operations);
2193 sb = file_inode(file)->i_sb;
2196 * Called directly from mm/mmap.c, or drivers/char/mem.c
2197 * for "/dev/zero", to create a shared anonymous object.
2199 if (IS_ERR(shm_mnt))
2201 sb = shm_mnt->mnt_sb;
2203 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2207 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2208 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2210 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2213 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2214 if (inflated_len > TASK_SIZE)
2216 if (inflated_len < len)
2219 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2220 if (IS_ERR_VALUE(inflated_addr))
2222 if (inflated_addr & ~PAGE_MASK)
2225 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2226 inflated_addr += offset - inflated_offset;
2227 if (inflated_offset > offset)
2228 inflated_addr += HPAGE_PMD_SIZE;
2230 if (inflated_addr > TASK_SIZE - len)
2232 return inflated_addr;
2236 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2238 struct inode *inode = file_inode(vma->vm_file);
2239 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2242 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2245 struct inode *inode = file_inode(vma->vm_file);
2248 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2249 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2253 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2255 struct inode *inode = file_inode(file);
2256 struct shmem_inode_info *info = SHMEM_I(inode);
2257 int retval = -ENOMEM;
2260 * What serializes the accesses to info->flags?
2261 * ipc_lock_object() when called from shmctl_do_lock(),
2262 * no serialization needed when called from shm_destroy().
2264 if (lock && !(info->flags & VM_LOCKED)) {
2265 if (!user_shm_lock(inode->i_size, ucounts))
2267 info->flags |= VM_LOCKED;
2268 mapping_set_unevictable(file->f_mapping);
2270 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2271 user_shm_unlock(inode->i_size, ucounts);
2272 info->flags &= ~VM_LOCKED;
2273 mapping_clear_unevictable(file->f_mapping);
2281 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2283 struct inode *inode = file_inode(file);
2284 struct shmem_inode_info *info = SHMEM_I(inode);
2287 ret = seal_check_future_write(info->seals, vma);
2291 /* arm64 - allow memory tagging on RAM-based files */
2292 vma->vm_flags |= VM_MTE_ALLOWED;
2294 file_accessed(file);
2295 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2297 vma->vm_ops = &shmem_vm_ops;
2299 vma->vm_ops = &shmem_anon_vm_ops;
2303 #ifdef CONFIG_TMPFS_XATTR
2304 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2307 * chattr's fsflags are unrelated to extended attributes,
2308 * but tmpfs has chosen to enable them under the same config option.
2310 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2312 unsigned int i_flags = 0;
2314 if (fsflags & FS_NOATIME_FL)
2315 i_flags |= S_NOATIME;
2316 if (fsflags & FS_APPEND_FL)
2317 i_flags |= S_APPEND;
2318 if (fsflags & FS_IMMUTABLE_FL)
2319 i_flags |= S_IMMUTABLE;
2321 * But FS_NODUMP_FL does not require any action in i_flags.
2323 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2326 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2329 #define shmem_initxattrs NULL
2332 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2333 umode_t mode, dev_t dev, unsigned long flags)
2335 struct inode *inode;
2336 struct shmem_inode_info *info;
2337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2340 if (shmem_reserve_inode(sb, &ino))
2343 inode = new_inode(sb);
2346 inode_init_owner(&init_user_ns, inode, dir, mode);
2347 inode->i_blocks = 0;
2348 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2349 inode->i_generation = get_random_u32();
2350 info = SHMEM_I(inode);
2351 memset(info, 0, (char *)inode - (char *)info);
2352 spin_lock_init(&info->lock);
2353 atomic_set(&info->stop_eviction, 0);
2354 info->seals = F_SEAL_SEAL;
2355 info->flags = flags & VM_NORESERVE;
2356 info->i_crtime = inode->i_mtime;
2357 info->fsflags = (dir == NULL) ? 0 :
2358 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2360 shmem_set_inode_flags(inode, info->fsflags);
2361 INIT_LIST_HEAD(&info->shrinklist);
2362 INIT_LIST_HEAD(&info->swaplist);
2363 simple_xattrs_init(&info->xattrs);
2364 cache_no_acl(inode);
2365 mapping_set_large_folios(inode->i_mapping);
2367 switch (mode & S_IFMT) {
2369 inode->i_op = &shmem_special_inode_operations;
2370 init_special_inode(inode, mode, dev);
2373 inode->i_mapping->a_ops = &shmem_aops;
2374 inode->i_op = &shmem_inode_operations;
2375 inode->i_fop = &shmem_file_operations;
2376 mpol_shared_policy_init(&info->policy,
2377 shmem_get_sbmpol(sbinfo));
2381 /* Some things misbehave if size == 0 on a directory */
2382 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2383 inode->i_op = &shmem_dir_inode_operations;
2384 inode->i_fop = &simple_dir_operations;
2388 * Must not load anything in the rbtree,
2389 * mpol_free_shared_policy will not be called.
2391 mpol_shared_policy_init(&info->policy, NULL);
2395 lockdep_annotate_inode_mutex_key(inode);
2397 shmem_free_inode(sb);
2401 #ifdef CONFIG_USERFAULTFD
2402 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2404 struct vm_area_struct *dst_vma,
2405 unsigned long dst_addr,
2406 unsigned long src_addr,
2407 bool zeropage, bool wp_copy,
2408 struct page **pagep)
2410 struct inode *inode = file_inode(dst_vma->vm_file);
2411 struct shmem_inode_info *info = SHMEM_I(inode);
2412 struct address_space *mapping = inode->i_mapping;
2413 gfp_t gfp = mapping_gfp_mask(mapping);
2414 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2416 struct folio *folio;
2420 if (!shmem_inode_acct_block(inode, 1)) {
2422 * We may have got a page, returned -ENOENT triggering a retry,
2423 * and now we find ourselves with -ENOMEM. Release the page, to
2424 * avoid a BUG_ON in our caller.
2426 if (unlikely(*pagep)) {
2435 folio = shmem_alloc_folio(gfp, info, pgoff);
2437 goto out_unacct_blocks;
2439 if (!zeropage) { /* COPY */
2440 page_kaddr = kmap_local_folio(folio, 0);
2442 * The read mmap_lock is held here. Despite the
2443 * mmap_lock being read recursive a deadlock is still
2444 * possible if a writer has taken a lock. For example:
2446 * process A thread 1 takes read lock on own mmap_lock
2447 * process A thread 2 calls mmap, blocks taking write lock
2448 * process B thread 1 takes page fault, read lock on own mmap lock
2449 * process B thread 2 calls mmap, blocks taking write lock
2450 * process A thread 1 blocks taking read lock on process B
2451 * process B thread 1 blocks taking read lock on process A
2453 * Disable page faults to prevent potential deadlock
2454 * and retry the copy outside the mmap_lock.
2456 pagefault_disable();
2457 ret = copy_from_user(page_kaddr,
2458 (const void __user *)src_addr,
2461 kunmap_local(page_kaddr);
2463 /* fallback to copy_from_user outside mmap_lock */
2464 if (unlikely(ret)) {
2465 *pagep = &folio->page;
2467 /* don't free the page */
2468 goto out_unacct_blocks;
2471 flush_dcache_folio(folio);
2472 } else { /* ZEROPAGE */
2473 clear_user_highpage(&folio->page, dst_addr);
2476 folio = page_folio(*pagep);
2477 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2481 VM_BUG_ON(folio_test_locked(folio));
2482 VM_BUG_ON(folio_test_swapbacked(folio));
2483 __folio_set_locked(folio);
2484 __folio_set_swapbacked(folio);
2485 __folio_mark_uptodate(folio);
2488 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2489 if (unlikely(pgoff >= max_off))
2492 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2493 gfp & GFP_RECLAIM_MASK, dst_mm);
2497 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2498 &folio->page, true, wp_copy);
2500 goto out_delete_from_cache;
2502 spin_lock_irq(&info->lock);
2504 inode->i_blocks += BLOCKS_PER_PAGE;
2505 shmem_recalc_inode(inode);
2506 spin_unlock_irq(&info->lock);
2508 folio_unlock(folio);
2510 out_delete_from_cache:
2511 filemap_remove_folio(folio);
2513 folio_unlock(folio);
2516 shmem_inode_unacct_blocks(inode, 1);
2519 #endif /* CONFIG_USERFAULTFD */
2522 static const struct inode_operations shmem_symlink_inode_operations;
2523 static const struct inode_operations shmem_short_symlink_operations;
2526 shmem_write_begin(struct file *file, struct address_space *mapping,
2527 loff_t pos, unsigned len,
2528 struct page **pagep, void **fsdata)
2530 struct inode *inode = mapping->host;
2531 struct shmem_inode_info *info = SHMEM_I(inode);
2532 pgoff_t index = pos >> PAGE_SHIFT;
2533 struct folio *folio;
2536 /* i_rwsem is held by caller */
2537 if (unlikely(info->seals & (F_SEAL_GROW |
2538 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2539 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2541 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2545 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2550 *pagep = folio_file_page(folio, index);
2551 if (PageHWPoison(*pagep)) {
2552 folio_unlock(folio);
2562 shmem_write_end(struct file *file, struct address_space *mapping,
2563 loff_t pos, unsigned len, unsigned copied,
2564 struct page *page, void *fsdata)
2566 struct inode *inode = mapping->host;
2568 if (pos + copied > inode->i_size)
2569 i_size_write(inode, pos + copied);
2571 if (!PageUptodate(page)) {
2572 struct page *head = compound_head(page);
2573 if (PageTransCompound(page)) {
2576 for (i = 0; i < HPAGE_PMD_NR; i++) {
2577 if (head + i == page)
2579 clear_highpage(head + i);
2580 flush_dcache_page(head + i);
2583 if (copied < PAGE_SIZE) {
2584 unsigned from = pos & (PAGE_SIZE - 1);
2585 zero_user_segments(page, 0, from,
2586 from + copied, PAGE_SIZE);
2588 SetPageUptodate(head);
2590 set_page_dirty(page);
2597 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2599 struct file *file = iocb->ki_filp;
2600 struct inode *inode = file_inode(file);
2601 struct address_space *mapping = inode->i_mapping;
2603 unsigned long offset;
2606 loff_t *ppos = &iocb->ki_pos;
2608 index = *ppos >> PAGE_SHIFT;
2609 offset = *ppos & ~PAGE_MASK;
2612 struct folio *folio = NULL;
2613 struct page *page = NULL;
2615 unsigned long nr, ret;
2616 loff_t i_size = i_size_read(inode);
2618 end_index = i_size >> PAGE_SHIFT;
2619 if (index > end_index)
2621 if (index == end_index) {
2622 nr = i_size & ~PAGE_MASK;
2627 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2629 if (error == -EINVAL)
2634 folio_unlock(folio);
2636 page = folio_file_page(folio, index);
2637 if (PageHWPoison(page)) {
2645 * We must evaluate after, since reads (unlike writes)
2646 * are called without i_rwsem protection against truncate
2649 i_size = i_size_read(inode);
2650 end_index = i_size >> PAGE_SHIFT;
2651 if (index == end_index) {
2652 nr = i_size & ~PAGE_MASK;
2663 * If users can be writing to this page using arbitrary
2664 * virtual addresses, take care about potential aliasing
2665 * before reading the page on the kernel side.
2667 if (mapping_writably_mapped(mapping))
2668 flush_dcache_page(page);
2670 * Mark the page accessed if we read the beginning.
2673 folio_mark_accessed(folio);
2675 * Ok, we have the page, and it's up-to-date, so
2676 * now we can copy it to user space...
2678 ret = copy_page_to_iter(page, offset, nr, to);
2681 } else if (user_backed_iter(to)) {
2683 * Copy to user tends to be so well optimized, but
2684 * clear_user() not so much, that it is noticeably
2685 * faster to copy the zero page instead of clearing.
2687 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2690 * But submitting the same page twice in a row to
2691 * splice() - or others? - can result in confusion:
2692 * so don't attempt that optimization on pipes etc.
2694 ret = iov_iter_zero(nr, to);
2699 index += offset >> PAGE_SHIFT;
2700 offset &= ~PAGE_MASK;
2702 if (!iov_iter_count(to))
2711 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2712 file_accessed(file);
2713 return retval ? retval : error;
2716 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2718 struct address_space *mapping = file->f_mapping;
2719 struct inode *inode = mapping->host;
2721 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2722 return generic_file_llseek_size(file, offset, whence,
2723 MAX_LFS_FILESIZE, i_size_read(inode));
2728 /* We're holding i_rwsem so we can access i_size directly */
2729 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2731 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2732 inode_unlock(inode);
2736 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2739 struct inode *inode = file_inode(file);
2740 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2741 struct shmem_inode_info *info = SHMEM_I(inode);
2742 struct shmem_falloc shmem_falloc;
2743 pgoff_t start, index, end, undo_fallocend;
2746 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2751 if (mode & FALLOC_FL_PUNCH_HOLE) {
2752 struct address_space *mapping = file->f_mapping;
2753 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2754 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2755 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2757 /* protected by i_rwsem */
2758 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2763 shmem_falloc.waitq = &shmem_falloc_waitq;
2764 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2765 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2766 spin_lock(&inode->i_lock);
2767 inode->i_private = &shmem_falloc;
2768 spin_unlock(&inode->i_lock);
2770 if ((u64)unmap_end > (u64)unmap_start)
2771 unmap_mapping_range(mapping, unmap_start,
2772 1 + unmap_end - unmap_start, 0);
2773 shmem_truncate_range(inode, offset, offset + len - 1);
2774 /* No need to unmap again: hole-punching leaves COWed pages */
2776 spin_lock(&inode->i_lock);
2777 inode->i_private = NULL;
2778 wake_up_all(&shmem_falloc_waitq);
2779 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2780 spin_unlock(&inode->i_lock);
2785 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2786 error = inode_newsize_ok(inode, offset + len);
2790 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2795 start = offset >> PAGE_SHIFT;
2796 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2797 /* Try to avoid a swapstorm if len is impossible to satisfy */
2798 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2803 shmem_falloc.waitq = NULL;
2804 shmem_falloc.start = start;
2805 shmem_falloc.next = start;
2806 shmem_falloc.nr_falloced = 0;
2807 shmem_falloc.nr_unswapped = 0;
2808 spin_lock(&inode->i_lock);
2809 inode->i_private = &shmem_falloc;
2810 spin_unlock(&inode->i_lock);
2813 * info->fallocend is only relevant when huge pages might be
2814 * involved: to prevent split_huge_page() freeing fallocated
2815 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2817 undo_fallocend = info->fallocend;
2818 if (info->fallocend < end)
2819 info->fallocend = end;
2821 for (index = start; index < end; ) {
2822 struct folio *folio;
2825 * Good, the fallocate(2) manpage permits EINTR: we may have
2826 * been interrupted because we are using up too much memory.
2828 if (signal_pending(current))
2830 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2833 error = shmem_get_folio(inode, index, &folio,
2836 info->fallocend = undo_fallocend;
2837 /* Remove the !uptodate folios we added */
2838 if (index > start) {
2839 shmem_undo_range(inode,
2840 (loff_t)start << PAGE_SHIFT,
2841 ((loff_t)index << PAGE_SHIFT) - 1, true);
2847 * Here is a more important optimization than it appears:
2848 * a second SGP_FALLOC on the same large folio will clear it,
2849 * making it uptodate and un-undoable if we fail later.
2851 index = folio_next_index(folio);
2852 /* Beware 32-bit wraparound */
2857 * Inform shmem_writepage() how far we have reached.
2858 * No need for lock or barrier: we have the page lock.
2860 if (!folio_test_uptodate(folio))
2861 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2862 shmem_falloc.next = index;
2865 * If !uptodate, leave it that way so that freeable folios
2866 * can be recognized if we need to rollback on error later.
2867 * But mark it dirty so that memory pressure will swap rather
2868 * than free the folios we are allocating (and SGP_CACHE folios
2869 * might still be clean: we now need to mark those dirty too).
2871 folio_mark_dirty(folio);
2872 folio_unlock(folio);
2877 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2878 i_size_write(inode, offset + len);
2880 spin_lock(&inode->i_lock);
2881 inode->i_private = NULL;
2882 spin_unlock(&inode->i_lock);
2885 file_modified(file);
2886 inode_unlock(inode);
2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2892 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2894 buf->f_type = TMPFS_MAGIC;
2895 buf->f_bsize = PAGE_SIZE;
2896 buf->f_namelen = NAME_MAX;
2897 if (sbinfo->max_blocks) {
2898 buf->f_blocks = sbinfo->max_blocks;
2900 buf->f_bfree = sbinfo->max_blocks -
2901 percpu_counter_sum(&sbinfo->used_blocks);
2903 if (sbinfo->max_inodes) {
2904 buf->f_files = sbinfo->max_inodes;
2905 buf->f_ffree = sbinfo->free_inodes;
2907 /* else leave those fields 0 like simple_statfs */
2909 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2915 * File creation. Allocate an inode, and we're done..
2918 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2919 struct dentry *dentry, umode_t mode, dev_t dev)
2921 struct inode *inode;
2922 int error = -ENOSPC;
2924 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2926 error = simple_acl_create(dir, inode);
2929 error = security_inode_init_security(inode, dir,
2931 shmem_initxattrs, NULL);
2932 if (error && error != -EOPNOTSUPP)
2936 dir->i_size += BOGO_DIRENT_SIZE;
2937 dir->i_ctime = dir->i_mtime = current_time(dir);
2938 inode_inc_iversion(dir);
2939 d_instantiate(dentry, inode);
2940 dget(dentry); /* Extra count - pin the dentry in core */
2949 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2950 struct file *file, umode_t mode)
2952 struct inode *inode;
2953 int error = -ENOSPC;
2955 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2957 error = security_inode_init_security(inode, dir,
2959 shmem_initxattrs, NULL);
2960 if (error && error != -EOPNOTSUPP)
2962 error = simple_acl_create(dir, inode);
2965 d_tmpfile(file, inode);
2967 return finish_open_simple(file, error);
2973 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2974 struct dentry *dentry, umode_t mode)
2978 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2979 mode | S_IFDIR, 0)))
2985 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2986 struct dentry *dentry, umode_t mode, bool excl)
2988 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2994 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2996 struct inode *inode = d_inode(old_dentry);
3000 * No ordinary (disk based) filesystem counts links as inodes;
3001 * but each new link needs a new dentry, pinning lowmem, and
3002 * tmpfs dentries cannot be pruned until they are unlinked.
3003 * But if an O_TMPFILE file is linked into the tmpfs, the
3004 * first link must skip that, to get the accounting right.
3006 if (inode->i_nlink) {
3007 ret = shmem_reserve_inode(inode->i_sb, NULL);
3012 dir->i_size += BOGO_DIRENT_SIZE;
3013 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3014 inode_inc_iversion(dir);
3016 ihold(inode); /* New dentry reference */
3017 dget(dentry); /* Extra pinning count for the created dentry */
3018 d_instantiate(dentry, inode);
3023 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3025 struct inode *inode = d_inode(dentry);
3027 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3028 shmem_free_inode(inode->i_sb);
3030 dir->i_size -= BOGO_DIRENT_SIZE;
3031 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3032 inode_inc_iversion(dir);
3034 dput(dentry); /* Undo the count from "create" - this does all the work */
3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3040 if (!simple_empty(dentry))
3043 drop_nlink(d_inode(dentry));
3045 return shmem_unlink(dir, dentry);
3048 static int shmem_whiteout(struct user_namespace *mnt_userns,
3049 struct inode *old_dir, struct dentry *old_dentry)
3051 struct dentry *whiteout;
3054 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3058 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3059 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3065 * Cheat and hash the whiteout while the old dentry is still in
3066 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3068 * d_lookup() will consistently find one of them at this point,
3069 * not sure which one, but that isn't even important.
3076 * The VFS layer already does all the dentry stuff for rename,
3077 * we just have to decrement the usage count for the target if
3078 * it exists so that the VFS layer correctly free's it when it
3081 static int shmem_rename2(struct user_namespace *mnt_userns,
3082 struct inode *old_dir, struct dentry *old_dentry,
3083 struct inode *new_dir, struct dentry *new_dentry,
3086 struct inode *inode = d_inode(old_dentry);
3087 int they_are_dirs = S_ISDIR(inode->i_mode);
3089 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3092 if (flags & RENAME_EXCHANGE)
3093 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3095 if (!simple_empty(new_dentry))
3098 if (flags & RENAME_WHITEOUT) {
3101 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3106 if (d_really_is_positive(new_dentry)) {
3107 (void) shmem_unlink(new_dir, new_dentry);
3108 if (they_are_dirs) {
3109 drop_nlink(d_inode(new_dentry));
3110 drop_nlink(old_dir);
3112 } else if (they_are_dirs) {
3113 drop_nlink(old_dir);
3117 old_dir->i_size -= BOGO_DIRENT_SIZE;
3118 new_dir->i_size += BOGO_DIRENT_SIZE;
3119 old_dir->i_ctime = old_dir->i_mtime =
3120 new_dir->i_ctime = new_dir->i_mtime =
3121 inode->i_ctime = current_time(old_dir);
3122 inode_inc_iversion(old_dir);
3123 inode_inc_iversion(new_dir);
3127 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3128 struct dentry *dentry, const char *symname)
3132 struct inode *inode;
3133 struct folio *folio;
3135 len = strlen(symname) + 1;
3136 if (len > PAGE_SIZE)
3137 return -ENAMETOOLONG;
3139 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3144 error = security_inode_init_security(inode, dir, &dentry->d_name,
3145 shmem_initxattrs, NULL);
3146 if (error && error != -EOPNOTSUPP) {
3151 inode->i_size = len-1;
3152 if (len <= SHORT_SYMLINK_LEN) {
3153 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3154 if (!inode->i_link) {
3158 inode->i_op = &shmem_short_symlink_operations;
3160 inode_nohighmem(inode);
3161 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3166 inode->i_mapping->a_ops = &shmem_aops;
3167 inode->i_op = &shmem_symlink_inode_operations;
3168 memcpy(folio_address(folio), symname, len);
3169 folio_mark_uptodate(folio);
3170 folio_mark_dirty(folio);
3171 folio_unlock(folio);
3174 dir->i_size += BOGO_DIRENT_SIZE;
3175 dir->i_ctime = dir->i_mtime = current_time(dir);
3176 inode_inc_iversion(dir);
3177 d_instantiate(dentry, inode);
3182 static void shmem_put_link(void *arg)
3184 folio_mark_accessed(arg);
3188 static const char *shmem_get_link(struct dentry *dentry,
3189 struct inode *inode,
3190 struct delayed_call *done)
3192 struct folio *folio = NULL;
3196 folio = filemap_get_folio(inode->i_mapping, 0);
3198 return ERR_PTR(-ECHILD);
3199 if (PageHWPoison(folio_page(folio, 0)) ||
3200 !folio_test_uptodate(folio)) {
3202 return ERR_PTR(-ECHILD);
3205 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3207 return ERR_PTR(error);
3209 return ERR_PTR(-ECHILD);
3210 if (PageHWPoison(folio_page(folio, 0))) {
3211 folio_unlock(folio);
3213 return ERR_PTR(-ECHILD);
3215 folio_unlock(folio);
3217 set_delayed_call(done, shmem_put_link, folio);
3218 return folio_address(folio);
3221 #ifdef CONFIG_TMPFS_XATTR
3223 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3225 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3227 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3232 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3233 struct dentry *dentry, struct fileattr *fa)
3235 struct inode *inode = d_inode(dentry);
3236 struct shmem_inode_info *info = SHMEM_I(inode);
3238 if (fileattr_has_fsx(fa))
3240 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3243 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3244 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3246 shmem_set_inode_flags(inode, info->fsflags);
3247 inode->i_ctime = current_time(inode);
3248 inode_inc_iversion(inode);
3253 * Superblocks without xattr inode operations may get some security.* xattr
3254 * support from the LSM "for free". As soon as we have any other xattrs
3255 * like ACLs, we also need to implement the security.* handlers at
3256 * filesystem level, though.
3260 * Callback for security_inode_init_security() for acquiring xattrs.
3262 static int shmem_initxattrs(struct inode *inode,
3263 const struct xattr *xattr_array,
3266 struct shmem_inode_info *info = SHMEM_I(inode);
3267 const struct xattr *xattr;
3268 struct simple_xattr *new_xattr;
3271 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3272 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3276 len = strlen(xattr->name) + 1;
3277 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3279 if (!new_xattr->name) {
3284 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3285 XATTR_SECURITY_PREFIX_LEN);
3286 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3289 simple_xattr_add(&info->xattrs, new_xattr);
3295 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3296 struct dentry *unused, struct inode *inode,
3297 const char *name, void *buffer, size_t size)
3299 struct shmem_inode_info *info = SHMEM_I(inode);
3301 name = xattr_full_name(handler, name);
3302 return simple_xattr_get(&info->xattrs, name, buffer, size);
3305 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3306 struct user_namespace *mnt_userns,
3307 struct dentry *unused, struct inode *inode,
3308 const char *name, const void *value,
3309 size_t size, int flags)
3311 struct shmem_inode_info *info = SHMEM_I(inode);
3314 name = xattr_full_name(handler, name);
3315 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3317 inode->i_ctime = current_time(inode);
3318 inode_inc_iversion(inode);
3323 static const struct xattr_handler shmem_security_xattr_handler = {
3324 .prefix = XATTR_SECURITY_PREFIX,
3325 .get = shmem_xattr_handler_get,
3326 .set = shmem_xattr_handler_set,
3329 static const struct xattr_handler shmem_trusted_xattr_handler = {
3330 .prefix = XATTR_TRUSTED_PREFIX,
3331 .get = shmem_xattr_handler_get,
3332 .set = shmem_xattr_handler_set,
3335 static const struct xattr_handler *shmem_xattr_handlers[] = {
3336 #ifdef CONFIG_TMPFS_POSIX_ACL
3337 &posix_acl_access_xattr_handler,
3338 &posix_acl_default_xattr_handler,
3340 &shmem_security_xattr_handler,
3341 &shmem_trusted_xattr_handler,
3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3347 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3348 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3350 #endif /* CONFIG_TMPFS_XATTR */
3352 static const struct inode_operations shmem_short_symlink_operations = {
3353 .getattr = shmem_getattr,
3354 .get_link = simple_get_link,
3355 #ifdef CONFIG_TMPFS_XATTR
3356 .listxattr = shmem_listxattr,
3360 static const struct inode_operations shmem_symlink_inode_operations = {
3361 .getattr = shmem_getattr,
3362 .get_link = shmem_get_link,
3363 #ifdef CONFIG_TMPFS_XATTR
3364 .listxattr = shmem_listxattr,
3368 static struct dentry *shmem_get_parent(struct dentry *child)
3370 return ERR_PTR(-ESTALE);
3373 static int shmem_match(struct inode *ino, void *vfh)
3377 inum = (inum << 32) | fh[1];
3378 return ino->i_ino == inum && fh[0] == ino->i_generation;
3381 /* Find any alias of inode, but prefer a hashed alias */
3382 static struct dentry *shmem_find_alias(struct inode *inode)
3384 struct dentry *alias = d_find_alias(inode);
3386 return alias ?: d_find_any_alias(inode);
3390 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3391 struct fid *fid, int fh_len, int fh_type)
3393 struct inode *inode;
3394 struct dentry *dentry = NULL;
3401 inum = (inum << 32) | fid->raw[1];
3403 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3404 shmem_match, fid->raw);
3406 dentry = shmem_find_alias(inode);
3413 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3414 struct inode *parent)
3418 return FILEID_INVALID;
3421 if (inode_unhashed(inode)) {
3422 /* Unfortunately insert_inode_hash is not idempotent,
3423 * so as we hash inodes here rather than at creation
3424 * time, we need a lock to ensure we only try
3427 static DEFINE_SPINLOCK(lock);
3429 if (inode_unhashed(inode))
3430 __insert_inode_hash(inode,
3431 inode->i_ino + inode->i_generation);
3435 fh[0] = inode->i_generation;
3436 fh[1] = inode->i_ino;
3437 fh[2] = ((__u64)inode->i_ino) >> 32;
3443 static const struct export_operations shmem_export_ops = {
3444 .get_parent = shmem_get_parent,
3445 .encode_fh = shmem_encode_fh,
3446 .fh_to_dentry = shmem_fh_to_dentry,
3462 static const struct constant_table shmem_param_enums_huge[] = {
3463 {"never", SHMEM_HUGE_NEVER },
3464 {"always", SHMEM_HUGE_ALWAYS },
3465 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3466 {"advise", SHMEM_HUGE_ADVISE },
3470 const struct fs_parameter_spec shmem_fs_parameters[] = {
3471 fsparam_u32 ("gid", Opt_gid),
3472 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3473 fsparam_u32oct("mode", Opt_mode),
3474 fsparam_string("mpol", Opt_mpol),
3475 fsparam_string("nr_blocks", Opt_nr_blocks),
3476 fsparam_string("nr_inodes", Opt_nr_inodes),
3477 fsparam_string("size", Opt_size),
3478 fsparam_u32 ("uid", Opt_uid),
3479 fsparam_flag ("inode32", Opt_inode32),
3480 fsparam_flag ("inode64", Opt_inode64),
3484 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3486 struct shmem_options *ctx = fc->fs_private;
3487 struct fs_parse_result result;
3488 unsigned long long size;
3492 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3498 size = memparse(param->string, &rest);
3500 size <<= PAGE_SHIFT;
3501 size *= totalram_pages();
3507 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3508 ctx->seen |= SHMEM_SEEN_BLOCKS;
3511 ctx->blocks = memparse(param->string, &rest);
3512 if (*rest || ctx->blocks > S64_MAX)
3514 ctx->seen |= SHMEM_SEEN_BLOCKS;
3517 ctx->inodes = memparse(param->string, &rest);
3520 ctx->seen |= SHMEM_SEEN_INODES;
3523 ctx->mode = result.uint_32 & 07777;
3526 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3527 if (!uid_valid(ctx->uid))
3531 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3532 if (!gid_valid(ctx->gid))
3536 ctx->huge = result.uint_32;
3537 if (ctx->huge != SHMEM_HUGE_NEVER &&
3538 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3539 has_transparent_hugepage()))
3540 goto unsupported_parameter;
3541 ctx->seen |= SHMEM_SEEN_HUGE;
3544 if (IS_ENABLED(CONFIG_NUMA)) {
3545 mpol_put(ctx->mpol);
3547 if (mpol_parse_str(param->string, &ctx->mpol))
3551 goto unsupported_parameter;
3553 ctx->full_inums = false;
3554 ctx->seen |= SHMEM_SEEN_INUMS;
3557 if (sizeof(ino_t) < 8) {
3559 "Cannot use inode64 with <64bit inums in kernel\n");
3561 ctx->full_inums = true;
3562 ctx->seen |= SHMEM_SEEN_INUMS;
3567 unsupported_parameter:
3568 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3570 return invalfc(fc, "Bad value for '%s'", param->key);
3573 static int shmem_parse_options(struct fs_context *fc, void *data)
3575 char *options = data;
3578 int err = security_sb_eat_lsm_opts(options, &fc->security);
3583 while (options != NULL) {
3584 char *this_char = options;
3587 * NUL-terminate this option: unfortunately,
3588 * mount options form a comma-separated list,
3589 * but mpol's nodelist may also contain commas.
3591 options = strchr(options, ',');
3592 if (options == NULL)
3595 if (!isdigit(*options)) {
3601 char *value = strchr(this_char, '=');
3607 len = strlen(value);
3609 err = vfs_parse_fs_string(fc, this_char, value, len);
3618 * Reconfigure a shmem filesystem.
3620 * Note that we disallow change from limited->unlimited blocks/inodes while any
3621 * are in use; but we must separately disallow unlimited->limited, because in
3622 * that case we have no record of how much is already in use.
3624 static int shmem_reconfigure(struct fs_context *fc)
3626 struct shmem_options *ctx = fc->fs_private;
3627 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3628 unsigned long inodes;
3629 struct mempolicy *mpol = NULL;
3632 raw_spin_lock(&sbinfo->stat_lock);
3633 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3635 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3636 if (!sbinfo->max_blocks) {
3637 err = "Cannot retroactively limit size";
3640 if (percpu_counter_compare(&sbinfo->used_blocks,
3642 err = "Too small a size for current use";
3646 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3647 if (!sbinfo->max_inodes) {
3648 err = "Cannot retroactively limit inodes";
3651 if (ctx->inodes < inodes) {
3652 err = "Too few inodes for current use";
3657 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3658 sbinfo->next_ino > UINT_MAX) {
3659 err = "Current inum too high to switch to 32-bit inums";
3663 if (ctx->seen & SHMEM_SEEN_HUGE)
3664 sbinfo->huge = ctx->huge;
3665 if (ctx->seen & SHMEM_SEEN_INUMS)
3666 sbinfo->full_inums = ctx->full_inums;
3667 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3668 sbinfo->max_blocks = ctx->blocks;
3669 if (ctx->seen & SHMEM_SEEN_INODES) {
3670 sbinfo->max_inodes = ctx->inodes;
3671 sbinfo->free_inodes = ctx->inodes - inodes;
3675 * Preserve previous mempolicy unless mpol remount option was specified.
3678 mpol = sbinfo->mpol;
3679 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3682 raw_spin_unlock(&sbinfo->stat_lock);
3686 raw_spin_unlock(&sbinfo->stat_lock);
3687 return invalfc(fc, "%s", err);
3690 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3692 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3694 if (sbinfo->max_blocks != shmem_default_max_blocks())
3695 seq_printf(seq, ",size=%luk",
3696 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3697 if (sbinfo->max_inodes != shmem_default_max_inodes())
3698 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3699 if (sbinfo->mode != (0777 | S_ISVTX))
3700 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3701 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3702 seq_printf(seq, ",uid=%u",
3703 from_kuid_munged(&init_user_ns, sbinfo->uid));
3704 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3705 seq_printf(seq, ",gid=%u",
3706 from_kgid_munged(&init_user_ns, sbinfo->gid));
3709 * Showing inode{64,32} might be useful even if it's the system default,
3710 * since then people don't have to resort to checking both here and
3711 * /proc/config.gz to confirm 64-bit inums were successfully applied
3712 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3714 * We hide it when inode64 isn't the default and we are using 32-bit
3715 * inodes, since that probably just means the feature isn't even under
3720 * +-----------------+-----------------+
3721 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3722 * +------------------+-----------------+-----------------+
3723 * | full_inums=true | show | show |
3724 * | full_inums=false | show | hide |
3725 * +------------------+-----------------+-----------------+
3728 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3729 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3731 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3733 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3735 shmem_show_mpol(seq, sbinfo->mpol);
3739 #endif /* CONFIG_TMPFS */
3741 static void shmem_put_super(struct super_block *sb)
3743 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3745 free_percpu(sbinfo->ino_batch);
3746 percpu_counter_destroy(&sbinfo->used_blocks);
3747 mpol_put(sbinfo->mpol);
3749 sb->s_fs_info = NULL;
3752 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3754 struct shmem_options *ctx = fc->fs_private;
3755 struct inode *inode;
3756 struct shmem_sb_info *sbinfo;
3758 /* Round up to L1_CACHE_BYTES to resist false sharing */
3759 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3760 L1_CACHE_BYTES), GFP_KERNEL);
3764 sb->s_fs_info = sbinfo;
3768 * Per default we only allow half of the physical ram per
3769 * tmpfs instance, limiting inodes to one per page of lowmem;
3770 * but the internal instance is left unlimited.
3772 if (!(sb->s_flags & SB_KERNMOUNT)) {
3773 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3774 ctx->blocks = shmem_default_max_blocks();
3775 if (!(ctx->seen & SHMEM_SEEN_INODES))
3776 ctx->inodes = shmem_default_max_inodes();
3777 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3778 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3780 sb->s_flags |= SB_NOUSER;
3782 sb->s_export_op = &shmem_export_ops;
3783 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3785 sb->s_flags |= SB_NOUSER;
3787 sbinfo->max_blocks = ctx->blocks;
3788 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3789 if (sb->s_flags & SB_KERNMOUNT) {
3790 sbinfo->ino_batch = alloc_percpu(ino_t);
3791 if (!sbinfo->ino_batch)
3794 sbinfo->uid = ctx->uid;
3795 sbinfo->gid = ctx->gid;
3796 sbinfo->full_inums = ctx->full_inums;
3797 sbinfo->mode = ctx->mode;
3798 sbinfo->huge = ctx->huge;
3799 sbinfo->mpol = ctx->mpol;
3802 raw_spin_lock_init(&sbinfo->stat_lock);
3803 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3805 spin_lock_init(&sbinfo->shrinklist_lock);
3806 INIT_LIST_HEAD(&sbinfo->shrinklist);
3808 sb->s_maxbytes = MAX_LFS_FILESIZE;
3809 sb->s_blocksize = PAGE_SIZE;
3810 sb->s_blocksize_bits = PAGE_SHIFT;
3811 sb->s_magic = TMPFS_MAGIC;
3812 sb->s_op = &shmem_ops;
3813 sb->s_time_gran = 1;
3814 #ifdef CONFIG_TMPFS_XATTR
3815 sb->s_xattr = shmem_xattr_handlers;
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 sb->s_flags |= SB_POSIXACL;
3820 uuid_gen(&sb->s_uuid);
3822 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3825 inode->i_uid = sbinfo->uid;
3826 inode->i_gid = sbinfo->gid;
3827 sb->s_root = d_make_root(inode);
3833 shmem_put_super(sb);
3837 static int shmem_get_tree(struct fs_context *fc)
3839 return get_tree_nodev(fc, shmem_fill_super);
3842 static void shmem_free_fc(struct fs_context *fc)
3844 struct shmem_options *ctx = fc->fs_private;
3847 mpol_put(ctx->mpol);
3852 static const struct fs_context_operations shmem_fs_context_ops = {
3853 .free = shmem_free_fc,
3854 .get_tree = shmem_get_tree,
3856 .parse_monolithic = shmem_parse_options,
3857 .parse_param = shmem_parse_one,
3858 .reconfigure = shmem_reconfigure,
3862 static struct kmem_cache *shmem_inode_cachep;
3864 static struct inode *shmem_alloc_inode(struct super_block *sb)
3866 struct shmem_inode_info *info;
3867 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3870 return &info->vfs_inode;
3873 static void shmem_free_in_core_inode(struct inode *inode)
3875 if (S_ISLNK(inode->i_mode))
3876 kfree(inode->i_link);
3877 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3880 static void shmem_destroy_inode(struct inode *inode)
3882 if (S_ISREG(inode->i_mode))
3883 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3886 static void shmem_init_inode(void *foo)
3888 struct shmem_inode_info *info = foo;
3889 inode_init_once(&info->vfs_inode);
3892 static void shmem_init_inodecache(void)
3894 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3895 sizeof(struct shmem_inode_info),
3896 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3899 static void shmem_destroy_inodecache(void)
3901 kmem_cache_destroy(shmem_inode_cachep);
3904 /* Keep the page in page cache instead of truncating it */
3905 static int shmem_error_remove_page(struct address_space *mapping,
3911 const struct address_space_operations shmem_aops = {
3912 .writepage = shmem_writepage,
3913 .dirty_folio = noop_dirty_folio,
3915 .write_begin = shmem_write_begin,
3916 .write_end = shmem_write_end,
3918 #ifdef CONFIG_MIGRATION
3919 .migrate_folio = migrate_folio,
3921 .error_remove_page = shmem_error_remove_page,
3923 EXPORT_SYMBOL(shmem_aops);
3925 static const struct file_operations shmem_file_operations = {
3927 .open = generic_file_open,
3928 .get_unmapped_area = shmem_get_unmapped_area,
3930 .llseek = shmem_file_llseek,
3931 .read_iter = shmem_file_read_iter,
3932 .write_iter = generic_file_write_iter,
3933 .fsync = noop_fsync,
3934 .splice_read = generic_file_splice_read,
3935 .splice_write = iter_file_splice_write,
3936 .fallocate = shmem_fallocate,
3940 static const struct inode_operations shmem_inode_operations = {
3941 .getattr = shmem_getattr,
3942 .setattr = shmem_setattr,
3943 #ifdef CONFIG_TMPFS_XATTR
3944 .listxattr = shmem_listxattr,
3945 .set_acl = simple_set_acl,
3946 .fileattr_get = shmem_fileattr_get,
3947 .fileattr_set = shmem_fileattr_set,
3951 static const struct inode_operations shmem_dir_inode_operations = {
3953 .getattr = shmem_getattr,
3954 .create = shmem_create,
3955 .lookup = simple_lookup,
3957 .unlink = shmem_unlink,
3958 .symlink = shmem_symlink,
3959 .mkdir = shmem_mkdir,
3960 .rmdir = shmem_rmdir,
3961 .mknod = shmem_mknod,
3962 .rename = shmem_rename2,
3963 .tmpfile = shmem_tmpfile,
3965 #ifdef CONFIG_TMPFS_XATTR
3966 .listxattr = shmem_listxattr,
3967 .fileattr_get = shmem_fileattr_get,
3968 .fileattr_set = shmem_fileattr_set,
3970 #ifdef CONFIG_TMPFS_POSIX_ACL
3971 .setattr = shmem_setattr,
3972 .set_acl = simple_set_acl,
3976 static const struct inode_operations shmem_special_inode_operations = {
3977 .getattr = shmem_getattr,
3978 #ifdef CONFIG_TMPFS_XATTR
3979 .listxattr = shmem_listxattr,
3981 #ifdef CONFIG_TMPFS_POSIX_ACL
3982 .setattr = shmem_setattr,
3983 .set_acl = simple_set_acl,
3987 static const struct super_operations shmem_ops = {
3988 .alloc_inode = shmem_alloc_inode,
3989 .free_inode = shmem_free_in_core_inode,
3990 .destroy_inode = shmem_destroy_inode,
3992 .statfs = shmem_statfs,
3993 .show_options = shmem_show_options,
3995 .evict_inode = shmem_evict_inode,
3996 .drop_inode = generic_delete_inode,
3997 .put_super = shmem_put_super,
3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 .nr_cached_objects = shmem_unused_huge_count,
4000 .free_cached_objects = shmem_unused_huge_scan,
4004 static const struct vm_operations_struct shmem_vm_ops = {
4005 .fault = shmem_fault,
4006 .map_pages = filemap_map_pages,
4008 .set_policy = shmem_set_policy,
4009 .get_policy = shmem_get_policy,
4013 static const struct vm_operations_struct shmem_anon_vm_ops = {
4014 .fault = shmem_fault,
4015 .map_pages = filemap_map_pages,
4017 .set_policy = shmem_set_policy,
4018 .get_policy = shmem_get_policy,
4022 int shmem_init_fs_context(struct fs_context *fc)
4024 struct shmem_options *ctx;
4026 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4030 ctx->mode = 0777 | S_ISVTX;
4031 ctx->uid = current_fsuid();
4032 ctx->gid = current_fsgid();
4034 fc->fs_private = ctx;
4035 fc->ops = &shmem_fs_context_ops;
4039 static struct file_system_type shmem_fs_type = {
4040 .owner = THIS_MODULE,
4042 .init_fs_context = shmem_init_fs_context,
4044 .parameters = shmem_fs_parameters,
4046 .kill_sb = kill_litter_super,
4047 .fs_flags = FS_USERNS_MOUNT,
4050 void __init shmem_init(void)
4054 shmem_init_inodecache();
4056 error = register_filesystem(&shmem_fs_type);
4058 pr_err("Could not register tmpfs\n");
4062 shm_mnt = kern_mount(&shmem_fs_type);
4063 if (IS_ERR(shm_mnt)) {
4064 error = PTR_ERR(shm_mnt);
4065 pr_err("Could not kern_mount tmpfs\n");
4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4071 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4073 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4078 unregister_filesystem(&shmem_fs_type);
4080 shmem_destroy_inodecache();
4081 shm_mnt = ERR_PTR(error);
4084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4085 static ssize_t shmem_enabled_show(struct kobject *kobj,
4086 struct kobj_attribute *attr, char *buf)
4088 static const int values[] = {
4090 SHMEM_HUGE_WITHIN_SIZE,
4099 for (i = 0; i < ARRAY_SIZE(values); i++) {
4100 len += sysfs_emit_at(buf, len,
4101 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4103 shmem_format_huge(values[i]));
4106 len += sysfs_emit_at(buf, len, "\n");
4111 static ssize_t shmem_enabled_store(struct kobject *kobj,
4112 struct kobj_attribute *attr, const char *buf, size_t count)
4117 if (count + 1 > sizeof(tmp))
4119 memcpy(tmp, buf, count);
4121 if (count && tmp[count - 1] == '\n')
4122 tmp[count - 1] = '\0';
4124 huge = shmem_parse_huge(tmp);
4125 if (huge == -EINVAL)
4127 if (!has_transparent_hugepage() &&
4128 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4132 if (shmem_huge > SHMEM_HUGE_DENY)
4133 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4137 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4140 #else /* !CONFIG_SHMEM */
4143 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4145 * This is intended for small system where the benefits of the full
4146 * shmem code (swap-backed and resource-limited) are outweighed by
4147 * their complexity. On systems without swap this code should be
4148 * effectively equivalent, but much lighter weight.
4151 static struct file_system_type shmem_fs_type = {
4153 .init_fs_context = ramfs_init_fs_context,
4154 .parameters = ramfs_fs_parameters,
4155 .kill_sb = kill_litter_super,
4156 .fs_flags = FS_USERNS_MOUNT,
4159 void __init shmem_init(void)
4161 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4163 shm_mnt = kern_mount(&shmem_fs_type);
4164 BUG_ON(IS_ERR(shm_mnt));
4167 int shmem_unuse(unsigned int type)
4172 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4177 void shmem_unlock_mapping(struct address_space *mapping)
4182 unsigned long shmem_get_unmapped_area(struct file *file,
4183 unsigned long addr, unsigned long len,
4184 unsigned long pgoff, unsigned long flags)
4186 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4190 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4192 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4194 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4196 #define shmem_vm_ops generic_file_vm_ops
4197 #define shmem_anon_vm_ops generic_file_vm_ops
4198 #define shmem_file_operations ramfs_file_operations
4199 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4200 #define shmem_acct_size(flags, size) 0
4201 #define shmem_unacct_size(flags, size) do {} while (0)
4203 #endif /* CONFIG_SHMEM */
4207 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4208 unsigned long flags, unsigned int i_flags)
4210 struct inode *inode;
4214 return ERR_CAST(mnt);
4216 if (size < 0 || size > MAX_LFS_FILESIZE)
4217 return ERR_PTR(-EINVAL);
4219 if (shmem_acct_size(flags, size))
4220 return ERR_PTR(-ENOMEM);
4222 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4224 if (unlikely(!inode)) {
4225 shmem_unacct_size(flags, size);
4226 return ERR_PTR(-ENOSPC);
4228 inode->i_flags |= i_flags;
4229 inode->i_size = size;
4230 clear_nlink(inode); /* It is unlinked */
4231 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4233 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4234 &shmem_file_operations);
4241 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4242 * kernel internal. There will be NO LSM permission checks against the
4243 * underlying inode. So users of this interface must do LSM checks at a
4244 * higher layer. The users are the big_key and shm implementations. LSM
4245 * checks are provided at the key or shm level rather than the inode.
4246 * @name: name for dentry (to be seen in /proc/<pid>/maps
4247 * @size: size to be set for the file
4248 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4250 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4252 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4256 * shmem_file_setup - get an unlinked file living in tmpfs
4257 * @name: name for dentry (to be seen in /proc/<pid>/maps
4258 * @size: size to be set for the file
4259 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4261 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4263 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4265 EXPORT_SYMBOL_GPL(shmem_file_setup);
4268 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4269 * @mnt: the tmpfs mount where the file will be created
4270 * @name: name for dentry (to be seen in /proc/<pid>/maps
4271 * @size: size to be set for the file
4272 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4274 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4275 loff_t size, unsigned long flags)
4277 return __shmem_file_setup(mnt, name, size, flags, 0);
4279 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4282 * shmem_zero_setup - setup a shared anonymous mapping
4283 * @vma: the vma to be mmapped is prepared by do_mmap
4285 int shmem_zero_setup(struct vm_area_struct *vma)
4288 loff_t size = vma->vm_end - vma->vm_start;
4291 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4292 * between XFS directory reading and selinux: since this file is only
4293 * accessible to the user through its mapping, use S_PRIVATE flag to
4294 * bypass file security, in the same way as shmem_kernel_file_setup().
4296 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4298 return PTR_ERR(file);
4302 vma->vm_file = file;
4303 vma->vm_ops = &shmem_anon_vm_ops;
4309 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4310 * @mapping: the page's address_space
4311 * @index: the page index
4312 * @gfp: the page allocator flags to use if allocating
4314 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4315 * with any new page allocations done using the specified allocation flags.
4316 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4317 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4318 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4320 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4321 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4323 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4324 pgoff_t index, gfp_t gfp)
4327 struct inode *inode = mapping->host;
4328 struct folio *folio;
4332 BUG_ON(!shmem_mapping(mapping));
4333 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4334 gfp, NULL, NULL, NULL);
4336 return ERR_PTR(error);
4338 folio_unlock(folio);
4339 page = folio_file_page(folio, index);
4340 if (PageHWPoison(page)) {
4342 return ERR_PTR(-EIO);
4348 * The tiny !SHMEM case uses ramfs without swap
4350 return read_cache_page_gfp(mapping, index, gfp);
4353 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);