packaging: fix not to provide kernel-headers
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON(!PageLocked(page));
290         VM_BUG_ON(!PageSwapBacked(page));
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON(PageWriteback(page));
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         while (index < end) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         /* If all gone or hole-punch or unfalloc, we're done */
544                         if (index == start || end != -1)
545                                 break;
546                         /* But if truncating, restart to make sure all gone */
547                         index = start;
548                         continue;
549                 }
550                 mem_cgroup_uncharge_start();
551                 for (i = 0; i < pagevec_count(&pvec); i++) {
552                         struct page *page = pvec.pages[i];
553
554                         index = indices[i];
555                         if (index >= end)
556                                 break;
557
558                         if (radix_tree_exceptional_entry(page)) {
559                                 if (unfalloc)
560                                         continue;
561                                 if (shmem_free_swap(mapping, index, page)) {
562                                         /* Swap was replaced by page: retry */
563                                         index--;
564                                         break;
565                                 }
566                                 nr_swaps_freed++;
567                                 continue;
568                         }
569
570                         lock_page(page);
571                         if (!unfalloc || !PageUptodate(page)) {
572                                 if (page->mapping == mapping) {
573                                         VM_BUG_ON(PageWriteback(page));
574                                         truncate_inode_page(mapping, page);
575                                 } else {
576                                         /* Page was replaced by swap: retry */
577                                         unlock_page(page);
578                                         index--;
579                                         break;
580                                 }
581                         }
582                         unlock_page(page);
583                 }
584                 shmem_deswap_pagevec(&pvec);
585                 pagevec_release(&pvec);
586                 mem_cgroup_uncharge_end();
587                 index++;
588         }
589
590         spin_lock(&info->lock);
591         info->swapped -= nr_swaps_freed;
592         shmem_recalc_inode(inode);
593         spin_unlock(&info->lock);
594 }
595
596 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597 {
598         shmem_undo_range(inode, lstart, lend, false);
599         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
600 }
601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
602
603 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605         struct inode *inode = dentry->d_inode;
606         int error;
607
608         error = inode_change_ok(inode, attr);
609         if (error)
610                 return error;
611
612         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613                 loff_t oldsize = inode->i_size;
614                 loff_t newsize = attr->ia_size;
615
616                 if (newsize != oldsize) {
617                         i_size_write(inode, newsize);
618                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619                 }
620                 if (newsize < oldsize) {
621                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
622                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623                         shmem_truncate_range(inode, newsize, (loff_t)-1);
624                         /* unmap again to remove racily COWed private pages */
625                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
626                 }
627         }
628
629         setattr_copy(inode, attr);
630 #ifdef CONFIG_TMPFS_POSIX_ACL
631         if (attr->ia_valid & ATTR_MODE)
632                 error = generic_acl_chmod(inode);
633 #endif
634         return error;
635 }
636
637 static void shmem_evict_inode(struct inode *inode)
638 {
639         struct shmem_inode_info *info = SHMEM_I(inode);
640
641         if (inode->i_mapping->a_ops == &shmem_aops) {
642                 shmem_unacct_size(info->flags, inode->i_size);
643                 inode->i_size = 0;
644                 shmem_truncate_range(inode, 0, (loff_t)-1);
645                 if (!list_empty(&info->swaplist)) {
646                         mutex_lock(&shmem_swaplist_mutex);
647                         list_del_init(&info->swaplist);
648                         mutex_unlock(&shmem_swaplist_mutex);
649                 }
650         } else
651                 kfree(info->symlink);
652
653         simple_xattrs_free(&info->xattrs);
654         WARN_ON(inode->i_blocks);
655         shmem_free_inode(inode->i_sb);
656         clear_inode(inode);
657 }
658
659 /*
660  * If swap found in inode, free it and move page from swapcache to filecache.
661  */
662 static int shmem_unuse_inode(struct shmem_inode_info *info,
663                              swp_entry_t swap, struct page **pagep)
664 {
665         struct address_space *mapping = info->vfs_inode.i_mapping;
666         void *radswap;
667         pgoff_t index;
668         gfp_t gfp;
669         int error = 0;
670
671         radswap = swp_to_radix_entry(swap);
672         index = radix_tree_locate_item(&mapping->page_tree, radswap);
673         if (index == -1)
674                 return 0;
675
676         /*
677          * Move _head_ to start search for next from here.
678          * But be careful: shmem_evict_inode checks list_empty without taking
679          * mutex, and there's an instant in list_move_tail when info->swaplist
680          * would appear empty, if it were the only one on shmem_swaplist.
681          */
682         if (shmem_swaplist.next != &info->swaplist)
683                 list_move_tail(&shmem_swaplist, &info->swaplist);
684
685         gfp = mapping_gfp_mask(mapping);
686         if (shmem_should_replace_page(*pagep, gfp)) {
687                 mutex_unlock(&shmem_swaplist_mutex);
688                 error = shmem_replace_page(pagep, gfp, info, index);
689                 mutex_lock(&shmem_swaplist_mutex);
690                 /*
691                  * We needed to drop mutex to make that restrictive page
692                  * allocation, but the inode might have been freed while we
693                  * dropped it: although a racing shmem_evict_inode() cannot
694                  * complete without emptying the radix_tree, our page lock
695                  * on this swapcache page is not enough to prevent that -
696                  * free_swap_and_cache() of our swap entry will only
697                  * trylock_page(), removing swap from radix_tree whatever.
698                  *
699                  * We must not proceed to shmem_add_to_page_cache() if the
700                  * inode has been freed, but of course we cannot rely on
701                  * inode or mapping or info to check that.  However, we can
702                  * safely check if our swap entry is still in use (and here
703                  * it can't have got reused for another page): if it's still
704                  * in use, then the inode cannot have been freed yet, and we
705                  * can safely proceed (if it's no longer in use, that tells
706                  * nothing about the inode, but we don't need to unuse swap).
707                  */
708                 if (!page_swapcount(*pagep))
709                         error = -ENOENT;
710         }
711
712         /*
713          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
714          * but also to hold up shmem_evict_inode(): so inode cannot be freed
715          * beneath us (pagelock doesn't help until the page is in pagecache).
716          */
717         if (!error)
718                 error = shmem_add_to_page_cache(*pagep, mapping, index,
719                                                 GFP_NOWAIT, radswap);
720         if (error != -ENOMEM) {
721                 /*
722                  * Truncation and eviction use free_swap_and_cache(), which
723                  * only does trylock page: if we raced, best clean up here.
724                  */
725                 delete_from_swap_cache(*pagep);
726                 set_page_dirty(*pagep);
727                 if (!error) {
728                         spin_lock(&info->lock);
729                         info->swapped--;
730                         spin_unlock(&info->lock);
731                         swap_free(swap);
732                 }
733                 error = 1;      /* not an error, but entry was found */
734         }
735         return error;
736 }
737
738 /*
739  * Search through swapped inodes to find and replace swap by page.
740  */
741 int shmem_unuse(swp_entry_t swap, struct page *page)
742 {
743         struct list_head *this, *next;
744         struct shmem_inode_info *info;
745         int found = 0;
746         int error = 0;
747
748         /*
749          * There's a faint possibility that swap page was replaced before
750          * caller locked it: caller will come back later with the right page.
751          */
752         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
753                 goto out;
754
755         /*
756          * Charge page using GFP_KERNEL while we can wait, before taking
757          * the shmem_swaplist_mutex which might hold up shmem_writepage().
758          * Charged back to the user (not to caller) when swap account is used.
759          */
760         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
761         if (error)
762                 goto out;
763         /* No radix_tree_preload: swap entry keeps a place for page in tree */
764
765         mutex_lock(&shmem_swaplist_mutex);
766         list_for_each_safe(this, next, &shmem_swaplist) {
767                 info = list_entry(this, struct shmem_inode_info, swaplist);
768                 if (info->swapped)
769                         found = shmem_unuse_inode(info, swap, &page);
770                 else
771                         list_del_init(&info->swaplist);
772                 cond_resched();
773                 if (found)
774                         break;
775         }
776         mutex_unlock(&shmem_swaplist_mutex);
777
778         if (found < 0)
779                 error = found;
780 out:
781         unlock_page(page);
782         page_cache_release(page);
783         return error;
784 }
785
786 /*
787  * Move the page from the page cache to the swap cache.
788  */
789 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
790 {
791         struct shmem_inode_info *info;
792         struct address_space *mapping;
793         struct inode *inode;
794         swp_entry_t swap;
795         pgoff_t index;
796
797         BUG_ON(!PageLocked(page));
798         mapping = page->mapping;
799         index = page->index;
800         inode = mapping->host;
801         info = SHMEM_I(inode);
802         if (info->flags & VM_LOCKED)
803                 goto redirty;
804         if (!total_swap_pages)
805                 goto redirty;
806
807         /*
808          * shmem_backing_dev_info's capabilities prevent regular writeback or
809          * sync from ever calling shmem_writepage; but a stacking filesystem
810          * might use ->writepage of its underlying filesystem, in which case
811          * tmpfs should write out to swap only in response to memory pressure,
812          * and not for the writeback threads or sync.
813          */
814         if (!wbc->for_reclaim) {
815                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
816                 goto redirty;
817         }
818
819         /*
820          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
821          * value into swapfile.c, the only way we can correctly account for a
822          * fallocated page arriving here is now to initialize it and write it.
823          *
824          * That's okay for a page already fallocated earlier, but if we have
825          * not yet completed the fallocation, then (a) we want to keep track
826          * of this page in case we have to undo it, and (b) it may not be a
827          * good idea to continue anyway, once we're pushing into swap.  So
828          * reactivate the page, and let shmem_fallocate() quit when too many.
829          */
830         if (!PageUptodate(page)) {
831                 if (inode->i_private) {
832                         struct shmem_falloc *shmem_falloc;
833                         spin_lock(&inode->i_lock);
834                         shmem_falloc = inode->i_private;
835                         if (shmem_falloc &&
836                             !shmem_falloc->waitq &&
837                             index >= shmem_falloc->start &&
838                             index < shmem_falloc->next)
839                                 shmem_falloc->nr_unswapped++;
840                         else
841                                 shmem_falloc = NULL;
842                         spin_unlock(&inode->i_lock);
843                         if (shmem_falloc)
844                                 goto redirty;
845                 }
846                 clear_highpage(page);
847                 flush_dcache_page(page);
848                 SetPageUptodate(page);
849         }
850
851         swap = get_swap_page();
852         if (!swap.val)
853                 goto redirty;
854
855         /*
856          * Add inode to shmem_unuse()'s list of swapped-out inodes,
857          * if it's not already there.  Do it now before the page is
858          * moved to swap cache, when its pagelock no longer protects
859          * the inode from eviction.  But don't unlock the mutex until
860          * we've incremented swapped, because shmem_unuse_inode() will
861          * prune a !swapped inode from the swaplist under this mutex.
862          */
863         mutex_lock(&shmem_swaplist_mutex);
864         if (list_empty(&info->swaplist))
865                 list_add_tail(&info->swaplist, &shmem_swaplist);
866
867         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
868                 swap_shmem_alloc(swap);
869                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
870
871                 spin_lock(&info->lock);
872                 info->swapped++;
873                 shmem_recalc_inode(inode);
874                 spin_unlock(&info->lock);
875
876                 mutex_unlock(&shmem_swaplist_mutex);
877                 BUG_ON(page_mapped(page));
878                 swap_writepage(page, wbc);
879                 return 0;
880         }
881
882         mutex_unlock(&shmem_swaplist_mutex);
883         swapcache_free(swap, NULL);
884 redirty:
885         set_page_dirty(page);
886         if (wbc->for_reclaim)
887                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
888         unlock_page(page);
889         return 0;
890 }
891
892 #ifdef CONFIG_NUMA
893 #ifdef CONFIG_TMPFS
894 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
895 {
896         char buffer[64];
897
898         if (!mpol || mpol->mode == MPOL_DEFAULT)
899                 return;         /* show nothing */
900
901         mpol_to_str(buffer, sizeof(buffer), mpol);
902
903         seq_printf(seq, ",mpol=%s", buffer);
904 }
905
906 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908         struct mempolicy *mpol = NULL;
909         if (sbinfo->mpol) {
910                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
911                 mpol = sbinfo->mpol;
912                 mpol_get(mpol);
913                 spin_unlock(&sbinfo->stat_lock);
914         }
915         return mpol;
916 }
917 #endif /* CONFIG_TMPFS */
918
919 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
920                         struct shmem_inode_info *info, pgoff_t index)
921 {
922         struct vm_area_struct pvma;
923         struct page *page;
924
925         /* Create a pseudo vma that just contains the policy */
926         pvma.vm_start = 0;
927         /* Bias interleave by inode number to distribute better across nodes */
928         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
929         pvma.vm_ops = NULL;
930         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
931
932         page = swapin_readahead(swap, gfp, &pvma, 0);
933
934         /* Drop reference taken by mpol_shared_policy_lookup() */
935         mpol_cond_put(pvma.vm_policy);
936
937         return page;
938 }
939
940 static struct page *shmem_alloc_page(gfp_t gfp,
941                         struct shmem_inode_info *info, pgoff_t index)
942 {
943         struct vm_area_struct pvma;
944         struct page *page;
945
946         /* Create a pseudo vma that just contains the policy */
947         pvma.vm_start = 0;
948         /* Bias interleave by inode number to distribute better across nodes */
949         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
950         pvma.vm_ops = NULL;
951         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
952
953         page = alloc_page_vma(gfp, &pvma, 0);
954
955         /* Drop reference taken by mpol_shared_policy_lookup() */
956         mpol_cond_put(pvma.vm_policy);
957
958         return page;
959 }
960 #else /* !CONFIG_NUMA */
961 #ifdef CONFIG_TMPFS
962 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
963 {
964 }
965 #endif /* CONFIG_TMPFS */
966
967 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
968                         struct shmem_inode_info *info, pgoff_t index)
969 {
970         return swapin_readahead(swap, gfp, NULL, 0);
971 }
972
973 static inline struct page *shmem_alloc_page(gfp_t gfp,
974                         struct shmem_inode_info *info, pgoff_t index)
975 {
976 #ifndef CONFIG_SPRD_PAGERECORDER
977         return alloc_page(gfp);
978 #else
979         return alloc_page_nopagedebug(gfp);
980 #endif
981 }
982 #endif /* CONFIG_NUMA */
983
984 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
985 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
986 {
987         return NULL;
988 }
989 #endif
990
991 /*
992  * When a page is moved from swapcache to shmem filecache (either by the
993  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
994  * shmem_unuse_inode()), it may have been read in earlier from swap, in
995  * ignorance of the mapping it belongs to.  If that mapping has special
996  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
997  * we may need to copy to a suitable page before moving to filecache.
998  *
999  * In a future release, this may well be extended to respect cpuset and
1000  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1001  * but for now it is a simple matter of zone.
1002  */
1003 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1004 {
1005         return page_zonenum(page) > gfp_zone(gfp);
1006 }
1007
1008 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1009                                 struct shmem_inode_info *info, pgoff_t index)
1010 {
1011         struct page *oldpage, *newpage;
1012         struct address_space *swap_mapping;
1013         pgoff_t swap_index;
1014         int error;
1015
1016         oldpage = *pagep;
1017         swap_index = page_private(oldpage);
1018         swap_mapping = page_mapping(oldpage);
1019
1020         /*
1021          * We have arrived here because our zones are constrained, so don't
1022          * limit chance of success by further cpuset and node constraints.
1023          */
1024         gfp &= ~GFP_CONSTRAINT_MASK;
1025         newpage = shmem_alloc_page(gfp, info, index);
1026         if (!newpage)
1027                 return -ENOMEM;
1028
1029         page_cache_get(newpage);
1030         copy_highpage(newpage, oldpage);
1031         flush_dcache_page(newpage);
1032
1033         __set_page_locked(newpage);
1034         SetPageUptodate(newpage);
1035         SetPageSwapBacked(newpage);
1036         set_page_private(newpage, swap_index);
1037         SetPageSwapCache(newpage);
1038
1039         /*
1040          * Our caller will very soon move newpage out of swapcache, but it's
1041          * a nice clean interface for us to replace oldpage by newpage there.
1042          */
1043         spin_lock_irq(&swap_mapping->tree_lock);
1044         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1045                                                                    newpage);
1046         if (!error) {
1047                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1048                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1049         }
1050         spin_unlock_irq(&swap_mapping->tree_lock);
1051
1052         if (unlikely(error)) {
1053                 /*
1054                  * Is this possible?  I think not, now that our callers check
1055                  * both PageSwapCache and page_private after getting page lock;
1056                  * but be defensive.  Reverse old to newpage for clear and free.
1057                  */
1058                 oldpage = newpage;
1059         } else {
1060                 mem_cgroup_replace_page_cache(oldpage, newpage);
1061                 lru_cache_add_anon(newpage);
1062                 *pagep = newpage;
1063         }
1064
1065         ClearPageSwapCache(oldpage);
1066         set_page_private(oldpage, 0);
1067
1068         unlock_page(oldpage);
1069         page_cache_release(oldpage);
1070         page_cache_release(oldpage);
1071         return error;
1072 }
1073
1074 /*
1075  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1076  *
1077  * If we allocate a new one we do not mark it dirty. That's up to the
1078  * vm. If we swap it in we mark it dirty since we also free the swap
1079  * entry since a page cannot live in both the swap and page cache
1080  */
1081 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1082         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1083 {
1084         struct address_space *mapping = inode->i_mapping;
1085         struct shmem_inode_info *info;
1086         struct shmem_sb_info *sbinfo;
1087         struct page *page;
1088         swp_entry_t swap;
1089         int error;
1090         int once = 0;
1091         int alloced = 0;
1092
1093         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1094                 return -EFBIG;
1095 repeat:
1096         swap.val = 0;
1097         page = find_lock_page(mapping, index);
1098         if (radix_tree_exceptional_entry(page)) {
1099                 swap = radix_to_swp_entry(page);
1100                 page = NULL;
1101         }
1102
1103         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1104             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1105                 error = -EINVAL;
1106                 goto failed;
1107         }
1108
1109         /* fallocated page? */
1110         if (page && !PageUptodate(page)) {
1111                 if (sgp != SGP_READ)
1112                         goto clear;
1113                 unlock_page(page);
1114                 page_cache_release(page);
1115                 page = NULL;
1116         }
1117         if (page || (sgp == SGP_READ && !swap.val)) {
1118                 *pagep = page;
1119                 return 0;
1120         }
1121
1122         /*
1123          * Fast cache lookup did not find it:
1124          * bring it back from swap or allocate.
1125          */
1126         info = SHMEM_I(inode);
1127         sbinfo = SHMEM_SB(inode->i_sb);
1128
1129         if (swap.val) {
1130                 /* Look it up and read it in.. */
1131                 page = lookup_swap_cache(swap);
1132                 if (!page) {
1133                         /* here we actually do the io */
1134                         if (fault_type)
1135                                 *fault_type |= VM_FAULT_MAJOR;
1136                         page = shmem_swapin(swap, gfp, info, index);
1137                         if (!page) {
1138                                 error = -ENOMEM;
1139                                 goto failed;
1140                         }
1141                 }
1142
1143                 /* We have to do this with page locked to prevent races */
1144                 lock_page(page);
1145                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1146                     !shmem_confirm_swap(mapping, index, swap)) {
1147                         error = -EEXIST;        /* try again */
1148                         goto unlock;
1149                 }
1150                 if (!PageUptodate(page)) {
1151                         error = -EIO;
1152                         goto failed;
1153                 }
1154                 wait_on_page_writeback(page);
1155
1156                 if (shmem_should_replace_page(page, gfp)) {
1157                         error = shmem_replace_page(&page, gfp, info, index);
1158                         if (error)
1159                                 goto failed;
1160                 }
1161
1162                 error = mem_cgroup_cache_charge(page, current->mm,
1163                                                 gfp & GFP_RECLAIM_MASK);
1164                 if (!error) {
1165                         error = shmem_add_to_page_cache(page, mapping, index,
1166                                                 gfp, swp_to_radix_entry(swap));
1167                         /*
1168                          * We already confirmed swap under page lock, and make
1169                          * no memory allocation here, so usually no possibility
1170                          * of error; but free_swap_and_cache() only trylocks a
1171                          * page, so it is just possible that the entry has been
1172                          * truncated or holepunched since swap was confirmed.
1173                          * shmem_undo_range() will have done some of the
1174                          * unaccounting, now delete_from_swap_cache() will do
1175                          * the rest (including mem_cgroup_uncharge_swapcache).
1176                          * Reset swap.val? No, leave it so "failed" goes back to
1177                          * "repeat": reading a hole and writing should succeed.
1178                          */
1179                         if (error)
1180                                 delete_from_swap_cache(page);
1181                 }
1182                 if (error)
1183                         goto failed;
1184
1185                 spin_lock(&info->lock);
1186                 info->swapped--;
1187                 shmem_recalc_inode(inode);
1188                 spin_unlock(&info->lock);
1189
1190                 delete_from_swap_cache(page);
1191                 set_page_dirty(page);
1192                 swap_free(swap);
1193
1194         } else {
1195                 if (shmem_acct_block(info->flags)) {
1196                         error = -ENOSPC;
1197                         goto failed;
1198                 }
1199                 if (sbinfo->max_blocks) {
1200                         if (percpu_counter_compare(&sbinfo->used_blocks,
1201                                                 sbinfo->max_blocks) >= 0) {
1202                                 error = -ENOSPC;
1203                                 goto unacct;
1204                         }
1205                         percpu_counter_inc(&sbinfo->used_blocks);
1206                 }
1207
1208                 page = shmem_alloc_page(gfp, info, index);
1209                 if (!page) {
1210                         error = -ENOMEM;
1211                         goto decused;
1212                 }
1213
1214                 SetPageSwapBacked(page);
1215                 __set_page_locked(page);
1216                 error = mem_cgroup_cache_charge(page, current->mm,
1217                                                 gfp & GFP_RECLAIM_MASK);
1218                 if (error)
1219                         goto decused;
1220                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1221                 if (!error) {
1222                         error = shmem_add_to_page_cache(page, mapping, index,
1223                                                         gfp, NULL);
1224                         radix_tree_preload_end();
1225                 }
1226                 if (error) {
1227                         mem_cgroup_uncharge_cache_page(page);
1228                         goto decused;
1229                 }
1230                 lru_cache_add_anon(page);
1231
1232                 spin_lock(&info->lock);
1233                 info->alloced++;
1234                 inode->i_blocks += BLOCKS_PER_PAGE;
1235                 shmem_recalc_inode(inode);
1236                 spin_unlock(&info->lock);
1237                 alloced = true;
1238
1239                 /*
1240                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1241                  */
1242                 if (sgp == SGP_FALLOC)
1243                         sgp = SGP_WRITE;
1244 clear:
1245                 /*
1246                  * Let SGP_WRITE caller clear ends if write does not fill page;
1247                  * but SGP_FALLOC on a page fallocated earlier must initialize
1248                  * it now, lest undo on failure cancel our earlier guarantee.
1249                  */
1250                 if (sgp != SGP_WRITE) {
1251                         clear_highpage(page);
1252                         flush_dcache_page(page);
1253                         SetPageUptodate(page);
1254                 }
1255                 if (sgp == SGP_DIRTY)
1256                         set_page_dirty(page);
1257         }
1258
1259         /* Perhaps the file has been truncated since we checked */
1260         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1261             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1262                 error = -EINVAL;
1263                 if (alloced)
1264                         goto trunc;
1265                 else
1266                         goto failed;
1267         }
1268         *pagep = page;
1269         return 0;
1270
1271         /*
1272          * Error recovery.
1273          */
1274 trunc:
1275         info = SHMEM_I(inode);
1276         ClearPageDirty(page);
1277         delete_from_page_cache(page);
1278         spin_lock(&info->lock);
1279         info->alloced--;
1280         inode->i_blocks -= BLOCKS_PER_PAGE;
1281         spin_unlock(&info->lock);
1282 decused:
1283         sbinfo = SHMEM_SB(inode->i_sb);
1284         if (sbinfo->max_blocks)
1285                 percpu_counter_add(&sbinfo->used_blocks, -1);
1286 unacct:
1287         shmem_unacct_blocks(info->flags, 1);
1288 failed:
1289         if (swap.val && error != -EINVAL &&
1290             !shmem_confirm_swap(mapping, index, swap))
1291                 error = -EEXIST;
1292 unlock:
1293         if (page) {
1294                 unlock_page(page);
1295                 page_cache_release(page);
1296         }
1297         if (error == -ENOSPC && !once++) {
1298                 info = SHMEM_I(inode);
1299                 spin_lock(&info->lock);
1300                 shmem_recalc_inode(inode);
1301                 spin_unlock(&info->lock);
1302                 goto repeat;
1303         }
1304         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1305                 goto repeat;
1306         return error;
1307 }
1308
1309 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1310 {
1311         struct inode *inode = file_inode(vma->vm_file);
1312         int error;
1313         int ret = VM_FAULT_LOCKED;
1314
1315         /*
1316          * Trinity finds that probing a hole which tmpfs is punching can
1317          * prevent the hole-punch from ever completing: which in turn
1318          * locks writers out with its hold on i_mutex.  So refrain from
1319          * faulting pages into the hole while it's being punched.  Although
1320          * shmem_undo_range() does remove the additions, it may be unable to
1321          * keep up, as each new page needs its own unmap_mapping_range() call,
1322          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1323          *
1324          * It does not matter if we sometimes reach this check just before the
1325          * hole-punch begins, so that one fault then races with the punch:
1326          * we just need to make racing faults a rare case.
1327          *
1328          * The implementation below would be much simpler if we just used a
1329          * standard mutex or completion: but we cannot take i_mutex in fault,
1330          * and bloating every shmem inode for this unlikely case would be sad.
1331          */
1332         if (unlikely(inode->i_private)) {
1333                 struct shmem_falloc *shmem_falloc;
1334
1335                 spin_lock(&inode->i_lock);
1336                 shmem_falloc = inode->i_private;
1337                 if (shmem_falloc &&
1338                     shmem_falloc->waitq &&
1339                     vmf->pgoff >= shmem_falloc->start &&
1340                     vmf->pgoff < shmem_falloc->next) {
1341                         wait_queue_head_t *shmem_falloc_waitq;
1342                         DEFINE_WAIT(shmem_fault_wait);
1343
1344                         ret = VM_FAULT_NOPAGE;
1345                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1346                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1347                                 /* It's polite to up mmap_sem if we can */
1348                                 up_read(&vma->vm_mm->mmap_sem);
1349                                 ret = VM_FAULT_RETRY;
1350                         }
1351
1352                         shmem_falloc_waitq = shmem_falloc->waitq;
1353                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1354                                         TASK_UNINTERRUPTIBLE);
1355                         spin_unlock(&inode->i_lock);
1356                         schedule();
1357
1358                         /*
1359                          * shmem_falloc_waitq points into the shmem_fallocate()
1360                          * stack of the hole-punching task: shmem_falloc_waitq
1361                          * is usually invalid by the time we reach here, but
1362                          * finish_wait() does not dereference it in that case;
1363                          * though i_lock needed lest racing with wake_up_all().
1364                          */
1365                         spin_lock(&inode->i_lock);
1366                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1367                         spin_unlock(&inode->i_lock);
1368                         return ret;
1369                 }
1370                 spin_unlock(&inode->i_lock);
1371         }
1372
1373         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1374         if (error)
1375                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1376
1377         if (ret & VM_FAULT_MAJOR) {
1378                 count_vm_event(PGMAJFAULT);
1379                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1380         }
1381         return ret;
1382 }
1383
1384 #ifdef CONFIG_NUMA
1385 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1386 {
1387         struct inode *inode = file_inode(vma->vm_file);
1388         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1389 }
1390
1391 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1392                                           unsigned long addr)
1393 {
1394         struct inode *inode = file_inode(vma->vm_file);
1395         pgoff_t index;
1396
1397         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1398         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1399 }
1400 #endif
1401
1402 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1403 {
1404         struct inode *inode = file_inode(file);
1405         struct shmem_inode_info *info = SHMEM_I(inode);
1406         int retval = -ENOMEM;
1407
1408         spin_lock(&info->lock);
1409         if (lock && !(info->flags & VM_LOCKED)) {
1410                 if (!user_shm_lock(inode->i_size, user))
1411                         goto out_nomem;
1412                 info->flags |= VM_LOCKED;
1413                 mapping_set_unevictable(file->f_mapping);
1414         }
1415         if (!lock && (info->flags & VM_LOCKED) && user) {
1416                 user_shm_unlock(inode->i_size, user);
1417                 info->flags &= ~VM_LOCKED;
1418                 mapping_clear_unevictable(file->f_mapping);
1419         }
1420         retval = 0;
1421
1422 out_nomem:
1423         spin_unlock(&info->lock);
1424         return retval;
1425 }
1426
1427 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1428 {
1429         file_accessed(file);
1430         vma->vm_ops = &shmem_vm_ops;
1431         return 0;
1432 }
1433
1434 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1435                                      umode_t mode, dev_t dev, unsigned long flags)
1436 {
1437         struct inode *inode;
1438         struct shmem_inode_info *info;
1439         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1440
1441         if (shmem_reserve_inode(sb))
1442                 return NULL;
1443
1444         inode = new_inode(sb);
1445         if (inode) {
1446                 inode->i_ino = get_next_ino();
1447                 inode_init_owner(inode, dir, mode);
1448                 inode->i_blocks = 0;
1449                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1450                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1451                 inode->i_generation = get_seconds();
1452                 info = SHMEM_I(inode);
1453                 memset(info, 0, (char *)inode - (char *)info);
1454                 spin_lock_init(&info->lock);
1455                 info->flags = flags & VM_NORESERVE;
1456                 INIT_LIST_HEAD(&info->swaplist);
1457                 simple_xattrs_init(&info->xattrs);
1458                 cache_no_acl(inode);
1459
1460                 switch (mode & S_IFMT) {
1461                 default:
1462                         inode->i_op = &shmem_special_inode_operations;
1463                         init_special_inode(inode, mode, dev);
1464                         break;
1465                 case S_IFREG:
1466                         inode->i_mapping->a_ops = &shmem_aops;
1467                         inode->i_op = &shmem_inode_operations;
1468                         inode->i_fop = &shmem_file_operations;
1469                         mpol_shared_policy_init(&info->policy,
1470                                                  shmem_get_sbmpol(sbinfo));
1471                         break;
1472                 case S_IFDIR:
1473                         inc_nlink(inode);
1474                         /* Some things misbehave if size == 0 on a directory */
1475                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1476                         inode->i_op = &shmem_dir_inode_operations;
1477                         inode->i_fop = &simple_dir_operations;
1478                         break;
1479                 case S_IFLNK:
1480                         /*
1481                          * Must not load anything in the rbtree,
1482                          * mpol_free_shared_policy will not be called.
1483                          */
1484                         mpol_shared_policy_init(&info->policy, NULL);
1485                         break;
1486                 }
1487         } else
1488                 shmem_free_inode(sb);
1489         return inode;
1490 }
1491
1492 #ifdef CONFIG_TMPFS
1493 static const struct inode_operations shmem_symlink_inode_operations;
1494 static const struct inode_operations shmem_short_symlink_operations;
1495
1496 #ifdef CONFIG_TMPFS_XATTR
1497 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1498 #else
1499 #define shmem_initxattrs NULL
1500 #endif
1501
1502 static int
1503 shmem_write_begin(struct file *file, struct address_space *mapping,
1504                         loff_t pos, unsigned len, unsigned flags,
1505                         struct page **pagep, void **fsdata)
1506 {
1507         struct inode *inode = mapping->host;
1508         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1509         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1510 }
1511
1512 static int
1513 shmem_write_end(struct file *file, struct address_space *mapping,
1514                         loff_t pos, unsigned len, unsigned copied,
1515                         struct page *page, void *fsdata)
1516 {
1517         struct inode *inode = mapping->host;
1518
1519         if (pos + copied > inode->i_size)
1520                 i_size_write(inode, pos + copied);
1521
1522         if (!PageUptodate(page)) {
1523                 if (copied < PAGE_CACHE_SIZE) {
1524                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1525                         zero_user_segments(page, 0, from,
1526                                         from + copied, PAGE_CACHE_SIZE);
1527                 }
1528                 SetPageUptodate(page);
1529         }
1530         set_page_dirty(page);
1531         unlock_page(page);
1532         page_cache_release(page);
1533
1534         return copied;
1535 }
1536
1537 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1538 {
1539         struct inode *inode = file_inode(filp);
1540         struct address_space *mapping = inode->i_mapping;
1541         pgoff_t index;
1542         unsigned long offset;
1543         enum sgp_type sgp = SGP_READ;
1544
1545         /*
1546          * Might this read be for a stacking filesystem?  Then when reading
1547          * holes of a sparse file, we actually need to allocate those pages,
1548          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1549          */
1550         if (segment_eq(get_fs(), KERNEL_DS))
1551                 sgp = SGP_DIRTY;
1552
1553         index = *ppos >> PAGE_CACHE_SHIFT;
1554         offset = *ppos & ~PAGE_CACHE_MASK;
1555
1556         for (;;) {
1557                 struct page *page = NULL;
1558                 pgoff_t end_index;
1559                 unsigned long nr, ret;
1560                 loff_t i_size = i_size_read(inode);
1561
1562                 end_index = i_size >> PAGE_CACHE_SHIFT;
1563                 if (index > end_index)
1564                         break;
1565                 if (index == end_index) {
1566                         nr = i_size & ~PAGE_CACHE_MASK;
1567                         if (nr <= offset)
1568                                 break;
1569                 }
1570
1571                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1572                 if (desc->error) {
1573                         if (desc->error == -EINVAL)
1574                                 desc->error = 0;
1575                         break;
1576                 }
1577                 if (page)
1578                         unlock_page(page);
1579
1580                 /*
1581                  * We must evaluate after, since reads (unlike writes)
1582                  * are called without i_mutex protection against truncate
1583                  */
1584                 nr = PAGE_CACHE_SIZE;
1585                 i_size = i_size_read(inode);
1586                 end_index = i_size >> PAGE_CACHE_SHIFT;
1587                 if (index == end_index) {
1588                         nr = i_size & ~PAGE_CACHE_MASK;
1589                         if (nr <= offset) {
1590                                 if (page)
1591                                         page_cache_release(page);
1592                                 break;
1593                         }
1594                 }
1595                 nr -= offset;
1596
1597                 if (page) {
1598                         /*
1599                          * If users can be writing to this page using arbitrary
1600                          * virtual addresses, take care about potential aliasing
1601                          * before reading the page on the kernel side.
1602                          */
1603                         if (mapping_writably_mapped(mapping))
1604                                 flush_dcache_page(page);
1605                         /*
1606                          * Mark the page accessed if we read the beginning.
1607                          */
1608                         if (!offset)
1609                                 mark_page_accessed(page);
1610                 } else {
1611                         page = ZERO_PAGE(0);
1612                         page_cache_get(page);
1613                 }
1614
1615                 /*
1616                  * Ok, we have the page, and it's up-to-date, so
1617                  * now we can copy it to user space...
1618                  *
1619                  * The actor routine returns how many bytes were actually used..
1620                  * NOTE! This may not be the same as how much of a user buffer
1621                  * we filled up (we may be padding etc), so we can only update
1622                  * "pos" here (the actor routine has to update the user buffer
1623                  * pointers and the remaining count).
1624                  */
1625                 ret = actor(desc, page, offset, nr);
1626                 offset += ret;
1627                 index += offset >> PAGE_CACHE_SHIFT;
1628                 offset &= ~PAGE_CACHE_MASK;
1629
1630                 page_cache_release(page);
1631                 if (ret != nr || !desc->count)
1632                         break;
1633
1634                 cond_resched();
1635         }
1636
1637         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1638         file_accessed(filp);
1639 }
1640
1641 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1642                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1643 {
1644         struct file *filp = iocb->ki_filp;
1645         ssize_t retval;
1646         unsigned long seg;
1647         size_t count;
1648         loff_t *ppos = &iocb->ki_pos;
1649
1650         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1651         if (retval)
1652                 return retval;
1653
1654         for (seg = 0; seg < nr_segs; seg++) {
1655                 read_descriptor_t desc;
1656
1657                 desc.written = 0;
1658                 desc.arg.buf = iov[seg].iov_base;
1659                 desc.count = iov[seg].iov_len;
1660                 if (desc.count == 0)
1661                         continue;
1662                 desc.error = 0;
1663                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1664                 retval += desc.written;
1665                 if (desc.error) {
1666                         retval = retval ?: desc.error;
1667                         break;
1668                 }
1669                 if (desc.count > 0)
1670                         break;
1671         }
1672         return retval;
1673 }
1674
1675 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1676                                 struct pipe_inode_info *pipe, size_t len,
1677                                 unsigned int flags)
1678 {
1679         struct address_space *mapping = in->f_mapping;
1680         struct inode *inode = mapping->host;
1681         unsigned int loff, nr_pages, req_pages;
1682         struct page *pages[PIPE_DEF_BUFFERS];
1683         struct partial_page partial[PIPE_DEF_BUFFERS];
1684         struct page *page;
1685         pgoff_t index, end_index;
1686         loff_t isize, left;
1687         int error, page_nr;
1688         struct splice_pipe_desc spd = {
1689                 .pages = pages,
1690                 .partial = partial,
1691                 .nr_pages_max = PIPE_DEF_BUFFERS,
1692                 .flags = flags,
1693                 .ops = &page_cache_pipe_buf_ops,
1694                 .spd_release = spd_release_page,
1695         };
1696
1697         isize = i_size_read(inode);
1698         if (unlikely(*ppos >= isize))
1699                 return 0;
1700
1701         left = isize - *ppos;
1702         if (unlikely(left < len))
1703                 len = left;
1704
1705         if (splice_grow_spd(pipe, &spd))
1706                 return -ENOMEM;
1707
1708         index = *ppos >> PAGE_CACHE_SHIFT;
1709         loff = *ppos & ~PAGE_CACHE_MASK;
1710         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1711         nr_pages = min(req_pages, pipe->buffers);
1712
1713         spd.nr_pages = find_get_pages_contig(mapping, index,
1714                                                 nr_pages, spd.pages);
1715         index += spd.nr_pages;
1716         error = 0;
1717
1718         while (spd.nr_pages < nr_pages) {
1719                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1720                 if (error)
1721                         break;
1722                 unlock_page(page);
1723                 spd.pages[spd.nr_pages++] = page;
1724                 index++;
1725         }
1726
1727         index = *ppos >> PAGE_CACHE_SHIFT;
1728         nr_pages = spd.nr_pages;
1729         spd.nr_pages = 0;
1730
1731         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1732                 unsigned int this_len;
1733
1734                 if (!len)
1735                         break;
1736
1737                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1738                 page = spd.pages[page_nr];
1739
1740                 if (!PageUptodate(page) || page->mapping != mapping) {
1741                         error = shmem_getpage(inode, index, &page,
1742                                                         SGP_CACHE, NULL);
1743                         if (error)
1744                                 break;
1745                         unlock_page(page);
1746                         page_cache_release(spd.pages[page_nr]);
1747                         spd.pages[page_nr] = page;
1748                 }
1749
1750                 isize = i_size_read(inode);
1751                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1752                 if (unlikely(!isize || index > end_index))
1753                         break;
1754
1755                 if (end_index == index) {
1756                         unsigned int plen;
1757
1758                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1759                         if (plen <= loff)
1760                                 break;
1761
1762                         this_len = min(this_len, plen - loff);
1763                         len = this_len;
1764                 }
1765
1766                 spd.partial[page_nr].offset = loff;
1767                 spd.partial[page_nr].len = this_len;
1768                 len -= this_len;
1769                 loff = 0;
1770                 spd.nr_pages++;
1771                 index++;
1772         }
1773
1774         while (page_nr < nr_pages)
1775                 page_cache_release(spd.pages[page_nr++]);
1776
1777         if (spd.nr_pages)
1778                 error = splice_to_pipe(pipe, &spd);
1779
1780         splice_shrink_spd(&spd);
1781
1782         if (error > 0) {
1783                 *ppos += error;
1784                 file_accessed(in);
1785         }
1786         return error;
1787 }
1788
1789 /*
1790  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1791  */
1792 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1793                                     pgoff_t index, pgoff_t end, int whence)
1794 {
1795         struct page *page;
1796         struct pagevec pvec;
1797         pgoff_t indices[PAGEVEC_SIZE];
1798         bool done = false;
1799         int i;
1800
1801         pagevec_init(&pvec, 0);
1802         pvec.nr = 1;            /* start small: we may be there already */
1803         while (!done) {
1804                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1805                                         pvec.nr, pvec.pages, indices);
1806                 if (!pvec.nr) {
1807                         if (whence == SEEK_DATA)
1808                                 index = end;
1809                         break;
1810                 }
1811                 for (i = 0; i < pvec.nr; i++, index++) {
1812                         if (index < indices[i]) {
1813                                 if (whence == SEEK_HOLE) {
1814                                         done = true;
1815                                         break;
1816                                 }
1817                                 index = indices[i];
1818                         }
1819                         page = pvec.pages[i];
1820                         if (page && !radix_tree_exceptional_entry(page)) {
1821                                 if (!PageUptodate(page))
1822                                         page = NULL;
1823                         }
1824                         if (index >= end ||
1825                             (page && whence == SEEK_DATA) ||
1826                             (!page && whence == SEEK_HOLE)) {
1827                                 done = true;
1828                                 break;
1829                         }
1830                 }
1831                 shmem_deswap_pagevec(&pvec);
1832                 pagevec_release(&pvec);
1833                 pvec.nr = PAGEVEC_SIZE;
1834                 cond_resched();
1835         }
1836         return index;
1837 }
1838
1839 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1840 {
1841         struct address_space *mapping = file->f_mapping;
1842         struct inode *inode = mapping->host;
1843         pgoff_t start, end;
1844         loff_t new_offset;
1845
1846         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1847                 return generic_file_llseek_size(file, offset, whence,
1848                                         MAX_LFS_FILESIZE, i_size_read(inode));
1849         mutex_lock(&inode->i_mutex);
1850         /* We're holding i_mutex so we can access i_size directly */
1851
1852         if (offset < 0)
1853                 offset = -EINVAL;
1854         else if (offset >= inode->i_size)
1855                 offset = -ENXIO;
1856         else {
1857                 start = offset >> PAGE_CACHE_SHIFT;
1858                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1859                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1860                 new_offset <<= PAGE_CACHE_SHIFT;
1861                 if (new_offset > offset) {
1862                         if (new_offset < inode->i_size)
1863                                 offset = new_offset;
1864                         else if (whence == SEEK_DATA)
1865                                 offset = -ENXIO;
1866                         else
1867                                 offset = inode->i_size;
1868                 }
1869         }
1870
1871         if (offset >= 0 && offset != file->f_pos) {
1872                 file->f_pos = offset;
1873                 file->f_version = 0;
1874         }
1875         mutex_unlock(&inode->i_mutex);
1876         return offset;
1877 }
1878
1879 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1880                                                          loff_t len)
1881 {
1882         struct inode *inode = file_inode(file);
1883         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1884         struct shmem_falloc shmem_falloc;
1885         pgoff_t start, index, end;
1886         int error;
1887
1888         mutex_lock(&inode->i_mutex);
1889
1890         if (mode & FALLOC_FL_PUNCH_HOLE) {
1891                 struct address_space *mapping = file->f_mapping;
1892                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1893                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1894                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1895
1896                 shmem_falloc.waitq = &shmem_falloc_waitq;
1897                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1898                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1899                 spin_lock(&inode->i_lock);
1900                 inode->i_private = &shmem_falloc;
1901                 spin_unlock(&inode->i_lock);
1902
1903                 if ((u64)unmap_end > (u64)unmap_start)
1904                         unmap_mapping_range(mapping, unmap_start,
1905                                             1 + unmap_end - unmap_start, 0);
1906                 shmem_truncate_range(inode, offset, offset + len - 1);
1907                 /* No need to unmap again: hole-punching leaves COWed pages */
1908
1909                 spin_lock(&inode->i_lock);
1910                 inode->i_private = NULL;
1911                 wake_up_all(&shmem_falloc_waitq);
1912                 spin_unlock(&inode->i_lock);
1913                 error = 0;
1914                 goto out;
1915         }
1916
1917         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1918         error = inode_newsize_ok(inode, offset + len);
1919         if (error)
1920                 goto out;
1921
1922         start = offset >> PAGE_CACHE_SHIFT;
1923         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1924         /* Try to avoid a swapstorm if len is impossible to satisfy */
1925         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1926                 error = -ENOSPC;
1927                 goto out;
1928         }
1929
1930         shmem_falloc.waitq = NULL;
1931         shmem_falloc.start = start;
1932         shmem_falloc.next  = start;
1933         shmem_falloc.nr_falloced = 0;
1934         shmem_falloc.nr_unswapped = 0;
1935         spin_lock(&inode->i_lock);
1936         inode->i_private = &shmem_falloc;
1937         spin_unlock(&inode->i_lock);
1938
1939         for (index = start; index < end; index++) {
1940                 struct page *page;
1941
1942                 /*
1943                  * Good, the fallocate(2) manpage permits EINTR: we may have
1944                  * been interrupted because we are using up too much memory.
1945                  */
1946                 if (signal_pending(current))
1947                         error = -EINTR;
1948                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1949                         error = -ENOMEM;
1950                 else
1951                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1952                                                                         NULL);
1953                 if (error) {
1954                         /* Remove the !PageUptodate pages we added */
1955                         shmem_undo_range(inode,
1956                                 (loff_t)start << PAGE_CACHE_SHIFT,
1957                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1958                         goto undone;
1959                 }
1960
1961                 /*
1962                  * Inform shmem_writepage() how far we have reached.
1963                  * No need for lock or barrier: we have the page lock.
1964                  */
1965                 shmem_falloc.next++;
1966                 if (!PageUptodate(page))
1967                         shmem_falloc.nr_falloced++;
1968
1969                 /*
1970                  * If !PageUptodate, leave it that way so that freeable pages
1971                  * can be recognized if we need to rollback on error later.
1972                  * But set_page_dirty so that memory pressure will swap rather
1973                  * than free the pages we are allocating (and SGP_CACHE pages
1974                  * might still be clean: we now need to mark those dirty too).
1975                  */
1976                 set_page_dirty(page);
1977                 unlock_page(page);
1978                 page_cache_release(page);
1979                 cond_resched();
1980         }
1981
1982         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1983                 i_size_write(inode, offset + len);
1984         inode->i_ctime = CURRENT_TIME;
1985 undone:
1986         spin_lock(&inode->i_lock);
1987         inode->i_private = NULL;
1988         spin_unlock(&inode->i_lock);
1989 out:
1990         mutex_unlock(&inode->i_mutex);
1991         return error;
1992 }
1993
1994 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1995 {
1996         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1997
1998         buf->f_type = TMPFS_MAGIC;
1999         buf->f_bsize = PAGE_CACHE_SIZE;
2000         buf->f_namelen = NAME_MAX;
2001         if (sbinfo->max_blocks) {
2002                 buf->f_blocks = sbinfo->max_blocks;
2003                 buf->f_bavail =
2004                 buf->f_bfree  = sbinfo->max_blocks -
2005                                 percpu_counter_sum(&sbinfo->used_blocks);
2006         }
2007         if (sbinfo->max_inodes) {
2008                 buf->f_files = sbinfo->max_inodes;
2009                 buf->f_ffree = sbinfo->free_inodes;
2010         }
2011         /* else leave those fields 0 like simple_statfs */
2012         return 0;
2013 }
2014
2015 /*
2016  * File creation. Allocate an inode, and we're done..
2017  */
2018 static int
2019 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2020 {
2021         struct inode *inode;
2022         int error = -ENOSPC;
2023
2024         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2025         if (inode) {
2026                 error = security_inode_init_security(inode, dir,
2027                                                      &dentry->d_name,
2028                                                      shmem_initxattrs, NULL);
2029                 if (error) {
2030                         if (error != -EOPNOTSUPP) {
2031                                 iput(inode);
2032                                 return error;
2033                         }
2034                 }
2035 #ifdef CONFIG_TMPFS_POSIX_ACL
2036                 error = generic_acl_init(inode, dir);
2037                 if (error) {
2038                         iput(inode);
2039                         return error;
2040                 }
2041 #else
2042                 error = 0;
2043 #endif
2044                 dir->i_size += BOGO_DIRENT_SIZE;
2045                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2046                 d_instantiate(dentry, inode);
2047                 dget(dentry); /* Extra count - pin the dentry in core */
2048         }
2049         return error;
2050 }
2051
2052 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2053 {
2054         int error;
2055
2056         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2057                 return error;
2058         inc_nlink(dir);
2059         return 0;
2060 }
2061
2062 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2063                 bool excl)
2064 {
2065         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2066 }
2067
2068 /*
2069  * Link a file..
2070  */
2071 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2072 {
2073         struct inode *inode = old_dentry->d_inode;
2074         int ret;
2075
2076         /*
2077          * No ordinary (disk based) filesystem counts links as inodes;
2078          * but each new link needs a new dentry, pinning lowmem, and
2079          * tmpfs dentries cannot be pruned until they are unlinked.
2080          */
2081         ret = shmem_reserve_inode(inode->i_sb);
2082         if (ret)
2083                 goto out;
2084
2085         dir->i_size += BOGO_DIRENT_SIZE;
2086         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2087         inc_nlink(inode);
2088         ihold(inode);   /* New dentry reference */
2089         dget(dentry);           /* Extra pinning count for the created dentry */
2090         d_instantiate(dentry, inode);
2091 out:
2092         return ret;
2093 }
2094
2095 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2096 {
2097         struct inode *inode = dentry->d_inode;
2098
2099         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2100                 shmem_free_inode(inode->i_sb);
2101
2102         dir->i_size -= BOGO_DIRENT_SIZE;
2103         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2104         drop_nlink(inode);
2105         dput(dentry);   /* Undo the count from "create" - this does all the work */
2106         return 0;
2107 }
2108
2109 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2110 {
2111         if (!simple_empty(dentry))
2112                 return -ENOTEMPTY;
2113
2114         drop_nlink(dentry->d_inode);
2115         drop_nlink(dir);
2116         return shmem_unlink(dir, dentry);
2117 }
2118
2119 /*
2120  * The VFS layer already does all the dentry stuff for rename,
2121  * we just have to decrement the usage count for the target if
2122  * it exists so that the VFS layer correctly free's it when it
2123  * gets overwritten.
2124  */
2125 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2126 {
2127         struct inode *inode = old_dentry->d_inode;
2128         int they_are_dirs = S_ISDIR(inode->i_mode);
2129
2130         if (!simple_empty(new_dentry))
2131                 return -ENOTEMPTY;
2132
2133         if (new_dentry->d_inode) {
2134                 (void) shmem_unlink(new_dir, new_dentry);
2135                 if (they_are_dirs) {
2136                         drop_nlink(new_dentry->d_inode);
2137                         drop_nlink(old_dir);
2138                 }
2139         } else if (they_are_dirs) {
2140                 drop_nlink(old_dir);
2141                 inc_nlink(new_dir);
2142         }
2143
2144         old_dir->i_size -= BOGO_DIRENT_SIZE;
2145         new_dir->i_size += BOGO_DIRENT_SIZE;
2146         old_dir->i_ctime = old_dir->i_mtime =
2147         new_dir->i_ctime = new_dir->i_mtime =
2148         inode->i_ctime = CURRENT_TIME;
2149         return 0;
2150 }
2151
2152 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2153 {
2154         int error;
2155         int len;
2156         struct inode *inode;
2157         struct page *page;
2158         char *kaddr;
2159         struct shmem_inode_info *info;
2160
2161         len = strlen(symname) + 1;
2162         if (len > PAGE_CACHE_SIZE)
2163                 return -ENAMETOOLONG;
2164
2165         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2166         if (!inode)
2167                 return -ENOSPC;
2168
2169         error = security_inode_init_security(inode, dir, &dentry->d_name,
2170                                              shmem_initxattrs, NULL);
2171         if (error) {
2172                 if (error != -EOPNOTSUPP) {
2173                         iput(inode);
2174                         return error;
2175                 }
2176                 error = 0;
2177         }
2178
2179         info = SHMEM_I(inode);
2180         inode->i_size = len-1;
2181         if (len <= SHORT_SYMLINK_LEN) {
2182                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2183                 if (!info->symlink) {
2184                         iput(inode);
2185                         return -ENOMEM;
2186                 }
2187                 inode->i_op = &shmem_short_symlink_operations;
2188         } else {
2189                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2190                 if (error) {
2191                         iput(inode);
2192                         return error;
2193                 }
2194                 inode->i_mapping->a_ops = &shmem_aops;
2195                 inode->i_op = &shmem_symlink_inode_operations;
2196                 kaddr = kmap_atomic(page);
2197                 memcpy(kaddr, symname, len);
2198                 kunmap_atomic(kaddr);
2199                 SetPageUptodate(page);
2200                 set_page_dirty(page);
2201                 unlock_page(page);
2202                 page_cache_release(page);
2203         }
2204         dir->i_size += BOGO_DIRENT_SIZE;
2205         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2206         d_instantiate(dentry, inode);
2207         dget(dentry);
2208         return 0;
2209 }
2210
2211 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2212 {
2213         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2214         return NULL;
2215 }
2216
2217 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2218 {
2219         struct page *page = NULL;
2220         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2221         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2222         if (page)
2223                 unlock_page(page);
2224         return page;
2225 }
2226
2227 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2228 {
2229         if (!IS_ERR(nd_get_link(nd))) {
2230                 struct page *page = cookie;
2231                 kunmap(page);
2232                 mark_page_accessed(page);
2233                 page_cache_release(page);
2234         }
2235 }
2236
2237 #ifdef CONFIG_TMPFS_XATTR
2238 /*
2239  * Superblocks without xattr inode operations may get some security.* xattr
2240  * support from the LSM "for free". As soon as we have any other xattrs
2241  * like ACLs, we also need to implement the security.* handlers at
2242  * filesystem level, though.
2243  */
2244
2245 /*
2246  * Callback for security_inode_init_security() for acquiring xattrs.
2247  */
2248 static int shmem_initxattrs(struct inode *inode,
2249                             const struct xattr *xattr_array,
2250                             void *fs_info)
2251 {
2252         struct shmem_inode_info *info = SHMEM_I(inode);
2253         const struct xattr *xattr;
2254         struct simple_xattr *new_xattr;
2255         size_t len;
2256
2257         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2258                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2259                 if (!new_xattr)
2260                         return -ENOMEM;
2261
2262                 len = strlen(xattr->name) + 1;
2263                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2264                                           GFP_KERNEL);
2265                 if (!new_xattr->name) {
2266                         kfree(new_xattr);
2267                         return -ENOMEM;
2268                 }
2269
2270                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2271                        XATTR_SECURITY_PREFIX_LEN);
2272                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2273                        xattr->name, len);
2274
2275                 simple_xattr_list_add(&info->xattrs, new_xattr);
2276         }
2277
2278         return 0;
2279 }
2280
2281 static const struct xattr_handler *shmem_xattr_handlers[] = {
2282 #ifdef CONFIG_TMPFS_POSIX_ACL
2283         &generic_acl_access_handler,
2284         &generic_acl_default_handler,
2285 #endif
2286         NULL
2287 };
2288
2289 static int shmem_xattr_validate(const char *name)
2290 {
2291         struct { const char *prefix; size_t len; } arr[] = {
2292                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2293                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2294         };
2295         int i;
2296
2297         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2298                 size_t preflen = arr[i].len;
2299                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2300                         if (!name[preflen])
2301                                 return -EINVAL;
2302                         return 0;
2303                 }
2304         }
2305         return -EOPNOTSUPP;
2306 }
2307
2308 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2309                               void *buffer, size_t size)
2310 {
2311         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2312         int err;
2313
2314         /*
2315          * If this is a request for a synthetic attribute in the system.*
2316          * namespace use the generic infrastructure to resolve a handler
2317          * for it via sb->s_xattr.
2318          */
2319         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2320                 return generic_getxattr(dentry, name, buffer, size);
2321
2322         err = shmem_xattr_validate(name);
2323         if (err)
2324                 return err;
2325
2326         return simple_xattr_get(&info->xattrs, name, buffer, size);
2327 }
2328
2329 static int shmem_setxattr(struct dentry *dentry, const char *name,
2330                           const void *value, size_t size, int flags)
2331 {
2332         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2333         int err;
2334
2335         /*
2336          * If this is a request for a synthetic attribute in the system.*
2337          * namespace use the generic infrastructure to resolve a handler
2338          * for it via sb->s_xattr.
2339          */
2340         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2341                 return generic_setxattr(dentry, name, value, size, flags);
2342
2343         err = shmem_xattr_validate(name);
2344         if (err)
2345                 return err;
2346
2347         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2348 }
2349
2350 static int shmem_removexattr(struct dentry *dentry, const char *name)
2351 {
2352         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2353         int err;
2354
2355         /*
2356          * If this is a request for a synthetic attribute in the system.*
2357          * namespace use the generic infrastructure to resolve a handler
2358          * for it via sb->s_xattr.
2359          */
2360         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2361                 return generic_removexattr(dentry, name);
2362
2363         err = shmem_xattr_validate(name);
2364         if (err)
2365                 return err;
2366
2367         return simple_xattr_remove(&info->xattrs, name);
2368 }
2369
2370 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2371 {
2372         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2373         return simple_xattr_list(&info->xattrs, buffer, size);
2374 }
2375 #endif /* CONFIG_TMPFS_XATTR */
2376
2377 static const struct inode_operations shmem_short_symlink_operations = {
2378         .readlink       = generic_readlink,
2379         .follow_link    = shmem_follow_short_symlink,
2380 #ifdef CONFIG_TMPFS_XATTR
2381         .setxattr       = shmem_setxattr,
2382         .getxattr       = shmem_getxattr,
2383         .listxattr      = shmem_listxattr,
2384         .removexattr    = shmem_removexattr,
2385 #endif
2386 };
2387
2388 static const struct inode_operations shmem_symlink_inode_operations = {
2389         .readlink       = generic_readlink,
2390         .follow_link    = shmem_follow_link,
2391         .put_link       = shmem_put_link,
2392 #ifdef CONFIG_TMPFS_XATTR
2393         .setxattr       = shmem_setxattr,
2394         .getxattr       = shmem_getxattr,
2395         .listxattr      = shmem_listxattr,
2396         .removexattr    = shmem_removexattr,
2397 #endif
2398 };
2399
2400 static struct dentry *shmem_get_parent(struct dentry *child)
2401 {
2402         return ERR_PTR(-ESTALE);
2403 }
2404
2405 static int shmem_match(struct inode *ino, void *vfh)
2406 {
2407         __u32 *fh = vfh;
2408         __u64 inum = fh[2];
2409         inum = (inum << 32) | fh[1];
2410         return ino->i_ino == inum && fh[0] == ino->i_generation;
2411 }
2412
2413 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2414                 struct fid *fid, int fh_len, int fh_type)
2415 {
2416         struct inode *inode;
2417         struct dentry *dentry = NULL;
2418         u64 inum;
2419
2420         if (fh_len < 3)
2421                 return NULL;
2422
2423         inum = fid->raw[2];
2424         inum = (inum << 32) | fid->raw[1];
2425
2426         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2427                         shmem_match, fid->raw);
2428         if (inode) {
2429                 dentry = d_find_alias(inode);
2430                 iput(inode);
2431         }
2432
2433         return dentry;
2434 }
2435
2436 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2437                                 struct inode *parent)
2438 {
2439         if (*len < 3) {
2440                 *len = 3;
2441                 return FILEID_INVALID;
2442         }
2443
2444         if (inode_unhashed(inode)) {
2445                 /* Unfortunately insert_inode_hash is not idempotent,
2446                  * so as we hash inodes here rather than at creation
2447                  * time, we need a lock to ensure we only try
2448                  * to do it once
2449                  */
2450                 static DEFINE_SPINLOCK(lock);
2451                 spin_lock(&lock);
2452                 if (inode_unhashed(inode))
2453                         __insert_inode_hash(inode,
2454                                             inode->i_ino + inode->i_generation);
2455                 spin_unlock(&lock);
2456         }
2457
2458         fh[0] = inode->i_generation;
2459         fh[1] = inode->i_ino;
2460         fh[2] = ((__u64)inode->i_ino) >> 32;
2461
2462         *len = 3;
2463         return 1;
2464 }
2465
2466 static const struct export_operations shmem_export_ops = {
2467         .get_parent     = shmem_get_parent,
2468         .encode_fh      = shmem_encode_fh,
2469         .fh_to_dentry   = shmem_fh_to_dentry,
2470 };
2471
2472 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2473                                bool remount)
2474 {
2475         char *this_char, *value, *rest;
2476         struct mempolicy *mpol = NULL;
2477         uid_t uid;
2478         gid_t gid;
2479
2480         while (options != NULL) {
2481                 this_char = options;
2482                 for (;;) {
2483                         /*
2484                          * NUL-terminate this option: unfortunately,
2485                          * mount options form a comma-separated list,
2486                          * but mpol's nodelist may also contain commas.
2487                          */
2488                         options = strchr(options, ',');
2489                         if (options == NULL)
2490                                 break;
2491                         options++;
2492                         if (!isdigit(*options)) {
2493                                 options[-1] = '\0';
2494                                 break;
2495                         }
2496                 }
2497                 if (!*this_char)
2498                         continue;
2499                 if ((value = strchr(this_char,'=')) != NULL) {
2500                         *value++ = 0;
2501                 } else {
2502                         printk(KERN_ERR
2503                             "tmpfs: No value for mount option '%s'\n",
2504                             this_char);
2505                         goto error;
2506                 }
2507
2508                 if (!strcmp(this_char,"size")) {
2509                         unsigned long long size;
2510                         size = memparse(value,&rest);
2511                         if (*rest == '%') {
2512                                 size <<= PAGE_SHIFT;
2513                                 size *= totalram_pages;
2514                                 do_div(size, 100);
2515                                 rest++;
2516                         }
2517                         if (*rest)
2518                                 goto bad_val;
2519                         sbinfo->max_blocks =
2520                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2521                 } else if (!strcmp(this_char,"nr_blocks")) {
2522                         sbinfo->max_blocks = memparse(value, &rest);
2523                         if (*rest)
2524                                 goto bad_val;
2525                 } else if (!strcmp(this_char,"nr_inodes")) {
2526                         sbinfo->max_inodes = memparse(value, &rest);
2527                         if (*rest)
2528                                 goto bad_val;
2529                 } else if (!strcmp(this_char,"mode")) {
2530                         if (remount)
2531                                 continue;
2532                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2533                         if (*rest)
2534                                 goto bad_val;
2535                 } else if (!strcmp(this_char,"uid")) {
2536                         if (remount)
2537                                 continue;
2538                         uid = simple_strtoul(value, &rest, 0);
2539                         if (*rest)
2540                                 goto bad_val;
2541                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2542                         if (!uid_valid(sbinfo->uid))
2543                                 goto bad_val;
2544                 } else if (!strcmp(this_char,"gid")) {
2545                         if (remount)
2546                                 continue;
2547                         gid = simple_strtoul(value, &rest, 0);
2548                         if (*rest)
2549                                 goto bad_val;
2550                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2551                         if (!gid_valid(sbinfo->gid))
2552                                 goto bad_val;
2553                 } else if (!strcmp(this_char,"mpol")) {
2554                         mpol_put(mpol);
2555                         mpol = NULL;
2556                         if (mpol_parse_str(value, &mpol))
2557                                 goto bad_val;
2558                 } else {
2559                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2560                                this_char);
2561                         goto error;
2562                 }
2563         }
2564         sbinfo->mpol = mpol;
2565         return 0;
2566
2567 bad_val:
2568         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2569                value, this_char);
2570 error:
2571         mpol_put(mpol);
2572         return 1;
2573
2574 }
2575
2576 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2577 {
2578         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2579         struct shmem_sb_info config = *sbinfo;
2580         unsigned long inodes;
2581         int error = -EINVAL;
2582
2583         config.mpol = NULL;
2584         if (shmem_parse_options(data, &config, true))
2585                 return error;
2586
2587         spin_lock(&sbinfo->stat_lock);
2588         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2589         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2590                 goto out;
2591         if (config.max_inodes < inodes)
2592                 goto out;
2593         /*
2594          * Those tests disallow limited->unlimited while any are in use;
2595          * but we must separately disallow unlimited->limited, because
2596          * in that case we have no record of how much is already in use.
2597          */
2598         if (config.max_blocks && !sbinfo->max_blocks)
2599                 goto out;
2600         if (config.max_inodes && !sbinfo->max_inodes)
2601                 goto out;
2602
2603         error = 0;
2604         sbinfo->max_blocks  = config.max_blocks;
2605         sbinfo->max_inodes  = config.max_inodes;
2606         sbinfo->free_inodes = config.max_inodes - inodes;
2607
2608         /*
2609          * Preserve previous mempolicy unless mpol remount option was specified.
2610          */
2611         if (config.mpol) {
2612                 mpol_put(sbinfo->mpol);
2613                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2614         }
2615 out:
2616         spin_unlock(&sbinfo->stat_lock);
2617         return error;
2618 }
2619
2620 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2621 {
2622         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2623
2624         if (sbinfo->max_blocks != shmem_default_max_blocks())
2625                 seq_printf(seq, ",size=%luk",
2626                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2627         if (sbinfo->max_inodes != shmem_default_max_inodes())
2628                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2629         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2630                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2631         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2632                 seq_printf(seq, ",uid=%u",
2633                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2634         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2635                 seq_printf(seq, ",gid=%u",
2636                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2637         shmem_show_mpol(seq, sbinfo->mpol);
2638         return 0;
2639 }
2640 #endif /* CONFIG_TMPFS */
2641
2642 static void shmem_put_super(struct super_block *sb)
2643 {
2644         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2645
2646         percpu_counter_destroy(&sbinfo->used_blocks);
2647         mpol_put(sbinfo->mpol);
2648         kfree(sbinfo);
2649         sb->s_fs_info = NULL;
2650 }
2651
2652 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2653 {
2654         struct inode *inode;
2655         struct shmem_sb_info *sbinfo;
2656         int err = -ENOMEM;
2657
2658         /* Round up to L1_CACHE_BYTES to resist false sharing */
2659         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2660                                 L1_CACHE_BYTES), GFP_KERNEL);
2661         if (!sbinfo)
2662                 return -ENOMEM;
2663
2664         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2665         sbinfo->uid = current_fsuid();
2666         sbinfo->gid = current_fsgid();
2667         sb->s_fs_info = sbinfo;
2668
2669 #ifdef CONFIG_TMPFS
2670         /*
2671          * Per default we only allow half of the physical ram per
2672          * tmpfs instance, limiting inodes to one per page of lowmem;
2673          * but the internal instance is left unlimited.
2674          */
2675         if (!(sb->s_flags & MS_NOUSER)) {
2676                 sbinfo->max_blocks = shmem_default_max_blocks();
2677                 sbinfo->max_inodes = shmem_default_max_inodes();
2678                 if (shmem_parse_options(data, sbinfo, false)) {
2679                         err = -EINVAL;
2680                         goto failed;
2681                 }
2682         }
2683         sb->s_export_op = &shmem_export_ops;
2684         sb->s_flags |= MS_NOSEC;
2685 #else
2686         sb->s_flags |= MS_NOUSER;
2687 #endif
2688
2689         spin_lock_init(&sbinfo->stat_lock);
2690         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2691                 goto failed;
2692         sbinfo->free_inodes = sbinfo->max_inodes;
2693
2694         sb->s_maxbytes = MAX_LFS_FILESIZE;
2695         sb->s_blocksize = PAGE_CACHE_SIZE;
2696         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2697         sb->s_magic = TMPFS_MAGIC;
2698         sb->s_op = &shmem_ops;
2699         sb->s_time_gran = 1;
2700 #ifdef CONFIG_TMPFS_XATTR
2701         sb->s_xattr = shmem_xattr_handlers;
2702 #endif
2703 #ifdef CONFIG_TMPFS_POSIX_ACL
2704         sb->s_flags |= MS_POSIXACL;
2705 #endif
2706
2707         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2708         if (!inode)
2709                 goto failed;
2710         inode->i_uid = sbinfo->uid;
2711         inode->i_gid = sbinfo->gid;
2712         sb->s_root = d_make_root(inode);
2713         if (!sb->s_root)
2714                 goto failed;
2715         return 0;
2716
2717 failed:
2718         shmem_put_super(sb);
2719         return err;
2720 }
2721
2722 static struct kmem_cache *shmem_inode_cachep;
2723
2724 static struct inode *shmem_alloc_inode(struct super_block *sb)
2725 {
2726         struct shmem_inode_info *info;
2727         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2728         if (!info)
2729                 return NULL;
2730         return &info->vfs_inode;
2731 }
2732
2733 static void shmem_destroy_callback(struct rcu_head *head)
2734 {
2735         struct inode *inode = container_of(head, struct inode, i_rcu);
2736         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2737 }
2738
2739 static void shmem_destroy_inode(struct inode *inode)
2740 {
2741         if (S_ISREG(inode->i_mode))
2742                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2743         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2744 }
2745
2746 static void shmem_init_inode(void *foo)
2747 {
2748         struct shmem_inode_info *info = foo;
2749         inode_init_once(&info->vfs_inode);
2750 }
2751
2752 static int shmem_init_inodecache(void)
2753 {
2754         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2755                                 sizeof(struct shmem_inode_info),
2756                                 0, SLAB_PANIC, shmem_init_inode);
2757         return 0;
2758 }
2759
2760 static void shmem_destroy_inodecache(void)
2761 {
2762         kmem_cache_destroy(shmem_inode_cachep);
2763 }
2764
2765 static const struct address_space_operations shmem_aops = {
2766         .writepage      = shmem_writepage,
2767         .set_page_dirty = __set_page_dirty_no_writeback,
2768 #ifdef CONFIG_TMPFS
2769         .write_begin    = shmem_write_begin,
2770         .write_end      = shmem_write_end,
2771 #endif
2772         .migratepage    = migrate_page,
2773         .error_remove_page = generic_error_remove_page,
2774 };
2775
2776 static const struct file_operations shmem_file_operations = {
2777         .mmap           = shmem_mmap,
2778 #ifdef CONFIG_TMPFS
2779         .llseek         = shmem_file_llseek,
2780         .read           = do_sync_read,
2781         .write          = do_sync_write,
2782         .aio_read       = shmem_file_aio_read,
2783         .aio_write      = generic_file_aio_write,
2784         .fsync          = noop_fsync,
2785         .splice_read    = shmem_file_splice_read,
2786         .splice_write   = generic_file_splice_write,
2787         .fallocate      = shmem_fallocate,
2788 #endif
2789 };
2790
2791 static const struct inode_operations shmem_inode_operations = {
2792         .setattr        = shmem_setattr,
2793 #ifdef CONFIG_TMPFS_XATTR
2794         .setxattr       = shmem_setxattr,
2795         .getxattr       = shmem_getxattr,
2796         .listxattr      = shmem_listxattr,
2797         .removexattr    = shmem_removexattr,
2798 #endif
2799 };
2800
2801 static const struct inode_operations shmem_dir_inode_operations = {
2802 #ifdef CONFIG_TMPFS
2803         .create         = shmem_create,
2804         .lookup         = simple_lookup,
2805         .link           = shmem_link,
2806         .unlink         = shmem_unlink,
2807         .symlink        = shmem_symlink,
2808         .mkdir          = shmem_mkdir,
2809         .rmdir          = shmem_rmdir,
2810         .mknod          = shmem_mknod,
2811         .rename         = shmem_rename,
2812 #endif
2813 #ifdef CONFIG_TMPFS_XATTR
2814         .setxattr       = shmem_setxattr,
2815         .getxattr       = shmem_getxattr,
2816         .listxattr      = shmem_listxattr,
2817         .removexattr    = shmem_removexattr,
2818 #endif
2819 #ifdef CONFIG_TMPFS_POSIX_ACL
2820         .setattr        = shmem_setattr,
2821 #endif
2822 };
2823
2824 static const struct inode_operations shmem_special_inode_operations = {
2825 #ifdef CONFIG_TMPFS_XATTR
2826         .setxattr       = shmem_setxattr,
2827         .getxattr       = shmem_getxattr,
2828         .listxattr      = shmem_listxattr,
2829         .removexattr    = shmem_removexattr,
2830 #endif
2831 #ifdef CONFIG_TMPFS_POSIX_ACL
2832         .setattr        = shmem_setattr,
2833 #endif
2834 };
2835
2836 static const struct super_operations shmem_ops = {
2837         .alloc_inode    = shmem_alloc_inode,
2838         .destroy_inode  = shmem_destroy_inode,
2839 #ifdef CONFIG_TMPFS
2840         .statfs         = shmem_statfs,
2841         .remount_fs     = shmem_remount_fs,
2842         .show_options   = shmem_show_options,
2843 #endif
2844         .evict_inode    = shmem_evict_inode,
2845         .drop_inode     = generic_delete_inode,
2846         .put_super      = shmem_put_super,
2847 };
2848
2849 static const struct vm_operations_struct shmem_vm_ops = {
2850         .fault          = shmem_fault,
2851 #ifdef CONFIG_NUMA
2852         .set_policy     = shmem_set_policy,
2853         .get_policy     = shmem_get_policy,
2854 #endif
2855         .remap_pages    = generic_file_remap_pages,
2856 };
2857
2858 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2859         int flags, const char *dev_name, void *data)
2860 {
2861         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2862 }
2863
2864 static struct file_system_type shmem_fs_type = {
2865         .owner          = THIS_MODULE,
2866         .name           = "tmpfs",
2867         .mount          = shmem_mount,
2868         .kill_sb        = kill_litter_super,
2869         .fs_flags       = FS_USERNS_MOUNT,
2870 };
2871
2872 int __init shmem_init(void)
2873 {
2874         int error;
2875
2876         error = bdi_init(&shmem_backing_dev_info);
2877         if (error)
2878                 goto out4;
2879
2880         error = shmem_init_inodecache();
2881         if (error)
2882                 goto out3;
2883
2884         error = register_filesystem(&shmem_fs_type);
2885         if (error) {
2886                 printk(KERN_ERR "Could not register tmpfs\n");
2887                 goto out2;
2888         }
2889
2890         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2891                                  shmem_fs_type.name, NULL);
2892         if (IS_ERR(shm_mnt)) {
2893                 error = PTR_ERR(shm_mnt);
2894                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2895                 goto out1;
2896         }
2897         return 0;
2898
2899 out1:
2900         unregister_filesystem(&shmem_fs_type);
2901 out2:
2902         shmem_destroy_inodecache();
2903 out3:
2904         bdi_destroy(&shmem_backing_dev_info);
2905 out4:
2906         shm_mnt = ERR_PTR(error);
2907         return error;
2908 }
2909
2910 #else /* !CONFIG_SHMEM */
2911
2912 /*
2913  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2914  *
2915  * This is intended for small system where the benefits of the full
2916  * shmem code (swap-backed and resource-limited) are outweighed by
2917  * their complexity. On systems without swap this code should be
2918  * effectively equivalent, but much lighter weight.
2919  */
2920
2921 static struct file_system_type shmem_fs_type = {
2922         .name           = "tmpfs",
2923         .mount          = ramfs_mount,
2924         .kill_sb        = kill_litter_super,
2925         .fs_flags       = FS_USERNS_MOUNT,
2926 };
2927
2928 int __init shmem_init(void)
2929 {
2930         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2931
2932         shm_mnt = kern_mount(&shmem_fs_type);
2933         BUG_ON(IS_ERR(shm_mnt));
2934
2935         return 0;
2936 }
2937
2938 int shmem_unuse(swp_entry_t swap, struct page *page)
2939 {
2940         return 0;
2941 }
2942
2943 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2944 {
2945         return 0;
2946 }
2947
2948 void shmem_unlock_mapping(struct address_space *mapping)
2949 {
2950 }
2951
2952 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2953 {
2954         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2955 }
2956 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2957
2958 #define shmem_vm_ops                            generic_file_vm_ops
2959 #define shmem_file_operations                   ramfs_file_operations
2960 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2961 #define shmem_acct_size(flags, size)            0
2962 #define shmem_unacct_size(flags, size)          do {} while (0)
2963
2964 #endif /* CONFIG_SHMEM */
2965
2966 /* common code */
2967
2968 static struct dentry_operations anon_ops = {
2969         .d_dname = simple_dname
2970 };
2971
2972 /**
2973  * shmem_file_setup - get an unlinked file living in tmpfs
2974  * @name: name for dentry (to be seen in /proc/<pid>/maps
2975  * @size: size to be set for the file
2976  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2977  */
2978 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2979 {
2980         struct file *res;
2981         struct inode *inode;
2982         struct path path;
2983         struct super_block *sb;
2984         struct qstr this;
2985
2986         if (IS_ERR(shm_mnt))
2987                 return ERR_CAST(shm_mnt);
2988
2989         if (size < 0 || size > MAX_LFS_FILESIZE)
2990                 return ERR_PTR(-EINVAL);
2991
2992         if (shmem_acct_size(flags, size))
2993                 return ERR_PTR(-ENOMEM);
2994
2995         res = ERR_PTR(-ENOMEM);
2996         this.name = name;
2997         this.len = strlen(name);
2998         this.hash = 0; /* will go */
2999         sb = shm_mnt->mnt_sb;
3000         path.dentry = d_alloc_pseudo(sb, &this);
3001         if (!path.dentry)
3002                 goto put_memory;
3003         d_set_d_op(path.dentry, &anon_ops);
3004         path.mnt = mntget(shm_mnt);
3005
3006         res = ERR_PTR(-ENOSPC);
3007         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3008         if (!inode)
3009                 goto put_dentry;
3010
3011         d_instantiate(path.dentry, inode);
3012         inode->i_size = size;
3013         clear_nlink(inode);     /* It is unlinked */
3014         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3015         if (IS_ERR(res))
3016                 goto put_dentry;
3017
3018         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3019                   &shmem_file_operations);
3020         if (IS_ERR(res))
3021                 goto put_dentry;
3022
3023         return res;
3024
3025 put_dentry:
3026         path_put(&path);
3027 put_memory:
3028         shmem_unacct_size(flags, size);
3029         return res;
3030 }
3031 EXPORT_SYMBOL_GPL(shmem_file_setup);
3032
3033 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3034 {
3035         if (vma->vm_file)
3036                 fput(vma->vm_file);
3037         vma->vm_file = file;
3038         vma->vm_ops = &shmem_vm_ops;
3039 }
3040
3041 /**
3042  * shmem_zero_setup - setup a shared anonymous mapping
3043  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3044  */
3045 int shmem_zero_setup(struct vm_area_struct *vma)
3046 {
3047         struct file *file;
3048         loff_t size = vma->vm_end - vma->vm_start;
3049
3050         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3051         if (IS_ERR(file))
3052                 return PTR_ERR(file);
3053
3054         shmem_set_file(vma, file);
3055         return 0;
3056 }
3057
3058 /**
3059  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3060  * @mapping:    the page's address_space
3061  * @index:      the page index
3062  * @gfp:        the page allocator flags to use if allocating
3063  *
3064  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3065  * with any new page allocations done using the specified allocation flags.
3066  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3067  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3068  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3069  *
3070  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3071  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3072  */
3073 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3074                                          pgoff_t index, gfp_t gfp)
3075 {
3076 #ifdef CONFIG_SHMEM
3077         struct inode *inode = mapping->host;
3078         struct page *page;
3079         int error;
3080
3081         BUG_ON(mapping->a_ops != &shmem_aops);
3082         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3083         if (error)
3084                 page = ERR_PTR(error);
3085         else
3086                 unlock_page(page);
3087         return page;
3088 #else
3089         /*
3090          * The tiny !SHMEM case uses ramfs without swap
3091          */
3092         return read_cache_page_gfp(mapping, index, gfp);
3093 #endif
3094 }
3095 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);