net: macsec: allow to reference a netdev from a MACsec context
[platform/kernel/linux-starfive.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int removed = 0, split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         removed++;
485                         goto next;
486                 }
487
488                 /* Check if there's anything to gain */
489                 if (round_up(inode->i_size, PAGE_SIZE) ==
490                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491                         list_move(&info->shrinklist, &to_remove);
492                         removed++;
493                         goto next;
494                 }
495
496                 list_move(&info->shrinklist, &list);
497 next:
498                 if (!--batch)
499                         break;
500         }
501         spin_unlock(&sbinfo->shrinklist_lock);
502
503         list_for_each_safe(pos, next, &to_remove) {
504                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505                 inode = &info->vfs_inode;
506                 list_del_init(&info->shrinklist);
507                 iput(inode);
508         }
509
510         list_for_each_safe(pos, next, &list) {
511                 int ret;
512
513                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514                 inode = &info->vfs_inode;
515
516                 if (nr_to_split && split >= nr_to_split)
517                         goto leave;
518
519                 page = find_get_page(inode->i_mapping,
520                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521                 if (!page)
522                         goto drop;
523
524                 /* No huge page at the end of the file: nothing to split */
525                 if (!PageTransHuge(page)) {
526                         put_page(page);
527                         goto drop;
528                 }
529
530                 /*
531                  * Leave the inode on the list if we failed to lock
532                  * the page at this time.
533                  *
534                  * Waiting for the lock may lead to deadlock in the
535                  * reclaim path.
536                  */
537                 if (!trylock_page(page)) {
538                         put_page(page);
539                         goto leave;
540                 }
541
542                 ret = split_huge_page(page);
543                 unlock_page(page);
544                 put_page(page);
545
546                 /* If split failed leave the inode on the list */
547                 if (ret)
548                         goto leave;
549
550                 split++;
551 drop:
552                 list_del_init(&info->shrinklist);
553                 removed++;
554 leave:
555                 iput(inode);
556         }
557
558         spin_lock(&sbinfo->shrinklist_lock);
559         list_splice_tail(&list, &sbinfo->shrinklist);
560         sbinfo->shrinklist_len -= removed;
561         spin_unlock(&sbinfo->shrinklist_lock);
562
563         return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567                 struct shrink_control *sc)
568 {
569         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571         if (!READ_ONCE(sbinfo->shrinklist_len))
572                 return SHRINK_STOP;
573
574         return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578                 struct shrink_control *sc)
579 {
580         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581         return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588                 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590         return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598             shmem_huge != SHMEM_HUGE_DENY)
599                 return true;
600         return false;
601 }
602
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607                                    struct address_space *mapping,
608                                    pgoff_t index, void *expected, gfp_t gfp)
609 {
610         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611         unsigned long i = 0;
612         unsigned long nr = compound_nr(page);
613
614         VM_BUG_ON_PAGE(PageTail(page), page);
615         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618         VM_BUG_ON(expected && PageTransHuge(page));
619
620         page_ref_add(page, nr);
621         page->mapping = mapping;
622         page->index = index;
623
624         do {
625                 void *entry;
626                 xas_lock_irq(&xas);
627                 entry = xas_find_conflict(&xas);
628                 if (entry != expected)
629                         xas_set_err(&xas, -EEXIST);
630                 xas_create_range(&xas);
631                 if (xas_error(&xas))
632                         goto unlock;
633 next:
634                 xas_store(&xas, page);
635                 if (++i < nr) {
636                         xas_next(&xas);
637                         goto next;
638                 }
639                 if (PageTransHuge(page)) {
640                         count_vm_event(THP_FILE_ALLOC);
641                         __inc_node_page_state(page, NR_SHMEM_THPS);
642                 }
643                 mapping->nrpages += nr;
644                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647                 xas_unlock_irq(&xas);
648         } while (xas_nomem(&xas, gfp));
649
650         if (xas_error(&xas)) {
651                 page->mapping = NULL;
652                 page_ref_sub(page, nr);
653                 return xas_error(&xas);
654         }
655
656         return 0;
657 }
658
659 /*
660  * Like delete_from_page_cache, but substitutes swap for page.
661  */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664         struct address_space *mapping = page->mapping;
665         int error;
666
667         VM_BUG_ON_PAGE(PageCompound(page), page);
668
669         xa_lock_irq(&mapping->i_pages);
670         error = shmem_replace_entry(mapping, page->index, page, radswap);
671         page->mapping = NULL;
672         mapping->nrpages--;
673         __dec_node_page_state(page, NR_FILE_PAGES);
674         __dec_node_page_state(page, NR_SHMEM);
675         xa_unlock_irq(&mapping->i_pages);
676         put_page(page);
677         BUG_ON(error);
678 }
679
680 /*
681  * Remove swap entry from page cache, free the swap and its page cache.
682  */
683 static int shmem_free_swap(struct address_space *mapping,
684                            pgoff_t index, void *radswap)
685 {
686         void *old;
687
688         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689         if (old != radswap)
690                 return -ENOENT;
691         free_swap_and_cache(radix_to_swp_entry(radswap));
692         return 0;
693 }
694
695 /*
696  * Determine (in bytes) how many of the shmem object's pages mapped by the
697  * given offsets are swapped out.
698  *
699  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700  * as long as the inode doesn't go away and racy results are not a problem.
701  */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703                                                 pgoff_t start, pgoff_t end)
704 {
705         XA_STATE(xas, &mapping->i_pages, start);
706         struct page *page;
707         unsigned long swapped = 0;
708
709         rcu_read_lock();
710         xas_for_each(&xas, page, end - 1) {
711                 if (xas_retry(&xas, page))
712                         continue;
713                 if (xa_is_value(page))
714                         swapped++;
715
716                 if (need_resched()) {
717                         xas_pause(&xas);
718                         cond_resched_rcu();
719                 }
720         }
721
722         rcu_read_unlock();
723
724         return swapped << PAGE_SHIFT;
725 }
726
727 /*
728  * Determine (in bytes) how many of the shmem object's pages mapped by the
729  * given vma is swapped out.
730  *
731  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732  * as long as the inode doesn't go away and racy results are not a problem.
733  */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736         struct inode *inode = file_inode(vma->vm_file);
737         struct shmem_inode_info *info = SHMEM_I(inode);
738         struct address_space *mapping = inode->i_mapping;
739         unsigned long swapped;
740
741         /* Be careful as we don't hold info->lock */
742         swapped = READ_ONCE(info->swapped);
743
744         /*
745          * The easier cases are when the shmem object has nothing in swap, or
746          * the vma maps it whole. Then we can simply use the stats that we
747          * already track.
748          */
749         if (!swapped)
750                 return 0;
751
752         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753                 return swapped << PAGE_SHIFT;
754
755         /* Here comes the more involved part */
756         return shmem_partial_swap_usage(mapping,
757                         linear_page_index(vma, vma->vm_start),
758                         linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763  */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766         struct pagevec pvec;
767         pgoff_t indices[PAGEVEC_SIZE];
768         pgoff_t index = 0;
769
770         pagevec_init(&pvec);
771         /*
772          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773          */
774         while (!mapping_unevictable(mapping)) {
775                 /*
776                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778                  */
779                 pvec.nr = find_get_entries(mapping, index,
780                                            PAGEVEC_SIZE, pvec.pages, indices);
781                 if (!pvec.nr)
782                         break;
783                 index = indices[pvec.nr - 1] + 1;
784                 pagevec_remove_exceptionals(&pvec);
785                 check_move_unevictable_pages(&pvec);
786                 pagevec_release(&pvec);
787                 cond_resched();
788         }
789 }
790
791 /*
792  * Remove range of pages and swap entries from page cache, and free them.
793  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794  */
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796                                                                  bool unfalloc)
797 {
798         struct address_space *mapping = inode->i_mapping;
799         struct shmem_inode_info *info = SHMEM_I(inode);
800         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804         struct pagevec pvec;
805         pgoff_t indices[PAGEVEC_SIZE];
806         long nr_swaps_freed = 0;
807         pgoff_t index;
808         int i;
809
810         if (lend == -1)
811                 end = -1;       /* unsigned, so actually very big */
812
813         pagevec_init(&pvec);
814         index = start;
815         while (index < end) {
816                 pvec.nr = find_get_entries(mapping, index,
817                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
818                         pvec.pages, indices);
819                 if (!pvec.nr)
820                         break;
821                 for (i = 0; i < pagevec_count(&pvec); i++) {
822                         struct page *page = pvec.pages[i];
823
824                         index = indices[i];
825                         if (index >= end)
826                                 break;
827
828                         if (xa_is_value(page)) {
829                                 if (unfalloc)
830                                         continue;
831                                 nr_swaps_freed += !shmem_free_swap(mapping,
832                                                                 index, page);
833                                 continue;
834                         }
835
836                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838                         if (!trylock_page(page))
839                                 continue;
840
841                         if (PageTransTail(page)) {
842                                 /* Middle of THP: zero out the page */
843                                 clear_highpage(page);
844                                 unlock_page(page);
845                                 continue;
846                         } else if (PageTransHuge(page)) {
847                                 if (index == round_down(end, HPAGE_PMD_NR)) {
848                                         /*
849                                          * Range ends in the middle of THP:
850                                          * zero out the page
851                                          */
852                                         clear_highpage(page);
853                                         unlock_page(page);
854                                         continue;
855                                 }
856                                 index += HPAGE_PMD_NR - 1;
857                                 i += HPAGE_PMD_NR - 1;
858                         }
859
860                         if (!unfalloc || !PageUptodate(page)) {
861                                 VM_BUG_ON_PAGE(PageTail(page), page);
862                                 if (page_mapping(page) == mapping) {
863                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
864                                         truncate_inode_page(mapping, page);
865                                 }
866                         }
867                         unlock_page(page);
868                 }
869                 pagevec_remove_exceptionals(&pvec);
870                 pagevec_release(&pvec);
871                 cond_resched();
872                 index++;
873         }
874
875         if (partial_start) {
876                 struct page *page = NULL;
877                 shmem_getpage(inode, start - 1, &page, SGP_READ);
878                 if (page) {
879                         unsigned int top = PAGE_SIZE;
880                         if (start > end) {
881                                 top = partial_end;
882                                 partial_end = 0;
883                         }
884                         zero_user_segment(page, partial_start, top);
885                         set_page_dirty(page);
886                         unlock_page(page);
887                         put_page(page);
888                 }
889         }
890         if (partial_end) {
891                 struct page *page = NULL;
892                 shmem_getpage(inode, end, &page, SGP_READ);
893                 if (page) {
894                         zero_user_segment(page, 0, partial_end);
895                         set_page_dirty(page);
896                         unlock_page(page);
897                         put_page(page);
898                 }
899         }
900         if (start >= end)
901                 return;
902
903         index = start;
904         while (index < end) {
905                 cond_resched();
906
907                 pvec.nr = find_get_entries(mapping, index,
908                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909                                 pvec.pages, indices);
910                 if (!pvec.nr) {
911                         /* If all gone or hole-punch or unfalloc, we're done */
912                         if (index == start || end != -1)
913                                 break;
914                         /* But if truncating, restart to make sure all gone */
915                         index = start;
916                         continue;
917                 }
918                 for (i = 0; i < pagevec_count(&pvec); i++) {
919                         struct page *page = pvec.pages[i];
920
921                         index = indices[i];
922                         if (index >= end)
923                                 break;
924
925                         if (xa_is_value(page)) {
926                                 if (unfalloc)
927                                         continue;
928                                 if (shmem_free_swap(mapping, index, page)) {
929                                         /* Swap was replaced by page: retry */
930                                         index--;
931                                         break;
932                                 }
933                                 nr_swaps_freed++;
934                                 continue;
935                         }
936
937                         lock_page(page);
938
939                         if (PageTransTail(page)) {
940                                 /* Middle of THP: zero out the page */
941                                 clear_highpage(page);
942                                 unlock_page(page);
943                                 /*
944                                  * Partial thp truncate due 'start' in middle
945                                  * of THP: don't need to look on these pages
946                                  * again on !pvec.nr restart.
947                                  */
948                                 if (index != round_down(end, HPAGE_PMD_NR))
949                                         start++;
950                                 continue;
951                         } else if (PageTransHuge(page)) {
952                                 if (index == round_down(end, HPAGE_PMD_NR)) {
953                                         /*
954                                          * Range ends in the middle of THP:
955                                          * zero out the page
956                                          */
957                                         clear_highpage(page);
958                                         unlock_page(page);
959                                         continue;
960                                 }
961                                 index += HPAGE_PMD_NR - 1;
962                                 i += HPAGE_PMD_NR - 1;
963                         }
964
965                         if (!unfalloc || !PageUptodate(page)) {
966                                 VM_BUG_ON_PAGE(PageTail(page), page);
967                                 if (page_mapping(page) == mapping) {
968                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
969                                         truncate_inode_page(mapping, page);
970                                 } else {
971                                         /* Page was replaced by swap: retry */
972                                         unlock_page(page);
973                                         index--;
974                                         break;
975                                 }
976                         }
977                         unlock_page(page);
978                 }
979                 pagevec_remove_exceptionals(&pvec);
980                 pagevec_release(&pvec);
981                 index++;
982         }
983
984         spin_lock_irq(&info->lock);
985         info->swapped -= nr_swaps_freed;
986         shmem_recalc_inode(inode);
987         spin_unlock_irq(&info->lock);
988 }
989
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992         shmem_undo_range(inode, lstart, lend, false);
993         inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998                          u32 request_mask, unsigned int query_flags)
999 {
1000         struct inode *inode = path->dentry->d_inode;
1001         struct shmem_inode_info *info = SHMEM_I(inode);
1002         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005                 spin_lock_irq(&info->lock);
1006                 shmem_recalc_inode(inode);
1007                 spin_unlock_irq(&info->lock);
1008         }
1009         generic_fillattr(inode, stat);
1010
1011         if (is_huge_enabled(sb_info))
1012                 stat->blksize = HPAGE_PMD_SIZE;
1013
1014         return 0;
1015 }
1016
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019         struct inode *inode = d_inode(dentry);
1020         struct shmem_inode_info *info = SHMEM_I(inode);
1021         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022         int error;
1023
1024         error = setattr_prepare(dentry, attr);
1025         if (error)
1026                 return error;
1027
1028         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029                 loff_t oldsize = inode->i_size;
1030                 loff_t newsize = attr->ia_size;
1031
1032                 /* protected by i_mutex */
1033                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035                         return -EPERM;
1036
1037                 if (newsize != oldsize) {
1038                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039                                         oldsize, newsize);
1040                         if (error)
1041                                 return error;
1042                         i_size_write(inode, newsize);
1043                         inode->i_ctime = inode->i_mtime = current_time(inode);
1044                 }
1045                 if (newsize <= oldsize) {
1046                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047                         if (oldsize > holebegin)
1048                                 unmap_mapping_range(inode->i_mapping,
1049                                                         holebegin, 0, 1);
1050                         if (info->alloced)
1051                                 shmem_truncate_range(inode,
1052                                                         newsize, (loff_t)-1);
1053                         /* unmap again to remove racily COWed private pages */
1054                         if (oldsize > holebegin)
1055                                 unmap_mapping_range(inode->i_mapping,
1056                                                         holebegin, 0, 1);
1057
1058                         /*
1059                          * Part of the huge page can be beyond i_size: subject
1060                          * to shrink under memory pressure.
1061                          */
1062                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063                                 spin_lock(&sbinfo->shrinklist_lock);
1064                                 /*
1065                                  * _careful to defend against unlocked access to
1066                                  * ->shrink_list in shmem_unused_huge_shrink()
1067                                  */
1068                                 if (list_empty_careful(&info->shrinklist)) {
1069                                         list_add_tail(&info->shrinklist,
1070                                                         &sbinfo->shrinklist);
1071                                         sbinfo->shrinklist_len++;
1072                                 }
1073                                 spin_unlock(&sbinfo->shrinklist_lock);
1074                         }
1075                 }
1076         }
1077
1078         setattr_copy(inode, attr);
1079         if (attr->ia_valid & ATTR_MODE)
1080                 error = posix_acl_chmod(inode, inode->i_mode);
1081         return error;
1082 }
1083
1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089         if (inode->i_mapping->a_ops == &shmem_aops) {
1090                 shmem_unacct_size(info->flags, inode->i_size);
1091                 inode->i_size = 0;
1092                 shmem_truncate_range(inode, 0, (loff_t)-1);
1093                 if (!list_empty(&info->shrinklist)) {
1094                         spin_lock(&sbinfo->shrinklist_lock);
1095                         if (!list_empty(&info->shrinklist)) {
1096                                 list_del_init(&info->shrinklist);
1097                                 sbinfo->shrinklist_len--;
1098                         }
1099                         spin_unlock(&sbinfo->shrinklist_lock);
1100                 }
1101                 while (!list_empty(&info->swaplist)) {
1102                         /* Wait while shmem_unuse() is scanning this inode... */
1103                         wait_var_event(&info->stop_eviction,
1104                                        !atomic_read(&info->stop_eviction));
1105                         mutex_lock(&shmem_swaplist_mutex);
1106                         /* ...but beware of the race if we peeked too early */
1107                         if (!atomic_read(&info->stop_eviction))
1108                                 list_del_init(&info->swaplist);
1109                         mutex_unlock(&shmem_swaplist_mutex);
1110                 }
1111         }
1112
1113         simple_xattrs_free(&info->xattrs);
1114         WARN_ON(inode->i_blocks);
1115         shmem_free_inode(inode->i_sb);
1116         clear_inode(inode);
1117 }
1118
1119 extern struct swap_info_struct *swap_info[];
1120
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122                                    pgoff_t start, unsigned int nr_entries,
1123                                    struct page **entries, pgoff_t *indices,
1124                                    unsigned int type, bool frontswap)
1125 {
1126         XA_STATE(xas, &mapping->i_pages, start);
1127         struct page *page;
1128         swp_entry_t entry;
1129         unsigned int ret = 0;
1130
1131         if (!nr_entries)
1132                 return 0;
1133
1134         rcu_read_lock();
1135         xas_for_each(&xas, page, ULONG_MAX) {
1136                 if (xas_retry(&xas, page))
1137                         continue;
1138
1139                 if (!xa_is_value(page))
1140                         continue;
1141
1142                 entry = radix_to_swp_entry(page);
1143                 if (swp_type(entry) != type)
1144                         continue;
1145                 if (frontswap &&
1146                     !frontswap_test(swap_info[type], swp_offset(entry)))
1147                         continue;
1148
1149                 indices[ret] = xas.xa_index;
1150                 entries[ret] = page;
1151
1152                 if (need_resched()) {
1153                         xas_pause(&xas);
1154                         cond_resched_rcu();
1155                 }
1156                 if (++ret == nr_entries)
1157                         break;
1158         }
1159         rcu_read_unlock();
1160
1161         return ret;
1162 }
1163
1164 /*
1165  * Move the swapped pages for an inode to page cache. Returns the count
1166  * of pages swapped in, or the error in case of failure.
1167  */
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169                                     pgoff_t *indices)
1170 {
1171         int i = 0;
1172         int ret = 0;
1173         int error = 0;
1174         struct address_space *mapping = inode->i_mapping;
1175
1176         for (i = 0; i < pvec.nr; i++) {
1177                 struct page *page = pvec.pages[i];
1178
1179                 if (!xa_is_value(page))
1180                         continue;
1181                 error = shmem_swapin_page(inode, indices[i],
1182                                           &page, SGP_CACHE,
1183                                           mapping_gfp_mask(mapping),
1184                                           NULL, NULL);
1185                 if (error == 0) {
1186                         unlock_page(page);
1187                         put_page(page);
1188                         ret++;
1189                 }
1190                 if (error == -ENOMEM)
1191                         break;
1192                 error = 0;
1193         }
1194         return error ? error : ret;
1195 }
1196
1197 /*
1198  * If swap found in inode, free it and move page from swapcache to filecache.
1199  */
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201                              bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203         struct address_space *mapping = inode->i_mapping;
1204         pgoff_t start = 0;
1205         struct pagevec pvec;
1206         pgoff_t indices[PAGEVEC_SIZE];
1207         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208         int ret = 0;
1209
1210         pagevec_init(&pvec);
1211         do {
1212                 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215                         nr_entries = *fs_pages_to_unuse;
1216
1217                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218                                                   pvec.pages, indices,
1219                                                   type, frontswap);
1220                 if (pvec.nr == 0) {
1221                         ret = 0;
1222                         break;
1223                 }
1224
1225                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226                 if (ret < 0)
1227                         break;
1228
1229                 if (frontswap_partial) {
1230                         *fs_pages_to_unuse -= ret;
1231                         if (*fs_pages_to_unuse == 0) {
1232                                 ret = FRONTSWAP_PAGES_UNUSED;
1233                                 break;
1234                         }
1235                 }
1236
1237                 start = indices[pvec.nr - 1];
1238         } while (true);
1239
1240         return ret;
1241 }
1242
1243 /*
1244  * Read all the shared memory data that resides in the swap
1245  * device 'type' back into memory, so the swap device can be
1246  * unused.
1247  */
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249                 unsigned long *fs_pages_to_unuse)
1250 {
1251         struct shmem_inode_info *info, *next;
1252         int error = 0;
1253
1254         if (list_empty(&shmem_swaplist))
1255                 return 0;
1256
1257         mutex_lock(&shmem_swaplist_mutex);
1258         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259                 if (!info->swapped) {
1260                         list_del_init(&info->swaplist);
1261                         continue;
1262                 }
1263                 /*
1264                  * Drop the swaplist mutex while searching the inode for swap;
1265                  * but before doing so, make sure shmem_evict_inode() will not
1266                  * remove placeholder inode from swaplist, nor let it be freed
1267                  * (igrab() would protect from unlink, but not from unmount).
1268                  */
1269                 atomic_inc(&info->stop_eviction);
1270                 mutex_unlock(&shmem_swaplist_mutex);
1271
1272                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273                                           fs_pages_to_unuse);
1274                 cond_resched();
1275
1276                 mutex_lock(&shmem_swaplist_mutex);
1277                 next = list_next_entry(info, swaplist);
1278                 if (!info->swapped)
1279                         list_del_init(&info->swaplist);
1280                 if (atomic_dec_and_test(&info->stop_eviction))
1281                         wake_up_var(&info->stop_eviction);
1282                 if (error)
1283                         break;
1284         }
1285         mutex_unlock(&shmem_swaplist_mutex);
1286
1287         return error;
1288 }
1289
1290 /*
1291  * Move the page from the page cache to the swap cache.
1292  */
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295         struct shmem_inode_info *info;
1296         struct address_space *mapping;
1297         struct inode *inode;
1298         swp_entry_t swap;
1299         pgoff_t index;
1300
1301         VM_BUG_ON_PAGE(PageCompound(page), page);
1302         BUG_ON(!PageLocked(page));
1303         mapping = page->mapping;
1304         index = page->index;
1305         inode = mapping->host;
1306         info = SHMEM_I(inode);
1307         if (info->flags & VM_LOCKED)
1308                 goto redirty;
1309         if (!total_swap_pages)
1310                 goto redirty;
1311
1312         /*
1313          * Our capabilities prevent regular writeback or sync from ever calling
1314          * shmem_writepage; but a stacking filesystem might use ->writepage of
1315          * its underlying filesystem, in which case tmpfs should write out to
1316          * swap only in response to memory pressure, and not for the writeback
1317          * threads or sync.
1318          */
1319         if (!wbc->for_reclaim) {
1320                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1321                 goto redirty;
1322         }
1323
1324         /*
1325          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326          * value into swapfile.c, the only way we can correctly account for a
1327          * fallocated page arriving here is now to initialize it and write it.
1328          *
1329          * That's okay for a page already fallocated earlier, but if we have
1330          * not yet completed the fallocation, then (a) we want to keep track
1331          * of this page in case we have to undo it, and (b) it may not be a
1332          * good idea to continue anyway, once we're pushing into swap.  So
1333          * reactivate the page, and let shmem_fallocate() quit when too many.
1334          */
1335         if (!PageUptodate(page)) {
1336                 if (inode->i_private) {
1337                         struct shmem_falloc *shmem_falloc;
1338                         spin_lock(&inode->i_lock);
1339                         shmem_falloc = inode->i_private;
1340                         if (shmem_falloc &&
1341                             !shmem_falloc->waitq &&
1342                             index >= shmem_falloc->start &&
1343                             index < shmem_falloc->next)
1344                                 shmem_falloc->nr_unswapped++;
1345                         else
1346                                 shmem_falloc = NULL;
1347                         spin_unlock(&inode->i_lock);
1348                         if (shmem_falloc)
1349                                 goto redirty;
1350                 }
1351                 clear_highpage(page);
1352                 flush_dcache_page(page);
1353                 SetPageUptodate(page);
1354         }
1355
1356         swap = get_swap_page(page);
1357         if (!swap.val)
1358                 goto redirty;
1359
1360         /*
1361          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362          * if it's not already there.  Do it now before the page is
1363          * moved to swap cache, when its pagelock no longer protects
1364          * the inode from eviction.  But don't unlock the mutex until
1365          * we've incremented swapped, because shmem_unuse_inode() will
1366          * prune a !swapped inode from the swaplist under this mutex.
1367          */
1368         mutex_lock(&shmem_swaplist_mutex);
1369         if (list_empty(&info->swaplist))
1370                 list_add(&info->swaplist, &shmem_swaplist);
1371
1372         if (add_to_swap_cache(page, swap,
1373                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374                 spin_lock_irq(&info->lock);
1375                 shmem_recalc_inode(inode);
1376                 info->swapped++;
1377                 spin_unlock_irq(&info->lock);
1378
1379                 swap_shmem_alloc(swap);
1380                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381
1382                 mutex_unlock(&shmem_swaplist_mutex);
1383                 BUG_ON(page_mapped(page));
1384                 swap_writepage(page, wbc);
1385                 return 0;
1386         }
1387
1388         mutex_unlock(&shmem_swaplist_mutex);
1389         put_swap_page(page, swap);
1390 redirty:
1391         set_page_dirty(page);
1392         if (wbc->for_reclaim)
1393                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1394         unlock_page(page);
1395         return 0;
1396 }
1397
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 {
1401         char buffer[64];
1402
1403         if (!mpol || mpol->mode == MPOL_DEFAULT)
1404                 return;         /* show nothing */
1405
1406         mpol_to_str(buffer, sizeof(buffer), mpol);
1407
1408         seq_printf(seq, ",mpol=%s", buffer);
1409 }
1410
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413         struct mempolicy *mpol = NULL;
1414         if (sbinfo->mpol) {
1415                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1416                 mpol = sbinfo->mpol;
1417                 mpol_get(mpol);
1418                 spin_unlock(&sbinfo->stat_lock);
1419         }
1420         return mpol;
1421 }
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 }
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 {
1428         return NULL;
1429 }
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1431 #ifndef CONFIG_NUMA
1432 #define vm_policy vm_private_data
1433 #endif
1434
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436                 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438         /* Create a pseudo vma that just contains the policy */
1439         vma_init(vma, NULL);
1440         /* Bias interleave by inode number to distribute better across nodes */
1441         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1443 }
1444
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 {
1447         /* Drop reference taken by mpol_shared_policy_lookup() */
1448         mpol_cond_put(vma->vm_policy);
1449 }
1450
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452                         struct shmem_inode_info *info, pgoff_t index)
1453 {
1454         struct vm_area_struct pvma;
1455         struct page *page;
1456         struct vm_fault vmf;
1457
1458         shmem_pseudo_vma_init(&pvma, info, index);
1459         vmf.vma = &pvma;
1460         vmf.address = 0;
1461         page = swap_cluster_readahead(swap, gfp, &vmf);
1462         shmem_pseudo_vma_destroy(&pvma);
1463
1464         return page;
1465 }
1466
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468                 struct shmem_inode_info *info, pgoff_t index)
1469 {
1470         struct vm_area_struct pvma;
1471         struct address_space *mapping = info->vfs_inode.i_mapping;
1472         pgoff_t hindex;
1473         struct page *page;
1474
1475         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1476                 return NULL;
1477
1478         hindex = round_down(index, HPAGE_PMD_NR);
1479         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1480                                                                 XA_PRESENT))
1481                 return NULL;
1482
1483         shmem_pseudo_vma_init(&pvma, info, hindex);
1484         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1485                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1486         shmem_pseudo_vma_destroy(&pvma);
1487         if (page)
1488                 prep_transhuge_page(page);
1489         return page;
1490 }
1491
1492 static struct page *shmem_alloc_page(gfp_t gfp,
1493                         struct shmem_inode_info *info, pgoff_t index)
1494 {
1495         struct vm_area_struct pvma;
1496         struct page *page;
1497
1498         shmem_pseudo_vma_init(&pvma, info, index);
1499         page = alloc_page_vma(gfp, &pvma, 0);
1500         shmem_pseudo_vma_destroy(&pvma);
1501
1502         return page;
1503 }
1504
1505 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1506                 struct inode *inode,
1507                 pgoff_t index, bool huge)
1508 {
1509         struct shmem_inode_info *info = SHMEM_I(inode);
1510         struct page *page;
1511         int nr;
1512         int err = -ENOSPC;
1513
1514         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1515                 huge = false;
1516         nr = huge ? HPAGE_PMD_NR : 1;
1517
1518         if (!shmem_inode_acct_block(inode, nr))
1519                 goto failed;
1520
1521         if (huge)
1522                 page = shmem_alloc_hugepage(gfp, info, index);
1523         else
1524                 page = shmem_alloc_page(gfp, info, index);
1525         if (page) {
1526                 __SetPageLocked(page);
1527                 __SetPageSwapBacked(page);
1528                 return page;
1529         }
1530
1531         err = -ENOMEM;
1532         shmem_inode_unacct_blocks(inode, nr);
1533 failed:
1534         return ERR_PTR(err);
1535 }
1536
1537 /*
1538  * When a page is moved from swapcache to shmem filecache (either by the
1539  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1540  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1541  * ignorance of the mapping it belongs to.  If that mapping has special
1542  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1543  * we may need to copy to a suitable page before moving to filecache.
1544  *
1545  * In a future release, this may well be extended to respect cpuset and
1546  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1547  * but for now it is a simple matter of zone.
1548  */
1549 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1550 {
1551         return page_zonenum(page) > gfp_zone(gfp);
1552 }
1553
1554 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1555                                 struct shmem_inode_info *info, pgoff_t index)
1556 {
1557         struct page *oldpage, *newpage;
1558         struct address_space *swap_mapping;
1559         swp_entry_t entry;
1560         pgoff_t swap_index;
1561         int error;
1562
1563         oldpage = *pagep;
1564         entry.val = page_private(oldpage);
1565         swap_index = swp_offset(entry);
1566         swap_mapping = page_mapping(oldpage);
1567
1568         /*
1569          * We have arrived here because our zones are constrained, so don't
1570          * limit chance of success by further cpuset and node constraints.
1571          */
1572         gfp &= ~GFP_CONSTRAINT_MASK;
1573         newpage = shmem_alloc_page(gfp, info, index);
1574         if (!newpage)
1575                 return -ENOMEM;
1576
1577         get_page(newpage);
1578         copy_highpage(newpage, oldpage);
1579         flush_dcache_page(newpage);
1580
1581         __SetPageLocked(newpage);
1582         __SetPageSwapBacked(newpage);
1583         SetPageUptodate(newpage);
1584         set_page_private(newpage, entry.val);
1585         SetPageSwapCache(newpage);
1586
1587         /*
1588          * Our caller will very soon move newpage out of swapcache, but it's
1589          * a nice clean interface for us to replace oldpage by newpage there.
1590          */
1591         xa_lock_irq(&swap_mapping->i_pages);
1592         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1593         if (!error) {
1594                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1595                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1596         }
1597         xa_unlock_irq(&swap_mapping->i_pages);
1598
1599         if (unlikely(error)) {
1600                 /*
1601                  * Is this possible?  I think not, now that our callers check
1602                  * both PageSwapCache and page_private after getting page lock;
1603                  * but be defensive.  Reverse old to newpage for clear and free.
1604                  */
1605                 oldpage = newpage;
1606         } else {
1607                 mem_cgroup_migrate(oldpage, newpage);
1608                 lru_cache_add_anon(newpage);
1609                 *pagep = newpage;
1610         }
1611
1612         ClearPageSwapCache(oldpage);
1613         set_page_private(oldpage, 0);
1614
1615         unlock_page(oldpage);
1616         put_page(oldpage);
1617         put_page(oldpage);
1618         return error;
1619 }
1620
1621 /*
1622  * Swap in the page pointed to by *pagep.
1623  * Caller has to make sure that *pagep contains a valid swapped page.
1624  * Returns 0 and the page in pagep if success. On failure, returns the
1625  * the error code and NULL in *pagep.
1626  */
1627 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1628                              struct page **pagep, enum sgp_type sgp,
1629                              gfp_t gfp, struct vm_area_struct *vma,
1630                              vm_fault_t *fault_type)
1631 {
1632         struct address_space *mapping = inode->i_mapping;
1633         struct shmem_inode_info *info = SHMEM_I(inode);
1634         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1635         struct mem_cgroup *memcg;
1636         struct page *page;
1637         swp_entry_t swap;
1638         int error;
1639
1640         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1641         swap = radix_to_swp_entry(*pagep);
1642         *pagep = NULL;
1643
1644         /* Look it up and read it in.. */
1645         page = lookup_swap_cache(swap, NULL, 0);
1646         if (!page) {
1647                 /* Or update major stats only when swapin succeeds?? */
1648                 if (fault_type) {
1649                         *fault_type |= VM_FAULT_MAJOR;
1650                         count_vm_event(PGMAJFAULT);
1651                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1652                 }
1653                 /* Here we actually start the io */
1654                 page = shmem_swapin(swap, gfp, info, index);
1655                 if (!page) {
1656                         error = -ENOMEM;
1657                         goto failed;
1658                 }
1659         }
1660
1661         /* We have to do this with page locked to prevent races */
1662         lock_page(page);
1663         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1664             !shmem_confirm_swap(mapping, index, swap)) {
1665                 error = -EEXIST;
1666                 goto unlock;
1667         }
1668         if (!PageUptodate(page)) {
1669                 error = -EIO;
1670                 goto failed;
1671         }
1672         wait_on_page_writeback(page);
1673
1674         if (shmem_should_replace_page(page, gfp)) {
1675                 error = shmem_replace_page(&page, gfp, info, index);
1676                 if (error)
1677                         goto failed;
1678         }
1679
1680         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1681                                             false);
1682         if (!error) {
1683                 error = shmem_add_to_page_cache(page, mapping, index,
1684                                                 swp_to_radix_entry(swap), gfp);
1685                 /*
1686                  * We already confirmed swap under page lock, and make
1687                  * no memory allocation here, so usually no possibility
1688                  * of error; but free_swap_and_cache() only trylocks a
1689                  * page, so it is just possible that the entry has been
1690                  * truncated or holepunched since swap was confirmed.
1691                  * shmem_undo_range() will have done some of the
1692                  * unaccounting, now delete_from_swap_cache() will do
1693                  * the rest.
1694                  */
1695                 if (error) {
1696                         mem_cgroup_cancel_charge(page, memcg, false);
1697                         delete_from_swap_cache(page);
1698                 }
1699         }
1700         if (error)
1701                 goto failed;
1702
1703         mem_cgroup_commit_charge(page, memcg, true, false);
1704
1705         spin_lock_irq(&info->lock);
1706         info->swapped--;
1707         shmem_recalc_inode(inode);
1708         spin_unlock_irq(&info->lock);
1709
1710         if (sgp == SGP_WRITE)
1711                 mark_page_accessed(page);
1712
1713         delete_from_swap_cache(page);
1714         set_page_dirty(page);
1715         swap_free(swap);
1716
1717         *pagep = page;
1718         return 0;
1719 failed:
1720         if (!shmem_confirm_swap(mapping, index, swap))
1721                 error = -EEXIST;
1722 unlock:
1723         if (page) {
1724                 unlock_page(page);
1725                 put_page(page);
1726         }
1727
1728         return error;
1729 }
1730
1731 /*
1732  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1733  *
1734  * If we allocate a new one we do not mark it dirty. That's up to the
1735  * vm. If we swap it in we mark it dirty since we also free the swap
1736  * entry since a page cannot live in both the swap and page cache.
1737  *
1738  * vmf and fault_type are only supplied by shmem_fault:
1739  * otherwise they are NULL.
1740  */
1741 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1742         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1743         struct vm_area_struct *vma, struct vm_fault *vmf,
1744                         vm_fault_t *fault_type)
1745 {
1746         struct address_space *mapping = inode->i_mapping;
1747         struct shmem_inode_info *info = SHMEM_I(inode);
1748         struct shmem_sb_info *sbinfo;
1749         struct mm_struct *charge_mm;
1750         struct mem_cgroup *memcg;
1751         struct page *page;
1752         enum sgp_type sgp_huge = sgp;
1753         pgoff_t hindex = index;
1754         int error;
1755         int once = 0;
1756         int alloced = 0;
1757
1758         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1759                 return -EFBIG;
1760         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1761                 sgp = SGP_CACHE;
1762 repeat:
1763         if (sgp <= SGP_CACHE &&
1764             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1765                 return -EINVAL;
1766         }
1767
1768         sbinfo = SHMEM_SB(inode->i_sb);
1769         charge_mm = vma ? vma->vm_mm : current->mm;
1770
1771         page = find_lock_entry(mapping, index);
1772         if (xa_is_value(page)) {
1773                 error = shmem_swapin_page(inode, index, &page,
1774                                           sgp, gfp, vma, fault_type);
1775                 if (error == -EEXIST)
1776                         goto repeat;
1777
1778                 *pagep = page;
1779                 return error;
1780         }
1781
1782         if (page && sgp == SGP_WRITE)
1783                 mark_page_accessed(page);
1784
1785         /* fallocated page? */
1786         if (page && !PageUptodate(page)) {
1787                 if (sgp != SGP_READ)
1788                         goto clear;
1789                 unlock_page(page);
1790                 put_page(page);
1791                 page = NULL;
1792         }
1793         if (page || sgp == SGP_READ) {
1794                 *pagep = page;
1795                 return 0;
1796         }
1797
1798         /*
1799          * Fast cache lookup did not find it:
1800          * bring it back from swap or allocate.
1801          */
1802
1803         if (vma && userfaultfd_missing(vma)) {
1804                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1805                 return 0;
1806         }
1807
1808         /* shmem_symlink() */
1809         if (mapping->a_ops != &shmem_aops)
1810                 goto alloc_nohuge;
1811         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1812                 goto alloc_nohuge;
1813         if (shmem_huge == SHMEM_HUGE_FORCE)
1814                 goto alloc_huge;
1815         switch (sbinfo->huge) {
1816                 loff_t i_size;
1817                 pgoff_t off;
1818         case SHMEM_HUGE_NEVER:
1819                 goto alloc_nohuge;
1820         case SHMEM_HUGE_WITHIN_SIZE:
1821                 off = round_up(index, HPAGE_PMD_NR);
1822                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1823                 if (i_size >= HPAGE_PMD_SIZE &&
1824                     i_size >> PAGE_SHIFT >= off)
1825                         goto alloc_huge;
1826                 /* fallthrough */
1827         case SHMEM_HUGE_ADVISE:
1828                 if (sgp_huge == SGP_HUGE)
1829                         goto alloc_huge;
1830                 /* TODO: implement fadvise() hints */
1831                 goto alloc_nohuge;
1832         }
1833
1834 alloc_huge:
1835         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1836         if (IS_ERR(page)) {
1837 alloc_nohuge:
1838                 page = shmem_alloc_and_acct_page(gfp, inode,
1839                                                  index, false);
1840         }
1841         if (IS_ERR(page)) {
1842                 int retry = 5;
1843
1844                 error = PTR_ERR(page);
1845                 page = NULL;
1846                 if (error != -ENOSPC)
1847                         goto unlock;
1848                 /*
1849                  * Try to reclaim some space by splitting a huge page
1850                  * beyond i_size on the filesystem.
1851                  */
1852                 while (retry--) {
1853                         int ret;
1854
1855                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1856                         if (ret == SHRINK_STOP)
1857                                 break;
1858                         if (ret)
1859                                 goto alloc_nohuge;
1860                 }
1861                 goto unlock;
1862         }
1863
1864         if (PageTransHuge(page))
1865                 hindex = round_down(index, HPAGE_PMD_NR);
1866         else
1867                 hindex = index;
1868
1869         if (sgp == SGP_WRITE)
1870                 __SetPageReferenced(page);
1871
1872         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1873                                             PageTransHuge(page));
1874         if (error)
1875                 goto unacct;
1876         error = shmem_add_to_page_cache(page, mapping, hindex,
1877                                         NULL, gfp & GFP_RECLAIM_MASK);
1878         if (error) {
1879                 mem_cgroup_cancel_charge(page, memcg,
1880                                          PageTransHuge(page));
1881                 goto unacct;
1882         }
1883         mem_cgroup_commit_charge(page, memcg, false,
1884                                  PageTransHuge(page));
1885         lru_cache_add_anon(page);
1886
1887         spin_lock_irq(&info->lock);
1888         info->alloced += compound_nr(page);
1889         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1890         shmem_recalc_inode(inode);
1891         spin_unlock_irq(&info->lock);
1892         alloced = true;
1893
1894         if (PageTransHuge(page) &&
1895             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1896                         hindex + HPAGE_PMD_NR - 1) {
1897                 /*
1898                  * Part of the huge page is beyond i_size: subject
1899                  * to shrink under memory pressure.
1900                  */
1901                 spin_lock(&sbinfo->shrinklist_lock);
1902                 /*
1903                  * _careful to defend against unlocked access to
1904                  * ->shrink_list in shmem_unused_huge_shrink()
1905                  */
1906                 if (list_empty_careful(&info->shrinklist)) {
1907                         list_add_tail(&info->shrinklist,
1908                                       &sbinfo->shrinklist);
1909                         sbinfo->shrinklist_len++;
1910                 }
1911                 spin_unlock(&sbinfo->shrinklist_lock);
1912         }
1913
1914         /*
1915          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1916          */
1917         if (sgp == SGP_FALLOC)
1918                 sgp = SGP_WRITE;
1919 clear:
1920         /*
1921          * Let SGP_WRITE caller clear ends if write does not fill page;
1922          * but SGP_FALLOC on a page fallocated earlier must initialize
1923          * it now, lest undo on failure cancel our earlier guarantee.
1924          */
1925         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1926                 struct page *head = compound_head(page);
1927                 int i;
1928
1929                 for (i = 0; i < compound_nr(head); i++) {
1930                         clear_highpage(head + i);
1931                         flush_dcache_page(head + i);
1932                 }
1933                 SetPageUptodate(head);
1934         }
1935
1936         /* Perhaps the file has been truncated since we checked */
1937         if (sgp <= SGP_CACHE &&
1938             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1939                 if (alloced) {
1940                         ClearPageDirty(page);
1941                         delete_from_page_cache(page);
1942                         spin_lock_irq(&info->lock);
1943                         shmem_recalc_inode(inode);
1944                         spin_unlock_irq(&info->lock);
1945                 }
1946                 error = -EINVAL;
1947                 goto unlock;
1948         }
1949         *pagep = page + index - hindex;
1950         return 0;
1951
1952         /*
1953          * Error recovery.
1954          */
1955 unacct:
1956         shmem_inode_unacct_blocks(inode, compound_nr(page));
1957
1958         if (PageTransHuge(page)) {
1959                 unlock_page(page);
1960                 put_page(page);
1961                 goto alloc_nohuge;
1962         }
1963 unlock:
1964         if (page) {
1965                 unlock_page(page);
1966                 put_page(page);
1967         }
1968         if (error == -ENOSPC && !once++) {
1969                 spin_lock_irq(&info->lock);
1970                 shmem_recalc_inode(inode);
1971                 spin_unlock_irq(&info->lock);
1972                 goto repeat;
1973         }
1974         if (error == -EEXIST)
1975                 goto repeat;
1976         return error;
1977 }
1978
1979 /*
1980  * This is like autoremove_wake_function, but it removes the wait queue
1981  * entry unconditionally - even if something else had already woken the
1982  * target.
1983  */
1984 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1985 {
1986         int ret = default_wake_function(wait, mode, sync, key);
1987         list_del_init(&wait->entry);
1988         return ret;
1989 }
1990
1991 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1992 {
1993         struct vm_area_struct *vma = vmf->vma;
1994         struct inode *inode = file_inode(vma->vm_file);
1995         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1996         enum sgp_type sgp;
1997         int err;
1998         vm_fault_t ret = VM_FAULT_LOCKED;
1999
2000         /*
2001          * Trinity finds that probing a hole which tmpfs is punching can
2002          * prevent the hole-punch from ever completing: which in turn
2003          * locks writers out with its hold on i_mutex.  So refrain from
2004          * faulting pages into the hole while it's being punched.  Although
2005          * shmem_undo_range() does remove the additions, it may be unable to
2006          * keep up, as each new page needs its own unmap_mapping_range() call,
2007          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2008          *
2009          * It does not matter if we sometimes reach this check just before the
2010          * hole-punch begins, so that one fault then races with the punch:
2011          * we just need to make racing faults a rare case.
2012          *
2013          * The implementation below would be much simpler if we just used a
2014          * standard mutex or completion: but we cannot take i_mutex in fault,
2015          * and bloating every shmem inode for this unlikely case would be sad.
2016          */
2017         if (unlikely(inode->i_private)) {
2018                 struct shmem_falloc *shmem_falloc;
2019
2020                 spin_lock(&inode->i_lock);
2021                 shmem_falloc = inode->i_private;
2022                 if (shmem_falloc &&
2023                     shmem_falloc->waitq &&
2024                     vmf->pgoff >= shmem_falloc->start &&
2025                     vmf->pgoff < shmem_falloc->next) {
2026                         struct file *fpin;
2027                         wait_queue_head_t *shmem_falloc_waitq;
2028                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2029
2030                         ret = VM_FAULT_NOPAGE;
2031                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2032                         if (fpin)
2033                                 ret = VM_FAULT_RETRY;
2034
2035                         shmem_falloc_waitq = shmem_falloc->waitq;
2036                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2037                                         TASK_UNINTERRUPTIBLE);
2038                         spin_unlock(&inode->i_lock);
2039                         schedule();
2040
2041                         /*
2042                          * shmem_falloc_waitq points into the shmem_fallocate()
2043                          * stack of the hole-punching task: shmem_falloc_waitq
2044                          * is usually invalid by the time we reach here, but
2045                          * finish_wait() does not dereference it in that case;
2046                          * though i_lock needed lest racing with wake_up_all().
2047                          */
2048                         spin_lock(&inode->i_lock);
2049                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2050                         spin_unlock(&inode->i_lock);
2051
2052                         if (fpin)
2053                                 fput(fpin);
2054                         return ret;
2055                 }
2056                 spin_unlock(&inode->i_lock);
2057         }
2058
2059         sgp = SGP_CACHE;
2060
2061         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2062             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2063                 sgp = SGP_NOHUGE;
2064         else if (vma->vm_flags & VM_HUGEPAGE)
2065                 sgp = SGP_HUGE;
2066
2067         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2068                                   gfp, vma, vmf, &ret);
2069         if (err)
2070                 return vmf_error(err);
2071         return ret;
2072 }
2073
2074 unsigned long shmem_get_unmapped_area(struct file *file,
2075                                       unsigned long uaddr, unsigned long len,
2076                                       unsigned long pgoff, unsigned long flags)
2077 {
2078         unsigned long (*get_area)(struct file *,
2079                 unsigned long, unsigned long, unsigned long, unsigned long);
2080         unsigned long addr;
2081         unsigned long offset;
2082         unsigned long inflated_len;
2083         unsigned long inflated_addr;
2084         unsigned long inflated_offset;
2085
2086         if (len > TASK_SIZE)
2087                 return -ENOMEM;
2088
2089         get_area = current->mm->get_unmapped_area;
2090         addr = get_area(file, uaddr, len, pgoff, flags);
2091
2092         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2093                 return addr;
2094         if (IS_ERR_VALUE(addr))
2095                 return addr;
2096         if (addr & ~PAGE_MASK)
2097                 return addr;
2098         if (addr > TASK_SIZE - len)
2099                 return addr;
2100
2101         if (shmem_huge == SHMEM_HUGE_DENY)
2102                 return addr;
2103         if (len < HPAGE_PMD_SIZE)
2104                 return addr;
2105         if (flags & MAP_FIXED)
2106                 return addr;
2107         /*
2108          * Our priority is to support MAP_SHARED mapped hugely;
2109          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2110          * But if caller specified an address hint and we allocated area there
2111          * successfully, respect that as before.
2112          */
2113         if (uaddr == addr)
2114                 return addr;
2115
2116         if (shmem_huge != SHMEM_HUGE_FORCE) {
2117                 struct super_block *sb;
2118
2119                 if (file) {
2120                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2121                         sb = file_inode(file)->i_sb;
2122                 } else {
2123                         /*
2124                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2125                          * for "/dev/zero", to create a shared anonymous object.
2126                          */
2127                         if (IS_ERR(shm_mnt))
2128                                 return addr;
2129                         sb = shm_mnt->mnt_sb;
2130                 }
2131                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2132                         return addr;
2133         }
2134
2135         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2136         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2137                 return addr;
2138         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2139                 return addr;
2140
2141         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2142         if (inflated_len > TASK_SIZE)
2143                 return addr;
2144         if (inflated_len < len)
2145                 return addr;
2146
2147         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2148         if (IS_ERR_VALUE(inflated_addr))
2149                 return addr;
2150         if (inflated_addr & ~PAGE_MASK)
2151                 return addr;
2152
2153         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2154         inflated_addr += offset - inflated_offset;
2155         if (inflated_offset > offset)
2156                 inflated_addr += HPAGE_PMD_SIZE;
2157
2158         if (inflated_addr > TASK_SIZE - len)
2159                 return addr;
2160         return inflated_addr;
2161 }
2162
2163 #ifdef CONFIG_NUMA
2164 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2165 {
2166         struct inode *inode = file_inode(vma->vm_file);
2167         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2168 }
2169
2170 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2171                                           unsigned long addr)
2172 {
2173         struct inode *inode = file_inode(vma->vm_file);
2174         pgoff_t index;
2175
2176         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2177         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2178 }
2179 #endif
2180
2181 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2182 {
2183         struct inode *inode = file_inode(file);
2184         struct shmem_inode_info *info = SHMEM_I(inode);
2185         int retval = -ENOMEM;
2186
2187         spin_lock_irq(&info->lock);
2188         if (lock && !(info->flags & VM_LOCKED)) {
2189                 if (!user_shm_lock(inode->i_size, user))
2190                         goto out_nomem;
2191                 info->flags |= VM_LOCKED;
2192                 mapping_set_unevictable(file->f_mapping);
2193         }
2194         if (!lock && (info->flags & VM_LOCKED) && user) {
2195                 user_shm_unlock(inode->i_size, user);
2196                 info->flags &= ~VM_LOCKED;
2197                 mapping_clear_unevictable(file->f_mapping);
2198         }
2199         retval = 0;
2200
2201 out_nomem:
2202         spin_unlock_irq(&info->lock);
2203         return retval;
2204 }
2205
2206 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2207 {
2208         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2209
2210         if (info->seals & F_SEAL_FUTURE_WRITE) {
2211                 /*
2212                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2213                  * "future write" seal active.
2214                  */
2215                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2216                         return -EPERM;
2217
2218                 /*
2219                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2220                  * MAP_SHARED and read-only, take care to not allow mprotect to
2221                  * revert protections on such mappings. Do this only for shared
2222                  * mappings. For private mappings, don't need to mask
2223                  * VM_MAYWRITE as we still want them to be COW-writable.
2224                  */
2225                 if (vma->vm_flags & VM_SHARED)
2226                         vma->vm_flags &= ~(VM_MAYWRITE);
2227         }
2228
2229         file_accessed(file);
2230         vma->vm_ops = &shmem_vm_ops;
2231         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2232                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2233                         (vma->vm_end & HPAGE_PMD_MASK)) {
2234                 khugepaged_enter(vma, vma->vm_flags);
2235         }
2236         return 0;
2237 }
2238
2239 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2240                                      umode_t mode, dev_t dev, unsigned long flags)
2241 {
2242         struct inode *inode;
2243         struct shmem_inode_info *info;
2244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2245
2246         if (shmem_reserve_inode(sb))
2247                 return NULL;
2248
2249         inode = new_inode(sb);
2250         if (inode) {
2251                 inode->i_ino = get_next_ino();
2252                 inode_init_owner(inode, dir, mode);
2253                 inode->i_blocks = 0;
2254                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2255                 inode->i_generation = prandom_u32();
2256                 info = SHMEM_I(inode);
2257                 memset(info, 0, (char *)inode - (char *)info);
2258                 spin_lock_init(&info->lock);
2259                 atomic_set(&info->stop_eviction, 0);
2260                 info->seals = F_SEAL_SEAL;
2261                 info->flags = flags & VM_NORESERVE;
2262                 INIT_LIST_HEAD(&info->shrinklist);
2263                 INIT_LIST_HEAD(&info->swaplist);
2264                 simple_xattrs_init(&info->xattrs);
2265                 cache_no_acl(inode);
2266
2267                 switch (mode & S_IFMT) {
2268                 default:
2269                         inode->i_op = &shmem_special_inode_operations;
2270                         init_special_inode(inode, mode, dev);
2271                         break;
2272                 case S_IFREG:
2273                         inode->i_mapping->a_ops = &shmem_aops;
2274                         inode->i_op = &shmem_inode_operations;
2275                         inode->i_fop = &shmem_file_operations;
2276                         mpol_shared_policy_init(&info->policy,
2277                                                  shmem_get_sbmpol(sbinfo));
2278                         break;
2279                 case S_IFDIR:
2280                         inc_nlink(inode);
2281                         /* Some things misbehave if size == 0 on a directory */
2282                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2283                         inode->i_op = &shmem_dir_inode_operations;
2284                         inode->i_fop = &simple_dir_operations;
2285                         break;
2286                 case S_IFLNK:
2287                         /*
2288                          * Must not load anything in the rbtree,
2289                          * mpol_free_shared_policy will not be called.
2290                          */
2291                         mpol_shared_policy_init(&info->policy, NULL);
2292                         break;
2293                 }
2294
2295                 lockdep_annotate_inode_mutex_key(inode);
2296         } else
2297                 shmem_free_inode(sb);
2298         return inode;
2299 }
2300
2301 bool shmem_mapping(struct address_space *mapping)
2302 {
2303         return mapping->a_ops == &shmem_aops;
2304 }
2305
2306 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2307                                   pmd_t *dst_pmd,
2308                                   struct vm_area_struct *dst_vma,
2309                                   unsigned long dst_addr,
2310                                   unsigned long src_addr,
2311                                   bool zeropage,
2312                                   struct page **pagep)
2313 {
2314         struct inode *inode = file_inode(dst_vma->vm_file);
2315         struct shmem_inode_info *info = SHMEM_I(inode);
2316         struct address_space *mapping = inode->i_mapping;
2317         gfp_t gfp = mapping_gfp_mask(mapping);
2318         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2319         struct mem_cgroup *memcg;
2320         spinlock_t *ptl;
2321         void *page_kaddr;
2322         struct page *page;
2323         pte_t _dst_pte, *dst_pte;
2324         int ret;
2325         pgoff_t offset, max_off;
2326
2327         ret = -ENOMEM;
2328         if (!shmem_inode_acct_block(inode, 1))
2329                 goto out;
2330
2331         if (!*pagep) {
2332                 page = shmem_alloc_page(gfp, info, pgoff);
2333                 if (!page)
2334                         goto out_unacct_blocks;
2335
2336                 if (!zeropage) {        /* mcopy_atomic */
2337                         page_kaddr = kmap_atomic(page);
2338                         ret = copy_from_user(page_kaddr,
2339                                              (const void __user *)src_addr,
2340                                              PAGE_SIZE);
2341                         kunmap_atomic(page_kaddr);
2342
2343                         /* fallback to copy_from_user outside mmap_sem */
2344                         if (unlikely(ret)) {
2345                                 *pagep = page;
2346                                 shmem_inode_unacct_blocks(inode, 1);
2347                                 /* don't free the page */
2348                                 return -ENOENT;
2349                         }
2350                 } else {                /* mfill_zeropage_atomic */
2351                         clear_highpage(page);
2352                 }
2353         } else {
2354                 page = *pagep;
2355                 *pagep = NULL;
2356         }
2357
2358         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2359         __SetPageLocked(page);
2360         __SetPageSwapBacked(page);
2361         __SetPageUptodate(page);
2362
2363         ret = -EFAULT;
2364         offset = linear_page_index(dst_vma, dst_addr);
2365         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2366         if (unlikely(offset >= max_off))
2367                 goto out_release;
2368
2369         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2370         if (ret)
2371                 goto out_release;
2372
2373         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2374                                                 gfp & GFP_RECLAIM_MASK);
2375         if (ret)
2376                 goto out_release_uncharge;
2377
2378         mem_cgroup_commit_charge(page, memcg, false, false);
2379
2380         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2381         if (dst_vma->vm_flags & VM_WRITE)
2382                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2383         else {
2384                 /*
2385                  * We don't set the pte dirty if the vma has no
2386                  * VM_WRITE permission, so mark the page dirty or it
2387                  * could be freed from under us. We could do it
2388                  * unconditionally before unlock_page(), but doing it
2389                  * only if VM_WRITE is not set is faster.
2390                  */
2391                 set_page_dirty(page);
2392         }
2393
2394         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2395
2396         ret = -EFAULT;
2397         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2398         if (unlikely(offset >= max_off))
2399                 goto out_release_uncharge_unlock;
2400
2401         ret = -EEXIST;
2402         if (!pte_none(*dst_pte))
2403                 goto out_release_uncharge_unlock;
2404
2405         lru_cache_add_anon(page);
2406
2407         spin_lock(&info->lock);
2408         info->alloced++;
2409         inode->i_blocks += BLOCKS_PER_PAGE;
2410         shmem_recalc_inode(inode);
2411         spin_unlock(&info->lock);
2412
2413         inc_mm_counter(dst_mm, mm_counter_file(page));
2414         page_add_file_rmap(page, false);
2415         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2416
2417         /* No need to invalidate - it was non-present before */
2418         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2419         pte_unmap_unlock(dst_pte, ptl);
2420         unlock_page(page);
2421         ret = 0;
2422 out:
2423         return ret;
2424 out_release_uncharge_unlock:
2425         pte_unmap_unlock(dst_pte, ptl);
2426         ClearPageDirty(page);
2427         delete_from_page_cache(page);
2428 out_release_uncharge:
2429         mem_cgroup_cancel_charge(page, memcg, false);
2430 out_release:
2431         unlock_page(page);
2432         put_page(page);
2433 out_unacct_blocks:
2434         shmem_inode_unacct_blocks(inode, 1);
2435         goto out;
2436 }
2437
2438 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2439                            pmd_t *dst_pmd,
2440                            struct vm_area_struct *dst_vma,
2441                            unsigned long dst_addr,
2442                            unsigned long src_addr,
2443                            struct page **pagep)
2444 {
2445         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2446                                       dst_addr, src_addr, false, pagep);
2447 }
2448
2449 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2450                              pmd_t *dst_pmd,
2451                              struct vm_area_struct *dst_vma,
2452                              unsigned long dst_addr)
2453 {
2454         struct page *page = NULL;
2455
2456         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2457                                       dst_addr, 0, true, &page);
2458 }
2459
2460 #ifdef CONFIG_TMPFS
2461 static const struct inode_operations shmem_symlink_inode_operations;
2462 static const struct inode_operations shmem_short_symlink_operations;
2463
2464 #ifdef CONFIG_TMPFS_XATTR
2465 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2466 #else
2467 #define shmem_initxattrs NULL
2468 #endif
2469
2470 static int
2471 shmem_write_begin(struct file *file, struct address_space *mapping,
2472                         loff_t pos, unsigned len, unsigned flags,
2473                         struct page **pagep, void **fsdata)
2474 {
2475         struct inode *inode = mapping->host;
2476         struct shmem_inode_info *info = SHMEM_I(inode);
2477         pgoff_t index = pos >> PAGE_SHIFT;
2478
2479         /* i_mutex is held by caller */
2480         if (unlikely(info->seals & (F_SEAL_GROW |
2481                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2482                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2483                         return -EPERM;
2484                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2485                         return -EPERM;
2486         }
2487
2488         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2489 }
2490
2491 static int
2492 shmem_write_end(struct file *file, struct address_space *mapping,
2493                         loff_t pos, unsigned len, unsigned copied,
2494                         struct page *page, void *fsdata)
2495 {
2496         struct inode *inode = mapping->host;
2497
2498         if (pos + copied > inode->i_size)
2499                 i_size_write(inode, pos + copied);
2500
2501         if (!PageUptodate(page)) {
2502                 struct page *head = compound_head(page);
2503                 if (PageTransCompound(page)) {
2504                         int i;
2505
2506                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2507                                 if (head + i == page)
2508                                         continue;
2509                                 clear_highpage(head + i);
2510                                 flush_dcache_page(head + i);
2511                         }
2512                 }
2513                 if (copied < PAGE_SIZE) {
2514                         unsigned from = pos & (PAGE_SIZE - 1);
2515                         zero_user_segments(page, 0, from,
2516                                         from + copied, PAGE_SIZE);
2517                 }
2518                 SetPageUptodate(head);
2519         }
2520         set_page_dirty(page);
2521         unlock_page(page);
2522         put_page(page);
2523
2524         return copied;
2525 }
2526
2527 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2528 {
2529         struct file *file = iocb->ki_filp;
2530         struct inode *inode = file_inode(file);
2531         struct address_space *mapping = inode->i_mapping;
2532         pgoff_t index;
2533         unsigned long offset;
2534         enum sgp_type sgp = SGP_READ;
2535         int error = 0;
2536         ssize_t retval = 0;
2537         loff_t *ppos = &iocb->ki_pos;
2538
2539         /*
2540          * Might this read be for a stacking filesystem?  Then when reading
2541          * holes of a sparse file, we actually need to allocate those pages,
2542          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2543          */
2544         if (!iter_is_iovec(to))
2545                 sgp = SGP_CACHE;
2546
2547         index = *ppos >> PAGE_SHIFT;
2548         offset = *ppos & ~PAGE_MASK;
2549
2550         for (;;) {
2551                 struct page *page = NULL;
2552                 pgoff_t end_index;
2553                 unsigned long nr, ret;
2554                 loff_t i_size = i_size_read(inode);
2555
2556                 end_index = i_size >> PAGE_SHIFT;
2557                 if (index > end_index)
2558                         break;
2559                 if (index == end_index) {
2560                         nr = i_size & ~PAGE_MASK;
2561                         if (nr <= offset)
2562                                 break;
2563                 }
2564
2565                 error = shmem_getpage(inode, index, &page, sgp);
2566                 if (error) {
2567                         if (error == -EINVAL)
2568                                 error = 0;
2569                         break;
2570                 }
2571                 if (page) {
2572                         if (sgp == SGP_CACHE)
2573                                 set_page_dirty(page);
2574                         unlock_page(page);
2575                 }
2576
2577                 /*
2578                  * We must evaluate after, since reads (unlike writes)
2579                  * are called without i_mutex protection against truncate
2580                  */
2581                 nr = PAGE_SIZE;
2582                 i_size = i_size_read(inode);
2583                 end_index = i_size >> PAGE_SHIFT;
2584                 if (index == end_index) {
2585                         nr = i_size & ~PAGE_MASK;
2586                         if (nr <= offset) {
2587                                 if (page)
2588                                         put_page(page);
2589                                 break;
2590                         }
2591                 }
2592                 nr -= offset;
2593
2594                 if (page) {
2595                         /*
2596                          * If users can be writing to this page using arbitrary
2597                          * virtual addresses, take care about potential aliasing
2598                          * before reading the page on the kernel side.
2599                          */
2600                         if (mapping_writably_mapped(mapping))
2601                                 flush_dcache_page(page);
2602                         /*
2603                          * Mark the page accessed if we read the beginning.
2604                          */
2605                         if (!offset)
2606                                 mark_page_accessed(page);
2607                 } else {
2608                         page = ZERO_PAGE(0);
2609                         get_page(page);
2610                 }
2611
2612                 /*
2613                  * Ok, we have the page, and it's up-to-date, so
2614                  * now we can copy it to user space...
2615                  */
2616                 ret = copy_page_to_iter(page, offset, nr, to);
2617                 retval += ret;
2618                 offset += ret;
2619                 index += offset >> PAGE_SHIFT;
2620                 offset &= ~PAGE_MASK;
2621
2622                 put_page(page);
2623                 if (!iov_iter_count(to))
2624                         break;
2625                 if (ret < nr) {
2626                         error = -EFAULT;
2627                         break;
2628                 }
2629                 cond_resched();
2630         }
2631
2632         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2633         file_accessed(file);
2634         return retval ? retval : error;
2635 }
2636
2637 /*
2638  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2639  */
2640 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2641                                     pgoff_t index, pgoff_t end, int whence)
2642 {
2643         struct page *page;
2644         struct pagevec pvec;
2645         pgoff_t indices[PAGEVEC_SIZE];
2646         bool done = false;
2647         int i;
2648
2649         pagevec_init(&pvec);
2650         pvec.nr = 1;            /* start small: we may be there already */
2651         while (!done) {
2652                 pvec.nr = find_get_entries(mapping, index,
2653                                         pvec.nr, pvec.pages, indices);
2654                 if (!pvec.nr) {
2655                         if (whence == SEEK_DATA)
2656                                 index = end;
2657                         break;
2658                 }
2659                 for (i = 0; i < pvec.nr; i++, index++) {
2660                         if (index < indices[i]) {
2661                                 if (whence == SEEK_HOLE) {
2662                                         done = true;
2663                                         break;
2664                                 }
2665                                 index = indices[i];
2666                         }
2667                         page = pvec.pages[i];
2668                         if (page && !xa_is_value(page)) {
2669                                 if (!PageUptodate(page))
2670                                         page = NULL;
2671                         }
2672                         if (index >= end ||
2673                             (page && whence == SEEK_DATA) ||
2674                             (!page && whence == SEEK_HOLE)) {
2675                                 done = true;
2676                                 break;
2677                         }
2678                 }
2679                 pagevec_remove_exceptionals(&pvec);
2680                 pagevec_release(&pvec);
2681                 pvec.nr = PAGEVEC_SIZE;
2682                 cond_resched();
2683         }
2684         return index;
2685 }
2686
2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2688 {
2689         struct address_space *mapping = file->f_mapping;
2690         struct inode *inode = mapping->host;
2691         pgoff_t start, end;
2692         loff_t new_offset;
2693
2694         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2695                 return generic_file_llseek_size(file, offset, whence,
2696                                         MAX_LFS_FILESIZE, i_size_read(inode));
2697         inode_lock(inode);
2698         /* We're holding i_mutex so we can access i_size directly */
2699
2700         if (offset < 0 || offset >= inode->i_size)
2701                 offset = -ENXIO;
2702         else {
2703                 start = offset >> PAGE_SHIFT;
2704                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2706                 new_offset <<= PAGE_SHIFT;
2707                 if (new_offset > offset) {
2708                         if (new_offset < inode->i_size)
2709                                 offset = new_offset;
2710                         else if (whence == SEEK_DATA)
2711                                 offset = -ENXIO;
2712                         else
2713                                 offset = inode->i_size;
2714                 }
2715         }
2716
2717         if (offset >= 0)
2718                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2719         inode_unlock(inode);
2720         return offset;
2721 }
2722
2723 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2724                                                          loff_t len)
2725 {
2726         struct inode *inode = file_inode(file);
2727         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2728         struct shmem_inode_info *info = SHMEM_I(inode);
2729         struct shmem_falloc shmem_falloc;
2730         pgoff_t start, index, end;
2731         int error;
2732
2733         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2734                 return -EOPNOTSUPP;
2735
2736         inode_lock(inode);
2737
2738         if (mode & FALLOC_FL_PUNCH_HOLE) {
2739                 struct address_space *mapping = file->f_mapping;
2740                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2741                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2742                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2743
2744                 /* protected by i_mutex */
2745                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2746                         error = -EPERM;
2747                         goto out;
2748                 }
2749
2750                 shmem_falloc.waitq = &shmem_falloc_waitq;
2751                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2752                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2753                 spin_lock(&inode->i_lock);
2754                 inode->i_private = &shmem_falloc;
2755                 spin_unlock(&inode->i_lock);
2756
2757                 if ((u64)unmap_end > (u64)unmap_start)
2758                         unmap_mapping_range(mapping, unmap_start,
2759                                             1 + unmap_end - unmap_start, 0);
2760                 shmem_truncate_range(inode, offset, offset + len - 1);
2761                 /* No need to unmap again: hole-punching leaves COWed pages */
2762
2763                 spin_lock(&inode->i_lock);
2764                 inode->i_private = NULL;
2765                 wake_up_all(&shmem_falloc_waitq);
2766                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2767                 spin_unlock(&inode->i_lock);
2768                 error = 0;
2769                 goto out;
2770         }
2771
2772         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2773         error = inode_newsize_ok(inode, offset + len);
2774         if (error)
2775                 goto out;
2776
2777         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2778                 error = -EPERM;
2779                 goto out;
2780         }
2781
2782         start = offset >> PAGE_SHIFT;
2783         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2784         /* Try to avoid a swapstorm if len is impossible to satisfy */
2785         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2786                 error = -ENOSPC;
2787                 goto out;
2788         }
2789
2790         shmem_falloc.waitq = NULL;
2791         shmem_falloc.start = start;
2792         shmem_falloc.next  = start;
2793         shmem_falloc.nr_falloced = 0;
2794         shmem_falloc.nr_unswapped = 0;
2795         spin_lock(&inode->i_lock);
2796         inode->i_private = &shmem_falloc;
2797         spin_unlock(&inode->i_lock);
2798
2799         for (index = start; index < end; index++) {
2800                 struct page *page;
2801
2802                 /*
2803                  * Good, the fallocate(2) manpage permits EINTR: we may have
2804                  * been interrupted because we are using up too much memory.
2805                  */
2806                 if (signal_pending(current))
2807                         error = -EINTR;
2808                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2809                         error = -ENOMEM;
2810                 else
2811                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2812                 if (error) {
2813                         /* Remove the !PageUptodate pages we added */
2814                         if (index > start) {
2815                                 shmem_undo_range(inode,
2816                                     (loff_t)start << PAGE_SHIFT,
2817                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2818                         }
2819                         goto undone;
2820                 }
2821
2822                 /*
2823                  * Inform shmem_writepage() how far we have reached.
2824                  * No need for lock or barrier: we have the page lock.
2825                  */
2826                 shmem_falloc.next++;
2827                 if (!PageUptodate(page))
2828                         shmem_falloc.nr_falloced++;
2829
2830                 /*
2831                  * If !PageUptodate, leave it that way so that freeable pages
2832                  * can be recognized if we need to rollback on error later.
2833                  * But set_page_dirty so that memory pressure will swap rather
2834                  * than free the pages we are allocating (and SGP_CACHE pages
2835                  * might still be clean: we now need to mark those dirty too).
2836                  */
2837                 set_page_dirty(page);
2838                 unlock_page(page);
2839                 put_page(page);
2840                 cond_resched();
2841         }
2842
2843         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2844                 i_size_write(inode, offset + len);
2845         inode->i_ctime = current_time(inode);
2846 undone:
2847         spin_lock(&inode->i_lock);
2848         inode->i_private = NULL;
2849         spin_unlock(&inode->i_lock);
2850 out:
2851         inode_unlock(inode);
2852         return error;
2853 }
2854
2855 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2856 {
2857         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2858
2859         buf->f_type = TMPFS_MAGIC;
2860         buf->f_bsize = PAGE_SIZE;
2861         buf->f_namelen = NAME_MAX;
2862         if (sbinfo->max_blocks) {
2863                 buf->f_blocks = sbinfo->max_blocks;
2864                 buf->f_bavail =
2865                 buf->f_bfree  = sbinfo->max_blocks -
2866                                 percpu_counter_sum(&sbinfo->used_blocks);
2867         }
2868         if (sbinfo->max_inodes) {
2869                 buf->f_files = sbinfo->max_inodes;
2870                 buf->f_ffree = sbinfo->free_inodes;
2871         }
2872         /* else leave those fields 0 like simple_statfs */
2873         return 0;
2874 }
2875
2876 /*
2877  * File creation. Allocate an inode, and we're done..
2878  */
2879 static int
2880 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2881 {
2882         struct inode *inode;
2883         int error = -ENOSPC;
2884
2885         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2886         if (inode) {
2887                 error = simple_acl_create(dir, inode);
2888                 if (error)
2889                         goto out_iput;
2890                 error = security_inode_init_security(inode, dir,
2891                                                      &dentry->d_name,
2892                                                      shmem_initxattrs, NULL);
2893                 if (error && error != -EOPNOTSUPP)
2894                         goto out_iput;
2895
2896                 error = 0;
2897                 dir->i_size += BOGO_DIRENT_SIZE;
2898                 dir->i_ctime = dir->i_mtime = current_time(dir);
2899                 d_instantiate(dentry, inode);
2900                 dget(dentry); /* Extra count - pin the dentry in core */
2901         }
2902         return error;
2903 out_iput:
2904         iput(inode);
2905         return error;
2906 }
2907
2908 static int
2909 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2910 {
2911         struct inode *inode;
2912         int error = -ENOSPC;
2913
2914         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2915         if (inode) {
2916                 error = security_inode_init_security(inode, dir,
2917                                                      NULL,
2918                                                      shmem_initxattrs, NULL);
2919                 if (error && error != -EOPNOTSUPP)
2920                         goto out_iput;
2921                 error = simple_acl_create(dir, inode);
2922                 if (error)
2923                         goto out_iput;
2924                 d_tmpfile(dentry, inode);
2925         }
2926         return error;
2927 out_iput:
2928         iput(inode);
2929         return error;
2930 }
2931
2932 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2933 {
2934         int error;
2935
2936         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2937                 return error;
2938         inc_nlink(dir);
2939         return 0;
2940 }
2941
2942 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2943                 bool excl)
2944 {
2945         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2946 }
2947
2948 /*
2949  * Link a file..
2950  */
2951 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2952 {
2953         struct inode *inode = d_inode(old_dentry);
2954         int ret = 0;
2955
2956         /*
2957          * No ordinary (disk based) filesystem counts links as inodes;
2958          * but each new link needs a new dentry, pinning lowmem, and
2959          * tmpfs dentries cannot be pruned until they are unlinked.
2960          * But if an O_TMPFILE file is linked into the tmpfs, the
2961          * first link must skip that, to get the accounting right.
2962          */
2963         if (inode->i_nlink) {
2964                 ret = shmem_reserve_inode(inode->i_sb);
2965                 if (ret)
2966                         goto out;
2967         }
2968
2969         dir->i_size += BOGO_DIRENT_SIZE;
2970         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2971         inc_nlink(inode);
2972         ihold(inode);   /* New dentry reference */
2973         dget(dentry);           /* Extra pinning count for the created dentry */
2974         d_instantiate(dentry, inode);
2975 out:
2976         return ret;
2977 }
2978
2979 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2980 {
2981         struct inode *inode = d_inode(dentry);
2982
2983         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2984                 shmem_free_inode(inode->i_sb);
2985
2986         dir->i_size -= BOGO_DIRENT_SIZE;
2987         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2988         drop_nlink(inode);
2989         dput(dentry);   /* Undo the count from "create" - this does all the work */
2990         return 0;
2991 }
2992
2993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995         if (!simple_empty(dentry))
2996                 return -ENOTEMPTY;
2997
2998         drop_nlink(d_inode(dentry));
2999         drop_nlink(dir);
3000         return shmem_unlink(dir, dentry);
3001 }
3002
3003 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3004 {
3005         bool old_is_dir = d_is_dir(old_dentry);
3006         bool new_is_dir = d_is_dir(new_dentry);
3007
3008         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3009                 if (old_is_dir) {
3010                         drop_nlink(old_dir);
3011                         inc_nlink(new_dir);
3012                 } else {
3013                         drop_nlink(new_dir);
3014                         inc_nlink(old_dir);
3015                 }
3016         }
3017         old_dir->i_ctime = old_dir->i_mtime =
3018         new_dir->i_ctime = new_dir->i_mtime =
3019         d_inode(old_dentry)->i_ctime =
3020         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3021
3022         return 0;
3023 }
3024
3025 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3026 {
3027         struct dentry *whiteout;
3028         int error;
3029
3030         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3031         if (!whiteout)
3032                 return -ENOMEM;
3033
3034         error = shmem_mknod(old_dir, whiteout,
3035                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3036         dput(whiteout);
3037         if (error)
3038                 return error;
3039
3040         /*
3041          * Cheat and hash the whiteout while the old dentry is still in
3042          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3043          *
3044          * d_lookup() will consistently find one of them at this point,
3045          * not sure which one, but that isn't even important.
3046          */
3047         d_rehash(whiteout);
3048         return 0;
3049 }
3050
3051 /*
3052  * The VFS layer already does all the dentry stuff for rename,
3053  * we just have to decrement the usage count for the target if
3054  * it exists so that the VFS layer correctly free's it when it
3055  * gets overwritten.
3056  */
3057 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3058 {
3059         struct inode *inode = d_inode(old_dentry);
3060         int they_are_dirs = S_ISDIR(inode->i_mode);
3061
3062         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3063                 return -EINVAL;
3064
3065         if (flags & RENAME_EXCHANGE)
3066                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3067
3068         if (!simple_empty(new_dentry))
3069                 return -ENOTEMPTY;
3070
3071         if (flags & RENAME_WHITEOUT) {
3072                 int error;
3073
3074                 error = shmem_whiteout(old_dir, old_dentry);
3075                 if (error)
3076                         return error;
3077         }
3078
3079         if (d_really_is_positive(new_dentry)) {
3080                 (void) shmem_unlink(new_dir, new_dentry);
3081                 if (they_are_dirs) {
3082                         drop_nlink(d_inode(new_dentry));
3083                         drop_nlink(old_dir);
3084                 }
3085         } else if (they_are_dirs) {
3086                 drop_nlink(old_dir);
3087                 inc_nlink(new_dir);
3088         }
3089
3090         old_dir->i_size -= BOGO_DIRENT_SIZE;
3091         new_dir->i_size += BOGO_DIRENT_SIZE;
3092         old_dir->i_ctime = old_dir->i_mtime =
3093         new_dir->i_ctime = new_dir->i_mtime =
3094         inode->i_ctime = current_time(old_dir);
3095         return 0;
3096 }
3097
3098 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3099 {
3100         int error;
3101         int len;
3102         struct inode *inode;
3103         struct page *page;
3104
3105         len = strlen(symname) + 1;
3106         if (len > PAGE_SIZE)
3107                 return -ENAMETOOLONG;
3108
3109         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3110                                 VM_NORESERVE);
3111         if (!inode)
3112                 return -ENOSPC;
3113
3114         error = security_inode_init_security(inode, dir, &dentry->d_name,
3115                                              shmem_initxattrs, NULL);
3116         if (error) {
3117                 if (error != -EOPNOTSUPP) {
3118                         iput(inode);
3119                         return error;
3120                 }
3121                 error = 0;
3122         }
3123
3124         inode->i_size = len-1;
3125         if (len <= SHORT_SYMLINK_LEN) {
3126                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3127                 if (!inode->i_link) {
3128                         iput(inode);
3129                         return -ENOMEM;
3130                 }
3131                 inode->i_op = &shmem_short_symlink_operations;
3132         } else {
3133                 inode_nohighmem(inode);
3134                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3135                 if (error) {
3136                         iput(inode);
3137                         return error;
3138                 }
3139                 inode->i_mapping->a_ops = &shmem_aops;
3140                 inode->i_op = &shmem_symlink_inode_operations;
3141                 memcpy(page_address(page), symname, len);
3142                 SetPageUptodate(page);
3143                 set_page_dirty(page);
3144                 unlock_page(page);
3145                 put_page(page);
3146         }
3147         dir->i_size += BOGO_DIRENT_SIZE;
3148         dir->i_ctime = dir->i_mtime = current_time(dir);
3149         d_instantiate(dentry, inode);
3150         dget(dentry);
3151         return 0;
3152 }
3153
3154 static void shmem_put_link(void *arg)
3155 {
3156         mark_page_accessed(arg);
3157         put_page(arg);
3158 }
3159
3160 static const char *shmem_get_link(struct dentry *dentry,
3161                                   struct inode *inode,
3162                                   struct delayed_call *done)
3163 {
3164         struct page *page = NULL;
3165         int error;
3166         if (!dentry) {
3167                 page = find_get_page(inode->i_mapping, 0);
3168                 if (!page)
3169                         return ERR_PTR(-ECHILD);
3170                 if (!PageUptodate(page)) {
3171                         put_page(page);
3172                         return ERR_PTR(-ECHILD);
3173                 }
3174         } else {
3175                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3176                 if (error)
3177                         return ERR_PTR(error);
3178                 unlock_page(page);
3179         }
3180         set_delayed_call(done, shmem_put_link, page);
3181         return page_address(page);
3182 }
3183
3184 #ifdef CONFIG_TMPFS_XATTR
3185 /*
3186  * Superblocks without xattr inode operations may get some security.* xattr
3187  * support from the LSM "for free". As soon as we have any other xattrs
3188  * like ACLs, we also need to implement the security.* handlers at
3189  * filesystem level, though.
3190  */
3191
3192 /*
3193  * Callback for security_inode_init_security() for acquiring xattrs.
3194  */
3195 static int shmem_initxattrs(struct inode *inode,
3196                             const struct xattr *xattr_array,
3197                             void *fs_info)
3198 {
3199         struct shmem_inode_info *info = SHMEM_I(inode);
3200         const struct xattr *xattr;
3201         struct simple_xattr *new_xattr;
3202         size_t len;
3203
3204         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3205                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3206                 if (!new_xattr)
3207                         return -ENOMEM;
3208
3209                 len = strlen(xattr->name) + 1;
3210                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3211                                           GFP_KERNEL);
3212                 if (!new_xattr->name) {
3213                         kfree(new_xattr);
3214                         return -ENOMEM;
3215                 }
3216
3217                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3218                        XATTR_SECURITY_PREFIX_LEN);
3219                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3220                        xattr->name, len);
3221
3222                 simple_xattr_list_add(&info->xattrs, new_xattr);
3223         }
3224
3225         return 0;
3226 }
3227
3228 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3229                                    struct dentry *unused, struct inode *inode,
3230                                    const char *name, void *buffer, size_t size)
3231 {
3232         struct shmem_inode_info *info = SHMEM_I(inode);
3233
3234         name = xattr_full_name(handler, name);
3235         return simple_xattr_get(&info->xattrs, name, buffer, size);
3236 }
3237
3238 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3239                                    struct dentry *unused, struct inode *inode,
3240                                    const char *name, const void *value,
3241                                    size_t size, int flags)
3242 {
3243         struct shmem_inode_info *info = SHMEM_I(inode);
3244
3245         name = xattr_full_name(handler, name);
3246         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3247 }
3248
3249 static const struct xattr_handler shmem_security_xattr_handler = {
3250         .prefix = XATTR_SECURITY_PREFIX,
3251         .get = shmem_xattr_handler_get,
3252         .set = shmem_xattr_handler_set,
3253 };
3254
3255 static const struct xattr_handler shmem_trusted_xattr_handler = {
3256         .prefix = XATTR_TRUSTED_PREFIX,
3257         .get = shmem_xattr_handler_get,
3258         .set = shmem_xattr_handler_set,
3259 };
3260
3261 static const struct xattr_handler *shmem_xattr_handlers[] = {
3262 #ifdef CONFIG_TMPFS_POSIX_ACL
3263         &posix_acl_access_xattr_handler,
3264         &posix_acl_default_xattr_handler,
3265 #endif
3266         &shmem_security_xattr_handler,
3267         &shmem_trusted_xattr_handler,
3268         NULL
3269 };
3270
3271 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3272 {
3273         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3274         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3275 }
3276 #endif /* CONFIG_TMPFS_XATTR */
3277
3278 static const struct inode_operations shmem_short_symlink_operations = {
3279         .get_link       = simple_get_link,
3280 #ifdef CONFIG_TMPFS_XATTR
3281         .listxattr      = shmem_listxattr,
3282 #endif
3283 };
3284
3285 static const struct inode_operations shmem_symlink_inode_operations = {
3286         .get_link       = shmem_get_link,
3287 #ifdef CONFIG_TMPFS_XATTR
3288         .listxattr      = shmem_listxattr,
3289 #endif
3290 };
3291
3292 static struct dentry *shmem_get_parent(struct dentry *child)
3293 {
3294         return ERR_PTR(-ESTALE);
3295 }
3296
3297 static int shmem_match(struct inode *ino, void *vfh)
3298 {
3299         __u32 *fh = vfh;
3300         __u64 inum = fh[2];
3301         inum = (inum << 32) | fh[1];
3302         return ino->i_ino == inum && fh[0] == ino->i_generation;
3303 }
3304
3305 /* Find any alias of inode, but prefer a hashed alias */
3306 static struct dentry *shmem_find_alias(struct inode *inode)
3307 {
3308         struct dentry *alias = d_find_alias(inode);
3309
3310         return alias ?: d_find_any_alias(inode);
3311 }
3312
3313
3314 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3315                 struct fid *fid, int fh_len, int fh_type)
3316 {
3317         struct inode *inode;
3318         struct dentry *dentry = NULL;
3319         u64 inum;
3320
3321         if (fh_len < 3)
3322                 return NULL;
3323
3324         inum = fid->raw[2];
3325         inum = (inum << 32) | fid->raw[1];
3326
3327         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3328                         shmem_match, fid->raw);
3329         if (inode) {
3330                 dentry = shmem_find_alias(inode);
3331                 iput(inode);
3332         }
3333
3334         return dentry;
3335 }
3336
3337 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3338                                 struct inode *parent)
3339 {
3340         if (*len < 3) {
3341                 *len = 3;
3342                 return FILEID_INVALID;
3343         }
3344
3345         if (inode_unhashed(inode)) {
3346                 /* Unfortunately insert_inode_hash is not idempotent,
3347                  * so as we hash inodes here rather than at creation
3348                  * time, we need a lock to ensure we only try
3349                  * to do it once
3350                  */
3351                 static DEFINE_SPINLOCK(lock);
3352                 spin_lock(&lock);
3353                 if (inode_unhashed(inode))
3354                         __insert_inode_hash(inode,
3355                                             inode->i_ino + inode->i_generation);
3356                 spin_unlock(&lock);
3357         }
3358
3359         fh[0] = inode->i_generation;
3360         fh[1] = inode->i_ino;
3361         fh[2] = ((__u64)inode->i_ino) >> 32;
3362
3363         *len = 3;
3364         return 1;
3365 }
3366
3367 static const struct export_operations shmem_export_ops = {
3368         .get_parent     = shmem_get_parent,
3369         .encode_fh      = shmem_encode_fh,
3370         .fh_to_dentry   = shmem_fh_to_dentry,
3371 };
3372
3373 enum shmem_param {
3374         Opt_gid,
3375         Opt_huge,
3376         Opt_mode,
3377         Opt_mpol,
3378         Opt_nr_blocks,
3379         Opt_nr_inodes,
3380         Opt_size,
3381         Opt_uid,
3382 };
3383
3384 static const struct constant_table shmem_param_enums_huge[] = {
3385         {"never",       SHMEM_HUGE_NEVER },
3386         {"always",      SHMEM_HUGE_ALWAYS },
3387         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3388         {"advise",      SHMEM_HUGE_ADVISE },
3389         {}
3390 };
3391
3392 const struct fs_parameter_spec shmem_fs_parameters[] = {
3393         fsparam_u32   ("gid",           Opt_gid),
3394         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3395         fsparam_u32oct("mode",          Opt_mode),
3396         fsparam_string("mpol",          Opt_mpol),
3397         fsparam_string("nr_blocks",     Opt_nr_blocks),
3398         fsparam_string("nr_inodes",     Opt_nr_inodes),
3399         fsparam_string("size",          Opt_size),
3400         fsparam_u32   ("uid",           Opt_uid),
3401         {}
3402 };
3403
3404 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3405 {
3406         struct shmem_options *ctx = fc->fs_private;
3407         struct fs_parse_result result;
3408         unsigned long long size;
3409         char *rest;
3410         int opt;
3411
3412         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3413         if (opt < 0)
3414                 return opt;
3415
3416         switch (opt) {
3417         case Opt_size:
3418                 size = memparse(param->string, &rest);
3419                 if (*rest == '%') {
3420                         size <<= PAGE_SHIFT;
3421                         size *= totalram_pages();
3422                         do_div(size, 100);
3423                         rest++;
3424                 }
3425                 if (*rest)
3426                         goto bad_value;
3427                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3429                 break;
3430         case Opt_nr_blocks:
3431                 ctx->blocks = memparse(param->string, &rest);
3432                 if (*rest)
3433                         goto bad_value;
3434                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3435                 break;
3436         case Opt_nr_inodes:
3437                 ctx->inodes = memparse(param->string, &rest);
3438                 if (*rest)
3439                         goto bad_value;
3440                 ctx->seen |= SHMEM_SEEN_INODES;
3441                 break;
3442         case Opt_mode:
3443                 ctx->mode = result.uint_32 & 07777;
3444                 break;
3445         case Opt_uid:
3446                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447                 if (!uid_valid(ctx->uid))
3448                         goto bad_value;
3449                 break;
3450         case Opt_gid:
3451                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452                 if (!gid_valid(ctx->gid))
3453                         goto bad_value;
3454                 break;
3455         case Opt_huge:
3456                 ctx->huge = result.uint_32;
3457                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3458                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459                       has_transparent_hugepage()))
3460                         goto unsupported_parameter;
3461                 ctx->seen |= SHMEM_SEEN_HUGE;
3462                 break;
3463         case Opt_mpol:
3464                 if (IS_ENABLED(CONFIG_NUMA)) {
3465                         mpol_put(ctx->mpol);
3466                         ctx->mpol = NULL;
3467                         if (mpol_parse_str(param->string, &ctx->mpol))
3468                                 goto bad_value;
3469                         break;
3470                 }
3471                 goto unsupported_parameter;
3472         }
3473         return 0;
3474
3475 unsupported_parameter:
3476         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3477 bad_value:
3478         return invalfc(fc, "Bad value for '%s'", param->key);
3479 }
3480
3481 static int shmem_parse_options(struct fs_context *fc, void *data)
3482 {
3483         char *options = data;
3484
3485         if (options) {
3486                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3487                 if (err)
3488                         return err;
3489         }
3490
3491         while (options != NULL) {
3492                 char *this_char = options;
3493                 for (;;) {
3494                         /*
3495                          * NUL-terminate this option: unfortunately,
3496                          * mount options form a comma-separated list,
3497                          * but mpol's nodelist may also contain commas.
3498                          */
3499                         options = strchr(options, ',');
3500                         if (options == NULL)
3501                                 break;
3502                         options++;
3503                         if (!isdigit(*options)) {
3504                                 options[-1] = '\0';
3505                                 break;
3506                         }
3507                 }
3508                 if (*this_char) {
3509                         char *value = strchr(this_char,'=');
3510                         size_t len = 0;
3511                         int err;
3512
3513                         if (value) {
3514                                 *value++ = '\0';
3515                                 len = strlen(value);
3516                         }
3517                         err = vfs_parse_fs_string(fc, this_char, value, len);
3518                         if (err < 0)
3519                                 return err;
3520                 }
3521         }
3522         return 0;
3523 }
3524
3525 /*
3526  * Reconfigure a shmem filesystem.
3527  *
3528  * Note that we disallow change from limited->unlimited blocks/inodes while any
3529  * are in use; but we must separately disallow unlimited->limited, because in
3530  * that case we have no record of how much is already in use.
3531  */
3532 static int shmem_reconfigure(struct fs_context *fc)
3533 {
3534         struct shmem_options *ctx = fc->fs_private;
3535         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3536         unsigned long inodes;
3537         const char *err;
3538
3539         spin_lock(&sbinfo->stat_lock);
3540         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3541         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542                 if (!sbinfo->max_blocks) {
3543                         err = "Cannot retroactively limit size";
3544                         goto out;
3545                 }
3546                 if (percpu_counter_compare(&sbinfo->used_blocks,
3547                                            ctx->blocks) > 0) {
3548                         err = "Too small a size for current use";
3549                         goto out;
3550                 }
3551         }
3552         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553                 if (!sbinfo->max_inodes) {
3554                         err = "Cannot retroactively limit inodes";
3555                         goto out;
3556                 }
3557                 if (ctx->inodes < inodes) {
3558                         err = "Too few inodes for current use";
3559                         goto out;
3560                 }
3561         }
3562
3563         if (ctx->seen & SHMEM_SEEN_HUGE)
3564                 sbinfo->huge = ctx->huge;
3565         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566                 sbinfo->max_blocks  = ctx->blocks;
3567         if (ctx->seen & SHMEM_SEEN_INODES) {
3568                 sbinfo->max_inodes  = ctx->inodes;
3569                 sbinfo->free_inodes = ctx->inodes - inodes;
3570         }
3571
3572         /*
3573          * Preserve previous mempolicy unless mpol remount option was specified.
3574          */
3575         if (ctx->mpol) {
3576                 mpol_put(sbinfo->mpol);
3577                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3578                 ctx->mpol = NULL;
3579         }
3580         spin_unlock(&sbinfo->stat_lock);
3581         return 0;
3582 out:
3583         spin_unlock(&sbinfo->stat_lock);
3584         return invalfc(fc, "%s", err);
3585 }
3586
3587 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3588 {
3589         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3590
3591         if (sbinfo->max_blocks != shmem_default_max_blocks())
3592                 seq_printf(seq, ",size=%luk",
3593                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3594         if (sbinfo->max_inodes != shmem_default_max_inodes())
3595                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3596         if (sbinfo->mode != (0777 | S_ISVTX))
3597                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3598         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599                 seq_printf(seq, ",uid=%u",
3600                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3601         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602                 seq_printf(seq, ",gid=%u",
3603                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3604 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3605         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606         if (sbinfo->huge)
3607                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608 #endif
3609         shmem_show_mpol(seq, sbinfo->mpol);
3610         return 0;
3611 }
3612
3613 #endif /* CONFIG_TMPFS */
3614
3615 static void shmem_put_super(struct super_block *sb)
3616 {
3617         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618
3619         percpu_counter_destroy(&sbinfo->used_blocks);
3620         mpol_put(sbinfo->mpol);
3621         kfree(sbinfo);
3622         sb->s_fs_info = NULL;
3623 }
3624
3625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626 {
3627         struct shmem_options *ctx = fc->fs_private;
3628         struct inode *inode;
3629         struct shmem_sb_info *sbinfo;
3630         int err = -ENOMEM;
3631
3632         /* Round up to L1_CACHE_BYTES to resist false sharing */
3633         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3634                                 L1_CACHE_BYTES), GFP_KERNEL);
3635         if (!sbinfo)
3636                 return -ENOMEM;
3637
3638         sb->s_fs_info = sbinfo;
3639
3640 #ifdef CONFIG_TMPFS
3641         /*
3642          * Per default we only allow half of the physical ram per
3643          * tmpfs instance, limiting inodes to one per page of lowmem;
3644          * but the internal instance is left unlimited.
3645          */
3646         if (!(sb->s_flags & SB_KERNMOUNT)) {
3647                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648                         ctx->blocks = shmem_default_max_blocks();
3649                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3650                         ctx->inodes = shmem_default_max_inodes();
3651         } else {
3652                 sb->s_flags |= SB_NOUSER;
3653         }
3654         sb->s_export_op = &shmem_export_ops;
3655         sb->s_flags |= SB_NOSEC;
3656 #else
3657         sb->s_flags |= SB_NOUSER;
3658 #endif
3659         sbinfo->max_blocks = ctx->blocks;
3660         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661         sbinfo->uid = ctx->uid;
3662         sbinfo->gid = ctx->gid;
3663         sbinfo->mode = ctx->mode;
3664         sbinfo->huge = ctx->huge;
3665         sbinfo->mpol = ctx->mpol;
3666         ctx->mpol = NULL;
3667
3668         spin_lock_init(&sbinfo->stat_lock);
3669         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3670                 goto failed;
3671         spin_lock_init(&sbinfo->shrinklist_lock);
3672         INIT_LIST_HEAD(&sbinfo->shrinklist);
3673
3674         sb->s_maxbytes = MAX_LFS_FILESIZE;
3675         sb->s_blocksize = PAGE_SIZE;
3676         sb->s_blocksize_bits = PAGE_SHIFT;
3677         sb->s_magic = TMPFS_MAGIC;
3678         sb->s_op = &shmem_ops;
3679         sb->s_time_gran = 1;
3680 #ifdef CONFIG_TMPFS_XATTR
3681         sb->s_xattr = shmem_xattr_handlers;
3682 #endif
3683 #ifdef CONFIG_TMPFS_POSIX_ACL
3684         sb->s_flags |= SB_POSIXACL;
3685 #endif
3686         uuid_gen(&sb->s_uuid);
3687
3688         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3689         if (!inode)
3690                 goto failed;
3691         inode->i_uid = sbinfo->uid;
3692         inode->i_gid = sbinfo->gid;
3693         sb->s_root = d_make_root(inode);
3694         if (!sb->s_root)
3695                 goto failed;
3696         return 0;
3697
3698 failed:
3699         shmem_put_super(sb);
3700         return err;
3701 }
3702
3703 static int shmem_get_tree(struct fs_context *fc)
3704 {
3705         return get_tree_nodev(fc, shmem_fill_super);
3706 }
3707
3708 static void shmem_free_fc(struct fs_context *fc)
3709 {
3710         struct shmem_options *ctx = fc->fs_private;
3711
3712         if (ctx) {
3713                 mpol_put(ctx->mpol);
3714                 kfree(ctx);
3715         }
3716 }
3717
3718 static const struct fs_context_operations shmem_fs_context_ops = {
3719         .free                   = shmem_free_fc,
3720         .get_tree               = shmem_get_tree,
3721 #ifdef CONFIG_TMPFS
3722         .parse_monolithic       = shmem_parse_options,
3723         .parse_param            = shmem_parse_one,
3724         .reconfigure            = shmem_reconfigure,
3725 #endif
3726 };
3727
3728 static struct kmem_cache *shmem_inode_cachep;
3729
3730 static struct inode *shmem_alloc_inode(struct super_block *sb)
3731 {
3732         struct shmem_inode_info *info;
3733         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734         if (!info)
3735                 return NULL;
3736         return &info->vfs_inode;
3737 }
3738
3739 static void shmem_free_in_core_inode(struct inode *inode)
3740 {
3741         if (S_ISLNK(inode->i_mode))
3742                 kfree(inode->i_link);
3743         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744 }
3745
3746 static void shmem_destroy_inode(struct inode *inode)
3747 {
3748         if (S_ISREG(inode->i_mode))
3749                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3750 }
3751
3752 static void shmem_init_inode(void *foo)
3753 {
3754         struct shmem_inode_info *info = foo;
3755         inode_init_once(&info->vfs_inode);
3756 }
3757
3758 static void shmem_init_inodecache(void)
3759 {
3760         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761                                 sizeof(struct shmem_inode_info),
3762                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3763 }
3764
3765 static void shmem_destroy_inodecache(void)
3766 {
3767         kmem_cache_destroy(shmem_inode_cachep);
3768 }
3769
3770 static const struct address_space_operations shmem_aops = {
3771         .writepage      = shmem_writepage,
3772         .set_page_dirty = __set_page_dirty_no_writeback,
3773 #ifdef CONFIG_TMPFS
3774         .write_begin    = shmem_write_begin,
3775         .write_end      = shmem_write_end,
3776 #endif
3777 #ifdef CONFIG_MIGRATION
3778         .migratepage    = migrate_page,
3779 #endif
3780         .error_remove_page = generic_error_remove_page,
3781 };
3782
3783 static const struct file_operations shmem_file_operations = {
3784         .mmap           = shmem_mmap,
3785         .get_unmapped_area = shmem_get_unmapped_area,
3786 #ifdef CONFIG_TMPFS
3787         .llseek         = shmem_file_llseek,
3788         .read_iter      = shmem_file_read_iter,
3789         .write_iter     = generic_file_write_iter,
3790         .fsync          = noop_fsync,
3791         .splice_read    = generic_file_splice_read,
3792         .splice_write   = iter_file_splice_write,
3793         .fallocate      = shmem_fallocate,
3794 #endif
3795 };
3796
3797 static const struct inode_operations shmem_inode_operations = {
3798         .getattr        = shmem_getattr,
3799         .setattr        = shmem_setattr,
3800 #ifdef CONFIG_TMPFS_XATTR
3801         .listxattr      = shmem_listxattr,
3802         .set_acl        = simple_set_acl,
3803 #endif
3804 };
3805
3806 static const struct inode_operations shmem_dir_inode_operations = {
3807 #ifdef CONFIG_TMPFS
3808         .create         = shmem_create,
3809         .lookup         = simple_lookup,
3810         .link           = shmem_link,
3811         .unlink         = shmem_unlink,
3812         .symlink        = shmem_symlink,
3813         .mkdir          = shmem_mkdir,
3814         .rmdir          = shmem_rmdir,
3815         .mknod          = shmem_mknod,
3816         .rename         = shmem_rename2,
3817         .tmpfile        = shmem_tmpfile,
3818 #endif
3819 #ifdef CONFIG_TMPFS_XATTR
3820         .listxattr      = shmem_listxattr,
3821 #endif
3822 #ifdef CONFIG_TMPFS_POSIX_ACL
3823         .setattr        = shmem_setattr,
3824         .set_acl        = simple_set_acl,
3825 #endif
3826 };
3827
3828 static const struct inode_operations shmem_special_inode_operations = {
3829 #ifdef CONFIG_TMPFS_XATTR
3830         .listxattr      = shmem_listxattr,
3831 #endif
3832 #ifdef CONFIG_TMPFS_POSIX_ACL
3833         .setattr        = shmem_setattr,
3834         .set_acl        = simple_set_acl,
3835 #endif
3836 };
3837
3838 static const struct super_operations shmem_ops = {
3839         .alloc_inode    = shmem_alloc_inode,
3840         .free_inode     = shmem_free_in_core_inode,
3841         .destroy_inode  = shmem_destroy_inode,
3842 #ifdef CONFIG_TMPFS
3843         .statfs         = shmem_statfs,
3844         .show_options   = shmem_show_options,
3845 #endif
3846         .evict_inode    = shmem_evict_inode,
3847         .drop_inode     = generic_delete_inode,
3848         .put_super      = shmem_put_super,
3849 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850         .nr_cached_objects      = shmem_unused_huge_count,
3851         .free_cached_objects    = shmem_unused_huge_scan,
3852 #endif
3853 };
3854
3855 static const struct vm_operations_struct shmem_vm_ops = {
3856         .fault          = shmem_fault,
3857         .map_pages      = filemap_map_pages,
3858 #ifdef CONFIG_NUMA
3859         .set_policy     = shmem_set_policy,
3860         .get_policy     = shmem_get_policy,
3861 #endif
3862 };
3863
3864 int shmem_init_fs_context(struct fs_context *fc)
3865 {
3866         struct shmem_options *ctx;
3867
3868         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869         if (!ctx)
3870                 return -ENOMEM;
3871
3872         ctx->mode = 0777 | S_ISVTX;
3873         ctx->uid = current_fsuid();
3874         ctx->gid = current_fsgid();
3875
3876         fc->fs_private = ctx;
3877         fc->ops = &shmem_fs_context_ops;
3878         return 0;
3879 }
3880
3881 static struct file_system_type shmem_fs_type = {
3882         .owner          = THIS_MODULE,
3883         .name           = "tmpfs",
3884         .init_fs_context = shmem_init_fs_context,
3885 #ifdef CONFIG_TMPFS
3886         .parameters     = shmem_fs_parameters,
3887 #endif
3888         .kill_sb        = kill_litter_super,
3889         .fs_flags       = FS_USERNS_MOUNT,
3890 };
3891
3892 int __init shmem_init(void)
3893 {
3894         int error;
3895
3896         shmem_init_inodecache();
3897
3898         error = register_filesystem(&shmem_fs_type);
3899         if (error) {
3900                 pr_err("Could not register tmpfs\n");
3901                 goto out2;
3902         }
3903
3904         shm_mnt = kern_mount(&shmem_fs_type);
3905         if (IS_ERR(shm_mnt)) {
3906                 error = PTR_ERR(shm_mnt);
3907                 pr_err("Could not kern_mount tmpfs\n");
3908                 goto out1;
3909         }
3910
3911 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914         else
3915                 shmem_huge = 0; /* just in case it was patched */
3916 #endif
3917         return 0;
3918
3919 out1:
3920         unregister_filesystem(&shmem_fs_type);
3921 out2:
3922         shmem_destroy_inodecache();
3923         shm_mnt = ERR_PTR(error);
3924         return error;
3925 }
3926
3927 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928 static ssize_t shmem_enabled_show(struct kobject *kobj,
3929                 struct kobj_attribute *attr, char *buf)
3930 {
3931         static const int values[] = {
3932                 SHMEM_HUGE_ALWAYS,
3933                 SHMEM_HUGE_WITHIN_SIZE,
3934                 SHMEM_HUGE_ADVISE,
3935                 SHMEM_HUGE_NEVER,
3936                 SHMEM_HUGE_DENY,
3937                 SHMEM_HUGE_FORCE,
3938         };
3939         int i, count;
3940
3941         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944                 count += sprintf(buf + count, fmt,
3945                                 shmem_format_huge(values[i]));
3946         }
3947         buf[count - 1] = '\n';
3948         return count;
3949 }
3950
3951 static ssize_t shmem_enabled_store(struct kobject *kobj,
3952                 struct kobj_attribute *attr, const char *buf, size_t count)
3953 {
3954         char tmp[16];
3955         int huge;
3956
3957         if (count + 1 > sizeof(tmp))
3958                 return -EINVAL;
3959         memcpy(tmp, buf, count);
3960         tmp[count] = '\0';
3961         if (count && tmp[count - 1] == '\n')
3962                 tmp[count - 1] = '\0';
3963
3964         huge = shmem_parse_huge(tmp);
3965         if (huge == -EINVAL)
3966                 return -EINVAL;
3967         if (!has_transparent_hugepage() &&
3968                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969                 return -EINVAL;
3970
3971         shmem_huge = huge;
3972         if (shmem_huge > SHMEM_HUGE_DENY)
3973                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974         return count;
3975 }
3976
3977 struct kobj_attribute shmem_enabled_attr =
3978         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980
3981 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982 bool shmem_huge_enabled(struct vm_area_struct *vma)
3983 {
3984         struct inode *inode = file_inode(vma->vm_file);
3985         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986         loff_t i_size;
3987         pgoff_t off;
3988
3989         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991                 return false;
3992         if (shmem_huge == SHMEM_HUGE_FORCE)
3993                 return true;
3994         if (shmem_huge == SHMEM_HUGE_DENY)
3995                 return false;
3996         switch (sbinfo->huge) {
3997                 case SHMEM_HUGE_NEVER:
3998                         return false;
3999                 case SHMEM_HUGE_ALWAYS:
4000                         return true;
4001                 case SHMEM_HUGE_WITHIN_SIZE:
4002                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004                         if (i_size >= HPAGE_PMD_SIZE &&
4005                                         i_size >> PAGE_SHIFT >= off)
4006                                 return true;
4007                         /* fall through */
4008                 case SHMEM_HUGE_ADVISE:
4009                         /* TODO: implement fadvise() hints */
4010                         return (vma->vm_flags & VM_HUGEPAGE);
4011                 default:
4012                         VM_BUG_ON(1);
4013                         return false;
4014         }
4015 }
4016 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4017
4018 #else /* !CONFIG_SHMEM */
4019
4020 /*
4021  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022  *
4023  * This is intended for small system where the benefits of the full
4024  * shmem code (swap-backed and resource-limited) are outweighed by
4025  * their complexity. On systems without swap this code should be
4026  * effectively equivalent, but much lighter weight.
4027  */
4028
4029 static struct file_system_type shmem_fs_type = {
4030         .name           = "tmpfs",
4031         .init_fs_context = ramfs_init_fs_context,
4032         .parameters     = ramfs_fs_parameters,
4033         .kill_sb        = kill_litter_super,
4034         .fs_flags       = FS_USERNS_MOUNT,
4035 };
4036
4037 int __init shmem_init(void)
4038 {
4039         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040
4041         shm_mnt = kern_mount(&shmem_fs_type);
4042         BUG_ON(IS_ERR(shm_mnt));
4043
4044         return 0;
4045 }
4046
4047 int shmem_unuse(unsigned int type, bool frontswap,
4048                 unsigned long *fs_pages_to_unuse)
4049 {
4050         return 0;
4051 }
4052
4053 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054 {
4055         return 0;
4056 }
4057
4058 void shmem_unlock_mapping(struct address_space *mapping)
4059 {
4060 }
4061
4062 #ifdef CONFIG_MMU
4063 unsigned long shmem_get_unmapped_area(struct file *file,
4064                                       unsigned long addr, unsigned long len,
4065                                       unsigned long pgoff, unsigned long flags)
4066 {
4067         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068 }
4069 #endif
4070
4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072 {
4073         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074 }
4075 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076
4077 #define shmem_vm_ops                            generic_file_vm_ops
4078 #define shmem_file_operations                   ramfs_file_operations
4079 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4080 #define shmem_acct_size(flags, size)            0
4081 #define shmem_unacct_size(flags, size)          do {} while (0)
4082
4083 #endif /* CONFIG_SHMEM */
4084
4085 /* common code */
4086
4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088                                        unsigned long flags, unsigned int i_flags)
4089 {
4090         struct inode *inode;
4091         struct file *res;
4092
4093         if (IS_ERR(mnt))
4094                 return ERR_CAST(mnt);
4095
4096         if (size < 0 || size > MAX_LFS_FILESIZE)
4097                 return ERR_PTR(-EINVAL);
4098
4099         if (shmem_acct_size(flags, size))
4100                 return ERR_PTR(-ENOMEM);
4101
4102         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103                                 flags);
4104         if (unlikely(!inode)) {
4105                 shmem_unacct_size(flags, size);
4106                 return ERR_PTR(-ENOSPC);
4107         }
4108         inode->i_flags |= i_flags;
4109         inode->i_size = size;
4110         clear_nlink(inode);     /* It is unlinked */
4111         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112         if (!IS_ERR(res))
4113                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114                                 &shmem_file_operations);
4115         if (IS_ERR(res))
4116                 iput(inode);
4117         return res;
4118 }
4119
4120 /**
4121  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122  *      kernel internal.  There will be NO LSM permission checks against the
4123  *      underlying inode.  So users of this interface must do LSM checks at a
4124  *      higher layer.  The users are the big_key and shm implementations.  LSM
4125  *      checks are provided at the key or shm level rather than the inode.
4126  * @name: name for dentry (to be seen in /proc/<pid>/maps
4127  * @size: size to be set for the file
4128  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129  */
4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131 {
4132         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133 }
4134
4135 /**
4136  * shmem_file_setup - get an unlinked file living in tmpfs
4137  * @name: name for dentry (to be seen in /proc/<pid>/maps
4138  * @size: size to be set for the file
4139  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140  */
4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142 {
4143         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144 }
4145 EXPORT_SYMBOL_GPL(shmem_file_setup);
4146
4147 /**
4148  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149  * @mnt: the tmpfs mount where the file will be created
4150  * @name: name for dentry (to be seen in /proc/<pid>/maps
4151  * @size: size to be set for the file
4152  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153  */
4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155                                        loff_t size, unsigned long flags)
4156 {
4157         return __shmem_file_setup(mnt, name, size, flags, 0);
4158 }
4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160
4161 /**
4162  * shmem_zero_setup - setup a shared anonymous mapping
4163  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164  */
4165 int shmem_zero_setup(struct vm_area_struct *vma)
4166 {
4167         struct file *file;
4168         loff_t size = vma->vm_end - vma->vm_start;
4169
4170         /*
4171          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172          * between XFS directory reading and selinux: since this file is only
4173          * accessible to the user through its mapping, use S_PRIVATE flag to
4174          * bypass file security, in the same way as shmem_kernel_file_setup().
4175          */
4176         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177         if (IS_ERR(file))
4178                 return PTR_ERR(file);
4179
4180         if (vma->vm_file)
4181                 fput(vma->vm_file);
4182         vma->vm_file = file;
4183         vma->vm_ops = &shmem_vm_ops;
4184
4185         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4186                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187                         (vma->vm_end & HPAGE_PMD_MASK)) {
4188                 khugepaged_enter(vma, vma->vm_flags);
4189         }
4190
4191         return 0;
4192 }
4193
4194 /**
4195  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196  * @mapping:    the page's address_space
4197  * @index:      the page index
4198  * @gfp:        the page allocator flags to use if allocating
4199  *
4200  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201  * with any new page allocations done using the specified allocation flags.
4202  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205  *
4206  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208  */
4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210                                          pgoff_t index, gfp_t gfp)
4211 {
4212 #ifdef CONFIG_SHMEM
4213         struct inode *inode = mapping->host;
4214         struct page *page;
4215         int error;
4216
4217         BUG_ON(mapping->a_ops != &shmem_aops);
4218         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219                                   gfp, NULL, NULL, NULL);
4220         if (error)
4221                 page = ERR_PTR(error);
4222         else
4223                 unlock_page(page);
4224         return page;
4225 #else
4226         /*
4227          * The tiny !SHMEM case uses ramfs without swap
4228          */
4229         return read_cache_page_gfp(mapping, index, gfp);
4230 #endif
4231 }
4232 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);