2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
42 static struct vfsmount *shm_mnt;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_rwsem making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
124 static unsigned long shmem_default_max_blocks(void)
126 return totalram_pages() / 2;
129 static unsigned long shmem_default_max_inodes(void)
131 unsigned long nr_pages = totalram_pages();
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 struct folio **foliop, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 struct vm_fault *vmf, vm_fault_t *fault_type);
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp)
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 return sb->s_fs_info;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 static inline int shmem_acct_block(unsigned long flags, long pages)
197 if (!(flags & VM_NORESERVE))
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 if (shmem_acct_block(info->flags, pages))
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
222 percpu_counter_add(&sbinfo->used_blocks, pages);
228 shmem_unacct_blocks(info->flags, pages);
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
251 bool vma_is_shmem(struct vm_area_struct *vma)
253 return vma->vm_ops == &shmem_vm_ops;
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
275 raw_spin_lock(&sbinfo->stat_lock);
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
278 raw_spin_unlock(&sbinfo->stat_lock);
281 sbinfo->free_inodes--;
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
287 if (unlikely(!sbinfo->full_inums &&
290 * Emulate get_next_ino uint wraparound for
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
301 raw_spin_unlock(&sbinfo->stat_lock);
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 raw_spin_lock(&sbinfo->stat_lock);
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
323 raw_spin_unlock(&sbinfo->stat_lock);
324 if (unlikely(is_zero_ino(ino)))
335 static void shmem_free_inode(struct super_block *sb)
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
339 raw_spin_lock(&sbinfo->stat_lock);
340 sbinfo->free_inodes++;
341 raw_spin_unlock(&sbinfo->stat_lock);
346 * shmem_recalc_inode - recalculate the block usage of an inode
347 * @inode: inode to recalc
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 * It has to be called with the spinlock held.
357 static void shmem_recalc_inode(struct inode *inode)
359 struct shmem_inode_info *info = SHMEM_I(inode);
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 info->alloced -= freed;
365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 shmem_inode_unacct_blocks(inode, freed);
370 bool shmem_charge(struct inode *inode, long pages)
372 struct shmem_inode_info *info = SHMEM_I(inode);
375 if (!shmem_inode_acct_block(inode, pages))
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
381 spin_lock_irqsave(&info->lock, flags);
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
385 spin_unlock_irqrestore(&info->lock, flags);
390 void shmem_uncharge(struct inode *inode, long pages)
392 struct shmem_inode_info *info = SHMEM_I(inode);
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397 spin_lock_irqsave(&info->lock, flags);
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
401 spin_unlock_irqrestore(&info->lock, flags);
403 shmem_inode_unacct_blocks(inode, pages);
407 * Replace item expected in xarray by a new item, while holding xa_lock.
409 static int shmem_replace_entry(struct address_space *mapping,
410 pgoff_t index, void *expected, void *replacement)
412 XA_STATE(xas, &mapping->i_pages, index);
415 VM_BUG_ON(!expected);
416 VM_BUG_ON(!replacement);
417 item = xas_load(&xas);
418 if (item != expected)
420 xas_store(&xas, replacement);
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 * disables huge pages for the mount;
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
448 * only allocate huge pages if requested with fadvise()/madvise();
451 #define SHMEM_HUGE_NEVER 0
452 #define SHMEM_HUGE_ALWAYS 1
453 #define SHMEM_HUGE_WITHIN_SIZE 2
454 #define SHMEM_HUGE_ADVISE 3
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 * disables huge on shm_mnt and all mounts, for emergency use;
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 #define SHMEM_HUGE_DENY (-1)
467 #define SHMEM_HUGE_FORCE (-2)
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
479 if (!S_ISREG(inode->i_mode))
481 if (shmem_huge == SHMEM_HUGE_DENY)
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 if (shmem_huge == SHMEM_HUGE_FORCE)
489 switch (SHMEM_SB(inode->i_sb)->huge) {
490 case SHMEM_HUGE_ALWAYS:
492 case SHMEM_HUGE_WITHIN_SIZE:
493 index = round_up(index + 1, HPAGE_PMD_NR);
494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 if (i_size >> PAGE_SHIFT >= index)
498 case SHMEM_HUGE_ADVISE:
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
530 case SHMEM_HUGE_NEVER:
532 case SHMEM_HUGE_ALWAYS:
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
538 case SHMEM_HUGE_DENY:
540 case SHMEM_HUGE_FORCE:
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
552 LIST_HEAD(list), *pos, *next;
553 LIST_HEAD(to_remove);
555 struct shmem_inode_info *info;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
560 if (list_empty(&sbinfo->shrinklist))
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
568 inode = igrab(&info->vfs_inode);
570 /* inode is about to be evicted */
572 list_del_init(&info->shrinklist);
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
583 list_move(&info->shrinklist, &list);
585 sbinfo->shrinklist_len--;
589 spin_unlock(&sbinfo->shrinklist_lock);
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
598 list_for_each_safe(pos, next, &list) {
602 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 inode = &info->vfs_inode;
605 if (nr_to_split && split >= nr_to_split)
608 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 folio = filemap_get_folio(inode->i_mapping, index);
613 /* No huge page at the end of the file: nothing to split */
614 if (!folio_test_large(folio)) {
620 * Move the inode on the list back to shrinklist if we failed
621 * to lock the page at this time.
623 * Waiting for the lock may lead to deadlock in the
626 if (!folio_trylock(folio)) {
631 ret = split_huge_page(&folio->page);
635 /* If split failed move the inode on the list back to shrinklist */
641 list_del_init(&info->shrinklist);
645 * Make sure the inode is either on the global list or deleted
646 * from any local list before iput() since it could be deleted
647 * in another thread once we put the inode (then the local list
650 spin_lock(&sbinfo->shrinklist_lock);
651 list_move(&info->shrinklist, &sbinfo->shrinklist);
652 sbinfo->shrinklist_len++;
653 spin_unlock(&sbinfo->shrinklist_lock);
661 static long shmem_unused_huge_scan(struct super_block *sb,
662 struct shrink_control *sc)
664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666 if (!READ_ONCE(sbinfo->shrinklist_len))
669 return shmem_unused_huge_shrink(sbinfo, sc, 0);
672 static long shmem_unused_huge_count(struct super_block *sb,
673 struct shrink_control *sc)
675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 return READ_ONCE(sbinfo->shrinklist_len);
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680 #define shmem_huge SHMEM_HUGE_DENY
682 bool shmem_is_huge(struct vm_area_struct *vma,
683 struct inode *inode, pgoff_t index)
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 struct shrink_control *sc, unsigned long nr_to_split)
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
696 * Like add_to_page_cache_locked, but error if expected item has gone.
698 static int shmem_add_to_page_cache(struct folio *folio,
699 struct address_space *mapping,
700 pgoff_t index, void *expected, gfp_t gfp,
701 struct mm_struct *charge_mm)
703 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 long nr = folio_nr_pages(folio);
707 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 VM_BUG_ON(expected && folio_test_large(folio));
712 folio_ref_add(folio, nr);
713 folio->mapping = mapping;
714 folio->index = index;
716 if (!folio_test_swapcache(folio)) {
717 error = mem_cgroup_charge(folio, charge_mm, gfp);
719 if (folio_test_pmd_mappable(folio)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
726 folio_throttle_swaprate(folio, gfp);
730 if (expected != xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
734 if (expected && xas_find_conflict(&xas)) {
735 xas_set_err(&xas, -EEXIST);
738 xas_store(&xas, folio);
741 if (folio_test_pmd_mappable(folio)) {
742 count_vm_event(THP_FILE_ALLOC);
743 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745 mapping->nrpages += nr;
746 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 xas_unlock_irq(&xas);
750 } while (xas_nomem(&xas, gfp));
752 if (xas_error(&xas)) {
753 error = xas_error(&xas);
759 folio->mapping = NULL;
760 folio_ref_sub(folio, nr);
765 * Like delete_from_page_cache, but substitutes swap for page.
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 struct address_space *mapping = page->mapping;
772 VM_BUG_ON_PAGE(PageCompound(page), page);
774 xa_lock_irq(&mapping->i_pages);
775 error = shmem_replace_entry(mapping, page->index, page, radswap);
776 page->mapping = NULL;
778 __dec_lruvec_page_state(page, NR_FILE_PAGES);
779 __dec_lruvec_page_state(page, NR_SHMEM);
780 xa_unlock_irq(&mapping->i_pages);
786 * Remove swap entry from page cache, free the swap and its page cache.
788 static int shmem_free_swap(struct address_space *mapping,
789 pgoff_t index, void *radswap)
793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
796 free_swap_and_cache(radix_to_swp_entry(radswap));
801 * Determine (in bytes) how many of the shmem object's pages mapped by the
802 * given offsets are swapped out.
804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805 * as long as the inode doesn't go away and racy results are not a problem.
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 pgoff_t start, pgoff_t end)
810 XA_STATE(xas, &mapping->i_pages, start);
812 unsigned long swapped = 0;
815 xas_for_each(&xas, page, end - 1) {
816 if (xas_retry(&xas, page))
818 if (xa_is_value(page))
821 if (need_resched()) {
829 return swapped << PAGE_SHIFT;
833 * Determine (in bytes) how many of the shmem object's pages mapped by the
834 * given vma is swapped out.
836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837 * as long as the inode doesn't go away and racy results are not a problem.
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 struct inode *inode = file_inode(vma->vm_file);
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 struct address_space *mapping = inode->i_mapping;
844 unsigned long swapped;
846 /* Be careful as we don't hold info->lock */
847 swapped = READ_ONCE(info->swapped);
850 * The easier cases are when the shmem object has nothing in swap, or
851 * the vma maps it whole. Then we can simply use the stats that we
857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 return swapped << PAGE_SHIFT;
860 /* Here comes the more involved part */
861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 vma->vm_pgoff + vma_pages(vma));
866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868 void shmem_unlock_mapping(struct address_space *mapping)
875 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877 while (!mapping_unevictable(mapping)) {
878 if (!pagevec_lookup(&pvec, mapping, &index))
880 check_move_unevictable_pages(&pvec);
881 pagevec_release(&pvec);
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
892 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 * beyond i_size, and reports fallocated pages as holes.
895 folio = __filemap_get_folio(inode->i_mapping, index,
896 FGP_ENTRY | FGP_LOCK, 0);
897 if (!xa_is_value(folio))
900 * But read a page back from swap if any of it is within i_size
901 * (although in some cases this is just a waste of time).
904 shmem_getpage(inode, index, &page, SGP_READ);
905 return page ? page_folio(page) : NULL;
909 * Remove range of pages and swap entries from page cache, and free them.
910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 struct address_space *mapping = inode->i_mapping;
916 struct shmem_inode_info *info = SHMEM_I(inode);
917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 struct folio_batch fbatch;
920 pgoff_t indices[PAGEVEC_SIZE];
923 long nr_swaps_freed = 0;
928 end = -1; /* unsigned, so actually very big */
930 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 info->fallocend = start;
933 folio_batch_init(&fbatch);
935 while (index < end && find_lock_entries(mapping, index, end - 1,
937 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 folio = fbatch.folios[i];
942 if (xa_is_value(folio)) {
945 nr_swaps_freed += !shmem_free_swap(mapping,
949 index += folio_nr_pages(folio) - 1;
951 if (!unfalloc || !folio_test_uptodate(folio))
952 truncate_inode_folio(mapping, folio);
955 folio_batch_remove_exceptionals(&fbatch);
956 folio_batch_release(&fbatch);
961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
964 same_folio = lend < folio_pos(folio) + folio_size(folio);
965 folio_mark_dirty(folio);
966 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 start = folio->index + folio_nr_pages(folio);
977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
979 folio_mark_dirty(folio);
980 if (!truncate_inode_partial_folio(folio, lstart, lend))
987 while (index < end) {
990 if (!find_get_entries(mapping, index, end - 1, &fbatch,
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
995 /* But if truncating, restart to make sure all gone */
999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 folio = fbatch.folios[i];
1003 if (xa_is_value(folio)) {
1006 if (shmem_free_swap(mapping, index, folio)) {
1007 /* Swap was replaced by page: retry */
1017 if (!unfalloc || !folio_test_uptodate(folio)) {
1018 if (folio_mapping(folio) != mapping) {
1019 /* Page was replaced by swap: retry */
1020 folio_unlock(folio);
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1026 truncate_inode_folio(mapping, folio);
1028 index = folio->index + folio_nr_pages(folio) - 1;
1029 folio_unlock(folio);
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
1036 spin_lock_irq(&info->lock);
1037 info->swapped -= nr_swaps_freed;
1038 shmem_recalc_inode(inode);
1039 spin_unlock_irq(&info->lock);
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044 shmem_undo_range(inode, lstart, lend, false);
1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 const struct path *path, struct kstat *stat,
1051 u32 request_mask, unsigned int query_flags)
1053 struct inode *inode = path->dentry->d_inode;
1054 struct shmem_inode_info *info = SHMEM_I(inode);
1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 spin_lock_irq(&info->lock);
1058 shmem_recalc_inode(inode);
1059 spin_unlock_irq(&info->lock);
1061 generic_fillattr(&init_user_ns, inode, stat);
1063 if (shmem_is_huge(NULL, inode, 0))
1064 stat->blksize = HPAGE_PMD_SIZE;
1066 if (request_mask & STATX_BTIME) {
1067 stat->result_mask |= STATX_BTIME;
1068 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 struct dentry *dentry, struct iattr *attr)
1078 struct inode *inode = d_inode(dentry);
1079 struct shmem_inode_info *info = SHMEM_I(inode);
1082 error = setattr_prepare(&init_user_ns, dentry, attr);
1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 loff_t oldsize = inode->i_size;
1088 loff_t newsize = attr->ia_size;
1090 /* protected by i_rwsem */
1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1095 if (newsize != oldsize) {
1096 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1100 i_size_write(inode, newsize);
1101 inode->i_ctime = inode->i_mtime = current_time(inode);
1103 if (newsize <= oldsize) {
1104 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 if (oldsize > holebegin)
1106 unmap_mapping_range(inode->i_mapping,
1109 shmem_truncate_range(inode,
1110 newsize, (loff_t)-1);
1111 /* unmap again to remove racily COWed private pages */
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1124 static void shmem_evict_inode(struct inode *inode)
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1132 mapping_set_exiting(inode->i_mapping);
1133 shmem_truncate_range(inode, 0, (loff_t)-1);
1134 if (!list_empty(&info->shrinklist)) {
1135 spin_lock(&sbinfo->shrinklist_lock);
1136 if (!list_empty(&info->shrinklist)) {
1137 list_del_init(&info->shrinklist);
1138 sbinfo->shrinklist_len--;
1140 spin_unlock(&sbinfo->shrinklist_lock);
1142 while (!list_empty(&info->swaplist)) {
1143 /* Wait while shmem_unuse() is scanning this inode... */
1144 wait_var_event(&info->stop_eviction,
1145 !atomic_read(&info->stop_eviction));
1146 mutex_lock(&shmem_swaplist_mutex);
1147 /* ...but beware of the race if we peeked too early */
1148 if (!atomic_read(&info->stop_eviction))
1149 list_del_init(&info->swaplist);
1150 mutex_unlock(&shmem_swaplist_mutex);
1154 simple_xattrs_free(&info->xattrs);
1155 WARN_ON(inode->i_blocks);
1156 shmem_free_inode(inode->i_sb);
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 pgoff_t start, struct folio_batch *fbatch,
1162 pgoff_t *indices, unsigned int type)
1164 XA_STATE(xas, &mapping->i_pages, start);
1165 struct folio *folio;
1169 xas_for_each(&xas, folio, ULONG_MAX) {
1170 if (xas_retry(&xas, folio))
1173 if (!xa_is_value(folio))
1176 entry = radix_to_swp_entry(folio);
1178 * swapin error entries can be found in the mapping. But they're
1179 * deliberately ignored here as we've done everything we can do.
1181 if (swp_type(entry) != type)
1184 indices[folio_batch_count(fbatch)] = xas.xa_index;
1185 if (!folio_batch_add(fbatch, folio))
1188 if (need_resched()) {
1195 return xas.xa_index;
1199 * Move the swapped pages for an inode to page cache. Returns the count
1200 * of pages swapped in, or the error in case of failure.
1202 static int shmem_unuse_swap_entries(struct inode *inode,
1203 struct folio_batch *fbatch, pgoff_t *indices)
1208 struct address_space *mapping = inode->i_mapping;
1210 for (i = 0; i < folio_batch_count(fbatch); i++) {
1211 struct folio *folio = fbatch->folios[i];
1213 if (!xa_is_value(folio))
1215 error = shmem_swapin_folio(inode, indices[i],
1217 mapping_gfp_mask(mapping),
1220 folio_unlock(folio);
1224 if (error == -ENOMEM)
1228 return error ? error : ret;
1232 * If swap found in inode, free it and move page from swapcache to filecache.
1234 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1236 struct address_space *mapping = inode->i_mapping;
1238 struct folio_batch fbatch;
1239 pgoff_t indices[PAGEVEC_SIZE];
1243 folio_batch_init(&fbatch);
1244 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1245 if (folio_batch_count(&fbatch) == 0) {
1250 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1254 start = indices[folio_batch_count(&fbatch) - 1];
1261 * Read all the shared memory data that resides in the swap
1262 * device 'type' back into memory, so the swap device can be
1265 int shmem_unuse(unsigned int type)
1267 struct shmem_inode_info *info, *next;
1270 if (list_empty(&shmem_swaplist))
1273 mutex_lock(&shmem_swaplist_mutex);
1274 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1275 if (!info->swapped) {
1276 list_del_init(&info->swaplist);
1280 * Drop the swaplist mutex while searching the inode for swap;
1281 * but before doing so, make sure shmem_evict_inode() will not
1282 * remove placeholder inode from swaplist, nor let it be freed
1283 * (igrab() would protect from unlink, but not from unmount).
1285 atomic_inc(&info->stop_eviction);
1286 mutex_unlock(&shmem_swaplist_mutex);
1288 error = shmem_unuse_inode(&info->vfs_inode, type);
1291 mutex_lock(&shmem_swaplist_mutex);
1292 next = list_next_entry(info, swaplist);
1294 list_del_init(&info->swaplist);
1295 if (atomic_dec_and_test(&info->stop_eviction))
1296 wake_up_var(&info->stop_eviction);
1300 mutex_unlock(&shmem_swaplist_mutex);
1306 * Move the page from the page cache to the swap cache.
1308 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1310 struct folio *folio = page_folio(page);
1311 struct shmem_inode_info *info;
1312 struct address_space *mapping;
1313 struct inode *inode;
1318 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1319 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1320 * and its shmem_writeback() needs them to be split when swapping.
1322 if (PageTransCompound(page)) {
1323 /* Ensure the subpages are still dirty */
1325 if (split_huge_page(page) < 0)
1327 ClearPageDirty(page);
1330 BUG_ON(!PageLocked(page));
1331 mapping = page->mapping;
1332 index = page->index;
1333 inode = mapping->host;
1334 info = SHMEM_I(inode);
1335 if (info->flags & VM_LOCKED)
1337 if (!total_swap_pages)
1341 * Our capabilities prevent regular writeback or sync from ever calling
1342 * shmem_writepage; but a stacking filesystem might use ->writepage of
1343 * its underlying filesystem, in which case tmpfs should write out to
1344 * swap only in response to memory pressure, and not for the writeback
1347 if (!wbc->for_reclaim) {
1348 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1353 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1354 * value into swapfile.c, the only way we can correctly account for a
1355 * fallocated page arriving here is now to initialize it and write it.
1357 * That's okay for a page already fallocated earlier, but if we have
1358 * not yet completed the fallocation, then (a) we want to keep track
1359 * of this page in case we have to undo it, and (b) it may not be a
1360 * good idea to continue anyway, once we're pushing into swap. So
1361 * reactivate the page, and let shmem_fallocate() quit when too many.
1363 if (!PageUptodate(page)) {
1364 if (inode->i_private) {
1365 struct shmem_falloc *shmem_falloc;
1366 spin_lock(&inode->i_lock);
1367 shmem_falloc = inode->i_private;
1369 !shmem_falloc->waitq &&
1370 index >= shmem_falloc->start &&
1371 index < shmem_falloc->next)
1372 shmem_falloc->nr_unswapped++;
1374 shmem_falloc = NULL;
1375 spin_unlock(&inode->i_lock);
1379 clear_highpage(page);
1380 flush_dcache_page(page);
1381 SetPageUptodate(page);
1384 swap = folio_alloc_swap(folio);
1389 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1390 * if it's not already there. Do it now before the page is
1391 * moved to swap cache, when its pagelock no longer protects
1392 * the inode from eviction. But don't unlock the mutex until
1393 * we've incremented swapped, because shmem_unuse_inode() will
1394 * prune a !swapped inode from the swaplist under this mutex.
1396 mutex_lock(&shmem_swaplist_mutex);
1397 if (list_empty(&info->swaplist))
1398 list_add(&info->swaplist, &shmem_swaplist);
1400 if (add_to_swap_cache(page, swap,
1401 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1403 spin_lock_irq(&info->lock);
1404 shmem_recalc_inode(inode);
1406 spin_unlock_irq(&info->lock);
1408 swap_shmem_alloc(swap);
1409 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1411 mutex_unlock(&shmem_swaplist_mutex);
1412 BUG_ON(page_mapped(page));
1413 swap_writepage(page, wbc);
1417 mutex_unlock(&shmem_swaplist_mutex);
1418 put_swap_page(page, swap);
1420 set_page_dirty(page);
1421 if (wbc->for_reclaim)
1422 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1427 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1428 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1432 if (!mpol || mpol->mode == MPOL_DEFAULT)
1433 return; /* show nothing */
1435 mpol_to_str(buffer, sizeof(buffer), mpol);
1437 seq_printf(seq, ",mpol=%s", buffer);
1440 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1442 struct mempolicy *mpol = NULL;
1444 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1445 mpol = sbinfo->mpol;
1447 raw_spin_unlock(&sbinfo->stat_lock);
1451 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1452 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1455 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1459 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1461 #define vm_policy vm_private_data
1464 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1465 struct shmem_inode_info *info, pgoff_t index)
1467 /* Create a pseudo vma that just contains the policy */
1468 vma_init(vma, NULL);
1469 /* Bias interleave by inode number to distribute better across nodes */
1470 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1471 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1474 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1476 /* Drop reference taken by mpol_shared_policy_lookup() */
1477 mpol_cond_put(vma->vm_policy);
1480 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1481 struct shmem_inode_info *info, pgoff_t index)
1483 struct vm_area_struct pvma;
1485 struct vm_fault vmf = {
1489 shmem_pseudo_vma_init(&pvma, info, index);
1490 page = swap_cluster_readahead(swap, gfp, &vmf);
1491 shmem_pseudo_vma_destroy(&pvma);
1497 * Make sure huge_gfp is always more limited than limit_gfp.
1498 * Some of the flags set permissions, while others set limitations.
1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1502 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1503 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1504 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1505 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1507 /* Allow allocations only from the originally specified zones. */
1508 result |= zoneflags;
1511 * Minimize the result gfp by taking the union with the deny flags,
1512 * and the intersection of the allow flags.
1514 result |= (limit_gfp & denyflags);
1515 result |= (huge_gfp & limit_gfp) & allowflags;
1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1521 struct shmem_inode_info *info, pgoff_t index)
1523 struct vm_area_struct pvma;
1524 struct address_space *mapping = info->vfs_inode.i_mapping;
1526 struct folio *folio;
1528 hindex = round_down(index, HPAGE_PMD_NR);
1529 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1533 shmem_pseudo_vma_init(&pvma, info, hindex);
1534 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1535 shmem_pseudo_vma_destroy(&pvma);
1537 count_vm_event(THP_FILE_FALLBACK);
1541 static struct folio *shmem_alloc_folio(gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1544 struct vm_area_struct pvma;
1545 struct folio *folio;
1547 shmem_pseudo_vma_init(&pvma, info, index);
1548 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1549 shmem_pseudo_vma_destroy(&pvma);
1554 static struct page *shmem_alloc_page(gfp_t gfp,
1555 struct shmem_inode_info *info, pgoff_t index)
1557 return &shmem_alloc_folio(gfp, info, index)->page;
1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1561 pgoff_t index, bool huge)
1563 struct shmem_inode_info *info = SHMEM_I(inode);
1564 struct folio *folio;
1568 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1570 nr = huge ? HPAGE_PMD_NR : 1;
1572 if (!shmem_inode_acct_block(inode, nr))
1576 folio = shmem_alloc_hugefolio(gfp, info, index);
1578 folio = shmem_alloc_folio(gfp, info, index);
1580 __folio_set_locked(folio);
1581 __folio_set_swapbacked(folio);
1586 shmem_inode_unacct_blocks(inode, nr);
1588 return ERR_PTR(err);
1592 * When a page is moved from swapcache to shmem filecache (either by the
1593 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1594 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595 * ignorance of the mapping it belongs to. If that mapping has special
1596 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597 * we may need to copy to a suitable page before moving to filecache.
1599 * In a future release, this may well be extended to respect cpuset and
1600 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601 * but for now it is a simple matter of zone.
1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1605 return folio_zonenum(folio) > gfp_zone(gfp);
1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1609 struct shmem_inode_info *info, pgoff_t index)
1611 struct page *oldpage, *newpage;
1612 struct folio *old, *new;
1613 struct address_space *swap_mapping;
1619 entry.val = page_private(oldpage);
1620 swap_index = swp_offset(entry);
1621 swap_mapping = page_mapping(oldpage);
1624 * We have arrived here because our zones are constrained, so don't
1625 * limit chance of success by further cpuset and node constraints.
1627 gfp &= ~GFP_CONSTRAINT_MASK;
1628 newpage = shmem_alloc_page(gfp, info, index);
1633 copy_highpage(newpage, oldpage);
1634 flush_dcache_page(newpage);
1636 __SetPageLocked(newpage);
1637 __SetPageSwapBacked(newpage);
1638 SetPageUptodate(newpage);
1639 set_page_private(newpage, entry.val);
1640 SetPageSwapCache(newpage);
1643 * Our caller will very soon move newpage out of swapcache, but it's
1644 * a nice clean interface for us to replace oldpage by newpage there.
1646 xa_lock_irq(&swap_mapping->i_pages);
1647 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1649 old = page_folio(oldpage);
1650 new = page_folio(newpage);
1651 mem_cgroup_migrate(old, new);
1652 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1653 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1655 xa_unlock_irq(&swap_mapping->i_pages);
1657 if (unlikely(error)) {
1659 * Is this possible? I think not, now that our callers check
1660 * both PageSwapCache and page_private after getting page lock;
1661 * but be defensive. Reverse old to newpage for clear and free.
1665 lru_cache_add(newpage);
1669 ClearPageSwapCache(oldpage);
1670 set_page_private(oldpage, 0);
1672 unlock_page(oldpage);
1678 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1679 struct folio *folio, swp_entry_t swap)
1681 struct address_space *mapping = inode->i_mapping;
1682 struct shmem_inode_info *info = SHMEM_I(inode);
1683 swp_entry_t swapin_error;
1686 swapin_error = make_swapin_error_entry(&folio->page);
1687 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1688 swp_to_radix_entry(swap),
1689 swp_to_radix_entry(swapin_error), 0);
1690 if (old != swp_to_radix_entry(swap))
1693 folio_wait_writeback(folio);
1694 delete_from_swap_cache(&folio->page);
1695 spin_lock_irq(&info->lock);
1697 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1698 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1699 * shmem_evict_inode.
1703 shmem_recalc_inode(inode);
1704 spin_unlock_irq(&info->lock);
1709 * Swap in the page pointed to by *pagep.
1710 * Caller has to make sure that *pagep contains a valid swapped page.
1711 * Returns 0 and the page in pagep if success. On failure, returns the
1712 * error code and NULL in *pagep.
1714 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1715 struct folio **foliop, enum sgp_type sgp,
1716 gfp_t gfp, struct vm_area_struct *vma,
1717 vm_fault_t *fault_type)
1719 struct address_space *mapping = inode->i_mapping;
1720 struct shmem_inode_info *info = SHMEM_I(inode);
1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1723 struct folio *folio = NULL;
1727 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1728 swap = radix_to_swp_entry(*foliop);
1731 if (is_swapin_error_entry(swap))
1734 /* Look it up and read it in.. */
1735 page = lookup_swap_cache(swap, NULL, 0);
1737 /* Or update major stats only when swapin succeeds?? */
1739 *fault_type |= VM_FAULT_MAJOR;
1740 count_vm_event(PGMAJFAULT);
1741 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1743 /* Here we actually start the io */
1744 page = shmem_swapin(swap, gfp, info, index);
1750 folio = page_folio(page);
1752 /* We have to do this with page locked to prevent races */
1754 if (!folio_test_swapcache(folio) ||
1755 folio_swap_entry(folio).val != swap.val ||
1756 !shmem_confirm_swap(mapping, index, swap)) {
1760 if (!folio_test_uptodate(folio)) {
1764 folio_wait_writeback(folio);
1767 * Some architectures may have to restore extra metadata to the
1768 * folio after reading from swap.
1770 arch_swap_restore(swap, folio);
1772 if (shmem_should_replace_folio(folio, gfp)) {
1773 error = shmem_replace_page(&page, gfp, info, index);
1778 error = shmem_add_to_page_cache(folio, mapping, index,
1779 swp_to_radix_entry(swap), gfp,
1784 spin_lock_irq(&info->lock);
1786 shmem_recalc_inode(inode);
1787 spin_unlock_irq(&info->lock);
1789 if (sgp == SGP_WRITE)
1790 folio_mark_accessed(folio);
1792 delete_from_swap_cache(&folio->page);
1793 folio_mark_dirty(folio);
1799 if (!shmem_confirm_swap(mapping, index, swap))
1802 shmem_set_folio_swapin_error(inode, index, folio, swap);
1805 folio_unlock(folio);
1813 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1815 * If we allocate a new one we do not mark it dirty. That's up to the
1816 * vm. If we swap it in we mark it dirty since we also free the swap
1817 * entry since a page cannot live in both the swap and page cache.
1819 * vma, vmf, and fault_type are only supplied by shmem_fault:
1820 * otherwise they are NULL.
1822 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1823 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1824 struct vm_area_struct *vma, struct vm_fault *vmf,
1825 vm_fault_t *fault_type)
1827 struct address_space *mapping = inode->i_mapping;
1828 struct shmem_inode_info *info = SHMEM_I(inode);
1829 struct shmem_sb_info *sbinfo;
1830 struct mm_struct *charge_mm;
1831 struct folio *folio;
1832 pgoff_t hindex = index;
1838 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1841 if (sgp <= SGP_CACHE &&
1842 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1846 sbinfo = SHMEM_SB(inode->i_sb);
1847 charge_mm = vma ? vma->vm_mm : NULL;
1849 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1850 if (folio && vma && userfaultfd_minor(vma)) {
1851 if (!xa_is_value(folio)) {
1852 folio_unlock(folio);
1855 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1859 if (xa_is_value(folio)) {
1860 error = shmem_swapin_folio(inode, index, &folio,
1861 sgp, gfp, vma, fault_type);
1862 if (error == -EEXIST)
1865 *pagep = &folio->page;
1870 hindex = folio->index;
1871 if (sgp == SGP_WRITE)
1872 folio_mark_accessed(folio);
1873 if (folio_test_uptodate(folio))
1875 /* fallocated page */
1876 if (sgp != SGP_READ)
1878 folio_unlock(folio);
1883 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1884 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1887 if (sgp == SGP_READ)
1889 if (sgp == SGP_NOALLOC)
1893 * Fast cache lookup and swap lookup did not find it: allocate.
1896 if (vma && userfaultfd_missing(vma)) {
1897 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1901 if (!shmem_is_huge(vma, inode, index))
1904 huge_gfp = vma_thp_gfp_mask(vma);
1905 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1906 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1907 if (IS_ERR(folio)) {
1909 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1911 if (IS_ERR(folio)) {
1914 error = PTR_ERR(folio);
1916 if (error != -ENOSPC)
1919 * Try to reclaim some space by splitting a huge page
1920 * beyond i_size on the filesystem.
1925 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1926 if (ret == SHRINK_STOP)
1934 hindex = round_down(index, folio_nr_pages(folio));
1936 if (sgp == SGP_WRITE)
1937 __folio_set_referenced(folio);
1939 error = shmem_add_to_page_cache(folio, mapping, hindex,
1940 NULL, gfp & GFP_RECLAIM_MASK,
1944 folio_add_lru(folio);
1946 spin_lock_irq(&info->lock);
1947 info->alloced += folio_nr_pages(folio);
1948 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1949 shmem_recalc_inode(inode);
1950 spin_unlock_irq(&info->lock);
1953 if (folio_test_pmd_mappable(folio) &&
1954 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955 hindex + HPAGE_PMD_NR - 1) {
1957 * Part of the huge page is beyond i_size: subject
1958 * to shrink under memory pressure.
1960 spin_lock(&sbinfo->shrinklist_lock);
1962 * _careful to defend against unlocked access to
1963 * ->shrink_list in shmem_unused_huge_shrink()
1965 if (list_empty_careful(&info->shrinklist)) {
1966 list_add_tail(&info->shrinklist,
1967 &sbinfo->shrinklist);
1968 sbinfo->shrinklist_len++;
1970 spin_unlock(&sbinfo->shrinklist_lock);
1974 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 if (sgp == SGP_FALLOC)
1980 * Let SGP_WRITE caller clear ends if write does not fill page;
1981 * but SGP_FALLOC on a page fallocated earlier must initialize
1982 * it now, lest undo on failure cancel our earlier guarantee.
1984 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1985 long i, n = folio_nr_pages(folio);
1987 for (i = 0; i < n; i++)
1988 clear_highpage(folio_page(folio, i));
1989 flush_dcache_folio(folio);
1990 folio_mark_uptodate(folio);
1993 /* Perhaps the file has been truncated since we checked */
1994 if (sgp <= SGP_CACHE &&
1995 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997 folio_clear_dirty(folio);
1998 filemap_remove_folio(folio);
1999 spin_lock_irq(&info->lock);
2000 shmem_recalc_inode(inode);
2001 spin_unlock_irq(&info->lock);
2007 *pagep = folio_page(folio, index - hindex);
2014 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2016 if (folio_test_large(folio)) {
2017 folio_unlock(folio);
2023 folio_unlock(folio);
2026 if (error == -ENOSPC && !once++) {
2027 spin_lock_irq(&info->lock);
2028 shmem_recalc_inode(inode);
2029 spin_unlock_irq(&info->lock);
2032 if (error == -EEXIST)
2038 * This is like autoremove_wake_function, but it removes the wait queue
2039 * entry unconditionally - even if something else had already woken the
2042 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044 int ret = default_wake_function(wait, mode, sync, key);
2045 list_del_init(&wait->entry);
2049 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051 struct vm_area_struct *vma = vmf->vma;
2052 struct inode *inode = file_inode(vma->vm_file);
2053 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055 vm_fault_t ret = VM_FAULT_LOCKED;
2058 * Trinity finds that probing a hole which tmpfs is punching can
2059 * prevent the hole-punch from ever completing: which in turn
2060 * locks writers out with its hold on i_rwsem. So refrain from
2061 * faulting pages into the hole while it's being punched. Although
2062 * shmem_undo_range() does remove the additions, it may be unable to
2063 * keep up, as each new page needs its own unmap_mapping_range() call,
2064 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2066 * It does not matter if we sometimes reach this check just before the
2067 * hole-punch begins, so that one fault then races with the punch:
2068 * we just need to make racing faults a rare case.
2070 * The implementation below would be much simpler if we just used a
2071 * standard mutex or completion: but we cannot take i_rwsem in fault,
2072 * and bloating every shmem inode for this unlikely case would be sad.
2074 if (unlikely(inode->i_private)) {
2075 struct shmem_falloc *shmem_falloc;
2077 spin_lock(&inode->i_lock);
2078 shmem_falloc = inode->i_private;
2080 shmem_falloc->waitq &&
2081 vmf->pgoff >= shmem_falloc->start &&
2082 vmf->pgoff < shmem_falloc->next) {
2084 wait_queue_head_t *shmem_falloc_waitq;
2085 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2087 ret = VM_FAULT_NOPAGE;
2088 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2090 ret = VM_FAULT_RETRY;
2092 shmem_falloc_waitq = shmem_falloc->waitq;
2093 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2094 TASK_UNINTERRUPTIBLE);
2095 spin_unlock(&inode->i_lock);
2099 * shmem_falloc_waitq points into the shmem_fallocate()
2100 * stack of the hole-punching task: shmem_falloc_waitq
2101 * is usually invalid by the time we reach here, but
2102 * finish_wait() does not dereference it in that case;
2103 * though i_lock needed lest racing with wake_up_all().
2105 spin_lock(&inode->i_lock);
2106 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2107 spin_unlock(&inode->i_lock);
2113 spin_unlock(&inode->i_lock);
2116 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2117 gfp, vma, vmf, &ret);
2119 return vmf_error(err);
2123 unsigned long shmem_get_unmapped_area(struct file *file,
2124 unsigned long uaddr, unsigned long len,
2125 unsigned long pgoff, unsigned long flags)
2127 unsigned long (*get_area)(struct file *,
2128 unsigned long, unsigned long, unsigned long, unsigned long);
2130 unsigned long offset;
2131 unsigned long inflated_len;
2132 unsigned long inflated_addr;
2133 unsigned long inflated_offset;
2135 if (len > TASK_SIZE)
2138 get_area = current->mm->get_unmapped_area;
2139 addr = get_area(file, uaddr, len, pgoff, flags);
2141 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2143 if (IS_ERR_VALUE(addr))
2145 if (addr & ~PAGE_MASK)
2147 if (addr > TASK_SIZE - len)
2150 if (shmem_huge == SHMEM_HUGE_DENY)
2152 if (len < HPAGE_PMD_SIZE)
2154 if (flags & MAP_FIXED)
2157 * Our priority is to support MAP_SHARED mapped hugely;
2158 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2159 * But if caller specified an address hint and we allocated area there
2160 * successfully, respect that as before.
2165 if (shmem_huge != SHMEM_HUGE_FORCE) {
2166 struct super_block *sb;
2169 VM_BUG_ON(file->f_op != &shmem_file_operations);
2170 sb = file_inode(file)->i_sb;
2173 * Called directly from mm/mmap.c, or drivers/char/mem.c
2174 * for "/dev/zero", to create a shared anonymous object.
2176 if (IS_ERR(shm_mnt))
2178 sb = shm_mnt->mnt_sb;
2180 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2184 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2185 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2187 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2190 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2191 if (inflated_len > TASK_SIZE)
2193 if (inflated_len < len)
2196 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2197 if (IS_ERR_VALUE(inflated_addr))
2199 if (inflated_addr & ~PAGE_MASK)
2202 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2203 inflated_addr += offset - inflated_offset;
2204 if (inflated_offset > offset)
2205 inflated_addr += HPAGE_PMD_SIZE;
2207 if (inflated_addr > TASK_SIZE - len)
2209 return inflated_addr;
2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2215 struct inode *inode = file_inode(vma->vm_file);
2216 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2222 struct inode *inode = file_inode(vma->vm_file);
2225 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2226 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2230 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2232 struct inode *inode = file_inode(file);
2233 struct shmem_inode_info *info = SHMEM_I(inode);
2234 int retval = -ENOMEM;
2237 * What serializes the accesses to info->flags?
2238 * ipc_lock_object() when called from shmctl_do_lock(),
2239 * no serialization needed when called from shm_destroy().
2241 if (lock && !(info->flags & VM_LOCKED)) {
2242 if (!user_shm_lock(inode->i_size, ucounts))
2244 info->flags |= VM_LOCKED;
2245 mapping_set_unevictable(file->f_mapping);
2247 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2248 user_shm_unlock(inode->i_size, ucounts);
2249 info->flags &= ~VM_LOCKED;
2250 mapping_clear_unevictable(file->f_mapping);
2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2260 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2263 ret = seal_check_future_write(info->seals, vma);
2267 /* arm64 - allow memory tagging on RAM-based files */
2268 vma->vm_flags |= VM_MTE_ALLOWED;
2270 file_accessed(file);
2271 vma->vm_ops = &shmem_vm_ops;
2275 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2276 umode_t mode, dev_t dev, unsigned long flags)
2278 struct inode *inode;
2279 struct shmem_inode_info *info;
2280 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2283 if (shmem_reserve_inode(sb, &ino))
2286 inode = new_inode(sb);
2289 inode_init_owner(&init_user_ns, inode, dir, mode);
2290 inode->i_blocks = 0;
2291 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2292 inode->i_generation = prandom_u32();
2293 info = SHMEM_I(inode);
2294 memset(info, 0, (char *)inode - (char *)info);
2295 spin_lock_init(&info->lock);
2296 atomic_set(&info->stop_eviction, 0);
2297 info->seals = F_SEAL_SEAL;
2298 info->flags = flags & VM_NORESERVE;
2299 info->i_crtime = inode->i_mtime;
2300 INIT_LIST_HEAD(&info->shrinklist);
2301 INIT_LIST_HEAD(&info->swaplist);
2302 simple_xattrs_init(&info->xattrs);
2303 cache_no_acl(inode);
2304 mapping_set_large_folios(inode->i_mapping);
2306 switch (mode & S_IFMT) {
2308 inode->i_op = &shmem_special_inode_operations;
2309 init_special_inode(inode, mode, dev);
2312 inode->i_mapping->a_ops = &shmem_aops;
2313 inode->i_op = &shmem_inode_operations;
2314 inode->i_fop = &shmem_file_operations;
2315 mpol_shared_policy_init(&info->policy,
2316 shmem_get_sbmpol(sbinfo));
2320 /* Some things misbehave if size == 0 on a directory */
2321 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2322 inode->i_op = &shmem_dir_inode_operations;
2323 inode->i_fop = &simple_dir_operations;
2327 * Must not load anything in the rbtree,
2328 * mpol_free_shared_policy will not be called.
2330 mpol_shared_policy_init(&info->policy, NULL);
2334 lockdep_annotate_inode_mutex_key(inode);
2336 shmem_free_inode(sb);
2340 #ifdef CONFIG_USERFAULTFD
2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2343 struct vm_area_struct *dst_vma,
2344 unsigned long dst_addr,
2345 unsigned long src_addr,
2346 bool zeropage, bool wp_copy,
2347 struct page **pagep)
2349 struct inode *inode = file_inode(dst_vma->vm_file);
2350 struct shmem_inode_info *info = SHMEM_I(inode);
2351 struct address_space *mapping = inode->i_mapping;
2352 gfp_t gfp = mapping_gfp_mask(mapping);
2353 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2355 struct folio *folio;
2360 if (!shmem_inode_acct_block(inode, 1)) {
2362 * We may have got a page, returned -ENOENT triggering a retry,
2363 * and now we find ourselves with -ENOMEM. Release the page, to
2364 * avoid a BUG_ON in our caller.
2366 if (unlikely(*pagep)) {
2375 page = shmem_alloc_page(gfp, info, pgoff);
2377 goto out_unacct_blocks;
2379 if (!zeropage) { /* COPY */
2380 page_kaddr = kmap_atomic(page);
2381 ret = copy_from_user(page_kaddr,
2382 (const void __user *)src_addr,
2384 kunmap_atomic(page_kaddr);
2386 /* fallback to copy_from_user outside mmap_lock */
2387 if (unlikely(ret)) {
2390 /* don't free the page */
2391 goto out_unacct_blocks;
2394 flush_dcache_page(page);
2395 } else { /* ZEROPAGE */
2396 clear_user_highpage(page, dst_addr);
2403 VM_BUG_ON(PageLocked(page));
2404 VM_BUG_ON(PageSwapBacked(page));
2405 __SetPageLocked(page);
2406 __SetPageSwapBacked(page);
2407 __SetPageUptodate(page);
2410 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2411 if (unlikely(pgoff >= max_off))
2414 folio = page_folio(page);
2415 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2416 gfp & GFP_RECLAIM_MASK, dst_mm);
2420 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2421 page, true, wp_copy);
2423 goto out_delete_from_cache;
2425 spin_lock_irq(&info->lock);
2427 inode->i_blocks += BLOCKS_PER_PAGE;
2428 shmem_recalc_inode(inode);
2429 spin_unlock_irq(&info->lock);
2433 out_delete_from_cache:
2434 delete_from_page_cache(page);
2439 shmem_inode_unacct_blocks(inode, 1);
2442 #endif /* CONFIG_USERFAULTFD */
2445 static const struct inode_operations shmem_symlink_inode_operations;
2446 static const struct inode_operations shmem_short_symlink_operations;
2448 #ifdef CONFIG_TMPFS_XATTR
2449 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2451 #define shmem_initxattrs NULL
2455 shmem_write_begin(struct file *file, struct address_space *mapping,
2456 loff_t pos, unsigned len,
2457 struct page **pagep, void **fsdata)
2459 struct inode *inode = mapping->host;
2460 struct shmem_inode_info *info = SHMEM_I(inode);
2461 pgoff_t index = pos >> PAGE_SHIFT;
2464 /* i_rwsem is held by caller */
2465 if (unlikely(info->seals & (F_SEAL_GROW |
2466 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2467 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2469 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2473 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2478 if (PageHWPoison(*pagep)) {
2479 unlock_page(*pagep);
2489 shmem_write_end(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned copied,
2491 struct page *page, void *fsdata)
2493 struct inode *inode = mapping->host;
2495 if (pos + copied > inode->i_size)
2496 i_size_write(inode, pos + copied);
2498 if (!PageUptodate(page)) {
2499 struct page *head = compound_head(page);
2500 if (PageTransCompound(page)) {
2503 for (i = 0; i < HPAGE_PMD_NR; i++) {
2504 if (head + i == page)
2506 clear_highpage(head + i);
2507 flush_dcache_page(head + i);
2510 if (copied < PAGE_SIZE) {
2511 unsigned from = pos & (PAGE_SIZE - 1);
2512 zero_user_segments(page, 0, from,
2513 from + copied, PAGE_SIZE);
2515 SetPageUptodate(head);
2517 set_page_dirty(page);
2524 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2526 struct file *file = iocb->ki_filp;
2527 struct inode *inode = file_inode(file);
2528 struct address_space *mapping = inode->i_mapping;
2530 unsigned long offset;
2533 loff_t *ppos = &iocb->ki_pos;
2535 index = *ppos >> PAGE_SHIFT;
2536 offset = *ppos & ~PAGE_MASK;
2539 struct page *page = NULL;
2541 unsigned long nr, ret;
2542 loff_t i_size = i_size_read(inode);
2544 end_index = i_size >> PAGE_SHIFT;
2545 if (index > end_index)
2547 if (index == end_index) {
2548 nr = i_size & ~PAGE_MASK;
2553 error = shmem_getpage(inode, index, &page, SGP_READ);
2555 if (error == -EINVAL)
2562 if (PageHWPoison(page)) {
2570 * We must evaluate after, since reads (unlike writes)
2571 * are called without i_rwsem protection against truncate
2574 i_size = i_size_read(inode);
2575 end_index = i_size >> PAGE_SHIFT;
2576 if (index == end_index) {
2577 nr = i_size & ~PAGE_MASK;
2588 * If users can be writing to this page using arbitrary
2589 * virtual addresses, take care about potential aliasing
2590 * before reading the page on the kernel side.
2592 if (mapping_writably_mapped(mapping))
2593 flush_dcache_page(page);
2595 * Mark the page accessed if we read the beginning.
2598 mark_page_accessed(page);
2600 * Ok, we have the page, and it's up-to-date, so
2601 * now we can copy it to user space...
2603 ret = copy_page_to_iter(page, offset, nr, to);
2606 } else if (iter_is_iovec(to)) {
2608 * Copy to user tends to be so well optimized, but
2609 * clear_user() not so much, that it is noticeably
2610 * faster to copy the zero page instead of clearing.
2612 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2615 * But submitting the same page twice in a row to
2616 * splice() - or others? - can result in confusion:
2617 * so don't attempt that optimization on pipes etc.
2619 ret = iov_iter_zero(nr, to);
2624 index += offset >> PAGE_SHIFT;
2625 offset &= ~PAGE_MASK;
2627 if (!iov_iter_count(to))
2636 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2637 file_accessed(file);
2638 return retval ? retval : error;
2641 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2643 struct address_space *mapping = file->f_mapping;
2644 struct inode *inode = mapping->host;
2646 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2647 return generic_file_llseek_size(file, offset, whence,
2648 MAX_LFS_FILESIZE, i_size_read(inode));
2653 /* We're holding i_rwsem so we can access i_size directly */
2654 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2656 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2657 inode_unlock(inode);
2661 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2664 struct inode *inode = file_inode(file);
2665 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2666 struct shmem_inode_info *info = SHMEM_I(inode);
2667 struct shmem_falloc shmem_falloc;
2668 pgoff_t start, index, end, undo_fallocend;
2671 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2676 if (mode & FALLOC_FL_PUNCH_HOLE) {
2677 struct address_space *mapping = file->f_mapping;
2678 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2679 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682 /* protected by i_rwsem */
2683 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2688 shmem_falloc.waitq = &shmem_falloc_waitq;
2689 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2690 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2691 spin_lock(&inode->i_lock);
2692 inode->i_private = &shmem_falloc;
2693 spin_unlock(&inode->i_lock);
2695 if ((u64)unmap_end > (u64)unmap_start)
2696 unmap_mapping_range(mapping, unmap_start,
2697 1 + unmap_end - unmap_start, 0);
2698 shmem_truncate_range(inode, offset, offset + len - 1);
2699 /* No need to unmap again: hole-punching leaves COWed pages */
2701 spin_lock(&inode->i_lock);
2702 inode->i_private = NULL;
2703 wake_up_all(&shmem_falloc_waitq);
2704 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2705 spin_unlock(&inode->i_lock);
2710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2711 error = inode_newsize_ok(inode, offset + len);
2715 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2720 start = offset >> PAGE_SHIFT;
2721 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2722 /* Try to avoid a swapstorm if len is impossible to satisfy */
2723 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2728 shmem_falloc.waitq = NULL;
2729 shmem_falloc.start = start;
2730 shmem_falloc.next = start;
2731 shmem_falloc.nr_falloced = 0;
2732 shmem_falloc.nr_unswapped = 0;
2733 spin_lock(&inode->i_lock);
2734 inode->i_private = &shmem_falloc;
2735 spin_unlock(&inode->i_lock);
2738 * info->fallocend is only relevant when huge pages might be
2739 * involved: to prevent split_huge_page() freeing fallocated
2740 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2742 undo_fallocend = info->fallocend;
2743 if (info->fallocend < end)
2744 info->fallocend = end;
2746 for (index = start; index < end; ) {
2750 * Good, the fallocate(2) manpage permits EINTR: we may have
2751 * been interrupted because we are using up too much memory.
2753 if (signal_pending(current))
2755 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2758 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2760 info->fallocend = undo_fallocend;
2761 /* Remove the !PageUptodate pages we added */
2762 if (index > start) {
2763 shmem_undo_range(inode,
2764 (loff_t)start << PAGE_SHIFT,
2765 ((loff_t)index << PAGE_SHIFT) - 1, true);
2772 * Here is a more important optimization than it appears:
2773 * a second SGP_FALLOC on the same huge page will clear it,
2774 * making it PageUptodate and un-undoable if we fail later.
2776 if (PageTransCompound(page)) {
2777 index = round_up(index, HPAGE_PMD_NR);
2778 /* Beware 32-bit wraparound */
2784 * Inform shmem_writepage() how far we have reached.
2785 * No need for lock or barrier: we have the page lock.
2787 if (!PageUptodate(page))
2788 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2789 shmem_falloc.next = index;
2792 * If !PageUptodate, leave it that way so that freeable pages
2793 * can be recognized if we need to rollback on error later.
2794 * But set_page_dirty so that memory pressure will swap rather
2795 * than free the pages we are allocating (and SGP_CACHE pages
2796 * might still be clean: we now need to mark those dirty too).
2798 set_page_dirty(page);
2804 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2805 i_size_write(inode, offset + len);
2806 inode->i_ctime = current_time(inode);
2808 spin_lock(&inode->i_lock);
2809 inode->i_private = NULL;
2810 spin_unlock(&inode->i_lock);
2812 inode_unlock(inode);
2816 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2818 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2820 buf->f_type = TMPFS_MAGIC;
2821 buf->f_bsize = PAGE_SIZE;
2822 buf->f_namelen = NAME_MAX;
2823 if (sbinfo->max_blocks) {
2824 buf->f_blocks = sbinfo->max_blocks;
2826 buf->f_bfree = sbinfo->max_blocks -
2827 percpu_counter_sum(&sbinfo->used_blocks);
2829 if (sbinfo->max_inodes) {
2830 buf->f_files = sbinfo->max_inodes;
2831 buf->f_ffree = sbinfo->free_inodes;
2833 /* else leave those fields 0 like simple_statfs */
2835 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2841 * File creation. Allocate an inode, and we're done..
2844 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2845 struct dentry *dentry, umode_t mode, dev_t dev)
2847 struct inode *inode;
2848 int error = -ENOSPC;
2850 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2852 error = simple_acl_create(dir, inode);
2855 error = security_inode_init_security(inode, dir,
2857 shmem_initxattrs, NULL);
2858 if (error && error != -EOPNOTSUPP)
2862 dir->i_size += BOGO_DIRENT_SIZE;
2863 dir->i_ctime = dir->i_mtime = current_time(dir);
2864 d_instantiate(dentry, inode);
2865 dget(dentry); /* Extra count - pin the dentry in core */
2874 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2875 struct dentry *dentry, umode_t mode)
2877 struct inode *inode;
2878 int error = -ENOSPC;
2880 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2882 error = security_inode_init_security(inode, dir,
2884 shmem_initxattrs, NULL);
2885 if (error && error != -EOPNOTSUPP)
2887 error = simple_acl_create(dir, inode);
2890 d_tmpfile(dentry, inode);
2898 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2899 struct dentry *dentry, umode_t mode)
2903 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2904 mode | S_IFDIR, 0)))
2910 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2911 struct dentry *dentry, umode_t mode, bool excl)
2913 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2919 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2921 struct inode *inode = d_inode(old_dentry);
2925 * No ordinary (disk based) filesystem counts links as inodes;
2926 * but each new link needs a new dentry, pinning lowmem, and
2927 * tmpfs dentries cannot be pruned until they are unlinked.
2928 * But if an O_TMPFILE file is linked into the tmpfs, the
2929 * first link must skip that, to get the accounting right.
2931 if (inode->i_nlink) {
2932 ret = shmem_reserve_inode(inode->i_sb, NULL);
2937 dir->i_size += BOGO_DIRENT_SIZE;
2938 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2940 ihold(inode); /* New dentry reference */
2941 dget(dentry); /* Extra pinning count for the created dentry */
2942 d_instantiate(dentry, inode);
2947 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2949 struct inode *inode = d_inode(dentry);
2951 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2952 shmem_free_inode(inode->i_sb);
2954 dir->i_size -= BOGO_DIRENT_SIZE;
2955 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2957 dput(dentry); /* Undo the count from "create" - this does all the work */
2961 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2963 if (!simple_empty(dentry))
2966 drop_nlink(d_inode(dentry));
2968 return shmem_unlink(dir, dentry);
2971 static int shmem_whiteout(struct user_namespace *mnt_userns,
2972 struct inode *old_dir, struct dentry *old_dentry)
2974 struct dentry *whiteout;
2977 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2981 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2982 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2988 * Cheat and hash the whiteout while the old dentry is still in
2989 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 * d_lookup() will consistently find one of them at this point,
2992 * not sure which one, but that isn't even important.
2999 * The VFS layer already does all the dentry stuff for rename,
3000 * we just have to decrement the usage count for the target if
3001 * it exists so that the VFS layer correctly free's it when it
3004 static int shmem_rename2(struct user_namespace *mnt_userns,
3005 struct inode *old_dir, struct dentry *old_dentry,
3006 struct inode *new_dir, struct dentry *new_dentry,
3009 struct inode *inode = d_inode(old_dentry);
3010 int they_are_dirs = S_ISDIR(inode->i_mode);
3012 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3015 if (flags & RENAME_EXCHANGE)
3016 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018 if (!simple_empty(new_dentry))
3021 if (flags & RENAME_WHITEOUT) {
3024 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3029 if (d_really_is_positive(new_dentry)) {
3030 (void) shmem_unlink(new_dir, new_dentry);
3031 if (they_are_dirs) {
3032 drop_nlink(d_inode(new_dentry));
3033 drop_nlink(old_dir);
3035 } else if (they_are_dirs) {
3036 drop_nlink(old_dir);
3040 old_dir->i_size -= BOGO_DIRENT_SIZE;
3041 new_dir->i_size += BOGO_DIRENT_SIZE;
3042 old_dir->i_ctime = old_dir->i_mtime =
3043 new_dir->i_ctime = new_dir->i_mtime =
3044 inode->i_ctime = current_time(old_dir);
3048 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3049 struct dentry *dentry, const char *symname)
3053 struct inode *inode;
3056 len = strlen(symname) + 1;
3057 if (len > PAGE_SIZE)
3058 return -ENAMETOOLONG;
3060 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3065 error = security_inode_init_security(inode, dir, &dentry->d_name,
3066 shmem_initxattrs, NULL);
3067 if (error && error != -EOPNOTSUPP) {
3072 inode->i_size = len-1;
3073 if (len <= SHORT_SYMLINK_LEN) {
3074 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3075 if (!inode->i_link) {
3079 inode->i_op = &shmem_short_symlink_operations;
3081 inode_nohighmem(inode);
3082 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3087 inode->i_mapping->a_ops = &shmem_aops;
3088 inode->i_op = &shmem_symlink_inode_operations;
3089 memcpy(page_address(page), symname, len);
3090 SetPageUptodate(page);
3091 set_page_dirty(page);
3095 dir->i_size += BOGO_DIRENT_SIZE;
3096 dir->i_ctime = dir->i_mtime = current_time(dir);
3097 d_instantiate(dentry, inode);
3102 static void shmem_put_link(void *arg)
3104 mark_page_accessed(arg);
3108 static const char *shmem_get_link(struct dentry *dentry,
3109 struct inode *inode,
3110 struct delayed_call *done)
3112 struct page *page = NULL;
3115 page = find_get_page(inode->i_mapping, 0);
3117 return ERR_PTR(-ECHILD);
3118 if (PageHWPoison(page) ||
3119 !PageUptodate(page)) {
3121 return ERR_PTR(-ECHILD);
3124 error = shmem_getpage(inode, 0, &page, SGP_READ);
3126 return ERR_PTR(error);
3128 return ERR_PTR(-ECHILD);
3129 if (PageHWPoison(page)) {
3132 return ERR_PTR(-ECHILD);
3136 set_delayed_call(done, shmem_put_link, page);
3137 return page_address(page);
3140 #ifdef CONFIG_TMPFS_XATTR
3142 * Superblocks without xattr inode operations may get some security.* xattr
3143 * support from the LSM "for free". As soon as we have any other xattrs
3144 * like ACLs, we also need to implement the security.* handlers at
3145 * filesystem level, though.
3149 * Callback for security_inode_init_security() for acquiring xattrs.
3151 static int shmem_initxattrs(struct inode *inode,
3152 const struct xattr *xattr_array,
3155 struct shmem_inode_info *info = SHMEM_I(inode);
3156 const struct xattr *xattr;
3157 struct simple_xattr *new_xattr;
3160 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3161 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3165 len = strlen(xattr->name) + 1;
3166 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3168 if (!new_xattr->name) {
3173 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3174 XATTR_SECURITY_PREFIX_LEN);
3175 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3178 simple_xattr_list_add(&info->xattrs, new_xattr);
3184 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3185 struct dentry *unused, struct inode *inode,
3186 const char *name, void *buffer, size_t size)
3188 struct shmem_inode_info *info = SHMEM_I(inode);
3190 name = xattr_full_name(handler, name);
3191 return simple_xattr_get(&info->xattrs, name, buffer, size);
3194 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3195 struct user_namespace *mnt_userns,
3196 struct dentry *unused, struct inode *inode,
3197 const char *name, const void *value,
3198 size_t size, int flags)
3200 struct shmem_inode_info *info = SHMEM_I(inode);
3202 name = xattr_full_name(handler, name);
3203 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3206 static const struct xattr_handler shmem_security_xattr_handler = {
3207 .prefix = XATTR_SECURITY_PREFIX,
3208 .get = shmem_xattr_handler_get,
3209 .set = shmem_xattr_handler_set,
3212 static const struct xattr_handler shmem_trusted_xattr_handler = {
3213 .prefix = XATTR_TRUSTED_PREFIX,
3214 .get = shmem_xattr_handler_get,
3215 .set = shmem_xattr_handler_set,
3218 static const struct xattr_handler *shmem_xattr_handlers[] = {
3219 #ifdef CONFIG_TMPFS_POSIX_ACL
3220 &posix_acl_access_xattr_handler,
3221 &posix_acl_default_xattr_handler,
3223 &shmem_security_xattr_handler,
3224 &shmem_trusted_xattr_handler,
3228 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3230 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3231 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3233 #endif /* CONFIG_TMPFS_XATTR */
3235 static const struct inode_operations shmem_short_symlink_operations = {
3236 .getattr = shmem_getattr,
3237 .get_link = simple_get_link,
3238 #ifdef CONFIG_TMPFS_XATTR
3239 .listxattr = shmem_listxattr,
3243 static const struct inode_operations shmem_symlink_inode_operations = {
3244 .getattr = shmem_getattr,
3245 .get_link = shmem_get_link,
3246 #ifdef CONFIG_TMPFS_XATTR
3247 .listxattr = shmem_listxattr,
3251 static struct dentry *shmem_get_parent(struct dentry *child)
3253 return ERR_PTR(-ESTALE);
3256 static int shmem_match(struct inode *ino, void *vfh)
3260 inum = (inum << 32) | fh[1];
3261 return ino->i_ino == inum && fh[0] == ino->i_generation;
3264 /* Find any alias of inode, but prefer a hashed alias */
3265 static struct dentry *shmem_find_alias(struct inode *inode)
3267 struct dentry *alias = d_find_alias(inode);
3269 return alias ?: d_find_any_alias(inode);
3273 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3274 struct fid *fid, int fh_len, int fh_type)
3276 struct inode *inode;
3277 struct dentry *dentry = NULL;
3284 inum = (inum << 32) | fid->raw[1];
3286 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3287 shmem_match, fid->raw);
3289 dentry = shmem_find_alias(inode);
3296 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3297 struct inode *parent)
3301 return FILEID_INVALID;
3304 if (inode_unhashed(inode)) {
3305 /* Unfortunately insert_inode_hash is not idempotent,
3306 * so as we hash inodes here rather than at creation
3307 * time, we need a lock to ensure we only try
3310 static DEFINE_SPINLOCK(lock);
3312 if (inode_unhashed(inode))
3313 __insert_inode_hash(inode,
3314 inode->i_ino + inode->i_generation);
3318 fh[0] = inode->i_generation;
3319 fh[1] = inode->i_ino;
3320 fh[2] = ((__u64)inode->i_ino) >> 32;
3326 static const struct export_operations shmem_export_ops = {
3327 .get_parent = shmem_get_parent,
3328 .encode_fh = shmem_encode_fh,
3329 .fh_to_dentry = shmem_fh_to_dentry,
3345 static const struct constant_table shmem_param_enums_huge[] = {
3346 {"never", SHMEM_HUGE_NEVER },
3347 {"always", SHMEM_HUGE_ALWAYS },
3348 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3349 {"advise", SHMEM_HUGE_ADVISE },
3353 const struct fs_parameter_spec shmem_fs_parameters[] = {
3354 fsparam_u32 ("gid", Opt_gid),
3355 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3356 fsparam_u32oct("mode", Opt_mode),
3357 fsparam_string("mpol", Opt_mpol),
3358 fsparam_string("nr_blocks", Opt_nr_blocks),
3359 fsparam_string("nr_inodes", Opt_nr_inodes),
3360 fsparam_string("size", Opt_size),
3361 fsparam_u32 ("uid", Opt_uid),
3362 fsparam_flag ("inode32", Opt_inode32),
3363 fsparam_flag ("inode64", Opt_inode64),
3367 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3369 struct shmem_options *ctx = fc->fs_private;
3370 struct fs_parse_result result;
3371 unsigned long long size;
3375 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3381 size = memparse(param->string, &rest);
3383 size <<= PAGE_SHIFT;
3384 size *= totalram_pages();
3390 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3391 ctx->seen |= SHMEM_SEEN_BLOCKS;
3394 ctx->blocks = memparse(param->string, &rest);
3397 ctx->seen |= SHMEM_SEEN_BLOCKS;
3400 ctx->inodes = memparse(param->string, &rest);
3403 ctx->seen |= SHMEM_SEEN_INODES;
3406 ctx->mode = result.uint_32 & 07777;
3409 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3410 if (!uid_valid(ctx->uid))
3414 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3415 if (!gid_valid(ctx->gid))
3419 ctx->huge = result.uint_32;
3420 if (ctx->huge != SHMEM_HUGE_NEVER &&
3421 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3422 has_transparent_hugepage()))
3423 goto unsupported_parameter;
3424 ctx->seen |= SHMEM_SEEN_HUGE;
3427 if (IS_ENABLED(CONFIG_NUMA)) {
3428 mpol_put(ctx->mpol);
3430 if (mpol_parse_str(param->string, &ctx->mpol))
3434 goto unsupported_parameter;
3436 ctx->full_inums = false;
3437 ctx->seen |= SHMEM_SEEN_INUMS;
3440 if (sizeof(ino_t) < 8) {
3442 "Cannot use inode64 with <64bit inums in kernel\n");
3444 ctx->full_inums = true;
3445 ctx->seen |= SHMEM_SEEN_INUMS;
3450 unsupported_parameter:
3451 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3453 return invalfc(fc, "Bad value for '%s'", param->key);
3456 static int shmem_parse_options(struct fs_context *fc, void *data)
3458 char *options = data;
3461 int err = security_sb_eat_lsm_opts(options, &fc->security);
3466 while (options != NULL) {
3467 char *this_char = options;
3470 * NUL-terminate this option: unfortunately,
3471 * mount options form a comma-separated list,
3472 * but mpol's nodelist may also contain commas.
3474 options = strchr(options, ',');
3475 if (options == NULL)
3478 if (!isdigit(*options)) {
3484 char *value = strchr(this_char, '=');
3490 len = strlen(value);
3492 err = vfs_parse_fs_string(fc, this_char, value, len);
3501 * Reconfigure a shmem filesystem.
3503 * Note that we disallow change from limited->unlimited blocks/inodes while any
3504 * are in use; but we must separately disallow unlimited->limited, because in
3505 * that case we have no record of how much is already in use.
3507 static int shmem_reconfigure(struct fs_context *fc)
3509 struct shmem_options *ctx = fc->fs_private;
3510 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3511 unsigned long inodes;
3512 struct mempolicy *mpol = NULL;
3515 raw_spin_lock(&sbinfo->stat_lock);
3516 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3517 if (ctx->blocks > S64_MAX) {
3518 err = "Number of blocks too large";
3521 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3522 if (!sbinfo->max_blocks) {
3523 err = "Cannot retroactively limit size";
3526 if (percpu_counter_compare(&sbinfo->used_blocks,
3528 err = "Too small a size for current use";
3532 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3533 if (!sbinfo->max_inodes) {
3534 err = "Cannot retroactively limit inodes";
3537 if (ctx->inodes < inodes) {
3538 err = "Too few inodes for current use";
3543 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3544 sbinfo->next_ino > UINT_MAX) {
3545 err = "Current inum too high to switch to 32-bit inums";
3549 if (ctx->seen & SHMEM_SEEN_HUGE)
3550 sbinfo->huge = ctx->huge;
3551 if (ctx->seen & SHMEM_SEEN_INUMS)
3552 sbinfo->full_inums = ctx->full_inums;
3553 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3554 sbinfo->max_blocks = ctx->blocks;
3555 if (ctx->seen & SHMEM_SEEN_INODES) {
3556 sbinfo->max_inodes = ctx->inodes;
3557 sbinfo->free_inodes = ctx->inodes - inodes;
3561 * Preserve previous mempolicy unless mpol remount option was specified.
3564 mpol = sbinfo->mpol;
3565 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3568 raw_spin_unlock(&sbinfo->stat_lock);
3572 raw_spin_unlock(&sbinfo->stat_lock);
3573 return invalfc(fc, "%s", err);
3576 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3578 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3580 if (sbinfo->max_blocks != shmem_default_max_blocks())
3581 seq_printf(seq, ",size=%luk",
3582 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3583 if (sbinfo->max_inodes != shmem_default_max_inodes())
3584 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3585 if (sbinfo->mode != (0777 | S_ISVTX))
3586 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3587 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3588 seq_printf(seq, ",uid=%u",
3589 from_kuid_munged(&init_user_ns, sbinfo->uid));
3590 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3591 seq_printf(seq, ",gid=%u",
3592 from_kgid_munged(&init_user_ns, sbinfo->gid));
3595 * Showing inode{64,32} might be useful even if it's the system default,
3596 * since then people don't have to resort to checking both here and
3597 * /proc/config.gz to confirm 64-bit inums were successfully applied
3598 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3600 * We hide it when inode64 isn't the default and we are using 32-bit
3601 * inodes, since that probably just means the feature isn't even under
3606 * +-----------------+-----------------+
3607 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3608 * +------------------+-----------------+-----------------+
3609 * | full_inums=true | show | show |
3610 * | full_inums=false | show | hide |
3611 * +------------------+-----------------+-----------------+
3614 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3615 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3617 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3619 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3621 shmem_show_mpol(seq, sbinfo->mpol);
3625 #endif /* CONFIG_TMPFS */
3627 static void shmem_put_super(struct super_block *sb)
3629 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3631 free_percpu(sbinfo->ino_batch);
3632 percpu_counter_destroy(&sbinfo->used_blocks);
3633 mpol_put(sbinfo->mpol);
3635 sb->s_fs_info = NULL;
3638 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3640 struct shmem_options *ctx = fc->fs_private;
3641 struct inode *inode;
3642 struct shmem_sb_info *sbinfo;
3644 /* Round up to L1_CACHE_BYTES to resist false sharing */
3645 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3646 L1_CACHE_BYTES), GFP_KERNEL);
3650 sb->s_fs_info = sbinfo;
3654 * Per default we only allow half of the physical ram per
3655 * tmpfs instance, limiting inodes to one per page of lowmem;
3656 * but the internal instance is left unlimited.
3658 if (!(sb->s_flags & SB_KERNMOUNT)) {
3659 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3660 ctx->blocks = shmem_default_max_blocks();
3661 if (!(ctx->seen & SHMEM_SEEN_INODES))
3662 ctx->inodes = shmem_default_max_inodes();
3663 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3664 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3666 sb->s_flags |= SB_NOUSER;
3668 sb->s_export_op = &shmem_export_ops;
3669 sb->s_flags |= SB_NOSEC;
3671 sb->s_flags |= SB_NOUSER;
3673 sbinfo->max_blocks = ctx->blocks;
3674 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3675 if (sb->s_flags & SB_KERNMOUNT) {
3676 sbinfo->ino_batch = alloc_percpu(ino_t);
3677 if (!sbinfo->ino_batch)
3680 sbinfo->uid = ctx->uid;
3681 sbinfo->gid = ctx->gid;
3682 sbinfo->full_inums = ctx->full_inums;
3683 sbinfo->mode = ctx->mode;
3684 sbinfo->huge = ctx->huge;
3685 sbinfo->mpol = ctx->mpol;
3688 raw_spin_lock_init(&sbinfo->stat_lock);
3689 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3691 spin_lock_init(&sbinfo->shrinklist_lock);
3692 INIT_LIST_HEAD(&sbinfo->shrinklist);
3694 sb->s_maxbytes = MAX_LFS_FILESIZE;
3695 sb->s_blocksize = PAGE_SIZE;
3696 sb->s_blocksize_bits = PAGE_SHIFT;
3697 sb->s_magic = TMPFS_MAGIC;
3698 sb->s_op = &shmem_ops;
3699 sb->s_time_gran = 1;
3700 #ifdef CONFIG_TMPFS_XATTR
3701 sb->s_xattr = shmem_xattr_handlers;
3703 #ifdef CONFIG_TMPFS_POSIX_ACL
3704 sb->s_flags |= SB_POSIXACL;
3706 uuid_gen(&sb->s_uuid);
3708 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3711 inode->i_uid = sbinfo->uid;
3712 inode->i_gid = sbinfo->gid;
3713 sb->s_root = d_make_root(inode);
3719 shmem_put_super(sb);
3723 static int shmem_get_tree(struct fs_context *fc)
3725 return get_tree_nodev(fc, shmem_fill_super);
3728 static void shmem_free_fc(struct fs_context *fc)
3730 struct shmem_options *ctx = fc->fs_private;
3733 mpol_put(ctx->mpol);
3738 static const struct fs_context_operations shmem_fs_context_ops = {
3739 .free = shmem_free_fc,
3740 .get_tree = shmem_get_tree,
3742 .parse_monolithic = shmem_parse_options,
3743 .parse_param = shmem_parse_one,
3744 .reconfigure = shmem_reconfigure,
3748 static struct kmem_cache *shmem_inode_cachep;
3750 static struct inode *shmem_alloc_inode(struct super_block *sb)
3752 struct shmem_inode_info *info;
3753 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3756 return &info->vfs_inode;
3759 static void shmem_free_in_core_inode(struct inode *inode)
3761 if (S_ISLNK(inode->i_mode))
3762 kfree(inode->i_link);
3763 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3766 static void shmem_destroy_inode(struct inode *inode)
3768 if (S_ISREG(inode->i_mode))
3769 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3772 static void shmem_init_inode(void *foo)
3774 struct shmem_inode_info *info = foo;
3775 inode_init_once(&info->vfs_inode);
3778 static void shmem_init_inodecache(void)
3780 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3781 sizeof(struct shmem_inode_info),
3782 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3785 static void shmem_destroy_inodecache(void)
3787 kmem_cache_destroy(shmem_inode_cachep);
3790 /* Keep the page in page cache instead of truncating it */
3791 static int shmem_error_remove_page(struct address_space *mapping,
3797 const struct address_space_operations shmem_aops = {
3798 .writepage = shmem_writepage,
3799 .dirty_folio = noop_dirty_folio,
3801 .write_begin = shmem_write_begin,
3802 .write_end = shmem_write_end,
3804 #ifdef CONFIG_MIGRATION
3805 .migratepage = migrate_page,
3807 .error_remove_page = shmem_error_remove_page,
3809 EXPORT_SYMBOL(shmem_aops);
3811 static const struct file_operations shmem_file_operations = {
3813 .get_unmapped_area = shmem_get_unmapped_area,
3815 .llseek = shmem_file_llseek,
3816 .read_iter = shmem_file_read_iter,
3817 .write_iter = generic_file_write_iter,
3818 .fsync = noop_fsync,
3819 .splice_read = generic_file_splice_read,
3820 .splice_write = iter_file_splice_write,
3821 .fallocate = shmem_fallocate,
3825 static const struct inode_operations shmem_inode_operations = {
3826 .getattr = shmem_getattr,
3827 .setattr = shmem_setattr,
3828 #ifdef CONFIG_TMPFS_XATTR
3829 .listxattr = shmem_listxattr,
3830 .set_acl = simple_set_acl,
3834 static const struct inode_operations shmem_dir_inode_operations = {
3836 .getattr = shmem_getattr,
3837 .create = shmem_create,
3838 .lookup = simple_lookup,
3840 .unlink = shmem_unlink,
3841 .symlink = shmem_symlink,
3842 .mkdir = shmem_mkdir,
3843 .rmdir = shmem_rmdir,
3844 .mknod = shmem_mknod,
3845 .rename = shmem_rename2,
3846 .tmpfile = shmem_tmpfile,
3848 #ifdef CONFIG_TMPFS_XATTR
3849 .listxattr = shmem_listxattr,
3851 #ifdef CONFIG_TMPFS_POSIX_ACL
3852 .setattr = shmem_setattr,
3853 .set_acl = simple_set_acl,
3857 static const struct inode_operations shmem_special_inode_operations = {
3858 .getattr = shmem_getattr,
3859 #ifdef CONFIG_TMPFS_XATTR
3860 .listxattr = shmem_listxattr,
3862 #ifdef CONFIG_TMPFS_POSIX_ACL
3863 .setattr = shmem_setattr,
3864 .set_acl = simple_set_acl,
3868 static const struct super_operations shmem_ops = {
3869 .alloc_inode = shmem_alloc_inode,
3870 .free_inode = shmem_free_in_core_inode,
3871 .destroy_inode = shmem_destroy_inode,
3873 .statfs = shmem_statfs,
3874 .show_options = shmem_show_options,
3876 .evict_inode = shmem_evict_inode,
3877 .drop_inode = generic_delete_inode,
3878 .put_super = shmem_put_super,
3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3880 .nr_cached_objects = shmem_unused_huge_count,
3881 .free_cached_objects = shmem_unused_huge_scan,
3885 static const struct vm_operations_struct shmem_vm_ops = {
3886 .fault = shmem_fault,
3887 .map_pages = filemap_map_pages,
3889 .set_policy = shmem_set_policy,
3890 .get_policy = shmem_get_policy,
3894 int shmem_init_fs_context(struct fs_context *fc)
3896 struct shmem_options *ctx;
3898 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3902 ctx->mode = 0777 | S_ISVTX;
3903 ctx->uid = current_fsuid();
3904 ctx->gid = current_fsgid();
3906 fc->fs_private = ctx;
3907 fc->ops = &shmem_fs_context_ops;
3911 static struct file_system_type shmem_fs_type = {
3912 .owner = THIS_MODULE,
3914 .init_fs_context = shmem_init_fs_context,
3916 .parameters = shmem_fs_parameters,
3918 .kill_sb = kill_litter_super,
3919 .fs_flags = FS_USERNS_MOUNT,
3922 void __init shmem_init(void)
3926 shmem_init_inodecache();
3928 error = register_filesystem(&shmem_fs_type);
3930 pr_err("Could not register tmpfs\n");
3934 shm_mnt = kern_mount(&shmem_fs_type);
3935 if (IS_ERR(shm_mnt)) {
3936 error = PTR_ERR(shm_mnt);
3937 pr_err("Could not kern_mount tmpfs\n");
3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3942 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3943 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3945 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3950 unregister_filesystem(&shmem_fs_type);
3952 shmem_destroy_inodecache();
3953 shm_mnt = ERR_PTR(error);
3956 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3957 static ssize_t shmem_enabled_show(struct kobject *kobj,
3958 struct kobj_attribute *attr, char *buf)
3960 static const int values[] = {
3962 SHMEM_HUGE_WITHIN_SIZE,
3971 for (i = 0; i < ARRAY_SIZE(values); i++) {
3972 len += sysfs_emit_at(buf, len,
3973 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3975 shmem_format_huge(values[i]));
3978 len += sysfs_emit_at(buf, len, "\n");
3983 static ssize_t shmem_enabled_store(struct kobject *kobj,
3984 struct kobj_attribute *attr, const char *buf, size_t count)
3989 if (count + 1 > sizeof(tmp))
3991 memcpy(tmp, buf, count);
3993 if (count && tmp[count - 1] == '\n')
3994 tmp[count - 1] = '\0';
3996 huge = shmem_parse_huge(tmp);
3997 if (huge == -EINVAL)
3999 if (!has_transparent_hugepage() &&
4000 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4004 if (shmem_huge > SHMEM_HUGE_DENY)
4005 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4009 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4012 #else /* !CONFIG_SHMEM */
4015 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4017 * This is intended for small system where the benefits of the full
4018 * shmem code (swap-backed and resource-limited) are outweighed by
4019 * their complexity. On systems without swap this code should be
4020 * effectively equivalent, but much lighter weight.
4023 static struct file_system_type shmem_fs_type = {
4025 .init_fs_context = ramfs_init_fs_context,
4026 .parameters = ramfs_fs_parameters,
4027 .kill_sb = kill_litter_super,
4028 .fs_flags = FS_USERNS_MOUNT,
4031 void __init shmem_init(void)
4033 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4035 shm_mnt = kern_mount(&shmem_fs_type);
4036 BUG_ON(IS_ERR(shm_mnt));
4039 int shmem_unuse(unsigned int type)
4044 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4049 void shmem_unlock_mapping(struct address_space *mapping)
4054 unsigned long shmem_get_unmapped_area(struct file *file,
4055 unsigned long addr, unsigned long len,
4056 unsigned long pgoff, unsigned long flags)
4058 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4064 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4068 #define shmem_vm_ops generic_file_vm_ops
4069 #define shmem_file_operations ramfs_file_operations
4070 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4071 #define shmem_acct_size(flags, size) 0
4072 #define shmem_unacct_size(flags, size) do {} while (0)
4074 #endif /* CONFIG_SHMEM */
4078 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4079 unsigned long flags, unsigned int i_flags)
4081 struct inode *inode;
4085 return ERR_CAST(mnt);
4087 if (size < 0 || size > MAX_LFS_FILESIZE)
4088 return ERR_PTR(-EINVAL);
4090 if (shmem_acct_size(flags, size))
4091 return ERR_PTR(-ENOMEM);
4093 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4095 if (unlikely(!inode)) {
4096 shmem_unacct_size(flags, size);
4097 return ERR_PTR(-ENOSPC);
4099 inode->i_flags |= i_flags;
4100 inode->i_size = size;
4101 clear_nlink(inode); /* It is unlinked */
4102 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4104 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4105 &shmem_file_operations);
4112 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4113 * kernel internal. There will be NO LSM permission checks against the
4114 * underlying inode. So users of this interface must do LSM checks at a
4115 * higher layer. The users are the big_key and shm implementations. LSM
4116 * checks are provided at the key or shm level rather than the inode.
4117 * @name: name for dentry (to be seen in /proc/<pid>/maps
4118 * @size: size to be set for the file
4119 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4123 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4127 * shmem_file_setup - get an unlinked file living in tmpfs
4128 * @name: name for dentry (to be seen in /proc/<pid>/maps
4129 * @size: size to be set for the file
4130 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4132 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4134 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4136 EXPORT_SYMBOL_GPL(shmem_file_setup);
4139 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4140 * @mnt: the tmpfs mount where the file will be created
4141 * @name: name for dentry (to be seen in /proc/<pid>/maps
4142 * @size: size to be set for the file
4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4145 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4146 loff_t size, unsigned long flags)
4148 return __shmem_file_setup(mnt, name, size, flags, 0);
4150 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4153 * shmem_zero_setup - setup a shared anonymous mapping
4154 * @vma: the vma to be mmapped is prepared by do_mmap
4156 int shmem_zero_setup(struct vm_area_struct *vma)
4159 loff_t size = vma->vm_end - vma->vm_start;
4162 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4163 * between XFS directory reading and selinux: since this file is only
4164 * accessible to the user through its mapping, use S_PRIVATE flag to
4165 * bypass file security, in the same way as shmem_kernel_file_setup().
4167 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4169 return PTR_ERR(file);
4173 vma->vm_file = file;
4174 vma->vm_ops = &shmem_vm_ops;
4180 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4181 * @mapping: the page's address_space
4182 * @index: the page index
4183 * @gfp: the page allocator flags to use if allocating
4185 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4186 * with any new page allocations done using the specified allocation flags.
4187 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4188 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4189 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4191 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4192 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4194 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4195 pgoff_t index, gfp_t gfp)
4198 struct inode *inode = mapping->host;
4202 BUG_ON(!shmem_mapping(mapping));
4203 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4204 gfp, NULL, NULL, NULL);
4206 return ERR_PTR(error);
4209 if (PageHWPoison(page)) {
4211 return ERR_PTR(-EIO);
4217 * The tiny !SHMEM case uses ramfs without swap
4219 return read_cache_page_gfp(mapping, index, gfp);
4222 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);