mm, hmm: use devm semantics for hmm_devmem_{add, remove}
[platform/kernel/linux-exynos.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124                 struct page **pagep, enum sgp_type sgp,
125                 gfp_t gfp, struct vm_area_struct *vma,
126                 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129                 struct page **pagep, enum sgp_type sgp)
130 {
131         return shmem_getpage_gfp(inode, index, pagep, sgp,
132                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137         return sb->s_fs_info;
138 }
139
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148         return (flags & VM_NORESERVE) ?
149                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154         if (!(flags & VM_NORESERVE))
155                 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159                 loff_t oldsize, loff_t newsize)
160 {
161         if (!(flags & VM_NORESERVE)) {
162                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163                         return security_vm_enough_memory_mm(current->mm,
164                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
165                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167         }
168         return 0;
169 }
170
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179         if (!(flags & VM_NORESERVE))
180                 return 0;
181
182         return security_vm_enough_memory_mm(current->mm,
183                         pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188         if (flags & VM_NORESERVE)
189                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194         struct shmem_inode_info *info = SHMEM_I(inode);
195         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197         if (shmem_acct_block(info->flags, pages))
198                 return false;
199
200         if (sbinfo->max_blocks) {
201                 if (percpu_counter_compare(&sbinfo->used_blocks,
202                                            sbinfo->max_blocks - pages) > 0)
203                         goto unacct;
204                 percpu_counter_add(&sbinfo->used_blocks, pages);
205         }
206
207         return true;
208
209 unacct:
210         shmem_unacct_blocks(info->flags, pages);
211         return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216         struct shmem_inode_info *info = SHMEM_I(inode);
217         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219         if (sbinfo->max_blocks)
220                 percpu_counter_sub(&sbinfo->used_blocks, pages);
221         shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235         return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244         if (sbinfo->max_inodes) {
245                 spin_lock(&sbinfo->stat_lock);
246                 if (!sbinfo->free_inodes) {
247                         spin_unlock(&sbinfo->stat_lock);
248                         return -ENOSPC;
249                 }
250                 sbinfo->free_inodes--;
251                 spin_unlock(&sbinfo->stat_lock);
252         }
253         return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259         if (sbinfo->max_inodes) {
260                 spin_lock(&sbinfo->stat_lock);
261                 sbinfo->free_inodes++;
262                 spin_unlock(&sbinfo->stat_lock);
263         }
264 }
265
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280         struct shmem_inode_info *info = SHMEM_I(inode);
281         long freed;
282
283         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284         if (freed > 0) {
285                 info->alloced -= freed;
286                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287                 shmem_inode_unacct_blocks(inode, freed);
288         }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293         struct shmem_inode_info *info = SHMEM_I(inode);
294         unsigned long flags;
295
296         if (!shmem_inode_acct_block(inode, pages))
297                 return false;
298
299         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300         inode->i_mapping->nrpages += pages;
301
302         spin_lock_irqsave(&info->lock, flags);
303         info->alloced += pages;
304         inode->i_blocks += pages * BLOCKS_PER_PAGE;
305         shmem_recalc_inode(inode);
306         spin_unlock_irqrestore(&info->lock, flags);
307
308         return true;
309 }
310
311 void shmem_uncharge(struct inode *inode, long pages)
312 {
313         struct shmem_inode_info *info = SHMEM_I(inode);
314         unsigned long flags;
315
316         /* nrpages adjustment done by __delete_from_page_cache() or caller */
317
318         spin_lock_irqsave(&info->lock, flags);
319         info->alloced -= pages;
320         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321         shmem_recalc_inode(inode);
322         spin_unlock_irqrestore(&info->lock, flags);
323
324         shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328  * Replace item expected in radix tree by a new item, while holding tree lock.
329  */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331                         pgoff_t index, void *expected, void *replacement)
332 {
333         struct radix_tree_node *node;
334         void **pslot;
335         void *item;
336
337         VM_BUG_ON(!expected);
338         VM_BUG_ON(!replacement);
339         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340         if (!item)
341                 return -ENOENT;
342         if (item != expected)
343                 return -ENOENT;
344         __radix_tree_replace(&mapping->page_tree, node, pslot,
345                              replacement, NULL, NULL);
346         return 0;
347 }
348
349 /*
350  * Sometimes, before we decide whether to proceed or to fail, we must check
351  * that an entry was not already brought back from swap by a racing thread.
352  *
353  * Checking page is not enough: by the time a SwapCache page is locked, it
354  * might be reused, and again be SwapCache, using the same swap as before.
355  */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357                                pgoff_t index, swp_entry_t swap)
358 {
359         void *item;
360
361         rcu_read_lock();
362         item = radix_tree_lookup(&mapping->page_tree, index);
363         rcu_read_unlock();
364         return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369  *
370  * SHMEM_HUGE_NEVER:
371  *      disables huge pages for the mount;
372  * SHMEM_HUGE_ALWAYS:
373  *      enables huge pages for the mount;
374  * SHMEM_HUGE_WITHIN_SIZE:
375  *      only allocate huge pages if the page will be fully within i_size,
376  *      also respect fadvise()/madvise() hints;
377  * SHMEM_HUGE_ADVISE:
378  *      only allocate huge pages if requested with fadvise()/madvise();
379  */
380
381 #define SHMEM_HUGE_NEVER        0
382 #define SHMEM_HUGE_ALWAYS       1
383 #define SHMEM_HUGE_WITHIN_SIZE  2
384 #define SHMEM_HUGE_ADVISE       3
385
386 /*
387  * Special values.
388  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389  *
390  * SHMEM_HUGE_DENY:
391  *      disables huge on shm_mnt and all mounts, for emergency use;
392  * SHMEM_HUGE_FORCE:
393  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394  *
395  */
396 #define SHMEM_HUGE_DENY         (-1)
397 #define SHMEM_HUGE_FORCE        (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407         if (!strcmp(str, "never"))
408                 return SHMEM_HUGE_NEVER;
409         if (!strcmp(str, "always"))
410                 return SHMEM_HUGE_ALWAYS;
411         if (!strcmp(str, "within_size"))
412                 return SHMEM_HUGE_WITHIN_SIZE;
413         if (!strcmp(str, "advise"))
414                 return SHMEM_HUGE_ADVISE;
415         if (!strcmp(str, "deny"))
416                 return SHMEM_HUGE_DENY;
417         if (!strcmp(str, "force"))
418                 return SHMEM_HUGE_FORCE;
419         return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424         switch (huge) {
425         case SHMEM_HUGE_NEVER:
426                 return "never";
427         case SHMEM_HUGE_ALWAYS:
428                 return "always";
429         case SHMEM_HUGE_WITHIN_SIZE:
430                 return "within_size";
431         case SHMEM_HUGE_ADVISE:
432                 return "advise";
433         case SHMEM_HUGE_DENY:
434                 return "deny";
435         case SHMEM_HUGE_FORCE:
436                 return "force";
437         default:
438                 VM_BUG_ON(1);
439                 return "bad_val";
440         }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445                 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447         LIST_HEAD(list), *pos, *next;
448         LIST_HEAD(to_remove);
449         struct inode *inode;
450         struct shmem_inode_info *info;
451         struct page *page;
452         unsigned long batch = sc ? sc->nr_to_scan : 128;
453         int removed = 0, split = 0;
454
455         if (list_empty(&sbinfo->shrinklist))
456                 return SHRINK_STOP;
457
458         spin_lock(&sbinfo->shrinklist_lock);
459         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462                 /* pin the inode */
463                 inode = igrab(&info->vfs_inode);
464
465                 /* inode is about to be evicted */
466                 if (!inode) {
467                         list_del_init(&info->shrinklist);
468                         removed++;
469                         goto next;
470                 }
471
472                 /* Check if there's anything to gain */
473                 if (round_up(inode->i_size, PAGE_SIZE) ==
474                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475                         list_move(&info->shrinklist, &to_remove);
476                         removed++;
477                         goto next;
478                 }
479
480                 list_move(&info->shrinklist, &list);
481 next:
482                 if (!--batch)
483                         break;
484         }
485         spin_unlock(&sbinfo->shrinklist_lock);
486
487         list_for_each_safe(pos, next, &to_remove) {
488                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489                 inode = &info->vfs_inode;
490                 list_del_init(&info->shrinklist);
491                 iput(inode);
492         }
493
494         list_for_each_safe(pos, next, &list) {
495                 int ret;
496
497                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498                 inode = &info->vfs_inode;
499
500                 if (nr_to_split && split >= nr_to_split)
501                         goto leave;
502
503                 page = find_get_page(inode->i_mapping,
504                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505                 if (!page)
506                         goto drop;
507
508                 /* No huge page at the end of the file: nothing to split */
509                 if (!PageTransHuge(page)) {
510                         put_page(page);
511                         goto drop;
512                 }
513
514                 /*
515                  * Leave the inode on the list if we failed to lock
516                  * the page at this time.
517                  *
518                  * Waiting for the lock may lead to deadlock in the
519                  * reclaim path.
520                  */
521                 if (!trylock_page(page)) {
522                         put_page(page);
523                         goto leave;
524                 }
525
526                 ret = split_huge_page(page);
527                 unlock_page(page);
528                 put_page(page);
529
530                 /* If split failed leave the inode on the list */
531                 if (ret)
532                         goto leave;
533
534                 split++;
535 drop:
536                 list_del_init(&info->shrinklist);
537                 removed++;
538 leave:
539                 iput(inode);
540         }
541
542         spin_lock(&sbinfo->shrinklist_lock);
543         list_splice_tail(&list, &sbinfo->shrinklist);
544         sbinfo->shrinklist_len -= removed;
545         spin_unlock(&sbinfo->shrinklist_lock);
546
547         return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551                 struct shrink_control *sc)
552 {
553         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555         if (!READ_ONCE(sbinfo->shrinklist_len))
556                 return SHRINK_STOP;
557
558         return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562                 struct shrink_control *sc)
563 {
564         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565         return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572                 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574         return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579  * Like add_to_page_cache_locked, but error if expected item has gone.
580  */
581 static int shmem_add_to_page_cache(struct page *page,
582                                    struct address_space *mapping,
583                                    pgoff_t index, void *expected)
584 {
585         int error, nr = hpage_nr_pages(page);
586
587         VM_BUG_ON_PAGE(PageTail(page), page);
588         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589         VM_BUG_ON_PAGE(!PageLocked(page), page);
590         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591         VM_BUG_ON(expected && PageTransHuge(page));
592
593         page_ref_add(page, nr);
594         page->mapping = mapping;
595         page->index = index;
596
597         spin_lock_irq(&mapping->tree_lock);
598         if (PageTransHuge(page)) {
599                 void __rcu **results;
600                 pgoff_t idx;
601                 int i;
602
603                 error = 0;
604                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605                                         &results, &idx, index, 1) &&
606                                 idx < index + HPAGE_PMD_NR) {
607                         error = -EEXIST;
608                 }
609
610                 if (!error) {
611                         for (i = 0; i < HPAGE_PMD_NR; i++) {
612                                 error = radix_tree_insert(&mapping->page_tree,
613                                                 index + i, page + i);
614                                 VM_BUG_ON(error);
615                         }
616                         count_vm_event(THP_FILE_ALLOC);
617                 }
618         } else if (!expected) {
619                 error = radix_tree_insert(&mapping->page_tree, index, page);
620         } else {
621                 error = shmem_radix_tree_replace(mapping, index, expected,
622                                                                  page);
623         }
624
625         if (!error) {
626                 mapping->nrpages += nr;
627                 if (PageTransHuge(page))
628                         __inc_node_page_state(page, NR_SHMEM_THPS);
629                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631                 spin_unlock_irq(&mapping->tree_lock);
632         } else {
633                 page->mapping = NULL;
634                 spin_unlock_irq(&mapping->tree_lock);
635                 page_ref_sub(page, nr);
636         }
637         return error;
638 }
639
640 /*
641  * Like delete_from_page_cache, but substitutes swap for page.
642  */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645         struct address_space *mapping = page->mapping;
646         int error;
647
648         VM_BUG_ON_PAGE(PageCompound(page), page);
649
650         spin_lock_irq(&mapping->tree_lock);
651         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652         page->mapping = NULL;
653         mapping->nrpages--;
654         __dec_node_page_state(page, NR_FILE_PAGES);
655         __dec_node_page_state(page, NR_SHMEM);
656         spin_unlock_irq(&mapping->tree_lock);
657         put_page(page);
658         BUG_ON(error);
659 }
660
661 /*
662  * Remove swap entry from radix tree, free the swap and its page cache.
663  */
664 static int shmem_free_swap(struct address_space *mapping,
665                            pgoff_t index, void *radswap)
666 {
667         void *old;
668
669         spin_lock_irq(&mapping->tree_lock);
670         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671         spin_unlock_irq(&mapping->tree_lock);
672         if (old != radswap)
673                 return -ENOENT;
674         free_swap_and_cache(radix_to_swp_entry(radswap));
675         return 0;
676 }
677
678 /*
679  * Determine (in bytes) how many of the shmem object's pages mapped by the
680  * given offsets are swapped out.
681  *
682  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683  * as long as the inode doesn't go away and racy results are not a problem.
684  */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686                                                 pgoff_t start, pgoff_t end)
687 {
688         struct radix_tree_iter iter;
689         void **slot;
690         struct page *page;
691         unsigned long swapped = 0;
692
693         rcu_read_lock();
694
695         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696                 if (iter.index >= end)
697                         break;
698
699                 page = radix_tree_deref_slot(slot);
700
701                 if (radix_tree_deref_retry(page)) {
702                         slot = radix_tree_iter_retry(&iter);
703                         continue;
704                 }
705
706                 if (radix_tree_exceptional_entry(page))
707                         swapped++;
708
709                 if (need_resched()) {
710                         slot = radix_tree_iter_resume(slot, &iter);
711                         cond_resched_rcu();
712                 }
713         }
714
715         rcu_read_unlock();
716
717         return swapped << PAGE_SHIFT;
718 }
719
720 /*
721  * Determine (in bytes) how many of the shmem object's pages mapped by the
722  * given vma is swapped out.
723  *
724  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725  * as long as the inode doesn't go away and racy results are not a problem.
726  */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729         struct inode *inode = file_inode(vma->vm_file);
730         struct shmem_inode_info *info = SHMEM_I(inode);
731         struct address_space *mapping = inode->i_mapping;
732         unsigned long swapped;
733
734         /* Be careful as we don't hold info->lock */
735         swapped = READ_ONCE(info->swapped);
736
737         /*
738          * The easier cases are when the shmem object has nothing in swap, or
739          * the vma maps it whole. Then we can simply use the stats that we
740          * already track.
741          */
742         if (!swapped)
743                 return 0;
744
745         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746                 return swapped << PAGE_SHIFT;
747
748         /* Here comes the more involved part */
749         return shmem_partial_swap_usage(mapping,
750                         linear_page_index(vma, vma->vm_start),
751                         linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756  */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759         struct pagevec pvec;
760         pgoff_t indices[PAGEVEC_SIZE];
761         pgoff_t index = 0;
762
763         pagevec_init(&pvec, 0);
764         /*
765          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766          */
767         while (!mapping_unevictable(mapping)) {
768                 /*
769                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771                  */
772                 pvec.nr = find_get_entries(mapping, index,
773                                            PAGEVEC_SIZE, pvec.pages, indices);
774                 if (!pvec.nr)
775                         break;
776                 index = indices[pvec.nr - 1] + 1;
777                 pagevec_remove_exceptionals(&pvec);
778                 check_move_unevictable_pages(pvec.pages, pvec.nr);
779                 pagevec_release(&pvec);
780                 cond_resched();
781         }
782 }
783
784 /*
785  * Remove range of pages and swap entries from radix tree, and free them.
786  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787  */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789                                                                  bool unfalloc)
790 {
791         struct address_space *mapping = inode->i_mapping;
792         struct shmem_inode_info *info = SHMEM_I(inode);
793         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797         struct pagevec pvec;
798         pgoff_t indices[PAGEVEC_SIZE];
799         long nr_swaps_freed = 0;
800         pgoff_t index;
801         int i;
802
803         if (lend == -1)
804                 end = -1;       /* unsigned, so actually very big */
805
806         pagevec_init(&pvec, 0);
807         index = start;
808         while (index < end) {
809                 pvec.nr = find_get_entries(mapping, index,
810                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
811                         pvec.pages, indices);
812                 if (!pvec.nr)
813                         break;
814                 for (i = 0; i < pagevec_count(&pvec); i++) {
815                         struct page *page = pvec.pages[i];
816
817                         index = indices[i];
818                         if (index >= end)
819                                 break;
820
821                         if (radix_tree_exceptional_entry(page)) {
822                                 if (unfalloc)
823                                         continue;
824                                 nr_swaps_freed += !shmem_free_swap(mapping,
825                                                                 index, page);
826                                 continue;
827                         }
828
829                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831                         if (!trylock_page(page))
832                                 continue;
833
834                         if (PageTransTail(page)) {
835                                 /* Middle of THP: zero out the page */
836                                 clear_highpage(page);
837                                 unlock_page(page);
838                                 continue;
839                         } else if (PageTransHuge(page)) {
840                                 if (index == round_down(end, HPAGE_PMD_NR)) {
841                                         /*
842                                          * Range ends in the middle of THP:
843                                          * zero out the page
844                                          */
845                                         clear_highpage(page);
846                                         unlock_page(page);
847                                         continue;
848                                 }
849                                 index += HPAGE_PMD_NR - 1;
850                                 i += HPAGE_PMD_NR - 1;
851                         }
852
853                         if (!unfalloc || !PageUptodate(page)) {
854                                 VM_BUG_ON_PAGE(PageTail(page), page);
855                                 if (page_mapping(page) == mapping) {
856                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
857                                         truncate_inode_page(mapping, page);
858                                 }
859                         }
860                         unlock_page(page);
861                 }
862                 pagevec_remove_exceptionals(&pvec);
863                 pagevec_release(&pvec);
864                 cond_resched();
865                 index++;
866         }
867
868         if (partial_start) {
869                 struct page *page = NULL;
870                 shmem_getpage(inode, start - 1, &page, SGP_READ);
871                 if (page) {
872                         unsigned int top = PAGE_SIZE;
873                         if (start > end) {
874                                 top = partial_end;
875                                 partial_end = 0;
876                         }
877                         zero_user_segment(page, partial_start, top);
878                         set_page_dirty(page);
879                         unlock_page(page);
880                         put_page(page);
881                 }
882         }
883         if (partial_end) {
884                 struct page *page = NULL;
885                 shmem_getpage(inode, end, &page, SGP_READ);
886                 if (page) {
887                         zero_user_segment(page, 0, partial_end);
888                         set_page_dirty(page);
889                         unlock_page(page);
890                         put_page(page);
891                 }
892         }
893         if (start >= end)
894                 return;
895
896         index = start;
897         while (index < end) {
898                 cond_resched();
899
900                 pvec.nr = find_get_entries(mapping, index,
901                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902                                 pvec.pages, indices);
903                 if (!pvec.nr) {
904                         /* If all gone or hole-punch or unfalloc, we're done */
905                         if (index == start || end != -1)
906                                 break;
907                         /* But if truncating, restart to make sure all gone */
908                         index = start;
909                         continue;
910                 }
911                 for (i = 0; i < pagevec_count(&pvec); i++) {
912                         struct page *page = pvec.pages[i];
913
914                         index = indices[i];
915                         if (index >= end)
916                                 break;
917
918                         if (radix_tree_exceptional_entry(page)) {
919                                 if (unfalloc)
920                                         continue;
921                                 if (shmem_free_swap(mapping, index, page)) {
922                                         /* Swap was replaced by page: retry */
923                                         index--;
924                                         break;
925                                 }
926                                 nr_swaps_freed++;
927                                 continue;
928                         }
929
930                         lock_page(page);
931
932                         if (PageTransTail(page)) {
933                                 /* Middle of THP: zero out the page */
934                                 clear_highpage(page);
935                                 unlock_page(page);
936                                 /*
937                                  * Partial thp truncate due 'start' in middle
938                                  * of THP: don't need to look on these pages
939                                  * again on !pvec.nr restart.
940                                  */
941                                 if (index != round_down(end, HPAGE_PMD_NR))
942                                         start++;
943                                 continue;
944                         } else if (PageTransHuge(page)) {
945                                 if (index == round_down(end, HPAGE_PMD_NR)) {
946                                         /*
947                                          * Range ends in the middle of THP:
948                                          * zero out the page
949                                          */
950                                         clear_highpage(page);
951                                         unlock_page(page);
952                                         continue;
953                                 }
954                                 index += HPAGE_PMD_NR - 1;
955                                 i += HPAGE_PMD_NR - 1;
956                         }
957
958                         if (!unfalloc || !PageUptodate(page)) {
959                                 VM_BUG_ON_PAGE(PageTail(page), page);
960                                 if (page_mapping(page) == mapping) {
961                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
962                                         truncate_inode_page(mapping, page);
963                                 } else {
964                                         /* Page was replaced by swap: retry */
965                                         unlock_page(page);
966                                         index--;
967                                         break;
968                                 }
969                         }
970                         unlock_page(page);
971                 }
972                 pagevec_remove_exceptionals(&pvec);
973                 pagevec_release(&pvec);
974                 index++;
975         }
976
977         spin_lock_irq(&info->lock);
978         info->swapped -= nr_swaps_freed;
979         shmem_recalc_inode(inode);
980         spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985         shmem_undo_range(inode, lstart, lend, false);
986         inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991                          u32 request_mask, unsigned int query_flags)
992 {
993         struct inode *inode = path->dentry->d_inode;
994         struct shmem_inode_info *info = SHMEM_I(inode);
995
996         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997                 spin_lock_irq(&info->lock);
998                 shmem_recalc_inode(inode);
999                 spin_unlock_irq(&info->lock);
1000         }
1001         generic_fillattr(inode, stat);
1002         return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007         struct inode *inode = d_inode(dentry);
1008         struct shmem_inode_info *info = SHMEM_I(inode);
1009         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010         int error;
1011
1012         error = setattr_prepare(dentry, attr);
1013         if (error)
1014                 return error;
1015
1016         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017                 loff_t oldsize = inode->i_size;
1018                 loff_t newsize = attr->ia_size;
1019
1020                 /* protected by i_mutex */
1021                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023                         return -EPERM;
1024
1025                 if (newsize != oldsize) {
1026                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027                                         oldsize, newsize);
1028                         if (error)
1029                                 return error;
1030                         i_size_write(inode, newsize);
1031                         inode->i_ctime = inode->i_mtime = current_time(inode);
1032                 }
1033                 if (newsize <= oldsize) {
1034                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035                         if (oldsize > holebegin)
1036                                 unmap_mapping_range(inode->i_mapping,
1037                                                         holebegin, 0, 1);
1038                         if (info->alloced)
1039                                 shmem_truncate_range(inode,
1040                                                         newsize, (loff_t)-1);
1041                         /* unmap again to remove racily COWed private pages */
1042                         if (oldsize > holebegin)
1043                                 unmap_mapping_range(inode->i_mapping,
1044                                                         holebegin, 0, 1);
1045
1046                         /*
1047                          * Part of the huge page can be beyond i_size: subject
1048                          * to shrink under memory pressure.
1049                          */
1050                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051                                 spin_lock(&sbinfo->shrinklist_lock);
1052                                 /*
1053                                  * _careful to defend against unlocked access to
1054                                  * ->shrink_list in shmem_unused_huge_shrink()
1055                                  */
1056                                 if (list_empty_careful(&info->shrinklist)) {
1057                                         list_add_tail(&info->shrinklist,
1058                                                         &sbinfo->shrinklist);
1059                                         sbinfo->shrinklist_len++;
1060                                 }
1061                                 spin_unlock(&sbinfo->shrinklist_lock);
1062                         }
1063                 }
1064         }
1065
1066         setattr_copy(inode, attr);
1067         if (attr->ia_valid & ATTR_MODE)
1068                 error = posix_acl_chmod(inode, inode->i_mode);
1069         return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074         struct shmem_inode_info *info = SHMEM_I(inode);
1075         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077         if (inode->i_mapping->a_ops == &shmem_aops) {
1078                 shmem_unacct_size(info->flags, inode->i_size);
1079                 inode->i_size = 0;
1080                 shmem_truncate_range(inode, 0, (loff_t)-1);
1081                 if (!list_empty(&info->shrinklist)) {
1082                         spin_lock(&sbinfo->shrinklist_lock);
1083                         if (!list_empty(&info->shrinklist)) {
1084                                 list_del_init(&info->shrinklist);
1085                                 sbinfo->shrinklist_len--;
1086                         }
1087                         spin_unlock(&sbinfo->shrinklist_lock);
1088                 }
1089                 if (!list_empty(&info->swaplist)) {
1090                         mutex_lock(&shmem_swaplist_mutex);
1091                         list_del_init(&info->swaplist);
1092                         mutex_unlock(&shmem_swaplist_mutex);
1093                 }
1094         }
1095
1096         simple_xattrs_free(&info->xattrs);
1097         WARN_ON(inode->i_blocks);
1098         shmem_free_inode(inode->i_sb);
1099         clear_inode(inode);
1100 }
1101
1102 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1103 {
1104         struct radix_tree_iter iter;
1105         void **slot;
1106         unsigned long found = -1;
1107         unsigned int checked = 0;
1108
1109         rcu_read_lock();
1110         radix_tree_for_each_slot(slot, root, &iter, 0) {
1111                 if (*slot == item) {
1112                         found = iter.index;
1113                         break;
1114                 }
1115                 checked++;
1116                 if ((checked % 4096) != 0)
1117                         continue;
1118                 slot = radix_tree_iter_resume(slot, &iter);
1119                 cond_resched_rcu();
1120         }
1121
1122         rcu_read_unlock();
1123         return found;
1124 }
1125
1126 /*
1127  * If swap found in inode, free it and move page from swapcache to filecache.
1128  */
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130                              swp_entry_t swap, struct page **pagep)
1131 {
1132         struct address_space *mapping = info->vfs_inode.i_mapping;
1133         void *radswap;
1134         pgoff_t index;
1135         gfp_t gfp;
1136         int error = 0;
1137
1138         radswap = swp_to_radix_entry(swap);
1139         index = find_swap_entry(&mapping->page_tree, radswap);
1140         if (index == -1)
1141                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1142
1143         /*
1144          * Move _head_ to start search for next from here.
1145          * But be careful: shmem_evict_inode checks list_empty without taking
1146          * mutex, and there's an instant in list_move_tail when info->swaplist
1147          * would appear empty, if it were the only one on shmem_swaplist.
1148          */
1149         if (shmem_swaplist.next != &info->swaplist)
1150                 list_move_tail(&shmem_swaplist, &info->swaplist);
1151
1152         gfp = mapping_gfp_mask(mapping);
1153         if (shmem_should_replace_page(*pagep, gfp)) {
1154                 mutex_unlock(&shmem_swaplist_mutex);
1155                 error = shmem_replace_page(pagep, gfp, info, index);
1156                 mutex_lock(&shmem_swaplist_mutex);
1157                 /*
1158                  * We needed to drop mutex to make that restrictive page
1159                  * allocation, but the inode might have been freed while we
1160                  * dropped it: although a racing shmem_evict_inode() cannot
1161                  * complete without emptying the radix_tree, our page lock
1162                  * on this swapcache page is not enough to prevent that -
1163                  * free_swap_and_cache() of our swap entry will only
1164                  * trylock_page(), removing swap from radix_tree whatever.
1165                  *
1166                  * We must not proceed to shmem_add_to_page_cache() if the
1167                  * inode has been freed, but of course we cannot rely on
1168                  * inode or mapping or info to check that.  However, we can
1169                  * safely check if our swap entry is still in use (and here
1170                  * it can't have got reused for another page): if it's still
1171                  * in use, then the inode cannot have been freed yet, and we
1172                  * can safely proceed (if it's no longer in use, that tells
1173                  * nothing about the inode, but we don't need to unuse swap).
1174                  */
1175                 if (!page_swapcount(*pagep))
1176                         error = -ENOENT;
1177         }
1178
1179         /*
1180          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182          * beneath us (pagelock doesn't help until the page is in pagecache).
1183          */
1184         if (!error)
1185                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186                                                 radswap);
1187         if (error != -ENOMEM) {
1188                 /*
1189                  * Truncation and eviction use free_swap_and_cache(), which
1190                  * only does trylock page: if we raced, best clean up here.
1191                  */
1192                 delete_from_swap_cache(*pagep);
1193                 set_page_dirty(*pagep);
1194                 if (!error) {
1195                         spin_lock_irq(&info->lock);
1196                         info->swapped--;
1197                         spin_unlock_irq(&info->lock);
1198                         swap_free(swap);
1199                 }
1200         }
1201         return error;
1202 }
1203
1204 /*
1205  * Search through swapped inodes to find and replace swap by page.
1206  */
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1208 {
1209         struct list_head *this, *next;
1210         struct shmem_inode_info *info;
1211         struct mem_cgroup *memcg;
1212         int error = 0;
1213
1214         /*
1215          * There's a faint possibility that swap page was replaced before
1216          * caller locked it: caller will come back later with the right page.
1217          */
1218         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219                 goto out;
1220
1221         /*
1222          * Charge page using GFP_KERNEL while we can wait, before taking
1223          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224          * Charged back to the user (not to caller) when swap account is used.
1225          */
1226         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227                         false);
1228         if (error)
1229                 goto out;
1230         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231         error = -EAGAIN;
1232
1233         mutex_lock(&shmem_swaplist_mutex);
1234         list_for_each_safe(this, next, &shmem_swaplist) {
1235                 info = list_entry(this, struct shmem_inode_info, swaplist);
1236                 if (info->swapped)
1237                         error = shmem_unuse_inode(info, swap, &page);
1238                 else
1239                         list_del_init(&info->swaplist);
1240                 cond_resched();
1241                 if (error != -EAGAIN)
1242                         break;
1243                 /* found nothing in this: move on to search the next */
1244         }
1245         mutex_unlock(&shmem_swaplist_mutex);
1246
1247         if (error) {
1248                 if (error != -ENOMEM)
1249                         error = 0;
1250                 mem_cgroup_cancel_charge(page, memcg, false);
1251         } else
1252                 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254         unlock_page(page);
1255         put_page(page);
1256         return error;
1257 }
1258
1259 /*
1260  * Move the page from the page cache to the swap cache.
1261  */
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263 {
1264         struct shmem_inode_info *info;
1265         struct address_space *mapping;
1266         struct inode *inode;
1267         swp_entry_t swap;
1268         pgoff_t index;
1269
1270         VM_BUG_ON_PAGE(PageCompound(page), page);
1271         BUG_ON(!PageLocked(page));
1272         mapping = page->mapping;
1273         index = page->index;
1274         inode = mapping->host;
1275         info = SHMEM_I(inode);
1276         if (info->flags & VM_LOCKED)
1277                 goto redirty;
1278         if (!total_swap_pages)
1279                 goto redirty;
1280
1281         /*
1282          * Our capabilities prevent regular writeback or sync from ever calling
1283          * shmem_writepage; but a stacking filesystem might use ->writepage of
1284          * its underlying filesystem, in which case tmpfs should write out to
1285          * swap only in response to memory pressure, and not for the writeback
1286          * threads or sync.
1287          */
1288         if (!wbc->for_reclaim) {
1289                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1290                 goto redirty;
1291         }
1292
1293         /*
1294          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295          * value into swapfile.c, the only way we can correctly account for a
1296          * fallocated page arriving here is now to initialize it and write it.
1297          *
1298          * That's okay for a page already fallocated earlier, but if we have
1299          * not yet completed the fallocation, then (a) we want to keep track
1300          * of this page in case we have to undo it, and (b) it may not be a
1301          * good idea to continue anyway, once we're pushing into swap.  So
1302          * reactivate the page, and let shmem_fallocate() quit when too many.
1303          */
1304         if (!PageUptodate(page)) {
1305                 if (inode->i_private) {
1306                         struct shmem_falloc *shmem_falloc;
1307                         spin_lock(&inode->i_lock);
1308                         shmem_falloc = inode->i_private;
1309                         if (shmem_falloc &&
1310                             !shmem_falloc->waitq &&
1311                             index >= shmem_falloc->start &&
1312                             index < shmem_falloc->next)
1313                                 shmem_falloc->nr_unswapped++;
1314                         else
1315                                 shmem_falloc = NULL;
1316                         spin_unlock(&inode->i_lock);
1317                         if (shmem_falloc)
1318                                 goto redirty;
1319                 }
1320                 clear_highpage(page);
1321                 flush_dcache_page(page);
1322                 SetPageUptodate(page);
1323         }
1324
1325         swap = get_swap_page(page);
1326         if (!swap.val)
1327                 goto redirty;
1328
1329         if (mem_cgroup_try_charge_swap(page, swap))
1330                 goto free_swap;
1331
1332         /*
1333          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334          * if it's not already there.  Do it now before the page is
1335          * moved to swap cache, when its pagelock no longer protects
1336          * the inode from eviction.  But don't unlock the mutex until
1337          * we've incremented swapped, because shmem_unuse_inode() will
1338          * prune a !swapped inode from the swaplist under this mutex.
1339          */
1340         mutex_lock(&shmem_swaplist_mutex);
1341         if (list_empty(&info->swaplist))
1342                 list_add_tail(&info->swaplist, &shmem_swaplist);
1343
1344         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1345                 spin_lock_irq(&info->lock);
1346                 shmem_recalc_inode(inode);
1347                 info->swapped++;
1348                 spin_unlock_irq(&info->lock);
1349
1350                 swap_shmem_alloc(swap);
1351                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1352
1353                 mutex_unlock(&shmem_swaplist_mutex);
1354                 BUG_ON(page_mapped(page));
1355                 swap_writepage(page, wbc);
1356                 return 0;
1357         }
1358
1359         mutex_unlock(&shmem_swaplist_mutex);
1360 free_swap:
1361         put_swap_page(page, swap);
1362 redirty:
1363         set_page_dirty(page);
1364         if (wbc->for_reclaim)
1365                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1366         unlock_page(page);
1367         return 0;
1368 }
1369
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1372 {
1373         char buffer[64];
1374
1375         if (!mpol || mpol->mode == MPOL_DEFAULT)
1376                 return;         /* show nothing */
1377
1378         mpol_to_str(buffer, sizeof(buffer), mpol);
1379
1380         seq_printf(seq, ",mpol=%s", buffer);
1381 }
1382
1383 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384 {
1385         struct mempolicy *mpol = NULL;
1386         if (sbinfo->mpol) {
1387                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1388                 mpol = sbinfo->mpol;
1389                 mpol_get(mpol);
1390                 spin_unlock(&sbinfo->stat_lock);
1391         }
1392         return mpol;
1393 }
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1396 {
1397 }
1398 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399 {
1400         return NULL;
1401 }
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403 #ifndef CONFIG_NUMA
1404 #define vm_policy vm_private_data
1405 #endif
1406
1407 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408                 struct shmem_inode_info *info, pgoff_t index)
1409 {
1410         /* Create a pseudo vma that just contains the policy */
1411         vma->vm_start = 0;
1412         /* Bias interleave by inode number to distribute better across nodes */
1413         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414         vma->vm_ops = NULL;
1415         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1416 }
1417
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1419 {
1420         /* Drop reference taken by mpol_shared_policy_lookup() */
1421         mpol_cond_put(vma->vm_policy);
1422 }
1423
1424 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425                         struct shmem_inode_info *info, pgoff_t index)
1426 {
1427         struct vm_area_struct pvma;
1428         struct page *page;
1429
1430         shmem_pseudo_vma_init(&pvma, info, index);
1431         page = swapin_readahead(swap, gfp, &pvma, 0);
1432         shmem_pseudo_vma_destroy(&pvma);
1433
1434         return page;
1435 }
1436
1437 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438                 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440         struct vm_area_struct pvma;
1441         struct inode *inode = &info->vfs_inode;
1442         struct address_space *mapping = inode->i_mapping;
1443         pgoff_t idx, hindex;
1444         void __rcu **results;
1445         struct page *page;
1446
1447         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1448                 return NULL;
1449
1450         hindex = round_down(index, HPAGE_PMD_NR);
1451         rcu_read_lock();
1452         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454                 rcu_read_unlock();
1455                 return NULL;
1456         }
1457         rcu_read_unlock();
1458
1459         shmem_pseudo_vma_init(&pvma, info, hindex);
1460         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462         shmem_pseudo_vma_destroy(&pvma);
1463         if (page)
1464                 prep_transhuge_page(page);
1465         return page;
1466 }
1467
1468 static struct page *shmem_alloc_page(gfp_t gfp,
1469                         struct shmem_inode_info *info, pgoff_t index)
1470 {
1471         struct vm_area_struct pvma;
1472         struct page *page;
1473
1474         shmem_pseudo_vma_init(&pvma, info, index);
1475         page = alloc_page_vma(gfp, &pvma, 0);
1476         shmem_pseudo_vma_destroy(&pvma);
1477
1478         return page;
1479 }
1480
1481 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1482                 struct inode *inode,
1483                 pgoff_t index, bool huge)
1484 {
1485         struct shmem_inode_info *info = SHMEM_I(inode);
1486         struct page *page;
1487         int nr;
1488         int err = -ENOSPC;
1489
1490         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1491                 huge = false;
1492         nr = huge ? HPAGE_PMD_NR : 1;
1493
1494         if (!shmem_inode_acct_block(inode, nr))
1495                 goto failed;
1496
1497         if (huge)
1498                 page = shmem_alloc_hugepage(gfp, info, index);
1499         else
1500                 page = shmem_alloc_page(gfp, info, index);
1501         if (page) {
1502                 __SetPageLocked(page);
1503                 __SetPageSwapBacked(page);
1504                 return page;
1505         }
1506
1507         err = -ENOMEM;
1508         shmem_inode_unacct_blocks(inode, nr);
1509 failed:
1510         return ERR_PTR(err);
1511 }
1512
1513 /*
1514  * When a page is moved from swapcache to shmem filecache (either by the
1515  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517  * ignorance of the mapping it belongs to.  If that mapping has special
1518  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519  * we may need to copy to a suitable page before moving to filecache.
1520  *
1521  * In a future release, this may well be extended to respect cpuset and
1522  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523  * but for now it is a simple matter of zone.
1524  */
1525 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1526 {
1527         return page_zonenum(page) > gfp_zone(gfp);
1528 }
1529
1530 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531                                 struct shmem_inode_info *info, pgoff_t index)
1532 {
1533         struct page *oldpage, *newpage;
1534         struct address_space *swap_mapping;
1535         swp_entry_t entry;
1536         pgoff_t swap_index;
1537         int error;
1538
1539         oldpage = *pagep;
1540         entry.val = page_private(oldpage);
1541         swap_index = swp_offset(entry);
1542         swap_mapping = page_mapping(oldpage);
1543
1544         /*
1545          * We have arrived here because our zones are constrained, so don't
1546          * limit chance of success by further cpuset and node constraints.
1547          */
1548         gfp &= ~GFP_CONSTRAINT_MASK;
1549         newpage = shmem_alloc_page(gfp, info, index);
1550         if (!newpage)
1551                 return -ENOMEM;
1552
1553         get_page(newpage);
1554         copy_highpage(newpage, oldpage);
1555         flush_dcache_page(newpage);
1556
1557         __SetPageLocked(newpage);
1558         __SetPageSwapBacked(newpage);
1559         SetPageUptodate(newpage);
1560         set_page_private(newpage, entry.val);
1561         SetPageSwapCache(newpage);
1562
1563         /*
1564          * Our caller will very soon move newpage out of swapcache, but it's
1565          * a nice clean interface for us to replace oldpage by newpage there.
1566          */
1567         spin_lock_irq(&swap_mapping->tree_lock);
1568         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1569                                                                    newpage);
1570         if (!error) {
1571                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1572                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1573         }
1574         spin_unlock_irq(&swap_mapping->tree_lock);
1575
1576         if (unlikely(error)) {
1577                 /*
1578                  * Is this possible?  I think not, now that our callers check
1579                  * both PageSwapCache and page_private after getting page lock;
1580                  * but be defensive.  Reverse old to newpage for clear and free.
1581                  */
1582                 oldpage = newpage;
1583         } else {
1584                 mem_cgroup_migrate(oldpage, newpage);
1585                 lru_cache_add_anon(newpage);
1586                 *pagep = newpage;
1587         }
1588
1589         ClearPageSwapCache(oldpage);
1590         set_page_private(oldpage, 0);
1591
1592         unlock_page(oldpage);
1593         put_page(oldpage);
1594         put_page(oldpage);
1595         return error;
1596 }
1597
1598 /*
1599  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1600  *
1601  * If we allocate a new one we do not mark it dirty. That's up to the
1602  * vm. If we swap it in we mark it dirty since we also free the swap
1603  * entry since a page cannot live in both the swap and page cache.
1604  *
1605  * fault_mm and fault_type are only supplied by shmem_fault:
1606  * otherwise they are NULL.
1607  */
1608 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1609         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1610         struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1611 {
1612         struct address_space *mapping = inode->i_mapping;
1613         struct shmem_inode_info *info = SHMEM_I(inode);
1614         struct shmem_sb_info *sbinfo;
1615         struct mm_struct *charge_mm;
1616         struct mem_cgroup *memcg;
1617         struct page *page;
1618         swp_entry_t swap;
1619         enum sgp_type sgp_huge = sgp;
1620         pgoff_t hindex = index;
1621         int error;
1622         int once = 0;
1623         int alloced = 0;
1624
1625         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1626                 return -EFBIG;
1627         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1628                 sgp = SGP_CACHE;
1629 repeat:
1630         swap.val = 0;
1631         page = find_lock_entry(mapping, index);
1632         if (radix_tree_exceptional_entry(page)) {
1633                 swap = radix_to_swp_entry(page);
1634                 page = NULL;
1635         }
1636
1637         if (sgp <= SGP_CACHE &&
1638             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1639                 error = -EINVAL;
1640                 goto unlock;
1641         }
1642
1643         if (page && sgp == SGP_WRITE)
1644                 mark_page_accessed(page);
1645
1646         /* fallocated page? */
1647         if (page && !PageUptodate(page)) {
1648                 if (sgp != SGP_READ)
1649                         goto clear;
1650                 unlock_page(page);
1651                 put_page(page);
1652                 page = NULL;
1653         }
1654         if (page || (sgp == SGP_READ && !swap.val)) {
1655                 *pagep = page;
1656                 return 0;
1657         }
1658
1659         /*
1660          * Fast cache lookup did not find it:
1661          * bring it back from swap or allocate.
1662          */
1663         sbinfo = SHMEM_SB(inode->i_sb);
1664         charge_mm = vma ? vma->vm_mm : current->mm;
1665
1666         if (swap.val) {
1667                 /* Look it up and read it in.. */
1668                 page = lookup_swap_cache(swap, NULL, 0);
1669                 if (!page) {
1670                         /* Or update major stats only when swapin succeeds?? */
1671                         if (fault_type) {
1672                                 *fault_type |= VM_FAULT_MAJOR;
1673                                 count_vm_event(PGMAJFAULT);
1674                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1675                         }
1676                         /* Here we actually start the io */
1677                         page = shmem_swapin(swap, gfp, info, index);
1678                         if (!page) {
1679                                 error = -ENOMEM;
1680                                 goto failed;
1681                         }
1682                 }
1683
1684                 /* We have to do this with page locked to prevent races */
1685                 lock_page(page);
1686                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1687                     !shmem_confirm_swap(mapping, index, swap)) {
1688                         error = -EEXIST;        /* try again */
1689                         goto unlock;
1690                 }
1691                 if (!PageUptodate(page)) {
1692                         error = -EIO;
1693                         goto failed;
1694                 }
1695                 wait_on_page_writeback(page);
1696
1697                 if (shmem_should_replace_page(page, gfp)) {
1698                         error = shmem_replace_page(&page, gfp, info, index);
1699                         if (error)
1700                                 goto failed;
1701                 }
1702
1703                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1704                                 false);
1705                 if (!error) {
1706                         error = shmem_add_to_page_cache(page, mapping, index,
1707                                                 swp_to_radix_entry(swap));
1708                         /*
1709                          * We already confirmed swap under page lock, and make
1710                          * no memory allocation here, so usually no possibility
1711                          * of error; but free_swap_and_cache() only trylocks a
1712                          * page, so it is just possible that the entry has been
1713                          * truncated or holepunched since swap was confirmed.
1714                          * shmem_undo_range() will have done some of the
1715                          * unaccounting, now delete_from_swap_cache() will do
1716                          * the rest.
1717                          * Reset swap.val? No, leave it so "failed" goes back to
1718                          * "repeat": reading a hole and writing should succeed.
1719                          */
1720                         if (error) {
1721                                 mem_cgroup_cancel_charge(page, memcg, false);
1722                                 delete_from_swap_cache(page);
1723                         }
1724                 }
1725                 if (error)
1726                         goto failed;
1727
1728                 mem_cgroup_commit_charge(page, memcg, true, false);
1729
1730                 spin_lock_irq(&info->lock);
1731                 info->swapped--;
1732                 shmem_recalc_inode(inode);
1733                 spin_unlock_irq(&info->lock);
1734
1735                 if (sgp == SGP_WRITE)
1736                         mark_page_accessed(page);
1737
1738                 delete_from_swap_cache(page);
1739                 set_page_dirty(page);
1740                 swap_free(swap);
1741
1742         } else {
1743                 if (vma && userfaultfd_missing(vma)) {
1744                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1745                         return 0;
1746                 }
1747
1748                 /* shmem_symlink() */
1749                 if (mapping->a_ops != &shmem_aops)
1750                         goto alloc_nohuge;
1751                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1752                         goto alloc_nohuge;
1753                 if (shmem_huge == SHMEM_HUGE_FORCE)
1754                         goto alloc_huge;
1755                 switch (sbinfo->huge) {
1756                         loff_t i_size;
1757                         pgoff_t off;
1758                 case SHMEM_HUGE_NEVER:
1759                         goto alloc_nohuge;
1760                 case SHMEM_HUGE_WITHIN_SIZE:
1761                         off = round_up(index, HPAGE_PMD_NR);
1762                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1763                         if (i_size >= HPAGE_PMD_SIZE &&
1764                                         i_size >> PAGE_SHIFT >= off)
1765                                 goto alloc_huge;
1766                         /* fallthrough */
1767                 case SHMEM_HUGE_ADVISE:
1768                         if (sgp_huge == SGP_HUGE)
1769                                 goto alloc_huge;
1770                         /* TODO: implement fadvise() hints */
1771                         goto alloc_nohuge;
1772                 }
1773
1774 alloc_huge:
1775                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1776                 if (IS_ERR(page)) {
1777 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1778                                         index, false);
1779                 }
1780                 if (IS_ERR(page)) {
1781                         int retry = 5;
1782                         error = PTR_ERR(page);
1783                         page = NULL;
1784                         if (error != -ENOSPC)
1785                                 goto failed;
1786                         /*
1787                          * Try to reclaim some spece by splitting a huge page
1788                          * beyond i_size on the filesystem.
1789                          */
1790                         while (retry--) {
1791                                 int ret;
1792                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1793                                 if (ret == SHRINK_STOP)
1794                                         break;
1795                                 if (ret)
1796                                         goto alloc_nohuge;
1797                         }
1798                         goto failed;
1799                 }
1800
1801                 if (PageTransHuge(page))
1802                         hindex = round_down(index, HPAGE_PMD_NR);
1803                 else
1804                         hindex = index;
1805
1806                 if (sgp == SGP_WRITE)
1807                         __SetPageReferenced(page);
1808
1809                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1810                                 PageTransHuge(page));
1811                 if (error)
1812                         goto unacct;
1813                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1814                                 compound_order(page));
1815                 if (!error) {
1816                         error = shmem_add_to_page_cache(page, mapping, hindex,
1817                                                         NULL);
1818                         radix_tree_preload_end();
1819                 }
1820                 if (error) {
1821                         mem_cgroup_cancel_charge(page, memcg,
1822                                         PageTransHuge(page));
1823                         goto unacct;
1824                 }
1825                 mem_cgroup_commit_charge(page, memcg, false,
1826                                 PageTransHuge(page));
1827                 lru_cache_add_anon(page);
1828
1829                 spin_lock_irq(&info->lock);
1830                 info->alloced += 1 << compound_order(page);
1831                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1832                 shmem_recalc_inode(inode);
1833                 spin_unlock_irq(&info->lock);
1834                 alloced = true;
1835
1836                 if (PageTransHuge(page) &&
1837                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1838                                 hindex + HPAGE_PMD_NR - 1) {
1839                         /*
1840                          * Part of the huge page is beyond i_size: subject
1841                          * to shrink under memory pressure.
1842                          */
1843                         spin_lock(&sbinfo->shrinklist_lock);
1844                         /*
1845                          * _careful to defend against unlocked access to
1846                          * ->shrink_list in shmem_unused_huge_shrink()
1847                          */
1848                         if (list_empty_careful(&info->shrinklist)) {
1849                                 list_add_tail(&info->shrinklist,
1850                                                 &sbinfo->shrinklist);
1851                                 sbinfo->shrinklist_len++;
1852                         }
1853                         spin_unlock(&sbinfo->shrinklist_lock);
1854                 }
1855
1856                 /*
1857                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1858                  */
1859                 if (sgp == SGP_FALLOC)
1860                         sgp = SGP_WRITE;
1861 clear:
1862                 /*
1863                  * Let SGP_WRITE caller clear ends if write does not fill page;
1864                  * but SGP_FALLOC on a page fallocated earlier must initialize
1865                  * it now, lest undo on failure cancel our earlier guarantee.
1866                  */
1867                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1868                         struct page *head = compound_head(page);
1869                         int i;
1870
1871                         for (i = 0; i < (1 << compound_order(head)); i++) {
1872                                 clear_highpage(head + i);
1873                                 flush_dcache_page(head + i);
1874                         }
1875                         SetPageUptodate(head);
1876                 }
1877         }
1878
1879         /* Perhaps the file has been truncated since we checked */
1880         if (sgp <= SGP_CACHE &&
1881             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1882                 if (alloced) {
1883                         ClearPageDirty(page);
1884                         delete_from_page_cache(page);
1885                         spin_lock_irq(&info->lock);
1886                         shmem_recalc_inode(inode);
1887                         spin_unlock_irq(&info->lock);
1888                 }
1889                 error = -EINVAL;
1890                 goto unlock;
1891         }
1892         *pagep = page + index - hindex;
1893         return 0;
1894
1895         /*
1896          * Error recovery.
1897          */
1898 unacct:
1899         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1900
1901         if (PageTransHuge(page)) {
1902                 unlock_page(page);
1903                 put_page(page);
1904                 goto alloc_nohuge;
1905         }
1906 failed:
1907         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1908                 error = -EEXIST;
1909 unlock:
1910         if (page) {
1911                 unlock_page(page);
1912                 put_page(page);
1913         }
1914         if (error == -ENOSPC && !once++) {
1915                 spin_lock_irq(&info->lock);
1916                 shmem_recalc_inode(inode);
1917                 spin_unlock_irq(&info->lock);
1918                 goto repeat;
1919         }
1920         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1921                 goto repeat;
1922         return error;
1923 }
1924
1925 /*
1926  * This is like autoremove_wake_function, but it removes the wait queue
1927  * entry unconditionally - even if something else had already woken the
1928  * target.
1929  */
1930 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1931 {
1932         int ret = default_wake_function(wait, mode, sync, key);
1933         list_del_init(&wait->entry);
1934         return ret;
1935 }
1936
1937 static int shmem_fault(struct vm_fault *vmf)
1938 {
1939         struct vm_area_struct *vma = vmf->vma;
1940         struct inode *inode = file_inode(vma->vm_file);
1941         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1942         enum sgp_type sgp;
1943         int error;
1944         int ret = VM_FAULT_LOCKED;
1945
1946         /*
1947          * Trinity finds that probing a hole which tmpfs is punching can
1948          * prevent the hole-punch from ever completing: which in turn
1949          * locks writers out with its hold on i_mutex.  So refrain from
1950          * faulting pages into the hole while it's being punched.  Although
1951          * shmem_undo_range() does remove the additions, it may be unable to
1952          * keep up, as each new page needs its own unmap_mapping_range() call,
1953          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1954          *
1955          * It does not matter if we sometimes reach this check just before the
1956          * hole-punch begins, so that one fault then races with the punch:
1957          * we just need to make racing faults a rare case.
1958          *
1959          * The implementation below would be much simpler if we just used a
1960          * standard mutex or completion: but we cannot take i_mutex in fault,
1961          * and bloating every shmem inode for this unlikely case would be sad.
1962          */
1963         if (unlikely(inode->i_private)) {
1964                 struct shmem_falloc *shmem_falloc;
1965
1966                 spin_lock(&inode->i_lock);
1967                 shmem_falloc = inode->i_private;
1968                 if (shmem_falloc &&
1969                     shmem_falloc->waitq &&
1970                     vmf->pgoff >= shmem_falloc->start &&
1971                     vmf->pgoff < shmem_falloc->next) {
1972                         wait_queue_head_t *shmem_falloc_waitq;
1973                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1974
1975                         ret = VM_FAULT_NOPAGE;
1976                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1977                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1978                                 /* It's polite to up mmap_sem if we can */
1979                                 up_read(&vma->vm_mm->mmap_sem);
1980                                 ret = VM_FAULT_RETRY;
1981                         }
1982
1983                         shmem_falloc_waitq = shmem_falloc->waitq;
1984                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1985                                         TASK_UNINTERRUPTIBLE);
1986                         spin_unlock(&inode->i_lock);
1987                         schedule();
1988
1989                         /*
1990                          * shmem_falloc_waitq points into the shmem_fallocate()
1991                          * stack of the hole-punching task: shmem_falloc_waitq
1992                          * is usually invalid by the time we reach here, but
1993                          * finish_wait() does not dereference it in that case;
1994                          * though i_lock needed lest racing with wake_up_all().
1995                          */
1996                         spin_lock(&inode->i_lock);
1997                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1998                         spin_unlock(&inode->i_lock);
1999                         return ret;
2000                 }
2001                 spin_unlock(&inode->i_lock);
2002         }
2003
2004         sgp = SGP_CACHE;
2005
2006         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2007             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2008                 sgp = SGP_NOHUGE;
2009         else if (vma->vm_flags & VM_HUGEPAGE)
2010                 sgp = SGP_HUGE;
2011
2012         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2013                                   gfp, vma, vmf, &ret);
2014         if (error)
2015                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2016         return ret;
2017 }
2018
2019 unsigned long shmem_get_unmapped_area(struct file *file,
2020                                       unsigned long uaddr, unsigned long len,
2021                                       unsigned long pgoff, unsigned long flags)
2022 {
2023         unsigned long (*get_area)(struct file *,
2024                 unsigned long, unsigned long, unsigned long, unsigned long);
2025         unsigned long addr;
2026         unsigned long offset;
2027         unsigned long inflated_len;
2028         unsigned long inflated_addr;
2029         unsigned long inflated_offset;
2030
2031         if (len > TASK_SIZE)
2032                 return -ENOMEM;
2033
2034         get_area = current->mm->get_unmapped_area;
2035         addr = get_area(file, uaddr, len, pgoff, flags);
2036
2037         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2038                 return addr;
2039         if (IS_ERR_VALUE(addr))
2040                 return addr;
2041         if (addr & ~PAGE_MASK)
2042                 return addr;
2043         if (addr > TASK_SIZE - len)
2044                 return addr;
2045
2046         if (shmem_huge == SHMEM_HUGE_DENY)
2047                 return addr;
2048         if (len < HPAGE_PMD_SIZE)
2049                 return addr;
2050         if (flags & MAP_FIXED)
2051                 return addr;
2052         /*
2053          * Our priority is to support MAP_SHARED mapped hugely;
2054          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055          * But if caller specified an address hint, respect that as before.
2056          */
2057         if (uaddr)
2058                 return addr;
2059
2060         if (shmem_huge != SHMEM_HUGE_FORCE) {
2061                 struct super_block *sb;
2062
2063                 if (file) {
2064                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2065                         sb = file_inode(file)->i_sb;
2066                 } else {
2067                         /*
2068                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2069                          * for "/dev/zero", to create a shared anonymous object.
2070                          */
2071                         if (IS_ERR(shm_mnt))
2072                                 return addr;
2073                         sb = shm_mnt->mnt_sb;
2074                 }
2075                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2076                         return addr;
2077         }
2078
2079         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2080         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2081                 return addr;
2082         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2083                 return addr;
2084
2085         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2086         if (inflated_len > TASK_SIZE)
2087                 return addr;
2088         if (inflated_len < len)
2089                 return addr;
2090
2091         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2092         if (IS_ERR_VALUE(inflated_addr))
2093                 return addr;
2094         if (inflated_addr & ~PAGE_MASK)
2095                 return addr;
2096
2097         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2098         inflated_addr += offset - inflated_offset;
2099         if (inflated_offset > offset)
2100                 inflated_addr += HPAGE_PMD_SIZE;
2101
2102         if (inflated_addr > TASK_SIZE - len)
2103                 return addr;
2104         return inflated_addr;
2105 }
2106
2107 #ifdef CONFIG_NUMA
2108 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2109 {
2110         struct inode *inode = file_inode(vma->vm_file);
2111         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2112 }
2113
2114 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2115                                           unsigned long addr)
2116 {
2117         struct inode *inode = file_inode(vma->vm_file);
2118         pgoff_t index;
2119
2120         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2121         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2122 }
2123 #endif
2124
2125 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2126 {
2127         struct inode *inode = file_inode(file);
2128         struct shmem_inode_info *info = SHMEM_I(inode);
2129         int retval = -ENOMEM;
2130
2131         spin_lock_irq(&info->lock);
2132         if (lock && !(info->flags & VM_LOCKED)) {
2133                 if (!user_shm_lock(inode->i_size, user))
2134                         goto out_nomem;
2135                 info->flags |= VM_LOCKED;
2136                 mapping_set_unevictable(file->f_mapping);
2137         }
2138         if (!lock && (info->flags & VM_LOCKED) && user) {
2139                 user_shm_unlock(inode->i_size, user);
2140                 info->flags &= ~VM_LOCKED;
2141                 mapping_clear_unevictable(file->f_mapping);
2142         }
2143         retval = 0;
2144
2145 out_nomem:
2146         spin_unlock_irq(&info->lock);
2147         return retval;
2148 }
2149
2150 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2151 {
2152         file_accessed(file);
2153         vma->vm_ops = &shmem_vm_ops;
2154         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2155                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2156                         (vma->vm_end & HPAGE_PMD_MASK)) {
2157                 khugepaged_enter(vma, vma->vm_flags);
2158         }
2159         return 0;
2160 }
2161
2162 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2163                                      umode_t mode, dev_t dev, unsigned long flags)
2164 {
2165         struct inode *inode;
2166         struct shmem_inode_info *info;
2167         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2168
2169         if (shmem_reserve_inode(sb))
2170                 return NULL;
2171
2172         inode = new_inode(sb);
2173         if (inode) {
2174                 inode->i_ino = get_next_ino();
2175                 inode_init_owner(inode, dir, mode);
2176                 inode->i_blocks = 0;
2177                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2178                 inode->i_generation = get_seconds();
2179                 info = SHMEM_I(inode);
2180                 memset(info, 0, (char *)inode - (char *)info);
2181                 spin_lock_init(&info->lock);
2182                 info->seals = F_SEAL_SEAL;
2183                 info->flags = flags & VM_NORESERVE;
2184                 INIT_LIST_HEAD(&info->shrinklist);
2185                 INIT_LIST_HEAD(&info->swaplist);
2186                 simple_xattrs_init(&info->xattrs);
2187                 cache_no_acl(inode);
2188
2189                 switch (mode & S_IFMT) {
2190                 default:
2191                         inode->i_op = &shmem_special_inode_operations;
2192                         init_special_inode(inode, mode, dev);
2193                         break;
2194                 case S_IFREG:
2195                         inode->i_mapping->a_ops = &shmem_aops;
2196                         inode->i_op = &shmem_inode_operations;
2197                         inode->i_fop = &shmem_file_operations;
2198                         mpol_shared_policy_init(&info->policy,
2199                                                  shmem_get_sbmpol(sbinfo));
2200                         break;
2201                 case S_IFDIR:
2202                         inc_nlink(inode);
2203                         /* Some things misbehave if size == 0 on a directory */
2204                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2205                         inode->i_op = &shmem_dir_inode_operations;
2206                         inode->i_fop = &simple_dir_operations;
2207                         break;
2208                 case S_IFLNK:
2209                         /*
2210                          * Must not load anything in the rbtree,
2211                          * mpol_free_shared_policy will not be called.
2212                          */
2213                         mpol_shared_policy_init(&info->policy, NULL);
2214                         break;
2215                 }
2216
2217                 lockdep_annotate_inode_mutex_key(inode);
2218         } else
2219                 shmem_free_inode(sb);
2220         return inode;
2221 }
2222
2223 bool shmem_mapping(struct address_space *mapping)
2224 {
2225         return mapping->a_ops == &shmem_aops;
2226 }
2227
2228 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2229                                   pmd_t *dst_pmd,
2230                                   struct vm_area_struct *dst_vma,
2231                                   unsigned long dst_addr,
2232                                   unsigned long src_addr,
2233                                   bool zeropage,
2234                                   struct page **pagep)
2235 {
2236         struct inode *inode = file_inode(dst_vma->vm_file);
2237         struct shmem_inode_info *info = SHMEM_I(inode);
2238         struct address_space *mapping = inode->i_mapping;
2239         gfp_t gfp = mapping_gfp_mask(mapping);
2240         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2241         struct mem_cgroup *memcg;
2242         spinlock_t *ptl;
2243         void *page_kaddr;
2244         struct page *page;
2245         pte_t _dst_pte, *dst_pte;
2246         int ret;
2247         pgoff_t offset, max_off;
2248
2249         ret = -ENOMEM;
2250         if (!shmem_inode_acct_block(inode, 1))
2251                 goto out;
2252
2253         if (!*pagep) {
2254                 page = shmem_alloc_page(gfp, info, pgoff);
2255                 if (!page)
2256                         goto out_unacct_blocks;
2257
2258                 if (!zeropage) {        /* mcopy_atomic */
2259                         page_kaddr = kmap_atomic(page);
2260                         ret = copy_from_user(page_kaddr,
2261                                              (const void __user *)src_addr,
2262                                              PAGE_SIZE);
2263                         kunmap_atomic(page_kaddr);
2264
2265                         /* fallback to copy_from_user outside mmap_sem */
2266                         if (unlikely(ret)) {
2267                                 *pagep = page;
2268                                 shmem_inode_unacct_blocks(inode, 1);
2269                                 /* don't free the page */
2270                                 return -ENOENT;
2271                         }
2272                 } else {                /* mfill_zeropage_atomic */
2273                         clear_highpage(page);
2274                 }
2275         } else {
2276                 page = *pagep;
2277                 *pagep = NULL;
2278         }
2279
2280         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2281         __SetPageLocked(page);
2282         __SetPageSwapBacked(page);
2283         __SetPageUptodate(page);
2284
2285         ret = -EFAULT;
2286         offset = linear_page_index(dst_vma, dst_addr);
2287         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2288         if (unlikely(offset >= max_off))
2289                 goto out_release;
2290
2291         ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2292         if (ret)
2293                 goto out_release;
2294
2295         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2296         if (!ret) {
2297                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2298                 radix_tree_preload_end();
2299         }
2300         if (ret)
2301                 goto out_release_uncharge;
2302
2303         mem_cgroup_commit_charge(page, memcg, false, false);
2304
2305         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2306         if (dst_vma->vm_flags & VM_WRITE)
2307                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2308         else {
2309                 /*
2310                  * We don't set the pte dirty if the vma has no
2311                  * VM_WRITE permission, so mark the page dirty or it
2312                  * could be freed from under us. We could do it
2313                  * unconditionally before unlock_page(), but doing it
2314                  * only if VM_WRITE is not set is faster.
2315                  */
2316                 set_page_dirty(page);
2317         }
2318
2319         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2320
2321         ret = -EFAULT;
2322         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2323         if (unlikely(offset >= max_off))
2324                 goto out_release_uncharge_unlock;
2325
2326         ret = -EEXIST;
2327         if (!pte_none(*dst_pte))
2328                 goto out_release_uncharge_unlock;
2329
2330         lru_cache_add_anon(page);
2331
2332         spin_lock(&info->lock);
2333         info->alloced++;
2334         inode->i_blocks += BLOCKS_PER_PAGE;
2335         shmem_recalc_inode(inode);
2336         spin_unlock(&info->lock);
2337
2338         inc_mm_counter(dst_mm, mm_counter_file(page));
2339         page_add_file_rmap(page, false);
2340         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2341
2342         /* No need to invalidate - it was non-present before */
2343         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2344         pte_unmap_unlock(dst_pte, ptl);
2345         unlock_page(page);
2346         ret = 0;
2347 out:
2348         return ret;
2349 out_release_uncharge_unlock:
2350         pte_unmap_unlock(dst_pte, ptl);
2351         ClearPageDirty(page);
2352         delete_from_page_cache(page);
2353 out_release_uncharge:
2354         mem_cgroup_cancel_charge(page, memcg, false);
2355 out_release:
2356         unlock_page(page);
2357         put_page(page);
2358 out_unacct_blocks:
2359         shmem_inode_unacct_blocks(inode, 1);
2360         goto out;
2361 }
2362
2363 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2364                            pmd_t *dst_pmd,
2365                            struct vm_area_struct *dst_vma,
2366                            unsigned long dst_addr,
2367                            unsigned long src_addr,
2368                            struct page **pagep)
2369 {
2370         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371                                       dst_addr, src_addr, false, pagep);
2372 }
2373
2374 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2375                              pmd_t *dst_pmd,
2376                              struct vm_area_struct *dst_vma,
2377                              unsigned long dst_addr)
2378 {
2379         struct page *page = NULL;
2380
2381         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2382                                       dst_addr, 0, true, &page);
2383 }
2384
2385 #ifdef CONFIG_TMPFS
2386 static const struct inode_operations shmem_symlink_inode_operations;
2387 static const struct inode_operations shmem_short_symlink_operations;
2388
2389 #ifdef CONFIG_TMPFS_XATTR
2390 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2391 #else
2392 #define shmem_initxattrs NULL
2393 #endif
2394
2395 static int
2396 shmem_write_begin(struct file *file, struct address_space *mapping,
2397                         loff_t pos, unsigned len, unsigned flags,
2398                         struct page **pagep, void **fsdata)
2399 {
2400         struct inode *inode = mapping->host;
2401         struct shmem_inode_info *info = SHMEM_I(inode);
2402         pgoff_t index = pos >> PAGE_SHIFT;
2403
2404         /* i_mutex is held by caller */
2405         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2406                 if (info->seals & F_SEAL_WRITE)
2407                         return -EPERM;
2408                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2409                         return -EPERM;
2410         }
2411
2412         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2413 }
2414
2415 static int
2416 shmem_write_end(struct file *file, struct address_space *mapping,
2417                         loff_t pos, unsigned len, unsigned copied,
2418                         struct page *page, void *fsdata)
2419 {
2420         struct inode *inode = mapping->host;
2421
2422         if (pos + copied > inode->i_size)
2423                 i_size_write(inode, pos + copied);
2424
2425         if (!PageUptodate(page)) {
2426                 struct page *head = compound_head(page);
2427                 if (PageTransCompound(page)) {
2428                         int i;
2429
2430                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2431                                 if (head + i == page)
2432                                         continue;
2433                                 clear_highpage(head + i);
2434                                 flush_dcache_page(head + i);
2435                         }
2436                 }
2437                 if (copied < PAGE_SIZE) {
2438                         unsigned from = pos & (PAGE_SIZE - 1);
2439                         zero_user_segments(page, 0, from,
2440                                         from + copied, PAGE_SIZE);
2441                 }
2442                 SetPageUptodate(head);
2443         }
2444         set_page_dirty(page);
2445         unlock_page(page);
2446         put_page(page);
2447
2448         return copied;
2449 }
2450
2451 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2452 {
2453         struct file *file = iocb->ki_filp;
2454         struct inode *inode = file_inode(file);
2455         struct address_space *mapping = inode->i_mapping;
2456         pgoff_t index;
2457         unsigned long offset;
2458         enum sgp_type sgp = SGP_READ;
2459         int error = 0;
2460         ssize_t retval = 0;
2461         loff_t *ppos = &iocb->ki_pos;
2462
2463         /*
2464          * Might this read be for a stacking filesystem?  Then when reading
2465          * holes of a sparse file, we actually need to allocate those pages,
2466          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2467          */
2468         if (!iter_is_iovec(to))
2469                 sgp = SGP_CACHE;
2470
2471         index = *ppos >> PAGE_SHIFT;
2472         offset = *ppos & ~PAGE_MASK;
2473
2474         for (;;) {
2475                 struct page *page = NULL;
2476                 pgoff_t end_index;
2477                 unsigned long nr, ret;
2478                 loff_t i_size = i_size_read(inode);
2479
2480                 end_index = i_size >> PAGE_SHIFT;
2481                 if (index > end_index)
2482                         break;
2483                 if (index == end_index) {
2484                         nr = i_size & ~PAGE_MASK;
2485                         if (nr <= offset)
2486                                 break;
2487                 }
2488
2489                 error = shmem_getpage(inode, index, &page, sgp);
2490                 if (error) {
2491                         if (error == -EINVAL)
2492                                 error = 0;
2493                         break;
2494                 }
2495                 if (page) {
2496                         if (sgp == SGP_CACHE)
2497                                 set_page_dirty(page);
2498                         unlock_page(page);
2499                 }
2500
2501                 /*
2502                  * We must evaluate after, since reads (unlike writes)
2503                  * are called without i_mutex protection against truncate
2504                  */
2505                 nr = PAGE_SIZE;
2506                 i_size = i_size_read(inode);
2507                 end_index = i_size >> PAGE_SHIFT;
2508                 if (index == end_index) {
2509                         nr = i_size & ~PAGE_MASK;
2510                         if (nr <= offset) {
2511                                 if (page)
2512                                         put_page(page);
2513                                 break;
2514                         }
2515                 }
2516                 nr -= offset;
2517
2518                 if (page) {
2519                         /*
2520                          * If users can be writing to this page using arbitrary
2521                          * virtual addresses, take care about potential aliasing
2522                          * before reading the page on the kernel side.
2523                          */
2524                         if (mapping_writably_mapped(mapping))
2525                                 flush_dcache_page(page);
2526                         /*
2527                          * Mark the page accessed if we read the beginning.
2528                          */
2529                         if (!offset)
2530                                 mark_page_accessed(page);
2531                 } else {
2532                         page = ZERO_PAGE(0);
2533                         get_page(page);
2534                 }
2535
2536                 /*
2537                  * Ok, we have the page, and it's up-to-date, so
2538                  * now we can copy it to user space...
2539                  */
2540                 ret = copy_page_to_iter(page, offset, nr, to);
2541                 retval += ret;
2542                 offset += ret;
2543                 index += offset >> PAGE_SHIFT;
2544                 offset &= ~PAGE_MASK;
2545
2546                 put_page(page);
2547                 if (!iov_iter_count(to))
2548                         break;
2549                 if (ret < nr) {
2550                         error = -EFAULT;
2551                         break;
2552                 }
2553                 cond_resched();
2554         }
2555
2556         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2557         file_accessed(file);
2558         return retval ? retval : error;
2559 }
2560
2561 /*
2562  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2563  */
2564 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2565                                     pgoff_t index, pgoff_t end, int whence)
2566 {
2567         struct page *page;
2568         struct pagevec pvec;
2569         pgoff_t indices[PAGEVEC_SIZE];
2570         bool done = false;
2571         int i;
2572
2573         pagevec_init(&pvec, 0);
2574         pvec.nr = 1;            /* start small: we may be there already */
2575         while (!done) {
2576                 pvec.nr = find_get_entries(mapping, index,
2577                                         pvec.nr, pvec.pages, indices);
2578                 if (!pvec.nr) {
2579                         if (whence == SEEK_DATA)
2580                                 index = end;
2581                         break;
2582                 }
2583                 for (i = 0; i < pvec.nr; i++, index++) {
2584                         if (index < indices[i]) {
2585                                 if (whence == SEEK_HOLE) {
2586                                         done = true;
2587                                         break;
2588                                 }
2589                                 index = indices[i];
2590                         }
2591                         page = pvec.pages[i];
2592                         if (page && !radix_tree_exceptional_entry(page)) {
2593                                 if (!PageUptodate(page))
2594                                         page = NULL;
2595                         }
2596                         if (index >= end ||
2597                             (page && whence == SEEK_DATA) ||
2598                             (!page && whence == SEEK_HOLE)) {
2599                                 done = true;
2600                                 break;
2601                         }
2602                 }
2603                 pagevec_remove_exceptionals(&pvec);
2604                 pagevec_release(&pvec);
2605                 pvec.nr = PAGEVEC_SIZE;
2606                 cond_resched();
2607         }
2608         return index;
2609 }
2610
2611 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2612 {
2613         struct address_space *mapping = file->f_mapping;
2614         struct inode *inode = mapping->host;
2615         pgoff_t start, end;
2616         loff_t new_offset;
2617
2618         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2619                 return generic_file_llseek_size(file, offset, whence,
2620                                         MAX_LFS_FILESIZE, i_size_read(inode));
2621         inode_lock(inode);
2622         /* We're holding i_mutex so we can access i_size directly */
2623
2624         if (offset < 0 || offset >= inode->i_size)
2625                 offset = -ENXIO;
2626         else {
2627                 start = offset >> PAGE_SHIFT;
2628                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2629                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2630                 new_offset <<= PAGE_SHIFT;
2631                 if (new_offset > offset) {
2632                         if (new_offset < inode->i_size)
2633                                 offset = new_offset;
2634                         else if (whence == SEEK_DATA)
2635                                 offset = -ENXIO;
2636                         else
2637                                 offset = inode->i_size;
2638                 }
2639         }
2640
2641         if (offset >= 0)
2642                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2643         inode_unlock(inode);
2644         return offset;
2645 }
2646
2647 /*
2648  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2649  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2650  */
2651 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2652 #define LAST_SCAN               4       /* about 150ms max */
2653
2654 static void shmem_tag_pins(struct address_space *mapping)
2655 {
2656         struct radix_tree_iter iter;
2657         void **slot;
2658         pgoff_t start;
2659         struct page *page;
2660
2661         lru_add_drain();
2662         start = 0;
2663         rcu_read_lock();
2664
2665         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2666                 page = radix_tree_deref_slot(slot);
2667                 if (!page || radix_tree_exception(page)) {
2668                         if (radix_tree_deref_retry(page)) {
2669                                 slot = radix_tree_iter_retry(&iter);
2670                                 continue;
2671                         }
2672                 } else if (page_count(page) - page_mapcount(page) > 1) {
2673                         spin_lock_irq(&mapping->tree_lock);
2674                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2675                                            SHMEM_TAG_PINNED);
2676                         spin_unlock_irq(&mapping->tree_lock);
2677                 }
2678
2679                 if (need_resched()) {
2680                         slot = radix_tree_iter_resume(slot, &iter);
2681                         cond_resched_rcu();
2682                 }
2683         }
2684         rcu_read_unlock();
2685 }
2686
2687 /*
2688  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2689  * via get_user_pages(), drivers might have some pending I/O without any active
2690  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2691  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2692  * them to be dropped.
2693  * The caller must guarantee that no new user will acquire writable references
2694  * to those pages to avoid races.
2695  */
2696 static int shmem_wait_for_pins(struct address_space *mapping)
2697 {
2698         struct radix_tree_iter iter;
2699         void **slot;
2700         pgoff_t start;
2701         struct page *page;
2702         int error, scan;
2703
2704         shmem_tag_pins(mapping);
2705
2706         error = 0;
2707         for (scan = 0; scan <= LAST_SCAN; scan++) {
2708                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2709                         break;
2710
2711                 if (!scan)
2712                         lru_add_drain_all();
2713                 else if (schedule_timeout_killable((HZ << scan) / 200))
2714                         scan = LAST_SCAN;
2715
2716                 start = 0;
2717                 rcu_read_lock();
2718                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2719                                            start, SHMEM_TAG_PINNED) {
2720
2721                         page = radix_tree_deref_slot(slot);
2722                         if (radix_tree_exception(page)) {
2723                                 if (radix_tree_deref_retry(page)) {
2724                                         slot = radix_tree_iter_retry(&iter);
2725                                         continue;
2726                                 }
2727
2728                                 page = NULL;
2729                         }
2730
2731                         if (page &&
2732                             page_count(page) - page_mapcount(page) != 1) {
2733                                 if (scan < LAST_SCAN)
2734                                         goto continue_resched;
2735
2736                                 /*
2737                                  * On the last scan, we clean up all those tags
2738                                  * we inserted; but make a note that we still
2739                                  * found pages pinned.
2740                                  */
2741                                 error = -EBUSY;
2742                         }
2743
2744                         spin_lock_irq(&mapping->tree_lock);
2745                         radix_tree_tag_clear(&mapping->page_tree,
2746                                              iter.index, SHMEM_TAG_PINNED);
2747                         spin_unlock_irq(&mapping->tree_lock);
2748 continue_resched:
2749                         if (need_resched()) {
2750                                 slot = radix_tree_iter_resume(slot, &iter);
2751                                 cond_resched_rcu();
2752                         }
2753                 }
2754                 rcu_read_unlock();
2755         }
2756
2757         return error;
2758 }
2759
2760 #define F_ALL_SEALS (F_SEAL_SEAL | \
2761                      F_SEAL_SHRINK | \
2762                      F_SEAL_GROW | \
2763                      F_SEAL_WRITE)
2764
2765 int shmem_add_seals(struct file *file, unsigned int seals)
2766 {
2767         struct inode *inode = file_inode(file);
2768         struct shmem_inode_info *info = SHMEM_I(inode);
2769         int error;
2770
2771         /*
2772          * SEALING
2773          * Sealing allows multiple parties to share a shmem-file but restrict
2774          * access to a specific subset of file operations. Seals can only be
2775          * added, but never removed. This way, mutually untrusted parties can
2776          * share common memory regions with a well-defined policy. A malicious
2777          * peer can thus never perform unwanted operations on a shared object.
2778          *
2779          * Seals are only supported on special shmem-files and always affect
2780          * the whole underlying inode. Once a seal is set, it may prevent some
2781          * kinds of access to the file. Currently, the following seals are
2782          * defined:
2783          *   SEAL_SEAL: Prevent further seals from being set on this file
2784          *   SEAL_SHRINK: Prevent the file from shrinking
2785          *   SEAL_GROW: Prevent the file from growing
2786          *   SEAL_WRITE: Prevent write access to the file
2787          *
2788          * As we don't require any trust relationship between two parties, we
2789          * must prevent seals from being removed. Therefore, sealing a file
2790          * only adds a given set of seals to the file, it never touches
2791          * existing seals. Furthermore, the "setting seals"-operation can be
2792          * sealed itself, which basically prevents any further seal from being
2793          * added.
2794          *
2795          * Semantics of sealing are only defined on volatile files. Only
2796          * anonymous shmem files support sealing. More importantly, seals are
2797          * never written to disk. Therefore, there's no plan to support it on
2798          * other file types.
2799          */
2800
2801         if (file->f_op != &shmem_file_operations)
2802                 return -EINVAL;
2803         if (!(file->f_mode & FMODE_WRITE))
2804                 return -EPERM;
2805         if (seals & ~(unsigned int)F_ALL_SEALS)
2806                 return -EINVAL;
2807
2808         inode_lock(inode);
2809
2810         if (info->seals & F_SEAL_SEAL) {
2811                 error = -EPERM;
2812                 goto unlock;
2813         }
2814
2815         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2816                 error = mapping_deny_writable(file->f_mapping);
2817                 if (error)
2818                         goto unlock;
2819
2820                 error = shmem_wait_for_pins(file->f_mapping);
2821                 if (error) {
2822                         mapping_allow_writable(file->f_mapping);
2823                         goto unlock;
2824                 }
2825         }
2826
2827         info->seals |= seals;
2828         error = 0;
2829
2830 unlock:
2831         inode_unlock(inode);
2832         return error;
2833 }
2834 EXPORT_SYMBOL_GPL(shmem_add_seals);
2835
2836 int shmem_get_seals(struct file *file)
2837 {
2838         if (file->f_op != &shmem_file_operations)
2839                 return -EINVAL;
2840
2841         return SHMEM_I(file_inode(file))->seals;
2842 }
2843 EXPORT_SYMBOL_GPL(shmem_get_seals);
2844
2845 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2846 {
2847         long error;
2848
2849         switch (cmd) {
2850         case F_ADD_SEALS:
2851                 /* disallow upper 32bit */
2852                 if (arg > UINT_MAX)
2853                         return -EINVAL;
2854
2855                 error = shmem_add_seals(file, arg);
2856                 break;
2857         case F_GET_SEALS:
2858                 error = shmem_get_seals(file);
2859                 break;
2860         default:
2861                 error = -EINVAL;
2862                 break;
2863         }
2864
2865         return error;
2866 }
2867
2868 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2869                                                          loff_t len)
2870 {
2871         struct inode *inode = file_inode(file);
2872         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2873         struct shmem_inode_info *info = SHMEM_I(inode);
2874         struct shmem_falloc shmem_falloc;
2875         pgoff_t start, index, end;
2876         int error;
2877
2878         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2879                 return -EOPNOTSUPP;
2880
2881         inode_lock(inode);
2882
2883         if (mode & FALLOC_FL_PUNCH_HOLE) {
2884                 struct address_space *mapping = file->f_mapping;
2885                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2886                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2887                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2888
2889                 /* protected by i_mutex */
2890                 if (info->seals & F_SEAL_WRITE) {
2891                         error = -EPERM;
2892                         goto out;
2893                 }
2894
2895                 shmem_falloc.waitq = &shmem_falloc_waitq;
2896                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2897                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2898                 spin_lock(&inode->i_lock);
2899                 inode->i_private = &shmem_falloc;
2900                 spin_unlock(&inode->i_lock);
2901
2902                 if ((u64)unmap_end > (u64)unmap_start)
2903                         unmap_mapping_range(mapping, unmap_start,
2904                                             1 + unmap_end - unmap_start, 0);
2905                 shmem_truncate_range(inode, offset, offset + len - 1);
2906                 /* No need to unmap again: hole-punching leaves COWed pages */
2907
2908                 spin_lock(&inode->i_lock);
2909                 inode->i_private = NULL;
2910                 wake_up_all(&shmem_falloc_waitq);
2911                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2912                 spin_unlock(&inode->i_lock);
2913                 error = 0;
2914                 goto out;
2915         }
2916
2917         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2918         error = inode_newsize_ok(inode, offset + len);
2919         if (error)
2920                 goto out;
2921
2922         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2923                 error = -EPERM;
2924                 goto out;
2925         }
2926
2927         start = offset >> PAGE_SHIFT;
2928         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2929         /* Try to avoid a swapstorm if len is impossible to satisfy */
2930         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2931                 error = -ENOSPC;
2932                 goto out;
2933         }
2934
2935         shmem_falloc.waitq = NULL;
2936         shmem_falloc.start = start;
2937         shmem_falloc.next  = start;
2938         shmem_falloc.nr_falloced = 0;
2939         shmem_falloc.nr_unswapped = 0;
2940         spin_lock(&inode->i_lock);
2941         inode->i_private = &shmem_falloc;
2942         spin_unlock(&inode->i_lock);
2943
2944         for (index = start; index < end; index++) {
2945                 struct page *page;
2946
2947                 /*
2948                  * Good, the fallocate(2) manpage permits EINTR: we may have
2949                  * been interrupted because we are using up too much memory.
2950                  */
2951                 if (signal_pending(current))
2952                         error = -EINTR;
2953                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2954                         error = -ENOMEM;
2955                 else
2956                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2957                 if (error) {
2958                         /* Remove the !PageUptodate pages we added */
2959                         if (index > start) {
2960                                 shmem_undo_range(inode,
2961                                     (loff_t)start << PAGE_SHIFT,
2962                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2963                         }
2964                         goto undone;
2965                 }
2966
2967                 /*
2968                  * Inform shmem_writepage() how far we have reached.
2969                  * No need for lock or barrier: we have the page lock.
2970                  */
2971                 shmem_falloc.next++;
2972                 if (!PageUptodate(page))
2973                         shmem_falloc.nr_falloced++;
2974
2975                 /*
2976                  * If !PageUptodate, leave it that way so that freeable pages
2977                  * can be recognized if we need to rollback on error later.
2978                  * But set_page_dirty so that memory pressure will swap rather
2979                  * than free the pages we are allocating (and SGP_CACHE pages
2980                  * might still be clean: we now need to mark those dirty too).
2981                  */
2982                 set_page_dirty(page);
2983                 unlock_page(page);
2984                 put_page(page);
2985                 cond_resched();
2986         }
2987
2988         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2989                 i_size_write(inode, offset + len);
2990         inode->i_ctime = current_time(inode);
2991 undone:
2992         spin_lock(&inode->i_lock);
2993         inode->i_private = NULL;
2994         spin_unlock(&inode->i_lock);
2995 out:
2996         inode_unlock(inode);
2997         return error;
2998 }
2999
3000 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3001 {
3002         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3003
3004         buf->f_type = TMPFS_MAGIC;
3005         buf->f_bsize = PAGE_SIZE;
3006         buf->f_namelen = NAME_MAX;
3007         if (sbinfo->max_blocks) {
3008                 buf->f_blocks = sbinfo->max_blocks;
3009                 buf->f_bavail =
3010                 buf->f_bfree  = sbinfo->max_blocks -
3011                                 percpu_counter_sum(&sbinfo->used_blocks);
3012         }
3013         if (sbinfo->max_inodes) {
3014                 buf->f_files = sbinfo->max_inodes;
3015                 buf->f_ffree = sbinfo->free_inodes;
3016         }
3017         /* else leave those fields 0 like simple_statfs */
3018         return 0;
3019 }
3020
3021 /*
3022  * File creation. Allocate an inode, and we're done..
3023  */
3024 static int
3025 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3026 {
3027         struct inode *inode;
3028         int error = -ENOSPC;
3029
3030         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3031         if (inode) {
3032                 error = simple_acl_create(dir, inode);
3033                 if (error)
3034                         goto out_iput;
3035                 error = security_inode_init_security(inode, dir,
3036                                                      &dentry->d_name,
3037                                                      shmem_initxattrs, NULL);
3038                 if (error && error != -EOPNOTSUPP)
3039                         goto out_iput;
3040
3041                 error = 0;
3042                 dir->i_size += BOGO_DIRENT_SIZE;
3043                 dir->i_ctime = dir->i_mtime = current_time(dir);
3044                 d_instantiate(dentry, inode);
3045                 dget(dentry); /* Extra count - pin the dentry in core */
3046         }
3047         return error;
3048 out_iput:
3049         iput(inode);
3050         return error;
3051 }
3052
3053 static int
3054 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3055 {
3056         struct inode *inode;
3057         int error = -ENOSPC;
3058
3059         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3060         if (inode) {
3061                 error = security_inode_init_security(inode, dir,
3062                                                      NULL,
3063                                                      shmem_initxattrs, NULL);
3064                 if (error && error != -EOPNOTSUPP)
3065                         goto out_iput;
3066                 error = simple_acl_create(dir, inode);
3067                 if (error)
3068                         goto out_iput;
3069                 d_tmpfile(dentry, inode);
3070         }
3071         return error;
3072 out_iput:
3073         iput(inode);
3074         return error;
3075 }
3076
3077 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3078 {
3079         int error;
3080
3081         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3082                 return error;
3083         inc_nlink(dir);
3084         return 0;
3085 }
3086
3087 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3088                 bool excl)
3089 {
3090         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3091 }
3092
3093 /*
3094  * Link a file..
3095  */
3096 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3097 {
3098         struct inode *inode = d_inode(old_dentry);
3099         int ret;
3100
3101         /*
3102          * No ordinary (disk based) filesystem counts links as inodes;
3103          * but each new link needs a new dentry, pinning lowmem, and
3104          * tmpfs dentries cannot be pruned until they are unlinked.
3105          */
3106         ret = shmem_reserve_inode(inode->i_sb);
3107         if (ret)
3108                 goto out;
3109
3110         dir->i_size += BOGO_DIRENT_SIZE;
3111         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3112         inc_nlink(inode);
3113         ihold(inode);   /* New dentry reference */
3114         dget(dentry);           /* Extra pinning count for the created dentry */
3115         d_instantiate(dentry, inode);
3116 out:
3117         return ret;
3118 }
3119
3120 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3121 {
3122         struct inode *inode = d_inode(dentry);
3123
3124         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3125                 shmem_free_inode(inode->i_sb);
3126
3127         dir->i_size -= BOGO_DIRENT_SIZE;
3128         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3129         drop_nlink(inode);
3130         dput(dentry);   /* Undo the count from "create" - this does all the work */
3131         return 0;
3132 }
3133
3134 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3135 {
3136         if (!simple_empty(dentry))
3137                 return -ENOTEMPTY;
3138
3139         drop_nlink(d_inode(dentry));
3140         drop_nlink(dir);
3141         return shmem_unlink(dir, dentry);
3142 }
3143
3144 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3145 {
3146         bool old_is_dir = d_is_dir(old_dentry);
3147         bool new_is_dir = d_is_dir(new_dentry);
3148
3149         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3150                 if (old_is_dir) {
3151                         drop_nlink(old_dir);
3152                         inc_nlink(new_dir);
3153                 } else {
3154                         drop_nlink(new_dir);
3155                         inc_nlink(old_dir);
3156                 }
3157         }
3158         old_dir->i_ctime = old_dir->i_mtime =
3159         new_dir->i_ctime = new_dir->i_mtime =
3160         d_inode(old_dentry)->i_ctime =
3161         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3162
3163         return 0;
3164 }
3165
3166 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3167 {
3168         struct dentry *whiteout;
3169         int error;
3170
3171         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3172         if (!whiteout)
3173                 return -ENOMEM;
3174
3175         error = shmem_mknod(old_dir, whiteout,
3176                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3177         dput(whiteout);
3178         if (error)
3179                 return error;
3180
3181         /*
3182          * Cheat and hash the whiteout while the old dentry is still in
3183          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3184          *
3185          * d_lookup() will consistently find one of them at this point,
3186          * not sure which one, but that isn't even important.
3187          */
3188         d_rehash(whiteout);
3189         return 0;
3190 }
3191
3192 /*
3193  * The VFS layer already does all the dentry stuff for rename,
3194  * we just have to decrement the usage count for the target if
3195  * it exists so that the VFS layer correctly free's it when it
3196  * gets overwritten.
3197  */
3198 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3199 {
3200         struct inode *inode = d_inode(old_dentry);
3201         int they_are_dirs = S_ISDIR(inode->i_mode);
3202
3203         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3204                 return -EINVAL;
3205
3206         if (flags & RENAME_EXCHANGE)
3207                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3208
3209         if (!simple_empty(new_dentry))
3210                 return -ENOTEMPTY;
3211
3212         if (flags & RENAME_WHITEOUT) {
3213                 int error;
3214
3215                 error = shmem_whiteout(old_dir, old_dentry);
3216                 if (error)
3217                         return error;
3218         }
3219
3220         if (d_really_is_positive(new_dentry)) {
3221                 (void) shmem_unlink(new_dir, new_dentry);
3222                 if (they_are_dirs) {
3223                         drop_nlink(d_inode(new_dentry));
3224                         drop_nlink(old_dir);
3225                 }
3226         } else if (they_are_dirs) {
3227                 drop_nlink(old_dir);
3228                 inc_nlink(new_dir);
3229         }
3230
3231         old_dir->i_size -= BOGO_DIRENT_SIZE;
3232         new_dir->i_size += BOGO_DIRENT_SIZE;
3233         old_dir->i_ctime = old_dir->i_mtime =
3234         new_dir->i_ctime = new_dir->i_mtime =
3235         inode->i_ctime = current_time(old_dir);
3236         return 0;
3237 }
3238
3239 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3240 {
3241         int error;
3242         int len;
3243         struct inode *inode;
3244         struct page *page;
3245         struct shmem_inode_info *info;
3246
3247         len = strlen(symname) + 1;
3248         if (len > PAGE_SIZE)
3249                 return -ENAMETOOLONG;
3250
3251         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3252         if (!inode)
3253                 return -ENOSPC;
3254
3255         error = security_inode_init_security(inode, dir, &dentry->d_name,
3256                                              shmem_initxattrs, NULL);
3257         if (error) {
3258                 if (error != -EOPNOTSUPP) {
3259                         iput(inode);
3260                         return error;
3261                 }
3262                 error = 0;
3263         }
3264
3265         info = SHMEM_I(inode);
3266         inode->i_size = len-1;
3267         if (len <= SHORT_SYMLINK_LEN) {
3268                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3269                 if (!inode->i_link) {
3270                         iput(inode);
3271                         return -ENOMEM;
3272                 }
3273                 inode->i_op = &shmem_short_symlink_operations;
3274         } else {
3275                 inode_nohighmem(inode);
3276                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3277                 if (error) {
3278                         iput(inode);
3279                         return error;
3280                 }
3281                 inode->i_mapping->a_ops = &shmem_aops;
3282                 inode->i_op = &shmem_symlink_inode_operations;
3283                 memcpy(page_address(page), symname, len);
3284                 SetPageUptodate(page);
3285                 set_page_dirty(page);
3286                 unlock_page(page);
3287                 put_page(page);
3288         }
3289         dir->i_size += BOGO_DIRENT_SIZE;
3290         dir->i_ctime = dir->i_mtime = current_time(dir);
3291         d_instantiate(dentry, inode);
3292         dget(dentry);
3293         return 0;
3294 }
3295
3296 static void shmem_put_link(void *arg)
3297 {
3298         mark_page_accessed(arg);
3299         put_page(arg);
3300 }
3301
3302 static const char *shmem_get_link(struct dentry *dentry,
3303                                   struct inode *inode,
3304                                   struct delayed_call *done)
3305 {
3306         struct page *page = NULL;
3307         int error;
3308         if (!dentry) {
3309                 page = find_get_page(inode->i_mapping, 0);
3310                 if (!page)
3311                         return ERR_PTR(-ECHILD);
3312                 if (!PageUptodate(page)) {
3313                         put_page(page);
3314                         return ERR_PTR(-ECHILD);
3315                 }
3316         } else {
3317                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3318                 if (error)
3319                         return ERR_PTR(error);
3320                 unlock_page(page);
3321         }
3322         set_delayed_call(done, shmem_put_link, page);
3323         return page_address(page);
3324 }
3325
3326 #ifdef CONFIG_TMPFS_XATTR
3327 /*
3328  * Superblocks without xattr inode operations may get some security.* xattr
3329  * support from the LSM "for free". As soon as we have any other xattrs
3330  * like ACLs, we also need to implement the security.* handlers at
3331  * filesystem level, though.
3332  */
3333
3334 /*
3335  * Callback for security_inode_init_security() for acquiring xattrs.
3336  */
3337 static int shmem_initxattrs(struct inode *inode,
3338                             const struct xattr *xattr_array,
3339                             void *fs_info)
3340 {
3341         struct shmem_inode_info *info = SHMEM_I(inode);
3342         const struct xattr *xattr;
3343         struct simple_xattr *new_xattr;
3344         size_t len;
3345
3346         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3347                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3348                 if (!new_xattr)
3349                         return -ENOMEM;
3350
3351                 len = strlen(xattr->name) + 1;
3352                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3353                                           GFP_KERNEL);
3354                 if (!new_xattr->name) {
3355                         kfree(new_xattr);
3356                         return -ENOMEM;
3357                 }
3358
3359                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3360                        XATTR_SECURITY_PREFIX_LEN);
3361                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3362                        xattr->name, len);
3363
3364                 simple_xattr_list_add(&info->xattrs, new_xattr);
3365         }
3366
3367         return 0;
3368 }
3369
3370 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3371                                    struct dentry *unused, struct inode *inode,
3372                                    const char *name, void *buffer, size_t size)
3373 {
3374         struct shmem_inode_info *info = SHMEM_I(inode);
3375
3376         name = xattr_full_name(handler, name);
3377         return simple_xattr_get(&info->xattrs, name, buffer, size);
3378 }
3379
3380 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3381                                    struct dentry *unused, struct inode *inode,
3382                                    const char *name, const void *value,
3383                                    size_t size, int flags)
3384 {
3385         struct shmem_inode_info *info = SHMEM_I(inode);
3386
3387         name = xattr_full_name(handler, name);
3388         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3389 }
3390
3391 static const struct xattr_handler shmem_security_xattr_handler = {
3392         .prefix = XATTR_SECURITY_PREFIX,
3393         .get = shmem_xattr_handler_get,
3394         .set = shmem_xattr_handler_set,
3395 };
3396
3397 static const struct xattr_handler shmem_trusted_xattr_handler = {
3398         .prefix = XATTR_TRUSTED_PREFIX,
3399         .get = shmem_xattr_handler_get,
3400         .set = shmem_xattr_handler_set,
3401 };
3402
3403 static const struct xattr_handler *shmem_xattr_handlers[] = {
3404 #ifdef CONFIG_TMPFS_POSIX_ACL
3405         &posix_acl_access_xattr_handler,
3406         &posix_acl_default_xattr_handler,
3407 #endif
3408         &shmem_security_xattr_handler,
3409         &shmem_trusted_xattr_handler,
3410         NULL
3411 };
3412
3413 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3414 {
3415         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3416         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3417 }
3418 #endif /* CONFIG_TMPFS_XATTR */
3419
3420 static const struct inode_operations shmem_short_symlink_operations = {
3421         .get_link       = simple_get_link,
3422 #ifdef CONFIG_TMPFS_XATTR
3423         .listxattr      = shmem_listxattr,
3424 #endif
3425 };
3426
3427 static const struct inode_operations shmem_symlink_inode_operations = {
3428         .get_link       = shmem_get_link,
3429 #ifdef CONFIG_TMPFS_XATTR
3430         .listxattr      = shmem_listxattr,
3431 #endif
3432 };
3433
3434 static struct dentry *shmem_get_parent(struct dentry *child)
3435 {
3436         return ERR_PTR(-ESTALE);
3437 }
3438
3439 static int shmem_match(struct inode *ino, void *vfh)
3440 {
3441         __u32 *fh = vfh;
3442         __u64 inum = fh[2];
3443         inum = (inum << 32) | fh[1];
3444         return ino->i_ino == inum && fh[0] == ino->i_generation;
3445 }
3446
3447 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3448                 struct fid *fid, int fh_len, int fh_type)
3449 {
3450         struct inode *inode;
3451         struct dentry *dentry = NULL;
3452         u64 inum;
3453
3454         if (fh_len < 3)
3455                 return NULL;
3456
3457         inum = fid->raw[2];
3458         inum = (inum << 32) | fid->raw[1];
3459
3460         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3461                         shmem_match, fid->raw);
3462         if (inode) {
3463                 dentry = d_find_alias(inode);
3464                 iput(inode);
3465         }
3466
3467         return dentry;
3468 }
3469
3470 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3471                                 struct inode *parent)
3472 {
3473         if (*len < 3) {
3474                 *len = 3;
3475                 return FILEID_INVALID;
3476         }
3477
3478         if (inode_unhashed(inode)) {
3479                 /* Unfortunately insert_inode_hash is not idempotent,
3480                  * so as we hash inodes here rather than at creation
3481                  * time, we need a lock to ensure we only try
3482                  * to do it once
3483                  */
3484                 static DEFINE_SPINLOCK(lock);
3485                 spin_lock(&lock);
3486                 if (inode_unhashed(inode))
3487                         __insert_inode_hash(inode,
3488                                             inode->i_ino + inode->i_generation);
3489                 spin_unlock(&lock);
3490         }
3491
3492         fh[0] = inode->i_generation;
3493         fh[1] = inode->i_ino;
3494         fh[2] = ((__u64)inode->i_ino) >> 32;
3495
3496         *len = 3;
3497         return 1;
3498 }
3499
3500 static const struct export_operations shmem_export_ops = {
3501         .get_parent     = shmem_get_parent,
3502         .encode_fh      = shmem_encode_fh,
3503         .fh_to_dentry   = shmem_fh_to_dentry,
3504 };
3505
3506 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3507                                bool remount)
3508 {
3509         char *this_char, *value, *rest;
3510         struct mempolicy *mpol = NULL;
3511         uid_t uid;
3512         gid_t gid;
3513
3514         while (options != NULL) {
3515                 this_char = options;
3516                 for (;;) {
3517                         /*
3518                          * NUL-terminate this option: unfortunately,
3519                          * mount options form a comma-separated list,
3520                          * but mpol's nodelist may also contain commas.
3521                          */
3522                         options = strchr(options, ',');
3523                         if (options == NULL)
3524                                 break;
3525                         options++;
3526                         if (!isdigit(*options)) {
3527                                 options[-1] = '\0';
3528                                 break;
3529                         }
3530                 }
3531                 if (!*this_char)
3532                         continue;
3533                 if ((value = strchr(this_char,'=')) != NULL) {
3534                         *value++ = 0;
3535                 } else {
3536                         pr_err("tmpfs: No value for mount option '%s'\n",
3537                                this_char);
3538                         goto error;
3539                 }
3540
3541                 if (!strcmp(this_char,"size")) {
3542                         unsigned long long size;
3543                         size = memparse(value,&rest);
3544                         if (*rest == '%') {
3545                                 size <<= PAGE_SHIFT;
3546                                 size *= totalram_pages;
3547                                 do_div(size, 100);
3548                                 rest++;
3549                         }
3550                         if (*rest)
3551                                 goto bad_val;
3552                         sbinfo->max_blocks =
3553                                 DIV_ROUND_UP(size, PAGE_SIZE);
3554                 } else if (!strcmp(this_char,"nr_blocks")) {
3555                         sbinfo->max_blocks = memparse(value, &rest);
3556                         if (*rest)
3557                                 goto bad_val;
3558                 } else if (!strcmp(this_char,"nr_inodes")) {
3559                         sbinfo->max_inodes = memparse(value, &rest);
3560                         if (*rest)
3561                                 goto bad_val;
3562                 } else if (!strcmp(this_char,"mode")) {
3563                         if (remount)
3564                                 continue;
3565                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3566                         if (*rest)
3567                                 goto bad_val;
3568                 } else if (!strcmp(this_char,"uid")) {
3569                         if (remount)
3570                                 continue;
3571                         uid = simple_strtoul(value, &rest, 0);
3572                         if (*rest)
3573                                 goto bad_val;
3574                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3575                         if (!uid_valid(sbinfo->uid))
3576                                 goto bad_val;
3577                 } else if (!strcmp(this_char,"gid")) {
3578                         if (remount)
3579                                 continue;
3580                         gid = simple_strtoul(value, &rest, 0);
3581                         if (*rest)
3582                                 goto bad_val;
3583                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3584                         if (!gid_valid(sbinfo->gid))
3585                                 goto bad_val;
3586 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3587                 } else if (!strcmp(this_char, "huge")) {
3588                         int huge;
3589                         huge = shmem_parse_huge(value);
3590                         if (huge < 0)
3591                                 goto bad_val;
3592                         if (!has_transparent_hugepage() &&
3593                                         huge != SHMEM_HUGE_NEVER)
3594                                 goto bad_val;
3595                         sbinfo->huge = huge;
3596 #endif
3597 #ifdef CONFIG_NUMA
3598                 } else if (!strcmp(this_char,"mpol")) {
3599                         mpol_put(mpol);
3600                         mpol = NULL;
3601                         if (mpol_parse_str(value, &mpol))
3602                                 goto bad_val;
3603 #endif
3604                 } else {
3605                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3606                         goto error;
3607                 }
3608         }
3609         sbinfo->mpol = mpol;
3610         return 0;
3611
3612 bad_val:
3613         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3614                value, this_char);
3615 error:
3616         mpol_put(mpol);
3617         return 1;
3618
3619 }
3620
3621 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3622 {
3623         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3624         struct shmem_sb_info config = *sbinfo;
3625         unsigned long inodes;
3626         int error = -EINVAL;
3627
3628         config.mpol = NULL;
3629         if (shmem_parse_options(data, &config, true))
3630                 return error;
3631
3632         spin_lock(&sbinfo->stat_lock);
3633         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3634         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3635                 goto out;
3636         if (config.max_inodes < inodes)
3637                 goto out;
3638         /*
3639          * Those tests disallow limited->unlimited while any are in use;
3640          * but we must separately disallow unlimited->limited, because
3641          * in that case we have no record of how much is already in use.
3642          */
3643         if (config.max_blocks && !sbinfo->max_blocks)
3644                 goto out;
3645         if (config.max_inodes && !sbinfo->max_inodes)
3646                 goto out;
3647
3648         error = 0;
3649         sbinfo->huge = config.huge;
3650         sbinfo->max_blocks  = config.max_blocks;
3651         sbinfo->max_inodes  = config.max_inodes;
3652         sbinfo->free_inodes = config.max_inodes - inodes;
3653
3654         /*
3655          * Preserve previous mempolicy unless mpol remount option was specified.
3656          */
3657         if (config.mpol) {
3658                 mpol_put(sbinfo->mpol);
3659                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3660         }
3661 out:
3662         spin_unlock(&sbinfo->stat_lock);
3663         return error;
3664 }
3665
3666 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3667 {
3668         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3669
3670         if (sbinfo->max_blocks != shmem_default_max_blocks())
3671                 seq_printf(seq, ",size=%luk",
3672                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3673         if (sbinfo->max_inodes != shmem_default_max_inodes())
3674                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3675         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3676                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3677         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3678                 seq_printf(seq, ",uid=%u",
3679                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3680         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3681                 seq_printf(seq, ",gid=%u",
3682                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3683 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3684         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685         if (sbinfo->huge)
3686                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687 #endif
3688         shmem_show_mpol(seq, sbinfo->mpol);
3689         return 0;
3690 }
3691
3692 #define MFD_NAME_PREFIX "memfd:"
3693 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3694 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3695
3696 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3697
3698 SYSCALL_DEFINE2(memfd_create,
3699                 const char __user *, uname,
3700                 unsigned int, flags)
3701 {
3702         struct shmem_inode_info *info;
3703         struct file *file;
3704         int fd, error;
3705         char *name;
3706         long len;
3707
3708         if (!(flags & MFD_HUGETLB)) {
3709                 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3710                         return -EINVAL;
3711         } else {
3712                 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3713                 if (flags & MFD_ALLOW_SEALING)
3714                         return -EINVAL;
3715                 /* Allow huge page size encoding in flags. */
3716                 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3717                                 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3718                         return -EINVAL;
3719         }
3720
3721         /* length includes terminating zero */
3722         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3723         if (len <= 0)
3724                 return -EFAULT;
3725         if (len > MFD_NAME_MAX_LEN + 1)
3726                 return -EINVAL;
3727
3728         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3729         if (!name)
3730                 return -ENOMEM;
3731
3732         strcpy(name, MFD_NAME_PREFIX);
3733         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3734                 error = -EFAULT;
3735                 goto err_name;
3736         }
3737
3738         /* terminating-zero may have changed after strnlen_user() returned */
3739         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3740                 error = -EFAULT;
3741                 goto err_name;
3742         }
3743
3744         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3745         if (fd < 0) {
3746                 error = fd;
3747                 goto err_name;
3748         }
3749
3750         if (flags & MFD_HUGETLB) {
3751                 struct user_struct *user = NULL;
3752
3753                 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3754                                         HUGETLB_ANONHUGE_INODE,
3755                                         (flags >> MFD_HUGE_SHIFT) &
3756                                         MFD_HUGE_MASK);
3757         } else
3758                 file = shmem_file_setup(name, 0, VM_NORESERVE);
3759         if (IS_ERR(file)) {
3760                 error = PTR_ERR(file);
3761                 goto err_fd;
3762         }
3763         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3764         file->f_flags |= O_RDWR | O_LARGEFILE;
3765
3766         if (flags & MFD_ALLOW_SEALING) {
3767                 /*
3768                  * flags check at beginning of function ensures
3769                  * this is not a hugetlbfs (MFD_HUGETLB) file.
3770                  */
3771                 info = SHMEM_I(file_inode(file));
3772                 info->seals &= ~F_SEAL_SEAL;
3773         }
3774
3775         fd_install(fd, file);
3776         kfree(name);
3777         return fd;
3778
3779 err_fd:
3780         put_unused_fd(fd);
3781 err_name:
3782         kfree(name);
3783         return error;
3784 }
3785
3786 #endif /* CONFIG_TMPFS */
3787
3788 static void shmem_put_super(struct super_block *sb)
3789 {
3790         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3791
3792         percpu_counter_destroy(&sbinfo->used_blocks);
3793         mpol_put(sbinfo->mpol);
3794         kfree(sbinfo);
3795         sb->s_fs_info = NULL;
3796 }
3797
3798 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3799 {
3800         struct inode *inode;
3801         struct shmem_sb_info *sbinfo;
3802         int err = -ENOMEM;
3803
3804         /* Round up to L1_CACHE_BYTES to resist false sharing */
3805         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3806                                 L1_CACHE_BYTES), GFP_KERNEL);
3807         if (!sbinfo)
3808                 return -ENOMEM;
3809
3810         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3811         sbinfo->uid = current_fsuid();
3812         sbinfo->gid = current_fsgid();
3813         sb->s_fs_info = sbinfo;
3814
3815 #ifdef CONFIG_TMPFS
3816         /*
3817          * Per default we only allow half of the physical ram per
3818          * tmpfs instance, limiting inodes to one per page of lowmem;
3819          * but the internal instance is left unlimited.
3820          */
3821         if (!(sb->s_flags & MS_KERNMOUNT)) {
3822                 sbinfo->max_blocks = shmem_default_max_blocks();
3823                 sbinfo->max_inodes = shmem_default_max_inodes();
3824                 if (shmem_parse_options(data, sbinfo, false)) {
3825                         err = -EINVAL;
3826                         goto failed;
3827                 }
3828         } else {
3829                 sb->s_flags |= MS_NOUSER;
3830         }
3831         sb->s_export_op = &shmem_export_ops;
3832         sb->s_flags |= MS_NOSEC;
3833 #else
3834         sb->s_flags |= MS_NOUSER;
3835 #endif
3836
3837         spin_lock_init(&sbinfo->stat_lock);
3838         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3839                 goto failed;
3840         sbinfo->free_inodes = sbinfo->max_inodes;
3841         spin_lock_init(&sbinfo->shrinklist_lock);
3842         INIT_LIST_HEAD(&sbinfo->shrinklist);
3843
3844         sb->s_maxbytes = MAX_LFS_FILESIZE;
3845         sb->s_blocksize = PAGE_SIZE;
3846         sb->s_blocksize_bits = PAGE_SHIFT;
3847         sb->s_magic = TMPFS_MAGIC;
3848         sb->s_op = &shmem_ops;
3849         sb->s_time_gran = 1;
3850 #ifdef CONFIG_TMPFS_XATTR
3851         sb->s_xattr = shmem_xattr_handlers;
3852 #endif
3853 #ifdef CONFIG_TMPFS_POSIX_ACL
3854         sb->s_flags |= MS_POSIXACL;
3855 #endif
3856         uuid_gen(&sb->s_uuid);
3857
3858         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3859         if (!inode)
3860                 goto failed;
3861         inode->i_uid = sbinfo->uid;
3862         inode->i_gid = sbinfo->gid;
3863         sb->s_root = d_make_root(inode);
3864         if (!sb->s_root)
3865                 goto failed;
3866         return 0;
3867
3868 failed:
3869         shmem_put_super(sb);
3870         return err;
3871 }
3872
3873 static struct kmem_cache *shmem_inode_cachep;
3874
3875 static struct inode *shmem_alloc_inode(struct super_block *sb)
3876 {
3877         struct shmem_inode_info *info;
3878         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3879         if (!info)
3880                 return NULL;
3881         return &info->vfs_inode;
3882 }
3883
3884 static void shmem_destroy_callback(struct rcu_head *head)
3885 {
3886         struct inode *inode = container_of(head, struct inode, i_rcu);
3887         if (S_ISLNK(inode->i_mode))
3888                 kfree(inode->i_link);
3889         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3890 }
3891
3892 static void shmem_destroy_inode(struct inode *inode)
3893 {
3894         if (S_ISREG(inode->i_mode))
3895                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3896         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3897 }
3898
3899 static void shmem_init_inode(void *foo)
3900 {
3901         struct shmem_inode_info *info = foo;
3902         inode_init_once(&info->vfs_inode);
3903 }
3904
3905 static int shmem_init_inodecache(void)
3906 {
3907         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3908                                 sizeof(struct shmem_inode_info),
3909                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3910         return 0;
3911 }
3912
3913 static void shmem_destroy_inodecache(void)
3914 {
3915         kmem_cache_destroy(shmem_inode_cachep);
3916 }
3917
3918 static const struct address_space_operations shmem_aops = {
3919         .writepage      = shmem_writepage,
3920         .set_page_dirty = __set_page_dirty_no_writeback,
3921 #ifdef CONFIG_TMPFS
3922         .write_begin    = shmem_write_begin,
3923         .write_end      = shmem_write_end,
3924 #endif
3925 #ifdef CONFIG_MIGRATION
3926         .migratepage    = migrate_page,
3927 #endif
3928         .error_remove_page = generic_error_remove_page,
3929 };
3930
3931 static const struct file_operations shmem_file_operations = {
3932         .mmap           = shmem_mmap,
3933         .get_unmapped_area = shmem_get_unmapped_area,
3934 #ifdef CONFIG_TMPFS
3935         .llseek         = shmem_file_llseek,
3936         .read_iter      = shmem_file_read_iter,
3937         .write_iter     = generic_file_write_iter,
3938         .fsync          = noop_fsync,
3939         .splice_read    = generic_file_splice_read,
3940         .splice_write   = iter_file_splice_write,
3941         .fallocate      = shmem_fallocate,
3942 #endif
3943 };
3944
3945 static const struct inode_operations shmem_inode_operations = {
3946         .getattr        = shmem_getattr,
3947         .setattr        = shmem_setattr,
3948 #ifdef CONFIG_TMPFS_XATTR
3949         .listxattr      = shmem_listxattr,
3950         .set_acl        = simple_set_acl,
3951 #endif
3952 };
3953
3954 static const struct inode_operations shmem_dir_inode_operations = {
3955 #ifdef CONFIG_TMPFS
3956         .create         = shmem_create,
3957         .lookup         = simple_lookup,
3958         .link           = shmem_link,
3959         .unlink         = shmem_unlink,
3960         .symlink        = shmem_symlink,
3961         .mkdir          = shmem_mkdir,
3962         .rmdir          = shmem_rmdir,
3963         .mknod          = shmem_mknod,
3964         .rename         = shmem_rename2,
3965         .tmpfile        = shmem_tmpfile,
3966 #endif
3967 #ifdef CONFIG_TMPFS_XATTR
3968         .listxattr      = shmem_listxattr,
3969 #endif
3970 #ifdef CONFIG_TMPFS_POSIX_ACL
3971         .setattr        = shmem_setattr,
3972         .set_acl        = simple_set_acl,
3973 #endif
3974 };
3975
3976 static const struct inode_operations shmem_special_inode_operations = {
3977 #ifdef CONFIG_TMPFS_XATTR
3978         .listxattr      = shmem_listxattr,
3979 #endif
3980 #ifdef CONFIG_TMPFS_POSIX_ACL
3981         .setattr        = shmem_setattr,
3982         .set_acl        = simple_set_acl,
3983 #endif
3984 };
3985
3986 static const struct super_operations shmem_ops = {
3987         .alloc_inode    = shmem_alloc_inode,
3988         .destroy_inode  = shmem_destroy_inode,
3989 #ifdef CONFIG_TMPFS
3990         .statfs         = shmem_statfs,
3991         .remount_fs     = shmem_remount_fs,
3992         .show_options   = shmem_show_options,
3993 #endif
3994         .evict_inode    = shmem_evict_inode,
3995         .drop_inode     = generic_delete_inode,
3996         .put_super      = shmem_put_super,
3997 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3998         .nr_cached_objects      = shmem_unused_huge_count,
3999         .free_cached_objects    = shmem_unused_huge_scan,
4000 #endif
4001 };
4002
4003 static const struct vm_operations_struct shmem_vm_ops = {
4004         .fault          = shmem_fault,
4005         .map_pages      = filemap_map_pages,
4006 #ifdef CONFIG_NUMA
4007         .set_policy     = shmem_set_policy,
4008         .get_policy     = shmem_get_policy,
4009 #endif
4010 };
4011
4012 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4013         int flags, const char *dev_name, void *data)
4014 {
4015         return mount_nodev(fs_type, flags, data, shmem_fill_super);
4016 }
4017
4018 static struct file_system_type shmem_fs_type = {
4019         .owner          = THIS_MODULE,
4020         .name           = "tmpfs",
4021         .mount          = shmem_mount,
4022         .kill_sb        = kill_litter_super,
4023         .fs_flags       = FS_USERNS_MOUNT,
4024 };
4025
4026 int __init shmem_init(void)
4027 {
4028         int error;
4029
4030         /* If rootfs called this, don't re-init */
4031         if (shmem_inode_cachep)
4032                 return 0;
4033
4034         error = shmem_init_inodecache();
4035         if (error)
4036                 goto out3;
4037
4038         error = register_filesystem(&shmem_fs_type);
4039         if (error) {
4040                 pr_err("Could not register tmpfs\n");
4041                 goto out2;
4042         }
4043
4044         shm_mnt = kern_mount(&shmem_fs_type);
4045         if (IS_ERR(shm_mnt)) {
4046                 error = PTR_ERR(shm_mnt);
4047                 pr_err("Could not kern_mount tmpfs\n");
4048                 goto out1;
4049         }
4050
4051 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4052         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4053                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4054         else
4055                 shmem_huge = 0; /* just in case it was patched */
4056 #endif
4057         return 0;
4058
4059 out1:
4060         unregister_filesystem(&shmem_fs_type);
4061 out2:
4062         shmem_destroy_inodecache();
4063 out3:
4064         shm_mnt = ERR_PTR(error);
4065         return error;
4066 }
4067
4068 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4069 static ssize_t shmem_enabled_show(struct kobject *kobj,
4070                 struct kobj_attribute *attr, char *buf)
4071 {
4072         int values[] = {
4073                 SHMEM_HUGE_ALWAYS,
4074                 SHMEM_HUGE_WITHIN_SIZE,
4075                 SHMEM_HUGE_ADVISE,
4076                 SHMEM_HUGE_NEVER,
4077                 SHMEM_HUGE_DENY,
4078                 SHMEM_HUGE_FORCE,
4079         };
4080         int i, count;
4081
4082         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4083                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4084
4085                 count += sprintf(buf + count, fmt,
4086                                 shmem_format_huge(values[i]));
4087         }
4088         buf[count - 1] = '\n';
4089         return count;
4090 }
4091
4092 static ssize_t shmem_enabled_store(struct kobject *kobj,
4093                 struct kobj_attribute *attr, const char *buf, size_t count)
4094 {
4095         char tmp[16];
4096         int huge;
4097
4098         if (count + 1 > sizeof(tmp))
4099                 return -EINVAL;
4100         memcpy(tmp, buf, count);
4101         tmp[count] = '\0';
4102         if (count && tmp[count - 1] == '\n')
4103                 tmp[count - 1] = '\0';
4104
4105         huge = shmem_parse_huge(tmp);
4106         if (huge == -EINVAL)
4107                 return -EINVAL;
4108         if (!has_transparent_hugepage() &&
4109                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4110                 return -EINVAL;
4111
4112         shmem_huge = huge;
4113         if (shmem_huge > SHMEM_HUGE_DENY)
4114                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4115         return count;
4116 }
4117
4118 struct kobj_attribute shmem_enabled_attr =
4119         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4120 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4121
4122 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4123 bool shmem_huge_enabled(struct vm_area_struct *vma)
4124 {
4125         struct inode *inode = file_inode(vma->vm_file);
4126         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4127         loff_t i_size;
4128         pgoff_t off;
4129
4130         if (shmem_huge == SHMEM_HUGE_FORCE)
4131                 return true;
4132         if (shmem_huge == SHMEM_HUGE_DENY)
4133                 return false;
4134         switch (sbinfo->huge) {
4135                 case SHMEM_HUGE_NEVER:
4136                         return false;
4137                 case SHMEM_HUGE_ALWAYS:
4138                         return true;
4139                 case SHMEM_HUGE_WITHIN_SIZE:
4140                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4141                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4142                         if (i_size >= HPAGE_PMD_SIZE &&
4143                                         i_size >> PAGE_SHIFT >= off)
4144                                 return true;
4145                 case SHMEM_HUGE_ADVISE:
4146                         /* TODO: implement fadvise() hints */
4147                         return (vma->vm_flags & VM_HUGEPAGE);
4148                 default:
4149                         VM_BUG_ON(1);
4150                         return false;
4151         }
4152 }
4153 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4154
4155 #else /* !CONFIG_SHMEM */
4156
4157 /*
4158  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4159  *
4160  * This is intended for small system where the benefits of the full
4161  * shmem code (swap-backed and resource-limited) are outweighed by
4162  * their complexity. On systems without swap this code should be
4163  * effectively equivalent, but much lighter weight.
4164  */
4165
4166 static struct file_system_type shmem_fs_type = {
4167         .name           = "tmpfs",
4168         .mount          = ramfs_mount,
4169         .kill_sb        = kill_litter_super,
4170         .fs_flags       = FS_USERNS_MOUNT,
4171 };
4172
4173 int __init shmem_init(void)
4174 {
4175         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4176
4177         shm_mnt = kern_mount(&shmem_fs_type);
4178         BUG_ON(IS_ERR(shm_mnt));
4179
4180         return 0;
4181 }
4182
4183 int shmem_unuse(swp_entry_t swap, struct page *page)
4184 {
4185         return 0;
4186 }
4187
4188 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4189 {
4190         return 0;
4191 }
4192
4193 void shmem_unlock_mapping(struct address_space *mapping)
4194 {
4195 }
4196
4197 #ifdef CONFIG_MMU
4198 unsigned long shmem_get_unmapped_area(struct file *file,
4199                                       unsigned long addr, unsigned long len,
4200                                       unsigned long pgoff, unsigned long flags)
4201 {
4202         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4203 }
4204 #endif
4205
4206 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4207 {
4208         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4209 }
4210 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4211
4212 #define shmem_vm_ops                            generic_file_vm_ops
4213 #define shmem_file_operations                   ramfs_file_operations
4214 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4215 #define shmem_acct_size(flags, size)            0
4216 #define shmem_unacct_size(flags, size)          do {} while (0)
4217
4218 #endif /* CONFIG_SHMEM */
4219
4220 /* common code */
4221
4222 static const struct dentry_operations anon_ops = {
4223         .d_dname = simple_dname
4224 };
4225
4226 static struct file *__shmem_file_setup(const char *name, loff_t size,
4227                                        unsigned long flags, unsigned int i_flags)
4228 {
4229         struct file *res;
4230         struct inode *inode;
4231         struct path path;
4232         struct super_block *sb;
4233         struct qstr this;
4234
4235         if (IS_ERR(shm_mnt))
4236                 return ERR_CAST(shm_mnt);
4237
4238         if (size < 0 || size > MAX_LFS_FILESIZE)
4239                 return ERR_PTR(-EINVAL);
4240
4241         if (shmem_acct_size(flags, size))
4242                 return ERR_PTR(-ENOMEM);
4243
4244         res = ERR_PTR(-ENOMEM);
4245         this.name = name;
4246         this.len = strlen(name);
4247         this.hash = 0; /* will go */
4248         sb = shm_mnt->mnt_sb;
4249         path.mnt = mntget(shm_mnt);
4250         path.dentry = d_alloc_pseudo(sb, &this);
4251         if (!path.dentry)
4252                 goto put_memory;
4253         d_set_d_op(path.dentry, &anon_ops);
4254
4255         res = ERR_PTR(-ENOSPC);
4256         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4257         if (!inode)
4258                 goto put_memory;
4259
4260         inode->i_flags |= i_flags;
4261         d_instantiate(path.dentry, inode);
4262         inode->i_size = size;
4263         clear_nlink(inode);     /* It is unlinked */
4264         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4265         if (IS_ERR(res))
4266                 goto put_path;
4267
4268         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4269                   &shmem_file_operations);
4270         if (IS_ERR(res))
4271                 goto put_path;
4272
4273         return res;
4274
4275 put_memory:
4276         shmem_unacct_size(flags, size);
4277 put_path:
4278         path_put(&path);
4279         return res;
4280 }
4281
4282 /**
4283  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4284  *      kernel internal.  There will be NO LSM permission checks against the
4285  *      underlying inode.  So users of this interface must do LSM checks at a
4286  *      higher layer.  The users are the big_key and shm implementations.  LSM
4287  *      checks are provided at the key or shm level rather than the inode.
4288  * @name: name for dentry (to be seen in /proc/<pid>/maps
4289  * @size: size to be set for the file
4290  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4291  */
4292 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4293 {
4294         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4295 }
4296
4297 /**
4298  * shmem_file_setup - get an unlinked file living in tmpfs
4299  * @name: name for dentry (to be seen in /proc/<pid>/maps
4300  * @size: size to be set for the file
4301  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4302  */
4303 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4304 {
4305         return __shmem_file_setup(name, size, flags, 0);
4306 }
4307 EXPORT_SYMBOL_GPL(shmem_file_setup);
4308
4309 /**
4310  * shmem_zero_setup - setup a shared anonymous mapping
4311  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4312  */
4313 int shmem_zero_setup(struct vm_area_struct *vma)
4314 {
4315         struct file *file;
4316         loff_t size = vma->vm_end - vma->vm_start;
4317
4318         /*
4319          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4320          * between XFS directory reading and selinux: since this file is only
4321          * accessible to the user through its mapping, use S_PRIVATE flag to
4322          * bypass file security, in the same way as shmem_kernel_file_setup().
4323          */
4324         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4325         if (IS_ERR(file))
4326                 return PTR_ERR(file);
4327
4328         if (vma->vm_file)
4329                 fput(vma->vm_file);
4330         vma->vm_file = file;
4331         vma->vm_ops = &shmem_vm_ops;
4332
4333         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4334                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4335                         (vma->vm_end & HPAGE_PMD_MASK)) {
4336                 khugepaged_enter(vma, vma->vm_flags);
4337         }
4338
4339         return 0;
4340 }
4341
4342 /**
4343  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4344  * @mapping:    the page's address_space
4345  * @index:      the page index
4346  * @gfp:        the page allocator flags to use if allocating
4347  *
4348  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4349  * with any new page allocations done using the specified allocation flags.
4350  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4351  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4352  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4353  *
4354  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4355  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4356  */
4357 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4358                                          pgoff_t index, gfp_t gfp)
4359 {
4360 #ifdef CONFIG_SHMEM
4361         struct inode *inode = mapping->host;
4362         struct page *page;
4363         int error;
4364
4365         BUG_ON(mapping->a_ops != &shmem_aops);
4366         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4367                                   gfp, NULL, NULL, NULL);
4368         if (error)
4369                 page = ERR_PTR(error);
4370         else
4371                 unlock_page(page);
4372         return page;
4373 #else
4374         /*
4375          * The tiny !SHMEM case uses ramfs without swap
4376          */
4377         return read_cache_page_gfp(mapping, index, gfp);
4378 #endif
4379 }
4380 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);