45c26476f0fca9c3a94642d4c07e847379365765
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78
79 struct shmem_xattr {
80         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
81         char *name;             /* xattr name */
82         size_t size;
83         char value[0];
84 };
85
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88         SGP_READ,       /* don't exceed i_size, don't allocate page */
89         SGP_CACHE,      /* don't exceed i_size, may allocate page */
90         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
91         SGP_WRITE,      /* may exceed i_size, may allocate page */
92 };
93
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97         return totalram_pages / 2;
98 }
99
100 static unsigned long shmem_default_max_inodes(void)
101 {
102         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105
106 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
107 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
108                                 struct shmem_inode_info *info, pgoff_t index);
109 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
110         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
111
112 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
113         struct page **pagep, enum sgp_type sgp, int *fault_type)
114 {
115         return shmem_getpage_gfp(inode, index, pagep, sgp,
116                         mapping_gfp_mask(inode->i_mapping), fault_type);
117 }
118
119 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
120 {
121         return sb->s_fs_info;
122 }
123
124 /*
125  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
126  * for shared memory and for shared anonymous (/dev/zero) mappings
127  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
128  * consistent with the pre-accounting of private mappings ...
129  */
130 static inline int shmem_acct_size(unsigned long flags, loff_t size)
131 {
132         return (flags & VM_NORESERVE) ?
133                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
134 }
135
136 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
137 {
138         if (!(flags & VM_NORESERVE))
139                 vm_unacct_memory(VM_ACCT(size));
140 }
141
142 /*
143  * ... whereas tmpfs objects are accounted incrementally as
144  * pages are allocated, in order to allow huge sparse files.
145  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
146  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
147  */
148 static inline int shmem_acct_block(unsigned long flags)
149 {
150         return (flags & VM_NORESERVE) ?
151                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
152 }
153
154 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
155 {
156         if (flags & VM_NORESERVE)
157                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
158 }
159
160 static const struct super_operations shmem_ops;
161 static const struct address_space_operations shmem_aops;
162 static const struct file_operations shmem_file_operations;
163 static const struct inode_operations shmem_inode_operations;
164 static const struct inode_operations shmem_dir_inode_operations;
165 static const struct inode_operations shmem_special_inode_operations;
166 static const struct vm_operations_struct shmem_vm_ops;
167
168 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
169         .ra_pages       = 0,    /* No readahead */
170         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
171 };
172
173 static LIST_HEAD(shmem_swaplist);
174 static DEFINE_MUTEX(shmem_swaplist_mutex);
175
176 static int shmem_reserve_inode(struct super_block *sb)
177 {
178         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
179         if (sbinfo->max_inodes) {
180                 spin_lock(&sbinfo->stat_lock);
181                 if (!sbinfo->free_inodes) {
182                         spin_unlock(&sbinfo->stat_lock);
183                         return -ENOSPC;
184                 }
185                 sbinfo->free_inodes--;
186                 spin_unlock(&sbinfo->stat_lock);
187         }
188         return 0;
189 }
190
191 static void shmem_free_inode(struct super_block *sb)
192 {
193         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
194         if (sbinfo->max_inodes) {
195                 spin_lock(&sbinfo->stat_lock);
196                 sbinfo->free_inodes++;
197                 spin_unlock(&sbinfo->stat_lock);
198         }
199 }
200
201 /**
202  * shmem_recalc_inode - recalculate the block usage of an inode
203  * @inode: inode to recalc
204  *
205  * We have to calculate the free blocks since the mm can drop
206  * undirtied hole pages behind our back.
207  *
208  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
209  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
210  *
211  * It has to be called with the spinlock held.
212  */
213 static void shmem_recalc_inode(struct inode *inode)
214 {
215         struct shmem_inode_info *info = SHMEM_I(inode);
216         long freed;
217
218         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
219         if (freed > 0) {
220                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221                 if (sbinfo->max_blocks)
222                         percpu_counter_add(&sbinfo->used_blocks, -freed);
223                 info->alloced -= freed;
224                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
225                 shmem_unacct_blocks(info->flags, freed);
226         }
227 }
228
229 /*
230  * Replace item expected in radix tree by a new item, while holding tree lock.
231  */
232 static int shmem_radix_tree_replace(struct address_space *mapping,
233                         pgoff_t index, void *expected, void *replacement)
234 {
235         void **pslot;
236         void *item = NULL;
237
238         VM_BUG_ON(!expected);
239         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
240         if (pslot)
241                 item = radix_tree_deref_slot_protected(pslot,
242                                                         &mapping->tree_lock);
243         if (item != expected)
244                 return -ENOENT;
245         if (replacement)
246                 radix_tree_replace_slot(pslot, replacement);
247         else
248                 radix_tree_delete(&mapping->page_tree, index);
249         return 0;
250 }
251
252 /*
253  * Like add_to_page_cache_locked, but error if expected item has gone.
254  */
255 static int shmem_add_to_page_cache(struct page *page,
256                                    struct address_space *mapping,
257                                    pgoff_t index, gfp_t gfp, void *expected)
258 {
259         int error = 0;
260
261         VM_BUG_ON(!PageLocked(page));
262         VM_BUG_ON(!PageSwapBacked(page));
263
264         if (!expected)
265                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
266         if (!error) {
267                 page_cache_get(page);
268                 page->mapping = mapping;
269                 page->index = index;
270
271                 spin_lock_irq(&mapping->tree_lock);
272                 if (!expected)
273                         error = radix_tree_insert(&mapping->page_tree,
274                                                         index, page);
275                 else
276                         error = shmem_radix_tree_replace(mapping, index,
277                                                         expected, page);
278                 if (!error) {
279                         mapping->nrpages++;
280                         __inc_zone_page_state(page, NR_FILE_PAGES);
281                         __inc_zone_page_state(page, NR_SHMEM);
282                         spin_unlock_irq(&mapping->tree_lock);
283                 } else {
284                         page->mapping = NULL;
285                         spin_unlock_irq(&mapping->tree_lock);
286                         page_cache_release(page);
287                 }
288                 if (!expected)
289                         radix_tree_preload_end();
290         }
291         if (error)
292                 mem_cgroup_uncharge_cache_page(page);
293         return error;
294 }
295
296 /*
297  * Like delete_from_page_cache, but substitutes swap for page.
298  */
299 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
300 {
301         struct address_space *mapping = page->mapping;
302         int error;
303
304         spin_lock_irq(&mapping->tree_lock);
305         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
306         page->mapping = NULL;
307         mapping->nrpages--;
308         __dec_zone_page_state(page, NR_FILE_PAGES);
309         __dec_zone_page_state(page, NR_SHMEM);
310         spin_unlock_irq(&mapping->tree_lock);
311         page_cache_release(page);
312         BUG_ON(error);
313 }
314
315 /*
316  * Like find_get_pages, but collecting swap entries as well as pages.
317  */
318 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
319                                         pgoff_t start, unsigned int nr_pages,
320                                         struct page **pages, pgoff_t *indices)
321 {
322         unsigned int i;
323         unsigned int ret;
324         unsigned int nr_found;
325
326         rcu_read_lock();
327 restart:
328         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
329                                 (void ***)pages, indices, start, nr_pages);
330         ret = 0;
331         for (i = 0; i < nr_found; i++) {
332                 struct page *page;
333 repeat:
334                 page = radix_tree_deref_slot((void **)pages[i]);
335                 if (unlikely(!page))
336                         continue;
337                 if (radix_tree_exception(page)) {
338                         if (radix_tree_deref_retry(page))
339                                 goto restart;
340                         /*
341                          * Otherwise, we must be storing a swap entry
342                          * here as an exceptional entry: so return it
343                          * without attempting to raise page count.
344                          */
345                         goto export;
346                 }
347                 if (!page_cache_get_speculative(page))
348                         goto repeat;
349
350                 /* Has the page moved? */
351                 if (unlikely(page != *((void **)pages[i]))) {
352                         page_cache_release(page);
353                         goto repeat;
354                 }
355 export:
356                 indices[ret] = indices[i];
357                 pages[ret] = page;
358                 ret++;
359         }
360         if (unlikely(!ret && nr_found))
361                 goto restart;
362         rcu_read_unlock();
363         return ret;
364 }
365
366 /*
367  * Remove swap entry from radix tree, free the swap and its page cache.
368  */
369 static int shmem_free_swap(struct address_space *mapping,
370                            pgoff_t index, void *radswap)
371 {
372         int error;
373
374         spin_lock_irq(&mapping->tree_lock);
375         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
376         spin_unlock_irq(&mapping->tree_lock);
377         if (!error)
378                 free_swap_and_cache(radix_to_swp_entry(radswap));
379         return error;
380 }
381
382 /*
383  * Pagevec may contain swap entries, so shuffle up pages before releasing.
384  */
385 static void shmem_deswap_pagevec(struct pagevec *pvec)
386 {
387         int i, j;
388
389         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
390                 struct page *page = pvec->pages[i];
391                 if (!radix_tree_exceptional_entry(page))
392                         pvec->pages[j++] = page;
393         }
394         pvec->nr = j;
395 }
396
397 /*
398  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
399  */
400 void shmem_unlock_mapping(struct address_space *mapping)
401 {
402         struct pagevec pvec;
403         pgoff_t indices[PAGEVEC_SIZE];
404         pgoff_t index = 0;
405
406         pagevec_init(&pvec, 0);
407         /*
408          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
409          */
410         while (!mapping_unevictable(mapping)) {
411                 /*
412                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
413                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
414                  */
415                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
416                                         PAGEVEC_SIZE, pvec.pages, indices);
417                 if (!pvec.nr)
418                         break;
419                 index = indices[pvec.nr - 1] + 1;
420                 shmem_deswap_pagevec(&pvec);
421                 check_move_unevictable_pages(pvec.pages, pvec.nr);
422                 pagevec_release(&pvec);
423                 cond_resched();
424         }
425 }
426
427 /*
428  * Remove range of pages and swap entries from radix tree, and free them.
429  */
430 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         struct shmem_inode_info *info = SHMEM_I(inode);
434         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
435         unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
436         pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
437         struct pagevec pvec;
438         pgoff_t indices[PAGEVEC_SIZE];
439         long nr_swaps_freed = 0;
440         pgoff_t index;
441         int i;
442
443         BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
444
445         pagevec_init(&pvec, 0);
446         index = start;
447         while (index <= end) {
448                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
449                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
450                                                         pvec.pages, indices);
451                 if (!pvec.nr)
452                         break;
453                 mem_cgroup_uncharge_start();
454                 for (i = 0; i < pagevec_count(&pvec); i++) {
455                         struct page *page = pvec.pages[i];
456
457                         index = indices[i];
458                         if (index > end)
459                                 break;
460
461                         if (radix_tree_exceptional_entry(page)) {
462                                 nr_swaps_freed += !shmem_free_swap(mapping,
463                                                                 index, page);
464                                 continue;
465                         }
466
467                         if (!trylock_page(page))
468                                 continue;
469                         if (page->mapping == mapping) {
470                                 VM_BUG_ON(PageWriteback(page));
471                                 truncate_inode_page(mapping, page);
472                         }
473                         unlock_page(page);
474                 }
475                 shmem_deswap_pagevec(&pvec);
476                 pagevec_release(&pvec);
477                 mem_cgroup_uncharge_end();
478                 cond_resched();
479                 index++;
480         }
481
482         if (partial) {
483                 struct page *page = NULL;
484                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
485                 if (page) {
486                         zero_user_segment(page, partial, PAGE_CACHE_SIZE);
487                         set_page_dirty(page);
488                         unlock_page(page);
489                         page_cache_release(page);
490                 }
491         }
492
493         index = start;
494         for ( ; ; ) {
495                 cond_resched();
496                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
497                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
498                                                         pvec.pages, indices);
499                 if (!pvec.nr) {
500                         if (index == start)
501                                 break;
502                         index = start;
503                         continue;
504                 }
505                 if (index == start && indices[0] > end) {
506                         shmem_deswap_pagevec(&pvec);
507                         pagevec_release(&pvec);
508                         break;
509                 }
510                 mem_cgroup_uncharge_start();
511                 for (i = 0; i < pagevec_count(&pvec); i++) {
512                         struct page *page = pvec.pages[i];
513
514                         index = indices[i];
515                         if (index > end)
516                                 break;
517
518                         if (radix_tree_exceptional_entry(page)) {
519                                 nr_swaps_freed += !shmem_free_swap(mapping,
520                                                                 index, page);
521                                 continue;
522                         }
523
524                         lock_page(page);
525                         if (page->mapping == mapping) {
526                                 VM_BUG_ON(PageWriteback(page));
527                                 truncate_inode_page(mapping, page);
528                         }
529                         unlock_page(page);
530                 }
531                 shmem_deswap_pagevec(&pvec);
532                 pagevec_release(&pvec);
533                 mem_cgroup_uncharge_end();
534                 index++;
535         }
536
537         spin_lock(&info->lock);
538         info->swapped -= nr_swaps_freed;
539         shmem_recalc_inode(inode);
540         spin_unlock(&info->lock);
541
542         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
543 }
544 EXPORT_SYMBOL_GPL(shmem_truncate_range);
545
546 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548         struct inode *inode = dentry->d_inode;
549         int error;
550
551         error = inode_change_ok(inode, attr);
552         if (error)
553                 return error;
554
555         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556                 loff_t oldsize = inode->i_size;
557                 loff_t newsize = attr->ia_size;
558
559                 if (newsize != oldsize) {
560                         i_size_write(inode, newsize);
561                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
562                 }
563                 if (newsize < oldsize) {
564                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
565                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
566                         shmem_truncate_range(inode, newsize, (loff_t)-1);
567                         /* unmap again to remove racily COWed private pages */
568                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
569                 }
570         }
571
572         setattr_copy(inode, attr);
573 #ifdef CONFIG_TMPFS_POSIX_ACL
574         if (attr->ia_valid & ATTR_MODE)
575                 error = generic_acl_chmod(inode);
576 #endif
577         return error;
578 }
579
580 static void shmem_evict_inode(struct inode *inode)
581 {
582         struct shmem_inode_info *info = SHMEM_I(inode);
583         struct shmem_xattr *xattr, *nxattr;
584
585         if (inode->i_mapping->a_ops == &shmem_aops) {
586                 shmem_unacct_size(info->flags, inode->i_size);
587                 inode->i_size = 0;
588                 shmem_truncate_range(inode, 0, (loff_t)-1);
589                 if (!list_empty(&info->swaplist)) {
590                         mutex_lock(&shmem_swaplist_mutex);
591                         list_del_init(&info->swaplist);
592                         mutex_unlock(&shmem_swaplist_mutex);
593                 }
594         } else
595                 kfree(info->symlink);
596
597         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
598                 kfree(xattr->name);
599                 kfree(xattr);
600         }
601         BUG_ON(inode->i_blocks);
602         shmem_free_inode(inode->i_sb);
603         clear_inode(inode);
604 }
605
606 /*
607  * If swap found in inode, free it and move page from swapcache to filecache.
608  */
609 static int shmem_unuse_inode(struct shmem_inode_info *info,
610                              swp_entry_t swap, struct page **pagep)
611 {
612         struct address_space *mapping = info->vfs_inode.i_mapping;
613         void *radswap;
614         pgoff_t index;
615         gfp_t gfp;
616         int error = 0;
617
618         radswap = swp_to_radix_entry(swap);
619         index = radix_tree_locate_item(&mapping->page_tree, radswap);
620         if (index == -1)
621                 return 0;
622
623         /*
624          * Move _head_ to start search for next from here.
625          * But be careful: shmem_evict_inode checks list_empty without taking
626          * mutex, and there's an instant in list_move_tail when info->swaplist
627          * would appear empty, if it were the only one on shmem_swaplist.
628          */
629         if (shmem_swaplist.next != &info->swaplist)
630                 list_move_tail(&shmem_swaplist, &info->swaplist);
631
632         gfp = mapping_gfp_mask(mapping);
633         if (shmem_should_replace_page(*pagep, gfp)) {
634                 mutex_unlock(&shmem_swaplist_mutex);
635                 error = shmem_replace_page(pagep, gfp, info, index);
636                 mutex_lock(&shmem_swaplist_mutex);
637                 /*
638                  * We needed to drop mutex to make that restrictive page
639                  * allocation; but the inode might already be freed by now,
640                  * and we cannot refer to inode or mapping or info to check.
641                  * However, we do hold page lock on the PageSwapCache page,
642                  * so can check if that still has our reference remaining.
643                  */
644                 if (!page_swapcount(*pagep))
645                         error = -ENOENT;
646         }
647
648         /*
649          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
650          * but also to hold up shmem_evict_inode(): so inode cannot be freed
651          * beneath us (pagelock doesn't help until the page is in pagecache).
652          */
653         if (!error)
654                 error = shmem_add_to_page_cache(*pagep, mapping, index,
655                                                 GFP_NOWAIT, radswap);
656         if (error != -ENOMEM) {
657                 /*
658                  * Truncation and eviction use free_swap_and_cache(), which
659                  * only does trylock page: if we raced, best clean up here.
660                  */
661                 delete_from_swap_cache(*pagep);
662                 set_page_dirty(*pagep);
663                 if (!error) {
664                         spin_lock(&info->lock);
665                         info->swapped--;
666                         spin_unlock(&info->lock);
667                         swap_free(swap);
668                 }
669                 error = 1;      /* not an error, but entry was found */
670         }
671         return error;
672 }
673
674 /*
675  * Search through swapped inodes to find and replace swap by page.
676  */
677 int shmem_unuse(swp_entry_t swap, struct page *page)
678 {
679         struct list_head *this, *next;
680         struct shmem_inode_info *info;
681         int found = 0;
682         int error = 0;
683
684         /*
685          * There's a faint possibility that swap page was replaced before
686          * caller locked it: it will come back later with the right page.
687          */
688         if (unlikely(!PageSwapCache(page)))
689                 goto out;
690
691         /*
692          * Charge page using GFP_KERNEL while we can wait, before taking
693          * the shmem_swaplist_mutex which might hold up shmem_writepage().
694          * Charged back to the user (not to caller) when swap account is used.
695          */
696         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
697         if (error)
698                 goto out;
699         /* No radix_tree_preload: swap entry keeps a place for page in tree */
700
701         mutex_lock(&shmem_swaplist_mutex);
702         list_for_each_safe(this, next, &shmem_swaplist) {
703                 info = list_entry(this, struct shmem_inode_info, swaplist);
704                 if (info->swapped)
705                         found = shmem_unuse_inode(info, swap, &page);
706                 else
707                         list_del_init(&info->swaplist);
708                 cond_resched();
709                 if (found)
710                         break;
711         }
712         mutex_unlock(&shmem_swaplist_mutex);
713
714         if (found < 0)
715                 error = found;
716 out:
717         unlock_page(page);
718         page_cache_release(page);
719         return error;
720 }
721
722 /*
723  * Move the page from the page cache to the swap cache.
724  */
725 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
726 {
727         struct shmem_inode_info *info;
728         struct address_space *mapping;
729         struct inode *inode;
730         swp_entry_t swap;
731         pgoff_t index;
732
733         BUG_ON(!PageLocked(page));
734         mapping = page->mapping;
735         index = page->index;
736         inode = mapping->host;
737         info = SHMEM_I(inode);
738         if (info->flags & VM_LOCKED)
739                 goto redirty;
740         if (!total_swap_pages)
741                 goto redirty;
742
743         /*
744          * shmem_backing_dev_info's capabilities prevent regular writeback or
745          * sync from ever calling shmem_writepage; but a stacking filesystem
746          * might use ->writepage of its underlying filesystem, in which case
747          * tmpfs should write out to swap only in response to memory pressure,
748          * and not for the writeback threads or sync.
749          */
750         if (!wbc->for_reclaim) {
751                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
752                 goto redirty;
753         }
754         swap = get_swap_page();
755         if (!swap.val)
756                 goto redirty;
757
758         /*
759          * Add inode to shmem_unuse()'s list of swapped-out inodes,
760          * if it's not already there.  Do it now before the page is
761          * moved to swap cache, when its pagelock no longer protects
762          * the inode from eviction.  But don't unlock the mutex until
763          * we've incremented swapped, because shmem_unuse_inode() will
764          * prune a !swapped inode from the swaplist under this mutex.
765          */
766         mutex_lock(&shmem_swaplist_mutex);
767         if (list_empty(&info->swaplist))
768                 list_add_tail(&info->swaplist, &shmem_swaplist);
769
770         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
771                 swap_shmem_alloc(swap);
772                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
773
774                 spin_lock(&info->lock);
775                 info->swapped++;
776                 shmem_recalc_inode(inode);
777                 spin_unlock(&info->lock);
778
779                 mutex_unlock(&shmem_swaplist_mutex);
780                 BUG_ON(page_mapped(page));
781                 swap_writepage(page, wbc);
782                 return 0;
783         }
784
785         mutex_unlock(&shmem_swaplist_mutex);
786         swapcache_free(swap, NULL);
787 redirty:
788         set_page_dirty(page);
789         if (wbc->for_reclaim)
790                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
791         unlock_page(page);
792         return 0;
793 }
794
795 #ifdef CONFIG_NUMA
796 #ifdef CONFIG_TMPFS
797 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
798 {
799         char buffer[64];
800
801         if (!mpol || mpol->mode == MPOL_DEFAULT)
802                 return;         /* show nothing */
803
804         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
805
806         seq_printf(seq, ",mpol=%s", buffer);
807 }
808
809 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
810 {
811         struct mempolicy *mpol = NULL;
812         if (sbinfo->mpol) {
813                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
814                 mpol = sbinfo->mpol;
815                 mpol_get(mpol);
816                 spin_unlock(&sbinfo->stat_lock);
817         }
818         return mpol;
819 }
820 #endif /* CONFIG_TMPFS */
821
822 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
823                         struct shmem_inode_info *info, pgoff_t index)
824 {
825         struct mempolicy mpol, *spol;
826         struct vm_area_struct pvma;
827
828         spol = mpol_cond_copy(&mpol,
829                         mpol_shared_policy_lookup(&info->policy, index));
830
831         /* Create a pseudo vma that just contains the policy */
832         pvma.vm_start = 0;
833         pvma.vm_pgoff = index;
834         pvma.vm_ops = NULL;
835         pvma.vm_policy = spol;
836         return swapin_readahead(swap, gfp, &pvma, 0);
837 }
838
839 static struct page *shmem_alloc_page(gfp_t gfp,
840                         struct shmem_inode_info *info, pgoff_t index)
841 {
842         struct vm_area_struct pvma;
843
844         /* Create a pseudo vma that just contains the policy */
845         pvma.vm_start = 0;
846         pvma.vm_pgoff = index;
847         pvma.vm_ops = NULL;
848         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
849
850         /*
851          * alloc_page_vma() will drop the shared policy reference
852          */
853         return alloc_page_vma(gfp, &pvma, 0);
854 }
855 #else /* !CONFIG_NUMA */
856 #ifdef CONFIG_TMPFS
857 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
858 {
859 }
860 #endif /* CONFIG_TMPFS */
861
862 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
863                         struct shmem_inode_info *info, pgoff_t index)
864 {
865         return swapin_readahead(swap, gfp, NULL, 0);
866 }
867
868 static inline struct page *shmem_alloc_page(gfp_t gfp,
869                         struct shmem_inode_info *info, pgoff_t index)
870 {
871         return alloc_page(gfp);
872 }
873 #endif /* CONFIG_NUMA */
874
875 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
876 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
877 {
878         return NULL;
879 }
880 #endif
881
882 /*
883  * When a page is moved from swapcache to shmem filecache (either by the
884  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
885  * shmem_unuse_inode()), it may have been read in earlier from swap, in
886  * ignorance of the mapping it belongs to.  If that mapping has special
887  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
888  * we may need to copy to a suitable page before moving to filecache.
889  *
890  * In a future release, this may well be extended to respect cpuset and
891  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
892  * but for now it is a simple matter of zone.
893  */
894 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
895 {
896         return page_zonenum(page) > gfp_zone(gfp);
897 }
898
899 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
900                                 struct shmem_inode_info *info, pgoff_t index)
901 {
902         struct page *oldpage, *newpage;
903         struct address_space *swap_mapping;
904         pgoff_t swap_index;
905         int error;
906
907         oldpage = *pagep;
908         swap_index = page_private(oldpage);
909         swap_mapping = page_mapping(oldpage);
910
911         /*
912          * We have arrived here because our zones are constrained, so don't
913          * limit chance of success by further cpuset and node constraints.
914          */
915         gfp &= ~GFP_CONSTRAINT_MASK;
916         newpage = shmem_alloc_page(gfp, info, index);
917         if (!newpage)
918                 return -ENOMEM;
919         VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
920
921         *pagep = newpage;
922         page_cache_get(newpage);
923         copy_highpage(newpage, oldpage);
924
925         VM_BUG_ON(!PageLocked(oldpage));
926         __set_page_locked(newpage);
927         VM_BUG_ON(!PageUptodate(oldpage));
928         SetPageUptodate(newpage);
929         VM_BUG_ON(!PageSwapBacked(oldpage));
930         SetPageSwapBacked(newpage);
931         VM_BUG_ON(!swap_index);
932         set_page_private(newpage, swap_index);
933         VM_BUG_ON(!PageSwapCache(oldpage));
934         SetPageSwapCache(newpage);
935
936         /*
937          * Our caller will very soon move newpage out of swapcache, but it's
938          * a nice clean interface for us to replace oldpage by newpage there.
939          */
940         spin_lock_irq(&swap_mapping->tree_lock);
941         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
942                                                                    newpage);
943         __inc_zone_page_state(newpage, NR_FILE_PAGES);
944         __dec_zone_page_state(oldpage, NR_FILE_PAGES);
945         spin_unlock_irq(&swap_mapping->tree_lock);
946         BUG_ON(error);
947
948         mem_cgroup_replace_page_cache(oldpage, newpage);
949         lru_cache_add_anon(newpage);
950
951         ClearPageSwapCache(oldpage);
952         set_page_private(oldpage, 0);
953
954         unlock_page(oldpage);
955         page_cache_release(oldpage);
956         page_cache_release(oldpage);
957         return 0;
958 }
959
960 /*
961  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
962  *
963  * If we allocate a new one we do not mark it dirty. That's up to the
964  * vm. If we swap it in we mark it dirty since we also free the swap
965  * entry since a page cannot live in both the swap and page cache
966  */
967 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
968         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
969 {
970         struct address_space *mapping = inode->i_mapping;
971         struct shmem_inode_info *info;
972         struct shmem_sb_info *sbinfo;
973         struct page *page;
974         swp_entry_t swap;
975         int error;
976         int once = 0;
977
978         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
979                 return -EFBIG;
980 repeat:
981         swap.val = 0;
982         page = find_lock_page(mapping, index);
983         if (radix_tree_exceptional_entry(page)) {
984                 swap = radix_to_swp_entry(page);
985                 page = NULL;
986         }
987
988         if (sgp != SGP_WRITE &&
989             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
990                 error = -EINVAL;
991                 goto failed;
992         }
993
994         if (page || (sgp == SGP_READ && !swap.val)) {
995                 /*
996                  * Once we can get the page lock, it must be uptodate:
997                  * if there were an error in reading back from swap,
998                  * the page would not be inserted into the filecache.
999                  */
1000                 BUG_ON(page && !PageUptodate(page));
1001                 *pagep = page;
1002                 return 0;
1003         }
1004
1005         /*
1006          * Fast cache lookup did not find it:
1007          * bring it back from swap or allocate.
1008          */
1009         info = SHMEM_I(inode);
1010         sbinfo = SHMEM_SB(inode->i_sb);
1011
1012         if (swap.val) {
1013                 /* Look it up and read it in.. */
1014                 page = lookup_swap_cache(swap);
1015                 if (!page) {
1016                         /* here we actually do the io */
1017                         if (fault_type)
1018                                 *fault_type |= VM_FAULT_MAJOR;
1019                         page = shmem_swapin(swap, gfp, info, index);
1020                         if (!page) {
1021                                 error = -ENOMEM;
1022                                 goto failed;
1023                         }
1024                 }
1025
1026                 /* We have to do this with page locked to prevent races */
1027                 lock_page(page);
1028                 if (!PageSwapCache(page) || page->mapping) {
1029                         error = -EEXIST;        /* try again */
1030                         goto failed;
1031                 }
1032                 if (!PageUptodate(page)) {
1033                         error = -EIO;
1034                         goto failed;
1035                 }
1036                 wait_on_page_writeback(page);
1037
1038                 if (shmem_should_replace_page(page, gfp)) {
1039                         error = shmem_replace_page(&page, gfp, info, index);
1040                         if (error)
1041                                 goto failed;
1042                 }
1043
1044                 error = mem_cgroup_cache_charge(page, current->mm,
1045                                                 gfp & GFP_RECLAIM_MASK);
1046                 if (!error)
1047                         error = shmem_add_to_page_cache(page, mapping, index,
1048                                                 gfp, swp_to_radix_entry(swap));
1049                 if (error)
1050                         goto failed;
1051
1052                 spin_lock(&info->lock);
1053                 info->swapped--;
1054                 shmem_recalc_inode(inode);
1055                 spin_unlock(&info->lock);
1056
1057                 delete_from_swap_cache(page);
1058                 set_page_dirty(page);
1059                 swap_free(swap);
1060
1061         } else {
1062                 if (shmem_acct_block(info->flags)) {
1063                         error = -ENOSPC;
1064                         goto failed;
1065                 }
1066                 if (sbinfo->max_blocks) {
1067                         if (percpu_counter_compare(&sbinfo->used_blocks,
1068                                                 sbinfo->max_blocks) >= 0) {
1069                                 error = -ENOSPC;
1070                                 goto unacct;
1071                         }
1072                         percpu_counter_inc(&sbinfo->used_blocks);
1073                 }
1074
1075                 page = shmem_alloc_page(gfp, info, index);
1076                 if (!page) {
1077                         error = -ENOMEM;
1078                         goto decused;
1079                 }
1080
1081                 SetPageSwapBacked(page);
1082                 __set_page_locked(page);
1083                 error = mem_cgroup_cache_charge(page, current->mm,
1084                                                 gfp & GFP_RECLAIM_MASK);
1085                 if (!error)
1086                         error = shmem_add_to_page_cache(page, mapping, index,
1087                                                 gfp, NULL);
1088                 if (error)
1089                         goto decused;
1090                 lru_cache_add_anon(page);
1091
1092                 spin_lock(&info->lock);
1093                 info->alloced++;
1094                 inode->i_blocks += BLOCKS_PER_PAGE;
1095                 shmem_recalc_inode(inode);
1096                 spin_unlock(&info->lock);
1097
1098                 /*
1099                  * Let SGP_WRITE caller clear ends if write does not fill page
1100                  */
1101                 if (sgp != SGP_WRITE) {
1102                         clear_highpage(page);
1103                         flush_dcache_page(page);
1104                         SetPageUptodate(page);
1105                 }
1106                 if (sgp == SGP_DIRTY)
1107                         set_page_dirty(page);
1108         }
1109
1110         /* Perhaps the file has been truncated since we checked */
1111         if (sgp != SGP_WRITE &&
1112             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1113                 error = -EINVAL;
1114                 goto trunc;
1115         }
1116         *pagep = page;
1117         return 0;
1118
1119         /*
1120          * Error recovery.
1121          */
1122 trunc:
1123         ClearPageDirty(page);
1124         delete_from_page_cache(page);
1125         spin_lock(&info->lock);
1126         info->alloced--;
1127         inode->i_blocks -= BLOCKS_PER_PAGE;
1128         spin_unlock(&info->lock);
1129 decused:
1130         if (sbinfo->max_blocks)
1131                 percpu_counter_add(&sbinfo->used_blocks, -1);
1132 unacct:
1133         shmem_unacct_blocks(info->flags, 1);
1134 failed:
1135         if (swap.val && error != -EINVAL) {
1136                 struct page *test = find_get_page(mapping, index);
1137                 if (test && !radix_tree_exceptional_entry(test))
1138                         page_cache_release(test);
1139                 /* Have another try if the entry has changed */
1140                 if (test != swp_to_radix_entry(swap))
1141                         error = -EEXIST;
1142         }
1143         if (page) {
1144                 unlock_page(page);
1145                 page_cache_release(page);
1146         }
1147         if (error == -ENOSPC && !once++) {
1148                 info = SHMEM_I(inode);
1149                 spin_lock(&info->lock);
1150                 shmem_recalc_inode(inode);
1151                 spin_unlock(&info->lock);
1152                 goto repeat;
1153         }
1154         if (error == -EEXIST)
1155                 goto repeat;
1156         return error;
1157 }
1158
1159 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1160 {
1161         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1162         int error;
1163         int ret = VM_FAULT_LOCKED;
1164
1165         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1166         if (error)
1167                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1168
1169         if (ret & VM_FAULT_MAJOR) {
1170                 count_vm_event(PGMAJFAULT);
1171                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1172         }
1173         return ret;
1174 }
1175
1176 #ifdef CONFIG_NUMA
1177 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1178 {
1179         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1180         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1181 }
1182
1183 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1184                                           unsigned long addr)
1185 {
1186         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1187         pgoff_t index;
1188
1189         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1190         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1191 }
1192 #endif
1193
1194 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1195 {
1196         struct inode *inode = file->f_path.dentry->d_inode;
1197         struct shmem_inode_info *info = SHMEM_I(inode);
1198         int retval = -ENOMEM;
1199
1200         spin_lock(&info->lock);
1201         if (lock && !(info->flags & VM_LOCKED)) {
1202                 if (!user_shm_lock(inode->i_size, user))
1203                         goto out_nomem;
1204                 info->flags |= VM_LOCKED;
1205                 mapping_set_unevictable(file->f_mapping);
1206         }
1207         if (!lock && (info->flags & VM_LOCKED) && user) {
1208                 user_shm_unlock(inode->i_size, user);
1209                 info->flags &= ~VM_LOCKED;
1210                 mapping_clear_unevictable(file->f_mapping);
1211         }
1212         retval = 0;
1213
1214 out_nomem:
1215         spin_unlock(&info->lock);
1216         return retval;
1217 }
1218
1219 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1220 {
1221         file_accessed(file);
1222         vma->vm_ops = &shmem_vm_ops;
1223         vma->vm_flags |= VM_CAN_NONLINEAR;
1224         return 0;
1225 }
1226
1227 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1228                                      umode_t mode, dev_t dev, unsigned long flags)
1229 {
1230         struct inode *inode;
1231         struct shmem_inode_info *info;
1232         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1233
1234         if (shmem_reserve_inode(sb))
1235                 return NULL;
1236
1237         inode = new_inode(sb);
1238         if (inode) {
1239                 inode->i_ino = get_next_ino();
1240                 inode_init_owner(inode, dir, mode);
1241                 inode->i_blocks = 0;
1242                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1243                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1244                 inode->i_generation = get_seconds();
1245                 info = SHMEM_I(inode);
1246                 memset(info, 0, (char *)inode - (char *)info);
1247                 spin_lock_init(&info->lock);
1248                 info->flags = flags & VM_NORESERVE;
1249                 INIT_LIST_HEAD(&info->swaplist);
1250                 INIT_LIST_HEAD(&info->xattr_list);
1251                 cache_no_acl(inode);
1252
1253                 switch (mode & S_IFMT) {
1254                 default:
1255                         inode->i_op = &shmem_special_inode_operations;
1256                         init_special_inode(inode, mode, dev);
1257                         break;
1258                 case S_IFREG:
1259                         inode->i_mapping->a_ops = &shmem_aops;
1260                         inode->i_op = &shmem_inode_operations;
1261                         inode->i_fop = &shmem_file_operations;
1262                         mpol_shared_policy_init(&info->policy,
1263                                                  shmem_get_sbmpol(sbinfo));
1264                         break;
1265                 case S_IFDIR:
1266                         inc_nlink(inode);
1267                         /* Some things misbehave if size == 0 on a directory */
1268                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1269                         inode->i_op = &shmem_dir_inode_operations;
1270                         inode->i_fop = &simple_dir_operations;
1271                         break;
1272                 case S_IFLNK:
1273                         /*
1274                          * Must not load anything in the rbtree,
1275                          * mpol_free_shared_policy will not be called.
1276                          */
1277                         mpol_shared_policy_init(&info->policy, NULL);
1278                         break;
1279                 }
1280         } else
1281                 shmem_free_inode(sb);
1282         return inode;
1283 }
1284
1285 #ifdef CONFIG_TMPFS
1286 static const struct inode_operations shmem_symlink_inode_operations;
1287 static const struct inode_operations shmem_short_symlink_operations;
1288
1289 #ifdef CONFIG_TMPFS_XATTR
1290 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1291 #else
1292 #define shmem_initxattrs NULL
1293 #endif
1294
1295 static int
1296 shmem_write_begin(struct file *file, struct address_space *mapping,
1297                         loff_t pos, unsigned len, unsigned flags,
1298                         struct page **pagep, void **fsdata)
1299 {
1300         struct inode *inode = mapping->host;
1301         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1302         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1303 }
1304
1305 static int
1306 shmem_write_end(struct file *file, struct address_space *mapping,
1307                         loff_t pos, unsigned len, unsigned copied,
1308                         struct page *page, void *fsdata)
1309 {
1310         struct inode *inode = mapping->host;
1311
1312         if (pos + copied > inode->i_size)
1313                 i_size_write(inode, pos + copied);
1314
1315         if (!PageUptodate(page)) {
1316                 if (copied < PAGE_CACHE_SIZE) {
1317                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1318                         zero_user_segments(page, 0, from,
1319                                         from + copied, PAGE_CACHE_SIZE);
1320                 }
1321                 SetPageUptodate(page);
1322         }
1323         set_page_dirty(page);
1324         unlock_page(page);
1325         page_cache_release(page);
1326
1327         return copied;
1328 }
1329
1330 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1331 {
1332         struct inode *inode = filp->f_path.dentry->d_inode;
1333         struct address_space *mapping = inode->i_mapping;
1334         pgoff_t index;
1335         unsigned long offset;
1336         enum sgp_type sgp = SGP_READ;
1337
1338         /*
1339          * Might this read be for a stacking filesystem?  Then when reading
1340          * holes of a sparse file, we actually need to allocate those pages,
1341          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1342          */
1343         if (segment_eq(get_fs(), KERNEL_DS))
1344                 sgp = SGP_DIRTY;
1345
1346         index = *ppos >> PAGE_CACHE_SHIFT;
1347         offset = *ppos & ~PAGE_CACHE_MASK;
1348
1349         for (;;) {
1350                 struct page *page = NULL;
1351                 pgoff_t end_index;
1352                 unsigned long nr, ret;
1353                 loff_t i_size = i_size_read(inode);
1354
1355                 end_index = i_size >> PAGE_CACHE_SHIFT;
1356                 if (index > end_index)
1357                         break;
1358                 if (index == end_index) {
1359                         nr = i_size & ~PAGE_CACHE_MASK;
1360                         if (nr <= offset)
1361                                 break;
1362                 }
1363
1364                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1365                 if (desc->error) {
1366                         if (desc->error == -EINVAL)
1367                                 desc->error = 0;
1368                         break;
1369                 }
1370                 if (page)
1371                         unlock_page(page);
1372
1373                 /*
1374                  * We must evaluate after, since reads (unlike writes)
1375                  * are called without i_mutex protection against truncate
1376                  */
1377                 nr = PAGE_CACHE_SIZE;
1378                 i_size = i_size_read(inode);
1379                 end_index = i_size >> PAGE_CACHE_SHIFT;
1380                 if (index == end_index) {
1381                         nr = i_size & ~PAGE_CACHE_MASK;
1382                         if (nr <= offset) {
1383                                 if (page)
1384                                         page_cache_release(page);
1385                                 break;
1386                         }
1387                 }
1388                 nr -= offset;
1389
1390                 if (page) {
1391                         /*
1392                          * If users can be writing to this page using arbitrary
1393                          * virtual addresses, take care about potential aliasing
1394                          * before reading the page on the kernel side.
1395                          */
1396                         if (mapping_writably_mapped(mapping))
1397                                 flush_dcache_page(page);
1398                         /*
1399                          * Mark the page accessed if we read the beginning.
1400                          */
1401                         if (!offset)
1402                                 mark_page_accessed(page);
1403                 } else {
1404                         page = ZERO_PAGE(0);
1405                         page_cache_get(page);
1406                 }
1407
1408                 /*
1409                  * Ok, we have the page, and it's up-to-date, so
1410                  * now we can copy it to user space...
1411                  *
1412                  * The actor routine returns how many bytes were actually used..
1413                  * NOTE! This may not be the same as how much of a user buffer
1414                  * we filled up (we may be padding etc), so we can only update
1415                  * "pos" here (the actor routine has to update the user buffer
1416                  * pointers and the remaining count).
1417                  */
1418                 ret = actor(desc, page, offset, nr);
1419                 offset += ret;
1420                 index += offset >> PAGE_CACHE_SHIFT;
1421                 offset &= ~PAGE_CACHE_MASK;
1422
1423                 page_cache_release(page);
1424                 if (ret != nr || !desc->count)
1425                         break;
1426
1427                 cond_resched();
1428         }
1429
1430         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1431         file_accessed(filp);
1432 }
1433
1434 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1435                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1436 {
1437         struct file *filp = iocb->ki_filp;
1438         ssize_t retval;
1439         unsigned long seg;
1440         size_t count;
1441         loff_t *ppos = &iocb->ki_pos;
1442
1443         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1444         if (retval)
1445                 return retval;
1446
1447         for (seg = 0; seg < nr_segs; seg++) {
1448                 read_descriptor_t desc;
1449
1450                 desc.written = 0;
1451                 desc.arg.buf = iov[seg].iov_base;
1452                 desc.count = iov[seg].iov_len;
1453                 if (desc.count == 0)
1454                         continue;
1455                 desc.error = 0;
1456                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1457                 retval += desc.written;
1458                 if (desc.error) {
1459                         retval = retval ?: desc.error;
1460                         break;
1461                 }
1462                 if (desc.count > 0)
1463                         break;
1464         }
1465         return retval;
1466 }
1467
1468 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1469                                 struct pipe_inode_info *pipe, size_t len,
1470                                 unsigned int flags)
1471 {
1472         struct address_space *mapping = in->f_mapping;
1473         struct inode *inode = mapping->host;
1474         unsigned int loff, nr_pages, req_pages;
1475         struct page *pages[PIPE_DEF_BUFFERS];
1476         struct partial_page partial[PIPE_DEF_BUFFERS];
1477         struct page *page;
1478         pgoff_t index, end_index;
1479         loff_t isize, left;
1480         int error, page_nr;
1481         struct splice_pipe_desc spd = {
1482                 .pages = pages,
1483                 .partial = partial,
1484                 .flags = flags,
1485                 .ops = &page_cache_pipe_buf_ops,
1486                 .spd_release = spd_release_page,
1487         };
1488
1489         isize = i_size_read(inode);
1490         if (unlikely(*ppos >= isize))
1491                 return 0;
1492
1493         left = isize - *ppos;
1494         if (unlikely(left < len))
1495                 len = left;
1496
1497         if (splice_grow_spd(pipe, &spd))
1498                 return -ENOMEM;
1499
1500         index = *ppos >> PAGE_CACHE_SHIFT;
1501         loff = *ppos & ~PAGE_CACHE_MASK;
1502         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1503         nr_pages = min(req_pages, pipe->buffers);
1504
1505         spd.nr_pages = find_get_pages_contig(mapping, index,
1506                                                 nr_pages, spd.pages);
1507         index += spd.nr_pages;
1508         error = 0;
1509
1510         while (spd.nr_pages < nr_pages) {
1511                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1512                 if (error)
1513                         break;
1514                 unlock_page(page);
1515                 spd.pages[spd.nr_pages++] = page;
1516                 index++;
1517         }
1518
1519         index = *ppos >> PAGE_CACHE_SHIFT;
1520         nr_pages = spd.nr_pages;
1521         spd.nr_pages = 0;
1522
1523         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1524                 unsigned int this_len;
1525
1526                 if (!len)
1527                         break;
1528
1529                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1530                 page = spd.pages[page_nr];
1531
1532                 if (!PageUptodate(page) || page->mapping != mapping) {
1533                         error = shmem_getpage(inode, index, &page,
1534                                                         SGP_CACHE, NULL);
1535                         if (error)
1536                                 break;
1537                         unlock_page(page);
1538                         page_cache_release(spd.pages[page_nr]);
1539                         spd.pages[page_nr] = page;
1540                 }
1541
1542                 isize = i_size_read(inode);
1543                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1544                 if (unlikely(!isize || index > end_index))
1545                         break;
1546
1547                 if (end_index == index) {
1548                         unsigned int plen;
1549
1550                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1551                         if (plen <= loff)
1552                                 break;
1553
1554                         this_len = min(this_len, plen - loff);
1555                         len = this_len;
1556                 }
1557
1558                 spd.partial[page_nr].offset = loff;
1559                 spd.partial[page_nr].len = this_len;
1560                 len -= this_len;
1561                 loff = 0;
1562                 spd.nr_pages++;
1563                 index++;
1564         }
1565
1566         while (page_nr < nr_pages)
1567                 page_cache_release(spd.pages[page_nr++]);
1568
1569         if (spd.nr_pages)
1570                 error = splice_to_pipe(pipe, &spd);
1571
1572         splice_shrink_spd(pipe, &spd);
1573
1574         if (error > 0) {
1575                 *ppos += error;
1576                 file_accessed(in);
1577         }
1578         return error;
1579 }
1580
1581 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1582 {
1583         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1584
1585         buf->f_type = TMPFS_MAGIC;
1586         buf->f_bsize = PAGE_CACHE_SIZE;
1587         buf->f_namelen = NAME_MAX;
1588         if (sbinfo->max_blocks) {
1589                 buf->f_blocks = sbinfo->max_blocks;
1590                 buf->f_bavail =
1591                 buf->f_bfree  = sbinfo->max_blocks -
1592                                 percpu_counter_sum(&sbinfo->used_blocks);
1593         }
1594         if (sbinfo->max_inodes) {
1595                 buf->f_files = sbinfo->max_inodes;
1596                 buf->f_ffree = sbinfo->free_inodes;
1597         }
1598         /* else leave those fields 0 like simple_statfs */
1599         return 0;
1600 }
1601
1602 /*
1603  * File creation. Allocate an inode, and we're done..
1604  */
1605 static int
1606 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1607 {
1608         struct inode *inode;
1609         int error = -ENOSPC;
1610
1611         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1612         if (inode) {
1613                 error = security_inode_init_security(inode, dir,
1614                                                      &dentry->d_name,
1615                                                      shmem_initxattrs, NULL);
1616                 if (error) {
1617                         if (error != -EOPNOTSUPP) {
1618                                 iput(inode);
1619                                 return error;
1620                         }
1621                 }
1622 #ifdef CONFIG_TMPFS_POSIX_ACL
1623                 error = generic_acl_init(inode, dir);
1624                 if (error) {
1625                         iput(inode);
1626                         return error;
1627                 }
1628 #else
1629                 error = 0;
1630 #endif
1631                 dir->i_size += BOGO_DIRENT_SIZE;
1632                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1633                 d_instantiate(dentry, inode);
1634                 dget(dentry); /* Extra count - pin the dentry in core */
1635         }
1636         return error;
1637 }
1638
1639 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1640 {
1641         int error;
1642
1643         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1644                 return error;
1645         inc_nlink(dir);
1646         return 0;
1647 }
1648
1649 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1650                 struct nameidata *nd)
1651 {
1652         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1653 }
1654
1655 /*
1656  * Link a file..
1657  */
1658 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1659 {
1660         struct inode *inode = old_dentry->d_inode;
1661         int ret;
1662
1663         /*
1664          * No ordinary (disk based) filesystem counts links as inodes;
1665          * but each new link needs a new dentry, pinning lowmem, and
1666          * tmpfs dentries cannot be pruned until they are unlinked.
1667          */
1668         ret = shmem_reserve_inode(inode->i_sb);
1669         if (ret)
1670                 goto out;
1671
1672         dir->i_size += BOGO_DIRENT_SIZE;
1673         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1674         inc_nlink(inode);
1675         ihold(inode);   /* New dentry reference */
1676         dget(dentry);           /* Extra pinning count for the created dentry */
1677         d_instantiate(dentry, inode);
1678 out:
1679         return ret;
1680 }
1681
1682 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1683 {
1684         struct inode *inode = dentry->d_inode;
1685
1686         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1687                 shmem_free_inode(inode->i_sb);
1688
1689         dir->i_size -= BOGO_DIRENT_SIZE;
1690         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1691         drop_nlink(inode);
1692         dput(dentry);   /* Undo the count from "create" - this does all the work */
1693         return 0;
1694 }
1695
1696 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1697 {
1698         if (!simple_empty(dentry))
1699                 return -ENOTEMPTY;
1700
1701         drop_nlink(dentry->d_inode);
1702         drop_nlink(dir);
1703         return shmem_unlink(dir, dentry);
1704 }
1705
1706 /*
1707  * The VFS layer already does all the dentry stuff for rename,
1708  * we just have to decrement the usage count for the target if
1709  * it exists so that the VFS layer correctly free's it when it
1710  * gets overwritten.
1711  */
1712 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1713 {
1714         struct inode *inode = old_dentry->d_inode;
1715         int they_are_dirs = S_ISDIR(inode->i_mode);
1716
1717         if (!simple_empty(new_dentry))
1718                 return -ENOTEMPTY;
1719
1720         if (new_dentry->d_inode) {
1721                 (void) shmem_unlink(new_dir, new_dentry);
1722                 if (they_are_dirs)
1723                         drop_nlink(old_dir);
1724         } else if (they_are_dirs) {
1725                 drop_nlink(old_dir);
1726                 inc_nlink(new_dir);
1727         }
1728
1729         old_dir->i_size -= BOGO_DIRENT_SIZE;
1730         new_dir->i_size += BOGO_DIRENT_SIZE;
1731         old_dir->i_ctime = old_dir->i_mtime =
1732         new_dir->i_ctime = new_dir->i_mtime =
1733         inode->i_ctime = CURRENT_TIME;
1734         return 0;
1735 }
1736
1737 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1738 {
1739         int error;
1740         int len;
1741         struct inode *inode;
1742         struct page *page;
1743         char *kaddr;
1744         struct shmem_inode_info *info;
1745
1746         len = strlen(symname) + 1;
1747         if (len > PAGE_CACHE_SIZE)
1748                 return -ENAMETOOLONG;
1749
1750         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1751         if (!inode)
1752                 return -ENOSPC;
1753
1754         error = security_inode_init_security(inode, dir, &dentry->d_name,
1755                                              shmem_initxattrs, NULL);
1756         if (error) {
1757                 if (error != -EOPNOTSUPP) {
1758                         iput(inode);
1759                         return error;
1760                 }
1761                 error = 0;
1762         }
1763
1764         info = SHMEM_I(inode);
1765         inode->i_size = len-1;
1766         if (len <= SHORT_SYMLINK_LEN) {
1767                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1768                 if (!info->symlink) {
1769                         iput(inode);
1770                         return -ENOMEM;
1771                 }
1772                 inode->i_op = &shmem_short_symlink_operations;
1773         } else {
1774                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1775                 if (error) {
1776                         iput(inode);
1777                         return error;
1778                 }
1779                 inode->i_mapping->a_ops = &shmem_aops;
1780                 inode->i_op = &shmem_symlink_inode_operations;
1781                 kaddr = kmap_atomic(page);
1782                 memcpy(kaddr, symname, len);
1783                 kunmap_atomic(kaddr);
1784                 SetPageUptodate(page);
1785                 set_page_dirty(page);
1786                 unlock_page(page);
1787                 page_cache_release(page);
1788         }
1789         dir->i_size += BOGO_DIRENT_SIZE;
1790         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1791         d_instantiate(dentry, inode);
1792         dget(dentry);
1793         return 0;
1794 }
1795
1796 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1797 {
1798         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1799         return NULL;
1800 }
1801
1802 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1803 {
1804         struct page *page = NULL;
1805         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1806         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1807         if (page)
1808                 unlock_page(page);
1809         return page;
1810 }
1811
1812 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1813 {
1814         if (!IS_ERR(nd_get_link(nd))) {
1815                 struct page *page = cookie;
1816                 kunmap(page);
1817                 mark_page_accessed(page);
1818                 page_cache_release(page);
1819         }
1820 }
1821
1822 #ifdef CONFIG_TMPFS_XATTR
1823 /*
1824  * Superblocks without xattr inode operations may get some security.* xattr
1825  * support from the LSM "for free". As soon as we have any other xattrs
1826  * like ACLs, we also need to implement the security.* handlers at
1827  * filesystem level, though.
1828  */
1829
1830 /*
1831  * Allocate new xattr and copy in the value; but leave the name to callers.
1832  */
1833 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1834 {
1835         struct shmem_xattr *new_xattr;
1836         size_t len;
1837
1838         /* wrap around? */
1839         len = sizeof(*new_xattr) + size;
1840         if (len <= sizeof(*new_xattr))
1841                 return NULL;
1842
1843         new_xattr = kmalloc(len, GFP_KERNEL);
1844         if (!new_xattr)
1845                 return NULL;
1846
1847         new_xattr->size = size;
1848         memcpy(new_xattr->value, value, size);
1849         return new_xattr;
1850 }
1851
1852 /*
1853  * Callback for security_inode_init_security() for acquiring xattrs.
1854  */
1855 static int shmem_initxattrs(struct inode *inode,
1856                             const struct xattr *xattr_array,
1857                             void *fs_info)
1858 {
1859         struct shmem_inode_info *info = SHMEM_I(inode);
1860         const struct xattr *xattr;
1861         struct shmem_xattr *new_xattr;
1862         size_t len;
1863
1864         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1865                 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1866                 if (!new_xattr)
1867                         return -ENOMEM;
1868
1869                 len = strlen(xattr->name) + 1;
1870                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1871                                           GFP_KERNEL);
1872                 if (!new_xattr->name) {
1873                         kfree(new_xattr);
1874                         return -ENOMEM;
1875                 }
1876
1877                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1878                        XATTR_SECURITY_PREFIX_LEN);
1879                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1880                        xattr->name, len);
1881
1882                 spin_lock(&info->lock);
1883                 list_add(&new_xattr->list, &info->xattr_list);
1884                 spin_unlock(&info->lock);
1885         }
1886
1887         return 0;
1888 }
1889
1890 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1891                            void *buffer, size_t size)
1892 {
1893         struct shmem_inode_info *info;
1894         struct shmem_xattr *xattr;
1895         int ret = -ENODATA;
1896
1897         info = SHMEM_I(dentry->d_inode);
1898
1899         spin_lock(&info->lock);
1900         list_for_each_entry(xattr, &info->xattr_list, list) {
1901                 if (strcmp(name, xattr->name))
1902                         continue;
1903
1904                 ret = xattr->size;
1905                 if (buffer) {
1906                         if (size < xattr->size)
1907                                 ret = -ERANGE;
1908                         else
1909                                 memcpy(buffer, xattr->value, xattr->size);
1910                 }
1911                 break;
1912         }
1913         spin_unlock(&info->lock);
1914         return ret;
1915 }
1916
1917 static int shmem_xattr_set(struct inode *inode, const char *name,
1918                            const void *value, size_t size, int flags)
1919 {
1920         struct shmem_inode_info *info = SHMEM_I(inode);
1921         struct shmem_xattr *xattr;
1922         struct shmem_xattr *new_xattr = NULL;
1923         int err = 0;
1924
1925         /* value == NULL means remove */
1926         if (value) {
1927                 new_xattr = shmem_xattr_alloc(value, size);
1928                 if (!new_xattr)
1929                         return -ENOMEM;
1930
1931                 new_xattr->name = kstrdup(name, GFP_KERNEL);
1932                 if (!new_xattr->name) {
1933                         kfree(new_xattr);
1934                         return -ENOMEM;
1935                 }
1936         }
1937
1938         spin_lock(&info->lock);
1939         list_for_each_entry(xattr, &info->xattr_list, list) {
1940                 if (!strcmp(name, xattr->name)) {
1941                         if (flags & XATTR_CREATE) {
1942                                 xattr = new_xattr;
1943                                 err = -EEXIST;
1944                         } else if (new_xattr) {
1945                                 list_replace(&xattr->list, &new_xattr->list);
1946                         } else {
1947                                 list_del(&xattr->list);
1948                         }
1949                         goto out;
1950                 }
1951         }
1952         if (flags & XATTR_REPLACE) {
1953                 xattr = new_xattr;
1954                 err = -ENODATA;
1955         } else {
1956                 list_add(&new_xattr->list, &info->xattr_list);
1957                 xattr = NULL;
1958         }
1959 out:
1960         spin_unlock(&info->lock);
1961         if (xattr)
1962                 kfree(xattr->name);
1963         kfree(xattr);
1964         return err;
1965 }
1966
1967 static const struct xattr_handler *shmem_xattr_handlers[] = {
1968 #ifdef CONFIG_TMPFS_POSIX_ACL
1969         &generic_acl_access_handler,
1970         &generic_acl_default_handler,
1971 #endif
1972         NULL
1973 };
1974
1975 static int shmem_xattr_validate(const char *name)
1976 {
1977         struct { const char *prefix; size_t len; } arr[] = {
1978                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1979                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1980         };
1981         int i;
1982
1983         for (i = 0; i < ARRAY_SIZE(arr); i++) {
1984                 size_t preflen = arr[i].len;
1985                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1986                         if (!name[preflen])
1987                                 return -EINVAL;
1988                         return 0;
1989                 }
1990         }
1991         return -EOPNOTSUPP;
1992 }
1993
1994 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1995                               void *buffer, size_t size)
1996 {
1997         int err;
1998
1999         /*
2000          * If this is a request for a synthetic attribute in the system.*
2001          * namespace use the generic infrastructure to resolve a handler
2002          * for it via sb->s_xattr.
2003          */
2004         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2005                 return generic_getxattr(dentry, name, buffer, size);
2006
2007         err = shmem_xattr_validate(name);
2008         if (err)
2009                 return err;
2010
2011         return shmem_xattr_get(dentry, name, buffer, size);
2012 }
2013
2014 static int shmem_setxattr(struct dentry *dentry, const char *name,
2015                           const void *value, size_t size, int flags)
2016 {
2017         int err;
2018
2019         /*
2020          * If this is a request for a synthetic attribute in the system.*
2021          * namespace use the generic infrastructure to resolve a handler
2022          * for it via sb->s_xattr.
2023          */
2024         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2025                 return generic_setxattr(dentry, name, value, size, flags);
2026
2027         err = shmem_xattr_validate(name);
2028         if (err)
2029                 return err;
2030
2031         if (size == 0)
2032                 value = "";  /* empty EA, do not remove */
2033
2034         return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2035
2036 }
2037
2038 static int shmem_removexattr(struct dentry *dentry, const char *name)
2039 {
2040         int err;
2041
2042         /*
2043          * If this is a request for a synthetic attribute in the system.*
2044          * namespace use the generic infrastructure to resolve a handler
2045          * for it via sb->s_xattr.
2046          */
2047         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2048                 return generic_removexattr(dentry, name);
2049
2050         err = shmem_xattr_validate(name);
2051         if (err)
2052                 return err;
2053
2054         return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2055 }
2056
2057 static bool xattr_is_trusted(const char *name)
2058 {
2059         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2060 }
2061
2062 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2063 {
2064         bool trusted = capable(CAP_SYS_ADMIN);
2065         struct shmem_xattr *xattr;
2066         struct shmem_inode_info *info;
2067         size_t used = 0;
2068
2069         info = SHMEM_I(dentry->d_inode);
2070
2071         spin_lock(&info->lock);
2072         list_for_each_entry(xattr, &info->xattr_list, list) {
2073                 size_t len;
2074
2075                 /* skip "trusted." attributes for unprivileged callers */
2076                 if (!trusted && xattr_is_trusted(xattr->name))
2077                         continue;
2078
2079                 len = strlen(xattr->name) + 1;
2080                 used += len;
2081                 if (buffer) {
2082                         if (size < used) {
2083                                 used = -ERANGE;
2084                                 break;
2085                         }
2086                         memcpy(buffer, xattr->name, len);
2087                         buffer += len;
2088                 }
2089         }
2090         spin_unlock(&info->lock);
2091
2092         return used;
2093 }
2094 #endif /* CONFIG_TMPFS_XATTR */
2095
2096 static const struct inode_operations shmem_short_symlink_operations = {
2097         .readlink       = generic_readlink,
2098         .follow_link    = shmem_follow_short_symlink,
2099 #ifdef CONFIG_TMPFS_XATTR
2100         .setxattr       = shmem_setxattr,
2101         .getxattr       = shmem_getxattr,
2102         .listxattr      = shmem_listxattr,
2103         .removexattr    = shmem_removexattr,
2104 #endif
2105 };
2106
2107 static const struct inode_operations shmem_symlink_inode_operations = {
2108         .readlink       = generic_readlink,
2109         .follow_link    = shmem_follow_link,
2110         .put_link       = shmem_put_link,
2111 #ifdef CONFIG_TMPFS_XATTR
2112         .setxattr       = shmem_setxattr,
2113         .getxattr       = shmem_getxattr,
2114         .listxattr      = shmem_listxattr,
2115         .removexattr    = shmem_removexattr,
2116 #endif
2117 };
2118
2119 static struct dentry *shmem_get_parent(struct dentry *child)
2120 {
2121         return ERR_PTR(-ESTALE);
2122 }
2123
2124 static int shmem_match(struct inode *ino, void *vfh)
2125 {
2126         __u32 *fh = vfh;
2127         __u64 inum = fh[2];
2128         inum = (inum << 32) | fh[1];
2129         return ino->i_ino == inum && fh[0] == ino->i_generation;
2130 }
2131
2132 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2133                 struct fid *fid, int fh_len, int fh_type)
2134 {
2135         struct inode *inode;
2136         struct dentry *dentry = NULL;
2137         u64 inum = fid->raw[2];
2138         inum = (inum << 32) | fid->raw[1];
2139
2140         if (fh_len < 3)
2141                 return NULL;
2142
2143         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2144                         shmem_match, fid->raw);
2145         if (inode) {
2146                 dentry = d_find_alias(inode);
2147                 iput(inode);
2148         }
2149
2150         return dentry;
2151 }
2152
2153 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2154                                 int connectable)
2155 {
2156         struct inode *inode = dentry->d_inode;
2157
2158         if (*len < 3) {
2159                 *len = 3;
2160                 return 255;
2161         }
2162
2163         if (inode_unhashed(inode)) {
2164                 /* Unfortunately insert_inode_hash is not idempotent,
2165                  * so as we hash inodes here rather than at creation
2166                  * time, we need a lock to ensure we only try
2167                  * to do it once
2168                  */
2169                 static DEFINE_SPINLOCK(lock);
2170                 spin_lock(&lock);
2171                 if (inode_unhashed(inode))
2172                         __insert_inode_hash(inode,
2173                                             inode->i_ino + inode->i_generation);
2174                 spin_unlock(&lock);
2175         }
2176
2177         fh[0] = inode->i_generation;
2178         fh[1] = inode->i_ino;
2179         fh[2] = ((__u64)inode->i_ino) >> 32;
2180
2181         *len = 3;
2182         return 1;
2183 }
2184
2185 static const struct export_operations shmem_export_ops = {
2186         .get_parent     = shmem_get_parent,
2187         .encode_fh      = shmem_encode_fh,
2188         .fh_to_dentry   = shmem_fh_to_dentry,
2189 };
2190
2191 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2192                                bool remount)
2193 {
2194         char *this_char, *value, *rest;
2195         uid_t uid;
2196         gid_t gid;
2197
2198         while (options != NULL) {
2199                 this_char = options;
2200                 for (;;) {
2201                         /*
2202                          * NUL-terminate this option: unfortunately,
2203                          * mount options form a comma-separated list,
2204                          * but mpol's nodelist may also contain commas.
2205                          */
2206                         options = strchr(options, ',');
2207                         if (options == NULL)
2208                                 break;
2209                         options++;
2210                         if (!isdigit(*options)) {
2211                                 options[-1] = '\0';
2212                                 break;
2213                         }
2214                 }
2215                 if (!*this_char)
2216                         continue;
2217                 if ((value = strchr(this_char,'=')) != NULL) {
2218                         *value++ = 0;
2219                 } else {
2220                         printk(KERN_ERR
2221                             "tmpfs: No value for mount option '%s'\n",
2222                             this_char);
2223                         return 1;
2224                 }
2225
2226                 if (!strcmp(this_char,"size")) {
2227                         unsigned long long size;
2228                         size = memparse(value,&rest);
2229                         if (*rest == '%') {
2230                                 size <<= PAGE_SHIFT;
2231                                 size *= totalram_pages;
2232                                 do_div(size, 100);
2233                                 rest++;
2234                         }
2235                         if (*rest)
2236                                 goto bad_val;
2237                         sbinfo->max_blocks =
2238                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2239                 } else if (!strcmp(this_char,"nr_blocks")) {
2240                         sbinfo->max_blocks = memparse(value, &rest);
2241                         if (*rest)
2242                                 goto bad_val;
2243                 } else if (!strcmp(this_char,"nr_inodes")) {
2244                         sbinfo->max_inodes = memparse(value, &rest);
2245                         if (*rest)
2246                                 goto bad_val;
2247                 } else if (!strcmp(this_char,"mode")) {
2248                         if (remount)
2249                                 continue;
2250                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2251                         if (*rest)
2252                                 goto bad_val;
2253                 } else if (!strcmp(this_char,"uid")) {
2254                         if (remount)
2255                                 continue;
2256                         uid = simple_strtoul(value, &rest, 0);
2257                         if (*rest)
2258                                 goto bad_val;
2259                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2260                         if (!uid_valid(sbinfo->uid))
2261                                 goto bad_val;
2262                 } else if (!strcmp(this_char,"gid")) {
2263                         if (remount)
2264                                 continue;
2265                         gid = simple_strtoul(value, &rest, 0);
2266                         if (*rest)
2267                                 goto bad_val;
2268                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2269                         if (!gid_valid(sbinfo->gid))
2270                                 goto bad_val;
2271                 } else if (!strcmp(this_char,"mpol")) {
2272                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2273                                 goto bad_val;
2274                 } else {
2275                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2276                                this_char);
2277                         return 1;
2278                 }
2279         }
2280         return 0;
2281
2282 bad_val:
2283         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2284                value, this_char);
2285         return 1;
2286
2287 }
2288
2289 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2290 {
2291         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2292         struct shmem_sb_info config = *sbinfo;
2293         unsigned long inodes;
2294         int error = -EINVAL;
2295
2296         if (shmem_parse_options(data, &config, true))
2297                 return error;
2298
2299         spin_lock(&sbinfo->stat_lock);
2300         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2301         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2302                 goto out;
2303         if (config.max_inodes < inodes)
2304                 goto out;
2305         /*
2306          * Those tests disallow limited->unlimited while any are in use;
2307          * but we must separately disallow unlimited->limited, because
2308          * in that case we have no record of how much is already in use.
2309          */
2310         if (config.max_blocks && !sbinfo->max_blocks)
2311                 goto out;
2312         if (config.max_inodes && !sbinfo->max_inodes)
2313                 goto out;
2314
2315         error = 0;
2316         sbinfo->max_blocks  = config.max_blocks;
2317         sbinfo->max_inodes  = config.max_inodes;
2318         sbinfo->free_inodes = config.max_inodes - inodes;
2319
2320         mpol_put(sbinfo->mpol);
2321         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2322 out:
2323         spin_unlock(&sbinfo->stat_lock);
2324         return error;
2325 }
2326
2327 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2328 {
2329         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2330
2331         if (sbinfo->max_blocks != shmem_default_max_blocks())
2332                 seq_printf(seq, ",size=%luk",
2333                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2334         if (sbinfo->max_inodes != shmem_default_max_inodes())
2335                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2336         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2337                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2338         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2339                 seq_printf(seq, ",uid=%u",
2340                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2341         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2342                 seq_printf(seq, ",gid=%u",
2343                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2344         shmem_show_mpol(seq, sbinfo->mpol);
2345         return 0;
2346 }
2347 #endif /* CONFIG_TMPFS */
2348
2349 static void shmem_put_super(struct super_block *sb)
2350 {
2351         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2352
2353         percpu_counter_destroy(&sbinfo->used_blocks);
2354         kfree(sbinfo);
2355         sb->s_fs_info = NULL;
2356 }
2357
2358 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2359 {
2360         struct inode *inode;
2361         struct shmem_sb_info *sbinfo;
2362         int err = -ENOMEM;
2363
2364         /* Round up to L1_CACHE_BYTES to resist false sharing */
2365         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2366                                 L1_CACHE_BYTES), GFP_KERNEL);
2367         if (!sbinfo)
2368                 return -ENOMEM;
2369
2370         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2371         sbinfo->uid = current_fsuid();
2372         sbinfo->gid = current_fsgid();
2373         sb->s_fs_info = sbinfo;
2374
2375 #ifdef CONFIG_TMPFS
2376         /*
2377          * Per default we only allow half of the physical ram per
2378          * tmpfs instance, limiting inodes to one per page of lowmem;
2379          * but the internal instance is left unlimited.
2380          */
2381         if (!(sb->s_flags & MS_NOUSER)) {
2382                 sbinfo->max_blocks = shmem_default_max_blocks();
2383                 sbinfo->max_inodes = shmem_default_max_inodes();
2384                 if (shmem_parse_options(data, sbinfo, false)) {
2385                         err = -EINVAL;
2386                         goto failed;
2387                 }
2388         }
2389         sb->s_export_op = &shmem_export_ops;
2390         sb->s_flags |= MS_NOSEC;
2391 #else
2392         sb->s_flags |= MS_NOUSER;
2393 #endif
2394
2395         spin_lock_init(&sbinfo->stat_lock);
2396         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2397                 goto failed;
2398         sbinfo->free_inodes = sbinfo->max_inodes;
2399
2400         sb->s_maxbytes = MAX_LFS_FILESIZE;
2401         sb->s_blocksize = PAGE_CACHE_SIZE;
2402         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2403         sb->s_magic = TMPFS_MAGIC;
2404         sb->s_op = &shmem_ops;
2405         sb->s_time_gran = 1;
2406 #ifdef CONFIG_TMPFS_XATTR
2407         sb->s_xattr = shmem_xattr_handlers;
2408 #endif
2409 #ifdef CONFIG_TMPFS_POSIX_ACL
2410         sb->s_flags |= MS_POSIXACL;
2411 #endif
2412
2413         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2414         if (!inode)
2415                 goto failed;
2416         inode->i_uid = sbinfo->uid;
2417         inode->i_gid = sbinfo->gid;
2418         sb->s_root = d_make_root(inode);
2419         if (!sb->s_root)
2420                 goto failed;
2421         return 0;
2422
2423 failed:
2424         shmem_put_super(sb);
2425         return err;
2426 }
2427
2428 static struct kmem_cache *shmem_inode_cachep;
2429
2430 static struct inode *shmem_alloc_inode(struct super_block *sb)
2431 {
2432         struct shmem_inode_info *info;
2433         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2434         if (!info)
2435                 return NULL;
2436         return &info->vfs_inode;
2437 }
2438
2439 static void shmem_destroy_callback(struct rcu_head *head)
2440 {
2441         struct inode *inode = container_of(head, struct inode, i_rcu);
2442         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2443 }
2444
2445 static void shmem_destroy_inode(struct inode *inode)
2446 {
2447         if (S_ISREG(inode->i_mode))
2448                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2449         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2450 }
2451
2452 static void shmem_init_inode(void *foo)
2453 {
2454         struct shmem_inode_info *info = foo;
2455         inode_init_once(&info->vfs_inode);
2456 }
2457
2458 static int shmem_init_inodecache(void)
2459 {
2460         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2461                                 sizeof(struct shmem_inode_info),
2462                                 0, SLAB_PANIC, shmem_init_inode);
2463         return 0;
2464 }
2465
2466 static void shmem_destroy_inodecache(void)
2467 {
2468         kmem_cache_destroy(shmem_inode_cachep);
2469 }
2470
2471 static const struct address_space_operations shmem_aops = {
2472         .writepage      = shmem_writepage,
2473         .set_page_dirty = __set_page_dirty_no_writeback,
2474 #ifdef CONFIG_TMPFS
2475         .write_begin    = shmem_write_begin,
2476         .write_end      = shmem_write_end,
2477 #endif
2478         .migratepage    = migrate_page,
2479         .error_remove_page = generic_error_remove_page,
2480 };
2481
2482 static const struct file_operations shmem_file_operations = {
2483         .mmap           = shmem_mmap,
2484 #ifdef CONFIG_TMPFS
2485         .llseek         = generic_file_llseek,
2486         .read           = do_sync_read,
2487         .write          = do_sync_write,
2488         .aio_read       = shmem_file_aio_read,
2489         .aio_write      = generic_file_aio_write,
2490         .fsync          = noop_fsync,
2491         .splice_read    = shmem_file_splice_read,
2492         .splice_write   = generic_file_splice_write,
2493 #endif
2494 };
2495
2496 static const struct inode_operations shmem_inode_operations = {
2497         .setattr        = shmem_setattr,
2498         .truncate_range = shmem_truncate_range,
2499 #ifdef CONFIG_TMPFS_XATTR
2500         .setxattr       = shmem_setxattr,
2501         .getxattr       = shmem_getxattr,
2502         .listxattr      = shmem_listxattr,
2503         .removexattr    = shmem_removexattr,
2504 #endif
2505 };
2506
2507 static const struct inode_operations shmem_dir_inode_operations = {
2508 #ifdef CONFIG_TMPFS
2509         .create         = shmem_create,
2510         .lookup         = simple_lookup,
2511         .link           = shmem_link,
2512         .unlink         = shmem_unlink,
2513         .symlink        = shmem_symlink,
2514         .mkdir          = shmem_mkdir,
2515         .rmdir          = shmem_rmdir,
2516         .mknod          = shmem_mknod,
2517         .rename         = shmem_rename,
2518 #endif
2519 #ifdef CONFIG_TMPFS_XATTR
2520         .setxattr       = shmem_setxattr,
2521         .getxattr       = shmem_getxattr,
2522         .listxattr      = shmem_listxattr,
2523         .removexattr    = shmem_removexattr,
2524 #endif
2525 #ifdef CONFIG_TMPFS_POSIX_ACL
2526         .setattr        = shmem_setattr,
2527 #endif
2528 };
2529
2530 static const struct inode_operations shmem_special_inode_operations = {
2531 #ifdef CONFIG_TMPFS_XATTR
2532         .setxattr       = shmem_setxattr,
2533         .getxattr       = shmem_getxattr,
2534         .listxattr      = shmem_listxattr,
2535         .removexattr    = shmem_removexattr,
2536 #endif
2537 #ifdef CONFIG_TMPFS_POSIX_ACL
2538         .setattr        = shmem_setattr,
2539 #endif
2540 };
2541
2542 static const struct super_operations shmem_ops = {
2543         .alloc_inode    = shmem_alloc_inode,
2544         .destroy_inode  = shmem_destroy_inode,
2545 #ifdef CONFIG_TMPFS
2546         .statfs         = shmem_statfs,
2547         .remount_fs     = shmem_remount_fs,
2548         .show_options   = shmem_show_options,
2549 #endif
2550         .evict_inode    = shmem_evict_inode,
2551         .drop_inode     = generic_delete_inode,
2552         .put_super      = shmem_put_super,
2553 };
2554
2555 static const struct vm_operations_struct shmem_vm_ops = {
2556         .fault          = shmem_fault,
2557 #ifdef CONFIG_NUMA
2558         .set_policy     = shmem_set_policy,
2559         .get_policy     = shmem_get_policy,
2560 #endif
2561 };
2562
2563 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2564         int flags, const char *dev_name, void *data)
2565 {
2566         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2567 }
2568
2569 static struct file_system_type shmem_fs_type = {
2570         .owner          = THIS_MODULE,
2571         .name           = "tmpfs",
2572         .mount          = shmem_mount,
2573         .kill_sb        = kill_litter_super,
2574 };
2575
2576 int __init shmem_init(void)
2577 {
2578         int error;
2579
2580         error = bdi_init(&shmem_backing_dev_info);
2581         if (error)
2582                 goto out4;
2583
2584         error = shmem_init_inodecache();
2585         if (error)
2586                 goto out3;
2587
2588         error = register_filesystem(&shmem_fs_type);
2589         if (error) {
2590                 printk(KERN_ERR "Could not register tmpfs\n");
2591                 goto out2;
2592         }
2593
2594         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2595                                  shmem_fs_type.name, NULL);
2596         if (IS_ERR(shm_mnt)) {
2597                 error = PTR_ERR(shm_mnt);
2598                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2599                 goto out1;
2600         }
2601         return 0;
2602
2603 out1:
2604         unregister_filesystem(&shmem_fs_type);
2605 out2:
2606         shmem_destroy_inodecache();
2607 out3:
2608         bdi_destroy(&shmem_backing_dev_info);
2609 out4:
2610         shm_mnt = ERR_PTR(error);
2611         return error;
2612 }
2613
2614 #else /* !CONFIG_SHMEM */
2615
2616 /*
2617  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2618  *
2619  * This is intended for small system where the benefits of the full
2620  * shmem code (swap-backed and resource-limited) are outweighed by
2621  * their complexity. On systems without swap this code should be
2622  * effectively equivalent, but much lighter weight.
2623  */
2624
2625 #include <linux/ramfs.h>
2626
2627 static struct file_system_type shmem_fs_type = {
2628         .name           = "tmpfs",
2629         .mount          = ramfs_mount,
2630         .kill_sb        = kill_litter_super,
2631 };
2632
2633 int __init shmem_init(void)
2634 {
2635         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2636
2637         shm_mnt = kern_mount(&shmem_fs_type);
2638         BUG_ON(IS_ERR(shm_mnt));
2639
2640         return 0;
2641 }
2642
2643 int shmem_unuse(swp_entry_t swap, struct page *page)
2644 {
2645         return 0;
2646 }
2647
2648 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2649 {
2650         return 0;
2651 }
2652
2653 void shmem_unlock_mapping(struct address_space *mapping)
2654 {
2655 }
2656
2657 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2658 {
2659         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2660 }
2661 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2662
2663 #define shmem_vm_ops                            generic_file_vm_ops
2664 #define shmem_file_operations                   ramfs_file_operations
2665 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2666 #define shmem_acct_size(flags, size)            0
2667 #define shmem_unacct_size(flags, size)          do {} while (0)
2668
2669 #endif /* CONFIG_SHMEM */
2670
2671 /* common code */
2672
2673 /**
2674  * shmem_file_setup - get an unlinked file living in tmpfs
2675  * @name: name for dentry (to be seen in /proc/<pid>/maps
2676  * @size: size to be set for the file
2677  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2678  */
2679 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2680 {
2681         int error;
2682         struct file *file;
2683         struct inode *inode;
2684         struct path path;
2685         struct dentry *root;
2686         struct qstr this;
2687
2688         if (IS_ERR(shm_mnt))
2689                 return (void *)shm_mnt;
2690
2691         if (size < 0 || size > MAX_LFS_FILESIZE)
2692                 return ERR_PTR(-EINVAL);
2693
2694         if (shmem_acct_size(flags, size))
2695                 return ERR_PTR(-ENOMEM);
2696
2697         error = -ENOMEM;
2698         this.name = name;
2699         this.len = strlen(name);
2700         this.hash = 0; /* will go */
2701         root = shm_mnt->mnt_root;
2702         path.dentry = d_alloc(root, &this);
2703         if (!path.dentry)
2704                 goto put_memory;
2705         path.mnt = mntget(shm_mnt);
2706
2707         error = -ENOSPC;
2708         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2709         if (!inode)
2710                 goto put_dentry;
2711
2712         d_instantiate(path.dentry, inode);
2713         inode->i_size = size;
2714         clear_nlink(inode);     /* It is unlinked */
2715 #ifndef CONFIG_MMU
2716         error = ramfs_nommu_expand_for_mapping(inode, size);
2717         if (error)
2718                 goto put_dentry;
2719 #endif
2720
2721         error = -ENFILE;
2722         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2723                   &shmem_file_operations);
2724         if (!file)
2725                 goto put_dentry;
2726
2727         return file;
2728
2729 put_dentry:
2730         path_put(&path);
2731 put_memory:
2732         shmem_unacct_size(flags, size);
2733         return ERR_PTR(error);
2734 }
2735 EXPORT_SYMBOL_GPL(shmem_file_setup);
2736
2737 /**
2738  * shmem_zero_setup - setup a shared anonymous mapping
2739  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2740  */
2741 int shmem_zero_setup(struct vm_area_struct *vma)
2742 {
2743         struct file *file;
2744         loff_t size = vma->vm_end - vma->vm_start;
2745
2746         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2747         if (IS_ERR(file))
2748                 return PTR_ERR(file);
2749
2750         if (vma->vm_file)
2751                 fput(vma->vm_file);
2752         vma->vm_file = file;
2753         vma->vm_ops = &shmem_vm_ops;
2754         vma->vm_flags |= VM_CAN_NONLINEAR;
2755         return 0;
2756 }
2757
2758 /**
2759  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2760  * @mapping:    the page's address_space
2761  * @index:      the page index
2762  * @gfp:        the page allocator flags to use if allocating
2763  *
2764  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2765  * with any new page allocations done using the specified allocation flags.
2766  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2767  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2768  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2769  *
2770  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2771  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2772  */
2773 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2774                                          pgoff_t index, gfp_t gfp)
2775 {
2776 #ifdef CONFIG_SHMEM
2777         struct inode *inode = mapping->host;
2778         struct page *page;
2779         int error;
2780
2781         BUG_ON(mapping->a_ops != &shmem_aops);
2782         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2783         if (error)
2784                 page = ERR_PTR(error);
2785         else
2786                 unlock_page(page);
2787         return page;
2788 #else
2789         /*
2790          * The tiny !SHMEM case uses ramfs without swap
2791          */
2792         return read_cache_page_gfp(mapping, index, gfp);
2793 #endif
2794 }
2795 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);