Merge "kfence: Use pt_regs to generate stack trace on faults" into tizen
[platform/kernel/linux-rpi.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 raw_spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 raw_spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 raw_spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322
323                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
324                 ino = *next_ino;
325                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
326                         raw_spin_lock(&sbinfo->stat_lock);
327                         ino = sbinfo->next_ino;
328                         sbinfo->next_ino += SHMEM_INO_BATCH;
329                         raw_spin_unlock(&sbinfo->stat_lock);
330                         if (unlikely(is_zero_ino(ino)))
331                                 ino++;
332                 }
333                 *inop = ino;
334                 *next_ino = ++ino;
335                 put_cpu();
336         }
337
338         return 0;
339 }
340
341 static void shmem_free_inode(struct super_block *sb)
342 {
343         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
344         if (sbinfo->max_inodes) {
345                 raw_spin_lock(&sbinfo->stat_lock);
346                 sbinfo->free_inodes++;
347                 raw_spin_unlock(&sbinfo->stat_lock);
348         }
349 }
350
351 /**
352  * shmem_recalc_inode - recalculate the block usage of an inode
353  * @inode: inode to recalc
354  *
355  * We have to calculate the free blocks since the mm can drop
356  * undirtied hole pages behind our back.
357  *
358  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
359  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
360  *
361  * It has to be called with the spinlock held.
362  */
363 static void shmem_recalc_inode(struct inode *inode)
364 {
365         struct shmem_inode_info *info = SHMEM_I(inode);
366         long freed;
367
368         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
369         if (freed > 0) {
370                 info->alloced -= freed;
371                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
372                 shmem_inode_unacct_blocks(inode, freed);
373         }
374 }
375
376 bool shmem_charge(struct inode *inode, long pages)
377 {
378         struct shmem_inode_info *info = SHMEM_I(inode);
379         unsigned long flags;
380
381         if (!shmem_inode_acct_block(inode, pages))
382                 return false;
383
384         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
385         inode->i_mapping->nrpages += pages;
386
387         spin_lock_irqsave(&info->lock, flags);
388         info->alloced += pages;
389         inode->i_blocks += pages * BLOCKS_PER_PAGE;
390         shmem_recalc_inode(inode);
391         spin_unlock_irqrestore(&info->lock, flags);
392
393         return true;
394 }
395
396 void shmem_uncharge(struct inode *inode, long pages)
397 {
398         struct shmem_inode_info *info = SHMEM_I(inode);
399         unsigned long flags;
400
401         /* nrpages adjustment done by __delete_from_page_cache() or caller */
402
403         spin_lock_irqsave(&info->lock, flags);
404         info->alloced -= pages;
405         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
406         shmem_recalc_inode(inode);
407         spin_unlock_irqrestore(&info->lock, flags);
408
409         shmem_inode_unacct_blocks(inode, pages);
410 }
411
412 /*
413  * Replace item expected in xarray by a new item, while holding xa_lock.
414  */
415 static int shmem_replace_entry(struct address_space *mapping,
416                         pgoff_t index, void *expected, void *replacement)
417 {
418         XA_STATE(xas, &mapping->i_pages, index);
419         void *item;
420
421         VM_BUG_ON(!expected);
422         VM_BUG_ON(!replacement);
423         item = xas_load(&xas);
424         if (item != expected)
425                 return -ENOENT;
426         xas_store(&xas, replacement);
427         return 0;
428 }
429
430 /*
431  * Sometimes, before we decide whether to proceed or to fail, we must check
432  * that an entry was not already brought back from swap by a racing thread.
433  *
434  * Checking page is not enough: by the time a SwapCache page is locked, it
435  * might be reused, and again be SwapCache, using the same swap as before.
436  */
437 static bool shmem_confirm_swap(struct address_space *mapping,
438                                pgoff_t index, swp_entry_t swap)
439 {
440         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
441 }
442
443 /*
444  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
445  *
446  * SHMEM_HUGE_NEVER:
447  *      disables huge pages for the mount;
448  * SHMEM_HUGE_ALWAYS:
449  *      enables huge pages for the mount;
450  * SHMEM_HUGE_WITHIN_SIZE:
451  *      only allocate huge pages if the page will be fully within i_size,
452  *      also respect fadvise()/madvise() hints;
453  * SHMEM_HUGE_ADVISE:
454  *      only allocate huge pages if requested with fadvise()/madvise();
455  */
456
457 #define SHMEM_HUGE_NEVER        0
458 #define SHMEM_HUGE_ALWAYS       1
459 #define SHMEM_HUGE_WITHIN_SIZE  2
460 #define SHMEM_HUGE_ADVISE       3
461
462 /*
463  * Special values.
464  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
465  *
466  * SHMEM_HUGE_DENY:
467  *      disables huge on shm_mnt and all mounts, for emergency use;
468  * SHMEM_HUGE_FORCE:
469  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
470  *
471  */
472 #define SHMEM_HUGE_DENY         (-1)
473 #define SHMEM_HUGE_FORCE        (-2)
474
475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
476 /* ifdef here to avoid bloating shmem.o when not necessary */
477
478 static int shmem_huge __read_mostly;
479
480 #if defined(CONFIG_SYSFS)
481 static int shmem_parse_huge(const char *str)
482 {
483         if (!strcmp(str, "never"))
484                 return SHMEM_HUGE_NEVER;
485         if (!strcmp(str, "always"))
486                 return SHMEM_HUGE_ALWAYS;
487         if (!strcmp(str, "within_size"))
488                 return SHMEM_HUGE_WITHIN_SIZE;
489         if (!strcmp(str, "advise"))
490                 return SHMEM_HUGE_ADVISE;
491         if (!strcmp(str, "deny"))
492                 return SHMEM_HUGE_DENY;
493         if (!strcmp(str, "force"))
494                 return SHMEM_HUGE_FORCE;
495         return -EINVAL;
496 }
497 #endif
498
499 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
500 static const char *shmem_format_huge(int huge)
501 {
502         switch (huge) {
503         case SHMEM_HUGE_NEVER:
504                 return "never";
505         case SHMEM_HUGE_ALWAYS:
506                 return "always";
507         case SHMEM_HUGE_WITHIN_SIZE:
508                 return "within_size";
509         case SHMEM_HUGE_ADVISE:
510                 return "advise";
511         case SHMEM_HUGE_DENY:
512                 return "deny";
513         case SHMEM_HUGE_FORCE:
514                 return "force";
515         default:
516                 VM_BUG_ON(1);
517                 return "bad_val";
518         }
519 }
520 #endif
521
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523                 struct shrink_control *sc, unsigned long nr_to_split)
524 {
525         LIST_HEAD(list), *pos, *next;
526         LIST_HEAD(to_remove);
527         struct inode *inode;
528         struct shmem_inode_info *info;
529         struct page *page;
530         unsigned long batch = sc ? sc->nr_to_scan : 128;
531         int split = 0;
532
533         if (list_empty(&sbinfo->shrinklist))
534                 return SHRINK_STOP;
535
536         spin_lock(&sbinfo->shrinklist_lock);
537         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
538                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
539
540                 /* pin the inode */
541                 inode = igrab(&info->vfs_inode);
542
543                 /* inode is about to be evicted */
544                 if (!inode) {
545                         list_del_init(&info->shrinklist);
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         goto next;
554                 }
555
556                 list_move(&info->shrinklist, &list);
557 next:
558                 sbinfo->shrinklist_len--;
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto move_back;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Move the inode on the list back to shrinklist if we failed
593                  * to lock the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto move_back;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed move the inode on the list back to shrinklist */
608                 if (ret)
609                         goto move_back;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 goto put;
615 move_back:
616                 /*
617                  * Make sure the inode is either on the global list or deleted
618                  * from any local list before iput() since it could be deleted
619                  * in another thread once we put the inode (then the local list
620                  * is corrupted).
621                  */
622                 spin_lock(&sbinfo->shrinklist_lock);
623                 list_move(&info->shrinklist, &sbinfo->shrinklist);
624                 sbinfo->shrinklist_len++;
625                 spin_unlock(&sbinfo->shrinklist_lock);
626 put:
627                 iput(inode);
628         }
629
630         return split;
631 }
632
633 static long shmem_unused_huge_scan(struct super_block *sb,
634                 struct shrink_control *sc)
635 {
636         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
637
638         if (!READ_ONCE(sbinfo->shrinklist_len))
639                 return SHRINK_STOP;
640
641         return shmem_unused_huge_shrink(sbinfo, sc, 0);
642 }
643
644 static long shmem_unused_huge_count(struct super_block *sb,
645                 struct shrink_control *sc)
646 {
647         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
648         return READ_ONCE(sbinfo->shrinklist_len);
649 }
650 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
651
652 #define shmem_huge SHMEM_HUGE_DENY
653
654 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
655                 struct shrink_control *sc, unsigned long nr_to_split)
656 {
657         return 0;
658 }
659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
660
661 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
662 {
663         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
664             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
665             shmem_huge != SHMEM_HUGE_DENY)
666                 return true;
667         return false;
668 }
669
670 /*
671  * Like add_to_page_cache_locked, but error if expected item has gone.
672  */
673 static int shmem_add_to_page_cache(struct page *page,
674                                    struct address_space *mapping,
675                                    pgoff_t index, void *expected, gfp_t gfp,
676                                    struct mm_struct *charge_mm)
677 {
678         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
679         unsigned long i = 0;
680         unsigned long nr = compound_nr(page);
681         int error;
682
683         VM_BUG_ON_PAGE(PageTail(page), page);
684         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
685         VM_BUG_ON_PAGE(!PageLocked(page), page);
686         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
687         VM_BUG_ON(expected && PageTransHuge(page));
688
689         page_ref_add(page, nr);
690         page->mapping = mapping;
691         page->index = index;
692
693         if (!PageSwapCache(page)) {
694                 error = mem_cgroup_charge(page, charge_mm, gfp);
695                 if (error) {
696                         if (PageTransHuge(page)) {
697                                 count_vm_event(THP_FILE_FALLBACK);
698                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
699                         }
700                         goto error;
701                 }
702         }
703         cgroup_throttle_swaprate(page, gfp);
704
705         do {
706                 void *entry;
707                 xas_lock_irq(&xas);
708                 entry = xas_find_conflict(&xas);
709                 if (entry != expected)
710                         xas_set_err(&xas, -EEXIST);
711                 xas_create_range(&xas);
712                 if (xas_error(&xas))
713                         goto unlock;
714 next:
715                 xas_store(&xas, page);
716                 if (++i < nr) {
717                         xas_next(&xas);
718                         goto next;
719                 }
720                 if (PageTransHuge(page)) {
721                         count_vm_event(THP_FILE_ALLOC);
722 #ifdef CONFIG_FINEGRAINED_THP
723                         if (thp_nr_pages(page) == HPAGE_CONT_PTE_NR)
724                                 __inc_node_page_state(page, NR_SHMEM_64KB_THPS);
725                         else
726 #endif /* CONFIG_FINEGRAINED_THP */
727                         __inc_node_page_state(page, NR_SHMEM_THPS);
728                 }
729                 mapping->nrpages += nr;
730                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
731                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
732 unlock:
733                 xas_unlock_irq(&xas);
734         } while (xas_nomem(&xas, gfp));
735
736         if (xas_error(&xas)) {
737                 error = xas_error(&xas);
738                 goto error;
739         }
740
741         return 0;
742 error:
743         page->mapping = NULL;
744         page_ref_sub(page, nr);
745         return error;
746 }
747
748 /*
749  * Like delete_from_page_cache, but substitutes swap for page.
750  */
751 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
752 {
753         struct address_space *mapping = page->mapping;
754         int error;
755
756         VM_BUG_ON_PAGE(PageCompound(page), page);
757
758         xa_lock_irq(&mapping->i_pages);
759         error = shmem_replace_entry(mapping, page->index, page, radswap);
760         page->mapping = NULL;
761         mapping->nrpages--;
762         __dec_lruvec_page_state(page, NR_FILE_PAGES);
763         __dec_lruvec_page_state(page, NR_SHMEM);
764         xa_unlock_irq(&mapping->i_pages);
765         put_page(page);
766         BUG_ON(error);
767 }
768
769 /*
770  * Remove swap entry from page cache, free the swap and its page cache.
771  */
772 static int shmem_free_swap(struct address_space *mapping,
773                            pgoff_t index, void *radswap)
774 {
775         void *old;
776
777         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
778         if (old != radswap)
779                 return -ENOENT;
780         free_swap_and_cache(radix_to_swp_entry(radswap));
781         return 0;
782 }
783
784 /*
785  * Determine (in bytes) how many of the shmem object's pages mapped by the
786  * given offsets are swapped out.
787  *
788  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
789  * as long as the inode doesn't go away and racy results are not a problem.
790  */
791 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
792                                                 pgoff_t start, pgoff_t end)
793 {
794         XA_STATE(xas, &mapping->i_pages, start);
795         struct page *page;
796         unsigned long swapped = 0;
797
798         rcu_read_lock();
799         xas_for_each(&xas, page, end - 1) {
800                 if (xas_retry(&xas, page))
801                         continue;
802                 if (xa_is_value(page))
803                         swapped++;
804
805                 if (need_resched()) {
806                         xas_pause(&xas);
807                         cond_resched_rcu();
808                 }
809         }
810
811         rcu_read_unlock();
812
813         return swapped << PAGE_SHIFT;
814 }
815
816 /*
817  * Determine (in bytes) how many of the shmem object's pages mapped by the
818  * given vma is swapped out.
819  *
820  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
821  * as long as the inode doesn't go away and racy results are not a problem.
822  */
823 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
824 {
825         struct inode *inode = file_inode(vma->vm_file);
826         struct shmem_inode_info *info = SHMEM_I(inode);
827         struct address_space *mapping = inode->i_mapping;
828         unsigned long swapped;
829
830         /* Be careful as we don't hold info->lock */
831         swapped = READ_ONCE(info->swapped);
832
833         /*
834          * The easier cases are when the shmem object has nothing in swap, or
835          * the vma maps it whole. Then we can simply use the stats that we
836          * already track.
837          */
838         if (!swapped)
839                 return 0;
840
841         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
842                 return swapped << PAGE_SHIFT;
843
844         /* Here comes the more involved part */
845         return shmem_partial_swap_usage(mapping,
846                         linear_page_index(vma, vma->vm_start),
847                         linear_page_index(vma, vma->vm_end));
848 }
849
850 /*
851  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
852  */
853 void shmem_unlock_mapping(struct address_space *mapping)
854 {
855         struct pagevec pvec;
856         pgoff_t indices[PAGEVEC_SIZE];
857         pgoff_t index = 0;
858
859         pagevec_init(&pvec);
860         /*
861          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
862          */
863         while (!mapping_unevictable(mapping)) {
864                 /*
865                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
866                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
867                  */
868                 pvec.nr = find_get_entries(mapping, index,
869                                            PAGEVEC_SIZE, pvec.pages, indices);
870                 if (!pvec.nr)
871                         break;
872                 index = indices[pvec.nr - 1] + 1;
873                 pagevec_remove_exceptionals(&pvec);
874                 check_move_unevictable_pages(&pvec);
875                 pagevec_release(&pvec);
876                 cond_resched();
877         }
878 }
879
880 /*
881  * Check whether a hole-punch or truncation needs to split a huge page,
882  * returning true if no split was required, or the split has been successful.
883  *
884  * Eviction (or truncation to 0 size) should never need to split a huge page;
885  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
886  * head, and then succeeded to trylock on tail.
887  *
888  * A split can only succeed when there are no additional references on the
889  * huge page: so the split below relies upon find_get_entries() having stopped
890  * when it found a subpage of the huge page, without getting further references.
891  */
892 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
893 {
894         if (!PageTransCompound(page))
895                 return true;
896
897         /* Just proceed to delete a huge page wholly within the range punched */
898 #ifdef CONFIG_FINEGRAINED_THP
899         if (PageHead(page) &&
900             page->index >= start && page->index + thp_nr_pages(page) <= end)
901                 return true;
902 #else
903         if (PageHead(page) &&
904             page->index >= start && page->index + HPAGE_PMD_NR <= end)
905                 return true;
906 #endif /* CONFIG_FINEGRAINED_THP */
907
908         /* Try to split huge page, so we can truly punch the hole or truncate */
909         return split_huge_page(page) >= 0;
910 }
911
912 /*
913  * Remove range of pages and swap entries from page cache, and free them.
914  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
915  */
916 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
917                                                                  bool unfalloc)
918 {
919         struct address_space *mapping = inode->i_mapping;
920         struct shmem_inode_info *info = SHMEM_I(inode);
921         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
922         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
923         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
924         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
925         struct pagevec pvec;
926         pgoff_t indices[PAGEVEC_SIZE];
927         long nr_swaps_freed = 0;
928         pgoff_t index;
929         int i;
930
931         if (lend == -1)
932                 end = -1;       /* unsigned, so actually very big */
933
934         pagevec_init(&pvec);
935         index = start;
936         while (index < end) {
937                 pvec.nr = find_get_entries(mapping, index,
938                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
939                         pvec.pages, indices);
940                 if (!pvec.nr)
941                         break;
942                 for (i = 0; i < pagevec_count(&pvec); i++) {
943                         struct page *page = pvec.pages[i];
944
945                         index = indices[i];
946                         if (index >= end)
947                                 break;
948
949                         if (xa_is_value(page)) {
950                                 if (unfalloc)
951                                         continue;
952                                 nr_swaps_freed += !shmem_free_swap(mapping,
953                                                                 index, page);
954                                 continue;
955                         }
956
957                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
958
959                         if (!trylock_page(page))
960                                 continue;
961
962                         if ((!unfalloc || !PageUptodate(page)) &&
963                             page_mapping(page) == mapping) {
964                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
965                                 if (shmem_punch_compound(page, start, end))
966                                         truncate_inode_page(mapping, page);
967                         }
968                         unlock_page(page);
969                 }
970                 pagevec_remove_exceptionals(&pvec);
971                 pagevec_release(&pvec);
972                 cond_resched();
973                 index++;
974         }
975
976         if (partial_start) {
977                 struct page *page = NULL;
978                 shmem_getpage(inode, start - 1, &page, SGP_READ);
979                 if (page) {
980                         unsigned int top = PAGE_SIZE;
981                         if (start > end) {
982                                 top = partial_end;
983                                 partial_end = 0;
984                         }
985                         zero_user_segment(page, partial_start, top);
986                         set_page_dirty(page);
987                         unlock_page(page);
988                         put_page(page);
989                 }
990         }
991         if (partial_end) {
992                 struct page *page = NULL;
993                 shmem_getpage(inode, end, &page, SGP_READ);
994                 if (page) {
995                         zero_user_segment(page, 0, partial_end);
996                         set_page_dirty(page);
997                         unlock_page(page);
998                         put_page(page);
999                 }
1000         }
1001         if (start >= end)
1002                 return;
1003
1004         index = start;
1005         while (index < end) {
1006                 cond_resched();
1007
1008                 pvec.nr = find_get_entries(mapping, index,
1009                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
1010                                 pvec.pages, indices);
1011                 if (!pvec.nr) {
1012                         /* If all gone or hole-punch or unfalloc, we're done */
1013                         if (index == start || end != -1)
1014                                 break;
1015                         /* But if truncating, restart to make sure all gone */
1016                         index = start;
1017                         continue;
1018                 }
1019                 for (i = 0; i < pagevec_count(&pvec); i++) {
1020                         struct page *page = pvec.pages[i];
1021
1022                         index = indices[i];
1023                         if (index >= end)
1024                                 break;
1025
1026                         if (xa_is_value(page)) {
1027                                 if (unfalloc)
1028                                         continue;
1029                                 if (shmem_free_swap(mapping, index, page)) {
1030                                         /* Swap was replaced by page: retry */
1031                                         index--;
1032                                         break;
1033                                 }
1034                                 nr_swaps_freed++;
1035                                 continue;
1036                         }
1037
1038                         lock_page(page);
1039
1040                         if (!unfalloc || !PageUptodate(page)) {
1041                                 if (page_mapping(page) != mapping) {
1042                                         /* Page was replaced by swap: retry */
1043                                         unlock_page(page);
1044                                         index--;
1045                                         break;
1046                                 }
1047                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1048                                 if (shmem_punch_compound(page, start, end))
1049                                         truncate_inode_page(mapping, page);
1050                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1051                                         /* Wipe the page and don't get stuck */
1052                                         clear_highpage(page);
1053                                         flush_dcache_page(page);
1054                                         set_page_dirty(page);
1055 #ifdef CONFIG_FINEGRAINED_THP
1056                                         if (index <
1057                                             round_up(start, thp_nr_pages(page)))
1058                                                 start = index + 1;
1059 #else /* CONFIG_FINEGRAINED_THP */
1060                                         if (index <
1061                                             round_up(start, HPAGE_PMD_NR))
1062                                                 start = index + 1;
1063 #endif /* CONFIG_FINEGRAINED_THP */
1064                                 }
1065                         }
1066                         unlock_page(page);
1067                 }
1068                 pagevec_remove_exceptionals(&pvec);
1069                 pagevec_release(&pvec);
1070                 index++;
1071         }
1072
1073         spin_lock_irq(&info->lock);
1074         info->swapped -= nr_swaps_freed;
1075         shmem_recalc_inode(inode);
1076         spin_unlock_irq(&info->lock);
1077 }
1078
1079 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1080 {
1081         shmem_undo_range(inode, lstart, lend, false);
1082         inode->i_ctime = inode->i_mtime = current_time(inode);
1083 }
1084 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1085
1086 static int shmem_getattr(const struct path *path, struct kstat *stat,
1087                          u32 request_mask, unsigned int query_flags)
1088 {
1089         struct inode *inode = path->dentry->d_inode;
1090         struct shmem_inode_info *info = SHMEM_I(inode);
1091         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1092
1093         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1094                 spin_lock_irq(&info->lock);
1095                 shmem_recalc_inode(inode);
1096                 spin_unlock_irq(&info->lock);
1097         }
1098         generic_fillattr(inode, stat);
1099
1100         if (is_huge_enabled(sb_info))
1101                 stat->blksize = HPAGE_PMD_SIZE;
1102
1103         return 0;
1104 }
1105
1106 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1107 {
1108         struct inode *inode = d_inode(dentry);
1109         struct shmem_inode_info *info = SHMEM_I(inode);
1110         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1111         int error;
1112
1113         error = setattr_prepare(dentry, attr);
1114         if (error)
1115                 return error;
1116
1117         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1118                 loff_t oldsize = inode->i_size;
1119                 loff_t newsize = attr->ia_size;
1120
1121                 /* protected by i_mutex */
1122                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1123                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1124                         return -EPERM;
1125
1126                 if (newsize != oldsize) {
1127                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1128                                         oldsize, newsize);
1129                         if (error)
1130                                 return error;
1131                         i_size_write(inode, newsize);
1132                         inode->i_ctime = inode->i_mtime = current_time(inode);
1133                 }
1134                 if (newsize <= oldsize) {
1135                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1136                         if (oldsize > holebegin)
1137                                 unmap_mapping_range(inode->i_mapping,
1138                                                         holebegin, 0, 1);
1139                         if (info->alloced)
1140                                 shmem_truncate_range(inode,
1141                                                         newsize, (loff_t)-1);
1142                         /* unmap again to remove racily COWed private pages */
1143                         if (oldsize > holebegin)
1144                                 unmap_mapping_range(inode->i_mapping,
1145                                                         holebegin, 0, 1);
1146
1147                         /*
1148                          * Part of the huge page can be beyond i_size: subject
1149                          * to shrink under memory pressure.
1150                          */
1151                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1152                                 spin_lock(&sbinfo->shrinklist_lock);
1153                                 /*
1154                                  * _careful to defend against unlocked access to
1155                                  * ->shrink_list in shmem_unused_huge_shrink()
1156                                  */
1157                                 if (list_empty_careful(&info->shrinklist)) {
1158                                         list_add_tail(&info->shrinklist,
1159                                                         &sbinfo->shrinklist);
1160                                         sbinfo->shrinklist_len++;
1161                                 }
1162                                 spin_unlock(&sbinfo->shrinklist_lock);
1163                         }
1164                 }
1165         }
1166
1167         setattr_copy(inode, attr);
1168         if (attr->ia_valid & ATTR_MODE)
1169                 error = posix_acl_chmod(inode, inode->i_mode);
1170         return error;
1171 }
1172
1173 static void shmem_evict_inode(struct inode *inode)
1174 {
1175         struct shmem_inode_info *info = SHMEM_I(inode);
1176         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1177
1178         if (inode->i_mapping->a_ops == &shmem_aops) {
1179                 shmem_unacct_size(info->flags, inode->i_size);
1180                 inode->i_size = 0;
1181                 shmem_truncate_range(inode, 0, (loff_t)-1);
1182                 if (!list_empty(&info->shrinklist)) {
1183                         spin_lock(&sbinfo->shrinklist_lock);
1184                         if (!list_empty(&info->shrinklist)) {
1185                                 list_del_init(&info->shrinklist);
1186                                 sbinfo->shrinklist_len--;
1187                         }
1188                         spin_unlock(&sbinfo->shrinklist_lock);
1189                 }
1190                 while (!list_empty(&info->swaplist)) {
1191                         /* Wait while shmem_unuse() is scanning this inode... */
1192                         wait_var_event(&info->stop_eviction,
1193                                        !atomic_read(&info->stop_eviction));
1194                         mutex_lock(&shmem_swaplist_mutex);
1195                         /* ...but beware of the race if we peeked too early */
1196                         if (!atomic_read(&info->stop_eviction))
1197                                 list_del_init(&info->swaplist);
1198                         mutex_unlock(&shmem_swaplist_mutex);
1199                 }
1200         }
1201
1202         simple_xattrs_free(&info->xattrs);
1203         WARN_ON(inode->i_blocks);
1204         shmem_free_inode(inode->i_sb);
1205         clear_inode(inode);
1206 }
1207
1208 extern struct swap_info_struct *swap_info[];
1209
1210 static int shmem_find_swap_entries(struct address_space *mapping,
1211                                    pgoff_t start, unsigned int nr_entries,
1212                                    struct page **entries, pgoff_t *indices,
1213                                    unsigned int type, bool frontswap)
1214 {
1215         XA_STATE(xas, &mapping->i_pages, start);
1216         struct page *page;
1217         swp_entry_t entry;
1218         unsigned int ret = 0;
1219
1220         if (!nr_entries)
1221                 return 0;
1222
1223         rcu_read_lock();
1224         xas_for_each(&xas, page, ULONG_MAX) {
1225                 if (xas_retry(&xas, page))
1226                         continue;
1227
1228                 if (!xa_is_value(page))
1229                         continue;
1230
1231                 entry = radix_to_swp_entry(page);
1232                 if (swp_type(entry) != type)
1233                         continue;
1234                 if (frontswap &&
1235                     !frontswap_test(swap_info[type], swp_offset(entry)))
1236                         continue;
1237
1238                 indices[ret] = xas.xa_index;
1239                 entries[ret] = page;
1240
1241                 if (need_resched()) {
1242                         xas_pause(&xas);
1243                         cond_resched_rcu();
1244                 }
1245                 if (++ret == nr_entries)
1246                         break;
1247         }
1248         rcu_read_unlock();
1249
1250         return ret;
1251 }
1252
1253 /*
1254  * Move the swapped pages for an inode to page cache. Returns the count
1255  * of pages swapped in, or the error in case of failure.
1256  */
1257 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1258                                     pgoff_t *indices)
1259 {
1260         int i = 0;
1261         int ret = 0;
1262         int error = 0;
1263         struct address_space *mapping = inode->i_mapping;
1264
1265         for (i = 0; i < pvec.nr; i++) {
1266                 struct page *page = pvec.pages[i];
1267
1268                 if (!xa_is_value(page))
1269                         continue;
1270                 error = shmem_swapin_page(inode, indices[i],
1271                                           &page, SGP_CACHE,
1272                                           mapping_gfp_mask(mapping),
1273                                           NULL, NULL);
1274                 if (error == 0) {
1275                         unlock_page(page);
1276                         put_page(page);
1277                         ret++;
1278                 }
1279                 if (error == -ENOMEM)
1280                         break;
1281                 error = 0;
1282         }
1283         return error ? error : ret;
1284 }
1285
1286 /*
1287  * If swap found in inode, free it and move page from swapcache to filecache.
1288  */
1289 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1290                              bool frontswap, unsigned long *fs_pages_to_unuse)
1291 {
1292         struct address_space *mapping = inode->i_mapping;
1293         pgoff_t start = 0;
1294         struct pagevec pvec;
1295         pgoff_t indices[PAGEVEC_SIZE];
1296         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1297         int ret = 0;
1298
1299         pagevec_init(&pvec);
1300         do {
1301                 unsigned int nr_entries = PAGEVEC_SIZE;
1302
1303                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1304                         nr_entries = *fs_pages_to_unuse;
1305
1306                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1307                                                   pvec.pages, indices,
1308                                                   type, frontswap);
1309                 if (pvec.nr == 0) {
1310                         ret = 0;
1311                         break;
1312                 }
1313
1314                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1315                 if (ret < 0)
1316                         break;
1317
1318                 if (frontswap_partial) {
1319                         *fs_pages_to_unuse -= ret;
1320                         if (*fs_pages_to_unuse == 0) {
1321                                 ret = FRONTSWAP_PAGES_UNUSED;
1322                                 break;
1323                         }
1324                 }
1325
1326                 start = indices[pvec.nr - 1];
1327         } while (true);
1328
1329         return ret;
1330 }
1331
1332 /*
1333  * Read all the shared memory data that resides in the swap
1334  * device 'type' back into memory, so the swap device can be
1335  * unused.
1336  */
1337 int shmem_unuse(unsigned int type, bool frontswap,
1338                 unsigned long *fs_pages_to_unuse)
1339 {
1340         struct shmem_inode_info *info, *next;
1341         int error = 0;
1342
1343         if (list_empty(&shmem_swaplist))
1344                 return 0;
1345
1346         mutex_lock(&shmem_swaplist_mutex);
1347         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1348                 if (!info->swapped) {
1349                         list_del_init(&info->swaplist);
1350                         continue;
1351                 }
1352                 /*
1353                  * Drop the swaplist mutex while searching the inode for swap;
1354                  * but before doing so, make sure shmem_evict_inode() will not
1355                  * remove placeholder inode from swaplist, nor let it be freed
1356                  * (igrab() would protect from unlink, but not from unmount).
1357                  */
1358                 atomic_inc(&info->stop_eviction);
1359                 mutex_unlock(&shmem_swaplist_mutex);
1360
1361                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1362                                           fs_pages_to_unuse);
1363                 cond_resched();
1364
1365                 mutex_lock(&shmem_swaplist_mutex);
1366                 next = list_next_entry(info, swaplist);
1367                 if (!info->swapped)
1368                         list_del_init(&info->swaplist);
1369                 if (atomic_dec_and_test(&info->stop_eviction))
1370                         wake_up_var(&info->stop_eviction);
1371                 if (error)
1372                         break;
1373         }
1374         mutex_unlock(&shmem_swaplist_mutex);
1375
1376         return error;
1377 }
1378
1379 /*
1380  * Move the page from the page cache to the swap cache.
1381  */
1382 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1383 {
1384         struct shmem_inode_info *info;
1385         struct address_space *mapping;
1386         struct inode *inode;
1387         swp_entry_t swap;
1388         pgoff_t index;
1389
1390         VM_BUG_ON_PAGE(PageCompound(page), page);
1391         BUG_ON(!PageLocked(page));
1392         mapping = page->mapping;
1393         index = page->index;
1394         inode = mapping->host;
1395         info = SHMEM_I(inode);
1396         if (info->flags & VM_LOCKED)
1397                 goto redirty;
1398         if (!total_swap_pages)
1399                 goto redirty;
1400
1401         /*
1402          * Our capabilities prevent regular writeback or sync from ever calling
1403          * shmem_writepage; but a stacking filesystem might use ->writepage of
1404          * its underlying filesystem, in which case tmpfs should write out to
1405          * swap only in response to memory pressure, and not for the writeback
1406          * threads or sync.
1407          */
1408         if (!wbc->for_reclaim) {
1409                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1410                 goto redirty;
1411         }
1412
1413         /*
1414          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1415          * value into swapfile.c, the only way we can correctly account for a
1416          * fallocated page arriving here is now to initialize it and write it.
1417          *
1418          * That's okay for a page already fallocated earlier, but if we have
1419          * not yet completed the fallocation, then (a) we want to keep track
1420          * of this page in case we have to undo it, and (b) it may not be a
1421          * good idea to continue anyway, once we're pushing into swap.  So
1422          * reactivate the page, and let shmem_fallocate() quit when too many.
1423          */
1424         if (!PageUptodate(page)) {
1425                 if (inode->i_private) {
1426                         struct shmem_falloc *shmem_falloc;
1427                         spin_lock(&inode->i_lock);
1428                         shmem_falloc = inode->i_private;
1429                         if (shmem_falloc &&
1430                             !shmem_falloc->waitq &&
1431                             index >= shmem_falloc->start &&
1432                             index < shmem_falloc->next)
1433                                 shmem_falloc->nr_unswapped++;
1434                         else
1435                                 shmem_falloc = NULL;
1436                         spin_unlock(&inode->i_lock);
1437                         if (shmem_falloc)
1438                                 goto redirty;
1439                 }
1440                 clear_highpage(page);
1441                 flush_dcache_page(page);
1442                 SetPageUptodate(page);
1443         }
1444
1445         swap = get_swap_page(page);
1446         if (!swap.val)
1447                 goto redirty;
1448
1449         /*
1450          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1451          * if it's not already there.  Do it now before the page is
1452          * moved to swap cache, when its pagelock no longer protects
1453          * the inode from eviction.  But don't unlock the mutex until
1454          * we've incremented swapped, because shmem_unuse_inode() will
1455          * prune a !swapped inode from the swaplist under this mutex.
1456          */
1457         mutex_lock(&shmem_swaplist_mutex);
1458         if (list_empty(&info->swaplist))
1459                 list_add(&info->swaplist, &shmem_swaplist);
1460
1461         if (add_to_swap_cache(page, swap,
1462                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1463                         NULL) == 0) {
1464                 spin_lock_irq(&info->lock);
1465                 shmem_recalc_inode(inode);
1466                 info->swapped++;
1467                 spin_unlock_irq(&info->lock);
1468
1469                 swap_shmem_alloc(swap);
1470                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1471
1472                 mutex_unlock(&shmem_swaplist_mutex);
1473                 BUG_ON(page_mapped(page));
1474                 swap_writepage(page, wbc);
1475                 return 0;
1476         }
1477
1478         mutex_unlock(&shmem_swaplist_mutex);
1479         put_swap_page(page, swap);
1480 redirty:
1481         set_page_dirty(page);
1482         if (wbc->for_reclaim)
1483                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1484         unlock_page(page);
1485         return 0;
1486 }
1487
1488 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1489 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1490 {
1491         char buffer[64];
1492
1493         if (!mpol || mpol->mode == MPOL_DEFAULT)
1494                 return;         /* show nothing */
1495
1496         mpol_to_str(buffer, sizeof(buffer), mpol);
1497
1498         seq_printf(seq, ",mpol=%s", buffer);
1499 }
1500
1501 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1502 {
1503         struct mempolicy *mpol = NULL;
1504         if (sbinfo->mpol) {
1505                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1506                 mpol = sbinfo->mpol;
1507                 mpol_get(mpol);
1508                 raw_spin_unlock(&sbinfo->stat_lock);
1509         }
1510         return mpol;
1511 }
1512 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1513 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1514 {
1515 }
1516 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1517 {
1518         return NULL;
1519 }
1520 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1521 #ifndef CONFIG_NUMA
1522 #define vm_policy vm_private_data
1523 #endif
1524
1525 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1526                 struct shmem_inode_info *info, pgoff_t index)
1527 {
1528         /* Create a pseudo vma that just contains the policy */
1529         vma_init(vma, NULL);
1530         /* Bias interleave by inode number to distribute better across nodes */
1531         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1532         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1533 }
1534
1535 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1536 {
1537         /* Drop reference taken by mpol_shared_policy_lookup() */
1538         mpol_cond_put(vma->vm_policy);
1539 }
1540
1541 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1542                         struct shmem_inode_info *info, pgoff_t index)
1543 {
1544         struct vm_area_struct pvma;
1545         struct page *page;
1546         struct vm_fault vmf;
1547
1548         shmem_pseudo_vma_init(&pvma, info, index);
1549         vmf.vma = &pvma;
1550         vmf.address = 0;
1551         page = swap_cluster_readahead(swap, gfp, &vmf);
1552         shmem_pseudo_vma_destroy(&pvma);
1553
1554         return page;
1555 }
1556
1557 #ifdef CONFIG_FINEGRAINED_THP
1558 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1559                 struct shmem_inode_info *info, pgoff_t index, int page_nr)
1560 #else /* CONFIG_FINEGRAINED_THP */
1561 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1562                 struct shmem_inode_info *info, pgoff_t index)
1563 #endif/* CONFIG_FINEGRAINED_THP */
1564 {
1565         struct vm_area_struct pvma;
1566         struct address_space *mapping = info->vfs_inode.i_mapping;
1567         pgoff_t hindex;
1568         struct page *page;
1569
1570 #ifdef CONFIG_FINEGRAINED_THP
1571         hindex = round_down(index, page_nr);
1572         if (xa_find(&mapping->i_pages, &hindex, hindex + page_nr - 1,
1573                                                                 XA_PRESENT))
1574                 return NULL;
1575 #else /* CONFIG_FINEGRAINED_THP */
1576         hindex = round_down(index, HPAGE_PMD_NR);
1577         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1578                                                                 XA_PRESENT))
1579                 return NULL;
1580 #endif /* CONFIG_FINEGRAINED_THP */
1581
1582         shmem_pseudo_vma_init(&pvma, info, hindex);
1583 #ifdef CONFIG_FINEGRAINED_THP
1584         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1585                         page_nr == HPAGE_PMD_NR ? HPAGE_PMD_ORDER : HPAGE_CONT_PTE_ORDER,
1586                         &pvma, 0, numa_node_id(), true);
1587 #else /* CONFIG_FINEGRAINED_THP */
1588         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1589                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1590 #endif /* CONFIG_FINEGRAINED_THP */
1591         shmem_pseudo_vma_destroy(&pvma);
1592         if (page)
1593                 prep_transhuge_page(page);
1594         else
1595                 count_vm_event(THP_FILE_FALLBACK);
1596         return page;
1597 }
1598
1599 static struct page *shmem_alloc_page(gfp_t gfp,
1600                         struct shmem_inode_info *info, pgoff_t index)
1601 {
1602         struct vm_area_struct pvma;
1603         struct page *page;
1604
1605         shmem_pseudo_vma_init(&pvma, info, index);
1606         page = alloc_page_vma(gfp, &pvma, 0);
1607         shmem_pseudo_vma_destroy(&pvma);
1608
1609         return page;
1610 }
1611
1612 #ifdef CONFIG_FINEGRAINED_THP
1613 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1614                 struct inode *inode,
1615                 pgoff_t index, bool huge, int page_nr)
1616 #else /* CONFIG_FINEGRAINED_THP */
1617 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1618                 struct inode *inode,
1619                 pgoff_t index, bool huge)
1620 #endif /* CONFIG_FINEGRAINED_THP */
1621 {
1622         struct shmem_inode_info *info = SHMEM_I(inode);
1623         struct page *page;
1624         int nr;
1625         int err = -ENOSPC;
1626
1627         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1628                 huge = false;
1629 #ifdef CONFIG_FINEGRAINED_THP
1630         nr = huge ? page_nr : 1;
1631 #else
1632         nr = huge ? HPAGE_PMD_NR : 1;
1633 #endif
1634
1635         if (!shmem_inode_acct_block(inode, nr))
1636                 goto failed;
1637
1638         if (huge)
1639 #ifdef CONFIG_FINEGRAINED_THP
1640                 page = shmem_alloc_hugepage(gfp, info, index, nr);
1641 #else
1642                 page = shmem_alloc_hugepage(gfp, info, index);
1643 #endif
1644         else
1645                 page = shmem_alloc_page(gfp, info, index);
1646         if (page) {
1647                 __SetPageLocked(page);
1648                 __SetPageSwapBacked(page);
1649                 return page;
1650         }
1651
1652         err = -ENOMEM;
1653         shmem_inode_unacct_blocks(inode, nr);
1654 failed:
1655         return ERR_PTR(err);
1656 }
1657
1658 /*
1659  * When a page is moved from swapcache to shmem filecache (either by the
1660  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1661  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1662  * ignorance of the mapping it belongs to.  If that mapping has special
1663  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1664  * we may need to copy to a suitable page before moving to filecache.
1665  *
1666  * In a future release, this may well be extended to respect cpuset and
1667  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1668  * but for now it is a simple matter of zone.
1669  */
1670 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1671 {
1672         return page_zonenum(page) > gfp_zone(gfp);
1673 }
1674
1675 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1676                                 struct shmem_inode_info *info, pgoff_t index)
1677 {
1678         struct page *oldpage, *newpage;
1679         struct address_space *swap_mapping;
1680         swp_entry_t entry;
1681         pgoff_t swap_index;
1682         int error;
1683
1684         oldpage = *pagep;
1685         entry.val = page_private(oldpage);
1686         swap_index = swp_offset(entry);
1687         swap_mapping = page_mapping(oldpage);
1688
1689         /*
1690          * We have arrived here because our zones are constrained, so don't
1691          * limit chance of success by further cpuset and node constraints.
1692          */
1693         gfp &= ~GFP_CONSTRAINT_MASK;
1694         newpage = shmem_alloc_page(gfp, info, index);
1695         if (!newpage)
1696                 return -ENOMEM;
1697
1698         get_page(newpage);
1699         copy_highpage(newpage, oldpage);
1700         flush_dcache_page(newpage);
1701
1702         __SetPageLocked(newpage);
1703         __SetPageSwapBacked(newpage);
1704         SetPageUptodate(newpage);
1705         set_page_private(newpage, entry.val);
1706         SetPageSwapCache(newpage);
1707
1708         /*
1709          * Our caller will very soon move newpage out of swapcache, but it's
1710          * a nice clean interface for us to replace oldpage by newpage there.
1711          */
1712         xa_lock_irq(&swap_mapping->i_pages);
1713         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1714         if (!error) {
1715                 mem_cgroup_migrate(oldpage, newpage);
1716                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1717                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1718         }
1719         xa_unlock_irq(&swap_mapping->i_pages);
1720
1721         if (unlikely(error)) {
1722                 /*
1723                  * Is this possible?  I think not, now that our callers check
1724                  * both PageSwapCache and page_private after getting page lock;
1725                  * but be defensive.  Reverse old to newpage for clear and free.
1726                  */
1727                 oldpage = newpage;
1728         } else {
1729                 lru_cache_add(newpage);
1730                 *pagep = newpage;
1731         }
1732
1733         ClearPageSwapCache(oldpage);
1734         set_page_private(oldpage, 0);
1735
1736         unlock_page(oldpage);
1737         put_page(oldpage);
1738         put_page(oldpage);
1739         return error;
1740 }
1741
1742 /*
1743  * Swap in the page pointed to by *pagep.
1744  * Caller has to make sure that *pagep contains a valid swapped page.
1745  * Returns 0 and the page in pagep if success. On failure, returns the
1746  * error code and NULL in *pagep.
1747  */
1748 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1749                              struct page **pagep, enum sgp_type sgp,
1750                              gfp_t gfp, struct vm_area_struct *vma,
1751                              vm_fault_t *fault_type)
1752 {
1753         struct address_space *mapping = inode->i_mapping;
1754         struct shmem_inode_info *info = SHMEM_I(inode);
1755         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1756         struct page *page;
1757         swp_entry_t swap;
1758         int error;
1759
1760         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1761         swap = radix_to_swp_entry(*pagep);
1762         *pagep = NULL;
1763
1764         /* Look it up and read it in.. */
1765         page = lookup_swap_cache(swap, NULL, 0);
1766         if (!page) {
1767                 /* Or update major stats only when swapin succeeds?? */
1768                 if (fault_type) {
1769                         *fault_type |= VM_FAULT_MAJOR;
1770                         count_vm_event(PGMAJFAULT);
1771                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1772                 }
1773                 /* Here we actually start the io */
1774                 page = shmem_swapin(swap, gfp, info, index);
1775                 if (!page) {
1776                         error = -ENOMEM;
1777                         goto failed;
1778                 }
1779         }
1780
1781         /* We have to do this with page locked to prevent races */
1782         lock_page(page);
1783         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1784             !shmem_confirm_swap(mapping, index, swap)) {
1785                 error = -EEXIST;
1786                 goto unlock;
1787         }
1788         if (!PageUptodate(page)) {
1789                 error = -EIO;
1790                 goto failed;
1791         }
1792         wait_on_page_writeback(page);
1793
1794         /*
1795          * Some architectures may have to restore extra metadata to the
1796          * physical page after reading from swap.
1797          */
1798         arch_swap_restore(swap, page);
1799
1800         if (shmem_should_replace_page(page, gfp)) {
1801                 error = shmem_replace_page(&page, gfp, info, index);
1802                 if (error)
1803                         goto failed;
1804         }
1805
1806         error = shmem_add_to_page_cache(page, mapping, index,
1807                                         swp_to_radix_entry(swap), gfp,
1808                                         charge_mm);
1809         if (error)
1810                 goto failed;
1811
1812         spin_lock_irq(&info->lock);
1813         info->swapped--;
1814         shmem_recalc_inode(inode);
1815         spin_unlock_irq(&info->lock);
1816
1817         if (sgp == SGP_WRITE)
1818                 mark_page_accessed(page);
1819
1820         delete_from_swap_cache(page);
1821         set_page_dirty(page);
1822         swap_free(swap);
1823
1824         *pagep = page;
1825         return 0;
1826 failed:
1827         if (!shmem_confirm_swap(mapping, index, swap))
1828                 error = -EEXIST;
1829 unlock:
1830         if (page) {
1831                 unlock_page(page);
1832                 put_page(page);
1833         }
1834
1835         return error;
1836 }
1837
1838 /*
1839  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1840  *
1841  * If we allocate a new one we do not mark it dirty. That's up to the
1842  * vm. If we swap it in we mark it dirty since we also free the swap
1843  * entry since a page cannot live in both the swap and page cache.
1844  *
1845  * vmf and fault_type are only supplied by shmem_fault:
1846  * otherwise they are NULL.
1847  */
1848 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1849         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1850         struct vm_area_struct *vma, struct vm_fault *vmf,
1851                         vm_fault_t *fault_type)
1852 {
1853         struct address_space *mapping = inode->i_mapping;
1854         struct shmem_inode_info *info = SHMEM_I(inode);
1855         struct shmem_sb_info *sbinfo;
1856         struct mm_struct *charge_mm;
1857         struct page *page;
1858         enum sgp_type sgp_huge = sgp;
1859         pgoff_t hindex = index;
1860         int error;
1861         int once = 0;
1862         int alloced = 0;
1863 #ifdef CONFIG_FINEGRAINED_THP
1864         int nr_pages = HPAGE_PMD_NR;
1865 #endif
1866
1867         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1868                 return -EFBIG;
1869         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1870                 sgp = SGP_CACHE;
1871 repeat:
1872         if (sgp <= SGP_CACHE &&
1873             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1874                 return -EINVAL;
1875         }
1876
1877         sbinfo = SHMEM_SB(inode->i_sb);
1878         charge_mm = vma ? vma->vm_mm : current->mm;
1879
1880         page = find_lock_entry(mapping, index);
1881         if (xa_is_value(page)) {
1882                 error = shmem_swapin_page(inode, index, &page,
1883                                           sgp, gfp, vma, fault_type);
1884                 if (error == -EEXIST)
1885                         goto repeat;
1886
1887                 *pagep = page;
1888                 return error;
1889         }
1890
1891         if (page)
1892                 hindex = page->index;
1893         if (page && sgp == SGP_WRITE)
1894                 mark_page_accessed(page);
1895
1896 #ifdef CONFIG_FINEGRAINED_THP
1897         if (page)
1898                 nr_pages = thp_nr_pages(page);
1899 #endif
1900
1901         /* fallocated page? */
1902         if (page && !PageUptodate(page)) {
1903                 if (sgp != SGP_READ)
1904                         goto clear;
1905                 unlock_page(page);
1906                 put_page(page);
1907                 page = NULL;
1908                 hindex = index;
1909         }
1910         if (page || sgp == SGP_READ)
1911                 goto out;
1912
1913         /*
1914          * Fast cache lookup did not find it:
1915          * bring it back from swap or allocate.
1916          */
1917
1918         if (vma && userfaultfd_missing(vma)) {
1919                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1920                 return 0;
1921         }
1922
1923         /* shmem_symlink() */
1924         if (mapping->a_ops != &shmem_aops)
1925                 goto alloc_nohuge;
1926         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1927                 goto alloc_nohuge;
1928         if (shmem_huge == SHMEM_HUGE_FORCE)
1929                 goto alloc_huge;
1930         switch (sbinfo->huge) {
1931         case SHMEM_HUGE_NEVER:
1932                 goto alloc_nohuge;
1933         case SHMEM_HUGE_WITHIN_SIZE: {
1934                 loff_t i_size;
1935                 pgoff_t off;
1936 #ifdef CONFIG_FINEGRAINED_THP
1937                 off = round_up(index, nr_pages);
1938 #else
1939                 off = round_up(index, HPAGE_PMD_NR);
1940 #endif
1941                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1942 #ifdef CONFIG_FINEGRAINED_THP
1943                 if (i_size >= nr_pages * PAGE_SIZE &&
1944                     i_size >> PAGE_SHIFT >= off)
1945                         goto alloc_huge;
1946 #else
1947                 if (i_size >= HPAGE_PMD_SIZE &&
1948                     i_size >> PAGE_SHIFT >= off)
1949                         goto alloc_huge;
1950 #endif
1951
1952                 fallthrough;
1953         }
1954         case SHMEM_HUGE_ADVISE:
1955                 if (sgp_huge == SGP_HUGE)
1956                         goto alloc_huge;
1957                 /* TODO: implement fadvise() hints */
1958                 goto alloc_nohuge;
1959         }
1960
1961 alloc_huge:
1962 #ifdef CONFIG_FINEGRAINED_THP
1963         page = shmem_alloc_and_acct_page(gfp, inode, index, true, nr_pages);
1964 #else
1965         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1966 #endif
1967         if (IS_ERR(page)) {
1968 alloc_nohuge:
1969 #ifdef CONFIG_FINEGRAINED_THP
1970                 page = shmem_alloc_and_acct_page(gfp, inode,
1971                                                  index, false, 1);
1972 #else
1973                 page = shmem_alloc_and_acct_page(gfp, inode,
1974                                                  index, false);
1975 #endif
1976         }
1977         if (IS_ERR(page)) {
1978                 int retry = 5;
1979
1980                 error = PTR_ERR(page);
1981                 page = NULL;
1982                 if (error != -ENOSPC)
1983                         goto unlock;
1984                 /*
1985                  * Try to reclaim some space by splitting a huge page
1986                  * beyond i_size on the filesystem.
1987                  */
1988                 while (retry--) {
1989                         int ret;
1990
1991                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1992                         if (ret == SHRINK_STOP)
1993                                 break;
1994                         if (ret)
1995                                 goto alloc_nohuge;
1996                 }
1997                 goto unlock;
1998         }
1999
2000         if (PageTransHuge(page))
2001 #ifdef CONFIG_FINEGRAINED_THP
2002                 hindex = round_down(index, nr_pages);
2003 #else
2004                 hindex = round_down(index, HPAGE_PMD_NR);
2005 #endif
2006         else
2007                 hindex = index;
2008
2009         if (sgp == SGP_WRITE)
2010                 __SetPageReferenced(page);
2011
2012         error = shmem_add_to_page_cache(page, mapping, hindex,
2013                                         NULL, gfp & GFP_RECLAIM_MASK,
2014                                         charge_mm);
2015         if (error)
2016                 goto unacct;
2017         lru_cache_add(page);
2018
2019         spin_lock_irq(&info->lock);
2020         info->alloced += compound_nr(page);
2021         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
2022         shmem_recalc_inode(inode);
2023         spin_unlock_irq(&info->lock);
2024         alloced = true;
2025
2026 #ifdef CONFIG_FINEGRAINED_THP
2027         if (PageTransHuge(page) &&
2028             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2029                         hindex + nr_pages - 1) {
2030                 /*
2031                  * Part of the huge page is beyond i_size: subject
2032                  * to shrink under memory pressure.
2033                  */
2034                 spin_lock(&sbinfo->shrinklist_lock);
2035                 /*
2036                  * _careful to defend against unlocked access to
2037                  * ->shrink_list in shmem_unused_huge_shrink()
2038                  */
2039                 if (list_empty_careful(&info->shrinklist)) {
2040                         list_add_tail(&info->shrinklist,
2041                                       &sbinfo->shrinklist);
2042                         sbinfo->shrinklist_len++;
2043                 }
2044                 spin_unlock(&sbinfo->shrinklist_lock);
2045         }
2046 #else /* CONFIG_FINEGRAINED_THP */
2047         if (PageTransHuge(page) &&
2048             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2049                         hindex + HPAGE_PMD_NR - 1) {
2050                 /*
2051                  * Part of the huge page is beyond i_size: subject
2052                  * to shrink under memory pressure.
2053                  */
2054                 spin_lock(&sbinfo->shrinklist_lock);
2055                 /*
2056                  * _careful to defend against unlocked access to
2057                  * ->shrink_list in shmem_unused_huge_shrink()
2058                  */
2059                 if (list_empty_careful(&info->shrinklist)) {
2060                         list_add_tail(&info->shrinklist,
2061                                       &sbinfo->shrinklist);
2062                         sbinfo->shrinklist_len++;
2063                 }
2064                 spin_unlock(&sbinfo->shrinklist_lock);
2065         }
2066 #endif /* CONFIG_FINEGRAINED_THP */
2067         /*
2068          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
2069          */
2070         if (sgp == SGP_FALLOC)
2071                 sgp = SGP_WRITE;
2072 clear:
2073         /*
2074          * Let SGP_WRITE caller clear ends if write does not fill page;
2075          * but SGP_FALLOC on a page fallocated earlier must initialize
2076          * it now, lest undo on failure cancel our earlier guarantee.
2077          */
2078         if (sgp != SGP_WRITE && !PageUptodate(page)) {
2079                 int i;
2080
2081                 for (i = 0; i < compound_nr(page); i++) {
2082                         clear_highpage(page + i);
2083                         flush_dcache_page(page + i);
2084                 }
2085                 SetPageUptodate(page);
2086         }
2087
2088         /* Perhaps the file has been truncated since we checked */
2089         if (sgp <= SGP_CACHE &&
2090             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2091                 if (alloced) {
2092                         ClearPageDirty(page);
2093                         delete_from_page_cache(page);
2094                         spin_lock_irq(&info->lock);
2095                         shmem_recalc_inode(inode);
2096                         spin_unlock_irq(&info->lock);
2097                 }
2098                 error = -EINVAL;
2099                 goto unlock;
2100         }
2101 out:
2102         *pagep = page + index - hindex;
2103         return 0;
2104
2105         /*
2106          * Error recovery.
2107          */
2108 unacct:
2109         shmem_inode_unacct_blocks(inode, compound_nr(page));
2110
2111         if (PageTransHuge(page)) {
2112                 unlock_page(page);
2113                 put_page(page);
2114                 goto alloc_nohuge;
2115         }
2116 unlock:
2117         if (page) {
2118                 unlock_page(page);
2119                 put_page(page);
2120         }
2121         if (error == -ENOSPC && !once++) {
2122                 spin_lock_irq(&info->lock);
2123                 shmem_recalc_inode(inode);
2124                 spin_unlock_irq(&info->lock);
2125                 goto repeat;
2126         }
2127         if (error == -EEXIST)
2128                 goto repeat;
2129         return error;
2130 }
2131
2132 /*
2133  * This is like autoremove_wake_function, but it removes the wait queue
2134  * entry unconditionally - even if something else had already woken the
2135  * target.
2136  */
2137 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2138 {
2139         int ret = default_wake_function(wait, mode, sync, key);
2140         list_del_init(&wait->entry);
2141         return ret;
2142 }
2143
2144 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2145 {
2146         struct vm_area_struct *vma = vmf->vma;
2147         struct inode *inode = file_inode(vma->vm_file);
2148         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2149         enum sgp_type sgp;
2150         int err;
2151         vm_fault_t ret = VM_FAULT_LOCKED;
2152
2153         /*
2154          * Trinity finds that probing a hole which tmpfs is punching can
2155          * prevent the hole-punch from ever completing: which in turn
2156          * locks writers out with its hold on i_mutex.  So refrain from
2157          * faulting pages into the hole while it's being punched.  Although
2158          * shmem_undo_range() does remove the additions, it may be unable to
2159          * keep up, as each new page needs its own unmap_mapping_range() call,
2160          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2161          *
2162          * It does not matter if we sometimes reach this check just before the
2163          * hole-punch begins, so that one fault then races with the punch:
2164          * we just need to make racing faults a rare case.
2165          *
2166          * The implementation below would be much simpler if we just used a
2167          * standard mutex or completion: but we cannot take i_mutex in fault,
2168          * and bloating every shmem inode for this unlikely case would be sad.
2169          */
2170         if (unlikely(inode->i_private)) {
2171                 struct shmem_falloc *shmem_falloc;
2172
2173                 spin_lock(&inode->i_lock);
2174                 shmem_falloc = inode->i_private;
2175                 if (shmem_falloc &&
2176                     shmem_falloc->waitq &&
2177                     vmf->pgoff >= shmem_falloc->start &&
2178                     vmf->pgoff < shmem_falloc->next) {
2179                         struct file *fpin;
2180                         wait_queue_head_t *shmem_falloc_waitq;
2181                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2182
2183                         ret = VM_FAULT_NOPAGE;
2184                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2185                         if (fpin)
2186                                 ret = VM_FAULT_RETRY;
2187
2188                         shmem_falloc_waitq = shmem_falloc->waitq;
2189                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2190                                         TASK_UNINTERRUPTIBLE);
2191                         spin_unlock(&inode->i_lock);
2192                         schedule();
2193
2194                         /*
2195                          * shmem_falloc_waitq points into the shmem_fallocate()
2196                          * stack of the hole-punching task: shmem_falloc_waitq
2197                          * is usually invalid by the time we reach here, but
2198                          * finish_wait() does not dereference it in that case;
2199                          * though i_lock needed lest racing with wake_up_all().
2200                          */
2201                         spin_lock(&inode->i_lock);
2202                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2203                         spin_unlock(&inode->i_lock);
2204
2205                         if (fpin)
2206                                 fput(fpin);
2207                         return ret;
2208                 }
2209                 spin_unlock(&inode->i_lock);
2210         }
2211
2212         sgp = SGP_CACHE;
2213
2214         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2215             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2216                 sgp = SGP_NOHUGE;
2217         else if (vma->vm_flags & VM_HUGEPAGE)
2218                 sgp = SGP_HUGE;
2219
2220         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2221                                   gfp, vma, vmf, &ret);
2222         if (err)
2223                 return vmf_error(err);
2224         return ret;
2225 }
2226
2227 unsigned long shmem_get_unmapped_area(struct file *file,
2228                                       unsigned long uaddr, unsigned long len,
2229                                       unsigned long pgoff, unsigned long flags)
2230 {
2231         unsigned long (*get_area)(struct file *,
2232                 unsigned long, unsigned long, unsigned long, unsigned long);
2233         unsigned long addr;
2234         unsigned long offset;
2235         unsigned long inflated_len;
2236         unsigned long inflated_addr;
2237         unsigned long inflated_offset;
2238
2239         if (len > TASK_SIZE)
2240                 return -ENOMEM;
2241
2242         get_area = current->mm->get_unmapped_area;
2243         addr = get_area(file, uaddr, len, pgoff, flags);
2244
2245         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2246                 return addr;
2247         if (IS_ERR_VALUE(addr))
2248                 return addr;
2249         if (addr & ~PAGE_MASK)
2250                 return addr;
2251         if (addr > TASK_SIZE - len)
2252                 return addr;
2253
2254         if (shmem_huge == SHMEM_HUGE_DENY)
2255                 return addr;
2256         if (len < HPAGE_PMD_SIZE)
2257                 return addr;
2258         if (flags & MAP_FIXED)
2259                 return addr;
2260         /*
2261          * Our priority is to support MAP_SHARED mapped hugely;
2262          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2263          * But if caller specified an address hint and we allocated area there
2264          * successfully, respect that as before.
2265          */
2266         if (uaddr == addr)
2267                 return addr;
2268
2269         if (shmem_huge != SHMEM_HUGE_FORCE) {
2270                 struct super_block *sb;
2271
2272                 if (file) {
2273                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2274                         sb = file_inode(file)->i_sb;
2275                 } else {
2276                         /*
2277                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2278                          * for "/dev/zero", to create a shared anonymous object.
2279                          */
2280                         if (IS_ERR(shm_mnt))
2281                                 return addr;
2282                         sb = shm_mnt->mnt_sb;
2283                 }
2284                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2285                         return addr;
2286         }
2287
2288         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2289         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2290                 return addr;
2291         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2292                 return addr;
2293
2294         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2295         if (inflated_len > TASK_SIZE)
2296                 return addr;
2297         if (inflated_len < len)
2298                 return addr;
2299
2300         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2301         if (IS_ERR_VALUE(inflated_addr))
2302                 return addr;
2303         if (inflated_addr & ~PAGE_MASK)
2304                 return addr;
2305
2306         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2307         inflated_addr += offset - inflated_offset;
2308         if (inflated_offset > offset)
2309                 inflated_addr += HPAGE_PMD_SIZE;
2310
2311         if (inflated_addr > TASK_SIZE - len)
2312                 return addr;
2313         return inflated_addr;
2314 }
2315
2316 #ifdef CONFIG_NUMA
2317 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2318 {
2319         struct inode *inode = file_inode(vma->vm_file);
2320         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2321 }
2322
2323 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2324                                           unsigned long addr)
2325 {
2326         struct inode *inode = file_inode(vma->vm_file);
2327         pgoff_t index;
2328
2329         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2330         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2331 }
2332 #endif
2333
2334 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2335 {
2336         struct inode *inode = file_inode(file);
2337         struct shmem_inode_info *info = SHMEM_I(inode);
2338         int retval = -ENOMEM;
2339
2340         /*
2341          * What serializes the accesses to info->flags?
2342          * ipc_lock_object() when called from shmctl_do_lock(),
2343          * no serialization needed when called from shm_destroy().
2344          */
2345         if (lock && !(info->flags & VM_LOCKED)) {
2346                 if (!user_shm_lock(inode->i_size, user))
2347                         goto out_nomem;
2348                 info->flags |= VM_LOCKED;
2349                 mapping_set_unevictable(file->f_mapping);
2350         }
2351         if (!lock && (info->flags & VM_LOCKED) && user) {
2352                 user_shm_unlock(inode->i_size, user);
2353                 info->flags &= ~VM_LOCKED;
2354                 mapping_clear_unevictable(file->f_mapping);
2355         }
2356         retval = 0;
2357
2358 out_nomem:
2359         return retval;
2360 }
2361
2362 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2363 {
2364         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2365         int ret;
2366
2367         ret = seal_check_future_write(info->seals, vma);
2368         if (ret)
2369                 return ret;
2370
2371         /* arm64 - allow memory tagging on RAM-based files */
2372         vma->vm_flags |= VM_MTE_ALLOWED;
2373
2374         file_accessed(file);
2375         vma->vm_ops = &shmem_vm_ops;
2376         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2377                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2378                         (vma->vm_end & HPAGE_PMD_MASK)) {
2379                 khugepaged_enter(vma, vma->vm_flags);
2380         }
2381         return 0;
2382 }
2383
2384 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2385                                      umode_t mode, dev_t dev, unsigned long flags)
2386 {
2387         struct inode *inode;
2388         struct shmem_inode_info *info;
2389         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2390         ino_t ino;
2391
2392         if (shmem_reserve_inode(sb, &ino))
2393                 return NULL;
2394
2395         inode = new_inode(sb);
2396         if (inode) {
2397                 inode->i_ino = ino;
2398                 inode_init_owner(inode, dir, mode);
2399                 inode->i_blocks = 0;
2400                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2401                 inode->i_generation = prandom_u32();
2402                 info = SHMEM_I(inode);
2403                 memset(info, 0, (char *)inode - (char *)info);
2404                 spin_lock_init(&info->lock);
2405                 atomic_set(&info->stop_eviction, 0);
2406                 info->seals = F_SEAL_SEAL;
2407                 info->flags = flags & VM_NORESERVE;
2408                 INIT_LIST_HEAD(&info->shrinklist);
2409                 INIT_LIST_HEAD(&info->swaplist);
2410                 simple_xattrs_init(&info->xattrs);
2411                 cache_no_acl(inode);
2412
2413                 switch (mode & S_IFMT) {
2414                 default:
2415                         inode->i_op = &shmem_special_inode_operations;
2416                         init_special_inode(inode, mode, dev);
2417                         break;
2418                 case S_IFREG:
2419                         inode->i_mapping->a_ops = &shmem_aops;
2420                         inode->i_op = &shmem_inode_operations;
2421                         inode->i_fop = &shmem_file_operations;
2422                         mpol_shared_policy_init(&info->policy,
2423                                                  shmem_get_sbmpol(sbinfo));
2424                         break;
2425                 case S_IFDIR:
2426                         inc_nlink(inode);
2427                         /* Some things misbehave if size == 0 on a directory */
2428                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2429                         inode->i_op = &shmem_dir_inode_operations;
2430                         inode->i_fop = &simple_dir_operations;
2431                         break;
2432                 case S_IFLNK:
2433                         /*
2434                          * Must not load anything in the rbtree,
2435                          * mpol_free_shared_policy will not be called.
2436                          */
2437                         mpol_shared_policy_init(&info->policy, NULL);
2438                         break;
2439                 }
2440
2441                 lockdep_annotate_inode_mutex_key(inode);
2442         } else
2443                 shmem_free_inode(sb);
2444         return inode;
2445 }
2446
2447 bool shmem_mapping(struct address_space *mapping)
2448 {
2449         return mapping->a_ops == &shmem_aops;
2450 }
2451
2452 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2453                                   pmd_t *dst_pmd,
2454                                   struct vm_area_struct *dst_vma,
2455                                   unsigned long dst_addr,
2456                                   unsigned long src_addr,
2457                                   bool zeropage,
2458                                   struct page **pagep)
2459 {
2460         struct inode *inode = file_inode(dst_vma->vm_file);
2461         struct shmem_inode_info *info = SHMEM_I(inode);
2462         struct address_space *mapping = inode->i_mapping;
2463         gfp_t gfp = mapping_gfp_mask(mapping);
2464         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2465         spinlock_t *ptl;
2466         void *page_kaddr;
2467         struct page *page;
2468         pte_t _dst_pte, *dst_pte;
2469         int ret;
2470         pgoff_t offset, max_off;
2471
2472         ret = -ENOMEM;
2473         if (!shmem_inode_acct_block(inode, 1)) {
2474                 /*
2475                  * We may have got a page, returned -ENOENT triggering a retry,
2476                  * and now we find ourselves with -ENOMEM. Release the page, to
2477                  * avoid a BUG_ON in our caller.
2478                  */
2479                 if (unlikely(*pagep)) {
2480                         put_page(*pagep);
2481                         *pagep = NULL;
2482                 }
2483                 goto out;
2484         }
2485
2486         if (!*pagep) {
2487                 page = shmem_alloc_page(gfp, info, pgoff);
2488                 if (!page)
2489                         goto out_unacct_blocks;
2490
2491                 if (!zeropage) {        /* mcopy_atomic */
2492                         page_kaddr = kmap_atomic(page);
2493                         ret = copy_from_user(page_kaddr,
2494                                              (const void __user *)src_addr,
2495                                              PAGE_SIZE);
2496                         kunmap_atomic(page_kaddr);
2497
2498                         /* fallback to copy_from_user outside mmap_lock */
2499                         if (unlikely(ret)) {
2500                                 *pagep = page;
2501                                 shmem_inode_unacct_blocks(inode, 1);
2502                                 /* don't free the page */
2503                                 return -ENOENT;
2504                         }
2505                 } else {                /* mfill_zeropage_atomic */
2506                         clear_highpage(page);
2507                 }
2508         } else {
2509                 page = *pagep;
2510                 *pagep = NULL;
2511         }
2512
2513         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2514         __SetPageLocked(page);
2515         __SetPageSwapBacked(page);
2516         __SetPageUptodate(page);
2517
2518         ret = -EFAULT;
2519         offset = linear_page_index(dst_vma, dst_addr);
2520         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2521         if (unlikely(offset >= max_off))
2522                 goto out_release;
2523
2524         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2525                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2526         if (ret)
2527                 goto out_release;
2528
2529         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2530         if (dst_vma->vm_flags & VM_WRITE)
2531                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2532         else {
2533                 /*
2534                  * We don't set the pte dirty if the vma has no
2535                  * VM_WRITE permission, so mark the page dirty or it
2536                  * could be freed from under us. We could do it
2537                  * unconditionally before unlock_page(), but doing it
2538                  * only if VM_WRITE is not set is faster.
2539                  */
2540                 set_page_dirty(page);
2541         }
2542
2543         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2544
2545         ret = -EFAULT;
2546         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2547         if (unlikely(offset >= max_off))
2548                 goto out_release_unlock;
2549
2550         ret = -EEXIST;
2551         if (!pte_none(*dst_pte))
2552                 goto out_release_unlock;
2553
2554         lru_cache_add(page);
2555
2556         spin_lock_irq(&info->lock);
2557         info->alloced++;
2558         inode->i_blocks += BLOCKS_PER_PAGE;
2559         shmem_recalc_inode(inode);
2560         spin_unlock_irq(&info->lock);
2561
2562         inc_mm_counter(dst_mm, mm_counter_file(page));
2563         page_add_file_rmap(page, false);
2564         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2565
2566         /* No need to invalidate - it was non-present before */
2567         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2568         pte_unmap_unlock(dst_pte, ptl);
2569         unlock_page(page);
2570         ret = 0;
2571 out:
2572         return ret;
2573 out_release_unlock:
2574         pte_unmap_unlock(dst_pte, ptl);
2575         ClearPageDirty(page);
2576         delete_from_page_cache(page);
2577 out_release:
2578         unlock_page(page);
2579         put_page(page);
2580 out_unacct_blocks:
2581         shmem_inode_unacct_blocks(inode, 1);
2582         goto out;
2583 }
2584
2585 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2586                            pmd_t *dst_pmd,
2587                            struct vm_area_struct *dst_vma,
2588                            unsigned long dst_addr,
2589                            unsigned long src_addr,
2590                            struct page **pagep)
2591 {
2592         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2593                                       dst_addr, src_addr, false, pagep);
2594 }
2595
2596 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2597                              pmd_t *dst_pmd,
2598                              struct vm_area_struct *dst_vma,
2599                              unsigned long dst_addr)
2600 {
2601         struct page *page = NULL;
2602
2603         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2604                                       dst_addr, 0, true, &page);
2605 }
2606
2607 #ifdef CONFIG_TMPFS
2608 static const struct inode_operations shmem_symlink_inode_operations;
2609 static const struct inode_operations shmem_short_symlink_operations;
2610
2611 #ifdef CONFIG_TMPFS_XATTR
2612 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2613 #else
2614 #define shmem_initxattrs NULL
2615 #endif
2616
2617 static int
2618 shmem_write_begin(struct file *file, struct address_space *mapping,
2619                         loff_t pos, unsigned len, unsigned flags,
2620                         struct page **pagep, void **fsdata)
2621 {
2622         struct inode *inode = mapping->host;
2623         struct shmem_inode_info *info = SHMEM_I(inode);
2624         pgoff_t index = pos >> PAGE_SHIFT;
2625
2626         /* i_mutex is held by caller */
2627         if (unlikely(info->seals & (F_SEAL_GROW |
2628                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2629                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2630                         return -EPERM;
2631                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2632                         return -EPERM;
2633         }
2634
2635         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2636 }
2637
2638 static int
2639 shmem_write_end(struct file *file, struct address_space *mapping,
2640                         loff_t pos, unsigned len, unsigned copied,
2641                         struct page *page, void *fsdata)
2642 {
2643         struct inode *inode = mapping->host;
2644
2645         if (pos + copied > inode->i_size)
2646                 i_size_write(inode, pos + copied);
2647
2648         if (!PageUptodate(page)) {
2649                 struct page *head = compound_head(page);
2650                 if (PageTransCompound(page)) {
2651                         int i;
2652 #ifdef CONFIG_FINEGRAINED_THP
2653                         for (i = 0; i < thp_nr_pages(page); i++) {
2654                                 if (head + i == page)
2655                                         continue;
2656                                 clear_highpage(head + i);
2657                                 flush_dcache_page(head + i);
2658                         }
2659 #else /* CONFIG_FINEGRAINED_THP */
2660                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2661                                 if (head + i == page)
2662                                         continue;
2663                                 clear_highpage(head + i);
2664                                 flush_dcache_page(head + i);
2665                         }
2666 #endif /* CONFIG_FINEGRAINED_THP */
2667                 }
2668                 if (copied < PAGE_SIZE) {
2669                         unsigned from = pos & (PAGE_SIZE - 1);
2670                         zero_user_segments(page, 0, from,
2671                                         from + copied, PAGE_SIZE);
2672                 }
2673                 SetPageUptodate(head);
2674         }
2675         set_page_dirty(page);
2676         unlock_page(page);
2677         put_page(page);
2678
2679         return copied;
2680 }
2681
2682 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2683 {
2684         struct file *file = iocb->ki_filp;
2685         struct inode *inode = file_inode(file);
2686         struct address_space *mapping = inode->i_mapping;
2687         pgoff_t index;
2688         unsigned long offset;
2689         enum sgp_type sgp = SGP_READ;
2690         int error = 0;
2691         ssize_t retval = 0;
2692         loff_t *ppos = &iocb->ki_pos;
2693
2694         /*
2695          * Might this read be for a stacking filesystem?  Then when reading
2696          * holes of a sparse file, we actually need to allocate those pages,
2697          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2698          */
2699         if (!iter_is_iovec(to))
2700                 sgp = SGP_CACHE;
2701
2702         index = *ppos >> PAGE_SHIFT;
2703         offset = *ppos & ~PAGE_MASK;
2704
2705         for (;;) {
2706                 struct page *page = NULL;
2707                 pgoff_t end_index;
2708                 unsigned long nr, ret;
2709                 loff_t i_size = i_size_read(inode);
2710
2711                 end_index = i_size >> PAGE_SHIFT;
2712                 if (index > end_index)
2713                         break;
2714                 if (index == end_index) {
2715                         nr = i_size & ~PAGE_MASK;
2716                         if (nr <= offset)
2717                                 break;
2718                 }
2719
2720                 error = shmem_getpage(inode, index, &page, sgp);
2721                 if (error) {
2722                         if (error == -EINVAL)
2723                                 error = 0;
2724                         break;
2725                 }
2726                 if (page) {
2727                         if (sgp == SGP_CACHE)
2728                                 set_page_dirty(page);
2729                         unlock_page(page);
2730                 }
2731
2732                 /*
2733                  * We must evaluate after, since reads (unlike writes)
2734                  * are called without i_mutex protection against truncate
2735                  */
2736                 nr = PAGE_SIZE;
2737                 i_size = i_size_read(inode);
2738                 end_index = i_size >> PAGE_SHIFT;
2739                 if (index == end_index) {
2740                         nr = i_size & ~PAGE_MASK;
2741                         if (nr <= offset) {
2742                                 if (page)
2743                                         put_page(page);
2744                                 break;
2745                         }
2746                 }
2747                 nr -= offset;
2748
2749                 if (page) {
2750                         /*
2751                          * If users can be writing to this page using arbitrary
2752                          * virtual addresses, take care about potential aliasing
2753                          * before reading the page on the kernel side.
2754                          */
2755                         if (mapping_writably_mapped(mapping))
2756                                 flush_dcache_page(page);
2757                         /*
2758                          * Mark the page accessed if we read the beginning.
2759                          */
2760                         if (!offset)
2761                                 mark_page_accessed(page);
2762                 } else {
2763                         page = ZERO_PAGE(0);
2764                         get_page(page);
2765                 }
2766
2767                 /*
2768                  * Ok, we have the page, and it's up-to-date, so
2769                  * now we can copy it to user space...
2770                  */
2771                 ret = copy_page_to_iter(page, offset, nr, to);
2772                 retval += ret;
2773                 offset += ret;
2774                 index += offset >> PAGE_SHIFT;
2775                 offset &= ~PAGE_MASK;
2776
2777                 put_page(page);
2778                 if (!iov_iter_count(to))
2779                         break;
2780                 if (ret < nr) {
2781                         error = -EFAULT;
2782                         break;
2783                 }
2784                 cond_resched();
2785         }
2786
2787         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2788         file_accessed(file);
2789         return retval ? retval : error;
2790 }
2791
2792 /*
2793  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2794  */
2795 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2796                                     pgoff_t index, pgoff_t end, int whence)
2797 {
2798         struct page *page;
2799         struct pagevec pvec;
2800         pgoff_t indices[PAGEVEC_SIZE];
2801         bool done = false;
2802         int i;
2803
2804         pagevec_init(&pvec);
2805         pvec.nr = 1;            /* start small: we may be there already */
2806         while (!done) {
2807                 pvec.nr = find_get_entries(mapping, index,
2808                                         pvec.nr, pvec.pages, indices);
2809                 if (!pvec.nr) {
2810                         if (whence == SEEK_DATA)
2811                                 index = end;
2812                         break;
2813                 }
2814                 for (i = 0; i < pvec.nr; i++, index++) {
2815                         if (index < indices[i]) {
2816                                 if (whence == SEEK_HOLE) {
2817                                         done = true;
2818                                         break;
2819                                 }
2820                                 index = indices[i];
2821                         }
2822                         page = pvec.pages[i];
2823                         if (page && !xa_is_value(page)) {
2824                                 if (!PageUptodate(page))
2825                                         page = NULL;
2826                         }
2827                         if (index >= end ||
2828                             (page && whence == SEEK_DATA) ||
2829                             (!page && whence == SEEK_HOLE)) {
2830                                 done = true;
2831                                 break;
2832                         }
2833                 }
2834                 pagevec_remove_exceptionals(&pvec);
2835                 pagevec_release(&pvec);
2836                 pvec.nr = PAGEVEC_SIZE;
2837                 cond_resched();
2838         }
2839         return index;
2840 }
2841
2842 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2843 {
2844         struct address_space *mapping = file->f_mapping;
2845         struct inode *inode = mapping->host;
2846         pgoff_t start, end;
2847         loff_t new_offset;
2848
2849         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2850                 return generic_file_llseek_size(file, offset, whence,
2851                                         MAX_LFS_FILESIZE, i_size_read(inode));
2852         inode_lock(inode);
2853         /* We're holding i_mutex so we can access i_size directly */
2854
2855         if (offset < 0 || offset >= inode->i_size)
2856                 offset = -ENXIO;
2857         else {
2858                 start = offset >> PAGE_SHIFT;
2859                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2860                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2861                 new_offset <<= PAGE_SHIFT;
2862                 if (new_offset > offset) {
2863                         if (new_offset < inode->i_size)
2864                                 offset = new_offset;
2865                         else if (whence == SEEK_DATA)
2866                                 offset = -ENXIO;
2867                         else
2868                                 offset = inode->i_size;
2869                 }
2870         }
2871
2872         if (offset >= 0)
2873                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2874         inode_unlock(inode);
2875         return offset;
2876 }
2877
2878 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2879                                                          loff_t len)
2880 {
2881         struct inode *inode = file_inode(file);
2882         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2883         struct shmem_inode_info *info = SHMEM_I(inode);
2884         struct shmem_falloc shmem_falloc;
2885         pgoff_t start, index, end;
2886         int error;
2887
2888         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2889                 return -EOPNOTSUPP;
2890
2891         inode_lock(inode);
2892
2893         if (mode & FALLOC_FL_PUNCH_HOLE) {
2894                 struct address_space *mapping = file->f_mapping;
2895                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2896                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2897                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2898
2899                 /* protected by i_mutex */
2900                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2901                         error = -EPERM;
2902                         goto out;
2903                 }
2904
2905                 shmem_falloc.waitq = &shmem_falloc_waitq;
2906                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2907                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2908                 spin_lock(&inode->i_lock);
2909                 inode->i_private = &shmem_falloc;
2910                 spin_unlock(&inode->i_lock);
2911
2912                 if ((u64)unmap_end > (u64)unmap_start)
2913                         unmap_mapping_range(mapping, unmap_start,
2914                                             1 + unmap_end - unmap_start, 0);
2915                 shmem_truncate_range(inode, offset, offset + len - 1);
2916                 /* No need to unmap again: hole-punching leaves COWed pages */
2917
2918                 spin_lock(&inode->i_lock);
2919                 inode->i_private = NULL;
2920                 wake_up_all(&shmem_falloc_waitq);
2921                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2922                 spin_unlock(&inode->i_lock);
2923                 error = 0;
2924                 goto out;
2925         }
2926
2927         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2928         error = inode_newsize_ok(inode, offset + len);
2929         if (error)
2930                 goto out;
2931
2932         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2933                 error = -EPERM;
2934                 goto out;
2935         }
2936
2937         start = offset >> PAGE_SHIFT;
2938         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2939         /* Try to avoid a swapstorm if len is impossible to satisfy */
2940         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2941                 error = -ENOSPC;
2942                 goto out;
2943         }
2944
2945         shmem_falloc.waitq = NULL;
2946         shmem_falloc.start = start;
2947         shmem_falloc.next  = start;
2948         shmem_falloc.nr_falloced = 0;
2949         shmem_falloc.nr_unswapped = 0;
2950         spin_lock(&inode->i_lock);
2951         inode->i_private = &shmem_falloc;
2952         spin_unlock(&inode->i_lock);
2953
2954         for (index = start; index < end; index++) {
2955                 struct page *page;
2956
2957                 /*
2958                  * Good, the fallocate(2) manpage permits EINTR: we may have
2959                  * been interrupted because we are using up too much memory.
2960                  */
2961                 if (signal_pending(current))
2962                         error = -EINTR;
2963                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2964                         error = -ENOMEM;
2965                 else
2966                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2967                 if (error) {
2968                         /* Remove the !PageUptodate pages we added */
2969                         if (index > start) {
2970                                 shmem_undo_range(inode,
2971                                     (loff_t)start << PAGE_SHIFT,
2972                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2973                         }
2974                         goto undone;
2975                 }
2976
2977                 /*
2978                  * Inform shmem_writepage() how far we have reached.
2979                  * No need for lock or barrier: we have the page lock.
2980                  */
2981                 shmem_falloc.next++;
2982                 if (!PageUptodate(page))
2983                         shmem_falloc.nr_falloced++;
2984
2985                 /*
2986                  * If !PageUptodate, leave it that way so that freeable pages
2987                  * can be recognized if we need to rollback on error later.
2988                  * But set_page_dirty so that memory pressure will swap rather
2989                  * than free the pages we are allocating (and SGP_CACHE pages
2990                  * might still be clean: we now need to mark those dirty too).
2991                  */
2992                 set_page_dirty(page);
2993                 unlock_page(page);
2994                 put_page(page);
2995                 cond_resched();
2996         }
2997
2998         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2999                 i_size_write(inode, offset + len);
3000         inode->i_ctime = current_time(inode);
3001 undone:
3002         spin_lock(&inode->i_lock);
3003         inode->i_private = NULL;
3004         spin_unlock(&inode->i_lock);
3005 out:
3006         inode_unlock(inode);
3007         return error;
3008 }
3009
3010 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3011 {
3012         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3013
3014         buf->f_type = TMPFS_MAGIC;
3015         buf->f_bsize = PAGE_SIZE;
3016         buf->f_namelen = NAME_MAX;
3017         if (sbinfo->max_blocks) {
3018                 buf->f_blocks = sbinfo->max_blocks;
3019                 buf->f_bavail =
3020                 buf->f_bfree  = sbinfo->max_blocks -
3021                                 percpu_counter_sum(&sbinfo->used_blocks);
3022         }
3023         if (sbinfo->max_inodes) {
3024                 buf->f_files = sbinfo->max_inodes;
3025                 buf->f_ffree = sbinfo->free_inodes;
3026         }
3027         /* else leave those fields 0 like simple_statfs */
3028         return 0;
3029 }
3030
3031 /*
3032  * File creation. Allocate an inode, and we're done..
3033  */
3034 static int
3035 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3036 {
3037         struct inode *inode;
3038         int error = -ENOSPC;
3039
3040         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3041         if (inode) {
3042                 error = simple_acl_create(dir, inode);
3043                 if (error)
3044                         goto out_iput;
3045                 error = security_inode_init_security(inode, dir,
3046                                                      &dentry->d_name,
3047                                                      shmem_initxattrs, NULL);
3048                 if (error && error != -EOPNOTSUPP)
3049                         goto out_iput;
3050
3051                 error = 0;
3052                 dir->i_size += BOGO_DIRENT_SIZE;
3053                 dir->i_ctime = dir->i_mtime = current_time(dir);
3054                 d_instantiate(dentry, inode);
3055                 dget(dentry); /* Extra count - pin the dentry in core */
3056         }
3057         return error;
3058 out_iput:
3059         iput(inode);
3060         return error;
3061 }
3062
3063 static int
3064 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3065 {
3066         struct inode *inode;
3067         int error = -ENOSPC;
3068
3069         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3070         if (inode) {
3071                 error = security_inode_init_security(inode, dir,
3072                                                      NULL,
3073                                                      shmem_initxattrs, NULL);
3074                 if (error && error != -EOPNOTSUPP)
3075                         goto out_iput;
3076                 error = simple_acl_create(dir, inode);
3077                 if (error)
3078                         goto out_iput;
3079                 d_tmpfile(dentry, inode);
3080         }
3081         return error;
3082 out_iput:
3083         iput(inode);
3084         return error;
3085 }
3086
3087 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3088 {
3089         int error;
3090
3091         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3092                 return error;
3093         inc_nlink(dir);
3094         return 0;
3095 }
3096
3097 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3098                 bool excl)
3099 {
3100         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3101 }
3102
3103 /*
3104  * Link a file..
3105  */
3106 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3107 {
3108         struct inode *inode = d_inode(old_dentry);
3109         int ret = 0;
3110
3111         /*
3112          * No ordinary (disk based) filesystem counts links as inodes;
3113          * but each new link needs a new dentry, pinning lowmem, and
3114          * tmpfs dentries cannot be pruned until they are unlinked.
3115          * But if an O_TMPFILE file is linked into the tmpfs, the
3116          * first link must skip that, to get the accounting right.
3117          */
3118         if (inode->i_nlink) {
3119                 ret = shmem_reserve_inode(inode->i_sb, NULL);
3120                 if (ret)
3121                         goto out;
3122         }
3123
3124         dir->i_size += BOGO_DIRENT_SIZE;
3125         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3126         inc_nlink(inode);
3127         ihold(inode);   /* New dentry reference */
3128         dget(dentry);           /* Extra pinning count for the created dentry */
3129         d_instantiate(dentry, inode);
3130 out:
3131         return ret;
3132 }
3133
3134 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3135 {
3136         struct inode *inode = d_inode(dentry);
3137
3138         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3139                 shmem_free_inode(inode->i_sb);
3140
3141         dir->i_size -= BOGO_DIRENT_SIZE;
3142         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3143         drop_nlink(inode);
3144         dput(dentry);   /* Undo the count from "create" - this does all the work */
3145         return 0;
3146 }
3147
3148 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3149 {
3150         if (!simple_empty(dentry))
3151                 return -ENOTEMPTY;
3152
3153         drop_nlink(d_inode(dentry));
3154         drop_nlink(dir);
3155         return shmem_unlink(dir, dentry);
3156 }
3157
3158 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3159 {
3160         bool old_is_dir = d_is_dir(old_dentry);
3161         bool new_is_dir = d_is_dir(new_dentry);
3162
3163         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3164                 if (old_is_dir) {
3165                         drop_nlink(old_dir);
3166                         inc_nlink(new_dir);
3167                 } else {
3168                         drop_nlink(new_dir);
3169                         inc_nlink(old_dir);
3170                 }
3171         }
3172         old_dir->i_ctime = old_dir->i_mtime =
3173         new_dir->i_ctime = new_dir->i_mtime =
3174         d_inode(old_dentry)->i_ctime =
3175         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3176
3177         return 0;
3178 }
3179
3180 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3181 {
3182         struct dentry *whiteout;
3183         int error;
3184
3185         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3186         if (!whiteout)
3187                 return -ENOMEM;
3188
3189         error = shmem_mknod(old_dir, whiteout,
3190                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3191         dput(whiteout);
3192         if (error)
3193                 return error;
3194
3195         /*
3196          * Cheat and hash the whiteout while the old dentry is still in
3197          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3198          *
3199          * d_lookup() will consistently find one of them at this point,
3200          * not sure which one, but that isn't even important.
3201          */
3202         d_rehash(whiteout);
3203         return 0;
3204 }
3205
3206 /*
3207  * The VFS layer already does all the dentry stuff for rename,
3208  * we just have to decrement the usage count for the target if
3209  * it exists so that the VFS layer correctly free's it when it
3210  * gets overwritten.
3211  */
3212 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3213 {
3214         struct inode *inode = d_inode(old_dentry);
3215         int they_are_dirs = S_ISDIR(inode->i_mode);
3216
3217         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3218                 return -EINVAL;
3219
3220         if (flags & RENAME_EXCHANGE)
3221                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3222
3223         if (!simple_empty(new_dentry))
3224                 return -ENOTEMPTY;
3225
3226         if (flags & RENAME_WHITEOUT) {
3227                 int error;
3228
3229                 error = shmem_whiteout(old_dir, old_dentry);
3230                 if (error)
3231                         return error;
3232         }
3233
3234         if (d_really_is_positive(new_dentry)) {
3235                 (void) shmem_unlink(new_dir, new_dentry);
3236                 if (they_are_dirs) {
3237                         drop_nlink(d_inode(new_dentry));
3238                         drop_nlink(old_dir);
3239                 }
3240         } else if (they_are_dirs) {
3241                 drop_nlink(old_dir);
3242                 inc_nlink(new_dir);
3243         }
3244
3245         old_dir->i_size -= BOGO_DIRENT_SIZE;
3246         new_dir->i_size += BOGO_DIRENT_SIZE;
3247         old_dir->i_ctime = old_dir->i_mtime =
3248         new_dir->i_ctime = new_dir->i_mtime =
3249         inode->i_ctime = current_time(old_dir);
3250         return 0;
3251 }
3252
3253 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3254 {
3255         int error;
3256         int len;
3257         struct inode *inode;
3258         struct page *page;
3259
3260         len = strlen(symname) + 1;
3261         if (len > PAGE_SIZE)
3262                 return -ENAMETOOLONG;
3263
3264         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3265                                 VM_NORESERVE);
3266         if (!inode)
3267                 return -ENOSPC;
3268
3269         error = security_inode_init_security(inode, dir, &dentry->d_name,
3270                                              shmem_initxattrs, NULL);
3271         if (error && error != -EOPNOTSUPP) {
3272                 iput(inode);
3273                 return error;
3274         }
3275
3276         inode->i_size = len-1;
3277         if (len <= SHORT_SYMLINK_LEN) {
3278                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3279                 if (!inode->i_link) {
3280                         iput(inode);
3281                         return -ENOMEM;
3282                 }
3283                 inode->i_op = &shmem_short_symlink_operations;
3284         } else {
3285                 inode_nohighmem(inode);
3286                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3287                 if (error) {
3288                         iput(inode);
3289                         return error;
3290                 }
3291                 inode->i_mapping->a_ops = &shmem_aops;
3292                 inode->i_op = &shmem_symlink_inode_operations;
3293                 memcpy(page_address(page), symname, len);
3294                 SetPageUptodate(page);
3295                 set_page_dirty(page);
3296                 unlock_page(page);
3297                 put_page(page);
3298         }
3299         dir->i_size += BOGO_DIRENT_SIZE;
3300         dir->i_ctime = dir->i_mtime = current_time(dir);
3301         d_instantiate(dentry, inode);
3302         dget(dentry);
3303         return 0;
3304 }
3305
3306 static void shmem_put_link(void *arg)
3307 {
3308         mark_page_accessed(arg);
3309         put_page(arg);
3310 }
3311
3312 static const char *shmem_get_link(struct dentry *dentry,
3313                                   struct inode *inode,
3314                                   struct delayed_call *done)
3315 {
3316         struct page *page = NULL;
3317         int error;
3318         if (!dentry) {
3319                 page = find_get_page(inode->i_mapping, 0);
3320                 if (!page)
3321                         return ERR_PTR(-ECHILD);
3322                 if (!PageUptodate(page)) {
3323                         put_page(page);
3324                         return ERR_PTR(-ECHILD);
3325                 }
3326         } else {
3327                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3328                 if (error)
3329                         return ERR_PTR(error);
3330                 unlock_page(page);
3331         }
3332         set_delayed_call(done, shmem_put_link, page);
3333         return page_address(page);
3334 }
3335
3336 #ifdef CONFIG_TMPFS_XATTR
3337 /*
3338  * Superblocks without xattr inode operations may get some security.* xattr
3339  * support from the LSM "for free". As soon as we have any other xattrs
3340  * like ACLs, we also need to implement the security.* handlers at
3341  * filesystem level, though.
3342  */
3343
3344 /*
3345  * Callback for security_inode_init_security() for acquiring xattrs.
3346  */
3347 static int shmem_initxattrs(struct inode *inode,
3348                             const struct xattr *xattr_array,
3349                             void *fs_info)
3350 {
3351         struct shmem_inode_info *info = SHMEM_I(inode);
3352         const struct xattr *xattr;
3353         struct simple_xattr *new_xattr;
3354         size_t len;
3355
3356         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3357                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3358                 if (!new_xattr)
3359                         return -ENOMEM;
3360
3361                 len = strlen(xattr->name) + 1;
3362                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3363                                           GFP_KERNEL);
3364                 if (!new_xattr->name) {
3365                         kvfree(new_xattr);
3366                         return -ENOMEM;
3367                 }
3368
3369                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3370                        XATTR_SECURITY_PREFIX_LEN);
3371                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3372                        xattr->name, len);
3373
3374                 simple_xattr_list_add(&info->xattrs, new_xattr);
3375         }
3376
3377         return 0;
3378 }
3379
3380 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3381                                    struct dentry *unused, struct inode *inode,
3382                                    const char *name, void *buffer, size_t size)
3383 {
3384         struct shmem_inode_info *info = SHMEM_I(inode);
3385
3386         name = xattr_full_name(handler, name);
3387         return simple_xattr_get(&info->xattrs, name, buffer, size);
3388 }
3389
3390 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3391                                    struct dentry *unused, struct inode *inode,
3392                                    const char *name, const void *value,
3393                                    size_t size, int flags)
3394 {
3395         struct shmem_inode_info *info = SHMEM_I(inode);
3396
3397         name = xattr_full_name(handler, name);
3398         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3399 }
3400
3401 static const struct xattr_handler shmem_security_xattr_handler = {
3402         .prefix = XATTR_SECURITY_PREFIX,
3403         .get = shmem_xattr_handler_get,
3404         .set = shmem_xattr_handler_set,
3405 };
3406
3407 static const struct xattr_handler shmem_trusted_xattr_handler = {
3408         .prefix = XATTR_TRUSTED_PREFIX,
3409         .get = shmem_xattr_handler_get,
3410         .set = shmem_xattr_handler_set,
3411 };
3412
3413 static const struct xattr_handler *shmem_xattr_handlers[] = {
3414 #ifdef CONFIG_TMPFS_POSIX_ACL
3415         &posix_acl_access_xattr_handler,
3416         &posix_acl_default_xattr_handler,
3417 #endif
3418         &shmem_security_xattr_handler,
3419         &shmem_trusted_xattr_handler,
3420         NULL
3421 };
3422
3423 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3424 {
3425         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3426         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3427 }
3428 #endif /* CONFIG_TMPFS_XATTR */
3429
3430 static const struct inode_operations shmem_short_symlink_operations = {
3431         .get_link       = simple_get_link,
3432 #ifdef CONFIG_TMPFS_XATTR
3433         .listxattr      = shmem_listxattr,
3434 #endif
3435 };
3436
3437 static const struct inode_operations shmem_symlink_inode_operations = {
3438         .get_link       = shmem_get_link,
3439 #ifdef CONFIG_TMPFS_XATTR
3440         .listxattr      = shmem_listxattr,
3441 #endif
3442 };
3443
3444 static struct dentry *shmem_get_parent(struct dentry *child)
3445 {
3446         return ERR_PTR(-ESTALE);
3447 }
3448
3449 static int shmem_match(struct inode *ino, void *vfh)
3450 {
3451         __u32 *fh = vfh;
3452         __u64 inum = fh[2];
3453         inum = (inum << 32) | fh[1];
3454         return ino->i_ino == inum && fh[0] == ino->i_generation;
3455 }
3456
3457 /* Find any alias of inode, but prefer a hashed alias */
3458 static struct dentry *shmem_find_alias(struct inode *inode)
3459 {
3460         struct dentry *alias = d_find_alias(inode);
3461
3462         return alias ?: d_find_any_alias(inode);
3463 }
3464
3465
3466 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3467                 struct fid *fid, int fh_len, int fh_type)
3468 {
3469         struct inode *inode;
3470         struct dentry *dentry = NULL;
3471         u64 inum;
3472
3473         if (fh_len < 3)
3474                 return NULL;
3475
3476         inum = fid->raw[2];
3477         inum = (inum << 32) | fid->raw[1];
3478
3479         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3480                         shmem_match, fid->raw);
3481         if (inode) {
3482                 dentry = shmem_find_alias(inode);
3483                 iput(inode);
3484         }
3485
3486         return dentry;
3487 }
3488
3489 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3490                                 struct inode *parent)
3491 {
3492         if (*len < 3) {
3493                 *len = 3;
3494                 return FILEID_INVALID;
3495         }
3496
3497         if (inode_unhashed(inode)) {
3498                 /* Unfortunately insert_inode_hash is not idempotent,
3499                  * so as we hash inodes here rather than at creation
3500                  * time, we need a lock to ensure we only try
3501                  * to do it once
3502                  */
3503                 static DEFINE_SPINLOCK(lock);
3504                 spin_lock(&lock);
3505                 if (inode_unhashed(inode))
3506                         __insert_inode_hash(inode,
3507                                             inode->i_ino + inode->i_generation);
3508                 spin_unlock(&lock);
3509         }
3510
3511         fh[0] = inode->i_generation;
3512         fh[1] = inode->i_ino;
3513         fh[2] = ((__u64)inode->i_ino) >> 32;
3514
3515         *len = 3;
3516         return 1;
3517 }
3518
3519 static const struct export_operations shmem_export_ops = {
3520         .get_parent     = shmem_get_parent,
3521         .encode_fh      = shmem_encode_fh,
3522         .fh_to_dentry   = shmem_fh_to_dentry,
3523 };
3524
3525 enum shmem_param {
3526         Opt_gid,
3527         Opt_huge,
3528         Opt_mode,
3529         Opt_mpol,
3530         Opt_nr_blocks,
3531         Opt_nr_inodes,
3532         Opt_size,
3533         Opt_uid,
3534         Opt_inode32,
3535         Opt_inode64,
3536 };
3537
3538 static const struct constant_table shmem_param_enums_huge[] = {
3539         {"never",       SHMEM_HUGE_NEVER },
3540         {"always",      SHMEM_HUGE_ALWAYS },
3541         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3542         {"advise",      SHMEM_HUGE_ADVISE },
3543         {}
3544 };
3545
3546 const struct fs_parameter_spec shmem_fs_parameters[] = {
3547         fsparam_u32   ("gid",           Opt_gid),
3548         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3549         fsparam_u32oct("mode",          Opt_mode),
3550         fsparam_string("mpol",          Opt_mpol),
3551         fsparam_string("nr_blocks",     Opt_nr_blocks),
3552         fsparam_string("nr_inodes",     Opt_nr_inodes),
3553         fsparam_string("size",          Opt_size),
3554         fsparam_u32   ("uid",           Opt_uid),
3555         fsparam_flag  ("inode32",       Opt_inode32),
3556         fsparam_flag  ("inode64",       Opt_inode64),
3557         {}
3558 };
3559
3560 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3561 {
3562         struct shmem_options *ctx = fc->fs_private;
3563         struct fs_parse_result result;
3564         unsigned long long size;
3565         char *rest;
3566         int opt;
3567
3568         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3569         if (opt < 0)
3570                 return opt;
3571
3572         switch (opt) {
3573         case Opt_size:
3574                 size = memparse(param->string, &rest);
3575                 if (*rest == '%') {
3576                         size <<= PAGE_SHIFT;
3577                         size *= totalram_pages();
3578                         do_div(size, 100);
3579                         rest++;
3580                 }
3581                 if (*rest)
3582                         goto bad_value;
3583                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3584                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3585                 break;
3586         case Opt_nr_blocks:
3587                 ctx->blocks = memparse(param->string, &rest);
3588                 if (*rest)
3589                         goto bad_value;
3590                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3591                 break;
3592         case Opt_nr_inodes:
3593                 ctx->inodes = memparse(param->string, &rest);
3594                 if (*rest)
3595                         goto bad_value;
3596                 ctx->seen |= SHMEM_SEEN_INODES;
3597                 break;
3598         case Opt_mode:
3599                 ctx->mode = result.uint_32 & 07777;
3600                 break;
3601         case Opt_uid:
3602                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3603                 if (!uid_valid(ctx->uid))
3604                         goto bad_value;
3605                 break;
3606         case Opt_gid:
3607                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3608                 if (!gid_valid(ctx->gid))
3609                         goto bad_value;
3610                 break;
3611         case Opt_huge:
3612                 ctx->huge = result.uint_32;
3613                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3614                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3615                       has_transparent_hugepage()))
3616                         goto unsupported_parameter;
3617                 ctx->seen |= SHMEM_SEEN_HUGE;
3618                 break;
3619         case Opt_mpol:
3620                 if (IS_ENABLED(CONFIG_NUMA)) {
3621                         mpol_put(ctx->mpol);
3622                         ctx->mpol = NULL;
3623                         if (mpol_parse_str(param->string, &ctx->mpol))
3624                                 goto bad_value;
3625                         break;
3626                 }
3627                 goto unsupported_parameter;
3628         case Opt_inode32:
3629                 ctx->full_inums = false;
3630                 ctx->seen |= SHMEM_SEEN_INUMS;
3631                 break;
3632         case Opt_inode64:
3633                 if (sizeof(ino_t) < 8) {
3634                         return invalfc(fc,
3635                                        "Cannot use inode64 with <64bit inums in kernel\n");
3636                 }
3637                 ctx->full_inums = true;
3638                 ctx->seen |= SHMEM_SEEN_INUMS;
3639                 break;
3640         }
3641         return 0;
3642
3643 unsupported_parameter:
3644         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3645 bad_value:
3646         return invalfc(fc, "Bad value for '%s'", param->key);
3647 }
3648
3649 static int shmem_parse_options(struct fs_context *fc, void *data)
3650 {
3651         char *options = data;
3652
3653         if (options) {
3654                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3655                 if (err)
3656                         return err;
3657         }
3658
3659         while (options != NULL) {
3660                 char *this_char = options;
3661                 for (;;) {
3662                         /*
3663                          * NUL-terminate this option: unfortunately,
3664                          * mount options form a comma-separated list,
3665                          * but mpol's nodelist may also contain commas.
3666                          */
3667                         options = strchr(options, ',');
3668                         if (options == NULL)
3669                                 break;
3670                         options++;
3671                         if (!isdigit(*options)) {
3672                                 options[-1] = '\0';
3673                                 break;
3674                         }
3675                 }
3676                 if (*this_char) {
3677                         char *value = strchr(this_char,'=');
3678                         size_t len = 0;
3679                         int err;
3680
3681                         if (value) {
3682                                 *value++ = '\0';
3683                                 len = strlen(value);
3684                         }
3685                         err = vfs_parse_fs_string(fc, this_char, value, len);
3686                         if (err < 0)
3687                                 return err;
3688                 }
3689         }
3690         return 0;
3691 }
3692
3693 /*
3694  * Reconfigure a shmem filesystem.
3695  *
3696  * Note that we disallow change from limited->unlimited blocks/inodes while any
3697  * are in use; but we must separately disallow unlimited->limited, because in
3698  * that case we have no record of how much is already in use.
3699  */
3700 static int shmem_reconfigure(struct fs_context *fc)
3701 {
3702         struct shmem_options *ctx = fc->fs_private;
3703         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3704         unsigned long inodes;
3705         struct mempolicy *mpol = NULL;
3706         const char *err;
3707
3708         raw_spin_lock(&sbinfo->stat_lock);
3709         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3710         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3711                 if (!sbinfo->max_blocks) {
3712                         err = "Cannot retroactively limit size";
3713                         goto out;
3714                 }
3715                 if (percpu_counter_compare(&sbinfo->used_blocks,
3716                                            ctx->blocks) > 0) {
3717                         err = "Too small a size for current use";
3718                         goto out;
3719                 }
3720         }
3721         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3722                 if (!sbinfo->max_inodes) {
3723                         err = "Cannot retroactively limit inodes";
3724                         goto out;
3725                 }
3726                 if (ctx->inodes < inodes) {
3727                         err = "Too few inodes for current use";
3728                         goto out;
3729                 }
3730         }
3731
3732         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3733             sbinfo->next_ino > UINT_MAX) {
3734                 err = "Current inum too high to switch to 32-bit inums";
3735                 goto out;
3736         }
3737
3738         if (ctx->seen & SHMEM_SEEN_HUGE)
3739                 sbinfo->huge = ctx->huge;
3740         if (ctx->seen & SHMEM_SEEN_INUMS)
3741                 sbinfo->full_inums = ctx->full_inums;
3742         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3743                 sbinfo->max_blocks  = ctx->blocks;
3744         if (ctx->seen & SHMEM_SEEN_INODES) {
3745                 sbinfo->max_inodes  = ctx->inodes;
3746                 sbinfo->free_inodes = ctx->inodes - inodes;
3747         }
3748
3749         /*
3750          * Preserve previous mempolicy unless mpol remount option was specified.
3751          */
3752         if (ctx->mpol) {
3753                 mpol = sbinfo->mpol;
3754                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3755                 ctx->mpol = NULL;
3756         }
3757         raw_spin_unlock(&sbinfo->stat_lock);
3758         mpol_put(mpol);
3759         return 0;
3760 out:
3761         raw_spin_unlock(&sbinfo->stat_lock);
3762         return invalfc(fc, "%s", err);
3763 }
3764
3765 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3766 {
3767         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3768
3769         if (sbinfo->max_blocks != shmem_default_max_blocks())
3770                 seq_printf(seq, ",size=%luk",
3771                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3772         if (sbinfo->max_inodes != shmem_default_max_inodes())
3773                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3774         if (sbinfo->mode != (0777 | S_ISVTX))
3775                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3776         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3777                 seq_printf(seq, ",uid=%u",
3778                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3779         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3780                 seq_printf(seq, ",gid=%u",
3781                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3782
3783         /*
3784          * Showing inode{64,32} might be useful even if it's the system default,
3785          * since then people don't have to resort to checking both here and
3786          * /proc/config.gz to confirm 64-bit inums were successfully applied
3787          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3788          *
3789          * We hide it when inode64 isn't the default and we are using 32-bit
3790          * inodes, since that probably just means the feature isn't even under
3791          * consideration.
3792          *
3793          * As such:
3794          *
3795          *                     +-----------------+-----------------+
3796          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3797          *  +------------------+-----------------+-----------------+
3798          *  | full_inums=true  | show            | show            |
3799          *  | full_inums=false | show            | hide            |
3800          *  +------------------+-----------------+-----------------+
3801          *
3802          */
3803         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3804                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3806         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3807         if (sbinfo->huge)
3808                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3809 #endif
3810         shmem_show_mpol(seq, sbinfo->mpol);
3811         return 0;
3812 }
3813
3814 #endif /* CONFIG_TMPFS */
3815
3816 static void shmem_put_super(struct super_block *sb)
3817 {
3818         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3819
3820         free_percpu(sbinfo->ino_batch);
3821         percpu_counter_destroy(&sbinfo->used_blocks);
3822         mpol_put(sbinfo->mpol);
3823         kfree(sbinfo);
3824         sb->s_fs_info = NULL;
3825 }
3826
3827 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3828 {
3829         struct shmem_options *ctx = fc->fs_private;
3830         struct inode *inode;
3831         struct shmem_sb_info *sbinfo;
3832         int err = -ENOMEM;
3833
3834         /* Round up to L1_CACHE_BYTES to resist false sharing */
3835         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3836                                 L1_CACHE_BYTES), GFP_KERNEL);
3837         if (!sbinfo)
3838                 return -ENOMEM;
3839
3840         sb->s_fs_info = sbinfo;
3841
3842 #ifdef CONFIG_TMPFS
3843         /*
3844          * Per default we only allow half of the physical ram per
3845          * tmpfs instance, limiting inodes to one per page of lowmem;
3846          * but the internal instance is left unlimited.
3847          */
3848         if (!(sb->s_flags & SB_KERNMOUNT)) {
3849                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3850                         ctx->blocks = shmem_default_max_blocks();
3851                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3852                         ctx->inodes = shmem_default_max_inodes();
3853                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3854                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3855         } else {
3856                 sb->s_flags |= SB_NOUSER;
3857         }
3858         sb->s_export_op = &shmem_export_ops;
3859         sb->s_flags |= SB_NOSEC;
3860 #else
3861         sb->s_flags |= SB_NOUSER;
3862 #endif
3863         sbinfo->max_blocks = ctx->blocks;
3864         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3865         if (sb->s_flags & SB_KERNMOUNT) {
3866                 sbinfo->ino_batch = alloc_percpu(ino_t);
3867                 if (!sbinfo->ino_batch)
3868                         goto failed;
3869         }
3870         sbinfo->uid = ctx->uid;
3871         sbinfo->gid = ctx->gid;
3872         sbinfo->full_inums = ctx->full_inums;
3873         sbinfo->mode = ctx->mode;
3874         sbinfo->huge = ctx->huge;
3875         sbinfo->mpol = ctx->mpol;
3876         ctx->mpol = NULL;
3877
3878         raw_spin_lock_init(&sbinfo->stat_lock);
3879         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3880                 goto failed;
3881         spin_lock_init(&sbinfo->shrinklist_lock);
3882         INIT_LIST_HEAD(&sbinfo->shrinklist);
3883
3884         sb->s_maxbytes = MAX_LFS_FILESIZE;
3885         sb->s_blocksize = PAGE_SIZE;
3886         sb->s_blocksize_bits = PAGE_SHIFT;
3887         sb->s_magic = TMPFS_MAGIC;
3888         sb->s_op = &shmem_ops;
3889         sb->s_time_gran = 1;
3890 #ifdef CONFIG_TMPFS_XATTR
3891         sb->s_xattr = shmem_xattr_handlers;
3892 #endif
3893 #ifdef CONFIG_TMPFS_POSIX_ACL
3894         sb->s_flags |= SB_POSIXACL;
3895 #endif
3896         uuid_gen(&sb->s_uuid);
3897
3898         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3899         if (!inode)
3900                 goto failed;
3901         inode->i_uid = sbinfo->uid;
3902         inode->i_gid = sbinfo->gid;
3903         sb->s_root = d_make_root(inode);
3904         if (!sb->s_root)
3905                 goto failed;
3906         return 0;
3907
3908 failed:
3909         shmem_put_super(sb);
3910         return err;
3911 }
3912
3913 static int shmem_get_tree(struct fs_context *fc)
3914 {
3915         return get_tree_nodev(fc, shmem_fill_super);
3916 }
3917
3918 static void shmem_free_fc(struct fs_context *fc)
3919 {
3920         struct shmem_options *ctx = fc->fs_private;
3921
3922         if (ctx) {
3923                 mpol_put(ctx->mpol);
3924                 kfree(ctx);
3925         }
3926 }
3927
3928 static const struct fs_context_operations shmem_fs_context_ops = {
3929         .free                   = shmem_free_fc,
3930         .get_tree               = shmem_get_tree,
3931 #ifdef CONFIG_TMPFS
3932         .parse_monolithic       = shmem_parse_options,
3933         .parse_param            = shmem_parse_one,
3934         .reconfigure            = shmem_reconfigure,
3935 #endif
3936 };
3937
3938 static struct kmem_cache *shmem_inode_cachep;
3939
3940 static struct inode *shmem_alloc_inode(struct super_block *sb)
3941 {
3942         struct shmem_inode_info *info;
3943         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3944         if (!info)
3945                 return NULL;
3946         return &info->vfs_inode;
3947 }
3948
3949 static void shmem_free_in_core_inode(struct inode *inode)
3950 {
3951         if (S_ISLNK(inode->i_mode))
3952                 kfree(inode->i_link);
3953         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3954 }
3955
3956 static void shmem_destroy_inode(struct inode *inode)
3957 {
3958         if (S_ISREG(inode->i_mode))
3959                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3960 }
3961
3962 static void shmem_init_inode(void *foo)
3963 {
3964         struct shmem_inode_info *info = foo;
3965         inode_init_once(&info->vfs_inode);
3966 }
3967
3968 static void shmem_init_inodecache(void)
3969 {
3970         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3971                                 sizeof(struct shmem_inode_info),
3972                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3973 }
3974
3975 static void shmem_destroy_inodecache(void)
3976 {
3977         kmem_cache_destroy(shmem_inode_cachep);
3978 }
3979
3980 static const struct address_space_operations shmem_aops = {
3981         .writepage      = shmem_writepage,
3982         .set_page_dirty = __set_page_dirty_no_writeback,
3983 #ifdef CONFIG_TMPFS
3984         .write_begin    = shmem_write_begin,
3985         .write_end      = shmem_write_end,
3986 #endif
3987 #ifdef CONFIG_MIGRATION
3988         .migratepage    = migrate_page,
3989 #endif
3990         .error_remove_page = generic_error_remove_page,
3991 };
3992
3993 static const struct file_operations shmem_file_operations = {
3994         .mmap           = shmem_mmap,
3995         .get_unmapped_area = shmem_get_unmapped_area,
3996 #ifdef CONFIG_TMPFS
3997         .llseek         = shmem_file_llseek,
3998         .read_iter      = shmem_file_read_iter,
3999         .write_iter     = generic_file_write_iter,
4000         .fsync          = noop_fsync,
4001         .splice_read    = generic_file_splice_read,
4002         .splice_write   = iter_file_splice_write,
4003         .fallocate      = shmem_fallocate,
4004 #endif
4005 };
4006
4007 static const struct inode_operations shmem_inode_operations = {
4008         .getattr        = shmem_getattr,
4009         .setattr        = shmem_setattr,
4010 #ifdef CONFIG_TMPFS_XATTR
4011         .listxattr      = shmem_listxattr,
4012         .set_acl        = simple_set_acl,
4013 #endif
4014 };
4015
4016 static const struct inode_operations shmem_dir_inode_operations = {
4017 #ifdef CONFIG_TMPFS
4018         .create         = shmem_create,
4019         .lookup         = simple_lookup,
4020         .link           = shmem_link,
4021         .unlink         = shmem_unlink,
4022         .symlink        = shmem_symlink,
4023         .mkdir          = shmem_mkdir,
4024         .rmdir          = shmem_rmdir,
4025         .mknod          = shmem_mknod,
4026         .rename         = shmem_rename2,
4027         .tmpfile        = shmem_tmpfile,
4028 #endif
4029 #ifdef CONFIG_TMPFS_XATTR
4030         .listxattr      = shmem_listxattr,
4031 #endif
4032 #ifdef CONFIG_TMPFS_POSIX_ACL
4033         .setattr        = shmem_setattr,
4034         .set_acl        = simple_set_acl,
4035 #endif
4036 };
4037
4038 static const struct inode_operations shmem_special_inode_operations = {
4039 #ifdef CONFIG_TMPFS_XATTR
4040         .listxattr      = shmem_listxattr,
4041 #endif
4042 #ifdef CONFIG_TMPFS_POSIX_ACL
4043         .setattr        = shmem_setattr,
4044         .set_acl        = simple_set_acl,
4045 #endif
4046 };
4047
4048 static const struct super_operations shmem_ops = {
4049         .alloc_inode    = shmem_alloc_inode,
4050         .free_inode     = shmem_free_in_core_inode,
4051         .destroy_inode  = shmem_destroy_inode,
4052 #ifdef CONFIG_TMPFS
4053         .statfs         = shmem_statfs,
4054         .show_options   = shmem_show_options,
4055 #endif
4056         .evict_inode    = shmem_evict_inode,
4057         .drop_inode     = generic_delete_inode,
4058         .put_super      = shmem_put_super,
4059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4060         .nr_cached_objects      = shmem_unused_huge_count,
4061         .free_cached_objects    = shmem_unused_huge_scan,
4062 #endif
4063 };
4064
4065 static const struct vm_operations_struct shmem_vm_ops = {
4066         .fault          = shmem_fault,
4067         .map_pages      = filemap_map_pages,
4068 #ifdef CONFIG_NUMA
4069         .set_policy     = shmem_set_policy,
4070         .get_policy     = shmem_get_policy,
4071 #endif
4072 };
4073
4074 int shmem_init_fs_context(struct fs_context *fc)
4075 {
4076         struct shmem_options *ctx;
4077
4078         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4079         if (!ctx)
4080                 return -ENOMEM;
4081
4082         ctx->mode = 0777 | S_ISVTX;
4083         ctx->uid = current_fsuid();
4084         ctx->gid = current_fsgid();
4085
4086         fc->fs_private = ctx;
4087         fc->ops = &shmem_fs_context_ops;
4088         return 0;
4089 }
4090
4091 static struct file_system_type shmem_fs_type = {
4092         .owner          = THIS_MODULE,
4093         .name           = "tmpfs",
4094         .init_fs_context = shmem_init_fs_context,
4095 #ifdef CONFIG_TMPFS
4096         .parameters     = shmem_fs_parameters,
4097 #endif
4098         .kill_sb        = kill_litter_super,
4099         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
4100 };
4101
4102 int __init shmem_init(void)
4103 {
4104         int error;
4105
4106         shmem_init_inodecache();
4107
4108         error = register_filesystem(&shmem_fs_type);
4109         if (error) {
4110                 pr_err("Could not register tmpfs\n");
4111                 goto out2;
4112         }
4113
4114         shm_mnt = kern_mount(&shmem_fs_type);
4115         if (IS_ERR(shm_mnt)) {
4116                 error = PTR_ERR(shm_mnt);
4117                 pr_err("Could not kern_mount tmpfs\n");
4118                 goto out1;
4119         }
4120
4121 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4122         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4123                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4124         else
4125                 shmem_huge = 0; /* just in case it was patched */
4126 #endif
4127         return 0;
4128
4129 out1:
4130         unregister_filesystem(&shmem_fs_type);
4131 out2:
4132         shmem_destroy_inodecache();
4133         shm_mnt = ERR_PTR(error);
4134         return error;
4135 }
4136
4137 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4138 static ssize_t shmem_enabled_show(struct kobject *kobj,
4139                 struct kobj_attribute *attr, char *buf)
4140 {
4141         static const int values[] = {
4142                 SHMEM_HUGE_ALWAYS,
4143                 SHMEM_HUGE_WITHIN_SIZE,
4144                 SHMEM_HUGE_ADVISE,
4145                 SHMEM_HUGE_NEVER,
4146                 SHMEM_HUGE_DENY,
4147                 SHMEM_HUGE_FORCE,
4148         };
4149         int i, count;
4150
4151         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4152                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4153
4154                 count += sprintf(buf + count, fmt,
4155                                 shmem_format_huge(values[i]));
4156         }
4157         buf[count - 1] = '\n';
4158         return count;
4159 }
4160
4161 static ssize_t shmem_enabled_store(struct kobject *kobj,
4162                 struct kobj_attribute *attr, const char *buf, size_t count)
4163 {
4164         char tmp[16];
4165         int huge;
4166
4167         if (count + 1 > sizeof(tmp))
4168                 return -EINVAL;
4169         memcpy(tmp, buf, count);
4170         tmp[count] = '\0';
4171         if (count && tmp[count - 1] == '\n')
4172                 tmp[count - 1] = '\0';
4173
4174         huge = shmem_parse_huge(tmp);
4175         if (huge == -EINVAL)
4176                 return -EINVAL;
4177         if (!has_transparent_hugepage() &&
4178                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4179                 return -EINVAL;
4180
4181         shmem_huge = huge;
4182         if (shmem_huge > SHMEM_HUGE_DENY)
4183                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4184         return count;
4185 }
4186
4187 struct kobj_attribute shmem_enabled_attr =
4188         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4189 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4190
4191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4192 bool shmem_huge_enabled(struct vm_area_struct *vma)
4193 {
4194         struct inode *inode = file_inode(vma->vm_file);
4195         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4196         loff_t i_size;
4197         pgoff_t off;
4198
4199         if (!transhuge_vma_enabled(vma, vma->vm_flags))
4200                 return false;
4201         if (shmem_huge == SHMEM_HUGE_FORCE)
4202                 return true;
4203         if (shmem_huge == SHMEM_HUGE_DENY)
4204                 return false;
4205         switch (sbinfo->huge) {
4206                 case SHMEM_HUGE_NEVER:
4207                         return false;
4208                 case SHMEM_HUGE_ALWAYS:
4209                         return true;
4210                 case SHMEM_HUGE_WITHIN_SIZE:
4211                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4212                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4213                         if (i_size >= HPAGE_PMD_SIZE &&
4214                                         i_size >> PAGE_SHIFT >= off)
4215                                 return true;
4216 #ifdef CONFIG_FINEGRAINED_THP
4217                         off = round_up(vma->vm_pgoff, HPAGE_CONT_PTE_NR);
4218                         if (i_size >= HPAGE_CONT_PTE_SIZE &&
4219                                         i_size >> PAGE_SHIFT >= off)
4220                                 return true;
4221 #endif /* CONFIG_FINEGRAINED_THP */
4222                         fallthrough;
4223                 case SHMEM_HUGE_ADVISE:
4224                         /* TODO: implement fadvise() hints */
4225                         return (vma->vm_flags & VM_HUGEPAGE);
4226                 default:
4227                         VM_BUG_ON(1);
4228                         return false;
4229         }
4230 }
4231 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4232
4233 #else /* !CONFIG_SHMEM */
4234
4235 /*
4236  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4237  *
4238  * This is intended for small system where the benefits of the full
4239  * shmem code (swap-backed and resource-limited) are outweighed by
4240  * their complexity. On systems without swap this code should be
4241  * effectively equivalent, but much lighter weight.
4242  */
4243
4244 static struct file_system_type shmem_fs_type = {
4245         .name           = "tmpfs",
4246         .init_fs_context = ramfs_init_fs_context,
4247         .parameters     = ramfs_fs_parameters,
4248         .kill_sb        = kill_litter_super,
4249         .fs_flags       = FS_USERNS_MOUNT,
4250 };
4251
4252 int __init shmem_init(void)
4253 {
4254         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4255
4256         shm_mnt = kern_mount(&shmem_fs_type);
4257         BUG_ON(IS_ERR(shm_mnt));
4258
4259         return 0;
4260 }
4261
4262 int shmem_unuse(unsigned int type, bool frontswap,
4263                 unsigned long *fs_pages_to_unuse)
4264 {
4265         return 0;
4266 }
4267
4268 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4269 {
4270         return 0;
4271 }
4272
4273 void shmem_unlock_mapping(struct address_space *mapping)
4274 {
4275 }
4276
4277 #ifdef CONFIG_MMU
4278 unsigned long shmem_get_unmapped_area(struct file *file,
4279                                       unsigned long addr, unsigned long len,
4280                                       unsigned long pgoff, unsigned long flags)
4281 {
4282         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4283 }
4284 #endif
4285
4286 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4287 {
4288         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4289 }
4290 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4291
4292 #define shmem_vm_ops                            generic_file_vm_ops
4293 #define shmem_file_operations                   ramfs_file_operations
4294 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4295 #define shmem_acct_size(flags, size)            0
4296 #define shmem_unacct_size(flags, size)          do {} while (0)
4297
4298 #endif /* CONFIG_SHMEM */
4299
4300 /* common code */
4301
4302 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4303                                        unsigned long flags, unsigned int i_flags)
4304 {
4305         struct inode *inode;
4306         struct file *res;
4307
4308         if (IS_ERR(mnt))
4309                 return ERR_CAST(mnt);
4310
4311         if (size < 0 || size > MAX_LFS_FILESIZE)
4312                 return ERR_PTR(-EINVAL);
4313
4314         if (shmem_acct_size(flags, size))
4315                 return ERR_PTR(-ENOMEM);
4316
4317         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4318                                 flags);
4319         if (unlikely(!inode)) {
4320                 shmem_unacct_size(flags, size);
4321                 return ERR_PTR(-ENOSPC);
4322         }
4323         inode->i_flags |= i_flags;
4324         inode->i_size = size;
4325         clear_nlink(inode);     /* It is unlinked */
4326         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4327         if (!IS_ERR(res))
4328                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4329                                 &shmem_file_operations);
4330         if (IS_ERR(res))
4331                 iput(inode);
4332         return res;
4333 }
4334
4335 /**
4336  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4337  *      kernel internal.  There will be NO LSM permission checks against the
4338  *      underlying inode.  So users of this interface must do LSM checks at a
4339  *      higher layer.  The users are the big_key and shm implementations.  LSM
4340  *      checks are provided at the key or shm level rather than the inode.
4341  * @name: name for dentry (to be seen in /proc/<pid>/maps
4342  * @size: size to be set for the file
4343  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4344  */
4345 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4346 {
4347         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4348 }
4349
4350 /**
4351  * shmem_file_setup - get an unlinked file living in tmpfs
4352  * @name: name for dentry (to be seen in /proc/<pid>/maps
4353  * @size: size to be set for the file
4354  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4355  */
4356 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4357 {
4358         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4359 }
4360 EXPORT_SYMBOL_GPL(shmem_file_setup);
4361
4362 /**
4363  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4364  * @mnt: the tmpfs mount where the file will be created
4365  * @name: name for dentry (to be seen in /proc/<pid>/maps
4366  * @size: size to be set for the file
4367  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4368  */
4369 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4370                                        loff_t size, unsigned long flags)
4371 {
4372         return __shmem_file_setup(mnt, name, size, flags, 0);
4373 }
4374 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4375
4376 /**
4377  * shmem_zero_setup - setup a shared anonymous mapping
4378  * @vma: the vma to be mmapped is prepared by do_mmap
4379  */
4380 int shmem_zero_setup(struct vm_area_struct *vma)
4381 {
4382         struct file *file;
4383         loff_t size = vma->vm_end - vma->vm_start;
4384
4385         /*
4386          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4387          * between XFS directory reading and selinux: since this file is only
4388          * accessible to the user through its mapping, use S_PRIVATE flag to
4389          * bypass file security, in the same way as shmem_kernel_file_setup().
4390          */
4391         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4392         if (IS_ERR(file))
4393                 return PTR_ERR(file);
4394
4395         if (vma->vm_file)
4396                 fput(vma->vm_file);
4397         vma->vm_file = file;
4398         vma->vm_ops = &shmem_vm_ops;
4399
4400         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4401                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4402                         (vma->vm_end & HPAGE_PMD_MASK)) {
4403                 khugepaged_enter(vma, vma->vm_flags);
4404         }
4405
4406         return 0;
4407 }
4408
4409 /**
4410  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4411  * @mapping:    the page's address_space
4412  * @index:      the page index
4413  * @gfp:        the page allocator flags to use if allocating
4414  *
4415  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4416  * with any new page allocations done using the specified allocation flags.
4417  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4418  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4419  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4420  *
4421  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4422  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4423  */
4424 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4425                                          pgoff_t index, gfp_t gfp)
4426 {
4427 #ifdef CONFIG_SHMEM
4428         struct inode *inode = mapping->host;
4429         struct page *page;
4430         int error;
4431
4432         BUG_ON(mapping->a_ops != &shmem_aops);
4433         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4434                                   gfp, NULL, NULL, NULL);
4435         if (error)
4436                 page = ERR_PTR(error);
4437         else
4438                 unlock_page(page);
4439         return page;
4440 #else
4441         /*
4442          * The tiny !SHMEM case uses ramfs without swap
4443          */
4444         return read_cache_page_gfp(mapping, index, gfp);
4445 #endif
4446 }
4447 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);