thp, khugepaged: skip retracting page table if a 64KB hugepage mapping is already...
[platform/kernel/linux-rpi.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716 #ifdef CONFIG_FINEGRAINED_THP
717                         if (thp_nr_pages(page) == HPAGE_CONT_PTE_NR)
718                                 __inc_node_page_state(page, NR_SHMEM_64KB_THPS);
719                         else
720 #endif /* CONFIG_FINEGRAINED_THP */
721                         __inc_node_page_state(page, NR_SHMEM_THPS);
722                 }
723                 mapping->nrpages += nr;
724                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
725                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
726 unlock:
727                 xas_unlock_irq(&xas);
728         } while (xas_nomem(&xas, gfp));
729
730         if (xas_error(&xas)) {
731                 error = xas_error(&xas);
732                 goto error;
733         }
734
735         return 0;
736 error:
737         page->mapping = NULL;
738         page_ref_sub(page, nr);
739         return error;
740 }
741
742 /*
743  * Like delete_from_page_cache, but substitutes swap for page.
744  */
745 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
746 {
747         struct address_space *mapping = page->mapping;
748         int error;
749
750         VM_BUG_ON_PAGE(PageCompound(page), page);
751
752         xa_lock_irq(&mapping->i_pages);
753         error = shmem_replace_entry(mapping, page->index, page, radswap);
754         page->mapping = NULL;
755         mapping->nrpages--;
756         __dec_lruvec_page_state(page, NR_FILE_PAGES);
757         __dec_lruvec_page_state(page, NR_SHMEM);
758         xa_unlock_irq(&mapping->i_pages);
759         put_page(page);
760         BUG_ON(error);
761 }
762
763 /*
764  * Remove swap entry from page cache, free the swap and its page cache.
765  */
766 static int shmem_free_swap(struct address_space *mapping,
767                            pgoff_t index, void *radswap)
768 {
769         void *old;
770
771         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
772         if (old != radswap)
773                 return -ENOENT;
774         free_swap_and_cache(radix_to_swp_entry(radswap));
775         return 0;
776 }
777
778 /*
779  * Determine (in bytes) how many of the shmem object's pages mapped by the
780  * given offsets are swapped out.
781  *
782  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
783  * as long as the inode doesn't go away and racy results are not a problem.
784  */
785 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
786                                                 pgoff_t start, pgoff_t end)
787 {
788         XA_STATE(xas, &mapping->i_pages, start);
789         struct page *page;
790         unsigned long swapped = 0;
791
792         rcu_read_lock();
793         xas_for_each(&xas, page, end - 1) {
794                 if (xas_retry(&xas, page))
795                         continue;
796                 if (xa_is_value(page))
797                         swapped++;
798
799                 if (need_resched()) {
800                         xas_pause(&xas);
801                         cond_resched_rcu();
802                 }
803         }
804
805         rcu_read_unlock();
806
807         return swapped << PAGE_SHIFT;
808 }
809
810 /*
811  * Determine (in bytes) how many of the shmem object's pages mapped by the
812  * given vma is swapped out.
813  *
814  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
815  * as long as the inode doesn't go away and racy results are not a problem.
816  */
817 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
818 {
819         struct inode *inode = file_inode(vma->vm_file);
820         struct shmem_inode_info *info = SHMEM_I(inode);
821         struct address_space *mapping = inode->i_mapping;
822         unsigned long swapped;
823
824         /* Be careful as we don't hold info->lock */
825         swapped = READ_ONCE(info->swapped);
826
827         /*
828          * The easier cases are when the shmem object has nothing in swap, or
829          * the vma maps it whole. Then we can simply use the stats that we
830          * already track.
831          */
832         if (!swapped)
833                 return 0;
834
835         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
836                 return swapped << PAGE_SHIFT;
837
838         /* Here comes the more involved part */
839         return shmem_partial_swap_usage(mapping,
840                         linear_page_index(vma, vma->vm_start),
841                         linear_page_index(vma, vma->vm_end));
842 }
843
844 /*
845  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
846  */
847 void shmem_unlock_mapping(struct address_space *mapping)
848 {
849         struct pagevec pvec;
850         pgoff_t indices[PAGEVEC_SIZE];
851         pgoff_t index = 0;
852
853         pagevec_init(&pvec);
854         /*
855          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
856          */
857         while (!mapping_unevictable(mapping)) {
858                 /*
859                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
860                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
861                  */
862                 pvec.nr = find_get_entries(mapping, index,
863                                            PAGEVEC_SIZE, pvec.pages, indices);
864                 if (!pvec.nr)
865                         break;
866                 index = indices[pvec.nr - 1] + 1;
867                 pagevec_remove_exceptionals(&pvec);
868                 check_move_unevictable_pages(&pvec);
869                 pagevec_release(&pvec);
870                 cond_resched();
871         }
872 }
873
874 /*
875  * Check whether a hole-punch or truncation needs to split a huge page,
876  * returning true if no split was required, or the split has been successful.
877  *
878  * Eviction (or truncation to 0 size) should never need to split a huge page;
879  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
880  * head, and then succeeded to trylock on tail.
881  *
882  * A split can only succeed when there are no additional references on the
883  * huge page: so the split below relies upon find_get_entries() having stopped
884  * when it found a subpage of the huge page, without getting further references.
885  */
886 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
887 {
888         if (!PageTransCompound(page))
889                 return true;
890
891         /* Just proceed to delete a huge page wholly within the range punched */
892 #ifdef CONFIG_FINEGRAINED_THP
893         if (PageHead(page) &&
894             page->index >= start && page->index + thp_nr_pages(page) <= end)
895                 return true;
896 #else
897         if (PageHead(page) &&
898             page->index >= start && page->index + HPAGE_PMD_NR <= end)
899                 return true;
900 #endif /* CONFIG_FINEGRAINED_THP */
901
902         /* Try to split huge page, so we can truly punch the hole or truncate */
903         return split_huge_page(page) >= 0;
904 }
905
906 /*
907  * Remove range of pages and swap entries from page cache, and free them.
908  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
909  */
910 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
911                                                                  bool unfalloc)
912 {
913         struct address_space *mapping = inode->i_mapping;
914         struct shmem_inode_info *info = SHMEM_I(inode);
915         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
916         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
917         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
918         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
919         struct pagevec pvec;
920         pgoff_t indices[PAGEVEC_SIZE];
921         long nr_swaps_freed = 0;
922         pgoff_t index;
923         int i;
924
925         if (lend == -1)
926                 end = -1;       /* unsigned, so actually very big */
927
928         pagevec_init(&pvec);
929         index = start;
930         while (index < end) {
931                 pvec.nr = find_get_entries(mapping, index,
932                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
933                         pvec.pages, indices);
934                 if (!pvec.nr)
935                         break;
936                 for (i = 0; i < pagevec_count(&pvec); i++) {
937                         struct page *page = pvec.pages[i];
938
939                         index = indices[i];
940                         if (index >= end)
941                                 break;
942
943                         if (xa_is_value(page)) {
944                                 if (unfalloc)
945                                         continue;
946                                 nr_swaps_freed += !shmem_free_swap(mapping,
947                                                                 index, page);
948                                 continue;
949                         }
950
951                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
952
953                         if (!trylock_page(page))
954                                 continue;
955
956                         if ((!unfalloc || !PageUptodate(page)) &&
957                             page_mapping(page) == mapping) {
958                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
959                                 if (shmem_punch_compound(page, start, end))
960                                         truncate_inode_page(mapping, page);
961                         }
962                         unlock_page(page);
963                 }
964                 pagevec_remove_exceptionals(&pvec);
965                 pagevec_release(&pvec);
966                 cond_resched();
967                 index++;
968         }
969
970         if (partial_start) {
971                 struct page *page = NULL;
972                 shmem_getpage(inode, start - 1, &page, SGP_READ);
973                 if (page) {
974                         unsigned int top = PAGE_SIZE;
975                         if (start > end) {
976                                 top = partial_end;
977                                 partial_end = 0;
978                         }
979                         zero_user_segment(page, partial_start, top);
980                         set_page_dirty(page);
981                         unlock_page(page);
982                         put_page(page);
983                 }
984         }
985         if (partial_end) {
986                 struct page *page = NULL;
987                 shmem_getpage(inode, end, &page, SGP_READ);
988                 if (page) {
989                         zero_user_segment(page, 0, partial_end);
990                         set_page_dirty(page);
991                         unlock_page(page);
992                         put_page(page);
993                 }
994         }
995         if (start >= end)
996                 return;
997
998         index = start;
999         while (index < end) {
1000                 cond_resched();
1001
1002                 pvec.nr = find_get_entries(mapping, index,
1003                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
1004                                 pvec.pages, indices);
1005                 if (!pvec.nr) {
1006                         /* If all gone or hole-punch or unfalloc, we're done */
1007                         if (index == start || end != -1)
1008                                 break;
1009                         /* But if truncating, restart to make sure all gone */
1010                         index = start;
1011                         continue;
1012                 }
1013                 for (i = 0; i < pagevec_count(&pvec); i++) {
1014                         struct page *page = pvec.pages[i];
1015
1016                         index = indices[i];
1017                         if (index >= end)
1018                                 break;
1019
1020                         if (xa_is_value(page)) {
1021                                 if (unfalloc)
1022                                         continue;
1023                                 if (shmem_free_swap(mapping, index, page)) {
1024                                         /* Swap was replaced by page: retry */
1025                                         index--;
1026                                         break;
1027                                 }
1028                                 nr_swaps_freed++;
1029                                 continue;
1030                         }
1031
1032                         lock_page(page);
1033
1034                         if (!unfalloc || !PageUptodate(page)) {
1035                                 if (page_mapping(page) != mapping) {
1036                                         /* Page was replaced by swap: retry */
1037                                         unlock_page(page);
1038                                         index--;
1039                                         break;
1040                                 }
1041                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1042                                 if (shmem_punch_compound(page, start, end))
1043                                         truncate_inode_page(mapping, page);
1044                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1045                                         /* Wipe the page and don't get stuck */
1046                                         clear_highpage(page);
1047                                         flush_dcache_page(page);
1048                                         set_page_dirty(page);
1049 #ifdef CONFIG_FINEGRAINED_THP
1050                                         if (index <
1051                                             round_up(start, thp_nr_pages(page)))
1052                                                 start = index + 1;
1053 #else /* CONFIG_FINEGRAINED_THP */
1054                                         if (index <
1055                                             round_up(start, HPAGE_PMD_NR))
1056                                                 start = index + 1;
1057 #endif /* CONFIG_FINEGRAINED_THP */
1058                                 }
1059                         }
1060                         unlock_page(page);
1061                 }
1062                 pagevec_remove_exceptionals(&pvec);
1063                 pagevec_release(&pvec);
1064                 index++;
1065         }
1066
1067         spin_lock_irq(&info->lock);
1068         info->swapped -= nr_swaps_freed;
1069         shmem_recalc_inode(inode);
1070         spin_unlock_irq(&info->lock);
1071 }
1072
1073 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1074 {
1075         shmem_undo_range(inode, lstart, lend, false);
1076         inode->i_ctime = inode->i_mtime = current_time(inode);
1077 }
1078 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1079
1080 static int shmem_getattr(const struct path *path, struct kstat *stat,
1081                          u32 request_mask, unsigned int query_flags)
1082 {
1083         struct inode *inode = path->dentry->d_inode;
1084         struct shmem_inode_info *info = SHMEM_I(inode);
1085         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1086
1087         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1088                 spin_lock_irq(&info->lock);
1089                 shmem_recalc_inode(inode);
1090                 spin_unlock_irq(&info->lock);
1091         }
1092         generic_fillattr(inode, stat);
1093
1094         if (is_huge_enabled(sb_info))
1095                 stat->blksize = HPAGE_PMD_SIZE;
1096
1097         return 0;
1098 }
1099
1100 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1101 {
1102         struct inode *inode = d_inode(dentry);
1103         struct shmem_inode_info *info = SHMEM_I(inode);
1104         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1105         int error;
1106
1107         error = setattr_prepare(dentry, attr);
1108         if (error)
1109                 return error;
1110
1111         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1112                 loff_t oldsize = inode->i_size;
1113                 loff_t newsize = attr->ia_size;
1114
1115                 /* protected by i_mutex */
1116                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1117                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1118                         return -EPERM;
1119
1120                 if (newsize != oldsize) {
1121                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1122                                         oldsize, newsize);
1123                         if (error)
1124                                 return error;
1125                         i_size_write(inode, newsize);
1126                         inode->i_ctime = inode->i_mtime = current_time(inode);
1127                 }
1128                 if (newsize <= oldsize) {
1129                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1130                         if (oldsize > holebegin)
1131                                 unmap_mapping_range(inode->i_mapping,
1132                                                         holebegin, 0, 1);
1133                         if (info->alloced)
1134                                 shmem_truncate_range(inode,
1135                                                         newsize, (loff_t)-1);
1136                         /* unmap again to remove racily COWed private pages */
1137                         if (oldsize > holebegin)
1138                                 unmap_mapping_range(inode->i_mapping,
1139                                                         holebegin, 0, 1);
1140
1141                         /*
1142                          * Part of the huge page can be beyond i_size: subject
1143                          * to shrink under memory pressure.
1144                          */
1145                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1146                                 spin_lock(&sbinfo->shrinklist_lock);
1147                                 /*
1148                                  * _careful to defend against unlocked access to
1149                                  * ->shrink_list in shmem_unused_huge_shrink()
1150                                  */
1151                                 if (list_empty_careful(&info->shrinklist)) {
1152                                         list_add_tail(&info->shrinklist,
1153                                                         &sbinfo->shrinklist);
1154                                         sbinfo->shrinklist_len++;
1155                                 }
1156                                 spin_unlock(&sbinfo->shrinklist_lock);
1157                         }
1158                 }
1159         }
1160
1161         setattr_copy(inode, attr);
1162         if (attr->ia_valid & ATTR_MODE)
1163                 error = posix_acl_chmod(inode, inode->i_mode);
1164         return error;
1165 }
1166
1167 static void shmem_evict_inode(struct inode *inode)
1168 {
1169         struct shmem_inode_info *info = SHMEM_I(inode);
1170         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1171
1172         if (inode->i_mapping->a_ops == &shmem_aops) {
1173                 shmem_unacct_size(info->flags, inode->i_size);
1174                 inode->i_size = 0;
1175                 shmem_truncate_range(inode, 0, (loff_t)-1);
1176                 if (!list_empty(&info->shrinklist)) {
1177                         spin_lock(&sbinfo->shrinklist_lock);
1178                         if (!list_empty(&info->shrinklist)) {
1179                                 list_del_init(&info->shrinklist);
1180                                 sbinfo->shrinklist_len--;
1181                         }
1182                         spin_unlock(&sbinfo->shrinklist_lock);
1183                 }
1184                 while (!list_empty(&info->swaplist)) {
1185                         /* Wait while shmem_unuse() is scanning this inode... */
1186                         wait_var_event(&info->stop_eviction,
1187                                        !atomic_read(&info->stop_eviction));
1188                         mutex_lock(&shmem_swaplist_mutex);
1189                         /* ...but beware of the race if we peeked too early */
1190                         if (!atomic_read(&info->stop_eviction))
1191                                 list_del_init(&info->swaplist);
1192                         mutex_unlock(&shmem_swaplist_mutex);
1193                 }
1194         }
1195
1196         simple_xattrs_free(&info->xattrs);
1197         WARN_ON(inode->i_blocks);
1198         shmem_free_inode(inode->i_sb);
1199         clear_inode(inode);
1200 }
1201
1202 extern struct swap_info_struct *swap_info[];
1203
1204 static int shmem_find_swap_entries(struct address_space *mapping,
1205                                    pgoff_t start, unsigned int nr_entries,
1206                                    struct page **entries, pgoff_t *indices,
1207                                    unsigned int type, bool frontswap)
1208 {
1209         XA_STATE(xas, &mapping->i_pages, start);
1210         struct page *page;
1211         swp_entry_t entry;
1212         unsigned int ret = 0;
1213
1214         if (!nr_entries)
1215                 return 0;
1216
1217         rcu_read_lock();
1218         xas_for_each(&xas, page, ULONG_MAX) {
1219                 if (xas_retry(&xas, page))
1220                         continue;
1221
1222                 if (!xa_is_value(page))
1223                         continue;
1224
1225                 entry = radix_to_swp_entry(page);
1226                 if (swp_type(entry) != type)
1227                         continue;
1228                 if (frontswap &&
1229                     !frontswap_test(swap_info[type], swp_offset(entry)))
1230                         continue;
1231
1232                 indices[ret] = xas.xa_index;
1233                 entries[ret] = page;
1234
1235                 if (need_resched()) {
1236                         xas_pause(&xas);
1237                         cond_resched_rcu();
1238                 }
1239                 if (++ret == nr_entries)
1240                         break;
1241         }
1242         rcu_read_unlock();
1243
1244         return ret;
1245 }
1246
1247 /*
1248  * Move the swapped pages for an inode to page cache. Returns the count
1249  * of pages swapped in, or the error in case of failure.
1250  */
1251 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1252                                     pgoff_t *indices)
1253 {
1254         int i = 0;
1255         int ret = 0;
1256         int error = 0;
1257         struct address_space *mapping = inode->i_mapping;
1258
1259         for (i = 0; i < pvec.nr; i++) {
1260                 struct page *page = pvec.pages[i];
1261
1262                 if (!xa_is_value(page))
1263                         continue;
1264                 error = shmem_swapin_page(inode, indices[i],
1265                                           &page, SGP_CACHE,
1266                                           mapping_gfp_mask(mapping),
1267                                           NULL, NULL);
1268                 if (error == 0) {
1269                         unlock_page(page);
1270                         put_page(page);
1271                         ret++;
1272                 }
1273                 if (error == -ENOMEM)
1274                         break;
1275                 error = 0;
1276         }
1277         return error ? error : ret;
1278 }
1279
1280 /*
1281  * If swap found in inode, free it and move page from swapcache to filecache.
1282  */
1283 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1284                              bool frontswap, unsigned long *fs_pages_to_unuse)
1285 {
1286         struct address_space *mapping = inode->i_mapping;
1287         pgoff_t start = 0;
1288         struct pagevec pvec;
1289         pgoff_t indices[PAGEVEC_SIZE];
1290         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1291         int ret = 0;
1292
1293         pagevec_init(&pvec);
1294         do {
1295                 unsigned int nr_entries = PAGEVEC_SIZE;
1296
1297                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1298                         nr_entries = *fs_pages_to_unuse;
1299
1300                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1301                                                   pvec.pages, indices,
1302                                                   type, frontswap);
1303                 if (pvec.nr == 0) {
1304                         ret = 0;
1305                         break;
1306                 }
1307
1308                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1309                 if (ret < 0)
1310                         break;
1311
1312                 if (frontswap_partial) {
1313                         *fs_pages_to_unuse -= ret;
1314                         if (*fs_pages_to_unuse == 0) {
1315                                 ret = FRONTSWAP_PAGES_UNUSED;
1316                                 break;
1317                         }
1318                 }
1319
1320                 start = indices[pvec.nr - 1];
1321         } while (true);
1322
1323         return ret;
1324 }
1325
1326 /*
1327  * Read all the shared memory data that resides in the swap
1328  * device 'type' back into memory, so the swap device can be
1329  * unused.
1330  */
1331 int shmem_unuse(unsigned int type, bool frontswap,
1332                 unsigned long *fs_pages_to_unuse)
1333 {
1334         struct shmem_inode_info *info, *next;
1335         int error = 0;
1336
1337         if (list_empty(&shmem_swaplist))
1338                 return 0;
1339
1340         mutex_lock(&shmem_swaplist_mutex);
1341         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1342                 if (!info->swapped) {
1343                         list_del_init(&info->swaplist);
1344                         continue;
1345                 }
1346                 /*
1347                  * Drop the swaplist mutex while searching the inode for swap;
1348                  * but before doing so, make sure shmem_evict_inode() will not
1349                  * remove placeholder inode from swaplist, nor let it be freed
1350                  * (igrab() would protect from unlink, but not from unmount).
1351                  */
1352                 atomic_inc(&info->stop_eviction);
1353                 mutex_unlock(&shmem_swaplist_mutex);
1354
1355                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1356                                           fs_pages_to_unuse);
1357                 cond_resched();
1358
1359                 mutex_lock(&shmem_swaplist_mutex);
1360                 next = list_next_entry(info, swaplist);
1361                 if (!info->swapped)
1362                         list_del_init(&info->swaplist);
1363                 if (atomic_dec_and_test(&info->stop_eviction))
1364                         wake_up_var(&info->stop_eviction);
1365                 if (error)
1366                         break;
1367         }
1368         mutex_unlock(&shmem_swaplist_mutex);
1369
1370         return error;
1371 }
1372
1373 /*
1374  * Move the page from the page cache to the swap cache.
1375  */
1376 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1377 {
1378         struct shmem_inode_info *info;
1379         struct address_space *mapping;
1380         struct inode *inode;
1381         swp_entry_t swap;
1382         pgoff_t index;
1383
1384         VM_BUG_ON_PAGE(PageCompound(page), page);
1385         BUG_ON(!PageLocked(page));
1386         mapping = page->mapping;
1387         index = page->index;
1388         inode = mapping->host;
1389         info = SHMEM_I(inode);
1390         if (info->flags & VM_LOCKED)
1391                 goto redirty;
1392         if (!total_swap_pages)
1393                 goto redirty;
1394
1395         /*
1396          * Our capabilities prevent regular writeback or sync from ever calling
1397          * shmem_writepage; but a stacking filesystem might use ->writepage of
1398          * its underlying filesystem, in which case tmpfs should write out to
1399          * swap only in response to memory pressure, and not for the writeback
1400          * threads or sync.
1401          */
1402         if (!wbc->for_reclaim) {
1403                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1404                 goto redirty;
1405         }
1406
1407         /*
1408          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1409          * value into swapfile.c, the only way we can correctly account for a
1410          * fallocated page arriving here is now to initialize it and write it.
1411          *
1412          * That's okay for a page already fallocated earlier, but if we have
1413          * not yet completed the fallocation, then (a) we want to keep track
1414          * of this page in case we have to undo it, and (b) it may not be a
1415          * good idea to continue anyway, once we're pushing into swap.  So
1416          * reactivate the page, and let shmem_fallocate() quit when too many.
1417          */
1418         if (!PageUptodate(page)) {
1419                 if (inode->i_private) {
1420                         struct shmem_falloc *shmem_falloc;
1421                         spin_lock(&inode->i_lock);
1422                         shmem_falloc = inode->i_private;
1423                         if (shmem_falloc &&
1424                             !shmem_falloc->waitq &&
1425                             index >= shmem_falloc->start &&
1426                             index < shmem_falloc->next)
1427                                 shmem_falloc->nr_unswapped++;
1428                         else
1429                                 shmem_falloc = NULL;
1430                         spin_unlock(&inode->i_lock);
1431                         if (shmem_falloc)
1432                                 goto redirty;
1433                 }
1434                 clear_highpage(page);
1435                 flush_dcache_page(page);
1436                 SetPageUptodate(page);
1437         }
1438
1439         swap = get_swap_page(page);
1440         if (!swap.val)
1441                 goto redirty;
1442
1443         /*
1444          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1445          * if it's not already there.  Do it now before the page is
1446          * moved to swap cache, when its pagelock no longer protects
1447          * the inode from eviction.  But don't unlock the mutex until
1448          * we've incremented swapped, because shmem_unuse_inode() will
1449          * prune a !swapped inode from the swaplist under this mutex.
1450          */
1451         mutex_lock(&shmem_swaplist_mutex);
1452         if (list_empty(&info->swaplist))
1453                 list_add(&info->swaplist, &shmem_swaplist);
1454
1455         if (add_to_swap_cache(page, swap,
1456                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1457                         NULL) == 0) {
1458                 spin_lock_irq(&info->lock);
1459                 shmem_recalc_inode(inode);
1460                 info->swapped++;
1461                 spin_unlock_irq(&info->lock);
1462
1463                 swap_shmem_alloc(swap);
1464                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1465
1466                 mutex_unlock(&shmem_swaplist_mutex);
1467                 BUG_ON(page_mapped(page));
1468                 swap_writepage(page, wbc);
1469                 return 0;
1470         }
1471
1472         mutex_unlock(&shmem_swaplist_mutex);
1473         put_swap_page(page, swap);
1474 redirty:
1475         set_page_dirty(page);
1476         if (wbc->for_reclaim)
1477                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1478         unlock_page(page);
1479         return 0;
1480 }
1481
1482 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1483 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1484 {
1485         char buffer[64];
1486
1487         if (!mpol || mpol->mode == MPOL_DEFAULT)
1488                 return;         /* show nothing */
1489
1490         mpol_to_str(buffer, sizeof(buffer), mpol);
1491
1492         seq_printf(seq, ",mpol=%s", buffer);
1493 }
1494
1495 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1496 {
1497         struct mempolicy *mpol = NULL;
1498         if (sbinfo->mpol) {
1499                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1500                 mpol = sbinfo->mpol;
1501                 mpol_get(mpol);
1502                 spin_unlock(&sbinfo->stat_lock);
1503         }
1504         return mpol;
1505 }
1506 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1507 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1508 {
1509 }
1510 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1511 {
1512         return NULL;
1513 }
1514 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1515 #ifndef CONFIG_NUMA
1516 #define vm_policy vm_private_data
1517 #endif
1518
1519 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1520                 struct shmem_inode_info *info, pgoff_t index)
1521 {
1522         /* Create a pseudo vma that just contains the policy */
1523         vma_init(vma, NULL);
1524         /* Bias interleave by inode number to distribute better across nodes */
1525         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1526         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1527 }
1528
1529 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1530 {
1531         /* Drop reference taken by mpol_shared_policy_lookup() */
1532         mpol_cond_put(vma->vm_policy);
1533 }
1534
1535 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1536                         struct shmem_inode_info *info, pgoff_t index)
1537 {
1538         struct vm_area_struct pvma;
1539         struct page *page;
1540         struct vm_fault vmf;
1541
1542         shmem_pseudo_vma_init(&pvma, info, index);
1543         vmf.vma = &pvma;
1544         vmf.address = 0;
1545         page = swap_cluster_readahead(swap, gfp, &vmf);
1546         shmem_pseudo_vma_destroy(&pvma);
1547
1548         return page;
1549 }
1550
1551 #ifdef CONFIG_FINEGRAINED_THP
1552 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1553                 struct shmem_inode_info *info, pgoff_t index, int page_nr)
1554 #else /* CONFIG_FINEGRAINED_THP */
1555 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1556                 struct shmem_inode_info *info, pgoff_t index)
1557 #endif/* CONFIG_FINEGRAINED_THP */
1558 {
1559         struct vm_area_struct pvma;
1560         struct address_space *mapping = info->vfs_inode.i_mapping;
1561         pgoff_t hindex;
1562         struct page *page;
1563
1564 #ifdef CONFIG_FINEGRAINED_THP
1565         hindex = round_down(index, page_nr);
1566         if (xa_find(&mapping->i_pages, &hindex, hindex + page_nr - 1,
1567                                                                 XA_PRESENT))
1568                 return NULL;
1569 #else /* CONFIG_FINEGRAINED_THP */
1570         hindex = round_down(index, HPAGE_PMD_NR);
1571         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1572                                                                 XA_PRESENT))
1573                 return NULL;
1574 #endif /* CONFIG_FINEGRAINED_THP */
1575
1576         shmem_pseudo_vma_init(&pvma, info, hindex);
1577 #ifdef CONFIG_FINEGRAINED_THP
1578         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1579                         page_nr == HPAGE_PMD_NR ? HPAGE_PMD_ORDER : HPAGE_CONT_PTE_ORDER,
1580                         &pvma, 0, numa_node_id(), true);
1581 #else /* CONFIG_FINEGRAINED_THP */
1582         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1583                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1584 #endif /* CONFIG_FINEGRAINED_THP */
1585         shmem_pseudo_vma_destroy(&pvma);
1586         if (page)
1587                 prep_transhuge_page(page);
1588         else
1589                 count_vm_event(THP_FILE_FALLBACK);
1590         return page;
1591 }
1592
1593 static struct page *shmem_alloc_page(gfp_t gfp,
1594                         struct shmem_inode_info *info, pgoff_t index)
1595 {
1596         struct vm_area_struct pvma;
1597         struct page *page;
1598
1599         shmem_pseudo_vma_init(&pvma, info, index);
1600         page = alloc_page_vma(gfp, &pvma, 0);
1601         shmem_pseudo_vma_destroy(&pvma);
1602
1603         return page;
1604 }
1605
1606 #ifdef CONFIG_FINEGRAINED_THP
1607 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1608                 struct inode *inode,
1609                 pgoff_t index, bool huge, int page_nr)
1610 #else /* CONFIG_FINEGRAINED_THP */
1611 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1612                 struct inode *inode,
1613                 pgoff_t index, bool huge)
1614 #endif /* CONFIG_FINEGRAINED_THP */
1615 {
1616         struct shmem_inode_info *info = SHMEM_I(inode);
1617         struct page *page;
1618         int nr;
1619         int err = -ENOSPC;
1620
1621         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1622                 huge = false;
1623 #ifdef CONFIG_FINEGRAINED_THP
1624         nr = huge ? page_nr : 1;
1625 #else
1626         nr = huge ? HPAGE_PMD_NR : 1;
1627 #endif
1628
1629         if (!shmem_inode_acct_block(inode, nr))
1630                 goto failed;
1631
1632         if (huge)
1633 #ifdef CONFIG_FINEGRAINED_THP
1634                 page = shmem_alloc_hugepage(gfp, info, index, nr);
1635 #else
1636                 page = shmem_alloc_hugepage(gfp, info, index);
1637 #endif
1638         else
1639                 page = shmem_alloc_page(gfp, info, index);
1640         if (page) {
1641                 __SetPageLocked(page);
1642                 __SetPageSwapBacked(page);
1643                 return page;
1644         }
1645
1646         err = -ENOMEM;
1647         shmem_inode_unacct_blocks(inode, nr);
1648 failed:
1649         return ERR_PTR(err);
1650 }
1651
1652 /*
1653  * When a page is moved from swapcache to shmem filecache (either by the
1654  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1655  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1656  * ignorance of the mapping it belongs to.  If that mapping has special
1657  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1658  * we may need to copy to a suitable page before moving to filecache.
1659  *
1660  * In a future release, this may well be extended to respect cpuset and
1661  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1662  * but for now it is a simple matter of zone.
1663  */
1664 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1665 {
1666         return page_zonenum(page) > gfp_zone(gfp);
1667 }
1668
1669 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1670                                 struct shmem_inode_info *info, pgoff_t index)
1671 {
1672         struct page *oldpage, *newpage;
1673         struct address_space *swap_mapping;
1674         swp_entry_t entry;
1675         pgoff_t swap_index;
1676         int error;
1677
1678         oldpage = *pagep;
1679         entry.val = page_private(oldpage);
1680         swap_index = swp_offset(entry);
1681         swap_mapping = page_mapping(oldpage);
1682
1683         /*
1684          * We have arrived here because our zones are constrained, so don't
1685          * limit chance of success by further cpuset and node constraints.
1686          */
1687         gfp &= ~GFP_CONSTRAINT_MASK;
1688         newpage = shmem_alloc_page(gfp, info, index);
1689         if (!newpage)
1690                 return -ENOMEM;
1691
1692         get_page(newpage);
1693         copy_highpage(newpage, oldpage);
1694         flush_dcache_page(newpage);
1695
1696         __SetPageLocked(newpage);
1697         __SetPageSwapBacked(newpage);
1698         SetPageUptodate(newpage);
1699         set_page_private(newpage, entry.val);
1700         SetPageSwapCache(newpage);
1701
1702         /*
1703          * Our caller will very soon move newpage out of swapcache, but it's
1704          * a nice clean interface for us to replace oldpage by newpage there.
1705          */
1706         xa_lock_irq(&swap_mapping->i_pages);
1707         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1708         if (!error) {
1709                 mem_cgroup_migrate(oldpage, newpage);
1710                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1711                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1712         }
1713         xa_unlock_irq(&swap_mapping->i_pages);
1714
1715         if (unlikely(error)) {
1716                 /*
1717                  * Is this possible?  I think not, now that our callers check
1718                  * both PageSwapCache and page_private after getting page lock;
1719                  * but be defensive.  Reverse old to newpage for clear and free.
1720                  */
1721                 oldpage = newpage;
1722         } else {
1723                 lru_cache_add(newpage);
1724                 *pagep = newpage;
1725         }
1726
1727         ClearPageSwapCache(oldpage);
1728         set_page_private(oldpage, 0);
1729
1730         unlock_page(oldpage);
1731         put_page(oldpage);
1732         put_page(oldpage);
1733         return error;
1734 }
1735
1736 /*
1737  * Swap in the page pointed to by *pagep.
1738  * Caller has to make sure that *pagep contains a valid swapped page.
1739  * Returns 0 and the page in pagep if success. On failure, returns the
1740  * error code and NULL in *pagep.
1741  */
1742 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1743                              struct page **pagep, enum sgp_type sgp,
1744                              gfp_t gfp, struct vm_area_struct *vma,
1745                              vm_fault_t *fault_type)
1746 {
1747         struct address_space *mapping = inode->i_mapping;
1748         struct shmem_inode_info *info = SHMEM_I(inode);
1749         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1750         struct page *page;
1751         swp_entry_t swap;
1752         int error;
1753
1754         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1755         swap = radix_to_swp_entry(*pagep);
1756         *pagep = NULL;
1757
1758         /* Look it up and read it in.. */
1759         page = lookup_swap_cache(swap, NULL, 0);
1760         if (!page) {
1761                 /* Or update major stats only when swapin succeeds?? */
1762                 if (fault_type) {
1763                         *fault_type |= VM_FAULT_MAJOR;
1764                         count_vm_event(PGMAJFAULT);
1765                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1766                 }
1767                 /* Here we actually start the io */
1768                 page = shmem_swapin(swap, gfp, info, index);
1769                 if (!page) {
1770                         error = -ENOMEM;
1771                         goto failed;
1772                 }
1773         }
1774
1775         /* We have to do this with page locked to prevent races */
1776         lock_page(page);
1777         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1778             !shmem_confirm_swap(mapping, index, swap)) {
1779                 error = -EEXIST;
1780                 goto unlock;
1781         }
1782         if (!PageUptodate(page)) {
1783                 error = -EIO;
1784                 goto failed;
1785         }
1786         wait_on_page_writeback(page);
1787
1788         /*
1789          * Some architectures may have to restore extra metadata to the
1790          * physical page after reading from swap.
1791          */
1792         arch_swap_restore(swap, page);
1793
1794         if (shmem_should_replace_page(page, gfp)) {
1795                 error = shmem_replace_page(&page, gfp, info, index);
1796                 if (error)
1797                         goto failed;
1798         }
1799
1800         error = shmem_add_to_page_cache(page, mapping, index,
1801                                         swp_to_radix_entry(swap), gfp,
1802                                         charge_mm);
1803         if (error)
1804                 goto failed;
1805
1806         spin_lock_irq(&info->lock);
1807         info->swapped--;
1808         shmem_recalc_inode(inode);
1809         spin_unlock_irq(&info->lock);
1810
1811         if (sgp == SGP_WRITE)
1812                 mark_page_accessed(page);
1813
1814         delete_from_swap_cache(page);
1815         set_page_dirty(page);
1816         swap_free(swap);
1817
1818         *pagep = page;
1819         return 0;
1820 failed:
1821         if (!shmem_confirm_swap(mapping, index, swap))
1822                 error = -EEXIST;
1823 unlock:
1824         if (page) {
1825                 unlock_page(page);
1826                 put_page(page);
1827         }
1828
1829         return error;
1830 }
1831
1832 /*
1833  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1834  *
1835  * If we allocate a new one we do not mark it dirty. That's up to the
1836  * vm. If we swap it in we mark it dirty since we also free the swap
1837  * entry since a page cannot live in both the swap and page cache.
1838  *
1839  * vmf and fault_type are only supplied by shmem_fault:
1840  * otherwise they are NULL.
1841  */
1842 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1843         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1844         struct vm_area_struct *vma, struct vm_fault *vmf,
1845                         vm_fault_t *fault_type)
1846 {
1847         struct address_space *mapping = inode->i_mapping;
1848         struct shmem_inode_info *info = SHMEM_I(inode);
1849         struct shmem_sb_info *sbinfo;
1850         struct mm_struct *charge_mm;
1851         struct page *page;
1852         enum sgp_type sgp_huge = sgp;
1853         pgoff_t hindex = index;
1854         int error;
1855         int once = 0;
1856         int alloced = 0;
1857 #ifdef CONFIG_FINEGRAINED_THP
1858         int nr_pages = HPAGE_PMD_NR;
1859 #endif
1860
1861         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1862                 return -EFBIG;
1863         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1864                 sgp = SGP_CACHE;
1865 repeat:
1866         if (sgp <= SGP_CACHE &&
1867             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1868                 return -EINVAL;
1869         }
1870
1871         sbinfo = SHMEM_SB(inode->i_sb);
1872         charge_mm = vma ? vma->vm_mm : current->mm;
1873
1874         page = find_lock_entry(mapping, index);
1875         if (xa_is_value(page)) {
1876                 error = shmem_swapin_page(inode, index, &page,
1877                                           sgp, gfp, vma, fault_type);
1878                 if (error == -EEXIST)
1879                         goto repeat;
1880
1881                 *pagep = page;
1882                 return error;
1883         }
1884
1885         if (page)
1886                 hindex = page->index;
1887         if (page && sgp == SGP_WRITE)
1888                 mark_page_accessed(page);
1889
1890 #ifdef CONFIG_FINEGRAINED_THP
1891         if (page)
1892                 nr_pages = thp_nr_pages(page);
1893 #endif
1894
1895         /* fallocated page? */
1896         if (page && !PageUptodate(page)) {
1897                 if (sgp != SGP_READ)
1898                         goto clear;
1899                 unlock_page(page);
1900                 put_page(page);
1901                 page = NULL;
1902                 hindex = index;
1903         }
1904         if (page || sgp == SGP_READ)
1905                 goto out;
1906
1907         /*
1908          * Fast cache lookup did not find it:
1909          * bring it back from swap or allocate.
1910          */
1911
1912         if (vma && userfaultfd_missing(vma)) {
1913                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1914                 return 0;
1915         }
1916
1917         /* shmem_symlink() */
1918         if (mapping->a_ops != &shmem_aops)
1919                 goto alloc_nohuge;
1920         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1921                 goto alloc_nohuge;
1922         if (shmem_huge == SHMEM_HUGE_FORCE)
1923                 goto alloc_huge;
1924         switch (sbinfo->huge) {
1925         case SHMEM_HUGE_NEVER:
1926                 goto alloc_nohuge;
1927         case SHMEM_HUGE_WITHIN_SIZE: {
1928                 loff_t i_size;
1929                 pgoff_t off;
1930 #ifdef CONFIG_FINEGRAINED_THP
1931                 off = round_up(index, nr_pages);
1932 #else
1933                 off = round_up(index, HPAGE_PMD_NR);
1934 #endif
1935                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1936 #ifdef CONFIG_FINEGRAINED_THP
1937                 if (i_size >= nr_pages * PAGE_SIZE &&
1938                     i_size >> PAGE_SHIFT >= off)
1939                         goto alloc_huge;
1940 #else
1941                 if (i_size >= HPAGE_PMD_SIZE &&
1942                     i_size >> PAGE_SHIFT >= off)
1943                         goto alloc_huge;
1944 #endif
1945
1946                 fallthrough;
1947         }
1948         case SHMEM_HUGE_ADVISE:
1949                 if (sgp_huge == SGP_HUGE)
1950                         goto alloc_huge;
1951                 /* TODO: implement fadvise() hints */
1952                 goto alloc_nohuge;
1953         }
1954
1955 alloc_huge:
1956 #ifdef CONFIG_FINEGRAINED_THP
1957         page = shmem_alloc_and_acct_page(gfp, inode, index, true, nr_pages);
1958 #else
1959         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1960 #endif
1961         if (IS_ERR(page)) {
1962 alloc_nohuge:
1963 #ifdef CONFIG_FINEGRAINED_THP
1964                 page = shmem_alloc_and_acct_page(gfp, inode,
1965                                                  index, false, 1);
1966 #else
1967                 page = shmem_alloc_and_acct_page(gfp, inode,
1968                                                  index, false);
1969 #endif
1970         }
1971         if (IS_ERR(page)) {
1972                 int retry = 5;
1973
1974                 error = PTR_ERR(page);
1975                 page = NULL;
1976                 if (error != -ENOSPC)
1977                         goto unlock;
1978                 /*
1979                  * Try to reclaim some space by splitting a huge page
1980                  * beyond i_size on the filesystem.
1981                  */
1982                 while (retry--) {
1983                         int ret;
1984
1985                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1986                         if (ret == SHRINK_STOP)
1987                                 break;
1988                         if (ret)
1989                                 goto alloc_nohuge;
1990                 }
1991                 goto unlock;
1992         }
1993
1994         if (PageTransHuge(page))
1995 #ifdef CONFIG_FINEGRAINED_THP
1996                 hindex = round_down(index, nr_pages);
1997 #else
1998                 hindex = round_down(index, HPAGE_PMD_NR);
1999 #endif
2000         else
2001                 hindex = index;
2002
2003         if (sgp == SGP_WRITE)
2004                 __SetPageReferenced(page);
2005
2006         error = shmem_add_to_page_cache(page, mapping, hindex,
2007                                         NULL, gfp & GFP_RECLAIM_MASK,
2008                                         charge_mm);
2009         if (error)
2010                 goto unacct;
2011         lru_cache_add(page);
2012
2013         spin_lock_irq(&info->lock);
2014         info->alloced += compound_nr(page);
2015         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
2016         shmem_recalc_inode(inode);
2017         spin_unlock_irq(&info->lock);
2018         alloced = true;
2019
2020 #ifdef CONFIG_FINEGRAINED_THP
2021         if (PageTransHuge(page) &&
2022             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2023                         hindex + nr_pages - 1) {
2024                 /*
2025                  * Part of the huge page is beyond i_size: subject
2026                  * to shrink under memory pressure.
2027                  */
2028                 spin_lock(&sbinfo->shrinklist_lock);
2029                 /*
2030                  * _careful to defend against unlocked access to
2031                  * ->shrink_list in shmem_unused_huge_shrink()
2032                  */
2033                 if (list_empty_careful(&info->shrinklist)) {
2034                         list_add_tail(&info->shrinklist,
2035                                       &sbinfo->shrinklist);
2036                         sbinfo->shrinklist_len++;
2037                 }
2038                 spin_unlock(&sbinfo->shrinklist_lock);
2039         }
2040 #else /* CONFIG_FINEGRAINED_THP */
2041         if (PageTransHuge(page) &&
2042             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2043                         hindex + HPAGE_PMD_NR - 1) {
2044                 /*
2045                  * Part of the huge page is beyond i_size: subject
2046                  * to shrink under memory pressure.
2047                  */
2048                 spin_lock(&sbinfo->shrinklist_lock);
2049                 /*
2050                  * _careful to defend against unlocked access to
2051                  * ->shrink_list in shmem_unused_huge_shrink()
2052                  */
2053                 if (list_empty_careful(&info->shrinklist)) {
2054                         list_add_tail(&info->shrinklist,
2055                                       &sbinfo->shrinklist);
2056                         sbinfo->shrinklist_len++;
2057                 }
2058                 spin_unlock(&sbinfo->shrinklist_lock);
2059         }
2060 #endif /* CONFIG_FINEGRAINED_THP */
2061         /*
2062          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
2063          */
2064         if (sgp == SGP_FALLOC)
2065                 sgp = SGP_WRITE;
2066 clear:
2067         /*
2068          * Let SGP_WRITE caller clear ends if write does not fill page;
2069          * but SGP_FALLOC on a page fallocated earlier must initialize
2070          * it now, lest undo on failure cancel our earlier guarantee.
2071          */
2072         if (sgp != SGP_WRITE && !PageUptodate(page)) {
2073                 int i;
2074
2075                 for (i = 0; i < compound_nr(page); i++) {
2076                         clear_highpage(page + i);
2077                         flush_dcache_page(page + i);
2078                 }
2079                 SetPageUptodate(page);
2080         }
2081
2082         /* Perhaps the file has been truncated since we checked */
2083         if (sgp <= SGP_CACHE &&
2084             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2085                 if (alloced) {
2086                         ClearPageDirty(page);
2087                         delete_from_page_cache(page);
2088                         spin_lock_irq(&info->lock);
2089                         shmem_recalc_inode(inode);
2090                         spin_unlock_irq(&info->lock);
2091                 }
2092                 error = -EINVAL;
2093                 goto unlock;
2094         }
2095 out:
2096         *pagep = page + index - hindex;
2097         return 0;
2098
2099         /*
2100          * Error recovery.
2101          */
2102 unacct:
2103         shmem_inode_unacct_blocks(inode, compound_nr(page));
2104
2105         if (PageTransHuge(page)) {
2106                 unlock_page(page);
2107                 put_page(page);
2108                 goto alloc_nohuge;
2109         }
2110 unlock:
2111         if (page) {
2112                 unlock_page(page);
2113                 put_page(page);
2114         }
2115         if (error == -ENOSPC && !once++) {
2116                 spin_lock_irq(&info->lock);
2117                 shmem_recalc_inode(inode);
2118                 spin_unlock_irq(&info->lock);
2119                 goto repeat;
2120         }
2121         if (error == -EEXIST)
2122                 goto repeat;
2123         return error;
2124 }
2125
2126 /*
2127  * This is like autoremove_wake_function, but it removes the wait queue
2128  * entry unconditionally - even if something else had already woken the
2129  * target.
2130  */
2131 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2132 {
2133         int ret = default_wake_function(wait, mode, sync, key);
2134         list_del_init(&wait->entry);
2135         return ret;
2136 }
2137
2138 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2139 {
2140         struct vm_area_struct *vma = vmf->vma;
2141         struct inode *inode = file_inode(vma->vm_file);
2142         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2143         enum sgp_type sgp;
2144         int err;
2145         vm_fault_t ret = VM_FAULT_LOCKED;
2146
2147         /*
2148          * Trinity finds that probing a hole which tmpfs is punching can
2149          * prevent the hole-punch from ever completing: which in turn
2150          * locks writers out with its hold on i_mutex.  So refrain from
2151          * faulting pages into the hole while it's being punched.  Although
2152          * shmem_undo_range() does remove the additions, it may be unable to
2153          * keep up, as each new page needs its own unmap_mapping_range() call,
2154          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2155          *
2156          * It does not matter if we sometimes reach this check just before the
2157          * hole-punch begins, so that one fault then races with the punch:
2158          * we just need to make racing faults a rare case.
2159          *
2160          * The implementation below would be much simpler if we just used a
2161          * standard mutex or completion: but we cannot take i_mutex in fault,
2162          * and bloating every shmem inode for this unlikely case would be sad.
2163          */
2164         if (unlikely(inode->i_private)) {
2165                 struct shmem_falloc *shmem_falloc;
2166
2167                 spin_lock(&inode->i_lock);
2168                 shmem_falloc = inode->i_private;
2169                 if (shmem_falloc &&
2170                     shmem_falloc->waitq &&
2171                     vmf->pgoff >= shmem_falloc->start &&
2172                     vmf->pgoff < shmem_falloc->next) {
2173                         struct file *fpin;
2174                         wait_queue_head_t *shmem_falloc_waitq;
2175                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2176
2177                         ret = VM_FAULT_NOPAGE;
2178                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2179                         if (fpin)
2180                                 ret = VM_FAULT_RETRY;
2181
2182                         shmem_falloc_waitq = shmem_falloc->waitq;
2183                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2184                                         TASK_UNINTERRUPTIBLE);
2185                         spin_unlock(&inode->i_lock);
2186                         schedule();
2187
2188                         /*
2189                          * shmem_falloc_waitq points into the shmem_fallocate()
2190                          * stack of the hole-punching task: shmem_falloc_waitq
2191                          * is usually invalid by the time we reach here, but
2192                          * finish_wait() does not dereference it in that case;
2193                          * though i_lock needed lest racing with wake_up_all().
2194                          */
2195                         spin_lock(&inode->i_lock);
2196                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2197                         spin_unlock(&inode->i_lock);
2198
2199                         if (fpin)
2200                                 fput(fpin);
2201                         return ret;
2202                 }
2203                 spin_unlock(&inode->i_lock);
2204         }
2205
2206         sgp = SGP_CACHE;
2207
2208         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2209             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2210                 sgp = SGP_NOHUGE;
2211         else if (vma->vm_flags & VM_HUGEPAGE)
2212                 sgp = SGP_HUGE;
2213
2214         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2215                                   gfp, vma, vmf, &ret);
2216         if (err)
2217                 return vmf_error(err);
2218         return ret;
2219 }
2220
2221 unsigned long shmem_get_unmapped_area(struct file *file,
2222                                       unsigned long uaddr, unsigned long len,
2223                                       unsigned long pgoff, unsigned long flags)
2224 {
2225         unsigned long (*get_area)(struct file *,
2226                 unsigned long, unsigned long, unsigned long, unsigned long);
2227         unsigned long addr;
2228         unsigned long offset;
2229         unsigned long inflated_len;
2230         unsigned long inflated_addr;
2231         unsigned long inflated_offset;
2232
2233         if (len > TASK_SIZE)
2234                 return -ENOMEM;
2235
2236         get_area = current->mm->get_unmapped_area;
2237         addr = get_area(file, uaddr, len, pgoff, flags);
2238
2239         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2240                 return addr;
2241         if (IS_ERR_VALUE(addr))
2242                 return addr;
2243         if (addr & ~PAGE_MASK)
2244                 return addr;
2245         if (addr > TASK_SIZE - len)
2246                 return addr;
2247
2248         if (shmem_huge == SHMEM_HUGE_DENY)
2249                 return addr;
2250         if (len < HPAGE_PMD_SIZE)
2251                 return addr;
2252         if (flags & MAP_FIXED)
2253                 return addr;
2254         /*
2255          * Our priority is to support MAP_SHARED mapped hugely;
2256          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2257          * But if caller specified an address hint and we allocated area there
2258          * successfully, respect that as before.
2259          */
2260         if (uaddr == addr)
2261                 return addr;
2262
2263         if (shmem_huge != SHMEM_HUGE_FORCE) {
2264                 struct super_block *sb;
2265
2266                 if (file) {
2267                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2268                         sb = file_inode(file)->i_sb;
2269                 } else {
2270                         /*
2271                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2272                          * for "/dev/zero", to create a shared anonymous object.
2273                          */
2274                         if (IS_ERR(shm_mnt))
2275                                 return addr;
2276                         sb = shm_mnt->mnt_sb;
2277                 }
2278                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2279                         return addr;
2280         }
2281
2282         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2283         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2284                 return addr;
2285         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2286                 return addr;
2287
2288         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2289         if (inflated_len > TASK_SIZE)
2290                 return addr;
2291         if (inflated_len < len)
2292                 return addr;
2293
2294         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2295         if (IS_ERR_VALUE(inflated_addr))
2296                 return addr;
2297         if (inflated_addr & ~PAGE_MASK)
2298                 return addr;
2299
2300         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2301         inflated_addr += offset - inflated_offset;
2302         if (inflated_offset > offset)
2303                 inflated_addr += HPAGE_PMD_SIZE;
2304
2305         if (inflated_addr > TASK_SIZE - len)
2306                 return addr;
2307         return inflated_addr;
2308 }
2309
2310 #ifdef CONFIG_NUMA
2311 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2312 {
2313         struct inode *inode = file_inode(vma->vm_file);
2314         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2315 }
2316
2317 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2318                                           unsigned long addr)
2319 {
2320         struct inode *inode = file_inode(vma->vm_file);
2321         pgoff_t index;
2322
2323         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2324         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2325 }
2326 #endif
2327
2328 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2329 {
2330         struct inode *inode = file_inode(file);
2331         struct shmem_inode_info *info = SHMEM_I(inode);
2332         int retval = -ENOMEM;
2333
2334         /*
2335          * What serializes the accesses to info->flags?
2336          * ipc_lock_object() when called from shmctl_do_lock(),
2337          * no serialization needed when called from shm_destroy().
2338          */
2339         if (lock && !(info->flags & VM_LOCKED)) {
2340                 if (!user_shm_lock(inode->i_size, user))
2341                         goto out_nomem;
2342                 info->flags |= VM_LOCKED;
2343                 mapping_set_unevictable(file->f_mapping);
2344         }
2345         if (!lock && (info->flags & VM_LOCKED) && user) {
2346                 user_shm_unlock(inode->i_size, user);
2347                 info->flags &= ~VM_LOCKED;
2348                 mapping_clear_unevictable(file->f_mapping);
2349         }
2350         retval = 0;
2351
2352 out_nomem:
2353         return retval;
2354 }
2355
2356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2357 {
2358         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2359
2360         if (info->seals & F_SEAL_FUTURE_WRITE) {
2361                 /*
2362                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2363                  * "future write" seal active.
2364                  */
2365                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2366                         return -EPERM;
2367
2368                 /*
2369                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2370                  * MAP_SHARED and read-only, take care to not allow mprotect to
2371                  * revert protections on such mappings. Do this only for shared
2372                  * mappings. For private mappings, don't need to mask
2373                  * VM_MAYWRITE as we still want them to be COW-writable.
2374                  */
2375                 if (vma->vm_flags & VM_SHARED)
2376                         vma->vm_flags &= ~(VM_MAYWRITE);
2377         }
2378
2379         /* arm64 - allow memory tagging on RAM-based files */
2380         vma->vm_flags |= VM_MTE_ALLOWED;
2381
2382         file_accessed(file);
2383         vma->vm_ops = &shmem_vm_ops;
2384         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2385                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2386                         (vma->vm_end & HPAGE_PMD_MASK)) {
2387                 khugepaged_enter(vma, vma->vm_flags);
2388         }
2389         return 0;
2390 }
2391
2392 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2393                                      umode_t mode, dev_t dev, unsigned long flags)
2394 {
2395         struct inode *inode;
2396         struct shmem_inode_info *info;
2397         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2398         ino_t ino;
2399
2400         if (shmem_reserve_inode(sb, &ino))
2401                 return NULL;
2402
2403         inode = new_inode(sb);
2404         if (inode) {
2405                 inode->i_ino = ino;
2406                 inode_init_owner(inode, dir, mode);
2407                 inode->i_blocks = 0;
2408                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2409                 inode->i_generation = prandom_u32();
2410                 info = SHMEM_I(inode);
2411                 memset(info, 0, (char *)inode - (char *)info);
2412                 spin_lock_init(&info->lock);
2413                 atomic_set(&info->stop_eviction, 0);
2414                 info->seals = F_SEAL_SEAL;
2415                 info->flags = flags & VM_NORESERVE;
2416                 INIT_LIST_HEAD(&info->shrinklist);
2417                 INIT_LIST_HEAD(&info->swaplist);
2418                 simple_xattrs_init(&info->xattrs);
2419                 cache_no_acl(inode);
2420
2421                 switch (mode & S_IFMT) {
2422                 default:
2423                         inode->i_op = &shmem_special_inode_operations;
2424                         init_special_inode(inode, mode, dev);
2425                         break;
2426                 case S_IFREG:
2427                         inode->i_mapping->a_ops = &shmem_aops;
2428                         inode->i_op = &shmem_inode_operations;
2429                         inode->i_fop = &shmem_file_operations;
2430                         mpol_shared_policy_init(&info->policy,
2431                                                  shmem_get_sbmpol(sbinfo));
2432                         break;
2433                 case S_IFDIR:
2434                         inc_nlink(inode);
2435                         /* Some things misbehave if size == 0 on a directory */
2436                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2437                         inode->i_op = &shmem_dir_inode_operations;
2438                         inode->i_fop = &simple_dir_operations;
2439                         break;
2440                 case S_IFLNK:
2441                         /*
2442                          * Must not load anything in the rbtree,
2443                          * mpol_free_shared_policy will not be called.
2444                          */
2445                         mpol_shared_policy_init(&info->policy, NULL);
2446                         break;
2447                 }
2448
2449                 lockdep_annotate_inode_mutex_key(inode);
2450         } else
2451                 shmem_free_inode(sb);
2452         return inode;
2453 }
2454
2455 bool shmem_mapping(struct address_space *mapping)
2456 {
2457         return mapping->a_ops == &shmem_aops;
2458 }
2459
2460 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2461                                   pmd_t *dst_pmd,
2462                                   struct vm_area_struct *dst_vma,
2463                                   unsigned long dst_addr,
2464                                   unsigned long src_addr,
2465                                   bool zeropage,
2466                                   struct page **pagep)
2467 {
2468         struct inode *inode = file_inode(dst_vma->vm_file);
2469         struct shmem_inode_info *info = SHMEM_I(inode);
2470         struct address_space *mapping = inode->i_mapping;
2471         gfp_t gfp = mapping_gfp_mask(mapping);
2472         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2473         spinlock_t *ptl;
2474         void *page_kaddr;
2475         struct page *page;
2476         pte_t _dst_pte, *dst_pte;
2477         int ret;
2478         pgoff_t offset, max_off;
2479
2480         ret = -ENOMEM;
2481         if (!shmem_inode_acct_block(inode, 1))
2482                 goto out;
2483
2484         if (!*pagep) {
2485                 page = shmem_alloc_page(gfp, info, pgoff);
2486                 if (!page)
2487                         goto out_unacct_blocks;
2488
2489                 if (!zeropage) {        /* mcopy_atomic */
2490                         page_kaddr = kmap_atomic(page);
2491                         ret = copy_from_user(page_kaddr,
2492                                              (const void __user *)src_addr,
2493                                              PAGE_SIZE);
2494                         kunmap_atomic(page_kaddr);
2495
2496                         /* fallback to copy_from_user outside mmap_lock */
2497                         if (unlikely(ret)) {
2498                                 *pagep = page;
2499                                 shmem_inode_unacct_blocks(inode, 1);
2500                                 /* don't free the page */
2501                                 return -ENOENT;
2502                         }
2503                 } else {                /* mfill_zeropage_atomic */
2504                         clear_highpage(page);
2505                 }
2506         } else {
2507                 page = *pagep;
2508                 *pagep = NULL;
2509         }
2510
2511         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2512         __SetPageLocked(page);
2513         __SetPageSwapBacked(page);
2514         __SetPageUptodate(page);
2515
2516         ret = -EFAULT;
2517         offset = linear_page_index(dst_vma, dst_addr);
2518         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2519         if (unlikely(offset >= max_off))
2520                 goto out_release;
2521
2522         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2523                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2524         if (ret)
2525                 goto out_release;
2526
2527         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2528         if (dst_vma->vm_flags & VM_WRITE)
2529                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2530         else {
2531                 /*
2532                  * We don't set the pte dirty if the vma has no
2533                  * VM_WRITE permission, so mark the page dirty or it
2534                  * could be freed from under us. We could do it
2535                  * unconditionally before unlock_page(), but doing it
2536                  * only if VM_WRITE is not set is faster.
2537                  */
2538                 set_page_dirty(page);
2539         }
2540
2541         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2542
2543         ret = -EFAULT;
2544         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2545         if (unlikely(offset >= max_off))
2546                 goto out_release_unlock;
2547
2548         ret = -EEXIST;
2549         if (!pte_none(*dst_pte))
2550                 goto out_release_unlock;
2551
2552         lru_cache_add(page);
2553
2554         spin_lock_irq(&info->lock);
2555         info->alloced++;
2556         inode->i_blocks += BLOCKS_PER_PAGE;
2557         shmem_recalc_inode(inode);
2558         spin_unlock_irq(&info->lock);
2559
2560         inc_mm_counter(dst_mm, mm_counter_file(page));
2561         page_add_file_rmap(page, false);
2562         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2563
2564         /* No need to invalidate - it was non-present before */
2565         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2566         pte_unmap_unlock(dst_pte, ptl);
2567         unlock_page(page);
2568         ret = 0;
2569 out:
2570         return ret;
2571 out_release_unlock:
2572         pte_unmap_unlock(dst_pte, ptl);
2573         ClearPageDirty(page);
2574         delete_from_page_cache(page);
2575 out_release:
2576         unlock_page(page);
2577         put_page(page);
2578 out_unacct_blocks:
2579         shmem_inode_unacct_blocks(inode, 1);
2580         goto out;
2581 }
2582
2583 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2584                            pmd_t *dst_pmd,
2585                            struct vm_area_struct *dst_vma,
2586                            unsigned long dst_addr,
2587                            unsigned long src_addr,
2588                            struct page **pagep)
2589 {
2590         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2591                                       dst_addr, src_addr, false, pagep);
2592 }
2593
2594 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2595                              pmd_t *dst_pmd,
2596                              struct vm_area_struct *dst_vma,
2597                              unsigned long dst_addr)
2598 {
2599         struct page *page = NULL;
2600
2601         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2602                                       dst_addr, 0, true, &page);
2603 }
2604
2605 #ifdef CONFIG_TMPFS
2606 static const struct inode_operations shmem_symlink_inode_operations;
2607 static const struct inode_operations shmem_short_symlink_operations;
2608
2609 #ifdef CONFIG_TMPFS_XATTR
2610 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2611 #else
2612 #define shmem_initxattrs NULL
2613 #endif
2614
2615 static int
2616 shmem_write_begin(struct file *file, struct address_space *mapping,
2617                         loff_t pos, unsigned len, unsigned flags,
2618                         struct page **pagep, void **fsdata)
2619 {
2620         struct inode *inode = mapping->host;
2621         struct shmem_inode_info *info = SHMEM_I(inode);
2622         pgoff_t index = pos >> PAGE_SHIFT;
2623
2624         /* i_mutex is held by caller */
2625         if (unlikely(info->seals & (F_SEAL_GROW |
2626                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2627                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2628                         return -EPERM;
2629                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2630                         return -EPERM;
2631         }
2632
2633         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2634 }
2635
2636 static int
2637 shmem_write_end(struct file *file, struct address_space *mapping,
2638                         loff_t pos, unsigned len, unsigned copied,
2639                         struct page *page, void *fsdata)
2640 {
2641         struct inode *inode = mapping->host;
2642
2643         if (pos + copied > inode->i_size)
2644                 i_size_write(inode, pos + copied);
2645
2646         if (!PageUptodate(page)) {
2647                 struct page *head = compound_head(page);
2648                 if (PageTransCompound(page)) {
2649                         int i;
2650 #ifdef CONFIG_FINEGRAINED_THP
2651                         for (i = 0; i < thp_nr_pages(page); i++) {
2652                                 if (head + i == page)
2653                                         continue;
2654                                 clear_highpage(head + i);
2655                                 flush_dcache_page(head + i);
2656                         }
2657 #else /* CONFIG_FINEGRAINED_THP */
2658                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2659                                 if (head + i == page)
2660                                         continue;
2661                                 clear_highpage(head + i);
2662                                 flush_dcache_page(head + i);
2663                         }
2664 #endif /* CONFIG_FINEGRAINED_THP */
2665                 }
2666                 if (copied < PAGE_SIZE) {
2667                         unsigned from = pos & (PAGE_SIZE - 1);
2668                         zero_user_segments(page, 0, from,
2669                                         from + copied, PAGE_SIZE);
2670                 }
2671                 SetPageUptodate(head);
2672         }
2673         set_page_dirty(page);
2674         unlock_page(page);
2675         put_page(page);
2676
2677         return copied;
2678 }
2679
2680 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2681 {
2682         struct file *file = iocb->ki_filp;
2683         struct inode *inode = file_inode(file);
2684         struct address_space *mapping = inode->i_mapping;
2685         pgoff_t index;
2686         unsigned long offset;
2687         enum sgp_type sgp = SGP_READ;
2688         int error = 0;
2689         ssize_t retval = 0;
2690         loff_t *ppos = &iocb->ki_pos;
2691
2692         /*
2693          * Might this read be for a stacking filesystem?  Then when reading
2694          * holes of a sparse file, we actually need to allocate those pages,
2695          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2696          */
2697         if (!iter_is_iovec(to))
2698                 sgp = SGP_CACHE;
2699
2700         index = *ppos >> PAGE_SHIFT;
2701         offset = *ppos & ~PAGE_MASK;
2702
2703         for (;;) {
2704                 struct page *page = NULL;
2705                 pgoff_t end_index;
2706                 unsigned long nr, ret;
2707                 loff_t i_size = i_size_read(inode);
2708
2709                 end_index = i_size >> PAGE_SHIFT;
2710                 if (index > end_index)
2711                         break;
2712                 if (index == end_index) {
2713                         nr = i_size & ~PAGE_MASK;
2714                         if (nr <= offset)
2715                                 break;
2716                 }
2717
2718                 error = shmem_getpage(inode, index, &page, sgp);
2719                 if (error) {
2720                         if (error == -EINVAL)
2721                                 error = 0;
2722                         break;
2723                 }
2724                 if (page) {
2725                         if (sgp == SGP_CACHE)
2726                                 set_page_dirty(page);
2727                         unlock_page(page);
2728                 }
2729
2730                 /*
2731                  * We must evaluate after, since reads (unlike writes)
2732                  * are called without i_mutex protection against truncate
2733                  */
2734                 nr = PAGE_SIZE;
2735                 i_size = i_size_read(inode);
2736                 end_index = i_size >> PAGE_SHIFT;
2737                 if (index == end_index) {
2738                         nr = i_size & ~PAGE_MASK;
2739                         if (nr <= offset) {
2740                                 if (page)
2741                                         put_page(page);
2742                                 break;
2743                         }
2744                 }
2745                 nr -= offset;
2746
2747                 if (page) {
2748                         /*
2749                          * If users can be writing to this page using arbitrary
2750                          * virtual addresses, take care about potential aliasing
2751                          * before reading the page on the kernel side.
2752                          */
2753                         if (mapping_writably_mapped(mapping))
2754                                 flush_dcache_page(page);
2755                         /*
2756                          * Mark the page accessed if we read the beginning.
2757                          */
2758                         if (!offset)
2759                                 mark_page_accessed(page);
2760                 } else {
2761                         page = ZERO_PAGE(0);
2762                         get_page(page);
2763                 }
2764
2765                 /*
2766                  * Ok, we have the page, and it's up-to-date, so
2767                  * now we can copy it to user space...
2768                  */
2769                 ret = copy_page_to_iter(page, offset, nr, to);
2770                 retval += ret;
2771                 offset += ret;
2772                 index += offset >> PAGE_SHIFT;
2773                 offset &= ~PAGE_MASK;
2774
2775                 put_page(page);
2776                 if (!iov_iter_count(to))
2777                         break;
2778                 if (ret < nr) {
2779                         error = -EFAULT;
2780                         break;
2781                 }
2782                 cond_resched();
2783         }
2784
2785         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2786         file_accessed(file);
2787         return retval ? retval : error;
2788 }
2789
2790 /*
2791  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2792  */
2793 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2794                                     pgoff_t index, pgoff_t end, int whence)
2795 {
2796         struct page *page;
2797         struct pagevec pvec;
2798         pgoff_t indices[PAGEVEC_SIZE];
2799         bool done = false;
2800         int i;
2801
2802         pagevec_init(&pvec);
2803         pvec.nr = 1;            /* start small: we may be there already */
2804         while (!done) {
2805                 pvec.nr = find_get_entries(mapping, index,
2806                                         pvec.nr, pvec.pages, indices);
2807                 if (!pvec.nr) {
2808                         if (whence == SEEK_DATA)
2809                                 index = end;
2810                         break;
2811                 }
2812                 for (i = 0; i < pvec.nr; i++, index++) {
2813                         if (index < indices[i]) {
2814                                 if (whence == SEEK_HOLE) {
2815                                         done = true;
2816                                         break;
2817                                 }
2818                                 index = indices[i];
2819                         }
2820                         page = pvec.pages[i];
2821                         if (page && !xa_is_value(page)) {
2822                                 if (!PageUptodate(page))
2823                                         page = NULL;
2824                         }
2825                         if (index >= end ||
2826                             (page && whence == SEEK_DATA) ||
2827                             (!page && whence == SEEK_HOLE)) {
2828                                 done = true;
2829                                 break;
2830                         }
2831                 }
2832                 pagevec_remove_exceptionals(&pvec);
2833                 pagevec_release(&pvec);
2834                 pvec.nr = PAGEVEC_SIZE;
2835                 cond_resched();
2836         }
2837         return index;
2838 }
2839
2840 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2841 {
2842         struct address_space *mapping = file->f_mapping;
2843         struct inode *inode = mapping->host;
2844         pgoff_t start, end;
2845         loff_t new_offset;
2846
2847         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2848                 return generic_file_llseek_size(file, offset, whence,
2849                                         MAX_LFS_FILESIZE, i_size_read(inode));
2850         inode_lock(inode);
2851         /* We're holding i_mutex so we can access i_size directly */
2852
2853         if (offset < 0 || offset >= inode->i_size)
2854                 offset = -ENXIO;
2855         else {
2856                 start = offset >> PAGE_SHIFT;
2857                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2858                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2859                 new_offset <<= PAGE_SHIFT;
2860                 if (new_offset > offset) {
2861                         if (new_offset < inode->i_size)
2862                                 offset = new_offset;
2863                         else if (whence == SEEK_DATA)
2864                                 offset = -ENXIO;
2865                         else
2866                                 offset = inode->i_size;
2867                 }
2868         }
2869
2870         if (offset >= 0)
2871                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2872         inode_unlock(inode);
2873         return offset;
2874 }
2875
2876 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2877                                                          loff_t len)
2878 {
2879         struct inode *inode = file_inode(file);
2880         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2881         struct shmem_inode_info *info = SHMEM_I(inode);
2882         struct shmem_falloc shmem_falloc;
2883         pgoff_t start, index, end;
2884         int error;
2885
2886         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2887                 return -EOPNOTSUPP;
2888
2889         inode_lock(inode);
2890
2891         if (mode & FALLOC_FL_PUNCH_HOLE) {
2892                 struct address_space *mapping = file->f_mapping;
2893                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2894                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2895                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2896
2897                 /* protected by i_mutex */
2898                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2899                         error = -EPERM;
2900                         goto out;
2901                 }
2902
2903                 shmem_falloc.waitq = &shmem_falloc_waitq;
2904                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2905                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2906                 spin_lock(&inode->i_lock);
2907                 inode->i_private = &shmem_falloc;
2908                 spin_unlock(&inode->i_lock);
2909
2910                 if ((u64)unmap_end > (u64)unmap_start)
2911                         unmap_mapping_range(mapping, unmap_start,
2912                                             1 + unmap_end - unmap_start, 0);
2913                 shmem_truncate_range(inode, offset, offset + len - 1);
2914                 /* No need to unmap again: hole-punching leaves COWed pages */
2915
2916                 spin_lock(&inode->i_lock);
2917                 inode->i_private = NULL;
2918                 wake_up_all(&shmem_falloc_waitq);
2919                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2920                 spin_unlock(&inode->i_lock);
2921                 error = 0;
2922                 goto out;
2923         }
2924
2925         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2926         error = inode_newsize_ok(inode, offset + len);
2927         if (error)
2928                 goto out;
2929
2930         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2931                 error = -EPERM;
2932                 goto out;
2933         }
2934
2935         start = offset >> PAGE_SHIFT;
2936         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2937         /* Try to avoid a swapstorm if len is impossible to satisfy */
2938         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2939                 error = -ENOSPC;
2940                 goto out;
2941         }
2942
2943         shmem_falloc.waitq = NULL;
2944         shmem_falloc.start = start;
2945         shmem_falloc.next  = start;
2946         shmem_falloc.nr_falloced = 0;
2947         shmem_falloc.nr_unswapped = 0;
2948         spin_lock(&inode->i_lock);
2949         inode->i_private = &shmem_falloc;
2950         spin_unlock(&inode->i_lock);
2951
2952         for (index = start; index < end; index++) {
2953                 struct page *page;
2954
2955                 /*
2956                  * Good, the fallocate(2) manpage permits EINTR: we may have
2957                  * been interrupted because we are using up too much memory.
2958                  */
2959                 if (signal_pending(current))
2960                         error = -EINTR;
2961                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2962                         error = -ENOMEM;
2963                 else
2964                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2965                 if (error) {
2966                         /* Remove the !PageUptodate pages we added */
2967                         if (index > start) {
2968                                 shmem_undo_range(inode,
2969                                     (loff_t)start << PAGE_SHIFT,
2970                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2971                         }
2972                         goto undone;
2973                 }
2974
2975                 /*
2976                  * Inform shmem_writepage() how far we have reached.
2977                  * No need for lock or barrier: we have the page lock.
2978                  */
2979                 shmem_falloc.next++;
2980                 if (!PageUptodate(page))
2981                         shmem_falloc.nr_falloced++;
2982
2983                 /*
2984                  * If !PageUptodate, leave it that way so that freeable pages
2985                  * can be recognized if we need to rollback on error later.
2986                  * But set_page_dirty so that memory pressure will swap rather
2987                  * than free the pages we are allocating (and SGP_CACHE pages
2988                  * might still be clean: we now need to mark those dirty too).
2989                  */
2990                 set_page_dirty(page);
2991                 unlock_page(page);
2992                 put_page(page);
2993                 cond_resched();
2994         }
2995
2996         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2997                 i_size_write(inode, offset + len);
2998         inode->i_ctime = current_time(inode);
2999 undone:
3000         spin_lock(&inode->i_lock);
3001         inode->i_private = NULL;
3002         spin_unlock(&inode->i_lock);
3003 out:
3004         inode_unlock(inode);
3005         return error;
3006 }
3007
3008 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3009 {
3010         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3011
3012         buf->f_type = TMPFS_MAGIC;
3013         buf->f_bsize = PAGE_SIZE;
3014         buf->f_namelen = NAME_MAX;
3015         if (sbinfo->max_blocks) {
3016                 buf->f_blocks = sbinfo->max_blocks;
3017                 buf->f_bavail =
3018                 buf->f_bfree  = sbinfo->max_blocks -
3019                                 percpu_counter_sum(&sbinfo->used_blocks);
3020         }
3021         if (sbinfo->max_inodes) {
3022                 buf->f_files = sbinfo->max_inodes;
3023                 buf->f_ffree = sbinfo->free_inodes;
3024         }
3025         /* else leave those fields 0 like simple_statfs */
3026         return 0;
3027 }
3028
3029 /*
3030  * File creation. Allocate an inode, and we're done..
3031  */
3032 static int
3033 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3034 {
3035         struct inode *inode;
3036         int error = -ENOSPC;
3037
3038         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3039         if (inode) {
3040                 error = simple_acl_create(dir, inode);
3041                 if (error)
3042                         goto out_iput;
3043                 error = security_inode_init_security(inode, dir,
3044                                                      &dentry->d_name,
3045                                                      shmem_initxattrs, NULL);
3046                 if (error && error != -EOPNOTSUPP)
3047                         goto out_iput;
3048
3049                 error = 0;
3050                 dir->i_size += BOGO_DIRENT_SIZE;
3051                 dir->i_ctime = dir->i_mtime = current_time(dir);
3052                 d_instantiate(dentry, inode);
3053                 dget(dentry); /* Extra count - pin the dentry in core */
3054         }
3055         return error;
3056 out_iput:
3057         iput(inode);
3058         return error;
3059 }
3060
3061 static int
3062 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3063 {
3064         struct inode *inode;
3065         int error = -ENOSPC;
3066
3067         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3068         if (inode) {
3069                 error = security_inode_init_security(inode, dir,
3070                                                      NULL,
3071                                                      shmem_initxattrs, NULL);
3072                 if (error && error != -EOPNOTSUPP)
3073                         goto out_iput;
3074                 error = simple_acl_create(dir, inode);
3075                 if (error)
3076                         goto out_iput;
3077                 d_tmpfile(dentry, inode);
3078         }
3079         return error;
3080 out_iput:
3081         iput(inode);
3082         return error;
3083 }
3084
3085 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3086 {
3087         int error;
3088
3089         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3090                 return error;
3091         inc_nlink(dir);
3092         return 0;
3093 }
3094
3095 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3096                 bool excl)
3097 {
3098         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3099 }
3100
3101 /*
3102  * Link a file..
3103  */
3104 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3105 {
3106         struct inode *inode = d_inode(old_dentry);
3107         int ret = 0;
3108
3109         /*
3110          * No ordinary (disk based) filesystem counts links as inodes;
3111          * but each new link needs a new dentry, pinning lowmem, and
3112          * tmpfs dentries cannot be pruned until they are unlinked.
3113          * But if an O_TMPFILE file is linked into the tmpfs, the
3114          * first link must skip that, to get the accounting right.
3115          */
3116         if (inode->i_nlink) {
3117                 ret = shmem_reserve_inode(inode->i_sb, NULL);
3118                 if (ret)
3119                         goto out;
3120         }
3121
3122         dir->i_size += BOGO_DIRENT_SIZE;
3123         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3124         inc_nlink(inode);
3125         ihold(inode);   /* New dentry reference */
3126         dget(dentry);           /* Extra pinning count for the created dentry */
3127         d_instantiate(dentry, inode);
3128 out:
3129         return ret;
3130 }
3131
3132 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3133 {
3134         struct inode *inode = d_inode(dentry);
3135
3136         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3137                 shmem_free_inode(inode->i_sb);
3138
3139         dir->i_size -= BOGO_DIRENT_SIZE;
3140         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3141         drop_nlink(inode);
3142         dput(dentry);   /* Undo the count from "create" - this does all the work */
3143         return 0;
3144 }
3145
3146 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3147 {
3148         if (!simple_empty(dentry))
3149                 return -ENOTEMPTY;
3150
3151         drop_nlink(d_inode(dentry));
3152         drop_nlink(dir);
3153         return shmem_unlink(dir, dentry);
3154 }
3155
3156 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3157 {
3158         bool old_is_dir = d_is_dir(old_dentry);
3159         bool new_is_dir = d_is_dir(new_dentry);
3160
3161         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3162                 if (old_is_dir) {
3163                         drop_nlink(old_dir);
3164                         inc_nlink(new_dir);
3165                 } else {
3166                         drop_nlink(new_dir);
3167                         inc_nlink(old_dir);
3168                 }
3169         }
3170         old_dir->i_ctime = old_dir->i_mtime =
3171         new_dir->i_ctime = new_dir->i_mtime =
3172         d_inode(old_dentry)->i_ctime =
3173         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3174
3175         return 0;
3176 }
3177
3178 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3179 {
3180         struct dentry *whiteout;
3181         int error;
3182
3183         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3184         if (!whiteout)
3185                 return -ENOMEM;
3186
3187         error = shmem_mknod(old_dir, whiteout,
3188                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3189         dput(whiteout);
3190         if (error)
3191                 return error;
3192
3193         /*
3194          * Cheat and hash the whiteout while the old dentry is still in
3195          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3196          *
3197          * d_lookup() will consistently find one of them at this point,
3198          * not sure which one, but that isn't even important.
3199          */
3200         d_rehash(whiteout);
3201         return 0;
3202 }
3203
3204 /*
3205  * The VFS layer already does all the dentry stuff for rename,
3206  * we just have to decrement the usage count for the target if
3207  * it exists so that the VFS layer correctly free's it when it
3208  * gets overwritten.
3209  */
3210 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3211 {
3212         struct inode *inode = d_inode(old_dentry);
3213         int they_are_dirs = S_ISDIR(inode->i_mode);
3214
3215         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3216                 return -EINVAL;
3217
3218         if (flags & RENAME_EXCHANGE)
3219                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3220
3221         if (!simple_empty(new_dentry))
3222                 return -ENOTEMPTY;
3223
3224         if (flags & RENAME_WHITEOUT) {
3225                 int error;
3226
3227                 error = shmem_whiteout(old_dir, old_dentry);
3228                 if (error)
3229                         return error;
3230         }
3231
3232         if (d_really_is_positive(new_dentry)) {
3233                 (void) shmem_unlink(new_dir, new_dentry);
3234                 if (they_are_dirs) {
3235                         drop_nlink(d_inode(new_dentry));
3236                         drop_nlink(old_dir);
3237                 }
3238         } else if (they_are_dirs) {
3239                 drop_nlink(old_dir);
3240                 inc_nlink(new_dir);
3241         }
3242
3243         old_dir->i_size -= BOGO_DIRENT_SIZE;
3244         new_dir->i_size += BOGO_DIRENT_SIZE;
3245         old_dir->i_ctime = old_dir->i_mtime =
3246         new_dir->i_ctime = new_dir->i_mtime =
3247         inode->i_ctime = current_time(old_dir);
3248         return 0;
3249 }
3250
3251 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3252 {
3253         int error;
3254         int len;
3255         struct inode *inode;
3256         struct page *page;
3257
3258         len = strlen(symname) + 1;
3259         if (len > PAGE_SIZE)
3260                 return -ENAMETOOLONG;
3261
3262         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3263                                 VM_NORESERVE);
3264         if (!inode)
3265                 return -ENOSPC;
3266
3267         error = security_inode_init_security(inode, dir, &dentry->d_name,
3268                                              shmem_initxattrs, NULL);
3269         if (error && error != -EOPNOTSUPP) {
3270                 iput(inode);
3271                 return error;
3272         }
3273
3274         inode->i_size = len-1;
3275         if (len <= SHORT_SYMLINK_LEN) {
3276                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3277                 if (!inode->i_link) {
3278                         iput(inode);
3279                         return -ENOMEM;
3280                 }
3281                 inode->i_op = &shmem_short_symlink_operations;
3282         } else {
3283                 inode_nohighmem(inode);
3284                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3285                 if (error) {
3286                         iput(inode);
3287                         return error;
3288                 }
3289                 inode->i_mapping->a_ops = &shmem_aops;
3290                 inode->i_op = &shmem_symlink_inode_operations;
3291                 memcpy(page_address(page), symname, len);
3292                 SetPageUptodate(page);
3293                 set_page_dirty(page);
3294                 unlock_page(page);
3295                 put_page(page);
3296         }
3297         dir->i_size += BOGO_DIRENT_SIZE;
3298         dir->i_ctime = dir->i_mtime = current_time(dir);
3299         d_instantiate(dentry, inode);
3300         dget(dentry);
3301         return 0;
3302 }
3303
3304 static void shmem_put_link(void *arg)
3305 {
3306         mark_page_accessed(arg);
3307         put_page(arg);
3308 }
3309
3310 static const char *shmem_get_link(struct dentry *dentry,
3311                                   struct inode *inode,
3312                                   struct delayed_call *done)
3313 {
3314         struct page *page = NULL;
3315         int error;
3316         if (!dentry) {
3317                 page = find_get_page(inode->i_mapping, 0);
3318                 if (!page)
3319                         return ERR_PTR(-ECHILD);
3320                 if (!PageUptodate(page)) {
3321                         put_page(page);
3322                         return ERR_PTR(-ECHILD);
3323                 }
3324         } else {
3325                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3326                 if (error)
3327                         return ERR_PTR(error);
3328                 unlock_page(page);
3329         }
3330         set_delayed_call(done, shmem_put_link, page);
3331         return page_address(page);
3332 }
3333
3334 #ifdef CONFIG_TMPFS_XATTR
3335 /*
3336  * Superblocks without xattr inode operations may get some security.* xattr
3337  * support from the LSM "for free". As soon as we have any other xattrs
3338  * like ACLs, we also need to implement the security.* handlers at
3339  * filesystem level, though.
3340  */
3341
3342 /*
3343  * Callback for security_inode_init_security() for acquiring xattrs.
3344  */
3345 static int shmem_initxattrs(struct inode *inode,
3346                             const struct xattr *xattr_array,
3347                             void *fs_info)
3348 {
3349         struct shmem_inode_info *info = SHMEM_I(inode);
3350         const struct xattr *xattr;
3351         struct simple_xattr *new_xattr;
3352         size_t len;
3353
3354         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3355                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3356                 if (!new_xattr)
3357                         return -ENOMEM;
3358
3359                 len = strlen(xattr->name) + 1;
3360                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3361                                           GFP_KERNEL);
3362                 if (!new_xattr->name) {
3363                         kvfree(new_xattr);
3364                         return -ENOMEM;
3365                 }
3366
3367                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3368                        XATTR_SECURITY_PREFIX_LEN);
3369                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3370                        xattr->name, len);
3371
3372                 simple_xattr_list_add(&info->xattrs, new_xattr);
3373         }
3374
3375         return 0;
3376 }
3377
3378 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3379                                    struct dentry *unused, struct inode *inode,
3380                                    const char *name, void *buffer, size_t size)
3381 {
3382         struct shmem_inode_info *info = SHMEM_I(inode);
3383
3384         name = xattr_full_name(handler, name);
3385         return simple_xattr_get(&info->xattrs, name, buffer, size);
3386 }
3387
3388 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3389                                    struct dentry *unused, struct inode *inode,
3390                                    const char *name, const void *value,
3391                                    size_t size, int flags)
3392 {
3393         struct shmem_inode_info *info = SHMEM_I(inode);
3394
3395         name = xattr_full_name(handler, name);
3396         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3397 }
3398
3399 static const struct xattr_handler shmem_security_xattr_handler = {
3400         .prefix = XATTR_SECURITY_PREFIX,
3401         .get = shmem_xattr_handler_get,
3402         .set = shmem_xattr_handler_set,
3403 };
3404
3405 static const struct xattr_handler shmem_trusted_xattr_handler = {
3406         .prefix = XATTR_TRUSTED_PREFIX,
3407         .get = shmem_xattr_handler_get,
3408         .set = shmem_xattr_handler_set,
3409 };
3410
3411 static const struct xattr_handler *shmem_xattr_handlers[] = {
3412 #ifdef CONFIG_TMPFS_POSIX_ACL
3413         &posix_acl_access_xattr_handler,
3414         &posix_acl_default_xattr_handler,
3415 #endif
3416         &shmem_security_xattr_handler,
3417         &shmem_trusted_xattr_handler,
3418         NULL
3419 };
3420
3421 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3422 {
3423         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3424         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3425 }
3426 #endif /* CONFIG_TMPFS_XATTR */
3427
3428 static const struct inode_operations shmem_short_symlink_operations = {
3429         .get_link       = simple_get_link,
3430 #ifdef CONFIG_TMPFS_XATTR
3431         .listxattr      = shmem_listxattr,
3432 #endif
3433 };
3434
3435 static const struct inode_operations shmem_symlink_inode_operations = {
3436         .get_link       = shmem_get_link,
3437 #ifdef CONFIG_TMPFS_XATTR
3438         .listxattr      = shmem_listxattr,
3439 #endif
3440 };
3441
3442 static struct dentry *shmem_get_parent(struct dentry *child)
3443 {
3444         return ERR_PTR(-ESTALE);
3445 }
3446
3447 static int shmem_match(struct inode *ino, void *vfh)
3448 {
3449         __u32 *fh = vfh;
3450         __u64 inum = fh[2];
3451         inum = (inum << 32) | fh[1];
3452         return ino->i_ino == inum && fh[0] == ino->i_generation;
3453 }
3454
3455 /* Find any alias of inode, but prefer a hashed alias */
3456 static struct dentry *shmem_find_alias(struct inode *inode)
3457 {
3458         struct dentry *alias = d_find_alias(inode);
3459
3460         return alias ?: d_find_any_alias(inode);
3461 }
3462
3463
3464 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3465                 struct fid *fid, int fh_len, int fh_type)
3466 {
3467         struct inode *inode;
3468         struct dentry *dentry = NULL;
3469         u64 inum;
3470
3471         if (fh_len < 3)
3472                 return NULL;
3473
3474         inum = fid->raw[2];
3475         inum = (inum << 32) | fid->raw[1];
3476
3477         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3478                         shmem_match, fid->raw);
3479         if (inode) {
3480                 dentry = shmem_find_alias(inode);
3481                 iput(inode);
3482         }
3483
3484         return dentry;
3485 }
3486
3487 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3488                                 struct inode *parent)
3489 {
3490         if (*len < 3) {
3491                 *len = 3;
3492                 return FILEID_INVALID;
3493         }
3494
3495         if (inode_unhashed(inode)) {
3496                 /* Unfortunately insert_inode_hash is not idempotent,
3497                  * so as we hash inodes here rather than at creation
3498                  * time, we need a lock to ensure we only try
3499                  * to do it once
3500                  */
3501                 static DEFINE_SPINLOCK(lock);
3502                 spin_lock(&lock);
3503                 if (inode_unhashed(inode))
3504                         __insert_inode_hash(inode,
3505                                             inode->i_ino + inode->i_generation);
3506                 spin_unlock(&lock);
3507         }
3508
3509         fh[0] = inode->i_generation;
3510         fh[1] = inode->i_ino;
3511         fh[2] = ((__u64)inode->i_ino) >> 32;
3512
3513         *len = 3;
3514         return 1;
3515 }
3516
3517 static const struct export_operations shmem_export_ops = {
3518         .get_parent     = shmem_get_parent,
3519         .encode_fh      = shmem_encode_fh,
3520         .fh_to_dentry   = shmem_fh_to_dentry,
3521 };
3522
3523 enum shmem_param {
3524         Opt_gid,
3525         Opt_huge,
3526         Opt_mode,
3527         Opt_mpol,
3528         Opt_nr_blocks,
3529         Opt_nr_inodes,
3530         Opt_size,
3531         Opt_uid,
3532         Opt_inode32,
3533         Opt_inode64,
3534 };
3535
3536 static const struct constant_table shmem_param_enums_huge[] = {
3537         {"never",       SHMEM_HUGE_NEVER },
3538         {"always",      SHMEM_HUGE_ALWAYS },
3539         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3540         {"advise",      SHMEM_HUGE_ADVISE },
3541         {}
3542 };
3543
3544 const struct fs_parameter_spec shmem_fs_parameters[] = {
3545         fsparam_u32   ("gid",           Opt_gid),
3546         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3547         fsparam_u32oct("mode",          Opt_mode),
3548         fsparam_string("mpol",          Opt_mpol),
3549         fsparam_string("nr_blocks",     Opt_nr_blocks),
3550         fsparam_string("nr_inodes",     Opt_nr_inodes),
3551         fsparam_string("size",          Opt_size),
3552         fsparam_u32   ("uid",           Opt_uid),
3553         fsparam_flag  ("inode32",       Opt_inode32),
3554         fsparam_flag  ("inode64",       Opt_inode64),
3555         {}
3556 };
3557
3558 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3559 {
3560         struct shmem_options *ctx = fc->fs_private;
3561         struct fs_parse_result result;
3562         unsigned long long size;
3563         char *rest;
3564         int opt;
3565
3566         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3567         if (opt < 0)
3568                 return opt;
3569
3570         switch (opt) {
3571         case Opt_size:
3572                 size = memparse(param->string, &rest);
3573                 if (*rest == '%') {
3574                         size <<= PAGE_SHIFT;
3575                         size *= totalram_pages();
3576                         do_div(size, 100);
3577                         rest++;
3578                 }
3579                 if (*rest)
3580                         goto bad_value;
3581                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3582                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3583                 break;
3584         case Opt_nr_blocks:
3585                 ctx->blocks = memparse(param->string, &rest);
3586                 if (*rest)
3587                         goto bad_value;
3588                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3589                 break;
3590         case Opt_nr_inodes:
3591                 ctx->inodes = memparse(param->string, &rest);
3592                 if (*rest)
3593                         goto bad_value;
3594                 ctx->seen |= SHMEM_SEEN_INODES;
3595                 break;
3596         case Opt_mode:
3597                 ctx->mode = result.uint_32 & 07777;
3598                 break;
3599         case Opt_uid:
3600                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3601                 if (!uid_valid(ctx->uid))
3602                         goto bad_value;
3603                 break;
3604         case Opt_gid:
3605                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3606                 if (!gid_valid(ctx->gid))
3607                         goto bad_value;
3608                 break;
3609         case Opt_huge:
3610                 ctx->huge = result.uint_32;
3611                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3612                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3613                       has_transparent_hugepage()))
3614                         goto unsupported_parameter;
3615                 ctx->seen |= SHMEM_SEEN_HUGE;
3616                 break;
3617         case Opt_mpol:
3618                 if (IS_ENABLED(CONFIG_NUMA)) {
3619                         mpol_put(ctx->mpol);
3620                         ctx->mpol = NULL;
3621                         if (mpol_parse_str(param->string, &ctx->mpol))
3622                                 goto bad_value;
3623                         break;
3624                 }
3625                 goto unsupported_parameter;
3626         case Opt_inode32:
3627                 ctx->full_inums = false;
3628                 ctx->seen |= SHMEM_SEEN_INUMS;
3629                 break;
3630         case Opt_inode64:
3631                 if (sizeof(ino_t) < 8) {
3632                         return invalfc(fc,
3633                                        "Cannot use inode64 with <64bit inums in kernel\n");
3634                 }
3635                 ctx->full_inums = true;
3636                 ctx->seen |= SHMEM_SEEN_INUMS;
3637                 break;
3638         }
3639         return 0;
3640
3641 unsupported_parameter:
3642         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3643 bad_value:
3644         return invalfc(fc, "Bad value for '%s'", param->key);
3645 }
3646
3647 static int shmem_parse_options(struct fs_context *fc, void *data)
3648 {
3649         char *options = data;
3650
3651         if (options) {
3652                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3653                 if (err)
3654                         return err;
3655         }
3656
3657         while (options != NULL) {
3658                 char *this_char = options;
3659                 for (;;) {
3660                         /*
3661                          * NUL-terminate this option: unfortunately,
3662                          * mount options form a comma-separated list,
3663                          * but mpol's nodelist may also contain commas.
3664                          */
3665                         options = strchr(options, ',');
3666                         if (options == NULL)
3667                                 break;
3668                         options++;
3669                         if (!isdigit(*options)) {
3670                                 options[-1] = '\0';
3671                                 break;
3672                         }
3673                 }
3674                 if (*this_char) {
3675                         char *value = strchr(this_char,'=');
3676                         size_t len = 0;
3677                         int err;
3678
3679                         if (value) {
3680                                 *value++ = '\0';
3681                                 len = strlen(value);
3682                         }
3683                         err = vfs_parse_fs_string(fc, this_char, value, len);
3684                         if (err < 0)
3685                                 return err;
3686                 }
3687         }
3688         return 0;
3689 }
3690
3691 /*
3692  * Reconfigure a shmem filesystem.
3693  *
3694  * Note that we disallow change from limited->unlimited blocks/inodes while any
3695  * are in use; but we must separately disallow unlimited->limited, because in
3696  * that case we have no record of how much is already in use.
3697  */
3698 static int shmem_reconfigure(struct fs_context *fc)
3699 {
3700         struct shmem_options *ctx = fc->fs_private;
3701         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3702         unsigned long inodes;
3703         const char *err;
3704
3705         spin_lock(&sbinfo->stat_lock);
3706         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3707         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3708                 if (!sbinfo->max_blocks) {
3709                         err = "Cannot retroactively limit size";
3710                         goto out;
3711                 }
3712                 if (percpu_counter_compare(&sbinfo->used_blocks,
3713                                            ctx->blocks) > 0) {
3714                         err = "Too small a size for current use";
3715                         goto out;
3716                 }
3717         }
3718         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3719                 if (!sbinfo->max_inodes) {
3720                         err = "Cannot retroactively limit inodes";
3721                         goto out;
3722                 }
3723                 if (ctx->inodes < inodes) {
3724                         err = "Too few inodes for current use";
3725                         goto out;
3726                 }
3727         }
3728
3729         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3730             sbinfo->next_ino > UINT_MAX) {
3731                 err = "Current inum too high to switch to 32-bit inums";
3732                 goto out;
3733         }
3734
3735         if (ctx->seen & SHMEM_SEEN_HUGE)
3736                 sbinfo->huge = ctx->huge;
3737         if (ctx->seen & SHMEM_SEEN_INUMS)
3738                 sbinfo->full_inums = ctx->full_inums;
3739         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3740                 sbinfo->max_blocks  = ctx->blocks;
3741         if (ctx->seen & SHMEM_SEEN_INODES) {
3742                 sbinfo->max_inodes  = ctx->inodes;
3743                 sbinfo->free_inodes = ctx->inodes - inodes;
3744         }
3745
3746         /*
3747          * Preserve previous mempolicy unless mpol remount option was specified.
3748          */
3749         if (ctx->mpol) {
3750                 mpol_put(sbinfo->mpol);
3751                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3752                 ctx->mpol = NULL;
3753         }
3754         spin_unlock(&sbinfo->stat_lock);
3755         return 0;
3756 out:
3757         spin_unlock(&sbinfo->stat_lock);
3758         return invalfc(fc, "%s", err);
3759 }
3760
3761 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3762 {
3763         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3764
3765         if (sbinfo->max_blocks != shmem_default_max_blocks())
3766                 seq_printf(seq, ",size=%luk",
3767                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3768         if (sbinfo->max_inodes != shmem_default_max_inodes())
3769                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3770         if (sbinfo->mode != (0777 | S_ISVTX))
3771                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3772         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3773                 seq_printf(seq, ",uid=%u",
3774                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3775         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3776                 seq_printf(seq, ",gid=%u",
3777                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3778
3779         /*
3780          * Showing inode{64,32} might be useful even if it's the system default,
3781          * since then people don't have to resort to checking both here and
3782          * /proc/config.gz to confirm 64-bit inums were successfully applied
3783          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3784          *
3785          * We hide it when inode64 isn't the default and we are using 32-bit
3786          * inodes, since that probably just means the feature isn't even under
3787          * consideration.
3788          *
3789          * As such:
3790          *
3791          *                     +-----------------+-----------------+
3792          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3793          *  +------------------+-----------------+-----------------+
3794          *  | full_inums=true  | show            | show            |
3795          *  | full_inums=false | show            | hide            |
3796          *  +------------------+-----------------+-----------------+
3797          *
3798          */
3799         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3800                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3802         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3803         if (sbinfo->huge)
3804                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3805 #endif
3806         shmem_show_mpol(seq, sbinfo->mpol);
3807         return 0;
3808 }
3809
3810 #endif /* CONFIG_TMPFS */
3811
3812 static void shmem_put_super(struct super_block *sb)
3813 {
3814         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3815
3816         free_percpu(sbinfo->ino_batch);
3817         percpu_counter_destroy(&sbinfo->used_blocks);
3818         mpol_put(sbinfo->mpol);
3819         kfree(sbinfo);
3820         sb->s_fs_info = NULL;
3821 }
3822
3823 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3824 {
3825         struct shmem_options *ctx = fc->fs_private;
3826         struct inode *inode;
3827         struct shmem_sb_info *sbinfo;
3828         int err = -ENOMEM;
3829
3830         /* Round up to L1_CACHE_BYTES to resist false sharing */
3831         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3832                                 L1_CACHE_BYTES), GFP_KERNEL);
3833         if (!sbinfo)
3834                 return -ENOMEM;
3835
3836         sb->s_fs_info = sbinfo;
3837
3838 #ifdef CONFIG_TMPFS
3839         /*
3840          * Per default we only allow half of the physical ram per
3841          * tmpfs instance, limiting inodes to one per page of lowmem;
3842          * but the internal instance is left unlimited.
3843          */
3844         if (!(sb->s_flags & SB_KERNMOUNT)) {
3845                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3846                         ctx->blocks = shmem_default_max_blocks();
3847                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3848                         ctx->inodes = shmem_default_max_inodes();
3849                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3850                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3851         } else {
3852                 sb->s_flags |= SB_NOUSER;
3853         }
3854         sb->s_export_op = &shmem_export_ops;
3855         sb->s_flags |= SB_NOSEC;
3856 #else
3857         sb->s_flags |= SB_NOUSER;
3858 #endif
3859         sbinfo->max_blocks = ctx->blocks;
3860         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3861         if (sb->s_flags & SB_KERNMOUNT) {
3862                 sbinfo->ino_batch = alloc_percpu(ino_t);
3863                 if (!sbinfo->ino_batch)
3864                         goto failed;
3865         }
3866         sbinfo->uid = ctx->uid;
3867         sbinfo->gid = ctx->gid;
3868         sbinfo->full_inums = ctx->full_inums;
3869         sbinfo->mode = ctx->mode;
3870         sbinfo->huge = ctx->huge;
3871         sbinfo->mpol = ctx->mpol;
3872         ctx->mpol = NULL;
3873
3874         spin_lock_init(&sbinfo->stat_lock);
3875         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3876                 goto failed;
3877         spin_lock_init(&sbinfo->shrinklist_lock);
3878         INIT_LIST_HEAD(&sbinfo->shrinklist);
3879
3880         sb->s_maxbytes = MAX_LFS_FILESIZE;
3881         sb->s_blocksize = PAGE_SIZE;
3882         sb->s_blocksize_bits = PAGE_SHIFT;
3883         sb->s_magic = TMPFS_MAGIC;
3884         sb->s_op = &shmem_ops;
3885         sb->s_time_gran = 1;
3886 #ifdef CONFIG_TMPFS_XATTR
3887         sb->s_xattr = shmem_xattr_handlers;
3888 #endif
3889 #ifdef CONFIG_TMPFS_POSIX_ACL
3890         sb->s_flags |= SB_POSIXACL;
3891 #endif
3892         uuid_gen(&sb->s_uuid);
3893
3894         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3895         if (!inode)
3896                 goto failed;
3897         inode->i_uid = sbinfo->uid;
3898         inode->i_gid = sbinfo->gid;
3899         sb->s_root = d_make_root(inode);
3900         if (!sb->s_root)
3901                 goto failed;
3902         return 0;
3903
3904 failed:
3905         shmem_put_super(sb);
3906         return err;
3907 }
3908
3909 static int shmem_get_tree(struct fs_context *fc)
3910 {
3911         return get_tree_nodev(fc, shmem_fill_super);
3912 }
3913
3914 static void shmem_free_fc(struct fs_context *fc)
3915 {
3916         struct shmem_options *ctx = fc->fs_private;
3917
3918         if (ctx) {
3919                 mpol_put(ctx->mpol);
3920                 kfree(ctx);
3921         }
3922 }
3923
3924 static const struct fs_context_operations shmem_fs_context_ops = {
3925         .free                   = shmem_free_fc,
3926         .get_tree               = shmem_get_tree,
3927 #ifdef CONFIG_TMPFS
3928         .parse_monolithic       = shmem_parse_options,
3929         .parse_param            = shmem_parse_one,
3930         .reconfigure            = shmem_reconfigure,
3931 #endif
3932 };
3933
3934 static struct kmem_cache *shmem_inode_cachep;
3935
3936 static struct inode *shmem_alloc_inode(struct super_block *sb)
3937 {
3938         struct shmem_inode_info *info;
3939         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3940         if (!info)
3941                 return NULL;
3942         return &info->vfs_inode;
3943 }
3944
3945 static void shmem_free_in_core_inode(struct inode *inode)
3946 {
3947         if (S_ISLNK(inode->i_mode))
3948                 kfree(inode->i_link);
3949         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3950 }
3951
3952 static void shmem_destroy_inode(struct inode *inode)
3953 {
3954         if (S_ISREG(inode->i_mode))
3955                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3956 }
3957
3958 static void shmem_init_inode(void *foo)
3959 {
3960         struct shmem_inode_info *info = foo;
3961         inode_init_once(&info->vfs_inode);
3962 }
3963
3964 static void shmem_init_inodecache(void)
3965 {
3966         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3967                                 sizeof(struct shmem_inode_info),
3968                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3969 }
3970
3971 static void shmem_destroy_inodecache(void)
3972 {
3973         kmem_cache_destroy(shmem_inode_cachep);
3974 }
3975
3976 static const struct address_space_operations shmem_aops = {
3977         .writepage      = shmem_writepage,
3978         .set_page_dirty = __set_page_dirty_no_writeback,
3979 #ifdef CONFIG_TMPFS
3980         .write_begin    = shmem_write_begin,
3981         .write_end      = shmem_write_end,
3982 #endif
3983 #ifdef CONFIG_MIGRATION
3984         .migratepage    = migrate_page,
3985 #endif
3986         .error_remove_page = generic_error_remove_page,
3987 };
3988
3989 static const struct file_operations shmem_file_operations = {
3990         .mmap           = shmem_mmap,
3991         .get_unmapped_area = shmem_get_unmapped_area,
3992 #ifdef CONFIG_TMPFS
3993         .llseek         = shmem_file_llseek,
3994         .read_iter      = shmem_file_read_iter,
3995         .write_iter     = generic_file_write_iter,
3996         .fsync          = noop_fsync,
3997         .splice_read    = generic_file_splice_read,
3998         .splice_write   = iter_file_splice_write,
3999         .fallocate      = shmem_fallocate,
4000 #endif
4001 };
4002
4003 static const struct inode_operations shmem_inode_operations = {
4004         .getattr        = shmem_getattr,
4005         .setattr        = shmem_setattr,
4006 #ifdef CONFIG_TMPFS_XATTR
4007         .listxattr      = shmem_listxattr,
4008         .set_acl        = simple_set_acl,
4009 #endif
4010 };
4011
4012 static const struct inode_operations shmem_dir_inode_operations = {
4013 #ifdef CONFIG_TMPFS
4014         .create         = shmem_create,
4015         .lookup         = simple_lookup,
4016         .link           = shmem_link,
4017         .unlink         = shmem_unlink,
4018         .symlink        = shmem_symlink,
4019         .mkdir          = shmem_mkdir,
4020         .rmdir          = shmem_rmdir,
4021         .mknod          = shmem_mknod,
4022         .rename         = shmem_rename2,
4023         .tmpfile        = shmem_tmpfile,
4024 #endif
4025 #ifdef CONFIG_TMPFS_XATTR
4026         .listxattr      = shmem_listxattr,
4027 #endif
4028 #ifdef CONFIG_TMPFS_POSIX_ACL
4029         .setattr        = shmem_setattr,
4030         .set_acl        = simple_set_acl,
4031 #endif
4032 };
4033
4034 static const struct inode_operations shmem_special_inode_operations = {
4035 #ifdef CONFIG_TMPFS_XATTR
4036         .listxattr      = shmem_listxattr,
4037 #endif
4038 #ifdef CONFIG_TMPFS_POSIX_ACL
4039         .setattr        = shmem_setattr,
4040         .set_acl        = simple_set_acl,
4041 #endif
4042 };
4043
4044 static const struct super_operations shmem_ops = {
4045         .alloc_inode    = shmem_alloc_inode,
4046         .free_inode     = shmem_free_in_core_inode,
4047         .destroy_inode  = shmem_destroy_inode,
4048 #ifdef CONFIG_TMPFS
4049         .statfs         = shmem_statfs,
4050         .show_options   = shmem_show_options,
4051 #endif
4052         .evict_inode    = shmem_evict_inode,
4053         .drop_inode     = generic_delete_inode,
4054         .put_super      = shmem_put_super,
4055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4056         .nr_cached_objects      = shmem_unused_huge_count,
4057         .free_cached_objects    = shmem_unused_huge_scan,
4058 #endif
4059 };
4060
4061 static const struct vm_operations_struct shmem_vm_ops = {
4062         .fault          = shmem_fault,
4063         .map_pages      = filemap_map_pages,
4064 #ifdef CONFIG_NUMA
4065         .set_policy     = shmem_set_policy,
4066         .get_policy     = shmem_get_policy,
4067 #endif
4068 };
4069
4070 int shmem_init_fs_context(struct fs_context *fc)
4071 {
4072         struct shmem_options *ctx;
4073
4074         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4075         if (!ctx)
4076                 return -ENOMEM;
4077
4078         ctx->mode = 0777 | S_ISVTX;
4079         ctx->uid = current_fsuid();
4080         ctx->gid = current_fsgid();
4081
4082         fc->fs_private = ctx;
4083         fc->ops = &shmem_fs_context_ops;
4084         return 0;
4085 }
4086
4087 static struct file_system_type shmem_fs_type = {
4088         .owner          = THIS_MODULE,
4089         .name           = "tmpfs",
4090         .init_fs_context = shmem_init_fs_context,
4091 #ifdef CONFIG_TMPFS
4092         .parameters     = shmem_fs_parameters,
4093 #endif
4094         .kill_sb        = kill_litter_super,
4095         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
4096 };
4097
4098 int __init shmem_init(void)
4099 {
4100         int error;
4101
4102         shmem_init_inodecache();
4103
4104         error = register_filesystem(&shmem_fs_type);
4105         if (error) {
4106                 pr_err("Could not register tmpfs\n");
4107                 goto out2;
4108         }
4109
4110         shm_mnt = kern_mount(&shmem_fs_type);
4111         if (IS_ERR(shm_mnt)) {
4112                 error = PTR_ERR(shm_mnt);
4113                 pr_err("Could not kern_mount tmpfs\n");
4114                 goto out1;
4115         }
4116
4117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4118         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4119                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4120         else
4121                 shmem_huge = 0; /* just in case it was patched */
4122 #endif
4123         return 0;
4124
4125 out1:
4126         unregister_filesystem(&shmem_fs_type);
4127 out2:
4128         shmem_destroy_inodecache();
4129         shm_mnt = ERR_PTR(error);
4130         return error;
4131 }
4132
4133 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4134 static ssize_t shmem_enabled_show(struct kobject *kobj,
4135                 struct kobj_attribute *attr, char *buf)
4136 {
4137         static const int values[] = {
4138                 SHMEM_HUGE_ALWAYS,
4139                 SHMEM_HUGE_WITHIN_SIZE,
4140                 SHMEM_HUGE_ADVISE,
4141                 SHMEM_HUGE_NEVER,
4142                 SHMEM_HUGE_DENY,
4143                 SHMEM_HUGE_FORCE,
4144         };
4145         int i, count;
4146
4147         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4148                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4149
4150                 count += sprintf(buf + count, fmt,
4151                                 shmem_format_huge(values[i]));
4152         }
4153         buf[count - 1] = '\n';
4154         return count;
4155 }
4156
4157 static ssize_t shmem_enabled_store(struct kobject *kobj,
4158                 struct kobj_attribute *attr, const char *buf, size_t count)
4159 {
4160         char tmp[16];
4161         int huge;
4162
4163         if (count + 1 > sizeof(tmp))
4164                 return -EINVAL;
4165         memcpy(tmp, buf, count);
4166         tmp[count] = '\0';
4167         if (count && tmp[count - 1] == '\n')
4168                 tmp[count - 1] = '\0';
4169
4170         huge = shmem_parse_huge(tmp);
4171         if (huge == -EINVAL)
4172                 return -EINVAL;
4173         if (!has_transparent_hugepage() &&
4174                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4175                 return -EINVAL;
4176
4177         shmem_huge = huge;
4178         if (shmem_huge > SHMEM_HUGE_DENY)
4179                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4180         return count;
4181 }
4182
4183 struct kobj_attribute shmem_enabled_attr =
4184         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4185 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4186
4187 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4188 bool shmem_huge_enabled(struct vm_area_struct *vma)
4189 {
4190         struct inode *inode = file_inode(vma->vm_file);
4191         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4192         loff_t i_size;
4193         pgoff_t off;
4194
4195         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4196             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4197                 return false;
4198         if (shmem_huge == SHMEM_HUGE_FORCE)
4199                 return true;
4200         if (shmem_huge == SHMEM_HUGE_DENY)
4201                 return false;
4202         switch (sbinfo->huge) {
4203                 case SHMEM_HUGE_NEVER:
4204                         return false;
4205                 case SHMEM_HUGE_ALWAYS:
4206                         return true;
4207                 case SHMEM_HUGE_WITHIN_SIZE:
4208                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4209                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4210                         if (i_size >= HPAGE_PMD_SIZE &&
4211                                         i_size >> PAGE_SHIFT >= off)
4212                                 return true;
4213 #ifdef CONFIG_FINEGRAINED_THP
4214                         off = round_up(vma->vm_pgoff, HPAGE_CONT_PTE_NR);
4215                         if (i_size >= HPAGE_CONT_PTE_SIZE &&
4216                                         i_size >> PAGE_SHIFT >= off)
4217                                 return true;
4218 #endif /* CONFIG_FINEGRAINED_THP */
4219                         fallthrough;
4220                 case SHMEM_HUGE_ADVISE:
4221                         /* TODO: implement fadvise() hints */
4222                         return (vma->vm_flags & VM_HUGEPAGE);
4223                 default:
4224                         VM_BUG_ON(1);
4225                         return false;
4226         }
4227 }
4228 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4229
4230 #else /* !CONFIG_SHMEM */
4231
4232 /*
4233  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4234  *
4235  * This is intended for small system where the benefits of the full
4236  * shmem code (swap-backed and resource-limited) are outweighed by
4237  * their complexity. On systems without swap this code should be
4238  * effectively equivalent, but much lighter weight.
4239  */
4240
4241 static struct file_system_type shmem_fs_type = {
4242         .name           = "tmpfs",
4243         .init_fs_context = ramfs_init_fs_context,
4244         .parameters     = ramfs_fs_parameters,
4245         .kill_sb        = kill_litter_super,
4246         .fs_flags       = FS_USERNS_MOUNT,
4247 };
4248
4249 int __init shmem_init(void)
4250 {
4251         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4252
4253         shm_mnt = kern_mount(&shmem_fs_type);
4254         BUG_ON(IS_ERR(shm_mnt));
4255
4256         return 0;
4257 }
4258
4259 int shmem_unuse(unsigned int type, bool frontswap,
4260                 unsigned long *fs_pages_to_unuse)
4261 {
4262         return 0;
4263 }
4264
4265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4266 {
4267         return 0;
4268 }
4269
4270 void shmem_unlock_mapping(struct address_space *mapping)
4271 {
4272 }
4273
4274 #ifdef CONFIG_MMU
4275 unsigned long shmem_get_unmapped_area(struct file *file,
4276                                       unsigned long addr, unsigned long len,
4277                                       unsigned long pgoff, unsigned long flags)
4278 {
4279         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4280 }
4281 #endif
4282
4283 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4284 {
4285         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4286 }
4287 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4288
4289 #define shmem_vm_ops                            generic_file_vm_ops
4290 #define shmem_file_operations                   ramfs_file_operations
4291 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4292 #define shmem_acct_size(flags, size)            0
4293 #define shmem_unacct_size(flags, size)          do {} while (0)
4294
4295 #endif /* CONFIG_SHMEM */
4296
4297 /* common code */
4298
4299 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4300                                        unsigned long flags, unsigned int i_flags)
4301 {
4302         struct inode *inode;
4303         struct file *res;
4304
4305         if (IS_ERR(mnt))
4306                 return ERR_CAST(mnt);
4307
4308         if (size < 0 || size > MAX_LFS_FILESIZE)
4309                 return ERR_PTR(-EINVAL);
4310
4311         if (shmem_acct_size(flags, size))
4312                 return ERR_PTR(-ENOMEM);
4313
4314         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4315                                 flags);
4316         if (unlikely(!inode)) {
4317                 shmem_unacct_size(flags, size);
4318                 return ERR_PTR(-ENOSPC);
4319         }
4320         inode->i_flags |= i_flags;
4321         inode->i_size = size;
4322         clear_nlink(inode);     /* It is unlinked */
4323         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4324         if (!IS_ERR(res))
4325                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4326                                 &shmem_file_operations);
4327         if (IS_ERR(res))
4328                 iput(inode);
4329         return res;
4330 }
4331
4332 /**
4333  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4334  *      kernel internal.  There will be NO LSM permission checks against the
4335  *      underlying inode.  So users of this interface must do LSM checks at a
4336  *      higher layer.  The users are the big_key and shm implementations.  LSM
4337  *      checks are provided at the key or shm level rather than the inode.
4338  * @name: name for dentry (to be seen in /proc/<pid>/maps
4339  * @size: size to be set for the file
4340  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4341  */
4342 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4343 {
4344         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4345 }
4346
4347 /**
4348  * shmem_file_setup - get an unlinked file living in tmpfs
4349  * @name: name for dentry (to be seen in /proc/<pid>/maps
4350  * @size: size to be set for the file
4351  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4352  */
4353 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4354 {
4355         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4356 }
4357 EXPORT_SYMBOL_GPL(shmem_file_setup);
4358
4359 /**
4360  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4361  * @mnt: the tmpfs mount where the file will be created
4362  * @name: name for dentry (to be seen in /proc/<pid>/maps
4363  * @size: size to be set for the file
4364  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4365  */
4366 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4367                                        loff_t size, unsigned long flags)
4368 {
4369         return __shmem_file_setup(mnt, name, size, flags, 0);
4370 }
4371 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4372
4373 /**
4374  * shmem_zero_setup - setup a shared anonymous mapping
4375  * @vma: the vma to be mmapped is prepared by do_mmap
4376  */
4377 int shmem_zero_setup(struct vm_area_struct *vma)
4378 {
4379         struct file *file;
4380         loff_t size = vma->vm_end - vma->vm_start;
4381
4382         /*
4383          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4384          * between XFS directory reading and selinux: since this file is only
4385          * accessible to the user through its mapping, use S_PRIVATE flag to
4386          * bypass file security, in the same way as shmem_kernel_file_setup().
4387          */
4388         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4389         if (IS_ERR(file))
4390                 return PTR_ERR(file);
4391
4392         if (vma->vm_file)
4393                 fput(vma->vm_file);
4394         vma->vm_file = file;
4395         vma->vm_ops = &shmem_vm_ops;
4396
4397         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4398                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4399                         (vma->vm_end & HPAGE_PMD_MASK)) {
4400                 khugepaged_enter(vma, vma->vm_flags);
4401         }
4402
4403         return 0;
4404 }
4405
4406 /**
4407  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4408  * @mapping:    the page's address_space
4409  * @index:      the page index
4410  * @gfp:        the page allocator flags to use if allocating
4411  *
4412  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4413  * with any new page allocations done using the specified allocation flags.
4414  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4415  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4416  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4417  *
4418  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4419  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4420  */
4421 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4422                                          pgoff_t index, gfp_t gfp)
4423 {
4424 #ifdef CONFIG_SHMEM
4425         struct inode *inode = mapping->host;
4426         struct page *page;
4427         int error;
4428
4429         BUG_ON(mapping->a_ops != &shmem_aops);
4430         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4431                                   gfp, NULL, NULL, NULL);
4432         if (error)
4433                 page = ERR_PTR(error);
4434         else
4435                 unlock_page(page);
4436         return page;
4437 #else
4438         /*
4439          * The tiny !SHMEM case uses ramfs without swap
4440          */
4441         return read_cache_page_gfp(mapping, index, gfp);
4442 #endif
4443 }
4444 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);