2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
43 static struct vfsmount *shm_mnt;
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_rwsem making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
125 static unsigned long shmem_default_max_blocks(void)
127 return totalram_pages() / 2;
130 static unsigned long shmem_default_max_inodes(void)
132 unsigned long nr_pages = totalram_pages();
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 struct vm_fault *vmf, vm_fault_t *fault_type);
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp)
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 return sb->s_fs_info;
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 return (flags & VM_NORESERVE) ?
168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 if (!(flags & VM_NORESERVE))
174 vm_unacct_memory(VM_ACCT(size));
177 static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 * ... whereas tmpfs objects are accounted incrementally as
192 * pages are allocated, in order to allow large sparse files.
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196 static inline int shmem_acct_block(unsigned long flags, long pages)
198 if (!(flags & VM_NORESERVE))
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 if (flags & VM_NORESERVE)
208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216 if (shmem_acct_block(info->flags, pages))
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
223 percpu_counter_add(&sbinfo->used_blocks, pages);
229 shmem_unacct_blocks(info->flags, pages);
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
252 bool vma_is_shmem(struct vm_area_struct *vma)
254 return vma->vm_ops == &shmem_vm_ops;
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
276 raw_spin_lock(&sbinfo->stat_lock);
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
279 raw_spin_unlock(&sbinfo->stat_lock);
282 sbinfo->free_inodes--;
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
288 if (unlikely(!sbinfo->full_inums &&
291 * Emulate get_next_ino uint wraparound for
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
302 raw_spin_unlock(&sbinfo->stat_lock);
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 raw_spin_lock(&sbinfo->stat_lock);
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
324 raw_spin_unlock(&sbinfo->stat_lock);
325 if (unlikely(is_zero_ino(ino)))
336 static void shmem_free_inode(struct super_block *sb)
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
340 raw_spin_lock(&sbinfo->stat_lock);
341 sbinfo->free_inodes++;
342 raw_spin_unlock(&sbinfo->stat_lock);
347 * shmem_recalc_inode - recalculate the block usage of an inode
348 * @inode: inode to recalc
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356 * It has to be called with the spinlock held.
358 static void shmem_recalc_inode(struct inode *inode)
360 struct shmem_inode_info *info = SHMEM_I(inode);
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 info->alloced -= freed;
366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 shmem_inode_unacct_blocks(inode, freed);
371 bool shmem_charge(struct inode *inode, long pages)
373 struct shmem_inode_info *info = SHMEM_I(inode);
376 if (!shmem_inode_acct_block(inode, pages))
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
382 spin_lock_irqsave(&info->lock, flags);
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
386 spin_unlock_irqrestore(&info->lock, flags);
391 void shmem_uncharge(struct inode *inode, long pages)
393 struct shmem_inode_info *info = SHMEM_I(inode);
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
398 spin_lock_irqsave(&info->lock, flags);
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
402 spin_unlock_irqrestore(&info->lock, flags);
404 shmem_inode_unacct_blocks(inode, pages);
408 * Replace item expected in xarray by a new item, while holding xa_lock.
410 static int shmem_replace_entry(struct address_space *mapping,
411 pgoff_t index, void *expected, void *replacement)
413 XA_STATE(xas, &mapping->i_pages, index);
416 VM_BUG_ON(!expected);
417 VM_BUG_ON(!replacement);
418 item = xas_load(&xas);
419 if (item != expected)
421 xas_store(&xas, replacement);
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442 * disables huge pages for the mount;
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
449 * only allocate huge pages if requested with fadvise()/madvise();
452 #define SHMEM_HUGE_NEVER 0
453 #define SHMEM_HUGE_ALWAYS 1
454 #define SHMEM_HUGE_WITHIN_SIZE 2
455 #define SHMEM_HUGE_ADVISE 3
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462 * disables huge on shm_mnt and all mounts, for emergency use;
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467 #define SHMEM_HUGE_DENY (-1)
468 #define SHMEM_HUGE_FORCE (-2)
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
480 if (shmem_huge == SHMEM_HUGE_DENY)
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 if (shmem_huge == SHMEM_HUGE_FORCE)
488 switch (SHMEM_SB(inode->i_sb)->huge) {
489 case SHMEM_HUGE_ALWAYS:
491 case SHMEM_HUGE_WITHIN_SIZE:
492 index = round_up(index + 1, HPAGE_PMD_NR);
493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 if (i_size >> PAGE_SHIFT >= index)
497 case SHMEM_HUGE_ADVISE:
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
529 case SHMEM_HUGE_NEVER:
531 case SHMEM_HUGE_ALWAYS:
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
537 case SHMEM_HUGE_DENY:
539 case SHMEM_HUGE_FORCE:
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
551 LIST_HEAD(list), *pos, *next;
552 LIST_HEAD(to_remove);
554 struct shmem_inode_info *info;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 int removed = 0, split = 0;
559 if (list_empty(&sbinfo->shrinklist))
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 inode = igrab(&info->vfs_inode);
569 /* inode is about to be evicted */
571 list_del_init(&info->shrinklist);
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
584 list_move(&info->shrinklist, &list);
589 spin_unlock(&sbinfo->shrinklist_lock);
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
598 list_for_each_safe(pos, next, &list) {
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
604 if (nr_to_split && split >= nr_to_split)
607 page = find_get_page(inode->i_mapping,
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
612 /* No huge page at the end of the file: nothing to split */
613 if (!PageTransHuge(page)) {
619 * Leave the inode on the list if we failed to lock
620 * the page at this time.
622 * Waiting for the lock may lead to deadlock in the
625 if (!trylock_page(page)) {
630 ret = split_huge_page(page);
634 /* If split failed leave the inode on the list */
640 list_del_init(&info->shrinklist);
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_splice_tail(&list, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len -= removed;
649 spin_unlock(&sbinfo->shrinklist_lock);
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 struct shrink_control *sc)
657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659 if (!READ_ONCE(sbinfo->shrinklist_len))
662 return shmem_unused_huge_shrink(sbinfo, sc, 0);
665 static long shmem_unused_huge_count(struct super_block *sb,
666 struct shrink_control *sc)
668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 return READ_ONCE(sbinfo->shrinklist_len);
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
673 #define shmem_huge SHMEM_HUGE_DENY
675 bool shmem_is_huge(struct vm_area_struct *vma,
676 struct inode *inode, pgoff_t index)
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 struct shrink_control *sc, unsigned long nr_to_split)
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
689 * Like add_to_page_cache_locked, but error if expected item has gone.
691 static int shmem_add_to_page_cache(struct page *page,
692 struct address_space *mapping,
693 pgoff_t index, void *expected, gfp_t gfp,
694 struct mm_struct *charge_mm)
696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698 unsigned long nr = compound_nr(page);
701 VM_BUG_ON_PAGE(PageTail(page), page);
702 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 VM_BUG_ON_PAGE(!PageLocked(page), page);
704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 VM_BUG_ON(expected && PageTransHuge(page));
707 page_ref_add(page, nr);
708 page->mapping = mapping;
711 if (!PageSwapCache(page)) {
712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_FALLBACK);
716 count_vm_event(THP_FILE_FALLBACK_CHARGE);
721 cgroup_throttle_swaprate(page, gfp);
726 entry = xas_find_conflict(&xas);
727 if (entry != expected)
728 xas_set_err(&xas, -EEXIST);
729 xas_create_range(&xas);
733 xas_store(&xas, page);
738 if (PageTransHuge(page)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742 mapping->nrpages += nr;
743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 __mod_lruvec_page_state(page, NR_SHMEM, nr);
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
756 page->mapping = NULL;
757 page_ref_sub(page, nr);
762 * Like delete_from_page_cache, but substitutes swap for page.
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 struct address_space *mapping = page->mapping;
769 VM_BUG_ON_PAGE(PageCompound(page), page);
771 xa_lock_irq(&mapping->i_pages);
772 error = shmem_replace_entry(mapping, page->index, page, radswap);
773 page->mapping = NULL;
775 __dec_lruvec_page_state(page, NR_FILE_PAGES);
776 __dec_lruvec_page_state(page, NR_SHMEM);
777 xa_unlock_irq(&mapping->i_pages);
783 * Remove swap entry from page cache, free the swap and its page cache.
785 static int shmem_free_swap(struct address_space *mapping,
786 pgoff_t index, void *radswap)
790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
793 free_swap_and_cache(radix_to_swp_entry(radswap));
798 * Determine (in bytes) how many of the shmem object's pages mapped by the
799 * given offsets are swapped out.
801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802 * as long as the inode doesn't go away and racy results are not a problem.
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 pgoff_t start, pgoff_t end)
807 XA_STATE(xas, &mapping->i_pages, start);
809 unsigned long swapped = 0;
812 xas_for_each(&xas, page, end - 1) {
813 if (xas_retry(&xas, page))
815 if (xa_is_value(page))
818 if (need_resched()) {
826 return swapped << PAGE_SHIFT;
830 * Determine (in bytes) how many of the shmem object's pages mapped by the
831 * given vma is swapped out.
833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834 * as long as the inode doesn't go away and racy results are not a problem.
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 struct inode *inode = file_inode(vma->vm_file);
839 struct shmem_inode_info *info = SHMEM_I(inode);
840 struct address_space *mapping = inode->i_mapping;
841 unsigned long swapped;
843 /* Be careful as we don't hold info->lock */
844 swapped = READ_ONCE(info->swapped);
847 * The easier cases are when the shmem object has nothing in swap, or
848 * the vma maps it whole. Then we can simply use the stats that we
854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 return swapped << PAGE_SHIFT;
857 /* Here comes the more involved part */
858 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859 vma->vm_pgoff + vma_pages(vma));
863 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865 void shmem_unlock_mapping(struct address_space *mapping)
872 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 while (!mapping_unevictable(mapping)) {
875 if (!pagevec_lookup(&pvec, mapping, &index))
877 check_move_unevictable_pages(&pvec);
878 pagevec_release(&pvec);
884 * Check whether a hole-punch or truncation needs to split a huge page,
885 * returning true if no split was required, or the split has been successful.
887 * Eviction (or truncation to 0 size) should never need to split a huge page;
888 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
889 * head, and then succeeded to trylock on tail.
891 * A split can only succeed when there are no additional references on the
892 * huge page: so the split below relies upon find_get_entries() having stopped
893 * when it found a subpage of the huge page, without getting further references.
895 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 if (!PageTransCompound(page))
900 /* Just proceed to delete a huge page wholly within the range punched */
901 if (PageHead(page) &&
902 page->index >= start && page->index + HPAGE_PMD_NR <= end)
905 /* Try to split huge page, so we can truly punch the hole or truncate */
906 return split_huge_page(page) >= 0;
910 * Remove range of pages and swap entries from page cache, and free them.
911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916 struct address_space *mapping = inode->i_mapping;
917 struct shmem_inode_info *info = SHMEM_I(inode);
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
921 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923 pgoff_t indices[PAGEVEC_SIZE];
924 long nr_swaps_freed = 0;
929 end = -1; /* unsigned, so actually very big */
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
936 while (index < end && find_lock_entries(mapping, index, end - 1,
938 for (i = 0; i < pagevec_count(&pvec); i++) {
939 struct page *page = pvec.pages[i];
943 if (xa_is_value(page)) {
946 nr_swaps_freed += !shmem_free_swap(mapping,
950 index += thp_nr_pages(page) - 1;
952 if (!unfalloc || !PageUptodate(page))
953 truncate_inode_page(mapping, page);
956 pagevec_remove_exceptionals(&pvec);
957 pagevec_release(&pvec);
963 struct page *page = NULL;
964 shmem_getpage(inode, start - 1, &page, SGP_READ);
966 unsigned int top = PAGE_SIZE;
971 zero_user_segment(page, partial_start, top);
972 set_page_dirty(page);
978 struct page *page = NULL;
979 shmem_getpage(inode, end, &page, SGP_READ);
981 zero_user_segment(page, 0, partial_end);
982 set_page_dirty(page);
991 while (index < end) {
994 if (!find_get_entries(mapping, index, end - 1, &pvec,
996 /* If all gone or hole-punch or unfalloc, we're done */
997 if (index == start || end != -1)
999 /* But if truncating, restart to make sure all gone */
1003 for (i = 0; i < pagevec_count(&pvec); i++) {
1004 struct page *page = pvec.pages[i];
1007 if (xa_is_value(page)) {
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1021 if (!unfalloc || !PageUptodate(page)) {
1022 if (page_mapping(page) != mapping) {
1023 /* Page was replaced by swap: retry */
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1037 round_up(start, HPAGE_PMD_NR))
1043 pagevec_remove_exceptionals(&pvec);
1044 pagevec_release(&pvec);
1048 spin_lock_irq(&info->lock);
1049 info->swapped -= nr_swaps_freed;
1050 shmem_recalc_inode(inode);
1051 spin_unlock_irq(&info->lock);
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 shmem_undo_range(inode, lstart, lend, false);
1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061 static int shmem_getattr(struct user_namespace *mnt_userns,
1062 const struct path *path, struct kstat *stat,
1063 u32 request_mask, unsigned int query_flags)
1065 struct inode *inode = path->dentry->d_inode;
1066 struct shmem_inode_info *info = SHMEM_I(inode);
1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 spin_lock_irq(&info->lock);
1070 shmem_recalc_inode(inode);
1071 spin_unlock_irq(&info->lock);
1073 generic_fillattr(&init_user_ns, inode, stat);
1075 if (shmem_is_huge(NULL, inode, 0))
1076 stat->blksize = HPAGE_PMD_SIZE;
1081 static int shmem_setattr(struct user_namespace *mnt_userns,
1082 struct dentry *dentry, struct iattr *attr)
1084 struct inode *inode = d_inode(dentry);
1085 struct shmem_inode_info *info = SHMEM_I(inode);
1088 error = setattr_prepare(&init_user_ns, dentry, attr);
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
1096 /* protected by i_rwsem */
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 if (newsize != oldsize) {
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1106 i_size_write(inode, newsize);
1107 inode->i_ctime = inode->i_mtime = current_time(inode);
1109 if (newsize <= oldsize) {
1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
1117 /* unmap again to remove racily COWed private pages */
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1124 setattr_copy(&init_user_ns, inode, attr);
1125 if (attr->ia_valid & ATTR_MODE)
1126 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1130 static void shmem_evict_inode(struct inode *inode)
1132 struct shmem_inode_info *info = SHMEM_I(inode);
1133 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135 if (shmem_mapping(inode->i_mapping)) {
1136 shmem_unacct_size(info->flags, inode->i_size);
1138 shmem_truncate_range(inode, 0, (loff_t)-1);
1139 if (!list_empty(&info->shrinklist)) {
1140 spin_lock(&sbinfo->shrinklist_lock);
1141 if (!list_empty(&info->shrinklist)) {
1142 list_del_init(&info->shrinklist);
1143 sbinfo->shrinklist_len--;
1145 spin_unlock(&sbinfo->shrinklist_lock);
1147 while (!list_empty(&info->swaplist)) {
1148 /* Wait while shmem_unuse() is scanning this inode... */
1149 wait_var_event(&info->stop_eviction,
1150 !atomic_read(&info->stop_eviction));
1151 mutex_lock(&shmem_swaplist_mutex);
1152 /* ...but beware of the race if we peeked too early */
1153 if (!atomic_read(&info->stop_eviction))
1154 list_del_init(&info->swaplist);
1155 mutex_unlock(&shmem_swaplist_mutex);
1159 simple_xattrs_free(&info->xattrs);
1160 WARN_ON(inode->i_blocks);
1161 shmem_free_inode(inode->i_sb);
1165 static int shmem_find_swap_entries(struct address_space *mapping,
1166 pgoff_t start, unsigned int nr_entries,
1167 struct page **entries, pgoff_t *indices,
1168 unsigned int type, bool frontswap)
1170 XA_STATE(xas, &mapping->i_pages, start);
1173 unsigned int ret = 0;
1179 xas_for_each(&xas, page, ULONG_MAX) {
1180 if (xas_retry(&xas, page))
1183 if (!xa_is_value(page))
1186 entry = radix_to_swp_entry(page);
1187 if (swp_type(entry) != type)
1190 !frontswap_test(swap_info[type], swp_offset(entry)))
1193 indices[ret] = xas.xa_index;
1194 entries[ret] = page;
1196 if (need_resched()) {
1200 if (++ret == nr_entries)
1209 * Move the swapped pages for an inode to page cache. Returns the count
1210 * of pages swapped in, or the error in case of failure.
1212 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1218 struct address_space *mapping = inode->i_mapping;
1220 for (i = 0; i < pvec.nr; i++) {
1221 struct page *page = pvec.pages[i];
1223 if (!xa_is_value(page))
1225 error = shmem_swapin_page(inode, indices[i],
1227 mapping_gfp_mask(mapping),
1234 if (error == -ENOMEM)
1238 return error ? error : ret;
1242 * If swap found in inode, free it and move page from swapcache to filecache.
1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1245 bool frontswap, unsigned long *fs_pages_to_unuse)
1247 struct address_space *mapping = inode->i_mapping;
1249 struct pagevec pvec;
1250 pgoff_t indices[PAGEVEC_SIZE];
1251 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1254 pagevec_init(&pvec);
1256 unsigned int nr_entries = PAGEVEC_SIZE;
1258 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1259 nr_entries = *fs_pages_to_unuse;
1261 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1262 pvec.pages, indices,
1269 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1273 if (frontswap_partial) {
1274 *fs_pages_to_unuse -= ret;
1275 if (*fs_pages_to_unuse == 0) {
1276 ret = FRONTSWAP_PAGES_UNUSED;
1281 start = indices[pvec.nr - 1];
1288 * Read all the shared memory data that resides in the swap
1289 * device 'type' back into memory, so the swap device can be
1292 int shmem_unuse(unsigned int type, bool frontswap,
1293 unsigned long *fs_pages_to_unuse)
1295 struct shmem_inode_info *info, *next;
1298 if (list_empty(&shmem_swaplist))
1301 mutex_lock(&shmem_swaplist_mutex);
1302 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1303 if (!info->swapped) {
1304 list_del_init(&info->swaplist);
1308 * Drop the swaplist mutex while searching the inode for swap;
1309 * but before doing so, make sure shmem_evict_inode() will not
1310 * remove placeholder inode from swaplist, nor let it be freed
1311 * (igrab() would protect from unlink, but not from unmount).
1313 atomic_inc(&info->stop_eviction);
1314 mutex_unlock(&shmem_swaplist_mutex);
1316 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1320 mutex_lock(&shmem_swaplist_mutex);
1321 next = list_next_entry(info, swaplist);
1323 list_del_init(&info->swaplist);
1324 if (atomic_dec_and_test(&info->stop_eviction))
1325 wake_up_var(&info->stop_eviction);
1329 mutex_unlock(&shmem_swaplist_mutex);
1335 * Move the page from the page cache to the swap cache.
1337 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 struct shmem_inode_info *info;
1340 struct address_space *mapping;
1341 struct inode *inode;
1346 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1347 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1348 * and its shmem_writeback() needs them to be split when swapping.
1350 if (PageTransCompound(page)) {
1351 /* Ensure the subpages are still dirty */
1353 if (split_huge_page(page) < 0)
1355 ClearPageDirty(page);
1358 BUG_ON(!PageLocked(page));
1359 mapping = page->mapping;
1360 index = page->index;
1361 inode = mapping->host;
1362 info = SHMEM_I(inode);
1363 if (info->flags & VM_LOCKED)
1365 if (!total_swap_pages)
1369 * Our capabilities prevent regular writeback or sync from ever calling
1370 * shmem_writepage; but a stacking filesystem might use ->writepage of
1371 * its underlying filesystem, in which case tmpfs should write out to
1372 * swap only in response to memory pressure, and not for the writeback
1375 if (!wbc->for_reclaim) {
1376 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1381 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1382 * value into swapfile.c, the only way we can correctly account for a
1383 * fallocated page arriving here is now to initialize it and write it.
1385 * That's okay for a page already fallocated earlier, but if we have
1386 * not yet completed the fallocation, then (a) we want to keep track
1387 * of this page in case we have to undo it, and (b) it may not be a
1388 * good idea to continue anyway, once we're pushing into swap. So
1389 * reactivate the page, and let shmem_fallocate() quit when too many.
1391 if (!PageUptodate(page)) {
1392 if (inode->i_private) {
1393 struct shmem_falloc *shmem_falloc;
1394 spin_lock(&inode->i_lock);
1395 shmem_falloc = inode->i_private;
1397 !shmem_falloc->waitq &&
1398 index >= shmem_falloc->start &&
1399 index < shmem_falloc->next)
1400 shmem_falloc->nr_unswapped++;
1402 shmem_falloc = NULL;
1403 spin_unlock(&inode->i_lock);
1407 clear_highpage(page);
1408 flush_dcache_page(page);
1409 SetPageUptodate(page);
1412 swap = get_swap_page(page);
1417 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1418 * if it's not already there. Do it now before the page is
1419 * moved to swap cache, when its pagelock no longer protects
1420 * the inode from eviction. But don't unlock the mutex until
1421 * we've incremented swapped, because shmem_unuse_inode() will
1422 * prune a !swapped inode from the swaplist under this mutex.
1424 mutex_lock(&shmem_swaplist_mutex);
1425 if (list_empty(&info->swaplist))
1426 list_add(&info->swaplist, &shmem_swaplist);
1428 if (add_to_swap_cache(page, swap,
1429 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 spin_lock_irq(&info->lock);
1432 shmem_recalc_inode(inode);
1434 spin_unlock_irq(&info->lock);
1436 swap_shmem_alloc(swap);
1437 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439 mutex_unlock(&shmem_swaplist_mutex);
1440 BUG_ON(page_mapped(page));
1441 swap_writepage(page, wbc);
1445 mutex_unlock(&shmem_swaplist_mutex);
1446 put_swap_page(page, swap);
1448 set_page_dirty(page);
1449 if (wbc->for_reclaim)
1450 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1455 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1456 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1460 if (!mpol || mpol->mode == MPOL_DEFAULT)
1461 return; /* show nothing */
1463 mpol_to_str(buffer, sizeof(buffer), mpol);
1465 seq_printf(seq, ",mpol=%s", buffer);
1468 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 struct mempolicy *mpol = NULL;
1472 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1473 mpol = sbinfo->mpol;
1475 raw_spin_unlock(&sbinfo->stat_lock);
1479 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1480 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1483 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1487 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #define vm_policy vm_private_data
1492 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1493 struct shmem_inode_info *info, pgoff_t index)
1495 /* Create a pseudo vma that just contains the policy */
1496 vma_init(vma, NULL);
1497 /* Bias interleave by inode number to distribute better across nodes */
1498 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1499 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1502 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 /* Drop reference taken by mpol_shared_policy_lookup() */
1505 mpol_cond_put(vma->vm_policy);
1508 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1509 struct shmem_inode_info *info, pgoff_t index)
1511 struct vm_area_struct pvma;
1513 struct vm_fault vmf = {
1517 shmem_pseudo_vma_init(&pvma, info, index);
1518 page = swap_cluster_readahead(swap, gfp, &vmf);
1519 shmem_pseudo_vma_destroy(&pvma);
1525 * Make sure huge_gfp is always more limited than limit_gfp.
1526 * Some of the flags set permissions, while others set limitations.
1528 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1531 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1532 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1533 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535 /* Allow allocations only from the originally specified zones. */
1536 result |= zoneflags;
1539 * Minimize the result gfp by taking the union with the deny flags,
1540 * and the intersection of the allow flags.
1542 result |= (limit_gfp & denyflags);
1543 result |= (huge_gfp & limit_gfp) & allowflags;
1548 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1549 struct shmem_inode_info *info, pgoff_t index)
1551 struct vm_area_struct pvma;
1552 struct address_space *mapping = info->vfs_inode.i_mapping;
1556 hindex = round_down(index, HPAGE_PMD_NR);
1557 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1561 shmem_pseudo_vma_init(&pvma, info, hindex);
1562 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 shmem_pseudo_vma_destroy(&pvma);
1566 prep_transhuge_page(page);
1568 count_vm_event(THP_FILE_FALLBACK);
1572 static struct page *shmem_alloc_page(gfp_t gfp,
1573 struct shmem_inode_info *info, pgoff_t index)
1575 struct vm_area_struct pvma;
1578 shmem_pseudo_vma_init(&pvma, info, index);
1579 page = alloc_page_vma(gfp, &pvma, 0);
1580 shmem_pseudo_vma_destroy(&pvma);
1585 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1586 struct inode *inode,
1587 pgoff_t index, bool huge)
1589 struct shmem_inode_info *info = SHMEM_I(inode);
1594 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596 nr = huge ? HPAGE_PMD_NR : 1;
1598 if (!shmem_inode_acct_block(inode, nr))
1602 page = shmem_alloc_hugepage(gfp, info, index);
1604 page = shmem_alloc_page(gfp, info, index);
1606 __SetPageLocked(page);
1607 __SetPageSwapBacked(page);
1612 shmem_inode_unacct_blocks(inode, nr);
1614 return ERR_PTR(err);
1618 * When a page is moved from swapcache to shmem filecache (either by the
1619 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1620 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621 * ignorance of the mapping it belongs to. If that mapping has special
1622 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623 * we may need to copy to a suitable page before moving to filecache.
1625 * In a future release, this may well be extended to respect cpuset and
1626 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627 * but for now it is a simple matter of zone.
1629 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 return page_zonenum(page) > gfp_zone(gfp);
1634 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1635 struct shmem_inode_info *info, pgoff_t index)
1637 struct page *oldpage, *newpage;
1638 struct folio *old, *new;
1639 struct address_space *swap_mapping;
1645 entry.val = page_private(oldpage);
1646 swap_index = swp_offset(entry);
1647 swap_mapping = page_mapping(oldpage);
1650 * We have arrived here because our zones are constrained, so don't
1651 * limit chance of success by further cpuset and node constraints.
1653 gfp &= ~GFP_CONSTRAINT_MASK;
1654 newpage = shmem_alloc_page(gfp, info, index);
1659 copy_highpage(newpage, oldpage);
1660 flush_dcache_page(newpage);
1662 __SetPageLocked(newpage);
1663 __SetPageSwapBacked(newpage);
1664 SetPageUptodate(newpage);
1665 set_page_private(newpage, entry.val);
1666 SetPageSwapCache(newpage);
1669 * Our caller will very soon move newpage out of swapcache, but it's
1670 * a nice clean interface for us to replace oldpage by newpage there.
1672 xa_lock_irq(&swap_mapping->i_pages);
1673 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675 old = page_folio(oldpage);
1676 new = page_folio(newpage);
1677 mem_cgroup_migrate(old, new);
1678 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1681 xa_unlock_irq(&swap_mapping->i_pages);
1683 if (unlikely(error)) {
1685 * Is this possible? I think not, now that our callers check
1686 * both PageSwapCache and page_private after getting page lock;
1687 * but be defensive. Reverse old to newpage for clear and free.
1691 lru_cache_add(newpage);
1695 ClearPageSwapCache(oldpage);
1696 set_page_private(oldpage, 0);
1698 unlock_page(oldpage);
1705 * Swap in the page pointed to by *pagep.
1706 * Caller has to make sure that *pagep contains a valid swapped page.
1707 * Returns 0 and the page in pagep if success. On failure, returns the
1708 * error code and NULL in *pagep.
1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 struct page **pagep, enum sgp_type sgp,
1712 gfp_t gfp, struct vm_area_struct *vma,
1713 vm_fault_t *fault_type)
1715 struct address_space *mapping = inode->i_mapping;
1716 struct shmem_inode_info *info = SHMEM_I(inode);
1717 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 swap = radix_to_swp_entry(*pagep);
1726 /* Look it up and read it in.. */
1727 page = lookup_swap_cache(swap, NULL, 0);
1729 /* Or update major stats only when swapin succeeds?? */
1731 *fault_type |= VM_FAULT_MAJOR;
1732 count_vm_event(PGMAJFAULT);
1733 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1735 /* Here we actually start the io */
1736 page = shmem_swapin(swap, gfp, info, index);
1743 /* We have to do this with page locked to prevent races */
1745 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 !shmem_confirm_swap(mapping, index, swap)) {
1750 if (!PageUptodate(page)) {
1754 wait_on_page_writeback(page);
1757 * Some architectures may have to restore extra metadata to the
1758 * physical page after reading from swap.
1760 arch_swap_restore(swap, page);
1762 if (shmem_should_replace_page(page, gfp)) {
1763 error = shmem_replace_page(&page, gfp, info, index);
1768 error = shmem_add_to_page_cache(page, mapping, index,
1769 swp_to_radix_entry(swap), gfp,
1774 spin_lock_irq(&info->lock);
1776 shmem_recalc_inode(inode);
1777 spin_unlock_irq(&info->lock);
1779 if (sgp == SGP_WRITE)
1780 mark_page_accessed(page);
1782 delete_from_swap_cache(page);
1783 set_page_dirty(page);
1789 if (!shmem_confirm_swap(mapping, index, swap))
1801 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1803 * If we allocate a new one we do not mark it dirty. That's up to the
1804 * vm. If we swap it in we mark it dirty since we also free the swap
1805 * entry since a page cannot live in both the swap and page cache.
1807 * vma, vmf, and fault_type are only supplied by shmem_fault:
1808 * otherwise they are NULL.
1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812 struct vm_area_struct *vma, struct vm_fault *vmf,
1813 vm_fault_t *fault_type)
1815 struct address_space *mapping = inode->i_mapping;
1816 struct shmem_inode_info *info = SHMEM_I(inode);
1817 struct shmem_sb_info *sbinfo;
1818 struct mm_struct *charge_mm;
1820 pgoff_t hindex = index;
1826 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1829 if (sgp <= SGP_CACHE &&
1830 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1834 sbinfo = SHMEM_SB(inode->i_sb);
1835 charge_mm = vma ? vma->vm_mm : NULL;
1837 page = pagecache_get_page(mapping, index,
1838 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1840 if (page && vma && userfaultfd_minor(vma)) {
1841 if (!xa_is_value(page)) {
1845 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1849 if (xa_is_value(page)) {
1850 error = shmem_swapin_page(inode, index, &page,
1851 sgp, gfp, vma, fault_type);
1852 if (error == -EEXIST)
1860 hindex = page->index;
1861 if (sgp == SGP_WRITE)
1862 mark_page_accessed(page);
1863 if (PageUptodate(page))
1865 /* fallocated page */
1866 if (sgp != SGP_READ)
1873 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1874 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1877 if (sgp == SGP_READ)
1879 if (sgp == SGP_NOALLOC)
1883 * Fast cache lookup and swap lookup did not find it: allocate.
1886 if (vma && userfaultfd_missing(vma)) {
1887 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1891 /* Never use a huge page for shmem_symlink() */
1892 if (S_ISLNK(inode->i_mode))
1894 if (!shmem_is_huge(vma, inode, index))
1897 huge_gfp = vma_thp_gfp_mask(vma);
1898 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1899 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1902 page = shmem_alloc_and_acct_page(gfp, inode,
1908 error = PTR_ERR(page);
1910 if (error != -ENOSPC)
1913 * Try to reclaim some space by splitting a huge page
1914 * beyond i_size on the filesystem.
1919 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1920 if (ret == SHRINK_STOP)
1928 if (PageTransHuge(page))
1929 hindex = round_down(index, HPAGE_PMD_NR);
1933 if (sgp == SGP_WRITE)
1934 __SetPageReferenced(page);
1936 error = shmem_add_to_page_cache(page, mapping, hindex,
1937 NULL, gfp & GFP_RECLAIM_MASK,
1941 lru_cache_add(page);
1943 spin_lock_irq(&info->lock);
1944 info->alloced += compound_nr(page);
1945 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1946 shmem_recalc_inode(inode);
1947 spin_unlock_irq(&info->lock);
1950 if (PageTransHuge(page) &&
1951 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1952 hindex + HPAGE_PMD_NR - 1) {
1954 * Part of the huge page is beyond i_size: subject
1955 * to shrink under memory pressure.
1957 spin_lock(&sbinfo->shrinklist_lock);
1959 * _careful to defend against unlocked access to
1960 * ->shrink_list in shmem_unused_huge_shrink()
1962 if (list_empty_careful(&info->shrinklist)) {
1963 list_add_tail(&info->shrinklist,
1964 &sbinfo->shrinklist);
1965 sbinfo->shrinklist_len++;
1967 spin_unlock(&sbinfo->shrinklist_lock);
1971 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1973 if (sgp == SGP_FALLOC)
1977 * Let SGP_WRITE caller clear ends if write does not fill page;
1978 * but SGP_FALLOC on a page fallocated earlier must initialize
1979 * it now, lest undo on failure cancel our earlier guarantee.
1981 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1984 for (i = 0; i < compound_nr(page); i++) {
1985 clear_highpage(page + i);
1986 flush_dcache_page(page + i);
1988 SetPageUptodate(page);
1991 /* Perhaps the file has been truncated since we checked */
1992 if (sgp <= SGP_CACHE &&
1993 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1995 ClearPageDirty(page);
1996 delete_from_page_cache(page);
1997 spin_lock_irq(&info->lock);
1998 shmem_recalc_inode(inode);
1999 spin_unlock_irq(&info->lock);
2005 *pagep = page + index - hindex;
2012 shmem_inode_unacct_blocks(inode, compound_nr(page));
2014 if (PageTransHuge(page)) {
2024 if (error == -ENOSPC && !once++) {
2025 spin_lock_irq(&info->lock);
2026 shmem_recalc_inode(inode);
2027 spin_unlock_irq(&info->lock);
2030 if (error == -EEXIST)
2036 * This is like autoremove_wake_function, but it removes the wait queue
2037 * entry unconditionally - even if something else had already woken the
2040 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2042 int ret = default_wake_function(wait, mode, sync, key);
2043 list_del_init(&wait->entry);
2047 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2049 struct vm_area_struct *vma = vmf->vma;
2050 struct inode *inode = file_inode(vma->vm_file);
2051 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2053 vm_fault_t ret = VM_FAULT_LOCKED;
2056 * Trinity finds that probing a hole which tmpfs is punching can
2057 * prevent the hole-punch from ever completing: which in turn
2058 * locks writers out with its hold on i_rwsem. So refrain from
2059 * faulting pages into the hole while it's being punched. Although
2060 * shmem_undo_range() does remove the additions, it may be unable to
2061 * keep up, as each new page needs its own unmap_mapping_range() call,
2062 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064 * It does not matter if we sometimes reach this check just before the
2065 * hole-punch begins, so that one fault then races with the punch:
2066 * we just need to make racing faults a rare case.
2068 * The implementation below would be much simpler if we just used a
2069 * standard mutex or completion: but we cannot take i_rwsem in fault,
2070 * and bloating every shmem inode for this unlikely case would be sad.
2072 if (unlikely(inode->i_private)) {
2073 struct shmem_falloc *shmem_falloc;
2075 spin_lock(&inode->i_lock);
2076 shmem_falloc = inode->i_private;
2078 shmem_falloc->waitq &&
2079 vmf->pgoff >= shmem_falloc->start &&
2080 vmf->pgoff < shmem_falloc->next) {
2082 wait_queue_head_t *shmem_falloc_waitq;
2083 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2085 ret = VM_FAULT_NOPAGE;
2086 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088 ret = VM_FAULT_RETRY;
2090 shmem_falloc_waitq = shmem_falloc->waitq;
2091 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2092 TASK_UNINTERRUPTIBLE);
2093 spin_unlock(&inode->i_lock);
2097 * shmem_falloc_waitq points into the shmem_fallocate()
2098 * stack of the hole-punching task: shmem_falloc_waitq
2099 * is usually invalid by the time we reach here, but
2100 * finish_wait() does not dereference it in that case;
2101 * though i_lock needed lest racing with wake_up_all().
2103 spin_lock(&inode->i_lock);
2104 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2105 spin_unlock(&inode->i_lock);
2111 spin_unlock(&inode->i_lock);
2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2115 gfp, vma, vmf, &ret);
2117 return vmf_error(err);
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 unsigned long uaddr, unsigned long len,
2123 unsigned long pgoff, unsigned long flags)
2125 unsigned long (*get_area)(struct file *,
2126 unsigned long, unsigned long, unsigned long, unsigned long);
2128 unsigned long offset;
2129 unsigned long inflated_len;
2130 unsigned long inflated_addr;
2131 unsigned long inflated_offset;
2133 if (len > TASK_SIZE)
2136 get_area = current->mm->get_unmapped_area;
2137 addr = get_area(file, uaddr, len, pgoff, flags);
2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2141 if (IS_ERR_VALUE(addr))
2143 if (addr & ~PAGE_MASK)
2145 if (addr > TASK_SIZE - len)
2148 if (shmem_huge == SHMEM_HUGE_DENY)
2150 if (len < HPAGE_PMD_SIZE)
2152 if (flags & MAP_FIXED)
2155 * Our priority is to support MAP_SHARED mapped hugely;
2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 * But if caller specified an address hint and we allocated area there
2158 * successfully, respect that as before.
2163 if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 struct super_block *sb;
2167 VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 sb = file_inode(file)->i_sb;
2171 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 * for "/dev/zero", to create a shared anonymous object.
2174 if (IS_ERR(shm_mnt))
2176 sb = shm_mnt->mnt_sb;
2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 if (inflated_len > TASK_SIZE)
2191 if (inflated_len < len)
2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 if (IS_ERR_VALUE(inflated_addr))
2197 if (inflated_addr & ~PAGE_MASK)
2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 inflated_addr += offset - inflated_offset;
2202 if (inflated_offset > offset)
2203 inflated_addr += HPAGE_PMD_SIZE;
2205 if (inflated_addr > TASK_SIZE - len)
2207 return inflated_addr;
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2213 struct inode *inode = file_inode(vma->vm_file);
2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2220 struct inode *inode = file_inode(vma->vm_file);
2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2228 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2230 struct inode *inode = file_inode(file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 int retval = -ENOMEM;
2235 * What serializes the accesses to info->flags?
2236 * ipc_lock_object() when called from shmctl_do_lock(),
2237 * no serialization needed when called from shm_destroy().
2239 if (lock && !(info->flags & VM_LOCKED)) {
2240 if (!user_shm_lock(inode->i_size, ucounts))
2242 info->flags |= VM_LOCKED;
2243 mapping_set_unevictable(file->f_mapping);
2245 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2246 user_shm_unlock(inode->i_size, ucounts);
2247 info->flags &= ~VM_LOCKED;
2248 mapping_clear_unevictable(file->f_mapping);
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2261 ret = seal_check_future_write(info->seals, vma);
2265 /* arm64 - allow memory tagging on RAM-based files */
2266 vma->vm_flags |= VM_MTE_ALLOWED;
2268 file_accessed(file);
2269 vma->vm_ops = &shmem_vm_ops;
2270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2272 (vma->vm_end & HPAGE_PMD_MASK)) {
2273 khugepaged_enter(vma, vma->vm_flags);
2278 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2279 umode_t mode, dev_t dev, unsigned long flags)
2281 struct inode *inode;
2282 struct shmem_inode_info *info;
2283 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2286 if (shmem_reserve_inode(sb, &ino))
2289 inode = new_inode(sb);
2292 inode_init_owner(&init_user_ns, inode, dir, mode);
2293 inode->i_blocks = 0;
2294 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2295 inode->i_generation = prandom_u32();
2296 info = SHMEM_I(inode);
2297 memset(info, 0, (char *)inode - (char *)info);
2298 spin_lock_init(&info->lock);
2299 atomic_set(&info->stop_eviction, 0);
2300 info->seals = F_SEAL_SEAL;
2301 info->flags = flags & VM_NORESERVE;
2302 INIT_LIST_HEAD(&info->shrinklist);
2303 INIT_LIST_HEAD(&info->swaplist);
2304 simple_xattrs_init(&info->xattrs);
2305 cache_no_acl(inode);
2307 switch (mode & S_IFMT) {
2309 inode->i_op = &shmem_special_inode_operations;
2310 init_special_inode(inode, mode, dev);
2313 inode->i_mapping->a_ops = &shmem_aops;
2314 inode->i_op = &shmem_inode_operations;
2315 inode->i_fop = &shmem_file_operations;
2316 mpol_shared_policy_init(&info->policy,
2317 shmem_get_sbmpol(sbinfo));
2321 /* Some things misbehave if size == 0 on a directory */
2322 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2323 inode->i_op = &shmem_dir_inode_operations;
2324 inode->i_fop = &simple_dir_operations;
2328 * Must not load anything in the rbtree,
2329 * mpol_free_shared_policy will not be called.
2331 mpol_shared_policy_init(&info->policy, NULL);
2335 lockdep_annotate_inode_mutex_key(inode);
2337 shmem_free_inode(sb);
2341 #ifdef CONFIG_USERFAULTFD
2342 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 struct vm_area_struct *dst_vma,
2345 unsigned long dst_addr,
2346 unsigned long src_addr,
2348 struct page **pagep)
2350 struct inode *inode = file_inode(dst_vma->vm_file);
2351 struct shmem_inode_info *info = SHMEM_I(inode);
2352 struct address_space *mapping = inode->i_mapping;
2353 gfp_t gfp = mapping_gfp_mask(mapping);
2354 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2360 if (!shmem_inode_acct_block(inode, 1)) {
2362 * We may have got a page, returned -ENOENT triggering a retry,
2363 * and now we find ourselves with -ENOMEM. Release the page, to
2364 * avoid a BUG_ON in our caller.
2366 if (unlikely(*pagep)) {
2375 page = shmem_alloc_page(gfp, info, pgoff);
2377 goto out_unacct_blocks;
2379 if (!zeropage) { /* COPY */
2380 page_kaddr = kmap_atomic(page);
2381 ret = copy_from_user(page_kaddr,
2382 (const void __user *)src_addr,
2384 kunmap_atomic(page_kaddr);
2386 /* fallback to copy_from_user outside mmap_lock */
2387 if (unlikely(ret)) {
2390 /* don't free the page */
2391 goto out_unacct_blocks;
2393 } else { /* ZEROPAGE */
2394 clear_highpage(page);
2401 VM_BUG_ON(PageLocked(page));
2402 VM_BUG_ON(PageSwapBacked(page));
2403 __SetPageLocked(page);
2404 __SetPageSwapBacked(page);
2405 __SetPageUptodate(page);
2408 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2409 if (unlikely(pgoff >= max_off))
2412 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2413 gfp & GFP_RECLAIM_MASK, dst_mm);
2417 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2420 goto out_delete_from_cache;
2422 spin_lock_irq(&info->lock);
2424 inode->i_blocks += BLOCKS_PER_PAGE;
2425 shmem_recalc_inode(inode);
2426 spin_unlock_irq(&info->lock);
2430 out_delete_from_cache:
2431 delete_from_page_cache(page);
2436 shmem_inode_unacct_blocks(inode, 1);
2439 #endif /* CONFIG_USERFAULTFD */
2442 static const struct inode_operations shmem_symlink_inode_operations;
2443 static const struct inode_operations shmem_short_symlink_operations;
2445 #ifdef CONFIG_TMPFS_XATTR
2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2448 #define shmem_initxattrs NULL
2452 shmem_write_begin(struct file *file, struct address_space *mapping,
2453 loff_t pos, unsigned len, unsigned flags,
2454 struct page **pagep, void **fsdata)
2456 struct inode *inode = mapping->host;
2457 struct shmem_inode_info *info = SHMEM_I(inode);
2458 pgoff_t index = pos >> PAGE_SHIFT;
2461 /* i_rwsem is held by caller */
2462 if (unlikely(info->seals & (F_SEAL_GROW |
2463 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2464 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2466 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2470 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2472 if (*pagep && PageHWPoison(*pagep)) {
2473 unlock_page(*pagep);
2482 shmem_write_end(struct file *file, struct address_space *mapping,
2483 loff_t pos, unsigned len, unsigned copied,
2484 struct page *page, void *fsdata)
2486 struct inode *inode = mapping->host;
2488 if (pos + copied > inode->i_size)
2489 i_size_write(inode, pos + copied);
2491 if (!PageUptodate(page)) {
2492 struct page *head = compound_head(page);
2493 if (PageTransCompound(page)) {
2496 for (i = 0; i < HPAGE_PMD_NR; i++) {
2497 if (head + i == page)
2499 clear_highpage(head + i);
2500 flush_dcache_page(head + i);
2503 if (copied < PAGE_SIZE) {
2504 unsigned from = pos & (PAGE_SIZE - 1);
2505 zero_user_segments(page, 0, from,
2506 from + copied, PAGE_SIZE);
2508 SetPageUptodate(head);
2510 set_page_dirty(page);
2517 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2519 struct file *file = iocb->ki_filp;
2520 struct inode *inode = file_inode(file);
2521 struct address_space *mapping = inode->i_mapping;
2523 unsigned long offset;
2524 enum sgp_type sgp = SGP_READ;
2527 loff_t *ppos = &iocb->ki_pos;
2530 * Might this read be for a stacking filesystem? Then when reading
2531 * holes of a sparse file, we actually need to allocate those pages,
2532 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2534 if (!iter_is_iovec(to))
2537 index = *ppos >> PAGE_SHIFT;
2538 offset = *ppos & ~PAGE_MASK;
2541 struct page *page = NULL;
2543 unsigned long nr, ret;
2544 loff_t i_size = i_size_read(inode);
2546 end_index = i_size >> PAGE_SHIFT;
2547 if (index > end_index)
2549 if (index == end_index) {
2550 nr = i_size & ~PAGE_MASK;
2555 error = shmem_getpage(inode, index, &page, sgp);
2557 if (error == -EINVAL)
2562 if (sgp == SGP_CACHE)
2563 set_page_dirty(page);
2566 if (PageHWPoison(page)) {
2574 * We must evaluate after, since reads (unlike writes)
2575 * are called without i_rwsem protection against truncate
2578 i_size = i_size_read(inode);
2579 end_index = i_size >> PAGE_SHIFT;
2580 if (index == end_index) {
2581 nr = i_size & ~PAGE_MASK;
2592 * If users can be writing to this page using arbitrary
2593 * virtual addresses, take care about potential aliasing
2594 * before reading the page on the kernel side.
2596 if (mapping_writably_mapped(mapping))
2597 flush_dcache_page(page);
2599 * Mark the page accessed if we read the beginning.
2602 mark_page_accessed(page);
2604 page = ZERO_PAGE(0);
2609 * Ok, we have the page, and it's up-to-date, so
2610 * now we can copy it to user space...
2612 ret = copy_page_to_iter(page, offset, nr, to);
2615 index += offset >> PAGE_SHIFT;
2616 offset &= ~PAGE_MASK;
2619 if (!iov_iter_count(to))
2628 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2629 file_accessed(file);
2630 return retval ? retval : error;
2633 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2635 struct address_space *mapping = file->f_mapping;
2636 struct inode *inode = mapping->host;
2638 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2639 return generic_file_llseek_size(file, offset, whence,
2640 MAX_LFS_FILESIZE, i_size_read(inode));
2645 /* We're holding i_rwsem so we can access i_size directly */
2646 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2648 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2649 inode_unlock(inode);
2653 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2656 struct inode *inode = file_inode(file);
2657 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2658 struct shmem_inode_info *info = SHMEM_I(inode);
2659 struct shmem_falloc shmem_falloc;
2660 pgoff_t start, index, end, undo_fallocend;
2663 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2668 if (mode & FALLOC_FL_PUNCH_HOLE) {
2669 struct address_space *mapping = file->f_mapping;
2670 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2671 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2672 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2674 /* protected by i_rwsem */
2675 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2680 shmem_falloc.waitq = &shmem_falloc_waitq;
2681 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2682 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2683 spin_lock(&inode->i_lock);
2684 inode->i_private = &shmem_falloc;
2685 spin_unlock(&inode->i_lock);
2687 if ((u64)unmap_end > (u64)unmap_start)
2688 unmap_mapping_range(mapping, unmap_start,
2689 1 + unmap_end - unmap_start, 0);
2690 shmem_truncate_range(inode, offset, offset + len - 1);
2691 /* No need to unmap again: hole-punching leaves COWed pages */
2693 spin_lock(&inode->i_lock);
2694 inode->i_private = NULL;
2695 wake_up_all(&shmem_falloc_waitq);
2696 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2697 spin_unlock(&inode->i_lock);
2702 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2703 error = inode_newsize_ok(inode, offset + len);
2707 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2712 start = offset >> PAGE_SHIFT;
2713 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714 /* Try to avoid a swapstorm if len is impossible to satisfy */
2715 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2720 shmem_falloc.waitq = NULL;
2721 shmem_falloc.start = start;
2722 shmem_falloc.next = start;
2723 shmem_falloc.nr_falloced = 0;
2724 shmem_falloc.nr_unswapped = 0;
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = &shmem_falloc;
2727 spin_unlock(&inode->i_lock);
2730 * info->fallocend is only relevant when huge pages might be
2731 * involved: to prevent split_huge_page() freeing fallocated
2732 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2734 undo_fallocend = info->fallocend;
2735 if (info->fallocend < end)
2736 info->fallocend = end;
2738 for (index = start; index < end; ) {
2742 * Good, the fallocate(2) manpage permits EINTR: we may have
2743 * been interrupted because we are using up too much memory.
2745 if (signal_pending(current))
2747 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2750 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2752 info->fallocend = undo_fallocend;
2753 /* Remove the !PageUptodate pages we added */
2754 if (index > start) {
2755 shmem_undo_range(inode,
2756 (loff_t)start << PAGE_SHIFT,
2757 ((loff_t)index << PAGE_SHIFT) - 1, true);
2764 * Here is a more important optimization than it appears:
2765 * a second SGP_FALLOC on the same huge page will clear it,
2766 * making it PageUptodate and un-undoable if we fail later.
2768 if (PageTransCompound(page)) {
2769 index = round_up(index, HPAGE_PMD_NR);
2770 /* Beware 32-bit wraparound */
2776 * Inform shmem_writepage() how far we have reached.
2777 * No need for lock or barrier: we have the page lock.
2779 if (!PageUptodate(page))
2780 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2781 shmem_falloc.next = index;
2784 * If !PageUptodate, leave it that way so that freeable pages
2785 * can be recognized if we need to rollback on error later.
2786 * But set_page_dirty so that memory pressure will swap rather
2787 * than free the pages we are allocating (and SGP_CACHE pages
2788 * might still be clean: we now need to mark those dirty too).
2790 set_page_dirty(page);
2796 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2797 i_size_write(inode, offset + len);
2798 inode->i_ctime = current_time(inode);
2800 spin_lock(&inode->i_lock);
2801 inode->i_private = NULL;
2802 spin_unlock(&inode->i_lock);
2804 inode_unlock(inode);
2808 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2810 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2812 buf->f_type = TMPFS_MAGIC;
2813 buf->f_bsize = PAGE_SIZE;
2814 buf->f_namelen = NAME_MAX;
2815 if (sbinfo->max_blocks) {
2816 buf->f_blocks = sbinfo->max_blocks;
2818 buf->f_bfree = sbinfo->max_blocks -
2819 percpu_counter_sum(&sbinfo->used_blocks);
2821 if (sbinfo->max_inodes) {
2822 buf->f_files = sbinfo->max_inodes;
2823 buf->f_ffree = sbinfo->free_inodes;
2825 /* else leave those fields 0 like simple_statfs */
2827 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2833 * File creation. Allocate an inode, and we're done..
2836 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2837 struct dentry *dentry, umode_t mode, dev_t dev)
2839 struct inode *inode;
2840 int error = -ENOSPC;
2842 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2844 error = simple_acl_create(dir, inode);
2847 error = security_inode_init_security(inode, dir,
2849 shmem_initxattrs, NULL);
2850 if (error && error != -EOPNOTSUPP)
2854 dir->i_size += BOGO_DIRENT_SIZE;
2855 dir->i_ctime = dir->i_mtime = current_time(dir);
2856 d_instantiate(dentry, inode);
2857 dget(dentry); /* Extra count - pin the dentry in core */
2866 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2867 struct dentry *dentry, umode_t mode)
2869 struct inode *inode;
2870 int error = -ENOSPC;
2872 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2874 error = security_inode_init_security(inode, dir,
2876 shmem_initxattrs, NULL);
2877 if (error && error != -EOPNOTSUPP)
2879 error = simple_acl_create(dir, inode);
2882 d_tmpfile(dentry, inode);
2890 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2891 struct dentry *dentry, umode_t mode)
2895 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2896 mode | S_IFDIR, 0)))
2902 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2903 struct dentry *dentry, umode_t mode, bool excl)
2905 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2911 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2913 struct inode *inode = d_inode(old_dentry);
2917 * No ordinary (disk based) filesystem counts links as inodes;
2918 * but each new link needs a new dentry, pinning lowmem, and
2919 * tmpfs dentries cannot be pruned until they are unlinked.
2920 * But if an O_TMPFILE file is linked into the tmpfs, the
2921 * first link must skip that, to get the accounting right.
2923 if (inode->i_nlink) {
2924 ret = shmem_reserve_inode(inode->i_sb, NULL);
2929 dir->i_size += BOGO_DIRENT_SIZE;
2930 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2932 ihold(inode); /* New dentry reference */
2933 dget(dentry); /* Extra pinning count for the created dentry */
2934 d_instantiate(dentry, inode);
2939 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2941 struct inode *inode = d_inode(dentry);
2943 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2944 shmem_free_inode(inode->i_sb);
2946 dir->i_size -= BOGO_DIRENT_SIZE;
2947 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2949 dput(dentry); /* Undo the count from "create" - this does all the work */
2953 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2955 if (!simple_empty(dentry))
2958 drop_nlink(d_inode(dentry));
2960 return shmem_unlink(dir, dentry);
2963 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2965 bool old_is_dir = d_is_dir(old_dentry);
2966 bool new_is_dir = d_is_dir(new_dentry);
2968 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2970 drop_nlink(old_dir);
2973 drop_nlink(new_dir);
2977 old_dir->i_ctime = old_dir->i_mtime =
2978 new_dir->i_ctime = new_dir->i_mtime =
2979 d_inode(old_dentry)->i_ctime =
2980 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2985 static int shmem_whiteout(struct user_namespace *mnt_userns,
2986 struct inode *old_dir, struct dentry *old_dentry)
2988 struct dentry *whiteout;
2991 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2995 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2996 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3002 * Cheat and hash the whiteout while the old dentry is still in
3003 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3005 * d_lookup() will consistently find one of them at this point,
3006 * not sure which one, but that isn't even important.
3013 * The VFS layer already does all the dentry stuff for rename,
3014 * we just have to decrement the usage count for the target if
3015 * it exists so that the VFS layer correctly free's it when it
3018 static int shmem_rename2(struct user_namespace *mnt_userns,
3019 struct inode *old_dir, struct dentry *old_dentry,
3020 struct inode *new_dir, struct dentry *new_dentry,
3023 struct inode *inode = d_inode(old_dentry);
3024 int they_are_dirs = S_ISDIR(inode->i_mode);
3026 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3029 if (flags & RENAME_EXCHANGE)
3030 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3032 if (!simple_empty(new_dentry))
3035 if (flags & RENAME_WHITEOUT) {
3038 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3043 if (d_really_is_positive(new_dentry)) {
3044 (void) shmem_unlink(new_dir, new_dentry);
3045 if (they_are_dirs) {
3046 drop_nlink(d_inode(new_dentry));
3047 drop_nlink(old_dir);
3049 } else if (they_are_dirs) {
3050 drop_nlink(old_dir);
3054 old_dir->i_size -= BOGO_DIRENT_SIZE;
3055 new_dir->i_size += BOGO_DIRENT_SIZE;
3056 old_dir->i_ctime = old_dir->i_mtime =
3057 new_dir->i_ctime = new_dir->i_mtime =
3058 inode->i_ctime = current_time(old_dir);
3062 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3063 struct dentry *dentry, const char *symname)
3067 struct inode *inode;
3070 len = strlen(symname) + 1;
3071 if (len > PAGE_SIZE)
3072 return -ENAMETOOLONG;
3074 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3079 error = security_inode_init_security(inode, dir, &dentry->d_name,
3080 shmem_initxattrs, NULL);
3081 if (error && error != -EOPNOTSUPP) {
3086 inode->i_size = len-1;
3087 if (len <= SHORT_SYMLINK_LEN) {
3088 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3089 if (!inode->i_link) {
3093 inode->i_op = &shmem_short_symlink_operations;
3095 inode_nohighmem(inode);
3096 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3101 inode->i_mapping->a_ops = &shmem_aops;
3102 inode->i_op = &shmem_symlink_inode_operations;
3103 memcpy(page_address(page), symname, len);
3104 SetPageUptodate(page);
3105 set_page_dirty(page);
3109 dir->i_size += BOGO_DIRENT_SIZE;
3110 dir->i_ctime = dir->i_mtime = current_time(dir);
3111 d_instantiate(dentry, inode);
3116 static void shmem_put_link(void *arg)
3118 mark_page_accessed(arg);
3122 static const char *shmem_get_link(struct dentry *dentry,
3123 struct inode *inode,
3124 struct delayed_call *done)
3126 struct page *page = NULL;
3129 page = find_get_page(inode->i_mapping, 0);
3131 return ERR_PTR(-ECHILD);
3132 if (PageHWPoison(page) ||
3133 !PageUptodate(page)) {
3135 return ERR_PTR(-ECHILD);
3138 error = shmem_getpage(inode, 0, &page, SGP_READ);
3140 return ERR_PTR(error);
3141 if (page && PageHWPoison(page)) {
3144 return ERR_PTR(-ECHILD);
3148 set_delayed_call(done, shmem_put_link, page);
3149 return page_address(page);
3152 #ifdef CONFIG_TMPFS_XATTR
3154 * Superblocks without xattr inode operations may get some security.* xattr
3155 * support from the LSM "for free". As soon as we have any other xattrs
3156 * like ACLs, we also need to implement the security.* handlers at
3157 * filesystem level, though.
3161 * Callback for security_inode_init_security() for acquiring xattrs.
3163 static int shmem_initxattrs(struct inode *inode,
3164 const struct xattr *xattr_array,
3167 struct shmem_inode_info *info = SHMEM_I(inode);
3168 const struct xattr *xattr;
3169 struct simple_xattr *new_xattr;
3172 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3173 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3177 len = strlen(xattr->name) + 1;
3178 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3180 if (!new_xattr->name) {
3185 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3186 XATTR_SECURITY_PREFIX_LEN);
3187 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3190 simple_xattr_list_add(&info->xattrs, new_xattr);
3196 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3197 struct dentry *unused, struct inode *inode,
3198 const char *name, void *buffer, size_t size)
3200 struct shmem_inode_info *info = SHMEM_I(inode);
3202 name = xattr_full_name(handler, name);
3203 return simple_xattr_get(&info->xattrs, name, buffer, size);
3206 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3207 struct user_namespace *mnt_userns,
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, const void *value,
3210 size_t size, int flags)
3212 struct shmem_inode_info *info = SHMEM_I(inode);
3214 name = xattr_full_name(handler, name);
3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3218 static const struct xattr_handler shmem_security_xattr_handler = {
3219 .prefix = XATTR_SECURITY_PREFIX,
3220 .get = shmem_xattr_handler_get,
3221 .set = shmem_xattr_handler_set,
3224 static const struct xattr_handler shmem_trusted_xattr_handler = {
3225 .prefix = XATTR_TRUSTED_PREFIX,
3226 .get = shmem_xattr_handler_get,
3227 .set = shmem_xattr_handler_set,
3230 static const struct xattr_handler *shmem_xattr_handlers[] = {
3231 #ifdef CONFIG_TMPFS_POSIX_ACL
3232 &posix_acl_access_xattr_handler,
3233 &posix_acl_default_xattr_handler,
3235 &shmem_security_xattr_handler,
3236 &shmem_trusted_xattr_handler,
3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3245 #endif /* CONFIG_TMPFS_XATTR */
3247 static const struct inode_operations shmem_short_symlink_operations = {
3248 .get_link = simple_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250 .listxattr = shmem_listxattr,
3254 static const struct inode_operations shmem_symlink_inode_operations = {
3255 .get_link = shmem_get_link,
3256 #ifdef CONFIG_TMPFS_XATTR
3257 .listxattr = shmem_listxattr,
3261 static struct dentry *shmem_get_parent(struct dentry *child)
3263 return ERR_PTR(-ESTALE);
3266 static int shmem_match(struct inode *ino, void *vfh)
3270 inum = (inum << 32) | fh[1];
3271 return ino->i_ino == inum && fh[0] == ino->i_generation;
3274 /* Find any alias of inode, but prefer a hashed alias */
3275 static struct dentry *shmem_find_alias(struct inode *inode)
3277 struct dentry *alias = d_find_alias(inode);
3279 return alias ?: d_find_any_alias(inode);
3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284 struct fid *fid, int fh_len, int fh_type)
3286 struct inode *inode;
3287 struct dentry *dentry = NULL;
3294 inum = (inum << 32) | fid->raw[1];
3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297 shmem_match, fid->raw);
3299 dentry = shmem_find_alias(inode);
3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307 struct inode *parent)
3311 return FILEID_INVALID;
3314 if (inode_unhashed(inode)) {
3315 /* Unfortunately insert_inode_hash is not idempotent,
3316 * so as we hash inodes here rather than at creation
3317 * time, we need a lock to ensure we only try
3320 static DEFINE_SPINLOCK(lock);
3322 if (inode_unhashed(inode))
3323 __insert_inode_hash(inode,
3324 inode->i_ino + inode->i_generation);
3328 fh[0] = inode->i_generation;
3329 fh[1] = inode->i_ino;
3330 fh[2] = ((__u64)inode->i_ino) >> 32;
3336 static const struct export_operations shmem_export_ops = {
3337 .get_parent = shmem_get_parent,
3338 .encode_fh = shmem_encode_fh,
3339 .fh_to_dentry = shmem_fh_to_dentry,
3355 static const struct constant_table shmem_param_enums_huge[] = {
3356 {"never", SHMEM_HUGE_NEVER },
3357 {"always", SHMEM_HUGE_ALWAYS },
3358 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3359 {"advise", SHMEM_HUGE_ADVISE },
3363 const struct fs_parameter_spec shmem_fs_parameters[] = {
3364 fsparam_u32 ("gid", Opt_gid),
3365 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3366 fsparam_u32oct("mode", Opt_mode),
3367 fsparam_string("mpol", Opt_mpol),
3368 fsparam_string("nr_blocks", Opt_nr_blocks),
3369 fsparam_string("nr_inodes", Opt_nr_inodes),
3370 fsparam_string("size", Opt_size),
3371 fsparam_u32 ("uid", Opt_uid),
3372 fsparam_flag ("inode32", Opt_inode32),
3373 fsparam_flag ("inode64", Opt_inode64),
3377 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3379 struct shmem_options *ctx = fc->fs_private;
3380 struct fs_parse_result result;
3381 unsigned long long size;
3385 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3391 size = memparse(param->string, &rest);
3393 size <<= PAGE_SHIFT;
3394 size *= totalram_pages();
3400 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3401 ctx->seen |= SHMEM_SEEN_BLOCKS;
3404 ctx->blocks = memparse(param->string, &rest);
3407 ctx->seen |= SHMEM_SEEN_BLOCKS;
3410 ctx->inodes = memparse(param->string, &rest);
3413 ctx->seen |= SHMEM_SEEN_INODES;
3416 ctx->mode = result.uint_32 & 07777;
3419 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3420 if (!uid_valid(ctx->uid))
3424 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3425 if (!gid_valid(ctx->gid))
3429 ctx->huge = result.uint_32;
3430 if (ctx->huge != SHMEM_HUGE_NEVER &&
3431 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3432 has_transparent_hugepage()))
3433 goto unsupported_parameter;
3434 ctx->seen |= SHMEM_SEEN_HUGE;
3437 if (IS_ENABLED(CONFIG_NUMA)) {
3438 mpol_put(ctx->mpol);
3440 if (mpol_parse_str(param->string, &ctx->mpol))
3444 goto unsupported_parameter;
3446 ctx->full_inums = false;
3447 ctx->seen |= SHMEM_SEEN_INUMS;
3450 if (sizeof(ino_t) < 8) {
3452 "Cannot use inode64 with <64bit inums in kernel\n");
3454 ctx->full_inums = true;
3455 ctx->seen |= SHMEM_SEEN_INUMS;
3460 unsupported_parameter:
3461 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3463 return invalfc(fc, "Bad value for '%s'", param->key);
3466 static int shmem_parse_options(struct fs_context *fc, void *data)
3468 char *options = data;
3471 int err = security_sb_eat_lsm_opts(options, &fc->security);
3476 while (options != NULL) {
3477 char *this_char = options;
3480 * NUL-terminate this option: unfortunately,
3481 * mount options form a comma-separated list,
3482 * but mpol's nodelist may also contain commas.
3484 options = strchr(options, ',');
3485 if (options == NULL)
3488 if (!isdigit(*options)) {
3494 char *value = strchr(this_char, '=');
3500 len = strlen(value);
3502 err = vfs_parse_fs_string(fc, this_char, value, len);
3511 * Reconfigure a shmem filesystem.
3513 * Note that we disallow change from limited->unlimited blocks/inodes while any
3514 * are in use; but we must separately disallow unlimited->limited, because in
3515 * that case we have no record of how much is already in use.
3517 static int shmem_reconfigure(struct fs_context *fc)
3519 struct shmem_options *ctx = fc->fs_private;
3520 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3521 unsigned long inodes;
3522 struct mempolicy *mpol = NULL;
3525 raw_spin_lock(&sbinfo->stat_lock);
3526 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3527 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3528 if (!sbinfo->max_blocks) {
3529 err = "Cannot retroactively limit size";
3532 if (percpu_counter_compare(&sbinfo->used_blocks,
3534 err = "Too small a size for current use";
3538 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3539 if (!sbinfo->max_inodes) {
3540 err = "Cannot retroactively limit inodes";
3543 if (ctx->inodes < inodes) {
3544 err = "Too few inodes for current use";
3549 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3550 sbinfo->next_ino > UINT_MAX) {
3551 err = "Current inum too high to switch to 32-bit inums";
3555 if (ctx->seen & SHMEM_SEEN_HUGE)
3556 sbinfo->huge = ctx->huge;
3557 if (ctx->seen & SHMEM_SEEN_INUMS)
3558 sbinfo->full_inums = ctx->full_inums;
3559 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3560 sbinfo->max_blocks = ctx->blocks;
3561 if (ctx->seen & SHMEM_SEEN_INODES) {
3562 sbinfo->max_inodes = ctx->inodes;
3563 sbinfo->free_inodes = ctx->inodes - inodes;
3567 * Preserve previous mempolicy unless mpol remount option was specified.
3570 mpol = sbinfo->mpol;
3571 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3574 raw_spin_unlock(&sbinfo->stat_lock);
3578 raw_spin_unlock(&sbinfo->stat_lock);
3579 return invalfc(fc, "%s", err);
3582 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3584 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3586 if (sbinfo->max_blocks != shmem_default_max_blocks())
3587 seq_printf(seq, ",size=%luk",
3588 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3589 if (sbinfo->max_inodes != shmem_default_max_inodes())
3590 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3591 if (sbinfo->mode != (0777 | S_ISVTX))
3592 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3593 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3594 seq_printf(seq, ",uid=%u",
3595 from_kuid_munged(&init_user_ns, sbinfo->uid));
3596 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3597 seq_printf(seq, ",gid=%u",
3598 from_kgid_munged(&init_user_ns, sbinfo->gid));
3601 * Showing inode{64,32} might be useful even if it's the system default,
3602 * since then people don't have to resort to checking both here and
3603 * /proc/config.gz to confirm 64-bit inums were successfully applied
3604 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3606 * We hide it when inode64 isn't the default and we are using 32-bit
3607 * inodes, since that probably just means the feature isn't even under
3612 * +-----------------+-----------------+
3613 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3614 * +------------------+-----------------+-----------------+
3615 * | full_inums=true | show | show |
3616 * | full_inums=false | show | hide |
3617 * +------------------+-----------------+-----------------+
3620 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3621 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3623 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3625 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3627 shmem_show_mpol(seq, sbinfo->mpol);
3631 #endif /* CONFIG_TMPFS */
3633 static void shmem_put_super(struct super_block *sb)
3635 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3637 free_percpu(sbinfo->ino_batch);
3638 percpu_counter_destroy(&sbinfo->used_blocks);
3639 mpol_put(sbinfo->mpol);
3641 sb->s_fs_info = NULL;
3644 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3646 struct shmem_options *ctx = fc->fs_private;
3647 struct inode *inode;
3648 struct shmem_sb_info *sbinfo;
3650 /* Round up to L1_CACHE_BYTES to resist false sharing */
3651 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3652 L1_CACHE_BYTES), GFP_KERNEL);
3656 sb->s_fs_info = sbinfo;
3660 * Per default we only allow half of the physical ram per
3661 * tmpfs instance, limiting inodes to one per page of lowmem;
3662 * but the internal instance is left unlimited.
3664 if (!(sb->s_flags & SB_KERNMOUNT)) {
3665 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3666 ctx->blocks = shmem_default_max_blocks();
3667 if (!(ctx->seen & SHMEM_SEEN_INODES))
3668 ctx->inodes = shmem_default_max_inodes();
3669 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3670 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3672 sb->s_flags |= SB_NOUSER;
3674 sb->s_export_op = &shmem_export_ops;
3675 sb->s_flags |= SB_NOSEC;
3677 sb->s_flags |= SB_NOUSER;
3679 sbinfo->max_blocks = ctx->blocks;
3680 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3681 if (sb->s_flags & SB_KERNMOUNT) {
3682 sbinfo->ino_batch = alloc_percpu(ino_t);
3683 if (!sbinfo->ino_batch)
3686 sbinfo->uid = ctx->uid;
3687 sbinfo->gid = ctx->gid;
3688 sbinfo->full_inums = ctx->full_inums;
3689 sbinfo->mode = ctx->mode;
3690 sbinfo->huge = ctx->huge;
3691 sbinfo->mpol = ctx->mpol;
3694 raw_spin_lock_init(&sbinfo->stat_lock);
3695 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3697 spin_lock_init(&sbinfo->shrinklist_lock);
3698 INIT_LIST_HEAD(&sbinfo->shrinklist);
3700 sb->s_maxbytes = MAX_LFS_FILESIZE;
3701 sb->s_blocksize = PAGE_SIZE;
3702 sb->s_blocksize_bits = PAGE_SHIFT;
3703 sb->s_magic = TMPFS_MAGIC;
3704 sb->s_op = &shmem_ops;
3705 sb->s_time_gran = 1;
3706 #ifdef CONFIG_TMPFS_XATTR
3707 sb->s_xattr = shmem_xattr_handlers;
3709 #ifdef CONFIG_TMPFS_POSIX_ACL
3710 sb->s_flags |= SB_POSIXACL;
3712 uuid_gen(&sb->s_uuid);
3714 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3717 inode->i_uid = sbinfo->uid;
3718 inode->i_gid = sbinfo->gid;
3719 sb->s_root = d_make_root(inode);
3725 shmem_put_super(sb);
3729 static int shmem_get_tree(struct fs_context *fc)
3731 return get_tree_nodev(fc, shmem_fill_super);
3734 static void shmem_free_fc(struct fs_context *fc)
3736 struct shmem_options *ctx = fc->fs_private;
3739 mpol_put(ctx->mpol);
3744 static const struct fs_context_operations shmem_fs_context_ops = {
3745 .free = shmem_free_fc,
3746 .get_tree = shmem_get_tree,
3748 .parse_monolithic = shmem_parse_options,
3749 .parse_param = shmem_parse_one,
3750 .reconfigure = shmem_reconfigure,
3754 static struct kmem_cache *shmem_inode_cachep;
3756 static struct inode *shmem_alloc_inode(struct super_block *sb)
3758 struct shmem_inode_info *info;
3759 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3762 return &info->vfs_inode;
3765 static void shmem_free_in_core_inode(struct inode *inode)
3767 if (S_ISLNK(inode->i_mode))
3768 kfree(inode->i_link);
3769 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3772 static void shmem_destroy_inode(struct inode *inode)
3774 if (S_ISREG(inode->i_mode))
3775 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3778 static void shmem_init_inode(void *foo)
3780 struct shmem_inode_info *info = foo;
3781 inode_init_once(&info->vfs_inode);
3784 static void shmem_init_inodecache(void)
3786 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3787 sizeof(struct shmem_inode_info),
3788 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3791 static void shmem_destroy_inodecache(void)
3793 kmem_cache_destroy(shmem_inode_cachep);
3796 /* Keep the page in page cache instead of truncating it */
3797 static int shmem_error_remove_page(struct address_space *mapping,
3803 const struct address_space_operations shmem_aops = {
3804 .writepage = shmem_writepage,
3805 .set_page_dirty = __set_page_dirty_no_writeback,
3807 .write_begin = shmem_write_begin,
3808 .write_end = shmem_write_end,
3810 #ifdef CONFIG_MIGRATION
3811 .migratepage = migrate_page,
3813 .error_remove_page = shmem_error_remove_page,
3815 EXPORT_SYMBOL(shmem_aops);
3817 static const struct file_operations shmem_file_operations = {
3819 .get_unmapped_area = shmem_get_unmapped_area,
3821 .llseek = shmem_file_llseek,
3822 .read_iter = shmem_file_read_iter,
3823 .write_iter = generic_file_write_iter,
3824 .fsync = noop_fsync,
3825 .splice_read = generic_file_splice_read,
3826 .splice_write = iter_file_splice_write,
3827 .fallocate = shmem_fallocate,
3831 static const struct inode_operations shmem_inode_operations = {
3832 .getattr = shmem_getattr,
3833 .setattr = shmem_setattr,
3834 #ifdef CONFIG_TMPFS_XATTR
3835 .listxattr = shmem_listxattr,
3836 .set_acl = simple_set_acl,
3840 static const struct inode_operations shmem_dir_inode_operations = {
3842 .create = shmem_create,
3843 .lookup = simple_lookup,
3845 .unlink = shmem_unlink,
3846 .symlink = shmem_symlink,
3847 .mkdir = shmem_mkdir,
3848 .rmdir = shmem_rmdir,
3849 .mknod = shmem_mknod,
3850 .rename = shmem_rename2,
3851 .tmpfile = shmem_tmpfile,
3853 #ifdef CONFIG_TMPFS_XATTR
3854 .listxattr = shmem_listxattr,
3856 #ifdef CONFIG_TMPFS_POSIX_ACL
3857 .setattr = shmem_setattr,
3858 .set_acl = simple_set_acl,
3862 static const struct inode_operations shmem_special_inode_operations = {
3863 #ifdef CONFIG_TMPFS_XATTR
3864 .listxattr = shmem_listxattr,
3866 #ifdef CONFIG_TMPFS_POSIX_ACL
3867 .setattr = shmem_setattr,
3868 .set_acl = simple_set_acl,
3872 static const struct super_operations shmem_ops = {
3873 .alloc_inode = shmem_alloc_inode,
3874 .free_inode = shmem_free_in_core_inode,
3875 .destroy_inode = shmem_destroy_inode,
3877 .statfs = shmem_statfs,
3878 .show_options = shmem_show_options,
3880 .evict_inode = shmem_evict_inode,
3881 .drop_inode = generic_delete_inode,
3882 .put_super = shmem_put_super,
3883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3884 .nr_cached_objects = shmem_unused_huge_count,
3885 .free_cached_objects = shmem_unused_huge_scan,
3889 static const struct vm_operations_struct shmem_vm_ops = {
3890 .fault = shmem_fault,
3891 .map_pages = filemap_map_pages,
3893 .set_policy = shmem_set_policy,
3894 .get_policy = shmem_get_policy,
3898 int shmem_init_fs_context(struct fs_context *fc)
3900 struct shmem_options *ctx;
3902 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3906 ctx->mode = 0777 | S_ISVTX;
3907 ctx->uid = current_fsuid();
3908 ctx->gid = current_fsgid();
3910 fc->fs_private = ctx;
3911 fc->ops = &shmem_fs_context_ops;
3915 static struct file_system_type shmem_fs_type = {
3916 .owner = THIS_MODULE,
3918 .init_fs_context = shmem_init_fs_context,
3920 .parameters = shmem_fs_parameters,
3922 .kill_sb = kill_litter_super,
3923 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3926 int __init shmem_init(void)
3930 shmem_init_inodecache();
3932 error = register_filesystem(&shmem_fs_type);
3934 pr_err("Could not register tmpfs\n");
3938 shm_mnt = kern_mount(&shmem_fs_type);
3939 if (IS_ERR(shm_mnt)) {
3940 error = PTR_ERR(shm_mnt);
3941 pr_err("Could not kern_mount tmpfs\n");
3945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3946 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3947 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3949 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3954 unregister_filesystem(&shmem_fs_type);
3956 shmem_destroy_inodecache();
3957 shm_mnt = ERR_PTR(error);
3961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3962 static ssize_t shmem_enabled_show(struct kobject *kobj,
3963 struct kobj_attribute *attr, char *buf)
3965 static const int values[] = {
3967 SHMEM_HUGE_WITHIN_SIZE,
3976 for (i = 0; i < ARRAY_SIZE(values); i++) {
3977 len += sysfs_emit_at(buf, len,
3978 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3980 shmem_format_huge(values[i]));
3983 len += sysfs_emit_at(buf, len, "\n");
3988 static ssize_t shmem_enabled_store(struct kobject *kobj,
3989 struct kobj_attribute *attr, const char *buf, size_t count)
3994 if (count + 1 > sizeof(tmp))
3996 memcpy(tmp, buf, count);
3998 if (count && tmp[count - 1] == '\n')
3999 tmp[count - 1] = '\0';
4001 huge = shmem_parse_huge(tmp);
4002 if (huge == -EINVAL)
4004 if (!has_transparent_hugepage() &&
4005 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4009 if (shmem_huge > SHMEM_HUGE_DENY)
4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4014 struct kobj_attribute shmem_enabled_attr =
4015 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4018 #else /* !CONFIG_SHMEM */
4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4023 * This is intended for small system where the benefits of the full
4024 * shmem code (swap-backed and resource-limited) are outweighed by
4025 * their complexity. On systems without swap this code should be
4026 * effectively equivalent, but much lighter weight.
4029 static struct file_system_type shmem_fs_type = {
4031 .init_fs_context = ramfs_init_fs_context,
4032 .parameters = ramfs_fs_parameters,
4033 .kill_sb = kill_litter_super,
4034 .fs_flags = FS_USERNS_MOUNT,
4037 int __init shmem_init(void)
4039 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4041 shm_mnt = kern_mount(&shmem_fs_type);
4042 BUG_ON(IS_ERR(shm_mnt));
4047 int shmem_unuse(unsigned int type, bool frontswap,
4048 unsigned long *fs_pages_to_unuse)
4053 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4058 void shmem_unlock_mapping(struct address_space *mapping)
4063 unsigned long shmem_get_unmapped_area(struct file *file,
4064 unsigned long addr, unsigned long len,
4065 unsigned long pgoff, unsigned long flags)
4067 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4073 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4075 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4077 #define shmem_vm_ops generic_file_vm_ops
4078 #define shmem_file_operations ramfs_file_operations
4079 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4080 #define shmem_acct_size(flags, size) 0
4081 #define shmem_unacct_size(flags, size) do {} while (0)
4083 #endif /* CONFIG_SHMEM */
4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088 unsigned long flags, unsigned int i_flags)
4090 struct inode *inode;
4094 return ERR_CAST(mnt);
4096 if (size < 0 || size > MAX_LFS_FILESIZE)
4097 return ERR_PTR(-EINVAL);
4099 if (shmem_acct_size(flags, size))
4100 return ERR_PTR(-ENOMEM);
4102 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4104 if (unlikely(!inode)) {
4105 shmem_unacct_size(flags, size);
4106 return ERR_PTR(-ENOSPC);
4108 inode->i_flags |= i_flags;
4109 inode->i_size = size;
4110 clear_nlink(inode); /* It is unlinked */
4111 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4113 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114 &shmem_file_operations);
4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122 * kernel internal. There will be NO LSM permission checks against the
4123 * underlying inode. So users of this interface must do LSM checks at a
4124 * higher layer. The users are the big_key and shm implementations. LSM
4125 * checks are provided at the key or shm level rather than the inode.
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4132 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4136 * shmem_file_setup - get an unlinked file living in tmpfs
4137 * @name: name for dentry (to be seen in /proc/<pid>/maps
4138 * @size: size to be set for the file
4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4143 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4145 EXPORT_SYMBOL_GPL(shmem_file_setup);
4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149 * @mnt: the tmpfs mount where the file will be created
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155 loff_t size, unsigned long flags)
4157 return __shmem_file_setup(mnt, name, size, flags, 0);
4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4162 * shmem_zero_setup - setup a shared anonymous mapping
4163 * @vma: the vma to be mmapped is prepared by do_mmap
4165 int shmem_zero_setup(struct vm_area_struct *vma)
4168 loff_t size = vma->vm_end - vma->vm_start;
4171 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4172 * between XFS directory reading and selinux: since this file is only
4173 * accessible to the user through its mapping, use S_PRIVATE flag to
4174 * bypass file security, in the same way as shmem_kernel_file_setup().
4176 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4178 return PTR_ERR(file);
4182 vma->vm_file = file;
4183 vma->vm_ops = &shmem_vm_ops;
4185 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4186 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187 (vma->vm_end & HPAGE_PMD_MASK)) {
4188 khugepaged_enter(vma, vma->vm_flags);
4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196 * @mapping: the page's address_space
4197 * @index: the page index
4198 * @gfp: the page allocator flags to use if allocating
4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201 * with any new page allocations done using the specified allocation flags.
4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210 pgoff_t index, gfp_t gfp)
4213 struct inode *inode = mapping->host;
4217 BUG_ON(!shmem_mapping(mapping));
4218 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219 gfp, NULL, NULL, NULL);
4221 page = ERR_PTR(error);
4225 if (PageHWPoison(page))
4226 page = ERR_PTR(-EIO);
4231 * The tiny !SHMEM case uses ramfs without swap
4233 return read_cache_page_gfp(mapping, index, gfp);
4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);