mm/readahead.c: inline ra_submit
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item;
247
248         VM_BUG_ON(!expected);
249         VM_BUG_ON(!replacement);
250         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251         if (!pslot)
252                 return -ENOENT;
253         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254         if (item != expected)
255                 return -ENOENT;
256         radix_tree_replace_slot(pslot, replacement);
257         return 0;
258 }
259
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268                                pgoff_t index, swp_entry_t swap)
269 {
270         void *item;
271
272         rcu_read_lock();
273         item = radix_tree_lookup(&mapping->page_tree, index);
274         rcu_read_unlock();
275         return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282                                    struct address_space *mapping,
283                                    pgoff_t index, gfp_t gfp, void *expected)
284 {
285         int error;
286
287         VM_BUG_ON_PAGE(!PageLocked(page), page);
288         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290         page_cache_get(page);
291         page->mapping = mapping;
292         page->index = index;
293
294         spin_lock_irq(&mapping->tree_lock);
295         if (!expected)
296                 error = radix_tree_insert(&mapping->page_tree, index, page);
297         else
298                 error = shmem_radix_tree_replace(mapping, index, expected,
299                                                                  page);
300         if (!error) {
301                 mapping->nrpages++;
302                 __inc_zone_page_state(page, NR_FILE_PAGES);
303                 __inc_zone_page_state(page, NR_SHMEM);
304                 spin_unlock_irq(&mapping->tree_lock);
305         } else {
306                 page->mapping = NULL;
307                 spin_unlock_irq(&mapping->tree_lock);
308                 page_cache_release(page);
309         }
310         return error;
311 }
312
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318         struct address_space *mapping = page->mapping;
319         int error;
320
321         spin_lock_irq(&mapping->tree_lock);
322         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323         page->mapping = NULL;
324         mapping->nrpages--;
325         __dec_zone_page_state(page, NR_FILE_PAGES);
326         __dec_zone_page_state(page, NR_SHMEM);
327         spin_unlock_irq(&mapping->tree_lock);
328         page_cache_release(page);
329         BUG_ON(error);
330 }
331
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336                            pgoff_t index, void *radswap)
337 {
338         void *old;
339
340         spin_lock_irq(&mapping->tree_lock);
341         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342         spin_unlock_irq(&mapping->tree_lock);
343         if (old != radswap)
344                 return -ENOENT;
345         free_swap_and_cache(radix_to_swp_entry(radswap));
346         return 0;
347 }
348
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354         struct pagevec pvec;
355         pgoff_t indices[PAGEVEC_SIZE];
356         pgoff_t index = 0;
357
358         pagevec_init(&pvec, 0);
359         /*
360          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361          */
362         while (!mapping_unevictable(mapping)) {
363                 /*
364                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366                  */
367                 pvec.nr = find_get_entries(mapping, index,
368                                            PAGEVEC_SIZE, pvec.pages, indices);
369                 if (!pvec.nr)
370                         break;
371                 index = indices[pvec.nr - 1] + 1;
372                 pagevec_remove_exceptionals(&pvec);
373                 check_move_unevictable_pages(pvec.pages, pvec.nr);
374                 pagevec_release(&pvec);
375                 cond_resched();
376         }
377 }
378
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384                                                                  bool unfalloc)
385 {
386         struct address_space *mapping = inode->i_mapping;
387         struct shmem_inode_info *info = SHMEM_I(inode);
388         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392         struct pagevec pvec;
393         pgoff_t indices[PAGEVEC_SIZE];
394         long nr_swaps_freed = 0;
395         pgoff_t index;
396         int i;
397
398         if (lend == -1)
399                 end = -1;       /* unsigned, so actually very big */
400
401         pagevec_init(&pvec, 0);
402         index = start;
403         while (index < end) {
404                 pvec.nr = find_get_entries(mapping, index,
405                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
406                         pvec.pages, indices);
407                 if (!pvec.nr)
408                         break;
409                 mem_cgroup_uncharge_start();
410                 for (i = 0; i < pagevec_count(&pvec); i++) {
411                         struct page *page = pvec.pages[i];
412
413                         index = indices[i];
414                         if (index >= end)
415                                 break;
416
417                         if (radix_tree_exceptional_entry(page)) {
418                                 if (unfalloc)
419                                         continue;
420                                 nr_swaps_freed += !shmem_free_swap(mapping,
421                                                                 index, page);
422                                 continue;
423                         }
424
425                         if (!trylock_page(page))
426                                 continue;
427                         if (!unfalloc || !PageUptodate(page)) {
428                                 if (page->mapping == mapping) {
429                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
430                                         truncate_inode_page(mapping, page);
431                                 }
432                         }
433                         unlock_page(page);
434                 }
435                 pagevec_remove_exceptionals(&pvec);
436                 pagevec_release(&pvec);
437                 mem_cgroup_uncharge_end();
438                 cond_resched();
439                 index++;
440         }
441
442         if (partial_start) {
443                 struct page *page = NULL;
444                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445                 if (page) {
446                         unsigned int top = PAGE_CACHE_SIZE;
447                         if (start > end) {
448                                 top = partial_end;
449                                 partial_end = 0;
450                         }
451                         zero_user_segment(page, partial_start, top);
452                         set_page_dirty(page);
453                         unlock_page(page);
454                         page_cache_release(page);
455                 }
456         }
457         if (partial_end) {
458                 struct page *page = NULL;
459                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460                 if (page) {
461                         zero_user_segment(page, 0, partial_end);
462                         set_page_dirty(page);
463                         unlock_page(page);
464                         page_cache_release(page);
465                 }
466         }
467         if (start >= end)
468                 return;
469
470         index = start;
471         while (index < end) {
472                 cond_resched();
473
474                 pvec.nr = find_get_entries(mapping, index,
475                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476                                 pvec.pages, indices);
477                 if (!pvec.nr) {
478                         /* If all gone or hole-punch or unfalloc, we're done */
479                         if (index == start || end != -1)
480                                 break;
481                         /* But if truncating, restart to make sure all gone */
482                         index = start;
483                         continue;
484                 }
485                 mem_cgroup_uncharge_start();
486                 for (i = 0; i < pagevec_count(&pvec); i++) {
487                         struct page *page = pvec.pages[i];
488
489                         index = indices[i];
490                         if (index >= end)
491                                 break;
492
493                         if (radix_tree_exceptional_entry(page)) {
494                                 if (unfalloc)
495                                         continue;
496                                 if (shmem_free_swap(mapping, index, page)) {
497                                         /* Swap was replaced by page: retry */
498                                         index--;
499                                         break;
500                                 }
501                                 nr_swaps_freed++;
502                                 continue;
503                         }
504
505                         lock_page(page);
506                         if (!unfalloc || !PageUptodate(page)) {
507                                 if (page->mapping == mapping) {
508                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
509                                         truncate_inode_page(mapping, page);
510                                 } else {
511                                         /* Page was replaced by swap: retry */
512                                         unlock_page(page);
513                                         index--;
514                                         break;
515                                 }
516                         }
517                         unlock_page(page);
518                 }
519                 pagevec_remove_exceptionals(&pvec);
520                 pagevec_release(&pvec);
521                 mem_cgroup_uncharge_end();
522                 index++;
523         }
524
525         spin_lock(&info->lock);
526         info->swapped -= nr_swaps_freed;
527         shmem_recalc_inode(inode);
528         spin_unlock(&info->lock);
529 }
530
531 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
532 {
533         shmem_undo_range(inode, lstart, lend, false);
534         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
535 }
536 EXPORT_SYMBOL_GPL(shmem_truncate_range);
537
538 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
539 {
540         struct inode *inode = dentry->d_inode;
541         int error;
542
543         error = inode_change_ok(inode, attr);
544         if (error)
545                 return error;
546
547         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548                 loff_t oldsize = inode->i_size;
549                 loff_t newsize = attr->ia_size;
550
551                 if (newsize != oldsize) {
552                         i_size_write(inode, newsize);
553                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
554                 }
555                 if (newsize < oldsize) {
556                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
557                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558                         shmem_truncate_range(inode, newsize, (loff_t)-1);
559                         /* unmap again to remove racily COWed private pages */
560                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
561                 }
562         }
563
564         setattr_copy(inode, attr);
565         if (attr->ia_valid & ATTR_MODE)
566                 error = posix_acl_chmod(inode, inode->i_mode);
567         return error;
568 }
569
570 static void shmem_evict_inode(struct inode *inode)
571 {
572         struct shmem_inode_info *info = SHMEM_I(inode);
573
574         if (inode->i_mapping->a_ops == &shmem_aops) {
575                 shmem_unacct_size(info->flags, inode->i_size);
576                 inode->i_size = 0;
577                 shmem_truncate_range(inode, 0, (loff_t)-1);
578                 if (!list_empty(&info->swaplist)) {
579                         mutex_lock(&shmem_swaplist_mutex);
580                         list_del_init(&info->swaplist);
581                         mutex_unlock(&shmem_swaplist_mutex);
582                 }
583         } else
584                 kfree(info->symlink);
585
586         simple_xattrs_free(&info->xattrs);
587         WARN_ON(inode->i_blocks);
588         shmem_free_inode(inode->i_sb);
589         clear_inode(inode);
590 }
591
592 /*
593  * If swap found in inode, free it and move page from swapcache to filecache.
594  */
595 static int shmem_unuse_inode(struct shmem_inode_info *info,
596                              swp_entry_t swap, struct page **pagep)
597 {
598         struct address_space *mapping = info->vfs_inode.i_mapping;
599         void *radswap;
600         pgoff_t index;
601         gfp_t gfp;
602         int error = 0;
603
604         radswap = swp_to_radix_entry(swap);
605         index = radix_tree_locate_item(&mapping->page_tree, radswap);
606         if (index == -1)
607                 return 0;
608
609         /*
610          * Move _head_ to start search for next from here.
611          * But be careful: shmem_evict_inode checks list_empty without taking
612          * mutex, and there's an instant in list_move_tail when info->swaplist
613          * would appear empty, if it were the only one on shmem_swaplist.
614          */
615         if (shmem_swaplist.next != &info->swaplist)
616                 list_move_tail(&shmem_swaplist, &info->swaplist);
617
618         gfp = mapping_gfp_mask(mapping);
619         if (shmem_should_replace_page(*pagep, gfp)) {
620                 mutex_unlock(&shmem_swaplist_mutex);
621                 error = shmem_replace_page(pagep, gfp, info, index);
622                 mutex_lock(&shmem_swaplist_mutex);
623                 /*
624                  * We needed to drop mutex to make that restrictive page
625                  * allocation, but the inode might have been freed while we
626                  * dropped it: although a racing shmem_evict_inode() cannot
627                  * complete without emptying the radix_tree, our page lock
628                  * on this swapcache page is not enough to prevent that -
629                  * free_swap_and_cache() of our swap entry will only
630                  * trylock_page(), removing swap from radix_tree whatever.
631                  *
632                  * We must not proceed to shmem_add_to_page_cache() if the
633                  * inode has been freed, but of course we cannot rely on
634                  * inode or mapping or info to check that.  However, we can
635                  * safely check if our swap entry is still in use (and here
636                  * it can't have got reused for another page): if it's still
637                  * in use, then the inode cannot have been freed yet, and we
638                  * can safely proceed (if it's no longer in use, that tells
639                  * nothing about the inode, but we don't need to unuse swap).
640                  */
641                 if (!page_swapcount(*pagep))
642                         error = -ENOENT;
643         }
644
645         /*
646          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
647          * but also to hold up shmem_evict_inode(): so inode cannot be freed
648          * beneath us (pagelock doesn't help until the page is in pagecache).
649          */
650         if (!error)
651                 error = shmem_add_to_page_cache(*pagep, mapping, index,
652                                                 GFP_NOWAIT, radswap);
653         if (error != -ENOMEM) {
654                 /*
655                  * Truncation and eviction use free_swap_and_cache(), which
656                  * only does trylock page: if we raced, best clean up here.
657                  */
658                 delete_from_swap_cache(*pagep);
659                 set_page_dirty(*pagep);
660                 if (!error) {
661                         spin_lock(&info->lock);
662                         info->swapped--;
663                         spin_unlock(&info->lock);
664                         swap_free(swap);
665                 }
666                 error = 1;      /* not an error, but entry was found */
667         }
668         return error;
669 }
670
671 /*
672  * Search through swapped inodes to find and replace swap by page.
673  */
674 int shmem_unuse(swp_entry_t swap, struct page *page)
675 {
676         struct list_head *this, *next;
677         struct shmem_inode_info *info;
678         int found = 0;
679         int error = 0;
680
681         /*
682          * There's a faint possibility that swap page was replaced before
683          * caller locked it: caller will come back later with the right page.
684          */
685         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
686                 goto out;
687
688         /*
689          * Charge page using GFP_KERNEL while we can wait, before taking
690          * the shmem_swaplist_mutex which might hold up shmem_writepage().
691          * Charged back to the user (not to caller) when swap account is used.
692          */
693         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
694         if (error)
695                 goto out;
696         /* No radix_tree_preload: swap entry keeps a place for page in tree */
697
698         mutex_lock(&shmem_swaplist_mutex);
699         list_for_each_safe(this, next, &shmem_swaplist) {
700                 info = list_entry(this, struct shmem_inode_info, swaplist);
701                 if (info->swapped)
702                         found = shmem_unuse_inode(info, swap, &page);
703                 else
704                         list_del_init(&info->swaplist);
705                 cond_resched();
706                 if (found)
707                         break;
708         }
709         mutex_unlock(&shmem_swaplist_mutex);
710
711         if (found < 0)
712                 error = found;
713 out:
714         unlock_page(page);
715         page_cache_release(page);
716         return error;
717 }
718
719 /*
720  * Move the page from the page cache to the swap cache.
721  */
722 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
723 {
724         struct shmem_inode_info *info;
725         struct address_space *mapping;
726         struct inode *inode;
727         swp_entry_t swap;
728         pgoff_t index;
729
730         BUG_ON(!PageLocked(page));
731         mapping = page->mapping;
732         index = page->index;
733         inode = mapping->host;
734         info = SHMEM_I(inode);
735         if (info->flags & VM_LOCKED)
736                 goto redirty;
737         if (!total_swap_pages)
738                 goto redirty;
739
740         /*
741          * shmem_backing_dev_info's capabilities prevent regular writeback or
742          * sync from ever calling shmem_writepage; but a stacking filesystem
743          * might use ->writepage of its underlying filesystem, in which case
744          * tmpfs should write out to swap only in response to memory pressure,
745          * and not for the writeback threads or sync.
746          */
747         if (!wbc->for_reclaim) {
748                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
749                 goto redirty;
750         }
751
752         /*
753          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
754          * value into swapfile.c, the only way we can correctly account for a
755          * fallocated page arriving here is now to initialize it and write it.
756          *
757          * That's okay for a page already fallocated earlier, but if we have
758          * not yet completed the fallocation, then (a) we want to keep track
759          * of this page in case we have to undo it, and (b) it may not be a
760          * good idea to continue anyway, once we're pushing into swap.  So
761          * reactivate the page, and let shmem_fallocate() quit when too many.
762          */
763         if (!PageUptodate(page)) {
764                 if (inode->i_private) {
765                         struct shmem_falloc *shmem_falloc;
766                         spin_lock(&inode->i_lock);
767                         shmem_falloc = inode->i_private;
768                         if (shmem_falloc &&
769                             !shmem_falloc->waitq &&
770                             index >= shmem_falloc->start &&
771                             index < shmem_falloc->next)
772                                 shmem_falloc->nr_unswapped++;
773                         else
774                                 shmem_falloc = NULL;
775                         spin_unlock(&inode->i_lock);
776                         if (shmem_falloc)
777                                 goto redirty;
778                 }
779                 clear_highpage(page);
780                 flush_dcache_page(page);
781                 SetPageUptodate(page);
782         }
783
784         swap = get_swap_page();
785         if (!swap.val)
786                 goto redirty;
787
788         /*
789          * Add inode to shmem_unuse()'s list of swapped-out inodes,
790          * if it's not already there.  Do it now before the page is
791          * moved to swap cache, when its pagelock no longer protects
792          * the inode from eviction.  But don't unlock the mutex until
793          * we've incremented swapped, because shmem_unuse_inode() will
794          * prune a !swapped inode from the swaplist under this mutex.
795          */
796         mutex_lock(&shmem_swaplist_mutex);
797         if (list_empty(&info->swaplist))
798                 list_add_tail(&info->swaplist, &shmem_swaplist);
799
800         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
801                 swap_shmem_alloc(swap);
802                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
803
804                 spin_lock(&info->lock);
805                 info->swapped++;
806                 shmem_recalc_inode(inode);
807                 spin_unlock(&info->lock);
808
809                 mutex_unlock(&shmem_swaplist_mutex);
810                 BUG_ON(page_mapped(page));
811                 swap_writepage(page, wbc);
812                 return 0;
813         }
814
815         mutex_unlock(&shmem_swaplist_mutex);
816         swapcache_free(swap, NULL);
817 redirty:
818         set_page_dirty(page);
819         if (wbc->for_reclaim)
820                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
821         unlock_page(page);
822         return 0;
823 }
824
825 #ifdef CONFIG_NUMA
826 #ifdef CONFIG_TMPFS
827 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
828 {
829         char buffer[64];
830
831         if (!mpol || mpol->mode == MPOL_DEFAULT)
832                 return;         /* show nothing */
833
834         mpol_to_str(buffer, sizeof(buffer), mpol);
835
836         seq_printf(seq, ",mpol=%s", buffer);
837 }
838
839 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
840 {
841         struct mempolicy *mpol = NULL;
842         if (sbinfo->mpol) {
843                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
844                 mpol = sbinfo->mpol;
845                 mpol_get(mpol);
846                 spin_unlock(&sbinfo->stat_lock);
847         }
848         return mpol;
849 }
850 #endif /* CONFIG_TMPFS */
851
852 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
853                         struct shmem_inode_info *info, pgoff_t index)
854 {
855         struct vm_area_struct pvma;
856         struct page *page;
857
858         /* Create a pseudo vma that just contains the policy */
859         pvma.vm_start = 0;
860         /* Bias interleave by inode number to distribute better across nodes */
861         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
862         pvma.vm_ops = NULL;
863         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
864
865         page = swapin_readahead(swap, gfp, &pvma, 0);
866
867         /* Drop reference taken by mpol_shared_policy_lookup() */
868         mpol_cond_put(pvma.vm_policy);
869
870         return page;
871 }
872
873 static struct page *shmem_alloc_page(gfp_t gfp,
874                         struct shmem_inode_info *info, pgoff_t index)
875 {
876         struct vm_area_struct pvma;
877         struct page *page;
878
879         /* Create a pseudo vma that just contains the policy */
880         pvma.vm_start = 0;
881         /* Bias interleave by inode number to distribute better across nodes */
882         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
883         pvma.vm_ops = NULL;
884         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
885
886         page = alloc_page_vma(gfp, &pvma, 0);
887
888         /* Drop reference taken by mpol_shared_policy_lookup() */
889         mpol_cond_put(pvma.vm_policy);
890
891         return page;
892 }
893 #else /* !CONFIG_NUMA */
894 #ifdef CONFIG_TMPFS
895 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
896 {
897 }
898 #endif /* CONFIG_TMPFS */
899
900 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
901                         struct shmem_inode_info *info, pgoff_t index)
902 {
903         return swapin_readahead(swap, gfp, NULL, 0);
904 }
905
906 static inline struct page *shmem_alloc_page(gfp_t gfp,
907                         struct shmem_inode_info *info, pgoff_t index)
908 {
909         return alloc_page(gfp);
910 }
911 #endif /* CONFIG_NUMA */
912
913 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
914 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
915 {
916         return NULL;
917 }
918 #endif
919
920 /*
921  * When a page is moved from swapcache to shmem filecache (either by the
922  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
923  * shmem_unuse_inode()), it may have been read in earlier from swap, in
924  * ignorance of the mapping it belongs to.  If that mapping has special
925  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
926  * we may need to copy to a suitable page before moving to filecache.
927  *
928  * In a future release, this may well be extended to respect cpuset and
929  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
930  * but for now it is a simple matter of zone.
931  */
932 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
933 {
934         return page_zonenum(page) > gfp_zone(gfp);
935 }
936
937 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
938                                 struct shmem_inode_info *info, pgoff_t index)
939 {
940         struct page *oldpage, *newpage;
941         struct address_space *swap_mapping;
942         pgoff_t swap_index;
943         int error;
944
945         oldpage = *pagep;
946         swap_index = page_private(oldpage);
947         swap_mapping = page_mapping(oldpage);
948
949         /*
950          * We have arrived here because our zones are constrained, so don't
951          * limit chance of success by further cpuset and node constraints.
952          */
953         gfp &= ~GFP_CONSTRAINT_MASK;
954         newpage = shmem_alloc_page(gfp, info, index);
955         if (!newpage)
956                 return -ENOMEM;
957
958         page_cache_get(newpage);
959         copy_highpage(newpage, oldpage);
960         flush_dcache_page(newpage);
961
962         __set_page_locked(newpage);
963         SetPageUptodate(newpage);
964         SetPageSwapBacked(newpage);
965         set_page_private(newpage, swap_index);
966         SetPageSwapCache(newpage);
967
968         /*
969          * Our caller will very soon move newpage out of swapcache, but it's
970          * a nice clean interface for us to replace oldpage by newpage there.
971          */
972         spin_lock_irq(&swap_mapping->tree_lock);
973         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
974                                                                    newpage);
975         if (!error) {
976                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
977                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
978         }
979         spin_unlock_irq(&swap_mapping->tree_lock);
980
981         if (unlikely(error)) {
982                 /*
983                  * Is this possible?  I think not, now that our callers check
984                  * both PageSwapCache and page_private after getting page lock;
985                  * but be defensive.  Reverse old to newpage for clear and free.
986                  */
987                 oldpage = newpage;
988         } else {
989                 mem_cgroup_replace_page_cache(oldpage, newpage);
990                 lru_cache_add_anon(newpage);
991                 *pagep = newpage;
992         }
993
994         ClearPageSwapCache(oldpage);
995         set_page_private(oldpage, 0);
996
997         unlock_page(oldpage);
998         page_cache_release(oldpage);
999         page_cache_release(oldpage);
1000         return error;
1001 }
1002
1003 /*
1004  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1005  *
1006  * If we allocate a new one we do not mark it dirty. That's up to the
1007  * vm. If we swap it in we mark it dirty since we also free the swap
1008  * entry since a page cannot live in both the swap and page cache
1009  */
1010 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1012 {
1013         struct address_space *mapping = inode->i_mapping;
1014         struct shmem_inode_info *info;
1015         struct shmem_sb_info *sbinfo;
1016         struct page *page;
1017         swp_entry_t swap;
1018         int error;
1019         int once = 0;
1020         int alloced = 0;
1021
1022         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1023                 return -EFBIG;
1024 repeat:
1025         swap.val = 0;
1026         page = find_lock_entry(mapping, index);
1027         if (radix_tree_exceptional_entry(page)) {
1028                 swap = radix_to_swp_entry(page);
1029                 page = NULL;
1030         }
1031
1032         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1034                 error = -EINVAL;
1035                 goto failed;
1036         }
1037
1038         /* fallocated page? */
1039         if (page && !PageUptodate(page)) {
1040                 if (sgp != SGP_READ)
1041                         goto clear;
1042                 unlock_page(page);
1043                 page_cache_release(page);
1044                 page = NULL;
1045         }
1046         if (page || (sgp == SGP_READ && !swap.val)) {
1047                 *pagep = page;
1048                 return 0;
1049         }
1050
1051         /*
1052          * Fast cache lookup did not find it:
1053          * bring it back from swap or allocate.
1054          */
1055         info = SHMEM_I(inode);
1056         sbinfo = SHMEM_SB(inode->i_sb);
1057
1058         if (swap.val) {
1059                 /* Look it up and read it in.. */
1060                 page = lookup_swap_cache(swap);
1061                 if (!page) {
1062                         /* here we actually do the io */
1063                         if (fault_type)
1064                                 *fault_type |= VM_FAULT_MAJOR;
1065                         page = shmem_swapin(swap, gfp, info, index);
1066                         if (!page) {
1067                                 error = -ENOMEM;
1068                                 goto failed;
1069                         }
1070                 }
1071
1072                 /* We have to do this with page locked to prevent races */
1073                 lock_page(page);
1074                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1075                     !shmem_confirm_swap(mapping, index, swap)) {
1076                         error = -EEXIST;        /* try again */
1077                         goto unlock;
1078                 }
1079                 if (!PageUptodate(page)) {
1080                         error = -EIO;
1081                         goto failed;
1082                 }
1083                 wait_on_page_writeback(page);
1084
1085                 if (shmem_should_replace_page(page, gfp)) {
1086                         error = shmem_replace_page(&page, gfp, info, index);
1087                         if (error)
1088                                 goto failed;
1089                 }
1090
1091                 error = mem_cgroup_cache_charge(page, current->mm,
1092                                                 gfp & GFP_RECLAIM_MASK);
1093                 if (!error) {
1094                         error = shmem_add_to_page_cache(page, mapping, index,
1095                                                 gfp, swp_to_radix_entry(swap));
1096                         /*
1097                          * We already confirmed swap under page lock, and make
1098                          * no memory allocation here, so usually no possibility
1099                          * of error; but free_swap_and_cache() only trylocks a
1100                          * page, so it is just possible that the entry has been
1101                          * truncated or holepunched since swap was confirmed.
1102                          * shmem_undo_range() will have done some of the
1103                          * unaccounting, now delete_from_swap_cache() will do
1104                          * the rest (including mem_cgroup_uncharge_swapcache).
1105                          * Reset swap.val? No, leave it so "failed" goes back to
1106                          * "repeat": reading a hole and writing should succeed.
1107                          */
1108                         if (error)
1109                                 delete_from_swap_cache(page);
1110                 }
1111                 if (error)
1112                         goto failed;
1113
1114                 spin_lock(&info->lock);
1115                 info->swapped--;
1116                 shmem_recalc_inode(inode);
1117                 spin_unlock(&info->lock);
1118
1119                 delete_from_swap_cache(page);
1120                 set_page_dirty(page);
1121                 swap_free(swap);
1122
1123         } else {
1124                 if (shmem_acct_block(info->flags)) {
1125                         error = -ENOSPC;
1126                         goto failed;
1127                 }
1128                 if (sbinfo->max_blocks) {
1129                         if (percpu_counter_compare(&sbinfo->used_blocks,
1130                                                 sbinfo->max_blocks) >= 0) {
1131                                 error = -ENOSPC;
1132                                 goto unacct;
1133                         }
1134                         percpu_counter_inc(&sbinfo->used_blocks);
1135                 }
1136
1137                 page = shmem_alloc_page(gfp, info, index);
1138                 if (!page) {
1139                         error = -ENOMEM;
1140                         goto decused;
1141                 }
1142
1143                 SetPageSwapBacked(page);
1144                 __set_page_locked(page);
1145                 error = mem_cgroup_cache_charge(page, current->mm,
1146                                                 gfp & GFP_RECLAIM_MASK);
1147                 if (error)
1148                         goto decused;
1149                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1150                 if (!error) {
1151                         error = shmem_add_to_page_cache(page, mapping, index,
1152                                                         gfp, NULL);
1153                         radix_tree_preload_end();
1154                 }
1155                 if (error) {
1156                         mem_cgroup_uncharge_cache_page(page);
1157                         goto decused;
1158                 }
1159                 lru_cache_add_anon(page);
1160
1161                 spin_lock(&info->lock);
1162                 info->alloced++;
1163                 inode->i_blocks += BLOCKS_PER_PAGE;
1164                 shmem_recalc_inode(inode);
1165                 spin_unlock(&info->lock);
1166                 alloced = true;
1167
1168                 /*
1169                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1170                  */
1171                 if (sgp == SGP_FALLOC)
1172                         sgp = SGP_WRITE;
1173 clear:
1174                 /*
1175                  * Let SGP_WRITE caller clear ends if write does not fill page;
1176                  * but SGP_FALLOC on a page fallocated earlier must initialize
1177                  * it now, lest undo on failure cancel our earlier guarantee.
1178                  */
1179                 if (sgp != SGP_WRITE) {
1180                         clear_highpage(page);
1181                         flush_dcache_page(page);
1182                         SetPageUptodate(page);
1183                 }
1184                 if (sgp == SGP_DIRTY)
1185                         set_page_dirty(page);
1186         }
1187
1188         /* Perhaps the file has been truncated since we checked */
1189         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1190             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1191                 error = -EINVAL;
1192                 if (alloced)
1193                         goto trunc;
1194                 else
1195                         goto failed;
1196         }
1197         *pagep = page;
1198         return 0;
1199
1200         /*
1201          * Error recovery.
1202          */
1203 trunc:
1204         info = SHMEM_I(inode);
1205         ClearPageDirty(page);
1206         delete_from_page_cache(page);
1207         spin_lock(&info->lock);
1208         info->alloced--;
1209         inode->i_blocks -= BLOCKS_PER_PAGE;
1210         spin_unlock(&info->lock);
1211 decused:
1212         sbinfo = SHMEM_SB(inode->i_sb);
1213         if (sbinfo->max_blocks)
1214                 percpu_counter_add(&sbinfo->used_blocks, -1);
1215 unacct:
1216         shmem_unacct_blocks(info->flags, 1);
1217 failed:
1218         if (swap.val && error != -EINVAL &&
1219             !shmem_confirm_swap(mapping, index, swap))
1220                 error = -EEXIST;
1221 unlock:
1222         if (page) {
1223                 unlock_page(page);
1224                 page_cache_release(page);
1225         }
1226         if (error == -ENOSPC && !once++) {
1227                 info = SHMEM_I(inode);
1228                 spin_lock(&info->lock);
1229                 shmem_recalc_inode(inode);
1230                 spin_unlock(&info->lock);
1231                 goto repeat;
1232         }
1233         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1234                 goto repeat;
1235         return error;
1236 }
1237
1238 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1239 {
1240         struct inode *inode = file_inode(vma->vm_file);
1241         int error;
1242         int ret = VM_FAULT_LOCKED;
1243
1244         /*
1245          * Trinity finds that probing a hole which tmpfs is punching can
1246          * prevent the hole-punch from ever completing: which in turn
1247          * locks writers out with its hold on i_mutex.  So refrain from
1248          * faulting pages into the hole while it's being punched.  Although
1249          * shmem_undo_range() does remove the additions, it may be unable to
1250          * keep up, as each new page needs its own unmap_mapping_range() call,
1251          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1252          *
1253          * It does not matter if we sometimes reach this check just before the
1254          * hole-punch begins, so that one fault then races with the punch:
1255          * we just need to make racing faults a rare case.
1256          *
1257          * The implementation below would be much simpler if we just used a
1258          * standard mutex or completion: but we cannot take i_mutex in fault,
1259          * and bloating every shmem inode for this unlikely case would be sad.
1260          */
1261         if (unlikely(inode->i_private)) {
1262                 struct shmem_falloc *shmem_falloc;
1263
1264                 spin_lock(&inode->i_lock);
1265                 shmem_falloc = inode->i_private;
1266                 if (shmem_falloc &&
1267                     shmem_falloc->waitq &&
1268                     vmf->pgoff >= shmem_falloc->start &&
1269                     vmf->pgoff < shmem_falloc->next) {
1270                         wait_queue_head_t *shmem_falloc_waitq;
1271                         DEFINE_WAIT(shmem_fault_wait);
1272
1273                         ret = VM_FAULT_NOPAGE;
1274                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1275                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1276                                 /* It's polite to up mmap_sem if we can */
1277                                 up_read(&vma->vm_mm->mmap_sem);
1278                                 ret = VM_FAULT_RETRY;
1279                         }
1280
1281                         shmem_falloc_waitq = shmem_falloc->waitq;
1282                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1283                                         TASK_UNINTERRUPTIBLE);
1284                         spin_unlock(&inode->i_lock);
1285                         schedule();
1286
1287                         /*
1288                          * shmem_falloc_waitq points into the shmem_fallocate()
1289                          * stack of the hole-punching task: shmem_falloc_waitq
1290                          * is usually invalid by the time we reach here, but
1291                          * finish_wait() does not dereference it in that case;
1292                          * though i_lock needed lest racing with wake_up_all().
1293                          */
1294                         spin_lock(&inode->i_lock);
1295                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1296                         spin_unlock(&inode->i_lock);
1297                         return ret;
1298                 }
1299                 spin_unlock(&inode->i_lock);
1300         }
1301
1302         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1303         if (error)
1304                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1305
1306         if (ret & VM_FAULT_MAJOR) {
1307                 count_vm_event(PGMAJFAULT);
1308                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1309         }
1310         return ret;
1311 }
1312
1313 #ifdef CONFIG_NUMA
1314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1315 {
1316         struct inode *inode = file_inode(vma->vm_file);
1317         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1318 }
1319
1320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1321                                           unsigned long addr)
1322 {
1323         struct inode *inode = file_inode(vma->vm_file);
1324         pgoff_t index;
1325
1326         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1327         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1328 }
1329 #endif
1330
1331 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1332 {
1333         struct inode *inode = file_inode(file);
1334         struct shmem_inode_info *info = SHMEM_I(inode);
1335         int retval = -ENOMEM;
1336
1337         spin_lock(&info->lock);
1338         if (lock && !(info->flags & VM_LOCKED)) {
1339                 if (!user_shm_lock(inode->i_size, user))
1340                         goto out_nomem;
1341                 info->flags |= VM_LOCKED;
1342                 mapping_set_unevictable(file->f_mapping);
1343         }
1344         if (!lock && (info->flags & VM_LOCKED) && user) {
1345                 user_shm_unlock(inode->i_size, user);
1346                 info->flags &= ~VM_LOCKED;
1347                 mapping_clear_unevictable(file->f_mapping);
1348         }
1349         retval = 0;
1350
1351 out_nomem:
1352         spin_unlock(&info->lock);
1353         return retval;
1354 }
1355
1356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358         file_accessed(file);
1359         vma->vm_ops = &shmem_vm_ops;
1360         return 0;
1361 }
1362
1363 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1364                                      umode_t mode, dev_t dev, unsigned long flags)
1365 {
1366         struct inode *inode;
1367         struct shmem_inode_info *info;
1368         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1369
1370         if (shmem_reserve_inode(sb))
1371                 return NULL;
1372
1373         inode = new_inode(sb);
1374         if (inode) {
1375                 inode->i_ino = get_next_ino();
1376                 inode_init_owner(inode, dir, mode);
1377                 inode->i_blocks = 0;
1378                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1379                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1380                 inode->i_generation = get_seconds();
1381                 info = SHMEM_I(inode);
1382                 memset(info, 0, (char *)inode - (char *)info);
1383                 spin_lock_init(&info->lock);
1384                 info->flags = flags & VM_NORESERVE;
1385                 INIT_LIST_HEAD(&info->swaplist);
1386                 simple_xattrs_init(&info->xattrs);
1387                 cache_no_acl(inode);
1388
1389                 switch (mode & S_IFMT) {
1390                 default:
1391                         inode->i_op = &shmem_special_inode_operations;
1392                         init_special_inode(inode, mode, dev);
1393                         break;
1394                 case S_IFREG:
1395                         inode->i_mapping->a_ops = &shmem_aops;
1396                         inode->i_op = &shmem_inode_operations;
1397                         inode->i_fop = &shmem_file_operations;
1398                         mpol_shared_policy_init(&info->policy,
1399                                                  shmem_get_sbmpol(sbinfo));
1400                         break;
1401                 case S_IFDIR:
1402                         inc_nlink(inode);
1403                         /* Some things misbehave if size == 0 on a directory */
1404                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1405                         inode->i_op = &shmem_dir_inode_operations;
1406                         inode->i_fop = &simple_dir_operations;
1407                         break;
1408                 case S_IFLNK:
1409                         /*
1410                          * Must not load anything in the rbtree,
1411                          * mpol_free_shared_policy will not be called.
1412                          */
1413                         mpol_shared_policy_init(&info->policy, NULL);
1414                         break;
1415                 }
1416         } else
1417                 shmem_free_inode(sb);
1418         return inode;
1419 }
1420
1421 bool shmem_mapping(struct address_space *mapping)
1422 {
1423         return mapping->backing_dev_info == &shmem_backing_dev_info;
1424 }
1425
1426 #ifdef CONFIG_TMPFS
1427 static const struct inode_operations shmem_symlink_inode_operations;
1428 static const struct inode_operations shmem_short_symlink_operations;
1429
1430 #ifdef CONFIG_TMPFS_XATTR
1431 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1432 #else
1433 #define shmem_initxattrs NULL
1434 #endif
1435
1436 static int
1437 shmem_write_begin(struct file *file, struct address_space *mapping,
1438                         loff_t pos, unsigned len, unsigned flags,
1439                         struct page **pagep, void **fsdata)
1440 {
1441         struct inode *inode = mapping->host;
1442         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1443         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1444 }
1445
1446 static int
1447 shmem_write_end(struct file *file, struct address_space *mapping,
1448                         loff_t pos, unsigned len, unsigned copied,
1449                         struct page *page, void *fsdata)
1450 {
1451         struct inode *inode = mapping->host;
1452
1453         if (pos + copied > inode->i_size)
1454                 i_size_write(inode, pos + copied);
1455
1456         if (!PageUptodate(page)) {
1457                 if (copied < PAGE_CACHE_SIZE) {
1458                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1459                         zero_user_segments(page, 0, from,
1460                                         from + copied, PAGE_CACHE_SIZE);
1461                 }
1462                 SetPageUptodate(page);
1463         }
1464         set_page_dirty(page);
1465         unlock_page(page);
1466         page_cache_release(page);
1467
1468         return copied;
1469 }
1470
1471 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1472 {
1473         struct inode *inode = file_inode(filp);
1474         struct address_space *mapping = inode->i_mapping;
1475         pgoff_t index;
1476         unsigned long offset;
1477         enum sgp_type sgp = SGP_READ;
1478
1479         /*
1480          * Might this read be for a stacking filesystem?  Then when reading
1481          * holes of a sparse file, we actually need to allocate those pages,
1482          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1483          */
1484         if (segment_eq(get_fs(), KERNEL_DS))
1485                 sgp = SGP_DIRTY;
1486
1487         index = *ppos >> PAGE_CACHE_SHIFT;
1488         offset = *ppos & ~PAGE_CACHE_MASK;
1489
1490         for (;;) {
1491                 struct page *page = NULL;
1492                 pgoff_t end_index;
1493                 unsigned long nr, ret;
1494                 loff_t i_size = i_size_read(inode);
1495
1496                 end_index = i_size >> PAGE_CACHE_SHIFT;
1497                 if (index > end_index)
1498                         break;
1499                 if (index == end_index) {
1500                         nr = i_size & ~PAGE_CACHE_MASK;
1501                         if (nr <= offset)
1502                                 break;
1503                 }
1504
1505                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1506                 if (desc->error) {
1507                         if (desc->error == -EINVAL)
1508                                 desc->error = 0;
1509                         break;
1510                 }
1511                 if (page)
1512                         unlock_page(page);
1513
1514                 /*
1515                  * We must evaluate after, since reads (unlike writes)
1516                  * are called without i_mutex protection against truncate
1517                  */
1518                 nr = PAGE_CACHE_SIZE;
1519                 i_size = i_size_read(inode);
1520                 end_index = i_size >> PAGE_CACHE_SHIFT;
1521                 if (index == end_index) {
1522                         nr = i_size & ~PAGE_CACHE_MASK;
1523                         if (nr <= offset) {
1524                                 if (page)
1525                                         page_cache_release(page);
1526                                 break;
1527                         }
1528                 }
1529                 nr -= offset;
1530
1531                 if (page) {
1532                         /*
1533                          * If users can be writing to this page using arbitrary
1534                          * virtual addresses, take care about potential aliasing
1535                          * before reading the page on the kernel side.
1536                          */
1537                         if (mapping_writably_mapped(mapping))
1538                                 flush_dcache_page(page);
1539                         /*
1540                          * Mark the page accessed if we read the beginning.
1541                          */
1542                         if (!offset)
1543                                 mark_page_accessed(page);
1544                 } else {
1545                         page = ZERO_PAGE(0);
1546                         page_cache_get(page);
1547                 }
1548
1549                 /*
1550                  * Ok, we have the page, and it's up-to-date, so
1551                  * now we can copy it to user space...
1552                  *
1553                  * The actor routine returns how many bytes were actually used..
1554                  * NOTE! This may not be the same as how much of a user buffer
1555                  * we filled up (we may be padding etc), so we can only update
1556                  * "pos" here (the actor routine has to update the user buffer
1557                  * pointers and the remaining count).
1558                  */
1559                 ret = actor(desc, page, offset, nr);
1560                 offset += ret;
1561                 index += offset >> PAGE_CACHE_SHIFT;
1562                 offset &= ~PAGE_CACHE_MASK;
1563
1564                 page_cache_release(page);
1565                 if (ret != nr || !desc->count)
1566                         break;
1567
1568                 cond_resched();
1569         }
1570
1571         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1572         file_accessed(filp);
1573 }
1574
1575 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1576                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1577 {
1578         struct file *filp = iocb->ki_filp;
1579         ssize_t retval;
1580         unsigned long seg;
1581         size_t count;
1582         loff_t *ppos = &iocb->ki_pos;
1583
1584         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1585         if (retval)
1586                 return retval;
1587
1588         for (seg = 0; seg < nr_segs; seg++) {
1589                 read_descriptor_t desc;
1590
1591                 desc.written = 0;
1592                 desc.arg.buf = iov[seg].iov_base;
1593                 desc.count = iov[seg].iov_len;
1594                 if (desc.count == 0)
1595                         continue;
1596                 desc.error = 0;
1597                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1598                 retval += desc.written;
1599                 if (desc.error) {
1600                         retval = retval ?: desc.error;
1601                         break;
1602                 }
1603                 if (desc.count > 0)
1604                         break;
1605         }
1606         return retval;
1607 }
1608
1609 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610                                 struct pipe_inode_info *pipe, size_t len,
1611                                 unsigned int flags)
1612 {
1613         struct address_space *mapping = in->f_mapping;
1614         struct inode *inode = mapping->host;
1615         unsigned int loff, nr_pages, req_pages;
1616         struct page *pages[PIPE_DEF_BUFFERS];
1617         struct partial_page partial[PIPE_DEF_BUFFERS];
1618         struct page *page;
1619         pgoff_t index, end_index;
1620         loff_t isize, left;
1621         int error, page_nr;
1622         struct splice_pipe_desc spd = {
1623                 .pages = pages,
1624                 .partial = partial,
1625                 .nr_pages_max = PIPE_DEF_BUFFERS,
1626                 .flags = flags,
1627                 .ops = &page_cache_pipe_buf_ops,
1628                 .spd_release = spd_release_page,
1629         };
1630
1631         isize = i_size_read(inode);
1632         if (unlikely(*ppos >= isize))
1633                 return 0;
1634
1635         left = isize - *ppos;
1636         if (unlikely(left < len))
1637                 len = left;
1638
1639         if (splice_grow_spd(pipe, &spd))
1640                 return -ENOMEM;
1641
1642         index = *ppos >> PAGE_CACHE_SHIFT;
1643         loff = *ppos & ~PAGE_CACHE_MASK;
1644         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1645         nr_pages = min(req_pages, pipe->buffers);
1646
1647         spd.nr_pages = find_get_pages_contig(mapping, index,
1648                                                 nr_pages, spd.pages);
1649         index += spd.nr_pages;
1650         error = 0;
1651
1652         while (spd.nr_pages < nr_pages) {
1653                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1654                 if (error)
1655                         break;
1656                 unlock_page(page);
1657                 spd.pages[spd.nr_pages++] = page;
1658                 index++;
1659         }
1660
1661         index = *ppos >> PAGE_CACHE_SHIFT;
1662         nr_pages = spd.nr_pages;
1663         spd.nr_pages = 0;
1664
1665         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666                 unsigned int this_len;
1667
1668                 if (!len)
1669                         break;
1670
1671                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672                 page = spd.pages[page_nr];
1673
1674                 if (!PageUptodate(page) || page->mapping != mapping) {
1675                         error = shmem_getpage(inode, index, &page,
1676                                                         SGP_CACHE, NULL);
1677                         if (error)
1678                                 break;
1679                         unlock_page(page);
1680                         page_cache_release(spd.pages[page_nr]);
1681                         spd.pages[page_nr] = page;
1682                 }
1683
1684                 isize = i_size_read(inode);
1685                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686                 if (unlikely(!isize || index > end_index))
1687                         break;
1688
1689                 if (end_index == index) {
1690                         unsigned int plen;
1691
1692                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1693                         if (plen <= loff)
1694                                 break;
1695
1696                         this_len = min(this_len, plen - loff);
1697                         len = this_len;
1698                 }
1699
1700                 spd.partial[page_nr].offset = loff;
1701                 spd.partial[page_nr].len = this_len;
1702                 len -= this_len;
1703                 loff = 0;
1704                 spd.nr_pages++;
1705                 index++;
1706         }
1707
1708         while (page_nr < nr_pages)
1709                 page_cache_release(spd.pages[page_nr++]);
1710
1711         if (spd.nr_pages)
1712                 error = splice_to_pipe(pipe, &spd);
1713
1714         splice_shrink_spd(&spd);
1715
1716         if (error > 0) {
1717                 *ppos += error;
1718                 file_accessed(in);
1719         }
1720         return error;
1721 }
1722
1723 /*
1724  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1725  */
1726 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1727                                     pgoff_t index, pgoff_t end, int whence)
1728 {
1729         struct page *page;
1730         struct pagevec pvec;
1731         pgoff_t indices[PAGEVEC_SIZE];
1732         bool done = false;
1733         int i;
1734
1735         pagevec_init(&pvec, 0);
1736         pvec.nr = 1;            /* start small: we may be there already */
1737         while (!done) {
1738                 pvec.nr = find_get_entries(mapping, index,
1739                                         pvec.nr, pvec.pages, indices);
1740                 if (!pvec.nr) {
1741                         if (whence == SEEK_DATA)
1742                                 index = end;
1743                         break;
1744                 }
1745                 for (i = 0; i < pvec.nr; i++, index++) {
1746                         if (index < indices[i]) {
1747                                 if (whence == SEEK_HOLE) {
1748                                         done = true;
1749                                         break;
1750                                 }
1751                                 index = indices[i];
1752                         }
1753                         page = pvec.pages[i];
1754                         if (page && !radix_tree_exceptional_entry(page)) {
1755                                 if (!PageUptodate(page))
1756                                         page = NULL;
1757                         }
1758                         if (index >= end ||
1759                             (page && whence == SEEK_DATA) ||
1760                             (!page && whence == SEEK_HOLE)) {
1761                                 done = true;
1762                                 break;
1763                         }
1764                 }
1765                 pagevec_remove_exceptionals(&pvec);
1766                 pagevec_release(&pvec);
1767                 pvec.nr = PAGEVEC_SIZE;
1768                 cond_resched();
1769         }
1770         return index;
1771 }
1772
1773 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1774 {
1775         struct address_space *mapping = file->f_mapping;
1776         struct inode *inode = mapping->host;
1777         pgoff_t start, end;
1778         loff_t new_offset;
1779
1780         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781                 return generic_file_llseek_size(file, offset, whence,
1782                                         MAX_LFS_FILESIZE, i_size_read(inode));
1783         mutex_lock(&inode->i_mutex);
1784         /* We're holding i_mutex so we can access i_size directly */
1785
1786         if (offset < 0)
1787                 offset = -EINVAL;
1788         else if (offset >= inode->i_size)
1789                 offset = -ENXIO;
1790         else {
1791                 start = offset >> PAGE_CACHE_SHIFT;
1792                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1793                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1794                 new_offset <<= PAGE_CACHE_SHIFT;
1795                 if (new_offset > offset) {
1796                         if (new_offset < inode->i_size)
1797                                 offset = new_offset;
1798                         else if (whence == SEEK_DATA)
1799                                 offset = -ENXIO;
1800                         else
1801                                 offset = inode->i_size;
1802                 }
1803         }
1804
1805         if (offset >= 0)
1806                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1807         mutex_unlock(&inode->i_mutex);
1808         return offset;
1809 }
1810
1811 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1812                                                          loff_t len)
1813 {
1814         struct inode *inode = file_inode(file);
1815         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1816         struct shmem_falloc shmem_falloc;
1817         pgoff_t start, index, end;
1818         int error;
1819
1820         mutex_lock(&inode->i_mutex);
1821
1822         if (mode & FALLOC_FL_PUNCH_HOLE) {
1823                 struct address_space *mapping = file->f_mapping;
1824                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1825                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1826                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1827
1828                 shmem_falloc.waitq = &shmem_falloc_waitq;
1829                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1830                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1831                 spin_lock(&inode->i_lock);
1832                 inode->i_private = &shmem_falloc;
1833                 spin_unlock(&inode->i_lock);
1834
1835                 if ((u64)unmap_end > (u64)unmap_start)
1836                         unmap_mapping_range(mapping, unmap_start,
1837                                             1 + unmap_end - unmap_start, 0);
1838                 shmem_truncate_range(inode, offset, offset + len - 1);
1839                 /* No need to unmap again: hole-punching leaves COWed pages */
1840
1841                 spin_lock(&inode->i_lock);
1842                 inode->i_private = NULL;
1843                 wake_up_all(&shmem_falloc_waitq);
1844                 spin_unlock(&inode->i_lock);
1845                 error = 0;
1846                 goto out;
1847         }
1848
1849         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1850         error = inode_newsize_ok(inode, offset + len);
1851         if (error)
1852                 goto out;
1853
1854         start = offset >> PAGE_CACHE_SHIFT;
1855         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1856         /* Try to avoid a swapstorm if len is impossible to satisfy */
1857         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1858                 error = -ENOSPC;
1859                 goto out;
1860         }
1861
1862         shmem_falloc.waitq = NULL;
1863         shmem_falloc.start = start;
1864         shmem_falloc.next  = start;
1865         shmem_falloc.nr_falloced = 0;
1866         shmem_falloc.nr_unswapped = 0;
1867         spin_lock(&inode->i_lock);
1868         inode->i_private = &shmem_falloc;
1869         spin_unlock(&inode->i_lock);
1870
1871         for (index = start; index < end; index++) {
1872                 struct page *page;
1873
1874                 /*
1875                  * Good, the fallocate(2) manpage permits EINTR: we may have
1876                  * been interrupted because we are using up too much memory.
1877                  */
1878                 if (signal_pending(current))
1879                         error = -EINTR;
1880                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1881                         error = -ENOMEM;
1882                 else
1883                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1884                                                                         NULL);
1885                 if (error) {
1886                         /* Remove the !PageUptodate pages we added */
1887                         shmem_undo_range(inode,
1888                                 (loff_t)start << PAGE_CACHE_SHIFT,
1889                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1890                         goto undone;
1891                 }
1892
1893                 /*
1894                  * Inform shmem_writepage() how far we have reached.
1895                  * No need for lock or barrier: we have the page lock.
1896                  */
1897                 shmem_falloc.next++;
1898                 if (!PageUptodate(page))
1899                         shmem_falloc.nr_falloced++;
1900
1901                 /*
1902                  * If !PageUptodate, leave it that way so that freeable pages
1903                  * can be recognized if we need to rollback on error later.
1904                  * But set_page_dirty so that memory pressure will swap rather
1905                  * than free the pages we are allocating (and SGP_CACHE pages
1906                  * might still be clean: we now need to mark those dirty too).
1907                  */
1908                 set_page_dirty(page);
1909                 unlock_page(page);
1910                 page_cache_release(page);
1911                 cond_resched();
1912         }
1913
1914         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1915                 i_size_write(inode, offset + len);
1916         inode->i_ctime = CURRENT_TIME;
1917 undone:
1918         spin_lock(&inode->i_lock);
1919         inode->i_private = NULL;
1920         spin_unlock(&inode->i_lock);
1921 out:
1922         mutex_unlock(&inode->i_mutex);
1923         return error;
1924 }
1925
1926 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1927 {
1928         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1929
1930         buf->f_type = TMPFS_MAGIC;
1931         buf->f_bsize = PAGE_CACHE_SIZE;
1932         buf->f_namelen = NAME_MAX;
1933         if (sbinfo->max_blocks) {
1934                 buf->f_blocks = sbinfo->max_blocks;
1935                 buf->f_bavail =
1936                 buf->f_bfree  = sbinfo->max_blocks -
1937                                 percpu_counter_sum(&sbinfo->used_blocks);
1938         }
1939         if (sbinfo->max_inodes) {
1940                 buf->f_files = sbinfo->max_inodes;
1941                 buf->f_ffree = sbinfo->free_inodes;
1942         }
1943         /* else leave those fields 0 like simple_statfs */
1944         return 0;
1945 }
1946
1947 /*
1948  * File creation. Allocate an inode, and we're done..
1949  */
1950 static int
1951 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1952 {
1953         struct inode *inode;
1954         int error = -ENOSPC;
1955
1956         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1957         if (inode) {
1958                 error = simple_acl_create(dir, inode);
1959                 if (error)
1960                         goto out_iput;
1961                 error = security_inode_init_security(inode, dir,
1962                                                      &dentry->d_name,
1963                                                      shmem_initxattrs, NULL);
1964                 if (error && error != -EOPNOTSUPP)
1965                         goto out_iput;
1966
1967                 error = 0;
1968                 dir->i_size += BOGO_DIRENT_SIZE;
1969                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1970                 d_instantiate(dentry, inode);
1971                 dget(dentry); /* Extra count - pin the dentry in core */
1972         }
1973         return error;
1974 out_iput:
1975         iput(inode);
1976         return error;
1977 }
1978
1979 static int
1980 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1981 {
1982         struct inode *inode;
1983         int error = -ENOSPC;
1984
1985         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1986         if (inode) {
1987                 error = security_inode_init_security(inode, dir,
1988                                                      NULL,
1989                                                      shmem_initxattrs, NULL);
1990                 if (error && error != -EOPNOTSUPP)
1991                         goto out_iput;
1992                 error = simple_acl_create(dir, inode);
1993                 if (error)
1994                         goto out_iput;
1995                 d_tmpfile(dentry, inode);
1996         }
1997         return error;
1998 out_iput:
1999         iput(inode);
2000         return error;
2001 }
2002
2003 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2004 {
2005         int error;
2006
2007         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2008                 return error;
2009         inc_nlink(dir);
2010         return 0;
2011 }
2012
2013 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2014                 bool excl)
2015 {
2016         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2017 }
2018
2019 /*
2020  * Link a file..
2021  */
2022 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2023 {
2024         struct inode *inode = old_dentry->d_inode;
2025         int ret;
2026
2027         /*
2028          * No ordinary (disk based) filesystem counts links as inodes;
2029          * but each new link needs a new dentry, pinning lowmem, and
2030          * tmpfs dentries cannot be pruned until they are unlinked.
2031          */
2032         ret = shmem_reserve_inode(inode->i_sb);
2033         if (ret)
2034                 goto out;
2035
2036         dir->i_size += BOGO_DIRENT_SIZE;
2037         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2038         inc_nlink(inode);
2039         ihold(inode);   /* New dentry reference */
2040         dget(dentry);           /* Extra pinning count for the created dentry */
2041         d_instantiate(dentry, inode);
2042 out:
2043         return ret;
2044 }
2045
2046 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2047 {
2048         struct inode *inode = dentry->d_inode;
2049
2050         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2051                 shmem_free_inode(inode->i_sb);
2052
2053         dir->i_size -= BOGO_DIRENT_SIZE;
2054         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2055         drop_nlink(inode);
2056         dput(dentry);   /* Undo the count from "create" - this does all the work */
2057         return 0;
2058 }
2059
2060 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2061 {
2062         if (!simple_empty(dentry))
2063                 return -ENOTEMPTY;
2064
2065         drop_nlink(dentry->d_inode);
2066         drop_nlink(dir);
2067         return shmem_unlink(dir, dentry);
2068 }
2069
2070 /*
2071  * The VFS layer already does all the dentry stuff for rename,
2072  * we just have to decrement the usage count for the target if
2073  * it exists so that the VFS layer correctly free's it when it
2074  * gets overwritten.
2075  */
2076 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2077 {
2078         struct inode *inode = old_dentry->d_inode;
2079         int they_are_dirs = S_ISDIR(inode->i_mode);
2080
2081         if (!simple_empty(new_dentry))
2082                 return -ENOTEMPTY;
2083
2084         if (new_dentry->d_inode) {
2085                 (void) shmem_unlink(new_dir, new_dentry);
2086                 if (they_are_dirs) {
2087                         drop_nlink(new_dentry->d_inode);
2088                         drop_nlink(old_dir);
2089                 }
2090         } else if (they_are_dirs) {
2091                 drop_nlink(old_dir);
2092                 inc_nlink(new_dir);
2093         }
2094
2095         old_dir->i_size -= BOGO_DIRENT_SIZE;
2096         new_dir->i_size += BOGO_DIRENT_SIZE;
2097         old_dir->i_ctime = old_dir->i_mtime =
2098         new_dir->i_ctime = new_dir->i_mtime =
2099         inode->i_ctime = CURRENT_TIME;
2100         return 0;
2101 }
2102
2103 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2104 {
2105         int error;
2106         int len;
2107         struct inode *inode;
2108         struct page *page;
2109         char *kaddr;
2110         struct shmem_inode_info *info;
2111
2112         len = strlen(symname) + 1;
2113         if (len > PAGE_CACHE_SIZE)
2114                 return -ENAMETOOLONG;
2115
2116         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2117         if (!inode)
2118                 return -ENOSPC;
2119
2120         error = security_inode_init_security(inode, dir, &dentry->d_name,
2121                                              shmem_initxattrs, NULL);
2122         if (error) {
2123                 if (error != -EOPNOTSUPP) {
2124                         iput(inode);
2125                         return error;
2126                 }
2127                 error = 0;
2128         }
2129
2130         info = SHMEM_I(inode);
2131         inode->i_size = len-1;
2132         if (len <= SHORT_SYMLINK_LEN) {
2133                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2134                 if (!info->symlink) {
2135                         iput(inode);
2136                         return -ENOMEM;
2137                 }
2138                 inode->i_op = &shmem_short_symlink_operations;
2139         } else {
2140                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2141                 if (error) {
2142                         iput(inode);
2143                         return error;
2144                 }
2145                 inode->i_mapping->a_ops = &shmem_aops;
2146                 inode->i_op = &shmem_symlink_inode_operations;
2147                 kaddr = kmap_atomic(page);
2148                 memcpy(kaddr, symname, len);
2149                 kunmap_atomic(kaddr);
2150                 SetPageUptodate(page);
2151                 set_page_dirty(page);
2152                 unlock_page(page);
2153                 page_cache_release(page);
2154         }
2155         dir->i_size += BOGO_DIRENT_SIZE;
2156         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2157         d_instantiate(dentry, inode);
2158         dget(dentry);
2159         return 0;
2160 }
2161
2162 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2163 {
2164         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2165         return NULL;
2166 }
2167
2168 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2169 {
2170         struct page *page = NULL;
2171         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2172         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2173         if (page)
2174                 unlock_page(page);
2175         return page;
2176 }
2177
2178 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2179 {
2180         if (!IS_ERR(nd_get_link(nd))) {
2181                 struct page *page = cookie;
2182                 kunmap(page);
2183                 mark_page_accessed(page);
2184                 page_cache_release(page);
2185         }
2186 }
2187
2188 #ifdef CONFIG_TMPFS_XATTR
2189 /*
2190  * Superblocks without xattr inode operations may get some security.* xattr
2191  * support from the LSM "for free". As soon as we have any other xattrs
2192  * like ACLs, we also need to implement the security.* handlers at
2193  * filesystem level, though.
2194  */
2195
2196 /*
2197  * Callback for security_inode_init_security() for acquiring xattrs.
2198  */
2199 static int shmem_initxattrs(struct inode *inode,
2200                             const struct xattr *xattr_array,
2201                             void *fs_info)
2202 {
2203         struct shmem_inode_info *info = SHMEM_I(inode);
2204         const struct xattr *xattr;
2205         struct simple_xattr *new_xattr;
2206         size_t len;
2207
2208         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2209                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2210                 if (!new_xattr)
2211                         return -ENOMEM;
2212
2213                 len = strlen(xattr->name) + 1;
2214                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2215                                           GFP_KERNEL);
2216                 if (!new_xattr->name) {
2217                         kfree(new_xattr);
2218                         return -ENOMEM;
2219                 }
2220
2221                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2222                        XATTR_SECURITY_PREFIX_LEN);
2223                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2224                        xattr->name, len);
2225
2226                 simple_xattr_list_add(&info->xattrs, new_xattr);
2227         }
2228
2229         return 0;
2230 }
2231
2232 static const struct xattr_handler *shmem_xattr_handlers[] = {
2233 #ifdef CONFIG_TMPFS_POSIX_ACL
2234         &posix_acl_access_xattr_handler,
2235         &posix_acl_default_xattr_handler,
2236 #endif
2237         NULL
2238 };
2239
2240 static int shmem_xattr_validate(const char *name)
2241 {
2242         struct { const char *prefix; size_t len; } arr[] = {
2243                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2244                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2245         };
2246         int i;
2247
2248         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2249                 size_t preflen = arr[i].len;
2250                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2251                         if (!name[preflen])
2252                                 return -EINVAL;
2253                         return 0;
2254                 }
2255         }
2256         return -EOPNOTSUPP;
2257 }
2258
2259 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2260                               void *buffer, size_t size)
2261 {
2262         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2263         int err;
2264
2265         /*
2266          * If this is a request for a synthetic attribute in the system.*
2267          * namespace use the generic infrastructure to resolve a handler
2268          * for it via sb->s_xattr.
2269          */
2270         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2271                 return generic_getxattr(dentry, name, buffer, size);
2272
2273         err = shmem_xattr_validate(name);
2274         if (err)
2275                 return err;
2276
2277         return simple_xattr_get(&info->xattrs, name, buffer, size);
2278 }
2279
2280 static int shmem_setxattr(struct dentry *dentry, const char *name,
2281                           const void *value, size_t size, int flags)
2282 {
2283         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2284         int err;
2285
2286         /*
2287          * If this is a request for a synthetic attribute in the system.*
2288          * namespace use the generic infrastructure to resolve a handler
2289          * for it via sb->s_xattr.
2290          */
2291         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2292                 return generic_setxattr(dentry, name, value, size, flags);
2293
2294         err = shmem_xattr_validate(name);
2295         if (err)
2296                 return err;
2297
2298         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2299 }
2300
2301 static int shmem_removexattr(struct dentry *dentry, const char *name)
2302 {
2303         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2304         int err;
2305
2306         /*
2307          * If this is a request for a synthetic attribute in the system.*
2308          * namespace use the generic infrastructure to resolve a handler
2309          * for it via sb->s_xattr.
2310          */
2311         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2312                 return generic_removexattr(dentry, name);
2313
2314         err = shmem_xattr_validate(name);
2315         if (err)
2316                 return err;
2317
2318         return simple_xattr_remove(&info->xattrs, name);
2319 }
2320
2321 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2322 {
2323         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2324         return simple_xattr_list(&info->xattrs, buffer, size);
2325 }
2326 #endif /* CONFIG_TMPFS_XATTR */
2327
2328 static const struct inode_operations shmem_short_symlink_operations = {
2329         .readlink       = generic_readlink,
2330         .follow_link    = shmem_follow_short_symlink,
2331 #ifdef CONFIG_TMPFS_XATTR
2332         .setxattr       = shmem_setxattr,
2333         .getxattr       = shmem_getxattr,
2334         .listxattr      = shmem_listxattr,
2335         .removexattr    = shmem_removexattr,
2336 #endif
2337 };
2338
2339 static const struct inode_operations shmem_symlink_inode_operations = {
2340         .readlink       = generic_readlink,
2341         .follow_link    = shmem_follow_link,
2342         .put_link       = shmem_put_link,
2343 #ifdef CONFIG_TMPFS_XATTR
2344         .setxattr       = shmem_setxattr,
2345         .getxattr       = shmem_getxattr,
2346         .listxattr      = shmem_listxattr,
2347         .removexattr    = shmem_removexattr,
2348 #endif
2349 };
2350
2351 static struct dentry *shmem_get_parent(struct dentry *child)
2352 {
2353         return ERR_PTR(-ESTALE);
2354 }
2355
2356 static int shmem_match(struct inode *ino, void *vfh)
2357 {
2358         __u32 *fh = vfh;
2359         __u64 inum = fh[2];
2360         inum = (inum << 32) | fh[1];
2361         return ino->i_ino == inum && fh[0] == ino->i_generation;
2362 }
2363
2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365                 struct fid *fid, int fh_len, int fh_type)
2366 {
2367         struct inode *inode;
2368         struct dentry *dentry = NULL;
2369         u64 inum;
2370
2371         if (fh_len < 3)
2372                 return NULL;
2373
2374         inum = fid->raw[2];
2375         inum = (inum << 32) | fid->raw[1];
2376
2377         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2378                         shmem_match, fid->raw);
2379         if (inode) {
2380                 dentry = d_find_alias(inode);
2381                 iput(inode);
2382         }
2383
2384         return dentry;
2385 }
2386
2387 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2388                                 struct inode *parent)
2389 {
2390         if (*len < 3) {
2391                 *len = 3;
2392                 return FILEID_INVALID;
2393         }
2394
2395         if (inode_unhashed(inode)) {
2396                 /* Unfortunately insert_inode_hash is not idempotent,
2397                  * so as we hash inodes here rather than at creation
2398                  * time, we need a lock to ensure we only try
2399                  * to do it once
2400                  */
2401                 static DEFINE_SPINLOCK(lock);
2402                 spin_lock(&lock);
2403                 if (inode_unhashed(inode))
2404                         __insert_inode_hash(inode,
2405                                             inode->i_ino + inode->i_generation);
2406                 spin_unlock(&lock);
2407         }
2408
2409         fh[0] = inode->i_generation;
2410         fh[1] = inode->i_ino;
2411         fh[2] = ((__u64)inode->i_ino) >> 32;
2412
2413         *len = 3;
2414         return 1;
2415 }
2416
2417 static const struct export_operations shmem_export_ops = {
2418         .get_parent     = shmem_get_parent,
2419         .encode_fh      = shmem_encode_fh,
2420         .fh_to_dentry   = shmem_fh_to_dentry,
2421 };
2422
2423 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2424                                bool remount)
2425 {
2426         char *this_char, *value, *rest;
2427         struct mempolicy *mpol = NULL;
2428         uid_t uid;
2429         gid_t gid;
2430
2431         while (options != NULL) {
2432                 this_char = options;
2433                 for (;;) {
2434                         /*
2435                          * NUL-terminate this option: unfortunately,
2436                          * mount options form a comma-separated list,
2437                          * but mpol's nodelist may also contain commas.
2438                          */
2439                         options = strchr(options, ',');
2440                         if (options == NULL)
2441                                 break;
2442                         options++;
2443                         if (!isdigit(*options)) {
2444                                 options[-1] = '\0';
2445                                 break;
2446                         }
2447                 }
2448                 if (!*this_char)
2449                         continue;
2450                 if ((value = strchr(this_char,'=')) != NULL) {
2451                         *value++ = 0;
2452                 } else {
2453                         printk(KERN_ERR
2454                             "tmpfs: No value for mount option '%s'\n",
2455                             this_char);
2456                         goto error;
2457                 }
2458
2459                 if (!strcmp(this_char,"size")) {
2460                         unsigned long long size;
2461                         size = memparse(value,&rest);
2462                         if (*rest == '%') {
2463                                 size <<= PAGE_SHIFT;
2464                                 size *= totalram_pages;
2465                                 do_div(size, 100);
2466                                 rest++;
2467                         }
2468                         if (*rest)
2469                                 goto bad_val;
2470                         sbinfo->max_blocks =
2471                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2472                 } else if (!strcmp(this_char,"nr_blocks")) {
2473                         sbinfo->max_blocks = memparse(value, &rest);
2474                         if (*rest)
2475                                 goto bad_val;
2476                 } else if (!strcmp(this_char,"nr_inodes")) {
2477                         sbinfo->max_inodes = memparse(value, &rest);
2478                         if (*rest)
2479                                 goto bad_val;
2480                 } else if (!strcmp(this_char,"mode")) {
2481                         if (remount)
2482                                 continue;
2483                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2484                         if (*rest)
2485                                 goto bad_val;
2486                 } else if (!strcmp(this_char,"uid")) {
2487                         if (remount)
2488                                 continue;
2489                         uid = simple_strtoul(value, &rest, 0);
2490                         if (*rest)
2491                                 goto bad_val;
2492                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2493                         if (!uid_valid(sbinfo->uid))
2494                                 goto bad_val;
2495                 } else if (!strcmp(this_char,"gid")) {
2496                         if (remount)
2497                                 continue;
2498                         gid = simple_strtoul(value, &rest, 0);
2499                         if (*rest)
2500                                 goto bad_val;
2501                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2502                         if (!gid_valid(sbinfo->gid))
2503                                 goto bad_val;
2504                 } else if (!strcmp(this_char,"mpol")) {
2505                         mpol_put(mpol);
2506                         mpol = NULL;
2507                         if (mpol_parse_str(value, &mpol))
2508                                 goto bad_val;
2509                 } else {
2510                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2511                                this_char);
2512                         goto error;
2513                 }
2514         }
2515         sbinfo->mpol = mpol;
2516         return 0;
2517
2518 bad_val:
2519         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2520                value, this_char);
2521 error:
2522         mpol_put(mpol);
2523         return 1;
2524
2525 }
2526
2527 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2528 {
2529         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2530         struct shmem_sb_info config = *sbinfo;
2531         unsigned long inodes;
2532         int error = -EINVAL;
2533
2534         config.mpol = NULL;
2535         if (shmem_parse_options(data, &config, true))
2536                 return error;
2537
2538         spin_lock(&sbinfo->stat_lock);
2539         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2540         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2541                 goto out;
2542         if (config.max_inodes < inodes)
2543                 goto out;
2544         /*
2545          * Those tests disallow limited->unlimited while any are in use;
2546          * but we must separately disallow unlimited->limited, because
2547          * in that case we have no record of how much is already in use.
2548          */
2549         if (config.max_blocks && !sbinfo->max_blocks)
2550                 goto out;
2551         if (config.max_inodes && !sbinfo->max_inodes)
2552                 goto out;
2553
2554         error = 0;
2555         sbinfo->max_blocks  = config.max_blocks;
2556         sbinfo->max_inodes  = config.max_inodes;
2557         sbinfo->free_inodes = config.max_inodes - inodes;
2558
2559         /*
2560          * Preserve previous mempolicy unless mpol remount option was specified.
2561          */
2562         if (config.mpol) {
2563                 mpol_put(sbinfo->mpol);
2564                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2565         }
2566 out:
2567         spin_unlock(&sbinfo->stat_lock);
2568         return error;
2569 }
2570
2571 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2572 {
2573         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2574
2575         if (sbinfo->max_blocks != shmem_default_max_blocks())
2576                 seq_printf(seq, ",size=%luk",
2577                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2578         if (sbinfo->max_inodes != shmem_default_max_inodes())
2579                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2580         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2581                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2582         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2583                 seq_printf(seq, ",uid=%u",
2584                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2585         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2586                 seq_printf(seq, ",gid=%u",
2587                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2588         shmem_show_mpol(seq, sbinfo->mpol);
2589         return 0;
2590 }
2591 #endif /* CONFIG_TMPFS */
2592
2593 static void shmem_put_super(struct super_block *sb)
2594 {
2595         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2596
2597         percpu_counter_destroy(&sbinfo->used_blocks);
2598         mpol_put(sbinfo->mpol);
2599         kfree(sbinfo);
2600         sb->s_fs_info = NULL;
2601 }
2602
2603 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2604 {
2605         struct inode *inode;
2606         struct shmem_sb_info *sbinfo;
2607         int err = -ENOMEM;
2608
2609         /* Round up to L1_CACHE_BYTES to resist false sharing */
2610         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2611                                 L1_CACHE_BYTES), GFP_KERNEL);
2612         if (!sbinfo)
2613                 return -ENOMEM;
2614
2615         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2616         sbinfo->uid = current_fsuid();
2617         sbinfo->gid = current_fsgid();
2618         sb->s_fs_info = sbinfo;
2619
2620 #ifdef CONFIG_TMPFS
2621         /*
2622          * Per default we only allow half of the physical ram per
2623          * tmpfs instance, limiting inodes to one per page of lowmem;
2624          * but the internal instance is left unlimited.
2625          */
2626         if (!(sb->s_flags & MS_KERNMOUNT)) {
2627                 sbinfo->max_blocks = shmem_default_max_blocks();
2628                 sbinfo->max_inodes = shmem_default_max_inodes();
2629                 if (shmem_parse_options(data, sbinfo, false)) {
2630                         err = -EINVAL;
2631                         goto failed;
2632                 }
2633         } else {
2634                 sb->s_flags |= MS_NOUSER;
2635         }
2636         sb->s_export_op = &shmem_export_ops;
2637         sb->s_flags |= MS_NOSEC;
2638 #else
2639         sb->s_flags |= MS_NOUSER;
2640 #endif
2641
2642         spin_lock_init(&sbinfo->stat_lock);
2643         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2644                 goto failed;
2645         sbinfo->free_inodes = sbinfo->max_inodes;
2646
2647         sb->s_maxbytes = MAX_LFS_FILESIZE;
2648         sb->s_blocksize = PAGE_CACHE_SIZE;
2649         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2650         sb->s_magic = TMPFS_MAGIC;
2651         sb->s_op = &shmem_ops;
2652         sb->s_time_gran = 1;
2653 #ifdef CONFIG_TMPFS_XATTR
2654         sb->s_xattr = shmem_xattr_handlers;
2655 #endif
2656 #ifdef CONFIG_TMPFS_POSIX_ACL
2657         sb->s_flags |= MS_POSIXACL;
2658 #endif
2659
2660         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2661         if (!inode)
2662                 goto failed;
2663         inode->i_uid = sbinfo->uid;
2664         inode->i_gid = sbinfo->gid;
2665         sb->s_root = d_make_root(inode);
2666         if (!sb->s_root)
2667                 goto failed;
2668         return 0;
2669
2670 failed:
2671         shmem_put_super(sb);
2672         return err;
2673 }
2674
2675 static struct kmem_cache *shmem_inode_cachep;
2676
2677 static struct inode *shmem_alloc_inode(struct super_block *sb)
2678 {
2679         struct shmem_inode_info *info;
2680         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2681         if (!info)
2682                 return NULL;
2683         return &info->vfs_inode;
2684 }
2685
2686 static void shmem_destroy_callback(struct rcu_head *head)
2687 {
2688         struct inode *inode = container_of(head, struct inode, i_rcu);
2689         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2690 }
2691
2692 static void shmem_destroy_inode(struct inode *inode)
2693 {
2694         if (S_ISREG(inode->i_mode))
2695                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2696         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2697 }
2698
2699 static void shmem_init_inode(void *foo)
2700 {
2701         struct shmem_inode_info *info = foo;
2702         inode_init_once(&info->vfs_inode);
2703 }
2704
2705 static int shmem_init_inodecache(void)
2706 {
2707         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2708                                 sizeof(struct shmem_inode_info),
2709                                 0, SLAB_PANIC, shmem_init_inode);
2710         return 0;
2711 }
2712
2713 static void shmem_destroy_inodecache(void)
2714 {
2715         kmem_cache_destroy(shmem_inode_cachep);
2716 }
2717
2718 static const struct address_space_operations shmem_aops = {
2719         .writepage      = shmem_writepage,
2720         .set_page_dirty = __set_page_dirty_no_writeback,
2721 #ifdef CONFIG_TMPFS
2722         .write_begin    = shmem_write_begin,
2723         .write_end      = shmem_write_end,
2724 #endif
2725         .migratepage    = migrate_page,
2726         .error_remove_page = generic_error_remove_page,
2727 };
2728
2729 static const struct file_operations shmem_file_operations = {
2730         .mmap           = shmem_mmap,
2731 #ifdef CONFIG_TMPFS
2732         .llseek         = shmem_file_llseek,
2733         .read           = do_sync_read,
2734         .write          = do_sync_write,
2735         .aio_read       = shmem_file_aio_read,
2736         .aio_write      = generic_file_aio_write,
2737         .fsync          = noop_fsync,
2738         .splice_read    = shmem_file_splice_read,
2739         .splice_write   = generic_file_splice_write,
2740         .fallocate      = shmem_fallocate,
2741 #endif
2742 };
2743
2744 static const struct inode_operations shmem_inode_operations = {
2745         .setattr        = shmem_setattr,
2746 #ifdef CONFIG_TMPFS_XATTR
2747         .setxattr       = shmem_setxattr,
2748         .getxattr       = shmem_getxattr,
2749         .listxattr      = shmem_listxattr,
2750         .removexattr    = shmem_removexattr,
2751         .set_acl        = simple_set_acl,
2752 #endif
2753 };
2754
2755 static const struct inode_operations shmem_dir_inode_operations = {
2756 #ifdef CONFIG_TMPFS
2757         .create         = shmem_create,
2758         .lookup         = simple_lookup,
2759         .link           = shmem_link,
2760         .unlink         = shmem_unlink,
2761         .symlink        = shmem_symlink,
2762         .mkdir          = shmem_mkdir,
2763         .rmdir          = shmem_rmdir,
2764         .mknod          = shmem_mknod,
2765         .rename         = shmem_rename,
2766         .tmpfile        = shmem_tmpfile,
2767 #endif
2768 #ifdef CONFIG_TMPFS_XATTR
2769         .setxattr       = shmem_setxattr,
2770         .getxattr       = shmem_getxattr,
2771         .listxattr      = shmem_listxattr,
2772         .removexattr    = shmem_removexattr,
2773 #endif
2774 #ifdef CONFIG_TMPFS_POSIX_ACL
2775         .setattr        = shmem_setattr,
2776         .set_acl        = simple_set_acl,
2777 #endif
2778 };
2779
2780 static const struct inode_operations shmem_special_inode_operations = {
2781 #ifdef CONFIG_TMPFS_XATTR
2782         .setxattr       = shmem_setxattr,
2783         .getxattr       = shmem_getxattr,
2784         .listxattr      = shmem_listxattr,
2785         .removexattr    = shmem_removexattr,
2786 #endif
2787 #ifdef CONFIG_TMPFS_POSIX_ACL
2788         .setattr        = shmem_setattr,
2789         .set_acl        = simple_set_acl,
2790 #endif
2791 };
2792
2793 static const struct super_operations shmem_ops = {
2794         .alloc_inode    = shmem_alloc_inode,
2795         .destroy_inode  = shmem_destroy_inode,
2796 #ifdef CONFIG_TMPFS
2797         .statfs         = shmem_statfs,
2798         .remount_fs     = shmem_remount_fs,
2799         .show_options   = shmem_show_options,
2800 #endif
2801         .evict_inode    = shmem_evict_inode,
2802         .drop_inode     = generic_delete_inode,
2803         .put_super      = shmem_put_super,
2804 };
2805
2806 static const struct vm_operations_struct shmem_vm_ops = {
2807         .fault          = shmem_fault,
2808 #ifdef CONFIG_NUMA
2809         .set_policy     = shmem_set_policy,
2810         .get_policy     = shmem_get_policy,
2811 #endif
2812         .remap_pages    = generic_file_remap_pages,
2813 };
2814
2815 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2816         int flags, const char *dev_name, void *data)
2817 {
2818         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2819 }
2820
2821 static struct file_system_type shmem_fs_type = {
2822         .owner          = THIS_MODULE,
2823         .name           = "tmpfs",
2824         .mount          = shmem_mount,
2825         .kill_sb        = kill_litter_super,
2826         .fs_flags       = FS_USERNS_MOUNT,
2827 };
2828
2829 int __init shmem_init(void)
2830 {
2831         int error;
2832
2833         /* If rootfs called this, don't re-init */
2834         if (shmem_inode_cachep)
2835                 return 0;
2836
2837         error = bdi_init(&shmem_backing_dev_info);
2838         if (error)
2839                 goto out4;
2840
2841         error = shmem_init_inodecache();
2842         if (error)
2843                 goto out3;
2844
2845         error = register_filesystem(&shmem_fs_type);
2846         if (error) {
2847                 printk(KERN_ERR "Could not register tmpfs\n");
2848                 goto out2;
2849         }
2850
2851         shm_mnt = kern_mount(&shmem_fs_type);
2852         if (IS_ERR(shm_mnt)) {
2853                 error = PTR_ERR(shm_mnt);
2854                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2855                 goto out1;
2856         }
2857         return 0;
2858
2859 out1:
2860         unregister_filesystem(&shmem_fs_type);
2861 out2:
2862         shmem_destroy_inodecache();
2863 out3:
2864         bdi_destroy(&shmem_backing_dev_info);
2865 out4:
2866         shm_mnt = ERR_PTR(error);
2867         return error;
2868 }
2869
2870 #else /* !CONFIG_SHMEM */
2871
2872 /*
2873  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2874  *
2875  * This is intended for small system where the benefits of the full
2876  * shmem code (swap-backed and resource-limited) are outweighed by
2877  * their complexity. On systems without swap this code should be
2878  * effectively equivalent, but much lighter weight.
2879  */
2880
2881 static struct file_system_type shmem_fs_type = {
2882         .name           = "tmpfs",
2883         .mount          = ramfs_mount,
2884         .kill_sb        = kill_litter_super,
2885         .fs_flags       = FS_USERNS_MOUNT,
2886 };
2887
2888 int __init shmem_init(void)
2889 {
2890         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2891
2892         shm_mnt = kern_mount(&shmem_fs_type);
2893         BUG_ON(IS_ERR(shm_mnt));
2894
2895         return 0;
2896 }
2897
2898 int shmem_unuse(swp_entry_t swap, struct page *page)
2899 {
2900         return 0;
2901 }
2902
2903 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2904 {
2905         return 0;
2906 }
2907
2908 void shmem_unlock_mapping(struct address_space *mapping)
2909 {
2910 }
2911
2912 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2913 {
2914         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2915 }
2916 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2917
2918 #define shmem_vm_ops                            generic_file_vm_ops
2919 #define shmem_file_operations                   ramfs_file_operations
2920 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2921 #define shmem_acct_size(flags, size)            0
2922 #define shmem_unacct_size(flags, size)          do {} while (0)
2923
2924 #endif /* CONFIG_SHMEM */
2925
2926 /* common code */
2927
2928 static struct dentry_operations anon_ops = {
2929         .d_dname = simple_dname
2930 };
2931
2932 static struct file *__shmem_file_setup(const char *name, loff_t size,
2933                                        unsigned long flags, unsigned int i_flags)
2934 {
2935         struct file *res;
2936         struct inode *inode;
2937         struct path path;
2938         struct super_block *sb;
2939         struct qstr this;
2940
2941         if (IS_ERR(shm_mnt))
2942                 return ERR_CAST(shm_mnt);
2943
2944         if (size < 0 || size > MAX_LFS_FILESIZE)
2945                 return ERR_PTR(-EINVAL);
2946
2947         if (shmem_acct_size(flags, size))
2948                 return ERR_PTR(-ENOMEM);
2949
2950         res = ERR_PTR(-ENOMEM);
2951         this.name = name;
2952         this.len = strlen(name);
2953         this.hash = 0; /* will go */
2954         sb = shm_mnt->mnt_sb;
2955         path.dentry = d_alloc_pseudo(sb, &this);
2956         if (!path.dentry)
2957                 goto put_memory;
2958         d_set_d_op(path.dentry, &anon_ops);
2959         path.mnt = mntget(shm_mnt);
2960
2961         res = ERR_PTR(-ENOSPC);
2962         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2963         if (!inode)
2964                 goto put_dentry;
2965
2966         inode->i_flags |= i_flags;
2967         d_instantiate(path.dentry, inode);
2968         inode->i_size = size;
2969         clear_nlink(inode);     /* It is unlinked */
2970         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2971         if (IS_ERR(res))
2972                 goto put_dentry;
2973
2974         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2975                   &shmem_file_operations);
2976         if (IS_ERR(res))
2977                 goto put_dentry;
2978
2979         return res;
2980
2981 put_dentry:
2982         path_put(&path);
2983 put_memory:
2984         shmem_unacct_size(flags, size);
2985         return res;
2986 }
2987
2988 /**
2989  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2990  *      kernel internal.  There will be NO LSM permission checks against the
2991  *      underlying inode.  So users of this interface must do LSM checks at a
2992  *      higher layer.  The one user is the big_key implementation.  LSM checks
2993  *      are provided at the key level rather than the inode level.
2994  * @name: name for dentry (to be seen in /proc/<pid>/maps
2995  * @size: size to be set for the file
2996  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2997  */
2998 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2999 {
3000         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3001 }
3002
3003 /**
3004  * shmem_file_setup - get an unlinked file living in tmpfs
3005  * @name: name for dentry (to be seen in /proc/<pid>/maps
3006  * @size: size to be set for the file
3007  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3008  */
3009 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3010 {
3011         return __shmem_file_setup(name, size, flags, 0);
3012 }
3013 EXPORT_SYMBOL_GPL(shmem_file_setup);
3014
3015 /**
3016  * shmem_zero_setup - setup a shared anonymous mapping
3017  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3018  */
3019 int shmem_zero_setup(struct vm_area_struct *vma)
3020 {
3021         struct file *file;
3022         loff_t size = vma->vm_end - vma->vm_start;
3023
3024         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3025         if (IS_ERR(file))
3026                 return PTR_ERR(file);
3027
3028         if (vma->vm_file)
3029                 fput(vma->vm_file);
3030         vma->vm_file = file;
3031         vma->vm_ops = &shmem_vm_ops;
3032         return 0;
3033 }
3034
3035 /**
3036  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3037  * @mapping:    the page's address_space
3038  * @index:      the page index
3039  * @gfp:        the page allocator flags to use if allocating
3040  *
3041  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3042  * with any new page allocations done using the specified allocation flags.
3043  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3044  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3045  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3046  *
3047  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3048  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3049  */
3050 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3051                                          pgoff_t index, gfp_t gfp)
3052 {
3053 #ifdef CONFIG_SHMEM
3054         struct inode *inode = mapping->host;
3055         struct page *page;
3056         int error;
3057
3058         BUG_ON(mapping->a_ops != &shmem_aops);
3059         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3060         if (error)
3061                 page = ERR_PTR(error);
3062         else
3063                 unlock_page(page);
3064         return page;
3065 #else
3066         /*
3067          * The tiny !SHMEM case uses ramfs without swap
3068          */
3069         return read_cache_page_gfp(mapping, index, gfp);
3070 #endif
3071 }
3072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);