2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount *shm_mnt;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
95 /* Flag allocation requirements to shmem_getpage */
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages / 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
131 return sb->s_fs_info;
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
158 static inline int shmem_acct_block(unsigned long flags)
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
186 static int shmem_reserve_inode(struct super_block *sb)
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
201 static void shmem_free_inode(struct super_block *sb)
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode *inode)
225 struct shmem_inode_info *info = SHMEM_I(inode);
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
240 * Replace item expected in radix tree by a new item, while holding tree lock.
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
248 VM_BUG_ON(!expected);
249 VM_BUG_ON(!replacement);
250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 if (item != expected)
256 radix_tree_replace_slot(pslot, replacement);
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
273 item = radix_tree_lookup(&mapping->page_tree, index);
275 return item == swp_to_radix_entry(swap);
279 * Like add_to_page_cache_locked, but error if expected item has gone.
281 static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
290 page_cache_get(page);
291 page->mapping = mapping;
294 spin_lock_irq(&mapping->tree_lock);
296 error = radix_tree_insert(&mapping->page_tree, index, page);
298 error = shmem_radix_tree_replace(mapping, index, expected,
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
314 * Like delete_from_page_cache, but substitutes swap for page.
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 struct address_space *mapping = page->mapping;
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
333 * Remove swap entry from radix tree, free the swap and its page cache.
335 static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
340 spin_lock_irq(&mapping->tree_lock);
341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 spin_unlock_irq(&mapping->tree_lock);
345 free_swap_and_cache(radix_to_swp_entry(radswap));
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
352 void shmem_unlock_mapping(struct address_space *mapping)
355 pgoff_t indices[PAGEVEC_SIZE];
358 pagevec_init(&pvec, 0);
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
362 while (!mapping_unevictable(mapping)) {
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
371 index = indices[pvec.nr - 1] + 1;
372 pagevec_remove_exceptionals(&pvec);
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
386 struct address_space *mapping = inode->i_mapping;
387 struct shmem_inode_info *info = SHMEM_I(inode);
388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
399 end = -1; /* unsigned, so actually very big */
401 pagevec_init(&pvec, 0);
403 while (index < end) {
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
417 if (radix_tree_exceptional_entry(page)) {
420 nr_swaps_freed += !shmem_free_swap(mapping,
425 if (!trylock_page(page))
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
429 VM_BUG_ON_PAGE(PageWriteback(page), page);
430 truncate_inode_page(mapping, page);
435 pagevec_remove_exceptionals(&pvec);
436 pagevec_release(&pvec);
437 mem_cgroup_uncharge_end();
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
446 unsigned int top = PAGE_CACHE_SIZE;
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
454 page_cache_release(page);
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
461 zero_user_segment(page, 0, partial_end);
462 set_page_dirty(page);
464 page_cache_release(page);
471 while (index < end) {
474 pvec.nr = find_get_entries(mapping, index,
475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 pvec.pages, indices);
478 /* If all gone or hole-punch or unfalloc, we're done */
479 if (index == start || end != -1)
481 /* But if truncating, restart to make sure all gone */
485 mem_cgroup_uncharge_start();
486 for (i = 0; i < pagevec_count(&pvec); i++) {
487 struct page *page = pvec.pages[i];
493 if (radix_tree_exceptional_entry(page)) {
496 if (shmem_free_swap(mapping, index, page)) {
497 /* Swap was replaced by page: retry */
506 if (!unfalloc || !PageUptodate(page)) {
507 if (page->mapping == mapping) {
508 VM_BUG_ON_PAGE(PageWriteback(page), page);
509 truncate_inode_page(mapping, page);
511 /* Page was replaced by swap: retry */
519 pagevec_remove_exceptionals(&pvec);
520 pagevec_release(&pvec);
521 mem_cgroup_uncharge_end();
525 spin_lock(&info->lock);
526 info->swapped -= nr_swaps_freed;
527 shmem_recalc_inode(inode);
528 spin_unlock(&info->lock);
531 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
533 shmem_undo_range(inode, lstart, lend, false);
534 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
536 EXPORT_SYMBOL_GPL(shmem_truncate_range);
538 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
540 struct inode *inode = dentry->d_inode;
543 error = inode_change_ok(inode, attr);
547 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548 loff_t oldsize = inode->i_size;
549 loff_t newsize = attr->ia_size;
551 if (newsize != oldsize) {
552 i_size_write(inode, newsize);
553 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
555 if (newsize < oldsize) {
556 loff_t holebegin = round_up(newsize, PAGE_SIZE);
557 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558 shmem_truncate_range(inode, newsize, (loff_t)-1);
559 /* unmap again to remove racily COWed private pages */
560 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
564 setattr_copy(inode, attr);
565 if (attr->ia_valid & ATTR_MODE)
566 error = posix_acl_chmod(inode, inode->i_mode);
570 static void shmem_evict_inode(struct inode *inode)
572 struct shmem_inode_info *info = SHMEM_I(inode);
574 if (inode->i_mapping->a_ops == &shmem_aops) {
575 shmem_unacct_size(info->flags, inode->i_size);
577 shmem_truncate_range(inode, 0, (loff_t)-1);
578 if (!list_empty(&info->swaplist)) {
579 mutex_lock(&shmem_swaplist_mutex);
580 list_del_init(&info->swaplist);
581 mutex_unlock(&shmem_swaplist_mutex);
584 kfree(info->symlink);
586 simple_xattrs_free(&info->xattrs);
587 WARN_ON(inode->i_blocks);
588 shmem_free_inode(inode->i_sb);
593 * If swap found in inode, free it and move page from swapcache to filecache.
595 static int shmem_unuse_inode(struct shmem_inode_info *info,
596 swp_entry_t swap, struct page **pagep)
598 struct address_space *mapping = info->vfs_inode.i_mapping;
604 radswap = swp_to_radix_entry(swap);
605 index = radix_tree_locate_item(&mapping->page_tree, radswap);
610 * Move _head_ to start search for next from here.
611 * But be careful: shmem_evict_inode checks list_empty without taking
612 * mutex, and there's an instant in list_move_tail when info->swaplist
613 * would appear empty, if it were the only one on shmem_swaplist.
615 if (shmem_swaplist.next != &info->swaplist)
616 list_move_tail(&shmem_swaplist, &info->swaplist);
618 gfp = mapping_gfp_mask(mapping);
619 if (shmem_should_replace_page(*pagep, gfp)) {
620 mutex_unlock(&shmem_swaplist_mutex);
621 error = shmem_replace_page(pagep, gfp, info, index);
622 mutex_lock(&shmem_swaplist_mutex);
624 * We needed to drop mutex to make that restrictive page
625 * allocation, but the inode might have been freed while we
626 * dropped it: although a racing shmem_evict_inode() cannot
627 * complete without emptying the radix_tree, our page lock
628 * on this swapcache page is not enough to prevent that -
629 * free_swap_and_cache() of our swap entry will only
630 * trylock_page(), removing swap from radix_tree whatever.
632 * We must not proceed to shmem_add_to_page_cache() if the
633 * inode has been freed, but of course we cannot rely on
634 * inode or mapping or info to check that. However, we can
635 * safely check if our swap entry is still in use (and here
636 * it can't have got reused for another page): if it's still
637 * in use, then the inode cannot have been freed yet, and we
638 * can safely proceed (if it's no longer in use, that tells
639 * nothing about the inode, but we don't need to unuse swap).
641 if (!page_swapcount(*pagep))
646 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
647 * but also to hold up shmem_evict_inode(): so inode cannot be freed
648 * beneath us (pagelock doesn't help until the page is in pagecache).
651 error = shmem_add_to_page_cache(*pagep, mapping, index,
652 GFP_NOWAIT, radswap);
653 if (error != -ENOMEM) {
655 * Truncation and eviction use free_swap_and_cache(), which
656 * only does trylock page: if we raced, best clean up here.
658 delete_from_swap_cache(*pagep);
659 set_page_dirty(*pagep);
661 spin_lock(&info->lock);
663 spin_unlock(&info->lock);
666 error = 1; /* not an error, but entry was found */
672 * Search through swapped inodes to find and replace swap by page.
674 int shmem_unuse(swp_entry_t swap, struct page *page)
676 struct list_head *this, *next;
677 struct shmem_inode_info *info;
682 * There's a faint possibility that swap page was replaced before
683 * caller locked it: caller will come back later with the right page.
685 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
689 * Charge page using GFP_KERNEL while we can wait, before taking
690 * the shmem_swaplist_mutex which might hold up shmem_writepage().
691 * Charged back to the user (not to caller) when swap account is used.
693 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
696 /* No radix_tree_preload: swap entry keeps a place for page in tree */
698 mutex_lock(&shmem_swaplist_mutex);
699 list_for_each_safe(this, next, &shmem_swaplist) {
700 info = list_entry(this, struct shmem_inode_info, swaplist);
702 found = shmem_unuse_inode(info, swap, &page);
704 list_del_init(&info->swaplist);
709 mutex_unlock(&shmem_swaplist_mutex);
715 page_cache_release(page);
720 * Move the page from the page cache to the swap cache.
722 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
724 struct shmem_inode_info *info;
725 struct address_space *mapping;
730 BUG_ON(!PageLocked(page));
731 mapping = page->mapping;
733 inode = mapping->host;
734 info = SHMEM_I(inode);
735 if (info->flags & VM_LOCKED)
737 if (!total_swap_pages)
741 * shmem_backing_dev_info's capabilities prevent regular writeback or
742 * sync from ever calling shmem_writepage; but a stacking filesystem
743 * might use ->writepage of its underlying filesystem, in which case
744 * tmpfs should write out to swap only in response to memory pressure,
745 * and not for the writeback threads or sync.
747 if (!wbc->for_reclaim) {
748 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
753 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
754 * value into swapfile.c, the only way we can correctly account for a
755 * fallocated page arriving here is now to initialize it and write it.
757 * That's okay for a page already fallocated earlier, but if we have
758 * not yet completed the fallocation, then (a) we want to keep track
759 * of this page in case we have to undo it, and (b) it may not be a
760 * good idea to continue anyway, once we're pushing into swap. So
761 * reactivate the page, and let shmem_fallocate() quit when too many.
763 if (!PageUptodate(page)) {
764 if (inode->i_private) {
765 struct shmem_falloc *shmem_falloc;
766 spin_lock(&inode->i_lock);
767 shmem_falloc = inode->i_private;
769 !shmem_falloc->waitq &&
770 index >= shmem_falloc->start &&
771 index < shmem_falloc->next)
772 shmem_falloc->nr_unswapped++;
775 spin_unlock(&inode->i_lock);
779 clear_highpage(page);
780 flush_dcache_page(page);
781 SetPageUptodate(page);
784 swap = get_swap_page();
789 * Add inode to shmem_unuse()'s list of swapped-out inodes,
790 * if it's not already there. Do it now before the page is
791 * moved to swap cache, when its pagelock no longer protects
792 * the inode from eviction. But don't unlock the mutex until
793 * we've incremented swapped, because shmem_unuse_inode() will
794 * prune a !swapped inode from the swaplist under this mutex.
796 mutex_lock(&shmem_swaplist_mutex);
797 if (list_empty(&info->swaplist))
798 list_add_tail(&info->swaplist, &shmem_swaplist);
800 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
801 swap_shmem_alloc(swap);
802 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
804 spin_lock(&info->lock);
806 shmem_recalc_inode(inode);
807 spin_unlock(&info->lock);
809 mutex_unlock(&shmem_swaplist_mutex);
810 BUG_ON(page_mapped(page));
811 swap_writepage(page, wbc);
815 mutex_unlock(&shmem_swaplist_mutex);
816 swapcache_free(swap, NULL);
818 set_page_dirty(page);
819 if (wbc->for_reclaim)
820 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
827 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
831 if (!mpol || mpol->mode == MPOL_DEFAULT)
832 return; /* show nothing */
834 mpol_to_str(buffer, sizeof(buffer), mpol);
836 seq_printf(seq, ",mpol=%s", buffer);
839 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
841 struct mempolicy *mpol = NULL;
843 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
846 spin_unlock(&sbinfo->stat_lock);
850 #endif /* CONFIG_TMPFS */
852 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
853 struct shmem_inode_info *info, pgoff_t index)
855 struct vm_area_struct pvma;
858 /* Create a pseudo vma that just contains the policy */
860 /* Bias interleave by inode number to distribute better across nodes */
861 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
863 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
865 page = swapin_readahead(swap, gfp, &pvma, 0);
867 /* Drop reference taken by mpol_shared_policy_lookup() */
868 mpol_cond_put(pvma.vm_policy);
873 static struct page *shmem_alloc_page(gfp_t gfp,
874 struct shmem_inode_info *info, pgoff_t index)
876 struct vm_area_struct pvma;
879 /* Create a pseudo vma that just contains the policy */
881 /* Bias interleave by inode number to distribute better across nodes */
882 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
884 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886 page = alloc_page_vma(gfp, &pvma, 0);
888 /* Drop reference taken by mpol_shared_policy_lookup() */
889 mpol_cond_put(pvma.vm_policy);
893 #else /* !CONFIG_NUMA */
895 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
898 #endif /* CONFIG_TMPFS */
900 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
903 return swapin_readahead(swap, gfp, NULL, 0);
906 static inline struct page *shmem_alloc_page(gfp_t gfp,
907 struct shmem_inode_info *info, pgoff_t index)
909 return alloc_page(gfp);
911 #endif /* CONFIG_NUMA */
913 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
914 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
921 * When a page is moved from swapcache to shmem filecache (either by the
922 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
923 * shmem_unuse_inode()), it may have been read in earlier from swap, in
924 * ignorance of the mapping it belongs to. If that mapping has special
925 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
926 * we may need to copy to a suitable page before moving to filecache.
928 * In a future release, this may well be extended to respect cpuset and
929 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
930 * but for now it is a simple matter of zone.
932 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
934 return page_zonenum(page) > gfp_zone(gfp);
937 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
938 struct shmem_inode_info *info, pgoff_t index)
940 struct page *oldpage, *newpage;
941 struct address_space *swap_mapping;
946 swap_index = page_private(oldpage);
947 swap_mapping = page_mapping(oldpage);
950 * We have arrived here because our zones are constrained, so don't
951 * limit chance of success by further cpuset and node constraints.
953 gfp &= ~GFP_CONSTRAINT_MASK;
954 newpage = shmem_alloc_page(gfp, info, index);
958 page_cache_get(newpage);
959 copy_highpage(newpage, oldpage);
960 flush_dcache_page(newpage);
962 __set_page_locked(newpage);
963 SetPageUptodate(newpage);
964 SetPageSwapBacked(newpage);
965 set_page_private(newpage, swap_index);
966 SetPageSwapCache(newpage);
969 * Our caller will very soon move newpage out of swapcache, but it's
970 * a nice clean interface for us to replace oldpage by newpage there.
972 spin_lock_irq(&swap_mapping->tree_lock);
973 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
976 __inc_zone_page_state(newpage, NR_FILE_PAGES);
977 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
979 spin_unlock_irq(&swap_mapping->tree_lock);
981 if (unlikely(error)) {
983 * Is this possible? I think not, now that our callers check
984 * both PageSwapCache and page_private after getting page lock;
985 * but be defensive. Reverse old to newpage for clear and free.
989 mem_cgroup_replace_page_cache(oldpage, newpage);
990 lru_cache_add_anon(newpage);
994 ClearPageSwapCache(oldpage);
995 set_page_private(oldpage, 0);
997 unlock_page(oldpage);
998 page_cache_release(oldpage);
999 page_cache_release(oldpage);
1004 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1006 * If we allocate a new one we do not mark it dirty. That's up to the
1007 * vm. If we swap it in we mark it dirty since we also free the swap
1008 * entry since a page cannot live in both the swap and page cache
1010 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1013 struct address_space *mapping = inode->i_mapping;
1014 struct shmem_inode_info *info;
1015 struct shmem_sb_info *sbinfo;
1022 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1026 page = find_lock_entry(mapping, index);
1027 if (radix_tree_exceptional_entry(page)) {
1028 swap = radix_to_swp_entry(page);
1032 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1038 /* fallocated page? */
1039 if (page && !PageUptodate(page)) {
1040 if (sgp != SGP_READ)
1043 page_cache_release(page);
1046 if (page || (sgp == SGP_READ && !swap.val)) {
1052 * Fast cache lookup did not find it:
1053 * bring it back from swap or allocate.
1055 info = SHMEM_I(inode);
1056 sbinfo = SHMEM_SB(inode->i_sb);
1059 /* Look it up and read it in.. */
1060 page = lookup_swap_cache(swap);
1062 /* here we actually do the io */
1064 *fault_type |= VM_FAULT_MAJOR;
1065 page = shmem_swapin(swap, gfp, info, index);
1072 /* We have to do this with page locked to prevent races */
1074 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1075 !shmem_confirm_swap(mapping, index, swap)) {
1076 error = -EEXIST; /* try again */
1079 if (!PageUptodate(page)) {
1083 wait_on_page_writeback(page);
1085 if (shmem_should_replace_page(page, gfp)) {
1086 error = shmem_replace_page(&page, gfp, info, index);
1091 error = mem_cgroup_cache_charge(page, current->mm,
1092 gfp & GFP_RECLAIM_MASK);
1094 error = shmem_add_to_page_cache(page, mapping, index,
1095 gfp, swp_to_radix_entry(swap));
1097 * We already confirmed swap under page lock, and make
1098 * no memory allocation here, so usually no possibility
1099 * of error; but free_swap_and_cache() only trylocks a
1100 * page, so it is just possible that the entry has been
1101 * truncated or holepunched since swap was confirmed.
1102 * shmem_undo_range() will have done some of the
1103 * unaccounting, now delete_from_swap_cache() will do
1104 * the rest (including mem_cgroup_uncharge_swapcache).
1105 * Reset swap.val? No, leave it so "failed" goes back to
1106 * "repeat": reading a hole and writing should succeed.
1109 delete_from_swap_cache(page);
1114 spin_lock(&info->lock);
1116 shmem_recalc_inode(inode);
1117 spin_unlock(&info->lock);
1119 delete_from_swap_cache(page);
1120 set_page_dirty(page);
1124 if (shmem_acct_block(info->flags)) {
1128 if (sbinfo->max_blocks) {
1129 if (percpu_counter_compare(&sbinfo->used_blocks,
1130 sbinfo->max_blocks) >= 0) {
1134 percpu_counter_inc(&sbinfo->used_blocks);
1137 page = shmem_alloc_page(gfp, info, index);
1143 SetPageSwapBacked(page);
1144 __set_page_locked(page);
1145 error = mem_cgroup_cache_charge(page, current->mm,
1146 gfp & GFP_RECLAIM_MASK);
1149 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1151 error = shmem_add_to_page_cache(page, mapping, index,
1153 radix_tree_preload_end();
1156 mem_cgroup_uncharge_cache_page(page);
1159 lru_cache_add_anon(page);
1161 spin_lock(&info->lock);
1163 inode->i_blocks += BLOCKS_PER_PAGE;
1164 shmem_recalc_inode(inode);
1165 spin_unlock(&info->lock);
1169 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1171 if (sgp == SGP_FALLOC)
1175 * Let SGP_WRITE caller clear ends if write does not fill page;
1176 * but SGP_FALLOC on a page fallocated earlier must initialize
1177 * it now, lest undo on failure cancel our earlier guarantee.
1179 if (sgp != SGP_WRITE) {
1180 clear_highpage(page);
1181 flush_dcache_page(page);
1182 SetPageUptodate(page);
1184 if (sgp == SGP_DIRTY)
1185 set_page_dirty(page);
1188 /* Perhaps the file has been truncated since we checked */
1189 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1190 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1204 info = SHMEM_I(inode);
1205 ClearPageDirty(page);
1206 delete_from_page_cache(page);
1207 spin_lock(&info->lock);
1209 inode->i_blocks -= BLOCKS_PER_PAGE;
1210 spin_unlock(&info->lock);
1212 sbinfo = SHMEM_SB(inode->i_sb);
1213 if (sbinfo->max_blocks)
1214 percpu_counter_add(&sbinfo->used_blocks, -1);
1216 shmem_unacct_blocks(info->flags, 1);
1218 if (swap.val && error != -EINVAL &&
1219 !shmem_confirm_swap(mapping, index, swap))
1224 page_cache_release(page);
1226 if (error == -ENOSPC && !once++) {
1227 info = SHMEM_I(inode);
1228 spin_lock(&info->lock);
1229 shmem_recalc_inode(inode);
1230 spin_unlock(&info->lock);
1233 if (error == -EEXIST) /* from above or from radix_tree_insert */
1238 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 struct inode *inode = file_inode(vma->vm_file);
1242 int ret = VM_FAULT_LOCKED;
1245 * Trinity finds that probing a hole which tmpfs is punching can
1246 * prevent the hole-punch from ever completing: which in turn
1247 * locks writers out with its hold on i_mutex. So refrain from
1248 * faulting pages into the hole while it's being punched. Although
1249 * shmem_undo_range() does remove the additions, it may be unable to
1250 * keep up, as each new page needs its own unmap_mapping_range() call,
1251 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1253 * It does not matter if we sometimes reach this check just before the
1254 * hole-punch begins, so that one fault then races with the punch:
1255 * we just need to make racing faults a rare case.
1257 * The implementation below would be much simpler if we just used a
1258 * standard mutex or completion: but we cannot take i_mutex in fault,
1259 * and bloating every shmem inode for this unlikely case would be sad.
1261 if (unlikely(inode->i_private)) {
1262 struct shmem_falloc *shmem_falloc;
1264 spin_lock(&inode->i_lock);
1265 shmem_falloc = inode->i_private;
1267 shmem_falloc->waitq &&
1268 vmf->pgoff >= shmem_falloc->start &&
1269 vmf->pgoff < shmem_falloc->next) {
1270 wait_queue_head_t *shmem_falloc_waitq;
1271 DEFINE_WAIT(shmem_fault_wait);
1273 ret = VM_FAULT_NOPAGE;
1274 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1275 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1276 /* It's polite to up mmap_sem if we can */
1277 up_read(&vma->vm_mm->mmap_sem);
1278 ret = VM_FAULT_RETRY;
1281 shmem_falloc_waitq = shmem_falloc->waitq;
1282 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1283 TASK_UNINTERRUPTIBLE);
1284 spin_unlock(&inode->i_lock);
1288 * shmem_falloc_waitq points into the shmem_fallocate()
1289 * stack of the hole-punching task: shmem_falloc_waitq
1290 * is usually invalid by the time we reach here, but
1291 * finish_wait() does not dereference it in that case;
1292 * though i_lock needed lest racing with wake_up_all().
1294 spin_lock(&inode->i_lock);
1295 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1296 spin_unlock(&inode->i_lock);
1299 spin_unlock(&inode->i_lock);
1302 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1304 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1306 if (ret & VM_FAULT_MAJOR) {
1307 count_vm_event(PGMAJFAULT);
1308 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1316 struct inode *inode = file_inode(vma->vm_file);
1317 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1323 struct inode *inode = file_inode(vma->vm_file);
1326 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1327 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1331 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1333 struct inode *inode = file_inode(file);
1334 struct shmem_inode_info *info = SHMEM_I(inode);
1335 int retval = -ENOMEM;
1337 spin_lock(&info->lock);
1338 if (lock && !(info->flags & VM_LOCKED)) {
1339 if (!user_shm_lock(inode->i_size, user))
1341 info->flags |= VM_LOCKED;
1342 mapping_set_unevictable(file->f_mapping);
1344 if (!lock && (info->flags & VM_LOCKED) && user) {
1345 user_shm_unlock(inode->i_size, user);
1346 info->flags &= ~VM_LOCKED;
1347 mapping_clear_unevictable(file->f_mapping);
1352 spin_unlock(&info->lock);
1356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1358 file_accessed(file);
1359 vma->vm_ops = &shmem_vm_ops;
1363 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1364 umode_t mode, dev_t dev, unsigned long flags)
1366 struct inode *inode;
1367 struct shmem_inode_info *info;
1368 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1370 if (shmem_reserve_inode(sb))
1373 inode = new_inode(sb);
1375 inode->i_ino = get_next_ino();
1376 inode_init_owner(inode, dir, mode);
1377 inode->i_blocks = 0;
1378 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1379 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1380 inode->i_generation = get_seconds();
1381 info = SHMEM_I(inode);
1382 memset(info, 0, (char *)inode - (char *)info);
1383 spin_lock_init(&info->lock);
1384 info->flags = flags & VM_NORESERVE;
1385 INIT_LIST_HEAD(&info->swaplist);
1386 simple_xattrs_init(&info->xattrs);
1387 cache_no_acl(inode);
1389 switch (mode & S_IFMT) {
1391 inode->i_op = &shmem_special_inode_operations;
1392 init_special_inode(inode, mode, dev);
1395 inode->i_mapping->a_ops = &shmem_aops;
1396 inode->i_op = &shmem_inode_operations;
1397 inode->i_fop = &shmem_file_operations;
1398 mpol_shared_policy_init(&info->policy,
1399 shmem_get_sbmpol(sbinfo));
1403 /* Some things misbehave if size == 0 on a directory */
1404 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1405 inode->i_op = &shmem_dir_inode_operations;
1406 inode->i_fop = &simple_dir_operations;
1410 * Must not load anything in the rbtree,
1411 * mpol_free_shared_policy will not be called.
1413 mpol_shared_policy_init(&info->policy, NULL);
1417 shmem_free_inode(sb);
1421 bool shmem_mapping(struct address_space *mapping)
1423 return mapping->backing_dev_info == &shmem_backing_dev_info;
1427 static const struct inode_operations shmem_symlink_inode_operations;
1428 static const struct inode_operations shmem_short_symlink_operations;
1430 #ifdef CONFIG_TMPFS_XATTR
1431 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1433 #define shmem_initxattrs NULL
1437 shmem_write_begin(struct file *file, struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned flags,
1439 struct page **pagep, void **fsdata)
1441 struct inode *inode = mapping->host;
1442 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1443 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1447 shmem_write_end(struct file *file, struct address_space *mapping,
1448 loff_t pos, unsigned len, unsigned copied,
1449 struct page *page, void *fsdata)
1451 struct inode *inode = mapping->host;
1453 if (pos + copied > inode->i_size)
1454 i_size_write(inode, pos + copied);
1456 if (!PageUptodate(page)) {
1457 if (copied < PAGE_CACHE_SIZE) {
1458 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1459 zero_user_segments(page, 0, from,
1460 from + copied, PAGE_CACHE_SIZE);
1462 SetPageUptodate(page);
1464 set_page_dirty(page);
1466 page_cache_release(page);
1471 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1473 struct inode *inode = file_inode(filp);
1474 struct address_space *mapping = inode->i_mapping;
1476 unsigned long offset;
1477 enum sgp_type sgp = SGP_READ;
1480 * Might this read be for a stacking filesystem? Then when reading
1481 * holes of a sparse file, we actually need to allocate those pages,
1482 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1484 if (segment_eq(get_fs(), KERNEL_DS))
1487 index = *ppos >> PAGE_CACHE_SHIFT;
1488 offset = *ppos & ~PAGE_CACHE_MASK;
1491 struct page *page = NULL;
1493 unsigned long nr, ret;
1494 loff_t i_size = i_size_read(inode);
1496 end_index = i_size >> PAGE_CACHE_SHIFT;
1497 if (index > end_index)
1499 if (index == end_index) {
1500 nr = i_size & ~PAGE_CACHE_MASK;
1505 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1507 if (desc->error == -EINVAL)
1515 * We must evaluate after, since reads (unlike writes)
1516 * are called without i_mutex protection against truncate
1518 nr = PAGE_CACHE_SIZE;
1519 i_size = i_size_read(inode);
1520 end_index = i_size >> PAGE_CACHE_SHIFT;
1521 if (index == end_index) {
1522 nr = i_size & ~PAGE_CACHE_MASK;
1525 page_cache_release(page);
1533 * If users can be writing to this page using arbitrary
1534 * virtual addresses, take care about potential aliasing
1535 * before reading the page on the kernel side.
1537 if (mapping_writably_mapped(mapping))
1538 flush_dcache_page(page);
1540 * Mark the page accessed if we read the beginning.
1543 mark_page_accessed(page);
1545 page = ZERO_PAGE(0);
1546 page_cache_get(page);
1550 * Ok, we have the page, and it's up-to-date, so
1551 * now we can copy it to user space...
1553 * The actor routine returns how many bytes were actually used..
1554 * NOTE! This may not be the same as how much of a user buffer
1555 * we filled up (we may be padding etc), so we can only update
1556 * "pos" here (the actor routine has to update the user buffer
1557 * pointers and the remaining count).
1559 ret = actor(desc, page, offset, nr);
1561 index += offset >> PAGE_CACHE_SHIFT;
1562 offset &= ~PAGE_CACHE_MASK;
1564 page_cache_release(page);
1565 if (ret != nr || !desc->count)
1571 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1572 file_accessed(filp);
1575 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1576 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1578 struct file *filp = iocb->ki_filp;
1582 loff_t *ppos = &iocb->ki_pos;
1584 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1588 for (seg = 0; seg < nr_segs; seg++) {
1589 read_descriptor_t desc;
1592 desc.arg.buf = iov[seg].iov_base;
1593 desc.count = iov[seg].iov_len;
1594 if (desc.count == 0)
1597 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1598 retval += desc.written;
1600 retval = retval ?: desc.error;
1609 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610 struct pipe_inode_info *pipe, size_t len,
1613 struct address_space *mapping = in->f_mapping;
1614 struct inode *inode = mapping->host;
1615 unsigned int loff, nr_pages, req_pages;
1616 struct page *pages[PIPE_DEF_BUFFERS];
1617 struct partial_page partial[PIPE_DEF_BUFFERS];
1619 pgoff_t index, end_index;
1622 struct splice_pipe_desc spd = {
1625 .nr_pages_max = PIPE_DEF_BUFFERS,
1627 .ops = &page_cache_pipe_buf_ops,
1628 .spd_release = spd_release_page,
1631 isize = i_size_read(inode);
1632 if (unlikely(*ppos >= isize))
1635 left = isize - *ppos;
1636 if (unlikely(left < len))
1639 if (splice_grow_spd(pipe, &spd))
1642 index = *ppos >> PAGE_CACHE_SHIFT;
1643 loff = *ppos & ~PAGE_CACHE_MASK;
1644 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1645 nr_pages = min(req_pages, pipe->buffers);
1647 spd.nr_pages = find_get_pages_contig(mapping, index,
1648 nr_pages, spd.pages);
1649 index += spd.nr_pages;
1652 while (spd.nr_pages < nr_pages) {
1653 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1657 spd.pages[spd.nr_pages++] = page;
1661 index = *ppos >> PAGE_CACHE_SHIFT;
1662 nr_pages = spd.nr_pages;
1665 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666 unsigned int this_len;
1671 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672 page = spd.pages[page_nr];
1674 if (!PageUptodate(page) || page->mapping != mapping) {
1675 error = shmem_getpage(inode, index, &page,
1680 page_cache_release(spd.pages[page_nr]);
1681 spd.pages[page_nr] = page;
1684 isize = i_size_read(inode);
1685 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686 if (unlikely(!isize || index > end_index))
1689 if (end_index == index) {
1692 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1696 this_len = min(this_len, plen - loff);
1700 spd.partial[page_nr].offset = loff;
1701 spd.partial[page_nr].len = this_len;
1708 while (page_nr < nr_pages)
1709 page_cache_release(spd.pages[page_nr++]);
1712 error = splice_to_pipe(pipe, &spd);
1714 splice_shrink_spd(&spd);
1724 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1726 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1727 pgoff_t index, pgoff_t end, int whence)
1730 struct pagevec pvec;
1731 pgoff_t indices[PAGEVEC_SIZE];
1735 pagevec_init(&pvec, 0);
1736 pvec.nr = 1; /* start small: we may be there already */
1738 pvec.nr = find_get_entries(mapping, index,
1739 pvec.nr, pvec.pages, indices);
1741 if (whence == SEEK_DATA)
1745 for (i = 0; i < pvec.nr; i++, index++) {
1746 if (index < indices[i]) {
1747 if (whence == SEEK_HOLE) {
1753 page = pvec.pages[i];
1754 if (page && !radix_tree_exceptional_entry(page)) {
1755 if (!PageUptodate(page))
1759 (page && whence == SEEK_DATA) ||
1760 (!page && whence == SEEK_HOLE)) {
1765 pagevec_remove_exceptionals(&pvec);
1766 pagevec_release(&pvec);
1767 pvec.nr = PAGEVEC_SIZE;
1773 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1775 struct address_space *mapping = file->f_mapping;
1776 struct inode *inode = mapping->host;
1780 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781 return generic_file_llseek_size(file, offset, whence,
1782 MAX_LFS_FILESIZE, i_size_read(inode));
1783 mutex_lock(&inode->i_mutex);
1784 /* We're holding i_mutex so we can access i_size directly */
1788 else if (offset >= inode->i_size)
1791 start = offset >> PAGE_CACHE_SHIFT;
1792 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1793 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1794 new_offset <<= PAGE_CACHE_SHIFT;
1795 if (new_offset > offset) {
1796 if (new_offset < inode->i_size)
1797 offset = new_offset;
1798 else if (whence == SEEK_DATA)
1801 offset = inode->i_size;
1806 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1807 mutex_unlock(&inode->i_mutex);
1811 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1814 struct inode *inode = file_inode(file);
1815 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1816 struct shmem_falloc shmem_falloc;
1817 pgoff_t start, index, end;
1820 mutex_lock(&inode->i_mutex);
1822 if (mode & FALLOC_FL_PUNCH_HOLE) {
1823 struct address_space *mapping = file->f_mapping;
1824 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1825 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1826 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1828 shmem_falloc.waitq = &shmem_falloc_waitq;
1829 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1830 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1831 spin_lock(&inode->i_lock);
1832 inode->i_private = &shmem_falloc;
1833 spin_unlock(&inode->i_lock);
1835 if ((u64)unmap_end > (u64)unmap_start)
1836 unmap_mapping_range(mapping, unmap_start,
1837 1 + unmap_end - unmap_start, 0);
1838 shmem_truncate_range(inode, offset, offset + len - 1);
1839 /* No need to unmap again: hole-punching leaves COWed pages */
1841 spin_lock(&inode->i_lock);
1842 inode->i_private = NULL;
1843 wake_up_all(&shmem_falloc_waitq);
1844 spin_unlock(&inode->i_lock);
1849 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1850 error = inode_newsize_ok(inode, offset + len);
1854 start = offset >> PAGE_CACHE_SHIFT;
1855 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1856 /* Try to avoid a swapstorm if len is impossible to satisfy */
1857 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1862 shmem_falloc.waitq = NULL;
1863 shmem_falloc.start = start;
1864 shmem_falloc.next = start;
1865 shmem_falloc.nr_falloced = 0;
1866 shmem_falloc.nr_unswapped = 0;
1867 spin_lock(&inode->i_lock);
1868 inode->i_private = &shmem_falloc;
1869 spin_unlock(&inode->i_lock);
1871 for (index = start; index < end; index++) {
1875 * Good, the fallocate(2) manpage permits EINTR: we may have
1876 * been interrupted because we are using up too much memory.
1878 if (signal_pending(current))
1880 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1883 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1886 /* Remove the !PageUptodate pages we added */
1887 shmem_undo_range(inode,
1888 (loff_t)start << PAGE_CACHE_SHIFT,
1889 (loff_t)index << PAGE_CACHE_SHIFT, true);
1894 * Inform shmem_writepage() how far we have reached.
1895 * No need for lock or barrier: we have the page lock.
1897 shmem_falloc.next++;
1898 if (!PageUptodate(page))
1899 shmem_falloc.nr_falloced++;
1902 * If !PageUptodate, leave it that way so that freeable pages
1903 * can be recognized if we need to rollback on error later.
1904 * But set_page_dirty so that memory pressure will swap rather
1905 * than free the pages we are allocating (and SGP_CACHE pages
1906 * might still be clean: we now need to mark those dirty too).
1908 set_page_dirty(page);
1910 page_cache_release(page);
1914 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1915 i_size_write(inode, offset + len);
1916 inode->i_ctime = CURRENT_TIME;
1918 spin_lock(&inode->i_lock);
1919 inode->i_private = NULL;
1920 spin_unlock(&inode->i_lock);
1922 mutex_unlock(&inode->i_mutex);
1926 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1928 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1930 buf->f_type = TMPFS_MAGIC;
1931 buf->f_bsize = PAGE_CACHE_SIZE;
1932 buf->f_namelen = NAME_MAX;
1933 if (sbinfo->max_blocks) {
1934 buf->f_blocks = sbinfo->max_blocks;
1936 buf->f_bfree = sbinfo->max_blocks -
1937 percpu_counter_sum(&sbinfo->used_blocks);
1939 if (sbinfo->max_inodes) {
1940 buf->f_files = sbinfo->max_inodes;
1941 buf->f_ffree = sbinfo->free_inodes;
1943 /* else leave those fields 0 like simple_statfs */
1948 * File creation. Allocate an inode, and we're done..
1951 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1953 struct inode *inode;
1954 int error = -ENOSPC;
1956 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1958 error = simple_acl_create(dir, inode);
1961 error = security_inode_init_security(inode, dir,
1963 shmem_initxattrs, NULL);
1964 if (error && error != -EOPNOTSUPP)
1968 dir->i_size += BOGO_DIRENT_SIZE;
1969 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1970 d_instantiate(dentry, inode);
1971 dget(dentry); /* Extra count - pin the dentry in core */
1980 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1982 struct inode *inode;
1983 int error = -ENOSPC;
1985 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1987 error = security_inode_init_security(inode, dir,
1989 shmem_initxattrs, NULL);
1990 if (error && error != -EOPNOTSUPP)
1992 error = simple_acl_create(dir, inode);
1995 d_tmpfile(dentry, inode);
2003 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2007 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2013 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2016 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2022 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2024 struct inode *inode = old_dentry->d_inode;
2028 * No ordinary (disk based) filesystem counts links as inodes;
2029 * but each new link needs a new dentry, pinning lowmem, and
2030 * tmpfs dentries cannot be pruned until they are unlinked.
2032 ret = shmem_reserve_inode(inode->i_sb);
2036 dir->i_size += BOGO_DIRENT_SIZE;
2037 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2039 ihold(inode); /* New dentry reference */
2040 dget(dentry); /* Extra pinning count for the created dentry */
2041 d_instantiate(dentry, inode);
2046 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2048 struct inode *inode = dentry->d_inode;
2050 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2051 shmem_free_inode(inode->i_sb);
2053 dir->i_size -= BOGO_DIRENT_SIZE;
2054 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2056 dput(dentry); /* Undo the count from "create" - this does all the work */
2060 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2062 if (!simple_empty(dentry))
2065 drop_nlink(dentry->d_inode);
2067 return shmem_unlink(dir, dentry);
2071 * The VFS layer already does all the dentry stuff for rename,
2072 * we just have to decrement the usage count for the target if
2073 * it exists so that the VFS layer correctly free's it when it
2076 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2078 struct inode *inode = old_dentry->d_inode;
2079 int they_are_dirs = S_ISDIR(inode->i_mode);
2081 if (!simple_empty(new_dentry))
2084 if (new_dentry->d_inode) {
2085 (void) shmem_unlink(new_dir, new_dentry);
2086 if (they_are_dirs) {
2087 drop_nlink(new_dentry->d_inode);
2088 drop_nlink(old_dir);
2090 } else if (they_are_dirs) {
2091 drop_nlink(old_dir);
2095 old_dir->i_size -= BOGO_DIRENT_SIZE;
2096 new_dir->i_size += BOGO_DIRENT_SIZE;
2097 old_dir->i_ctime = old_dir->i_mtime =
2098 new_dir->i_ctime = new_dir->i_mtime =
2099 inode->i_ctime = CURRENT_TIME;
2103 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2107 struct inode *inode;
2110 struct shmem_inode_info *info;
2112 len = strlen(symname) + 1;
2113 if (len > PAGE_CACHE_SIZE)
2114 return -ENAMETOOLONG;
2116 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2120 error = security_inode_init_security(inode, dir, &dentry->d_name,
2121 shmem_initxattrs, NULL);
2123 if (error != -EOPNOTSUPP) {
2130 info = SHMEM_I(inode);
2131 inode->i_size = len-1;
2132 if (len <= SHORT_SYMLINK_LEN) {
2133 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2134 if (!info->symlink) {
2138 inode->i_op = &shmem_short_symlink_operations;
2140 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2145 inode->i_mapping->a_ops = &shmem_aops;
2146 inode->i_op = &shmem_symlink_inode_operations;
2147 kaddr = kmap_atomic(page);
2148 memcpy(kaddr, symname, len);
2149 kunmap_atomic(kaddr);
2150 SetPageUptodate(page);
2151 set_page_dirty(page);
2153 page_cache_release(page);
2155 dir->i_size += BOGO_DIRENT_SIZE;
2156 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2157 d_instantiate(dentry, inode);
2162 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2164 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2168 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2170 struct page *page = NULL;
2171 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2172 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2178 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2180 if (!IS_ERR(nd_get_link(nd))) {
2181 struct page *page = cookie;
2183 mark_page_accessed(page);
2184 page_cache_release(page);
2188 #ifdef CONFIG_TMPFS_XATTR
2190 * Superblocks without xattr inode operations may get some security.* xattr
2191 * support from the LSM "for free". As soon as we have any other xattrs
2192 * like ACLs, we also need to implement the security.* handlers at
2193 * filesystem level, though.
2197 * Callback for security_inode_init_security() for acquiring xattrs.
2199 static int shmem_initxattrs(struct inode *inode,
2200 const struct xattr *xattr_array,
2203 struct shmem_inode_info *info = SHMEM_I(inode);
2204 const struct xattr *xattr;
2205 struct simple_xattr *new_xattr;
2208 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2209 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2213 len = strlen(xattr->name) + 1;
2214 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2216 if (!new_xattr->name) {
2221 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2222 XATTR_SECURITY_PREFIX_LEN);
2223 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2226 simple_xattr_list_add(&info->xattrs, new_xattr);
2232 static const struct xattr_handler *shmem_xattr_handlers[] = {
2233 #ifdef CONFIG_TMPFS_POSIX_ACL
2234 &posix_acl_access_xattr_handler,
2235 &posix_acl_default_xattr_handler,
2240 static int shmem_xattr_validate(const char *name)
2242 struct { const char *prefix; size_t len; } arr[] = {
2243 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2244 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2248 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2249 size_t preflen = arr[i].len;
2250 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2259 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2260 void *buffer, size_t size)
2262 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 * If this is a request for a synthetic attribute in the system.*
2267 * namespace use the generic infrastructure to resolve a handler
2268 * for it via sb->s_xattr.
2270 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2271 return generic_getxattr(dentry, name, buffer, size);
2273 err = shmem_xattr_validate(name);
2277 return simple_xattr_get(&info->xattrs, name, buffer, size);
2280 static int shmem_setxattr(struct dentry *dentry, const char *name,
2281 const void *value, size_t size, int flags)
2283 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2287 * If this is a request for a synthetic attribute in the system.*
2288 * namespace use the generic infrastructure to resolve a handler
2289 * for it via sb->s_xattr.
2291 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2292 return generic_setxattr(dentry, name, value, size, flags);
2294 err = shmem_xattr_validate(name);
2298 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2301 static int shmem_removexattr(struct dentry *dentry, const char *name)
2303 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2307 * If this is a request for a synthetic attribute in the system.*
2308 * namespace use the generic infrastructure to resolve a handler
2309 * for it via sb->s_xattr.
2311 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2312 return generic_removexattr(dentry, name);
2314 err = shmem_xattr_validate(name);
2318 return simple_xattr_remove(&info->xattrs, name);
2321 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2323 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2324 return simple_xattr_list(&info->xattrs, buffer, size);
2326 #endif /* CONFIG_TMPFS_XATTR */
2328 static const struct inode_operations shmem_short_symlink_operations = {
2329 .readlink = generic_readlink,
2330 .follow_link = shmem_follow_short_symlink,
2331 #ifdef CONFIG_TMPFS_XATTR
2332 .setxattr = shmem_setxattr,
2333 .getxattr = shmem_getxattr,
2334 .listxattr = shmem_listxattr,
2335 .removexattr = shmem_removexattr,
2339 static const struct inode_operations shmem_symlink_inode_operations = {
2340 .readlink = generic_readlink,
2341 .follow_link = shmem_follow_link,
2342 .put_link = shmem_put_link,
2343 #ifdef CONFIG_TMPFS_XATTR
2344 .setxattr = shmem_setxattr,
2345 .getxattr = shmem_getxattr,
2346 .listxattr = shmem_listxattr,
2347 .removexattr = shmem_removexattr,
2351 static struct dentry *shmem_get_parent(struct dentry *child)
2353 return ERR_PTR(-ESTALE);
2356 static int shmem_match(struct inode *ino, void *vfh)
2360 inum = (inum << 32) | fh[1];
2361 return ino->i_ino == inum && fh[0] == ino->i_generation;
2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365 struct fid *fid, int fh_len, int fh_type)
2367 struct inode *inode;
2368 struct dentry *dentry = NULL;
2375 inum = (inum << 32) | fid->raw[1];
2377 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2378 shmem_match, fid->raw);
2380 dentry = d_find_alias(inode);
2387 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2388 struct inode *parent)
2392 return FILEID_INVALID;
2395 if (inode_unhashed(inode)) {
2396 /* Unfortunately insert_inode_hash is not idempotent,
2397 * so as we hash inodes here rather than at creation
2398 * time, we need a lock to ensure we only try
2401 static DEFINE_SPINLOCK(lock);
2403 if (inode_unhashed(inode))
2404 __insert_inode_hash(inode,
2405 inode->i_ino + inode->i_generation);
2409 fh[0] = inode->i_generation;
2410 fh[1] = inode->i_ino;
2411 fh[2] = ((__u64)inode->i_ino) >> 32;
2417 static const struct export_operations shmem_export_ops = {
2418 .get_parent = shmem_get_parent,
2419 .encode_fh = shmem_encode_fh,
2420 .fh_to_dentry = shmem_fh_to_dentry,
2423 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2426 char *this_char, *value, *rest;
2427 struct mempolicy *mpol = NULL;
2431 while (options != NULL) {
2432 this_char = options;
2435 * NUL-terminate this option: unfortunately,
2436 * mount options form a comma-separated list,
2437 * but mpol's nodelist may also contain commas.
2439 options = strchr(options, ',');
2440 if (options == NULL)
2443 if (!isdigit(*options)) {
2450 if ((value = strchr(this_char,'=')) != NULL) {
2454 "tmpfs: No value for mount option '%s'\n",
2459 if (!strcmp(this_char,"size")) {
2460 unsigned long long size;
2461 size = memparse(value,&rest);
2463 size <<= PAGE_SHIFT;
2464 size *= totalram_pages;
2470 sbinfo->max_blocks =
2471 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2472 } else if (!strcmp(this_char,"nr_blocks")) {
2473 sbinfo->max_blocks = memparse(value, &rest);
2476 } else if (!strcmp(this_char,"nr_inodes")) {
2477 sbinfo->max_inodes = memparse(value, &rest);
2480 } else if (!strcmp(this_char,"mode")) {
2483 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2486 } else if (!strcmp(this_char,"uid")) {
2489 uid = simple_strtoul(value, &rest, 0);
2492 sbinfo->uid = make_kuid(current_user_ns(), uid);
2493 if (!uid_valid(sbinfo->uid))
2495 } else if (!strcmp(this_char,"gid")) {
2498 gid = simple_strtoul(value, &rest, 0);
2501 sbinfo->gid = make_kgid(current_user_ns(), gid);
2502 if (!gid_valid(sbinfo->gid))
2504 } else if (!strcmp(this_char,"mpol")) {
2507 if (mpol_parse_str(value, &mpol))
2510 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2515 sbinfo->mpol = mpol;
2519 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2527 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2529 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2530 struct shmem_sb_info config = *sbinfo;
2531 unsigned long inodes;
2532 int error = -EINVAL;
2535 if (shmem_parse_options(data, &config, true))
2538 spin_lock(&sbinfo->stat_lock);
2539 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2540 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2542 if (config.max_inodes < inodes)
2545 * Those tests disallow limited->unlimited while any are in use;
2546 * but we must separately disallow unlimited->limited, because
2547 * in that case we have no record of how much is already in use.
2549 if (config.max_blocks && !sbinfo->max_blocks)
2551 if (config.max_inodes && !sbinfo->max_inodes)
2555 sbinfo->max_blocks = config.max_blocks;
2556 sbinfo->max_inodes = config.max_inodes;
2557 sbinfo->free_inodes = config.max_inodes - inodes;
2560 * Preserve previous mempolicy unless mpol remount option was specified.
2563 mpol_put(sbinfo->mpol);
2564 sbinfo->mpol = config.mpol; /* transfers initial ref */
2567 spin_unlock(&sbinfo->stat_lock);
2571 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2573 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2575 if (sbinfo->max_blocks != shmem_default_max_blocks())
2576 seq_printf(seq, ",size=%luk",
2577 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2578 if (sbinfo->max_inodes != shmem_default_max_inodes())
2579 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2580 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2581 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2582 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2583 seq_printf(seq, ",uid=%u",
2584 from_kuid_munged(&init_user_ns, sbinfo->uid));
2585 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2586 seq_printf(seq, ",gid=%u",
2587 from_kgid_munged(&init_user_ns, sbinfo->gid));
2588 shmem_show_mpol(seq, sbinfo->mpol);
2591 #endif /* CONFIG_TMPFS */
2593 static void shmem_put_super(struct super_block *sb)
2595 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597 percpu_counter_destroy(&sbinfo->used_blocks);
2598 mpol_put(sbinfo->mpol);
2600 sb->s_fs_info = NULL;
2603 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2605 struct inode *inode;
2606 struct shmem_sb_info *sbinfo;
2609 /* Round up to L1_CACHE_BYTES to resist false sharing */
2610 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2611 L1_CACHE_BYTES), GFP_KERNEL);
2615 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2616 sbinfo->uid = current_fsuid();
2617 sbinfo->gid = current_fsgid();
2618 sb->s_fs_info = sbinfo;
2622 * Per default we only allow half of the physical ram per
2623 * tmpfs instance, limiting inodes to one per page of lowmem;
2624 * but the internal instance is left unlimited.
2626 if (!(sb->s_flags & MS_KERNMOUNT)) {
2627 sbinfo->max_blocks = shmem_default_max_blocks();
2628 sbinfo->max_inodes = shmem_default_max_inodes();
2629 if (shmem_parse_options(data, sbinfo, false)) {
2634 sb->s_flags |= MS_NOUSER;
2636 sb->s_export_op = &shmem_export_ops;
2637 sb->s_flags |= MS_NOSEC;
2639 sb->s_flags |= MS_NOUSER;
2642 spin_lock_init(&sbinfo->stat_lock);
2643 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645 sbinfo->free_inodes = sbinfo->max_inodes;
2647 sb->s_maxbytes = MAX_LFS_FILESIZE;
2648 sb->s_blocksize = PAGE_CACHE_SIZE;
2649 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2650 sb->s_magic = TMPFS_MAGIC;
2651 sb->s_op = &shmem_ops;
2652 sb->s_time_gran = 1;
2653 #ifdef CONFIG_TMPFS_XATTR
2654 sb->s_xattr = shmem_xattr_handlers;
2656 #ifdef CONFIG_TMPFS_POSIX_ACL
2657 sb->s_flags |= MS_POSIXACL;
2660 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2663 inode->i_uid = sbinfo->uid;
2664 inode->i_gid = sbinfo->gid;
2665 sb->s_root = d_make_root(inode);
2671 shmem_put_super(sb);
2675 static struct kmem_cache *shmem_inode_cachep;
2677 static struct inode *shmem_alloc_inode(struct super_block *sb)
2679 struct shmem_inode_info *info;
2680 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2683 return &info->vfs_inode;
2686 static void shmem_destroy_callback(struct rcu_head *head)
2688 struct inode *inode = container_of(head, struct inode, i_rcu);
2689 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2692 static void shmem_destroy_inode(struct inode *inode)
2694 if (S_ISREG(inode->i_mode))
2695 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2696 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2699 static void shmem_init_inode(void *foo)
2701 struct shmem_inode_info *info = foo;
2702 inode_init_once(&info->vfs_inode);
2705 static int shmem_init_inodecache(void)
2707 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2708 sizeof(struct shmem_inode_info),
2709 0, SLAB_PANIC, shmem_init_inode);
2713 static void shmem_destroy_inodecache(void)
2715 kmem_cache_destroy(shmem_inode_cachep);
2718 static const struct address_space_operations shmem_aops = {
2719 .writepage = shmem_writepage,
2720 .set_page_dirty = __set_page_dirty_no_writeback,
2722 .write_begin = shmem_write_begin,
2723 .write_end = shmem_write_end,
2725 .migratepage = migrate_page,
2726 .error_remove_page = generic_error_remove_page,
2729 static const struct file_operations shmem_file_operations = {
2732 .llseek = shmem_file_llseek,
2733 .read = do_sync_read,
2734 .write = do_sync_write,
2735 .aio_read = shmem_file_aio_read,
2736 .aio_write = generic_file_aio_write,
2737 .fsync = noop_fsync,
2738 .splice_read = shmem_file_splice_read,
2739 .splice_write = generic_file_splice_write,
2740 .fallocate = shmem_fallocate,
2744 static const struct inode_operations shmem_inode_operations = {
2745 .setattr = shmem_setattr,
2746 #ifdef CONFIG_TMPFS_XATTR
2747 .setxattr = shmem_setxattr,
2748 .getxattr = shmem_getxattr,
2749 .listxattr = shmem_listxattr,
2750 .removexattr = shmem_removexattr,
2751 .set_acl = simple_set_acl,
2755 static const struct inode_operations shmem_dir_inode_operations = {
2757 .create = shmem_create,
2758 .lookup = simple_lookup,
2760 .unlink = shmem_unlink,
2761 .symlink = shmem_symlink,
2762 .mkdir = shmem_mkdir,
2763 .rmdir = shmem_rmdir,
2764 .mknod = shmem_mknod,
2765 .rename = shmem_rename,
2766 .tmpfile = shmem_tmpfile,
2768 #ifdef CONFIG_TMPFS_XATTR
2769 .setxattr = shmem_setxattr,
2770 .getxattr = shmem_getxattr,
2771 .listxattr = shmem_listxattr,
2772 .removexattr = shmem_removexattr,
2774 #ifdef CONFIG_TMPFS_POSIX_ACL
2775 .setattr = shmem_setattr,
2776 .set_acl = simple_set_acl,
2780 static const struct inode_operations shmem_special_inode_operations = {
2781 #ifdef CONFIG_TMPFS_XATTR
2782 .setxattr = shmem_setxattr,
2783 .getxattr = shmem_getxattr,
2784 .listxattr = shmem_listxattr,
2785 .removexattr = shmem_removexattr,
2787 #ifdef CONFIG_TMPFS_POSIX_ACL
2788 .setattr = shmem_setattr,
2789 .set_acl = simple_set_acl,
2793 static const struct super_operations shmem_ops = {
2794 .alloc_inode = shmem_alloc_inode,
2795 .destroy_inode = shmem_destroy_inode,
2797 .statfs = shmem_statfs,
2798 .remount_fs = shmem_remount_fs,
2799 .show_options = shmem_show_options,
2801 .evict_inode = shmem_evict_inode,
2802 .drop_inode = generic_delete_inode,
2803 .put_super = shmem_put_super,
2806 static const struct vm_operations_struct shmem_vm_ops = {
2807 .fault = shmem_fault,
2809 .set_policy = shmem_set_policy,
2810 .get_policy = shmem_get_policy,
2812 .remap_pages = generic_file_remap_pages,
2815 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2816 int flags, const char *dev_name, void *data)
2818 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2821 static struct file_system_type shmem_fs_type = {
2822 .owner = THIS_MODULE,
2824 .mount = shmem_mount,
2825 .kill_sb = kill_litter_super,
2826 .fs_flags = FS_USERNS_MOUNT,
2829 int __init shmem_init(void)
2833 /* If rootfs called this, don't re-init */
2834 if (shmem_inode_cachep)
2837 error = bdi_init(&shmem_backing_dev_info);
2841 error = shmem_init_inodecache();
2845 error = register_filesystem(&shmem_fs_type);
2847 printk(KERN_ERR "Could not register tmpfs\n");
2851 shm_mnt = kern_mount(&shmem_fs_type);
2852 if (IS_ERR(shm_mnt)) {
2853 error = PTR_ERR(shm_mnt);
2854 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2860 unregister_filesystem(&shmem_fs_type);
2862 shmem_destroy_inodecache();
2864 bdi_destroy(&shmem_backing_dev_info);
2866 shm_mnt = ERR_PTR(error);
2870 #else /* !CONFIG_SHMEM */
2873 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2875 * This is intended for small system where the benefits of the full
2876 * shmem code (swap-backed and resource-limited) are outweighed by
2877 * their complexity. On systems without swap this code should be
2878 * effectively equivalent, but much lighter weight.
2881 static struct file_system_type shmem_fs_type = {
2883 .mount = ramfs_mount,
2884 .kill_sb = kill_litter_super,
2885 .fs_flags = FS_USERNS_MOUNT,
2888 int __init shmem_init(void)
2890 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2892 shm_mnt = kern_mount(&shmem_fs_type);
2893 BUG_ON(IS_ERR(shm_mnt));
2898 int shmem_unuse(swp_entry_t swap, struct page *page)
2903 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2908 void shmem_unlock_mapping(struct address_space *mapping)
2912 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2914 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2916 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2918 #define shmem_vm_ops generic_file_vm_ops
2919 #define shmem_file_operations ramfs_file_operations
2920 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2921 #define shmem_acct_size(flags, size) 0
2922 #define shmem_unacct_size(flags, size) do {} while (0)
2924 #endif /* CONFIG_SHMEM */
2928 static struct dentry_operations anon_ops = {
2929 .d_dname = simple_dname
2932 static struct file *__shmem_file_setup(const char *name, loff_t size,
2933 unsigned long flags, unsigned int i_flags)
2936 struct inode *inode;
2938 struct super_block *sb;
2941 if (IS_ERR(shm_mnt))
2942 return ERR_CAST(shm_mnt);
2944 if (size < 0 || size > MAX_LFS_FILESIZE)
2945 return ERR_PTR(-EINVAL);
2947 if (shmem_acct_size(flags, size))
2948 return ERR_PTR(-ENOMEM);
2950 res = ERR_PTR(-ENOMEM);
2952 this.len = strlen(name);
2953 this.hash = 0; /* will go */
2954 sb = shm_mnt->mnt_sb;
2955 path.dentry = d_alloc_pseudo(sb, &this);
2958 d_set_d_op(path.dentry, &anon_ops);
2959 path.mnt = mntget(shm_mnt);
2961 res = ERR_PTR(-ENOSPC);
2962 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2966 inode->i_flags |= i_flags;
2967 d_instantiate(path.dentry, inode);
2968 inode->i_size = size;
2969 clear_nlink(inode); /* It is unlinked */
2970 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2974 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2975 &shmem_file_operations);
2984 shmem_unacct_size(flags, size);
2989 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2990 * kernel internal. There will be NO LSM permission checks against the
2991 * underlying inode. So users of this interface must do LSM checks at a
2992 * higher layer. The one user is the big_key implementation. LSM checks
2993 * are provided at the key level rather than the inode level.
2994 * @name: name for dentry (to be seen in /proc/<pid>/maps
2995 * @size: size to be set for the file
2996 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2998 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3000 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3004 * shmem_file_setup - get an unlinked file living in tmpfs
3005 * @name: name for dentry (to be seen in /proc/<pid>/maps
3006 * @size: size to be set for the file
3007 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3009 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3011 return __shmem_file_setup(name, size, flags, 0);
3013 EXPORT_SYMBOL_GPL(shmem_file_setup);
3016 * shmem_zero_setup - setup a shared anonymous mapping
3017 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3019 int shmem_zero_setup(struct vm_area_struct *vma)
3022 loff_t size = vma->vm_end - vma->vm_start;
3024 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3026 return PTR_ERR(file);
3030 vma->vm_file = file;
3031 vma->vm_ops = &shmem_vm_ops;
3036 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3037 * @mapping: the page's address_space
3038 * @index: the page index
3039 * @gfp: the page allocator flags to use if allocating
3041 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3042 * with any new page allocations done using the specified allocation flags.
3043 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3044 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3045 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3047 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3048 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3050 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3051 pgoff_t index, gfp_t gfp)
3054 struct inode *inode = mapping->host;
3058 BUG_ON(mapping->a_ops != &shmem_aops);
3059 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3061 page = ERR_PTR(error);
3067 * The tiny !SHMEM case uses ramfs without swap
3069 return read_cache_page_gfp(mapping, index, gfp);
3072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);