x86: add tizen_qemu_x86_defconfig & tizen_qemu_x86_64_defconfig
[platform/kernel/linux-rpi.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475
476 bool shmem_is_huge(struct vm_area_struct *vma,
477                    struct inode *inode, pgoff_t index)
478 {
479         loff_t i_size;
480
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index + 1, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >> PAGE_SHIFT >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct page *page;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         goto next;
581                 }
582
583                 list_move(&info->shrinklist, &list);
584 next:
585                 sbinfo->shrinklist_len--;
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto move_back;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Move the inode on the list back to shrinklist if we failed
620                  * to lock the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto move_back;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed move the inode on the list back to shrinklist */
635                 if (ret)
636                         goto move_back;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 goto put;
642 move_back:
643                 /*
644                  * Make sure the inode is either on the global list or deleted
645                  * from any local list before iput() since it could be deleted
646                  * in another thread once we put the inode (then the local list
647                  * is corrupted).
648                  */
649                 spin_lock(&sbinfo->shrinklist_lock);
650                 list_move(&info->shrinklist, &sbinfo->shrinklist);
651                 sbinfo->shrinklist_len++;
652                 spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654                 iput(inode);
655         }
656
657         return split;
658 }
659
660 static long shmem_unused_huge_scan(struct super_block *sb,
661                 struct shrink_control *sc)
662 {
663         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665         if (!READ_ONCE(sbinfo->shrinklist_len))
666                 return SHRINK_STOP;
667
668         return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670
671 static long shmem_unused_huge_count(struct super_block *sb,
672                 struct shrink_control *sc)
673 {
674         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675         return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678
679 #define shmem_huge SHMEM_HUGE_DENY
680
681 bool shmem_is_huge(struct vm_area_struct *vma,
682                    struct inode *inode, pgoff_t index)
683 {
684         return false;
685 }
686
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688                 struct shrink_control *sc, unsigned long nr_to_split)
689 {
690         return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693
694 /*
695  * Like add_to_page_cache_locked, but error if expected item has gone.
696  */
697 static int shmem_add_to_page_cache(struct page *page,
698                                    struct address_space *mapping,
699                                    pgoff_t index, void *expected, gfp_t gfp,
700                                    struct mm_struct *charge_mm)
701 {
702         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703         unsigned long i = 0;
704         unsigned long nr = compound_nr(page);
705         int error;
706
707         VM_BUG_ON_PAGE(PageTail(page), page);
708         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
709         VM_BUG_ON_PAGE(!PageLocked(page), page);
710         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
711         VM_BUG_ON(expected && PageTransHuge(page));
712
713         page_ref_add(page, nr);
714         page->mapping = mapping;
715         page->index = index;
716
717         if (!PageSwapCache(page)) {
718                 error = mem_cgroup_charge(page, charge_mm, gfp);
719                 if (error) {
720                         if (PageTransHuge(page)) {
721                                 count_vm_event(THP_FILE_FALLBACK);
722                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723                         }
724                         goto error;
725                 }
726         }
727         cgroup_throttle_swaprate(page, gfp);
728
729         do {
730                 void *entry;
731                 xas_lock_irq(&xas);
732                 entry = xas_find_conflict(&xas);
733                 if (entry != expected)
734                         xas_set_err(&xas, -EEXIST);
735                 xas_create_range(&xas);
736                 if (xas_error(&xas))
737                         goto unlock;
738 next:
739                 xas_store(&xas, page);
740                 if (++i < nr) {
741                         xas_next(&xas);
742                         goto next;
743                 }
744                 if (PageTransHuge(page)) {
745                         count_vm_event(THP_FILE_ALLOC);
746                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
747                 }
748                 mapping->nrpages += nr;
749                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
750                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
751 unlock:
752                 xas_unlock_irq(&xas);
753         } while (xas_nomem(&xas, gfp));
754
755         if (xas_error(&xas)) {
756                 error = xas_error(&xas);
757                 goto error;
758         }
759
760         return 0;
761 error:
762         page->mapping = NULL;
763         page_ref_sub(page, nr);
764         return error;
765 }
766
767 /*
768  * Like delete_from_page_cache, but substitutes swap for page.
769  */
770 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
771 {
772         struct address_space *mapping = page->mapping;
773         int error;
774
775         VM_BUG_ON_PAGE(PageCompound(page), page);
776
777         xa_lock_irq(&mapping->i_pages);
778         error = shmem_replace_entry(mapping, page->index, page, radswap);
779         page->mapping = NULL;
780         mapping->nrpages--;
781         __dec_lruvec_page_state(page, NR_FILE_PAGES);
782         __dec_lruvec_page_state(page, NR_SHMEM);
783         xa_unlock_irq(&mapping->i_pages);
784         put_page(page);
785         BUG_ON(error);
786 }
787
788 /*
789  * Remove swap entry from page cache, free the swap and its page cache.
790  */
791 static int shmem_free_swap(struct address_space *mapping,
792                            pgoff_t index, void *radswap)
793 {
794         void *old;
795
796         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
797         if (old != radswap)
798                 return -ENOENT;
799         free_swap_and_cache(radix_to_swp_entry(radswap));
800         return 0;
801 }
802
803 /*
804  * Determine (in bytes) how many of the shmem object's pages mapped by the
805  * given offsets are swapped out.
806  *
807  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
808  * as long as the inode doesn't go away and racy results are not a problem.
809  */
810 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
811                                                 pgoff_t start, pgoff_t end)
812 {
813         XA_STATE(xas, &mapping->i_pages, start);
814         struct page *page;
815         unsigned long swapped = 0;
816
817         rcu_read_lock();
818         xas_for_each(&xas, page, end - 1) {
819                 if (xas_retry(&xas, page))
820                         continue;
821                 if (xa_is_value(page))
822                         swapped++;
823
824                 if (need_resched()) {
825                         xas_pause(&xas);
826                         cond_resched_rcu();
827                 }
828         }
829
830         rcu_read_unlock();
831
832         return swapped << PAGE_SHIFT;
833 }
834
835 /*
836  * Determine (in bytes) how many of the shmem object's pages mapped by the
837  * given vma is swapped out.
838  *
839  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
840  * as long as the inode doesn't go away and racy results are not a problem.
841  */
842 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
843 {
844         struct inode *inode = file_inode(vma->vm_file);
845         struct shmem_inode_info *info = SHMEM_I(inode);
846         struct address_space *mapping = inode->i_mapping;
847         unsigned long swapped;
848
849         /* Be careful as we don't hold info->lock */
850         swapped = READ_ONCE(info->swapped);
851
852         /*
853          * The easier cases are when the shmem object has nothing in swap, or
854          * the vma maps it whole. Then we can simply use the stats that we
855          * already track.
856          */
857         if (!swapped)
858                 return 0;
859
860         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
861                 return swapped << PAGE_SHIFT;
862
863         /* Here comes the more involved part */
864         return shmem_partial_swap_usage(mapping,
865                         linear_page_index(vma, vma->vm_start),
866                         linear_page_index(vma, vma->vm_end));
867 }
868
869 /*
870  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
871  */
872 void shmem_unlock_mapping(struct address_space *mapping)
873 {
874         struct pagevec pvec;
875         pgoff_t index = 0;
876
877         pagevec_init(&pvec);
878         /*
879          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
880          */
881         while (!mapping_unevictable(mapping)) {
882                 if (!pagevec_lookup(&pvec, mapping, &index))
883                         break;
884                 check_move_unevictable_pages(&pvec);
885                 pagevec_release(&pvec);
886                 cond_resched();
887         }
888 }
889
890 /*
891  * Check whether a hole-punch or truncation needs to split a huge page,
892  * returning true if no split was required, or the split has been successful.
893  *
894  * Eviction (or truncation to 0 size) should never need to split a huge page;
895  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
896  * head, and then succeeded to trylock on tail.
897  *
898  * A split can only succeed when there are no additional references on the
899  * huge page: so the split below relies upon find_get_entries() having stopped
900  * when it found a subpage of the huge page, without getting further references.
901  */
902 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
903 {
904         if (!PageTransCompound(page))
905                 return true;
906
907         /* Just proceed to delete a huge page wholly within the range punched */
908         if (PageHead(page) &&
909             page->index >= start && page->index + HPAGE_PMD_NR <= end)
910                 return true;
911
912         /* Try to split huge page, so we can truly punch the hole or truncate */
913         return split_huge_page(page) >= 0;
914 }
915
916 /*
917  * Remove range of pages and swap entries from page cache, and free them.
918  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
919  */
920 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
921                                                                  bool unfalloc)
922 {
923         struct address_space *mapping = inode->i_mapping;
924         struct shmem_inode_info *info = SHMEM_I(inode);
925         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
926         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
927         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
928         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
929         struct pagevec pvec;
930         pgoff_t indices[PAGEVEC_SIZE];
931         long nr_swaps_freed = 0;
932         pgoff_t index;
933         int i;
934
935         if (lend == -1)
936                 end = -1;       /* unsigned, so actually very big */
937
938         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
939                 info->fallocend = start;
940
941         pagevec_init(&pvec);
942         index = start;
943         while (index < end && find_lock_entries(mapping, index, end - 1,
944                         &pvec, indices)) {
945                 for (i = 0; i < pagevec_count(&pvec); i++) {
946                         struct page *page = pvec.pages[i];
947
948                         index = indices[i];
949
950                         if (xa_is_value(page)) {
951                                 if (unfalloc)
952                                         continue;
953                                 nr_swaps_freed += !shmem_free_swap(mapping,
954                                                                 index, page);
955                                 continue;
956                         }
957                         index += thp_nr_pages(page) - 1;
958
959                         if (!unfalloc || !PageUptodate(page))
960                                 truncate_inode_page(mapping, page);
961                         unlock_page(page);
962                 }
963                 pagevec_remove_exceptionals(&pvec);
964                 pagevec_release(&pvec);
965                 cond_resched();
966                 index++;
967         }
968
969         if (partial_start) {
970                 struct page *page = NULL;
971                 shmem_getpage(inode, start - 1, &page, SGP_READ);
972                 if (page) {
973                         unsigned int top = PAGE_SIZE;
974                         if (start > end) {
975                                 top = partial_end;
976                                 partial_end = 0;
977                         }
978                         zero_user_segment(page, partial_start, top);
979                         set_page_dirty(page);
980                         unlock_page(page);
981                         put_page(page);
982                 }
983         }
984         if (partial_end) {
985                 struct page *page = NULL;
986                 shmem_getpage(inode, end, &page, SGP_READ);
987                 if (page) {
988                         zero_user_segment(page, 0, partial_end);
989                         set_page_dirty(page);
990                         unlock_page(page);
991                         put_page(page);
992                 }
993         }
994         if (start >= end)
995                 return;
996
997         index = start;
998         while (index < end) {
999                 cond_resched();
1000
1001                 if (!find_get_entries(mapping, index, end - 1, &pvec,
1002                                 indices)) {
1003                         /* If all gone or hole-punch or unfalloc, we're done */
1004                         if (index == start || end != -1)
1005                                 break;
1006                         /* But if truncating, restart to make sure all gone */
1007                         index = start;
1008                         continue;
1009                 }
1010                 for (i = 0; i < pagevec_count(&pvec); i++) {
1011                         struct page *page = pvec.pages[i];
1012
1013                         index = indices[i];
1014                         if (xa_is_value(page)) {
1015                                 if (unfalloc)
1016                                         continue;
1017                                 if (shmem_free_swap(mapping, index, page)) {
1018                                         /* Swap was replaced by page: retry */
1019                                         index--;
1020                                         break;
1021                                 }
1022                                 nr_swaps_freed++;
1023                                 continue;
1024                         }
1025
1026                         lock_page(page);
1027
1028                         if (!unfalloc || !PageUptodate(page)) {
1029                                 if (page_mapping(page) != mapping) {
1030                                         /* Page was replaced by swap: retry */
1031                                         unlock_page(page);
1032                                         index--;
1033                                         break;
1034                                 }
1035                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1036                                 if (shmem_punch_compound(page, start, end))
1037                                         truncate_inode_page(mapping, page);
1038                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1039                                         /* Wipe the page and don't get stuck */
1040                                         clear_highpage(page);
1041                                         flush_dcache_page(page);
1042                                         set_page_dirty(page);
1043                                         if (index <
1044                                             round_up(start, HPAGE_PMD_NR))
1045                                                 start = index + 1;
1046                                 }
1047                         }
1048                         unlock_page(page);
1049                 }
1050                 pagevec_remove_exceptionals(&pvec);
1051                 pagevec_release(&pvec);
1052                 index++;
1053         }
1054
1055         spin_lock_irq(&info->lock);
1056         info->swapped -= nr_swaps_freed;
1057         shmem_recalc_inode(inode);
1058         spin_unlock_irq(&info->lock);
1059 }
1060
1061 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1062 {
1063         shmem_undo_range(inode, lstart, lend, false);
1064         inode->i_ctime = inode->i_mtime = current_time(inode);
1065 }
1066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1067
1068 static int shmem_getattr(struct user_namespace *mnt_userns,
1069                          const struct path *path, struct kstat *stat,
1070                          u32 request_mask, unsigned int query_flags)
1071 {
1072         struct inode *inode = path->dentry->d_inode;
1073         struct shmem_inode_info *info = SHMEM_I(inode);
1074
1075         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1076                 spin_lock_irq(&info->lock);
1077                 shmem_recalc_inode(inode);
1078                 spin_unlock_irq(&info->lock);
1079         }
1080         generic_fillattr(&init_user_ns, inode, stat);
1081
1082         if (shmem_is_huge(NULL, inode, 0))
1083                 stat->blksize = HPAGE_PMD_SIZE;
1084
1085         return 0;
1086 }
1087
1088 static int shmem_setattr(struct user_namespace *mnt_userns,
1089                          struct dentry *dentry, struct iattr *attr)
1090 {
1091         struct inode *inode = d_inode(dentry);
1092         struct shmem_inode_info *info = SHMEM_I(inode);
1093         int error;
1094
1095         error = setattr_prepare(&init_user_ns, dentry, attr);
1096         if (error)
1097                 return error;
1098
1099         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1100                 loff_t oldsize = inode->i_size;
1101                 loff_t newsize = attr->ia_size;
1102
1103                 /* protected by i_rwsem */
1104                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1105                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1106                         return -EPERM;
1107
1108                 if (newsize != oldsize) {
1109                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110                                         oldsize, newsize);
1111                         if (error)
1112                                 return error;
1113                         i_size_write(inode, newsize);
1114                         inode->i_ctime = inode->i_mtime = current_time(inode);
1115                 }
1116                 if (newsize <= oldsize) {
1117                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1118                         if (oldsize > holebegin)
1119                                 unmap_mapping_range(inode->i_mapping,
1120                                                         holebegin, 0, 1);
1121                         if (info->alloced)
1122                                 shmem_truncate_range(inode,
1123                                                         newsize, (loff_t)-1);
1124                         /* unmap again to remove racily COWed private pages */
1125                         if (oldsize > holebegin)
1126                                 unmap_mapping_range(inode->i_mapping,
1127                                                         holebegin, 0, 1);
1128                 }
1129         }
1130
1131         setattr_copy(&init_user_ns, inode, attr);
1132         if (attr->ia_valid & ATTR_MODE)
1133                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1134         return error;
1135 }
1136
1137 static void shmem_evict_inode(struct inode *inode)
1138 {
1139         struct shmem_inode_info *info = SHMEM_I(inode);
1140         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1141
1142         if (shmem_mapping(inode->i_mapping)) {
1143                 shmem_unacct_size(info->flags, inode->i_size);
1144                 inode->i_size = 0;
1145                 shmem_truncate_range(inode, 0, (loff_t)-1);
1146                 if (!list_empty(&info->shrinklist)) {
1147                         spin_lock(&sbinfo->shrinklist_lock);
1148                         if (!list_empty(&info->shrinklist)) {
1149                                 list_del_init(&info->shrinklist);
1150                                 sbinfo->shrinklist_len--;
1151                         }
1152                         spin_unlock(&sbinfo->shrinklist_lock);
1153                 }
1154                 while (!list_empty(&info->swaplist)) {
1155                         /* Wait while shmem_unuse() is scanning this inode... */
1156                         wait_var_event(&info->stop_eviction,
1157                                        !atomic_read(&info->stop_eviction));
1158                         mutex_lock(&shmem_swaplist_mutex);
1159                         /* ...but beware of the race if we peeked too early */
1160                         if (!atomic_read(&info->stop_eviction))
1161                                 list_del_init(&info->swaplist);
1162                         mutex_unlock(&shmem_swaplist_mutex);
1163                 }
1164         }
1165
1166         simple_xattrs_free(&info->xattrs);
1167         WARN_ON(inode->i_blocks);
1168         shmem_free_inode(inode->i_sb);
1169         clear_inode(inode);
1170 }
1171
1172 static int shmem_find_swap_entries(struct address_space *mapping,
1173                                    pgoff_t start, unsigned int nr_entries,
1174                                    struct page **entries, pgoff_t *indices,
1175                                    unsigned int type, bool frontswap)
1176 {
1177         XA_STATE(xas, &mapping->i_pages, start);
1178         struct page *page;
1179         swp_entry_t entry;
1180         unsigned int ret = 0;
1181
1182         if (!nr_entries)
1183                 return 0;
1184
1185         rcu_read_lock();
1186         xas_for_each(&xas, page, ULONG_MAX) {
1187                 if (xas_retry(&xas, page))
1188                         continue;
1189
1190                 if (!xa_is_value(page))
1191                         continue;
1192
1193                 entry = radix_to_swp_entry(page);
1194                 if (swp_type(entry) != type)
1195                         continue;
1196                 if (frontswap &&
1197                     !frontswap_test(swap_info[type], swp_offset(entry)))
1198                         continue;
1199
1200                 indices[ret] = xas.xa_index;
1201                 entries[ret] = page;
1202
1203                 if (need_resched()) {
1204                         xas_pause(&xas);
1205                         cond_resched_rcu();
1206                 }
1207                 if (++ret == nr_entries)
1208                         break;
1209         }
1210         rcu_read_unlock();
1211
1212         return ret;
1213 }
1214
1215 /*
1216  * Move the swapped pages for an inode to page cache. Returns the count
1217  * of pages swapped in, or the error in case of failure.
1218  */
1219 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1220                                     pgoff_t *indices)
1221 {
1222         int i = 0;
1223         int ret = 0;
1224         int error = 0;
1225         struct address_space *mapping = inode->i_mapping;
1226
1227         for (i = 0; i < pvec.nr; i++) {
1228                 struct page *page = pvec.pages[i];
1229
1230                 if (!xa_is_value(page))
1231                         continue;
1232                 error = shmem_swapin_page(inode, indices[i],
1233                                           &page, SGP_CACHE,
1234                                           mapping_gfp_mask(mapping),
1235                                           NULL, NULL);
1236                 if (error == 0) {
1237                         unlock_page(page);
1238                         put_page(page);
1239                         ret++;
1240                 }
1241                 if (error == -ENOMEM)
1242                         break;
1243                 error = 0;
1244         }
1245         return error ? error : ret;
1246 }
1247
1248 /*
1249  * If swap found in inode, free it and move page from swapcache to filecache.
1250  */
1251 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1252                              bool frontswap, unsigned long *fs_pages_to_unuse)
1253 {
1254         struct address_space *mapping = inode->i_mapping;
1255         pgoff_t start = 0;
1256         struct pagevec pvec;
1257         pgoff_t indices[PAGEVEC_SIZE];
1258         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1259         int ret = 0;
1260
1261         pagevec_init(&pvec);
1262         do {
1263                 unsigned int nr_entries = PAGEVEC_SIZE;
1264
1265                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1266                         nr_entries = *fs_pages_to_unuse;
1267
1268                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1269                                                   pvec.pages, indices,
1270                                                   type, frontswap);
1271                 if (pvec.nr == 0) {
1272                         ret = 0;
1273                         break;
1274                 }
1275
1276                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1277                 if (ret < 0)
1278                         break;
1279
1280                 if (frontswap_partial) {
1281                         *fs_pages_to_unuse -= ret;
1282                         if (*fs_pages_to_unuse == 0) {
1283                                 ret = FRONTSWAP_PAGES_UNUSED;
1284                                 break;
1285                         }
1286                 }
1287
1288                 start = indices[pvec.nr - 1];
1289         } while (true);
1290
1291         return ret;
1292 }
1293
1294 /*
1295  * Read all the shared memory data that resides in the swap
1296  * device 'type' back into memory, so the swap device can be
1297  * unused.
1298  */
1299 int shmem_unuse(unsigned int type, bool frontswap,
1300                 unsigned long *fs_pages_to_unuse)
1301 {
1302         struct shmem_inode_info *info, *next;
1303         int error = 0;
1304
1305         if (list_empty(&shmem_swaplist))
1306                 return 0;
1307
1308         mutex_lock(&shmem_swaplist_mutex);
1309         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1310                 if (!info->swapped) {
1311                         list_del_init(&info->swaplist);
1312                         continue;
1313                 }
1314                 /*
1315                  * Drop the swaplist mutex while searching the inode for swap;
1316                  * but before doing so, make sure shmem_evict_inode() will not
1317                  * remove placeholder inode from swaplist, nor let it be freed
1318                  * (igrab() would protect from unlink, but not from unmount).
1319                  */
1320                 atomic_inc(&info->stop_eviction);
1321                 mutex_unlock(&shmem_swaplist_mutex);
1322
1323                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1324                                           fs_pages_to_unuse);
1325                 cond_resched();
1326
1327                 mutex_lock(&shmem_swaplist_mutex);
1328                 next = list_next_entry(info, swaplist);
1329                 if (!info->swapped)
1330                         list_del_init(&info->swaplist);
1331                 if (atomic_dec_and_test(&info->stop_eviction))
1332                         wake_up_var(&info->stop_eviction);
1333                 if (error)
1334                         break;
1335         }
1336         mutex_unlock(&shmem_swaplist_mutex);
1337
1338         return error;
1339 }
1340
1341 /*
1342  * Move the page from the page cache to the swap cache.
1343  */
1344 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1345 {
1346         struct shmem_inode_info *info;
1347         struct address_space *mapping;
1348         struct inode *inode;
1349         swp_entry_t swap;
1350         pgoff_t index;
1351
1352         /*
1353          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1354          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1355          * and its shmem_writeback() needs them to be split when swapping.
1356          */
1357         if (PageTransCompound(page)) {
1358                 /* Ensure the subpages are still dirty */
1359                 SetPageDirty(page);
1360                 if (split_huge_page(page) < 0)
1361                         goto redirty;
1362                 ClearPageDirty(page);
1363         }
1364
1365         BUG_ON(!PageLocked(page));
1366         mapping = page->mapping;
1367         index = page->index;
1368         inode = mapping->host;
1369         info = SHMEM_I(inode);
1370         if (info->flags & VM_LOCKED)
1371                 goto redirty;
1372         if (!total_swap_pages)
1373                 goto redirty;
1374
1375         /*
1376          * Our capabilities prevent regular writeback or sync from ever calling
1377          * shmem_writepage; but a stacking filesystem might use ->writepage of
1378          * its underlying filesystem, in which case tmpfs should write out to
1379          * swap only in response to memory pressure, and not for the writeback
1380          * threads or sync.
1381          */
1382         if (!wbc->for_reclaim) {
1383                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1384                 goto redirty;
1385         }
1386
1387         /*
1388          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1389          * value into swapfile.c, the only way we can correctly account for a
1390          * fallocated page arriving here is now to initialize it and write it.
1391          *
1392          * That's okay for a page already fallocated earlier, but if we have
1393          * not yet completed the fallocation, then (a) we want to keep track
1394          * of this page in case we have to undo it, and (b) it may not be a
1395          * good idea to continue anyway, once we're pushing into swap.  So
1396          * reactivate the page, and let shmem_fallocate() quit when too many.
1397          */
1398         if (!PageUptodate(page)) {
1399                 if (inode->i_private) {
1400                         struct shmem_falloc *shmem_falloc;
1401                         spin_lock(&inode->i_lock);
1402                         shmem_falloc = inode->i_private;
1403                         if (shmem_falloc &&
1404                             !shmem_falloc->waitq &&
1405                             index >= shmem_falloc->start &&
1406                             index < shmem_falloc->next)
1407                                 shmem_falloc->nr_unswapped++;
1408                         else
1409                                 shmem_falloc = NULL;
1410                         spin_unlock(&inode->i_lock);
1411                         if (shmem_falloc)
1412                                 goto redirty;
1413                 }
1414                 clear_highpage(page);
1415                 flush_dcache_page(page);
1416                 SetPageUptodate(page);
1417         }
1418
1419         swap = get_swap_page(page);
1420         if (!swap.val)
1421                 goto redirty;
1422
1423         /*
1424          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1425          * if it's not already there.  Do it now before the page is
1426          * moved to swap cache, when its pagelock no longer protects
1427          * the inode from eviction.  But don't unlock the mutex until
1428          * we've incremented swapped, because shmem_unuse_inode() will
1429          * prune a !swapped inode from the swaplist under this mutex.
1430          */
1431         mutex_lock(&shmem_swaplist_mutex);
1432         if (list_empty(&info->swaplist))
1433                 list_add(&info->swaplist, &shmem_swaplist);
1434
1435         if (add_to_swap_cache(page, swap,
1436                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1437                         NULL) == 0) {
1438                 spin_lock_irq(&info->lock);
1439                 shmem_recalc_inode(inode);
1440                 info->swapped++;
1441                 spin_unlock_irq(&info->lock);
1442
1443                 swap_shmem_alloc(swap);
1444                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
1446                 mutex_unlock(&shmem_swaplist_mutex);
1447                 BUG_ON(page_mapped(page));
1448                 swap_writepage(page, wbc);
1449                 return 0;
1450         }
1451
1452         mutex_unlock(&shmem_swaplist_mutex);
1453         put_swap_page(page, swap);
1454 redirty:
1455         set_page_dirty(page);
1456         if (wbc->for_reclaim)
1457                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1458         unlock_page(page);
1459         return 0;
1460 }
1461
1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465         char buffer[64];
1466
1467         if (!mpol || mpol->mode == MPOL_DEFAULT)
1468                 return;         /* show nothing */
1469
1470         mpol_to_str(buffer, sizeof(buffer), mpol);
1471
1472         seq_printf(seq, ",mpol=%s", buffer);
1473 }
1474
1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477         struct mempolicy *mpol = NULL;
1478         if (sbinfo->mpol) {
1479                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1480                 mpol = sbinfo->mpol;
1481                 mpol_get(mpol);
1482                 raw_spin_unlock(&sbinfo->stat_lock);
1483         }
1484         return mpol;
1485 }
1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488 {
1489 }
1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491 {
1492         return NULL;
1493 }
1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495 #ifndef CONFIG_NUMA
1496 #define vm_policy vm_private_data
1497 #endif
1498
1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500                 struct shmem_inode_info *info, pgoff_t index)
1501 {
1502         /* Create a pseudo vma that just contains the policy */
1503         vma_init(vma, NULL);
1504         /* Bias interleave by inode number to distribute better across nodes */
1505         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1506         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507 }
1508
1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510 {
1511         /* Drop reference taken by mpol_shared_policy_lookup() */
1512         mpol_cond_put(vma->vm_policy);
1513 }
1514
1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516                         struct shmem_inode_info *info, pgoff_t index)
1517 {
1518         struct vm_area_struct pvma;
1519         struct page *page;
1520         struct vm_fault vmf = {
1521                 .vma = &pvma,
1522         };
1523
1524         shmem_pseudo_vma_init(&pvma, info, index);
1525         page = swap_cluster_readahead(swap, gfp, &vmf);
1526         shmem_pseudo_vma_destroy(&pvma);
1527
1528         return page;
1529 }
1530
1531 /*
1532  * Make sure huge_gfp is always more limited than limit_gfp.
1533  * Some of the flags set permissions, while others set limitations.
1534  */
1535 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1536 {
1537         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1538         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1539         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1540         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1541
1542         /* Allow allocations only from the originally specified zones. */
1543         result |= zoneflags;
1544
1545         /*
1546          * Minimize the result gfp by taking the union with the deny flags,
1547          * and the intersection of the allow flags.
1548          */
1549         result |= (limit_gfp & denyflags);
1550         result |= (huge_gfp & limit_gfp) & allowflags;
1551
1552         return result;
1553 }
1554
1555 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1556                 struct shmem_inode_info *info, pgoff_t index)
1557 {
1558         struct vm_area_struct pvma;
1559         struct address_space *mapping = info->vfs_inode.i_mapping;
1560         pgoff_t hindex;
1561         struct page *page;
1562
1563         hindex = round_down(index, HPAGE_PMD_NR);
1564         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1565                                                                 XA_PRESENT))
1566                 return NULL;
1567
1568         shmem_pseudo_vma_init(&pvma, info, hindex);
1569         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1570                                true);
1571         shmem_pseudo_vma_destroy(&pvma);
1572         if (page)
1573                 prep_transhuge_page(page);
1574         else
1575                 count_vm_event(THP_FILE_FALLBACK);
1576         return page;
1577 }
1578
1579 static struct page *shmem_alloc_page(gfp_t gfp,
1580                         struct shmem_inode_info *info, pgoff_t index)
1581 {
1582         struct vm_area_struct pvma;
1583         struct page *page;
1584
1585         shmem_pseudo_vma_init(&pvma, info, index);
1586         page = alloc_page_vma(gfp, &pvma, 0);
1587         shmem_pseudo_vma_destroy(&pvma);
1588
1589         return page;
1590 }
1591
1592 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1593                 struct inode *inode,
1594                 pgoff_t index, bool huge)
1595 {
1596         struct shmem_inode_info *info = SHMEM_I(inode);
1597         struct page *page;
1598         int nr;
1599         int err = -ENOSPC;
1600
1601         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1602                 huge = false;
1603         nr = huge ? HPAGE_PMD_NR : 1;
1604
1605         if (!shmem_inode_acct_block(inode, nr))
1606                 goto failed;
1607
1608         if (huge)
1609                 page = shmem_alloc_hugepage(gfp, info, index);
1610         else
1611                 page = shmem_alloc_page(gfp, info, index);
1612         if (page) {
1613                 __SetPageLocked(page);
1614                 __SetPageSwapBacked(page);
1615                 return page;
1616         }
1617
1618         err = -ENOMEM;
1619         shmem_inode_unacct_blocks(inode, nr);
1620 failed:
1621         return ERR_PTR(err);
1622 }
1623
1624 /*
1625  * When a page is moved from swapcache to shmem filecache (either by the
1626  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1627  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1628  * ignorance of the mapping it belongs to.  If that mapping has special
1629  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1630  * we may need to copy to a suitable page before moving to filecache.
1631  *
1632  * In a future release, this may well be extended to respect cpuset and
1633  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1634  * but for now it is a simple matter of zone.
1635  */
1636 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1637 {
1638         return page_zonenum(page) > gfp_zone(gfp);
1639 }
1640
1641 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1642                                 struct shmem_inode_info *info, pgoff_t index)
1643 {
1644         struct page *oldpage, *newpage;
1645         struct address_space *swap_mapping;
1646         swp_entry_t entry;
1647         pgoff_t swap_index;
1648         int error;
1649
1650         oldpage = *pagep;
1651         entry.val = page_private(oldpage);
1652         swap_index = swp_offset(entry);
1653         swap_mapping = page_mapping(oldpage);
1654
1655         /*
1656          * We have arrived here because our zones are constrained, so don't
1657          * limit chance of success by further cpuset and node constraints.
1658          */
1659         gfp &= ~GFP_CONSTRAINT_MASK;
1660         newpage = shmem_alloc_page(gfp, info, index);
1661         if (!newpage)
1662                 return -ENOMEM;
1663
1664         get_page(newpage);
1665         copy_highpage(newpage, oldpage);
1666         flush_dcache_page(newpage);
1667
1668         __SetPageLocked(newpage);
1669         __SetPageSwapBacked(newpage);
1670         SetPageUptodate(newpage);
1671         set_page_private(newpage, entry.val);
1672         SetPageSwapCache(newpage);
1673
1674         /*
1675          * Our caller will very soon move newpage out of swapcache, but it's
1676          * a nice clean interface for us to replace oldpage by newpage there.
1677          */
1678         xa_lock_irq(&swap_mapping->i_pages);
1679         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1680         if (!error) {
1681                 mem_cgroup_migrate(oldpage, newpage);
1682                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1683                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1684         }
1685         xa_unlock_irq(&swap_mapping->i_pages);
1686
1687         if (unlikely(error)) {
1688                 /*
1689                  * Is this possible?  I think not, now that our callers check
1690                  * both PageSwapCache and page_private after getting page lock;
1691                  * but be defensive.  Reverse old to newpage for clear and free.
1692                  */
1693                 oldpage = newpage;
1694         } else {
1695                 lru_cache_add(newpage);
1696                 *pagep = newpage;
1697         }
1698
1699         ClearPageSwapCache(oldpage);
1700         set_page_private(oldpage, 0);
1701
1702         unlock_page(oldpage);
1703         put_page(oldpage);
1704         put_page(oldpage);
1705         return error;
1706 }
1707
1708 /*
1709  * Swap in the page pointed to by *pagep.
1710  * Caller has to make sure that *pagep contains a valid swapped page.
1711  * Returns 0 and the page in pagep if success. On failure, returns the
1712  * error code and NULL in *pagep.
1713  */
1714 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1715                              struct page **pagep, enum sgp_type sgp,
1716                              gfp_t gfp, struct vm_area_struct *vma,
1717                              vm_fault_t *fault_type)
1718 {
1719         struct address_space *mapping = inode->i_mapping;
1720         struct shmem_inode_info *info = SHMEM_I(inode);
1721         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722         struct page *page;
1723         swp_entry_t swap;
1724         int error;
1725
1726         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1727         swap = radix_to_swp_entry(*pagep);
1728         *pagep = NULL;
1729
1730         /* Look it up and read it in.. */
1731         page = lookup_swap_cache(swap, NULL, 0);
1732         if (!page) {
1733                 /* Or update major stats only when swapin succeeds?? */
1734                 if (fault_type) {
1735                         *fault_type |= VM_FAULT_MAJOR;
1736                         count_vm_event(PGMAJFAULT);
1737                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1738                 }
1739                 /* Here we actually start the io */
1740                 page = shmem_swapin(swap, gfp, info, index);
1741                 if (!page) {
1742                         error = -ENOMEM;
1743                         goto failed;
1744                 }
1745         }
1746
1747         /* We have to do this with page locked to prevent races */
1748         lock_page(page);
1749         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1750             !shmem_confirm_swap(mapping, index, swap)) {
1751                 error = -EEXIST;
1752                 goto unlock;
1753         }
1754         if (!PageUptodate(page)) {
1755                 error = -EIO;
1756                 goto failed;
1757         }
1758         wait_on_page_writeback(page);
1759
1760         /*
1761          * Some architectures may have to restore extra metadata to the
1762          * physical page after reading from swap.
1763          */
1764         arch_swap_restore(swap, page);
1765
1766         if (shmem_should_replace_page(page, gfp)) {
1767                 error = shmem_replace_page(&page, gfp, info, index);
1768                 if (error)
1769                         goto failed;
1770         }
1771
1772         error = shmem_add_to_page_cache(page, mapping, index,
1773                                         swp_to_radix_entry(swap), gfp,
1774                                         charge_mm);
1775         if (error)
1776                 goto failed;
1777
1778         spin_lock_irq(&info->lock);
1779         info->swapped--;
1780         shmem_recalc_inode(inode);
1781         spin_unlock_irq(&info->lock);
1782
1783         if (sgp == SGP_WRITE)
1784                 mark_page_accessed(page);
1785
1786         delete_from_swap_cache(page);
1787         set_page_dirty(page);
1788         swap_free(swap);
1789
1790         *pagep = page;
1791         return 0;
1792 failed:
1793         if (!shmem_confirm_swap(mapping, index, swap))
1794                 error = -EEXIST;
1795 unlock:
1796         if (page) {
1797                 unlock_page(page);
1798                 put_page(page);
1799         }
1800
1801         return error;
1802 }
1803
1804 /*
1805  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1806  *
1807  * If we allocate a new one we do not mark it dirty. That's up to the
1808  * vm. If we swap it in we mark it dirty since we also free the swap
1809  * entry since a page cannot live in both the swap and page cache.
1810  *
1811  * vma, vmf, and fault_type are only supplied by shmem_fault:
1812  * otherwise they are NULL.
1813  */
1814 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1815         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1816         struct vm_area_struct *vma, struct vm_fault *vmf,
1817                         vm_fault_t *fault_type)
1818 {
1819         struct address_space *mapping = inode->i_mapping;
1820         struct shmem_inode_info *info = SHMEM_I(inode);
1821         struct shmem_sb_info *sbinfo;
1822         struct mm_struct *charge_mm;
1823         struct page *page;
1824         pgoff_t hindex = index;
1825         gfp_t huge_gfp;
1826         int error;
1827         int once = 0;
1828         int alloced = 0;
1829
1830         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1831                 return -EFBIG;
1832 repeat:
1833         if (sgp <= SGP_CACHE &&
1834             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1835                 return -EINVAL;
1836         }
1837
1838         sbinfo = SHMEM_SB(inode->i_sb);
1839         charge_mm = vma ? vma->vm_mm : NULL;
1840
1841         page = pagecache_get_page(mapping, index,
1842                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1843
1844         if (page && vma && userfaultfd_minor(vma)) {
1845                 if (!xa_is_value(page)) {
1846                         unlock_page(page);
1847                         put_page(page);
1848                 }
1849                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1850                 return 0;
1851         }
1852
1853         if (xa_is_value(page)) {
1854                 error = shmem_swapin_page(inode, index, &page,
1855                                           sgp, gfp, vma, fault_type);
1856                 if (error == -EEXIST)
1857                         goto repeat;
1858
1859                 *pagep = page;
1860                 return error;
1861         }
1862
1863         if (page) {
1864                 hindex = page->index;
1865                 if (sgp == SGP_WRITE)
1866                         mark_page_accessed(page);
1867                 if (PageUptodate(page))
1868                         goto out;
1869                 /* fallocated page */
1870                 if (sgp != SGP_READ)
1871                         goto clear;
1872                 unlock_page(page);
1873                 put_page(page);
1874         }
1875
1876         /*
1877          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1878          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1879          */
1880         *pagep = NULL;
1881         if (sgp == SGP_READ)
1882                 return 0;
1883         if (sgp == SGP_NOALLOC)
1884                 return -ENOENT;
1885
1886         /*
1887          * Fast cache lookup and swap lookup did not find it: allocate.
1888          */
1889
1890         if (vma && userfaultfd_missing(vma)) {
1891                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1892                 return 0;
1893         }
1894
1895         /* Never use a huge page for shmem_symlink() */
1896         if (S_ISLNK(inode->i_mode))
1897                 goto alloc_nohuge;
1898         if (!shmem_is_huge(vma, inode, index))
1899                 goto alloc_nohuge;
1900
1901         huge_gfp = vma_thp_gfp_mask(vma);
1902         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1903         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1904         if (IS_ERR(page)) {
1905 alloc_nohuge:
1906                 page = shmem_alloc_and_acct_page(gfp, inode,
1907                                                  index, false);
1908         }
1909         if (IS_ERR(page)) {
1910                 int retry = 5;
1911
1912                 error = PTR_ERR(page);
1913                 page = NULL;
1914                 if (error != -ENOSPC)
1915                         goto unlock;
1916                 /*
1917                  * Try to reclaim some space by splitting a huge page
1918                  * beyond i_size on the filesystem.
1919                  */
1920                 while (retry--) {
1921                         int ret;
1922
1923                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924                         if (ret == SHRINK_STOP)
1925                                 break;
1926                         if (ret)
1927                                 goto alloc_nohuge;
1928                 }
1929                 goto unlock;
1930         }
1931
1932         if (PageTransHuge(page))
1933                 hindex = round_down(index, HPAGE_PMD_NR);
1934         else
1935                 hindex = index;
1936
1937         if (sgp == SGP_WRITE)
1938                 __SetPageReferenced(page);
1939
1940         error = shmem_add_to_page_cache(page, mapping, hindex,
1941                                         NULL, gfp & GFP_RECLAIM_MASK,
1942                                         charge_mm);
1943         if (error)
1944                 goto unacct;
1945         lru_cache_add(page);
1946
1947         spin_lock_irq(&info->lock);
1948         info->alloced += compound_nr(page);
1949         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950         shmem_recalc_inode(inode);
1951         spin_unlock_irq(&info->lock);
1952         alloced = true;
1953
1954         if (PageTransHuge(page) &&
1955             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956                         hindex + HPAGE_PMD_NR - 1) {
1957                 /*
1958                  * Part of the huge page is beyond i_size: subject
1959                  * to shrink under memory pressure.
1960                  */
1961                 spin_lock(&sbinfo->shrinklist_lock);
1962                 /*
1963                  * _careful to defend against unlocked access to
1964                  * ->shrink_list in shmem_unused_huge_shrink()
1965                  */
1966                 if (list_empty_careful(&info->shrinklist)) {
1967                         list_add_tail(&info->shrinklist,
1968                                       &sbinfo->shrinklist);
1969                         sbinfo->shrinklist_len++;
1970                 }
1971                 spin_unlock(&sbinfo->shrinklist_lock);
1972         }
1973
1974         /*
1975          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976          */
1977         if (sgp == SGP_FALLOC)
1978                 sgp = SGP_WRITE;
1979 clear:
1980         /*
1981          * Let SGP_WRITE caller clear ends if write does not fill page;
1982          * but SGP_FALLOC on a page fallocated earlier must initialize
1983          * it now, lest undo on failure cancel our earlier guarantee.
1984          */
1985         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1986                 int i;
1987
1988                 for (i = 0; i < compound_nr(page); i++) {
1989                         clear_highpage(page + i);
1990                         flush_dcache_page(page + i);
1991                 }
1992                 SetPageUptodate(page);
1993         }
1994
1995         /* Perhaps the file has been truncated since we checked */
1996         if (sgp <= SGP_CACHE &&
1997             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1998                 if (alloced) {
1999                         ClearPageDirty(page);
2000                         delete_from_page_cache(page);
2001                         spin_lock_irq(&info->lock);
2002                         shmem_recalc_inode(inode);
2003                         spin_unlock_irq(&info->lock);
2004                 }
2005                 error = -EINVAL;
2006                 goto unlock;
2007         }
2008 out:
2009         *pagep = page + index - hindex;
2010         return 0;
2011
2012         /*
2013          * Error recovery.
2014          */
2015 unacct:
2016         shmem_inode_unacct_blocks(inode, compound_nr(page));
2017
2018         if (PageTransHuge(page)) {
2019                 unlock_page(page);
2020                 put_page(page);
2021                 goto alloc_nohuge;
2022         }
2023 unlock:
2024         if (page) {
2025                 unlock_page(page);
2026                 put_page(page);
2027         }
2028         if (error == -ENOSPC && !once++) {
2029                 spin_lock_irq(&info->lock);
2030                 shmem_recalc_inode(inode);
2031                 spin_unlock_irq(&info->lock);
2032                 goto repeat;
2033         }
2034         if (error == -EEXIST)
2035                 goto repeat;
2036         return error;
2037 }
2038
2039 /*
2040  * This is like autoremove_wake_function, but it removes the wait queue
2041  * entry unconditionally - even if something else had already woken the
2042  * target.
2043  */
2044 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2045 {
2046         int ret = default_wake_function(wait, mode, sync, key);
2047         list_del_init(&wait->entry);
2048         return ret;
2049 }
2050
2051 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2052 {
2053         struct vm_area_struct *vma = vmf->vma;
2054         struct inode *inode = file_inode(vma->vm_file);
2055         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2056         int err;
2057         vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059         /*
2060          * Trinity finds that probing a hole which tmpfs is punching can
2061          * prevent the hole-punch from ever completing: which in turn
2062          * locks writers out with its hold on i_rwsem.  So refrain from
2063          * faulting pages into the hole while it's being punched.  Although
2064          * shmem_undo_range() does remove the additions, it may be unable to
2065          * keep up, as each new page needs its own unmap_mapping_range() call,
2066          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067          *
2068          * It does not matter if we sometimes reach this check just before the
2069          * hole-punch begins, so that one fault then races with the punch:
2070          * we just need to make racing faults a rare case.
2071          *
2072          * The implementation below would be much simpler if we just used a
2073          * standard mutex or completion: but we cannot take i_rwsem in fault,
2074          * and bloating every shmem inode for this unlikely case would be sad.
2075          */
2076         if (unlikely(inode->i_private)) {
2077                 struct shmem_falloc *shmem_falloc;
2078
2079                 spin_lock(&inode->i_lock);
2080                 shmem_falloc = inode->i_private;
2081                 if (shmem_falloc &&
2082                     shmem_falloc->waitq &&
2083                     vmf->pgoff >= shmem_falloc->start &&
2084                     vmf->pgoff < shmem_falloc->next) {
2085                         struct file *fpin;
2086                         wait_queue_head_t *shmem_falloc_waitq;
2087                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089                         ret = VM_FAULT_NOPAGE;
2090                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091                         if (fpin)
2092                                 ret = VM_FAULT_RETRY;
2093
2094                         shmem_falloc_waitq = shmem_falloc->waitq;
2095                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096                                         TASK_UNINTERRUPTIBLE);
2097                         spin_unlock(&inode->i_lock);
2098                         schedule();
2099
2100                         /*
2101                          * shmem_falloc_waitq points into the shmem_fallocate()
2102                          * stack of the hole-punching task: shmem_falloc_waitq
2103                          * is usually invalid by the time we reach here, but
2104                          * finish_wait() does not dereference it in that case;
2105                          * though i_lock needed lest racing with wake_up_all().
2106                          */
2107                         spin_lock(&inode->i_lock);
2108                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109                         spin_unlock(&inode->i_lock);
2110
2111                         if (fpin)
2112                                 fput(fpin);
2113                         return ret;
2114                 }
2115                 spin_unlock(&inode->i_lock);
2116         }
2117
2118         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2119                                   gfp, vma, vmf, &ret);
2120         if (err)
2121                 return vmf_error(err);
2122         return ret;
2123 }
2124
2125 unsigned long shmem_get_unmapped_area(struct file *file,
2126                                       unsigned long uaddr, unsigned long len,
2127                                       unsigned long pgoff, unsigned long flags)
2128 {
2129         unsigned long (*get_area)(struct file *,
2130                 unsigned long, unsigned long, unsigned long, unsigned long);
2131         unsigned long addr;
2132         unsigned long offset;
2133         unsigned long inflated_len;
2134         unsigned long inflated_addr;
2135         unsigned long inflated_offset;
2136
2137         if (len > TASK_SIZE)
2138                 return -ENOMEM;
2139
2140         get_area = current->mm->get_unmapped_area;
2141         addr = get_area(file, uaddr, len, pgoff, flags);
2142
2143         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2144                 return addr;
2145         if (IS_ERR_VALUE(addr))
2146                 return addr;
2147         if (addr & ~PAGE_MASK)
2148                 return addr;
2149         if (addr > TASK_SIZE - len)
2150                 return addr;
2151
2152         if (shmem_huge == SHMEM_HUGE_DENY)
2153                 return addr;
2154         if (len < HPAGE_PMD_SIZE)
2155                 return addr;
2156         if (flags & MAP_FIXED)
2157                 return addr;
2158         /*
2159          * Our priority is to support MAP_SHARED mapped hugely;
2160          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2161          * But if caller specified an address hint and we allocated area there
2162          * successfully, respect that as before.
2163          */
2164         if (uaddr == addr)
2165                 return addr;
2166
2167         if (shmem_huge != SHMEM_HUGE_FORCE) {
2168                 struct super_block *sb;
2169
2170                 if (file) {
2171                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2172                         sb = file_inode(file)->i_sb;
2173                 } else {
2174                         /*
2175                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2176                          * for "/dev/zero", to create a shared anonymous object.
2177                          */
2178                         if (IS_ERR(shm_mnt))
2179                                 return addr;
2180                         sb = shm_mnt->mnt_sb;
2181                 }
2182                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2183                         return addr;
2184         }
2185
2186         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2187         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2188                 return addr;
2189         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2190                 return addr;
2191
2192         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2193         if (inflated_len > TASK_SIZE)
2194                 return addr;
2195         if (inflated_len < len)
2196                 return addr;
2197
2198         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2199         if (IS_ERR_VALUE(inflated_addr))
2200                 return addr;
2201         if (inflated_addr & ~PAGE_MASK)
2202                 return addr;
2203
2204         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2205         inflated_addr += offset - inflated_offset;
2206         if (inflated_offset > offset)
2207                 inflated_addr += HPAGE_PMD_SIZE;
2208
2209         if (inflated_addr > TASK_SIZE - len)
2210                 return addr;
2211         return inflated_addr;
2212 }
2213
2214 #ifdef CONFIG_NUMA
2215 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2216 {
2217         struct inode *inode = file_inode(vma->vm_file);
2218         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2219 }
2220
2221 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2222                                           unsigned long addr)
2223 {
2224         struct inode *inode = file_inode(vma->vm_file);
2225         pgoff_t index;
2226
2227         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2228         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2229 }
2230 #endif
2231
2232 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2233 {
2234         struct inode *inode = file_inode(file);
2235         struct shmem_inode_info *info = SHMEM_I(inode);
2236         int retval = -ENOMEM;
2237
2238         /*
2239          * What serializes the accesses to info->flags?
2240          * ipc_lock_object() when called from shmctl_do_lock(),
2241          * no serialization needed when called from shm_destroy().
2242          */
2243         if (lock && !(info->flags & VM_LOCKED)) {
2244                 if (!user_shm_lock(inode->i_size, ucounts))
2245                         goto out_nomem;
2246                 info->flags |= VM_LOCKED;
2247                 mapping_set_unevictable(file->f_mapping);
2248         }
2249         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2250                 user_shm_unlock(inode->i_size, ucounts);
2251                 info->flags &= ~VM_LOCKED;
2252                 mapping_clear_unevictable(file->f_mapping);
2253         }
2254         retval = 0;
2255
2256 out_nomem:
2257         return retval;
2258 }
2259
2260 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2261 {
2262         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2263         int ret;
2264
2265         ret = seal_check_future_write(info->seals, vma);
2266         if (ret)
2267                 return ret;
2268
2269         /* arm64 - allow memory tagging on RAM-based files */
2270         vma->vm_flags |= VM_MTE_ALLOWED;
2271
2272         file_accessed(file);
2273         vma->vm_ops = &shmem_vm_ops;
2274         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276                         (vma->vm_end & HPAGE_PMD_MASK)) {
2277                 khugepaged_enter(vma, vma->vm_flags);
2278         }
2279         return 0;
2280 }
2281
2282 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2283                                      umode_t mode, dev_t dev, unsigned long flags)
2284 {
2285         struct inode *inode;
2286         struct shmem_inode_info *info;
2287         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288         ino_t ino;
2289
2290         if (shmem_reserve_inode(sb, &ino))
2291                 return NULL;
2292
2293         inode = new_inode(sb);
2294         if (inode) {
2295                 inode->i_ino = ino;
2296                 inode_init_owner(&init_user_ns, inode, dir, mode);
2297                 inode->i_blocks = 0;
2298                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299                 inode->i_generation = prandom_u32();
2300                 info = SHMEM_I(inode);
2301                 memset(info, 0, (char *)inode - (char *)info);
2302                 spin_lock_init(&info->lock);
2303                 atomic_set(&info->stop_eviction, 0);
2304                 info->seals = F_SEAL_SEAL;
2305                 info->flags = flags & VM_NORESERVE;
2306                 INIT_LIST_HEAD(&info->shrinklist);
2307                 INIT_LIST_HEAD(&info->swaplist);
2308                 simple_xattrs_init(&info->xattrs);
2309                 cache_no_acl(inode);
2310
2311                 switch (mode & S_IFMT) {
2312                 default:
2313                         inode->i_op = &shmem_special_inode_operations;
2314                         init_special_inode(inode, mode, dev);
2315                         break;
2316                 case S_IFREG:
2317                         inode->i_mapping->a_ops = &shmem_aops;
2318                         inode->i_op = &shmem_inode_operations;
2319                         inode->i_fop = &shmem_file_operations;
2320                         mpol_shared_policy_init(&info->policy,
2321                                                  shmem_get_sbmpol(sbinfo));
2322                         break;
2323                 case S_IFDIR:
2324                         inc_nlink(inode);
2325                         /* Some things misbehave if size == 0 on a directory */
2326                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327                         inode->i_op = &shmem_dir_inode_operations;
2328                         inode->i_fop = &simple_dir_operations;
2329                         break;
2330                 case S_IFLNK:
2331                         /*
2332                          * Must not load anything in the rbtree,
2333                          * mpol_free_shared_policy will not be called.
2334                          */
2335                         mpol_shared_policy_init(&info->policy, NULL);
2336                         break;
2337                 }
2338
2339                 lockdep_annotate_inode_mutex_key(inode);
2340         } else
2341                 shmem_free_inode(sb);
2342         return inode;
2343 }
2344
2345 #ifdef CONFIG_USERFAULTFD
2346 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2347                            pmd_t *dst_pmd,
2348                            struct vm_area_struct *dst_vma,
2349                            unsigned long dst_addr,
2350                            unsigned long src_addr,
2351                            bool zeropage,
2352                            struct page **pagep)
2353 {
2354         struct inode *inode = file_inode(dst_vma->vm_file);
2355         struct shmem_inode_info *info = SHMEM_I(inode);
2356         struct address_space *mapping = inode->i_mapping;
2357         gfp_t gfp = mapping_gfp_mask(mapping);
2358         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2359         void *page_kaddr;
2360         struct page *page;
2361         int ret;
2362         pgoff_t max_off;
2363
2364         if (!shmem_inode_acct_block(inode, 1)) {
2365                 /*
2366                  * We may have got a page, returned -ENOENT triggering a retry,
2367                  * and now we find ourselves with -ENOMEM. Release the page, to
2368                  * avoid a BUG_ON in our caller.
2369                  */
2370                 if (unlikely(*pagep)) {
2371                         put_page(*pagep);
2372                         *pagep = NULL;
2373                 }
2374                 return -ENOMEM;
2375         }
2376
2377         if (!*pagep) {
2378                 ret = -ENOMEM;
2379                 page = shmem_alloc_page(gfp, info, pgoff);
2380                 if (!page)
2381                         goto out_unacct_blocks;
2382
2383                 if (!zeropage) {        /* COPY */
2384                         page_kaddr = kmap_atomic(page);
2385                         ret = copy_from_user(page_kaddr,
2386                                              (const void __user *)src_addr,
2387                                              PAGE_SIZE);
2388                         kunmap_atomic(page_kaddr);
2389
2390                         /* fallback to copy_from_user outside mmap_lock */
2391                         if (unlikely(ret)) {
2392                                 *pagep = page;
2393                                 ret = -ENOENT;
2394                                 /* don't free the page */
2395                                 goto out_unacct_blocks;
2396                         }
2397
2398                         flush_dcache_page(page);
2399                 } else {                /* ZEROPAGE */
2400                         clear_user_highpage(page, dst_addr);
2401                 }
2402         } else {
2403                 page = *pagep;
2404                 *pagep = NULL;
2405         }
2406
2407         VM_BUG_ON(PageLocked(page));
2408         VM_BUG_ON(PageSwapBacked(page));
2409         __SetPageLocked(page);
2410         __SetPageSwapBacked(page);
2411         __SetPageUptodate(page);
2412
2413         ret = -EFAULT;
2414         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2415         if (unlikely(pgoff >= max_off))
2416                 goto out_release;
2417
2418         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2419                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2420         if (ret)
2421                 goto out_release;
2422
2423         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2424                                        page, true, false);
2425         if (ret)
2426                 goto out_delete_from_cache;
2427
2428         spin_lock_irq(&info->lock);
2429         info->alloced++;
2430         inode->i_blocks += BLOCKS_PER_PAGE;
2431         shmem_recalc_inode(inode);
2432         spin_unlock_irq(&info->lock);
2433
2434         SetPageDirty(page);
2435         unlock_page(page);
2436         return 0;
2437 out_delete_from_cache:
2438         delete_from_page_cache(page);
2439 out_release:
2440         unlock_page(page);
2441         put_page(page);
2442 out_unacct_blocks:
2443         shmem_inode_unacct_blocks(inode, 1);
2444         return ret;
2445 }
2446 #endif /* CONFIG_USERFAULTFD */
2447
2448 #ifdef CONFIG_TMPFS
2449 static const struct inode_operations shmem_symlink_inode_operations;
2450 static const struct inode_operations shmem_short_symlink_operations;
2451
2452 #ifdef CONFIG_TMPFS_XATTR
2453 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2454 #else
2455 #define shmem_initxattrs NULL
2456 #endif
2457
2458 static int
2459 shmem_write_begin(struct file *file, struct address_space *mapping,
2460                         loff_t pos, unsigned len, unsigned flags,
2461                         struct page **pagep, void **fsdata)
2462 {
2463         struct inode *inode = mapping->host;
2464         struct shmem_inode_info *info = SHMEM_I(inode);
2465         pgoff_t index = pos >> PAGE_SHIFT;
2466         int ret = 0;
2467
2468         /* i_rwsem is held by caller */
2469         if (unlikely(info->seals & (F_SEAL_GROW |
2470                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2471                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2472                         return -EPERM;
2473                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2474                         return -EPERM;
2475         }
2476
2477         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2478
2479         if (ret)
2480                 return ret;
2481
2482         if (PageHWPoison(*pagep)) {
2483                 unlock_page(*pagep);
2484                 put_page(*pagep);
2485                 *pagep = NULL;
2486                 return -EIO;
2487         }
2488
2489         return 0;
2490 }
2491
2492 static int
2493 shmem_write_end(struct file *file, struct address_space *mapping,
2494                         loff_t pos, unsigned len, unsigned copied,
2495                         struct page *page, void *fsdata)
2496 {
2497         struct inode *inode = mapping->host;
2498
2499         if (pos + copied > inode->i_size)
2500                 i_size_write(inode, pos + copied);
2501
2502         if (!PageUptodate(page)) {
2503                 struct page *head = compound_head(page);
2504                 if (PageTransCompound(page)) {
2505                         int i;
2506
2507                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2508                                 if (head + i == page)
2509                                         continue;
2510                                 clear_highpage(head + i);
2511                                 flush_dcache_page(head + i);
2512                         }
2513                 }
2514                 if (copied < PAGE_SIZE) {
2515                         unsigned from = pos & (PAGE_SIZE - 1);
2516                         zero_user_segments(page, 0, from,
2517                                         from + copied, PAGE_SIZE);
2518                 }
2519                 SetPageUptodate(head);
2520         }
2521         set_page_dirty(page);
2522         unlock_page(page);
2523         put_page(page);
2524
2525         return copied;
2526 }
2527
2528 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2529 {
2530         struct file *file = iocb->ki_filp;
2531         struct inode *inode = file_inode(file);
2532         struct address_space *mapping = inode->i_mapping;
2533         pgoff_t index;
2534         unsigned long offset;
2535         enum sgp_type sgp = SGP_READ;
2536         int error = 0;
2537         ssize_t retval = 0;
2538         loff_t *ppos = &iocb->ki_pos;
2539
2540         /*
2541          * Might this read be for a stacking filesystem?  Then when reading
2542          * holes of a sparse file, we actually need to allocate those pages,
2543          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2544          */
2545         if (!iter_is_iovec(to))
2546                 sgp = SGP_CACHE;
2547
2548         index = *ppos >> PAGE_SHIFT;
2549         offset = *ppos & ~PAGE_MASK;
2550
2551         for (;;) {
2552                 struct page *page = NULL;
2553                 pgoff_t end_index;
2554                 unsigned long nr, ret;
2555                 loff_t i_size = i_size_read(inode);
2556
2557                 end_index = i_size >> PAGE_SHIFT;
2558                 if (index > end_index)
2559                         break;
2560                 if (index == end_index) {
2561                         nr = i_size & ~PAGE_MASK;
2562                         if (nr <= offset)
2563                                 break;
2564                 }
2565
2566                 error = shmem_getpage(inode, index, &page, sgp);
2567                 if (error) {
2568                         if (error == -EINVAL)
2569                                 error = 0;
2570                         break;
2571                 }
2572                 if (page) {
2573                         if (sgp == SGP_CACHE)
2574                                 set_page_dirty(page);
2575                         unlock_page(page);
2576
2577                         if (PageHWPoison(page)) {
2578                                 put_page(page);
2579                                 error = -EIO;
2580                                 break;
2581                         }
2582                 }
2583
2584                 /*
2585                  * We must evaluate after, since reads (unlike writes)
2586                  * are called without i_rwsem protection against truncate
2587                  */
2588                 nr = PAGE_SIZE;
2589                 i_size = i_size_read(inode);
2590                 end_index = i_size >> PAGE_SHIFT;
2591                 if (index == end_index) {
2592                         nr = i_size & ~PAGE_MASK;
2593                         if (nr <= offset) {
2594                                 if (page)
2595                                         put_page(page);
2596                                 break;
2597                         }
2598                 }
2599                 nr -= offset;
2600
2601                 if (page) {
2602                         /*
2603                          * If users can be writing to this page using arbitrary
2604                          * virtual addresses, take care about potential aliasing
2605                          * before reading the page on the kernel side.
2606                          */
2607                         if (mapping_writably_mapped(mapping))
2608                                 flush_dcache_page(page);
2609                         /*
2610                          * Mark the page accessed if we read the beginning.
2611                          */
2612                         if (!offset)
2613                                 mark_page_accessed(page);
2614                 } else {
2615                         page = ZERO_PAGE(0);
2616                         get_page(page);
2617                 }
2618
2619                 /*
2620                  * Ok, we have the page, and it's up-to-date, so
2621                  * now we can copy it to user space...
2622                  */
2623                 ret = copy_page_to_iter(page, offset, nr, to);
2624                 retval += ret;
2625                 offset += ret;
2626                 index += offset >> PAGE_SHIFT;
2627                 offset &= ~PAGE_MASK;
2628
2629                 put_page(page);
2630                 if (!iov_iter_count(to))
2631                         break;
2632                 if (ret < nr) {
2633                         error = -EFAULT;
2634                         break;
2635                 }
2636                 cond_resched();
2637         }
2638
2639         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2640         file_accessed(file);
2641         return retval ? retval : error;
2642 }
2643
2644 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2645 {
2646         struct address_space *mapping = file->f_mapping;
2647         struct inode *inode = mapping->host;
2648
2649         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2650                 return generic_file_llseek_size(file, offset, whence,
2651                                         MAX_LFS_FILESIZE, i_size_read(inode));
2652         if (offset < 0)
2653                 return -ENXIO;
2654
2655         inode_lock(inode);
2656         /* We're holding i_rwsem so we can access i_size directly */
2657         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2658         if (offset >= 0)
2659                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2660         inode_unlock(inode);
2661         return offset;
2662 }
2663
2664 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2665                                                          loff_t len)
2666 {
2667         struct inode *inode = file_inode(file);
2668         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2669         struct shmem_inode_info *info = SHMEM_I(inode);
2670         struct shmem_falloc shmem_falloc;
2671         pgoff_t start, index, end, undo_fallocend;
2672         int error;
2673
2674         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2675                 return -EOPNOTSUPP;
2676
2677         inode_lock(inode);
2678
2679         if (mode & FALLOC_FL_PUNCH_HOLE) {
2680                 struct address_space *mapping = file->f_mapping;
2681                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2682                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2683                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2684
2685                 /* protected by i_rwsem */
2686                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2687                         error = -EPERM;
2688                         goto out;
2689                 }
2690
2691                 shmem_falloc.waitq = &shmem_falloc_waitq;
2692                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2693                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2694                 spin_lock(&inode->i_lock);
2695                 inode->i_private = &shmem_falloc;
2696                 spin_unlock(&inode->i_lock);
2697
2698                 if ((u64)unmap_end > (u64)unmap_start)
2699                         unmap_mapping_range(mapping, unmap_start,
2700                                             1 + unmap_end - unmap_start, 0);
2701                 shmem_truncate_range(inode, offset, offset + len - 1);
2702                 /* No need to unmap again: hole-punching leaves COWed pages */
2703
2704                 spin_lock(&inode->i_lock);
2705                 inode->i_private = NULL;
2706                 wake_up_all(&shmem_falloc_waitq);
2707                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2708                 spin_unlock(&inode->i_lock);
2709                 error = 0;
2710                 goto out;
2711         }
2712
2713         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2714         error = inode_newsize_ok(inode, offset + len);
2715         if (error)
2716                 goto out;
2717
2718         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2719                 error = -EPERM;
2720                 goto out;
2721         }
2722
2723         start = offset >> PAGE_SHIFT;
2724         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2725         /* Try to avoid a swapstorm if len is impossible to satisfy */
2726         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2727                 error = -ENOSPC;
2728                 goto out;
2729         }
2730
2731         shmem_falloc.waitq = NULL;
2732         shmem_falloc.start = start;
2733         shmem_falloc.next  = start;
2734         shmem_falloc.nr_falloced = 0;
2735         shmem_falloc.nr_unswapped = 0;
2736         spin_lock(&inode->i_lock);
2737         inode->i_private = &shmem_falloc;
2738         spin_unlock(&inode->i_lock);
2739
2740         /*
2741          * info->fallocend is only relevant when huge pages might be
2742          * involved: to prevent split_huge_page() freeing fallocated
2743          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2744          */
2745         undo_fallocend = info->fallocend;
2746         if (info->fallocend < end)
2747                 info->fallocend = end;
2748
2749         for (index = start; index < end; ) {
2750                 struct page *page;
2751
2752                 /*
2753                  * Good, the fallocate(2) manpage permits EINTR: we may have
2754                  * been interrupted because we are using up too much memory.
2755                  */
2756                 if (signal_pending(current))
2757                         error = -EINTR;
2758                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2759                         error = -ENOMEM;
2760                 else
2761                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2762                 if (error) {
2763                         info->fallocend = undo_fallocend;
2764                         /* Remove the !PageUptodate pages we added */
2765                         if (index > start) {
2766                                 shmem_undo_range(inode,
2767                                     (loff_t)start << PAGE_SHIFT,
2768                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2769                         }
2770                         goto undone;
2771                 }
2772
2773                 index++;
2774                 /*
2775                  * Here is a more important optimization than it appears:
2776                  * a second SGP_FALLOC on the same huge page will clear it,
2777                  * making it PageUptodate and un-undoable if we fail later.
2778                  */
2779                 if (PageTransCompound(page)) {
2780                         index = round_up(index, HPAGE_PMD_NR);
2781                         /* Beware 32-bit wraparound */
2782                         if (!index)
2783                                 index--;
2784                 }
2785
2786                 /*
2787                  * Inform shmem_writepage() how far we have reached.
2788                  * No need for lock or barrier: we have the page lock.
2789                  */
2790                 if (!PageUptodate(page))
2791                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2792                 shmem_falloc.next = index;
2793
2794                 /*
2795                  * If !PageUptodate, leave it that way so that freeable pages
2796                  * can be recognized if we need to rollback on error later.
2797                  * But set_page_dirty so that memory pressure will swap rather
2798                  * than free the pages we are allocating (and SGP_CACHE pages
2799                  * might still be clean: we now need to mark those dirty too).
2800                  */
2801                 set_page_dirty(page);
2802                 unlock_page(page);
2803                 put_page(page);
2804                 cond_resched();
2805         }
2806
2807         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2808                 i_size_write(inode, offset + len);
2809         inode->i_ctime = current_time(inode);
2810 undone:
2811         spin_lock(&inode->i_lock);
2812         inode->i_private = NULL;
2813         spin_unlock(&inode->i_lock);
2814 out:
2815         inode_unlock(inode);
2816         return error;
2817 }
2818
2819 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2820 {
2821         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2822
2823         buf->f_type = TMPFS_MAGIC;
2824         buf->f_bsize = PAGE_SIZE;
2825         buf->f_namelen = NAME_MAX;
2826         if (sbinfo->max_blocks) {
2827                 buf->f_blocks = sbinfo->max_blocks;
2828                 buf->f_bavail =
2829                 buf->f_bfree  = sbinfo->max_blocks -
2830                                 percpu_counter_sum(&sbinfo->used_blocks);
2831         }
2832         if (sbinfo->max_inodes) {
2833                 buf->f_files = sbinfo->max_inodes;
2834                 buf->f_ffree = sbinfo->free_inodes;
2835         }
2836         /* else leave those fields 0 like simple_statfs */
2837
2838         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2839
2840         return 0;
2841 }
2842
2843 /*
2844  * File creation. Allocate an inode, and we're done..
2845  */
2846 static int
2847 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2848             struct dentry *dentry, umode_t mode, dev_t dev)
2849 {
2850         struct inode *inode;
2851         int error = -ENOSPC;
2852
2853         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2854         if (inode) {
2855                 error = simple_acl_create(dir, inode);
2856                 if (error)
2857                         goto out_iput;
2858                 error = security_inode_init_security(inode, dir,
2859                                                      &dentry->d_name,
2860                                                      shmem_initxattrs, NULL);
2861                 if (error && error != -EOPNOTSUPP)
2862                         goto out_iput;
2863
2864                 error = 0;
2865                 dir->i_size += BOGO_DIRENT_SIZE;
2866                 dir->i_ctime = dir->i_mtime = current_time(dir);
2867                 d_instantiate(dentry, inode);
2868                 dget(dentry); /* Extra count - pin the dentry in core */
2869         }
2870         return error;
2871 out_iput:
2872         iput(inode);
2873         return error;
2874 }
2875
2876 static int
2877 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2878               struct dentry *dentry, umode_t mode)
2879 {
2880         struct inode *inode;
2881         int error = -ENOSPC;
2882
2883         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2884         if (inode) {
2885                 error = security_inode_init_security(inode, dir,
2886                                                      NULL,
2887                                                      shmem_initxattrs, NULL);
2888                 if (error && error != -EOPNOTSUPP)
2889                         goto out_iput;
2890                 error = simple_acl_create(dir, inode);
2891                 if (error)
2892                         goto out_iput;
2893                 d_tmpfile(dentry, inode);
2894         }
2895         return error;
2896 out_iput:
2897         iput(inode);
2898         return error;
2899 }
2900
2901 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2902                        struct dentry *dentry, umode_t mode)
2903 {
2904         int error;
2905
2906         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2907                                  mode | S_IFDIR, 0)))
2908                 return error;
2909         inc_nlink(dir);
2910         return 0;
2911 }
2912
2913 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2914                         struct dentry *dentry, umode_t mode, bool excl)
2915 {
2916         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2917 }
2918
2919 /*
2920  * Link a file..
2921  */
2922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923 {
2924         struct inode *inode = d_inode(old_dentry);
2925         int ret = 0;
2926
2927         /*
2928          * No ordinary (disk based) filesystem counts links as inodes;
2929          * but each new link needs a new dentry, pinning lowmem, and
2930          * tmpfs dentries cannot be pruned until they are unlinked.
2931          * But if an O_TMPFILE file is linked into the tmpfs, the
2932          * first link must skip that, to get the accounting right.
2933          */
2934         if (inode->i_nlink) {
2935                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2936                 if (ret)
2937                         goto out;
2938         }
2939
2940         dir->i_size += BOGO_DIRENT_SIZE;
2941         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942         inc_nlink(inode);
2943         ihold(inode);   /* New dentry reference */
2944         dget(dentry);           /* Extra pinning count for the created dentry */
2945         d_instantiate(dentry, inode);
2946 out:
2947         return ret;
2948 }
2949
2950 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951 {
2952         struct inode *inode = d_inode(dentry);
2953
2954         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2955                 shmem_free_inode(inode->i_sb);
2956
2957         dir->i_size -= BOGO_DIRENT_SIZE;
2958         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2959         drop_nlink(inode);
2960         dput(dentry);   /* Undo the count from "create" - this does all the work */
2961         return 0;
2962 }
2963
2964 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965 {
2966         if (!simple_empty(dentry))
2967                 return -ENOTEMPTY;
2968
2969         drop_nlink(d_inode(dentry));
2970         drop_nlink(dir);
2971         return shmem_unlink(dir, dentry);
2972 }
2973
2974 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975 {
2976         bool old_is_dir = d_is_dir(old_dentry);
2977         bool new_is_dir = d_is_dir(new_dentry);
2978
2979         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980                 if (old_is_dir) {
2981                         drop_nlink(old_dir);
2982                         inc_nlink(new_dir);
2983                 } else {
2984                         drop_nlink(new_dir);
2985                         inc_nlink(old_dir);
2986                 }
2987         }
2988         old_dir->i_ctime = old_dir->i_mtime =
2989         new_dir->i_ctime = new_dir->i_mtime =
2990         d_inode(old_dentry)->i_ctime =
2991         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2992
2993         return 0;
2994 }
2995
2996 static int shmem_whiteout(struct user_namespace *mnt_userns,
2997                           struct inode *old_dir, struct dentry *old_dentry)
2998 {
2999         struct dentry *whiteout;
3000         int error;
3001
3002         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003         if (!whiteout)
3004                 return -ENOMEM;
3005
3006         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3007                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008         dput(whiteout);
3009         if (error)
3010                 return error;
3011
3012         /*
3013          * Cheat and hash the whiteout while the old dentry is still in
3014          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015          *
3016          * d_lookup() will consistently find one of them at this point,
3017          * not sure which one, but that isn't even important.
3018          */
3019         d_rehash(whiteout);
3020         return 0;
3021 }
3022
3023 /*
3024  * The VFS layer already does all the dentry stuff for rename,
3025  * we just have to decrement the usage count for the target if
3026  * it exists so that the VFS layer correctly free's it when it
3027  * gets overwritten.
3028  */
3029 static int shmem_rename2(struct user_namespace *mnt_userns,
3030                          struct inode *old_dir, struct dentry *old_dentry,
3031                          struct inode *new_dir, struct dentry *new_dentry,
3032                          unsigned int flags)
3033 {
3034         struct inode *inode = d_inode(old_dentry);
3035         int they_are_dirs = S_ISDIR(inode->i_mode);
3036
3037         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3038                 return -EINVAL;
3039
3040         if (flags & RENAME_EXCHANGE)
3041                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3042
3043         if (!simple_empty(new_dentry))
3044                 return -ENOTEMPTY;
3045
3046         if (flags & RENAME_WHITEOUT) {
3047                 int error;
3048
3049                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3050                 if (error)
3051                         return error;
3052         }
3053
3054         if (d_really_is_positive(new_dentry)) {
3055                 (void) shmem_unlink(new_dir, new_dentry);
3056                 if (they_are_dirs) {
3057                         drop_nlink(d_inode(new_dentry));
3058                         drop_nlink(old_dir);
3059                 }
3060         } else if (they_are_dirs) {
3061                 drop_nlink(old_dir);
3062                 inc_nlink(new_dir);
3063         }
3064
3065         old_dir->i_size -= BOGO_DIRENT_SIZE;
3066         new_dir->i_size += BOGO_DIRENT_SIZE;
3067         old_dir->i_ctime = old_dir->i_mtime =
3068         new_dir->i_ctime = new_dir->i_mtime =
3069         inode->i_ctime = current_time(old_dir);
3070         return 0;
3071 }
3072
3073 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3074                          struct dentry *dentry, const char *symname)
3075 {
3076         int error;
3077         int len;
3078         struct inode *inode;
3079         struct page *page;
3080
3081         len = strlen(symname) + 1;
3082         if (len > PAGE_SIZE)
3083                 return -ENAMETOOLONG;
3084
3085         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3086                                 VM_NORESERVE);
3087         if (!inode)
3088                 return -ENOSPC;
3089
3090         error = security_inode_init_security(inode, dir, &dentry->d_name,
3091                                              shmem_initxattrs, NULL);
3092         if (error && error != -EOPNOTSUPP) {
3093                 iput(inode);
3094                 return error;
3095         }
3096
3097         inode->i_size = len-1;
3098         if (len <= SHORT_SYMLINK_LEN) {
3099                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3100                 if (!inode->i_link) {
3101                         iput(inode);
3102                         return -ENOMEM;
3103                 }
3104                 inode->i_op = &shmem_short_symlink_operations;
3105         } else {
3106                 inode_nohighmem(inode);
3107                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3108                 if (error) {
3109                         iput(inode);
3110                         return error;
3111                 }
3112                 inode->i_mapping->a_ops = &shmem_aops;
3113                 inode->i_op = &shmem_symlink_inode_operations;
3114                 memcpy(page_address(page), symname, len);
3115                 SetPageUptodate(page);
3116                 set_page_dirty(page);
3117                 unlock_page(page);
3118                 put_page(page);
3119         }
3120         dir->i_size += BOGO_DIRENT_SIZE;
3121         dir->i_ctime = dir->i_mtime = current_time(dir);
3122         d_instantiate(dentry, inode);
3123         dget(dentry);
3124         return 0;
3125 }
3126
3127 static void shmem_put_link(void *arg)
3128 {
3129         mark_page_accessed(arg);
3130         put_page(arg);
3131 }
3132
3133 static const char *shmem_get_link(struct dentry *dentry,
3134                                   struct inode *inode,
3135                                   struct delayed_call *done)
3136 {
3137         struct page *page = NULL;
3138         int error;
3139         if (!dentry) {
3140                 page = find_get_page(inode->i_mapping, 0);
3141                 if (!page)
3142                         return ERR_PTR(-ECHILD);
3143                 if (PageHWPoison(page) ||
3144                     !PageUptodate(page)) {
3145                         put_page(page);
3146                         return ERR_PTR(-ECHILD);
3147                 }
3148         } else {
3149                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3150                 if (error)
3151                         return ERR_PTR(error);
3152                 if (!page)
3153                         return ERR_PTR(-ECHILD);
3154                 if (PageHWPoison(page)) {
3155                         unlock_page(page);
3156                         put_page(page);
3157                         return ERR_PTR(-ECHILD);
3158                 }
3159                 unlock_page(page);
3160         }
3161         set_delayed_call(done, shmem_put_link, page);
3162         return page_address(page);
3163 }
3164
3165 #ifdef CONFIG_TMPFS_XATTR
3166 /*
3167  * Superblocks without xattr inode operations may get some security.* xattr
3168  * support from the LSM "for free". As soon as we have any other xattrs
3169  * like ACLs, we also need to implement the security.* handlers at
3170  * filesystem level, though.
3171  */
3172
3173 /*
3174  * Callback for security_inode_init_security() for acquiring xattrs.
3175  */
3176 static int shmem_initxattrs(struct inode *inode,
3177                             const struct xattr *xattr_array,
3178                             void *fs_info)
3179 {
3180         struct shmem_inode_info *info = SHMEM_I(inode);
3181         const struct xattr *xattr;
3182         struct simple_xattr *new_xattr;
3183         size_t len;
3184
3185         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3186                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3187                 if (!new_xattr)
3188                         return -ENOMEM;
3189
3190                 len = strlen(xattr->name) + 1;
3191                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3192                                           GFP_KERNEL);
3193                 if (!new_xattr->name) {
3194                         kvfree(new_xattr);
3195                         return -ENOMEM;
3196                 }
3197
3198                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3199                        XATTR_SECURITY_PREFIX_LEN);
3200                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3201                        xattr->name, len);
3202
3203                 simple_xattr_list_add(&info->xattrs, new_xattr);
3204         }
3205
3206         return 0;
3207 }
3208
3209 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3210                                    struct dentry *unused, struct inode *inode,
3211                                    const char *name, void *buffer, size_t size)
3212 {
3213         struct shmem_inode_info *info = SHMEM_I(inode);
3214
3215         name = xattr_full_name(handler, name);
3216         return simple_xattr_get(&info->xattrs, name, buffer, size);
3217 }
3218
3219 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3220                                    struct user_namespace *mnt_userns,
3221                                    struct dentry *unused, struct inode *inode,
3222                                    const char *name, const void *value,
3223                                    size_t size, int flags)
3224 {
3225         struct shmem_inode_info *info = SHMEM_I(inode);
3226
3227         name = xattr_full_name(handler, name);
3228         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3229 }
3230
3231 static const struct xattr_handler shmem_security_xattr_handler = {
3232         .prefix = XATTR_SECURITY_PREFIX,
3233         .get = shmem_xattr_handler_get,
3234         .set = shmem_xattr_handler_set,
3235 };
3236
3237 static const struct xattr_handler shmem_trusted_xattr_handler = {
3238         .prefix = XATTR_TRUSTED_PREFIX,
3239         .get = shmem_xattr_handler_get,
3240         .set = shmem_xattr_handler_set,
3241 };
3242
3243 static const struct xattr_handler *shmem_xattr_handlers[] = {
3244 #ifdef CONFIG_TMPFS_POSIX_ACL
3245         &posix_acl_access_xattr_handler,
3246         &posix_acl_default_xattr_handler,
3247 #endif
3248         &shmem_security_xattr_handler,
3249         &shmem_trusted_xattr_handler,
3250         NULL
3251 };
3252
3253 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3254 {
3255         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3256         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3257 }
3258 #endif /* CONFIG_TMPFS_XATTR */
3259
3260 static const struct inode_operations shmem_short_symlink_operations = {
3261         .get_link       = simple_get_link,
3262 #ifdef CONFIG_TMPFS_XATTR
3263         .listxattr      = shmem_listxattr,
3264 #endif
3265 };
3266
3267 static const struct inode_operations shmem_symlink_inode_operations = {
3268         .get_link       = shmem_get_link,
3269 #ifdef CONFIG_TMPFS_XATTR
3270         .listxattr      = shmem_listxattr,
3271 #endif
3272 };
3273
3274 static struct dentry *shmem_get_parent(struct dentry *child)
3275 {
3276         return ERR_PTR(-ESTALE);
3277 }
3278
3279 static int shmem_match(struct inode *ino, void *vfh)
3280 {
3281         __u32 *fh = vfh;
3282         __u64 inum = fh[2];
3283         inum = (inum << 32) | fh[1];
3284         return ino->i_ino == inum && fh[0] == ino->i_generation;
3285 }
3286
3287 /* Find any alias of inode, but prefer a hashed alias */
3288 static struct dentry *shmem_find_alias(struct inode *inode)
3289 {
3290         struct dentry *alias = d_find_alias(inode);
3291
3292         return alias ?: d_find_any_alias(inode);
3293 }
3294
3295
3296 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3297                 struct fid *fid, int fh_len, int fh_type)
3298 {
3299         struct inode *inode;
3300         struct dentry *dentry = NULL;
3301         u64 inum;
3302
3303         if (fh_len < 3)
3304                 return NULL;
3305
3306         inum = fid->raw[2];
3307         inum = (inum << 32) | fid->raw[1];
3308
3309         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3310                         shmem_match, fid->raw);
3311         if (inode) {
3312                 dentry = shmem_find_alias(inode);
3313                 iput(inode);
3314         }
3315
3316         return dentry;
3317 }
3318
3319 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3320                                 struct inode *parent)
3321 {
3322         if (*len < 3) {
3323                 *len = 3;
3324                 return FILEID_INVALID;
3325         }
3326
3327         if (inode_unhashed(inode)) {
3328                 /* Unfortunately insert_inode_hash is not idempotent,
3329                  * so as we hash inodes here rather than at creation
3330                  * time, we need a lock to ensure we only try
3331                  * to do it once
3332                  */
3333                 static DEFINE_SPINLOCK(lock);
3334                 spin_lock(&lock);
3335                 if (inode_unhashed(inode))
3336                         __insert_inode_hash(inode,
3337                                             inode->i_ino + inode->i_generation);
3338                 spin_unlock(&lock);
3339         }
3340
3341         fh[0] = inode->i_generation;
3342         fh[1] = inode->i_ino;
3343         fh[2] = ((__u64)inode->i_ino) >> 32;
3344
3345         *len = 3;
3346         return 1;
3347 }
3348
3349 static const struct export_operations shmem_export_ops = {
3350         .get_parent     = shmem_get_parent,
3351         .encode_fh      = shmem_encode_fh,
3352         .fh_to_dentry   = shmem_fh_to_dentry,
3353 };
3354
3355 enum shmem_param {
3356         Opt_gid,
3357         Opt_huge,
3358         Opt_mode,
3359         Opt_mpol,
3360         Opt_nr_blocks,
3361         Opt_nr_inodes,
3362         Opt_size,
3363         Opt_uid,
3364         Opt_inode32,
3365         Opt_inode64,
3366 };
3367
3368 static const struct constant_table shmem_param_enums_huge[] = {
3369         {"never",       SHMEM_HUGE_NEVER },
3370         {"always",      SHMEM_HUGE_ALWAYS },
3371         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3372         {"advise",      SHMEM_HUGE_ADVISE },
3373         {}
3374 };
3375
3376 const struct fs_parameter_spec shmem_fs_parameters[] = {
3377         fsparam_u32   ("gid",           Opt_gid),
3378         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3379         fsparam_u32oct("mode",          Opt_mode),
3380         fsparam_string("mpol",          Opt_mpol),
3381         fsparam_string("nr_blocks",     Opt_nr_blocks),
3382         fsparam_string("nr_inodes",     Opt_nr_inodes),
3383         fsparam_string("size",          Opt_size),
3384         fsparam_u32   ("uid",           Opt_uid),
3385         fsparam_flag  ("inode32",       Opt_inode32),
3386         fsparam_flag  ("inode64",       Opt_inode64),
3387         {}
3388 };
3389
3390 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3391 {
3392         struct shmem_options *ctx = fc->fs_private;
3393         struct fs_parse_result result;
3394         unsigned long long size;
3395         char *rest;
3396         int opt;
3397
3398         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3399         if (opt < 0)
3400                 return opt;
3401
3402         switch (opt) {
3403         case Opt_size:
3404                 size = memparse(param->string, &rest);
3405                 if (*rest == '%') {
3406                         size <<= PAGE_SHIFT;
3407                         size *= totalram_pages();
3408                         do_div(size, 100);
3409                         rest++;
3410                 }
3411                 if (*rest)
3412                         goto bad_value;
3413                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3414                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3415                 break;
3416         case Opt_nr_blocks:
3417                 ctx->blocks = memparse(param->string, &rest);
3418                 if (*rest)
3419                         goto bad_value;
3420                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3421                 break;
3422         case Opt_nr_inodes:
3423                 ctx->inodes = memparse(param->string, &rest);
3424                 if (*rest)
3425                         goto bad_value;
3426                 ctx->seen |= SHMEM_SEEN_INODES;
3427                 break;
3428         case Opt_mode:
3429                 ctx->mode = result.uint_32 & 07777;
3430                 break;
3431         case Opt_uid:
3432                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3433                 if (!uid_valid(ctx->uid))
3434                         goto bad_value;
3435                 break;
3436         case Opt_gid:
3437                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3438                 if (!gid_valid(ctx->gid))
3439                         goto bad_value;
3440                 break;
3441         case Opt_huge:
3442                 ctx->huge = result.uint_32;
3443                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3444                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3445                       has_transparent_hugepage()))
3446                         goto unsupported_parameter;
3447                 ctx->seen |= SHMEM_SEEN_HUGE;
3448                 break;
3449         case Opt_mpol:
3450                 if (IS_ENABLED(CONFIG_NUMA)) {
3451                         mpol_put(ctx->mpol);
3452                         ctx->mpol = NULL;
3453                         if (mpol_parse_str(param->string, &ctx->mpol))
3454                                 goto bad_value;
3455                         break;
3456                 }
3457                 goto unsupported_parameter;
3458         case Opt_inode32:
3459                 ctx->full_inums = false;
3460                 ctx->seen |= SHMEM_SEEN_INUMS;
3461                 break;
3462         case Opt_inode64:
3463                 if (sizeof(ino_t) < 8) {
3464                         return invalfc(fc,
3465                                        "Cannot use inode64 with <64bit inums in kernel\n");
3466                 }
3467                 ctx->full_inums = true;
3468                 ctx->seen |= SHMEM_SEEN_INUMS;
3469                 break;
3470         }
3471         return 0;
3472
3473 unsupported_parameter:
3474         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3475 bad_value:
3476         return invalfc(fc, "Bad value for '%s'", param->key);
3477 }
3478
3479 static int shmem_parse_options(struct fs_context *fc, void *data)
3480 {
3481         char *options = data;
3482
3483         if (options) {
3484                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3485                 if (err)
3486                         return err;
3487         }
3488
3489         while (options != NULL) {
3490                 char *this_char = options;
3491                 for (;;) {
3492                         /*
3493                          * NUL-terminate this option: unfortunately,
3494                          * mount options form a comma-separated list,
3495                          * but mpol's nodelist may also contain commas.
3496                          */
3497                         options = strchr(options, ',');
3498                         if (options == NULL)
3499                                 break;
3500                         options++;
3501                         if (!isdigit(*options)) {
3502                                 options[-1] = '\0';
3503                                 break;
3504                         }
3505                 }
3506                 if (*this_char) {
3507                         char *value = strchr(this_char, '=');
3508                         size_t len = 0;
3509                         int err;
3510
3511                         if (value) {
3512                                 *value++ = '\0';
3513                                 len = strlen(value);
3514                         }
3515                         err = vfs_parse_fs_string(fc, this_char, value, len);
3516                         if (err < 0)
3517                                 return err;
3518                 }
3519         }
3520         return 0;
3521 }
3522
3523 /*
3524  * Reconfigure a shmem filesystem.
3525  *
3526  * Note that we disallow change from limited->unlimited blocks/inodes while any
3527  * are in use; but we must separately disallow unlimited->limited, because in
3528  * that case we have no record of how much is already in use.
3529  */
3530 static int shmem_reconfigure(struct fs_context *fc)
3531 {
3532         struct shmem_options *ctx = fc->fs_private;
3533         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3534         unsigned long inodes;
3535         struct mempolicy *mpol = NULL;
3536         const char *err;
3537
3538         raw_spin_lock(&sbinfo->stat_lock);
3539         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3540         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3541                 if (!sbinfo->max_blocks) {
3542                         err = "Cannot retroactively limit size";
3543                         goto out;
3544                 }
3545                 if (percpu_counter_compare(&sbinfo->used_blocks,
3546                                            ctx->blocks) > 0) {
3547                         err = "Too small a size for current use";
3548                         goto out;
3549                 }
3550         }
3551         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3552                 if (!sbinfo->max_inodes) {
3553                         err = "Cannot retroactively limit inodes";
3554                         goto out;
3555                 }
3556                 if (ctx->inodes < inodes) {
3557                         err = "Too few inodes for current use";
3558                         goto out;
3559                 }
3560         }
3561
3562         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3563             sbinfo->next_ino > UINT_MAX) {
3564                 err = "Current inum too high to switch to 32-bit inums";
3565                 goto out;
3566         }
3567
3568         if (ctx->seen & SHMEM_SEEN_HUGE)
3569                 sbinfo->huge = ctx->huge;
3570         if (ctx->seen & SHMEM_SEEN_INUMS)
3571                 sbinfo->full_inums = ctx->full_inums;
3572         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3573                 sbinfo->max_blocks  = ctx->blocks;
3574         if (ctx->seen & SHMEM_SEEN_INODES) {
3575                 sbinfo->max_inodes  = ctx->inodes;
3576                 sbinfo->free_inodes = ctx->inodes - inodes;
3577         }
3578
3579         /*
3580          * Preserve previous mempolicy unless mpol remount option was specified.
3581          */
3582         if (ctx->mpol) {
3583                 mpol = sbinfo->mpol;
3584                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3585                 ctx->mpol = NULL;
3586         }
3587         raw_spin_unlock(&sbinfo->stat_lock);
3588         mpol_put(mpol);
3589         return 0;
3590 out:
3591         raw_spin_unlock(&sbinfo->stat_lock);
3592         return invalfc(fc, "%s", err);
3593 }
3594
3595 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3596 {
3597         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3598
3599         if (sbinfo->max_blocks != shmem_default_max_blocks())
3600                 seq_printf(seq, ",size=%luk",
3601                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3602         if (sbinfo->max_inodes != shmem_default_max_inodes())
3603                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3604         if (sbinfo->mode != (0777 | S_ISVTX))
3605                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3606         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3607                 seq_printf(seq, ",uid=%u",
3608                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3609         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3610                 seq_printf(seq, ",gid=%u",
3611                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3612
3613         /*
3614          * Showing inode{64,32} might be useful even if it's the system default,
3615          * since then people don't have to resort to checking both here and
3616          * /proc/config.gz to confirm 64-bit inums were successfully applied
3617          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3618          *
3619          * We hide it when inode64 isn't the default and we are using 32-bit
3620          * inodes, since that probably just means the feature isn't even under
3621          * consideration.
3622          *
3623          * As such:
3624          *
3625          *                     +-----------------+-----------------+
3626          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3627          *  +------------------+-----------------+-----------------+
3628          *  | full_inums=true  | show            | show            |
3629          *  | full_inums=false | show            | hide            |
3630          *  +------------------+-----------------+-----------------+
3631          *
3632          */
3633         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3634                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3636         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3637         if (sbinfo->huge)
3638                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3639 #endif
3640         shmem_show_mpol(seq, sbinfo->mpol);
3641         return 0;
3642 }
3643
3644 #endif /* CONFIG_TMPFS */
3645
3646 static void shmem_put_super(struct super_block *sb)
3647 {
3648         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3649
3650         free_percpu(sbinfo->ino_batch);
3651         percpu_counter_destroy(&sbinfo->used_blocks);
3652         mpol_put(sbinfo->mpol);
3653         kfree(sbinfo);
3654         sb->s_fs_info = NULL;
3655 }
3656
3657 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3658 {
3659         struct shmem_options *ctx = fc->fs_private;
3660         struct inode *inode;
3661         struct shmem_sb_info *sbinfo;
3662
3663         /* Round up to L1_CACHE_BYTES to resist false sharing */
3664         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3665                                 L1_CACHE_BYTES), GFP_KERNEL);
3666         if (!sbinfo)
3667                 return -ENOMEM;
3668
3669         sb->s_fs_info = sbinfo;
3670
3671 #ifdef CONFIG_TMPFS
3672         /*
3673          * Per default we only allow half of the physical ram per
3674          * tmpfs instance, limiting inodes to one per page of lowmem;
3675          * but the internal instance is left unlimited.
3676          */
3677         if (!(sb->s_flags & SB_KERNMOUNT)) {
3678                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3679                         ctx->blocks = shmem_default_max_blocks();
3680                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3681                         ctx->inodes = shmem_default_max_inodes();
3682                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3683                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3684         } else {
3685                 sb->s_flags |= SB_NOUSER;
3686         }
3687         sb->s_export_op = &shmem_export_ops;
3688         sb->s_flags |= SB_NOSEC;
3689 #else
3690         sb->s_flags |= SB_NOUSER;
3691 #endif
3692         sbinfo->max_blocks = ctx->blocks;
3693         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3694         if (sb->s_flags & SB_KERNMOUNT) {
3695                 sbinfo->ino_batch = alloc_percpu(ino_t);
3696                 if (!sbinfo->ino_batch)
3697                         goto failed;
3698         }
3699         sbinfo->uid = ctx->uid;
3700         sbinfo->gid = ctx->gid;
3701         sbinfo->full_inums = ctx->full_inums;
3702         sbinfo->mode = ctx->mode;
3703         sbinfo->huge = ctx->huge;
3704         sbinfo->mpol = ctx->mpol;
3705         ctx->mpol = NULL;
3706
3707         raw_spin_lock_init(&sbinfo->stat_lock);
3708         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3709                 goto failed;
3710         spin_lock_init(&sbinfo->shrinklist_lock);
3711         INIT_LIST_HEAD(&sbinfo->shrinklist);
3712
3713         sb->s_maxbytes = MAX_LFS_FILESIZE;
3714         sb->s_blocksize = PAGE_SIZE;
3715         sb->s_blocksize_bits = PAGE_SHIFT;
3716         sb->s_magic = TMPFS_MAGIC;
3717         sb->s_op = &shmem_ops;
3718         sb->s_time_gran = 1;
3719 #ifdef CONFIG_TMPFS_XATTR
3720         sb->s_xattr = shmem_xattr_handlers;
3721 #endif
3722 #ifdef CONFIG_TMPFS_POSIX_ACL
3723         sb->s_flags |= SB_POSIXACL;
3724 #endif
3725         uuid_gen(&sb->s_uuid);
3726
3727         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3728         if (!inode)
3729                 goto failed;
3730         inode->i_uid = sbinfo->uid;
3731         inode->i_gid = sbinfo->gid;
3732         sb->s_root = d_make_root(inode);
3733         if (!sb->s_root)
3734                 goto failed;
3735         return 0;
3736
3737 failed:
3738         shmem_put_super(sb);
3739         return -ENOMEM;
3740 }
3741
3742 static int shmem_get_tree(struct fs_context *fc)
3743 {
3744         return get_tree_nodev(fc, shmem_fill_super);
3745 }
3746
3747 static void shmem_free_fc(struct fs_context *fc)
3748 {
3749         struct shmem_options *ctx = fc->fs_private;
3750
3751         if (ctx) {
3752                 mpol_put(ctx->mpol);
3753                 kfree(ctx);
3754         }
3755 }
3756
3757 static const struct fs_context_operations shmem_fs_context_ops = {
3758         .free                   = shmem_free_fc,
3759         .get_tree               = shmem_get_tree,
3760 #ifdef CONFIG_TMPFS
3761         .parse_monolithic       = shmem_parse_options,
3762         .parse_param            = shmem_parse_one,
3763         .reconfigure            = shmem_reconfigure,
3764 #endif
3765 };
3766
3767 static struct kmem_cache *shmem_inode_cachep;
3768
3769 static struct inode *shmem_alloc_inode(struct super_block *sb)
3770 {
3771         struct shmem_inode_info *info;
3772         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3773         if (!info)
3774                 return NULL;
3775         return &info->vfs_inode;
3776 }
3777
3778 static void shmem_free_in_core_inode(struct inode *inode)
3779 {
3780         if (S_ISLNK(inode->i_mode))
3781                 kfree(inode->i_link);
3782         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3783 }
3784
3785 static void shmem_destroy_inode(struct inode *inode)
3786 {
3787         if (S_ISREG(inode->i_mode))
3788                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3789 }
3790
3791 static void shmem_init_inode(void *foo)
3792 {
3793         struct shmem_inode_info *info = foo;
3794         inode_init_once(&info->vfs_inode);
3795 }
3796
3797 static void shmem_init_inodecache(void)
3798 {
3799         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3800                                 sizeof(struct shmem_inode_info),
3801                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3802 }
3803
3804 static void shmem_destroy_inodecache(void)
3805 {
3806         kmem_cache_destroy(shmem_inode_cachep);
3807 }
3808
3809 /* Keep the page in page cache instead of truncating it */
3810 static int shmem_error_remove_page(struct address_space *mapping,
3811                                    struct page *page)
3812 {
3813         return 0;
3814 }
3815
3816 const struct address_space_operations shmem_aops = {
3817         .writepage      = shmem_writepage,
3818         .set_page_dirty = __set_page_dirty_no_writeback,
3819 #ifdef CONFIG_TMPFS
3820         .write_begin    = shmem_write_begin,
3821         .write_end      = shmem_write_end,
3822 #endif
3823 #ifdef CONFIG_MIGRATION
3824         .migratepage    = migrate_page,
3825 #endif
3826         .error_remove_page = shmem_error_remove_page,
3827 };
3828 EXPORT_SYMBOL(shmem_aops);
3829
3830 static const struct file_operations shmem_file_operations = {
3831         .mmap           = shmem_mmap,
3832         .get_unmapped_area = shmem_get_unmapped_area,
3833 #ifdef CONFIG_TMPFS
3834         .llseek         = shmem_file_llseek,
3835         .read_iter      = shmem_file_read_iter,
3836         .write_iter     = generic_file_write_iter,
3837         .fsync          = noop_fsync,
3838         .splice_read    = generic_file_splice_read,
3839         .splice_write   = iter_file_splice_write,
3840         .fallocate      = shmem_fallocate,
3841 #endif
3842 };
3843
3844 static const struct inode_operations shmem_inode_operations = {
3845         .getattr        = shmem_getattr,
3846         .setattr        = shmem_setattr,
3847 #ifdef CONFIG_TMPFS_XATTR
3848         .listxattr      = shmem_listxattr,
3849         .set_acl        = simple_set_acl,
3850 #endif
3851 };
3852
3853 static const struct inode_operations shmem_dir_inode_operations = {
3854 #ifdef CONFIG_TMPFS
3855         .create         = shmem_create,
3856         .lookup         = simple_lookup,
3857         .link           = shmem_link,
3858         .unlink         = shmem_unlink,
3859         .symlink        = shmem_symlink,
3860         .mkdir          = shmem_mkdir,
3861         .rmdir          = shmem_rmdir,
3862         .mknod          = shmem_mknod,
3863         .rename         = shmem_rename2,
3864         .tmpfile        = shmem_tmpfile,
3865 #endif
3866 #ifdef CONFIG_TMPFS_XATTR
3867         .listxattr      = shmem_listxattr,
3868 #endif
3869 #ifdef CONFIG_TMPFS_POSIX_ACL
3870         .setattr        = shmem_setattr,
3871         .set_acl        = simple_set_acl,
3872 #endif
3873 };
3874
3875 static const struct inode_operations shmem_special_inode_operations = {
3876 #ifdef CONFIG_TMPFS_XATTR
3877         .listxattr      = shmem_listxattr,
3878 #endif
3879 #ifdef CONFIG_TMPFS_POSIX_ACL
3880         .setattr        = shmem_setattr,
3881         .set_acl        = simple_set_acl,
3882 #endif
3883 };
3884
3885 static const struct super_operations shmem_ops = {
3886         .alloc_inode    = shmem_alloc_inode,
3887         .free_inode     = shmem_free_in_core_inode,
3888         .destroy_inode  = shmem_destroy_inode,
3889 #ifdef CONFIG_TMPFS
3890         .statfs         = shmem_statfs,
3891         .show_options   = shmem_show_options,
3892 #endif
3893         .evict_inode    = shmem_evict_inode,
3894         .drop_inode     = generic_delete_inode,
3895         .put_super      = shmem_put_super,
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897         .nr_cached_objects      = shmem_unused_huge_count,
3898         .free_cached_objects    = shmem_unused_huge_scan,
3899 #endif
3900 };
3901
3902 static const struct vm_operations_struct shmem_vm_ops = {
3903         .fault          = shmem_fault,
3904         .map_pages      = filemap_map_pages,
3905 #ifdef CONFIG_NUMA
3906         .set_policy     = shmem_set_policy,
3907         .get_policy     = shmem_get_policy,
3908 #endif
3909 };
3910
3911 int shmem_init_fs_context(struct fs_context *fc)
3912 {
3913         struct shmem_options *ctx;
3914
3915         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3916         if (!ctx)
3917                 return -ENOMEM;
3918
3919         ctx->mode = 0777 | S_ISVTX;
3920         ctx->uid = current_fsuid();
3921         ctx->gid = current_fsgid();
3922
3923         fc->fs_private = ctx;
3924         fc->ops = &shmem_fs_context_ops;
3925         return 0;
3926 }
3927
3928 static struct file_system_type shmem_fs_type = {
3929         .owner          = THIS_MODULE,
3930         .name           = "tmpfs",
3931         .init_fs_context = shmem_init_fs_context,
3932 #ifdef CONFIG_TMPFS
3933         .parameters     = shmem_fs_parameters,
3934 #endif
3935         .kill_sb        = kill_litter_super,
3936         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3937 };
3938
3939 int __init shmem_init(void)
3940 {
3941         int error;
3942
3943         shmem_init_inodecache();
3944
3945         error = register_filesystem(&shmem_fs_type);
3946         if (error) {
3947                 pr_err("Could not register tmpfs\n");
3948                 goto out2;
3949         }
3950
3951         shm_mnt = kern_mount(&shmem_fs_type);
3952         if (IS_ERR(shm_mnt)) {
3953                 error = PTR_ERR(shm_mnt);
3954                 pr_err("Could not kern_mount tmpfs\n");
3955                 goto out1;
3956         }
3957
3958 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3959         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3960                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3961         else
3962                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3963 #endif
3964         return 0;
3965
3966 out1:
3967         unregister_filesystem(&shmem_fs_type);
3968 out2:
3969         shmem_destroy_inodecache();
3970         shm_mnt = ERR_PTR(error);
3971         return error;
3972 }
3973
3974 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3975 static ssize_t shmem_enabled_show(struct kobject *kobj,
3976                                   struct kobj_attribute *attr, char *buf)
3977 {
3978         static const int values[] = {
3979                 SHMEM_HUGE_ALWAYS,
3980                 SHMEM_HUGE_WITHIN_SIZE,
3981                 SHMEM_HUGE_ADVISE,
3982                 SHMEM_HUGE_NEVER,
3983                 SHMEM_HUGE_DENY,
3984                 SHMEM_HUGE_FORCE,
3985         };
3986         int len = 0;
3987         int i;
3988
3989         for (i = 0; i < ARRAY_SIZE(values); i++) {
3990                 len += sysfs_emit_at(buf, len,
3991                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3992                                      i ? " " : "",
3993                                      shmem_format_huge(values[i]));
3994         }
3995
3996         len += sysfs_emit_at(buf, len, "\n");
3997
3998         return len;
3999 }
4000
4001 static ssize_t shmem_enabled_store(struct kobject *kobj,
4002                 struct kobj_attribute *attr, const char *buf, size_t count)
4003 {
4004         char tmp[16];
4005         int huge;
4006
4007         if (count + 1 > sizeof(tmp))
4008                 return -EINVAL;
4009         memcpy(tmp, buf, count);
4010         tmp[count] = '\0';
4011         if (count && tmp[count - 1] == '\n')
4012                 tmp[count - 1] = '\0';
4013
4014         huge = shmem_parse_huge(tmp);
4015         if (huge == -EINVAL)
4016                 return -EINVAL;
4017         if (!has_transparent_hugepage() &&
4018                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4019                 return -EINVAL;
4020
4021         shmem_huge = huge;
4022         if (shmem_huge > SHMEM_HUGE_DENY)
4023                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4024         return count;
4025 }
4026
4027 struct kobj_attribute shmem_enabled_attr =
4028         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4029 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4030
4031 #else /* !CONFIG_SHMEM */
4032
4033 /*
4034  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4035  *
4036  * This is intended for small system where the benefits of the full
4037  * shmem code (swap-backed and resource-limited) are outweighed by
4038  * their complexity. On systems without swap this code should be
4039  * effectively equivalent, but much lighter weight.
4040  */
4041
4042 static struct file_system_type shmem_fs_type = {
4043         .name           = "tmpfs",
4044         .init_fs_context = ramfs_init_fs_context,
4045         .parameters     = ramfs_fs_parameters,
4046         .kill_sb        = kill_litter_super,
4047         .fs_flags       = FS_USERNS_MOUNT,
4048 };
4049
4050 int __init shmem_init(void)
4051 {
4052         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4053
4054         shm_mnt = kern_mount(&shmem_fs_type);
4055         BUG_ON(IS_ERR(shm_mnt));
4056
4057         return 0;
4058 }
4059
4060 int shmem_unuse(unsigned int type, bool frontswap,
4061                 unsigned long *fs_pages_to_unuse)
4062 {
4063         return 0;
4064 }
4065
4066 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4067 {
4068         return 0;
4069 }
4070
4071 void shmem_unlock_mapping(struct address_space *mapping)
4072 {
4073 }
4074
4075 #ifdef CONFIG_MMU
4076 unsigned long shmem_get_unmapped_area(struct file *file,
4077                                       unsigned long addr, unsigned long len,
4078                                       unsigned long pgoff, unsigned long flags)
4079 {
4080         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4081 }
4082 #endif
4083
4084 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4085 {
4086         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4087 }
4088 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4089
4090 #define shmem_vm_ops                            generic_file_vm_ops
4091 #define shmem_file_operations                   ramfs_file_operations
4092 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4093 #define shmem_acct_size(flags, size)            0
4094 #define shmem_unacct_size(flags, size)          do {} while (0)
4095
4096 #endif /* CONFIG_SHMEM */
4097
4098 /* common code */
4099
4100 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4101                                        unsigned long flags, unsigned int i_flags)
4102 {
4103         struct inode *inode;
4104         struct file *res;
4105
4106         if (IS_ERR(mnt))
4107                 return ERR_CAST(mnt);
4108
4109         if (size < 0 || size > MAX_LFS_FILESIZE)
4110                 return ERR_PTR(-EINVAL);
4111
4112         if (shmem_acct_size(flags, size))
4113                 return ERR_PTR(-ENOMEM);
4114
4115         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4116                                 flags);
4117         if (unlikely(!inode)) {
4118                 shmem_unacct_size(flags, size);
4119                 return ERR_PTR(-ENOSPC);
4120         }
4121         inode->i_flags |= i_flags;
4122         inode->i_size = size;
4123         clear_nlink(inode);     /* It is unlinked */
4124         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4125         if (!IS_ERR(res))
4126                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4127                                 &shmem_file_operations);
4128         if (IS_ERR(res))
4129                 iput(inode);
4130         return res;
4131 }
4132
4133 /**
4134  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4135  *      kernel internal.  There will be NO LSM permission checks against the
4136  *      underlying inode.  So users of this interface must do LSM checks at a
4137  *      higher layer.  The users are the big_key and shm implementations.  LSM
4138  *      checks are provided at the key or shm level rather than the inode.
4139  * @name: name for dentry (to be seen in /proc/<pid>/maps
4140  * @size: size to be set for the file
4141  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142  */
4143 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4144 {
4145         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4146 }
4147
4148 /**
4149  * shmem_file_setup - get an unlinked file living in tmpfs
4150  * @name: name for dentry (to be seen in /proc/<pid>/maps
4151  * @size: size to be set for the file
4152  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153  */
4154 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4155 {
4156         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4157 }
4158 EXPORT_SYMBOL_GPL(shmem_file_setup);
4159
4160 /**
4161  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4162  * @mnt: the tmpfs mount where the file will be created
4163  * @name: name for dentry (to be seen in /proc/<pid>/maps
4164  * @size: size to be set for the file
4165  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4166  */
4167 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4168                                        loff_t size, unsigned long flags)
4169 {
4170         return __shmem_file_setup(mnt, name, size, flags, 0);
4171 }
4172 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4173
4174 /**
4175  * shmem_zero_setup - setup a shared anonymous mapping
4176  * @vma: the vma to be mmapped is prepared by do_mmap
4177  */
4178 int shmem_zero_setup(struct vm_area_struct *vma)
4179 {
4180         struct file *file;
4181         loff_t size = vma->vm_end - vma->vm_start;
4182
4183         /*
4184          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4185          * between XFS directory reading and selinux: since this file is only
4186          * accessible to the user through its mapping, use S_PRIVATE flag to
4187          * bypass file security, in the same way as shmem_kernel_file_setup().
4188          */
4189         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4190         if (IS_ERR(file))
4191                 return PTR_ERR(file);
4192
4193         if (vma->vm_file)
4194                 fput(vma->vm_file);
4195         vma->vm_file = file;
4196         vma->vm_ops = &shmem_vm_ops;
4197
4198         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4199                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4200                         (vma->vm_end & HPAGE_PMD_MASK)) {
4201                 khugepaged_enter(vma, vma->vm_flags);
4202         }
4203
4204         return 0;
4205 }
4206
4207 /**
4208  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4209  * @mapping:    the page's address_space
4210  * @index:      the page index
4211  * @gfp:        the page allocator flags to use if allocating
4212  *
4213  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4214  * with any new page allocations done using the specified allocation flags.
4215  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4216  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4217  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4218  *
4219  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4220  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4221  */
4222 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4223                                          pgoff_t index, gfp_t gfp)
4224 {
4225 #ifdef CONFIG_SHMEM
4226         struct inode *inode = mapping->host;
4227         struct page *page;
4228         int error;
4229
4230         BUG_ON(!shmem_mapping(mapping));
4231         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4232                                   gfp, NULL, NULL, NULL);
4233         if (error)
4234                 return ERR_PTR(error);
4235
4236         unlock_page(page);
4237         if (PageHWPoison(page)) {
4238                 put_page(page);
4239                 return ERR_PTR(-EIO);
4240         }
4241
4242         return page;
4243 #else
4244         /*
4245          * The tiny !SHMEM case uses ramfs without swap
4246          */
4247         return read_cache_page_gfp(mapping, index, gfp);
4248 #endif
4249 }
4250 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);