2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
29 * mapping->i_mmap_rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * page->flags PG_locked (lock_page)
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
79 #include <asm/tlbflush.h>
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
90 static inline struct anon_vma *anon_vma_alloc(void)
92 struct anon_vma *anon_vma;
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
104 anon_vma->root = anon_vma;
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
126 * atomic_read() rwsem_is_locked()
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
137 kmem_cache_free(anon_vma_cachep, anon_vma);
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
186 * This must be called with the mmap_lock held for reading.
188 int __anon_vma_prepare(struct vm_area_struct *vma)
190 struct mm_struct *mm = vma->vm_mm;
191 struct anon_vma *anon_vma, *allocated;
192 struct anon_vma_chain *avc;
196 avc = anon_vma_chain_alloc(GFP_KERNEL);
200 anon_vma = find_mergeable_anon_vma(vma);
203 anon_vma = anon_vma_alloc();
204 if (unlikely(!anon_vma))
205 goto out_enomem_free_avc;
206 anon_vma->num_children++; /* self-parent link for new root */
207 allocated = anon_vma;
210 anon_vma_lock_write(anon_vma);
211 /* page_table_lock to protect against threads */
212 spin_lock(&mm->page_table_lock);
213 if (likely(!vma->anon_vma)) {
214 vma->anon_vma = anon_vma;
215 anon_vma_chain_link(vma, avc, anon_vma);
216 anon_vma->num_active_vmas++;
220 spin_unlock(&mm->page_table_lock);
221 anon_vma_unlock_write(anon_vma);
223 if (unlikely(allocated))
224 put_anon_vma(allocated);
226 anon_vma_chain_free(avc);
231 anon_vma_chain_free(avc);
237 * This is a useful helper function for locking the anon_vma root as
238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
241 * Such anon_vma's should have the same root, so you'd expect to see
242 * just a single mutex_lock for the whole traversal.
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
246 struct anon_vma *new_root = anon_vma->root;
247 if (new_root != root) {
248 if (WARN_ON_ONCE(root))
249 up_write(&root->rwsem);
251 down_write(&root->rwsem);
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
259 up_write(&root->rwsem);
263 * Attach the anon_vmas from src to dst.
264 * Returns 0 on success, -ENOMEM on failure.
266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270 * call, we can identify this case by checking (!dst->anon_vma &&
273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275 * This prevents degradation of anon_vma hierarchy to endless linear chain in
276 * case of constantly forking task. On the other hand, an anon_vma with more
277 * than one child isn't reused even if there was no alive vma, thus rmap
278 * walker has a good chance of avoiding scanning the whole hierarchy when it
279 * searches where page is mapped.
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
283 struct anon_vma_chain *avc, *pavc;
284 struct anon_vma *root = NULL;
286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 struct anon_vma *anon_vma;
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(dst, avc, anon_vma);
302 * Reuse existing anon_vma if it has no vma and only one
305 * Root anon_vma is never reused:
306 * it has self-parent reference and at least one child.
308 if (!dst->anon_vma && src->anon_vma &&
309 anon_vma->num_children < 2 &&
310 anon_vma->num_active_vmas == 0)
311 dst->anon_vma = anon_vma;
314 dst->anon_vma->num_active_vmas++;
315 unlock_anon_vma_root(root);
320 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 * be incorrectly decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
325 dst->anon_vma = NULL;
326 unlink_anon_vmas(dst);
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
341 /* Don't bother if the parent process has no anon_vma here. */
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
352 error = anon_vma_clone(vma, pvma);
356 /* An existing anon_vma has been reused, all done then. */
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
364 anon_vma->num_active_vmas++;
365 avc = anon_vma_chain_alloc(GFP_KERNEL);
367 goto out_error_free_anon_vma;
370 * The root anon_vma's rwsem is the lock actually used when we
371 * lock any of the anon_vmas in this anon_vma tree.
373 anon_vma->root = pvma->anon_vma->root;
374 anon_vma->parent = pvma->anon_vma;
376 * With refcounts, an anon_vma can stay around longer than the
377 * process it belongs to. The root anon_vma needs to be pinned until
378 * this anon_vma is freed, because the lock lives in the root.
380 get_anon_vma(anon_vma->root);
381 /* Mark this anon_vma as the one where our new (COWed) pages go. */
382 vma->anon_vma = anon_vma;
383 anon_vma_lock_write(anon_vma);
384 anon_vma_chain_link(vma, avc, anon_vma);
385 anon_vma->parent->num_children++;
386 anon_vma_unlock_write(anon_vma);
390 out_error_free_anon_vma:
391 put_anon_vma(anon_vma);
393 unlink_anon_vmas(vma);
397 void unlink_anon_vmas(struct vm_area_struct *vma)
399 struct anon_vma_chain *avc, *next;
400 struct anon_vma *root = NULL;
403 * Unlink each anon_vma chained to the VMA. This list is ordered
404 * from newest to oldest, ensuring the root anon_vma gets freed last.
406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 struct anon_vma *anon_vma = avc->anon_vma;
409 root = lock_anon_vma_root(root, anon_vma);
410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
413 * Leave empty anon_vmas on the list - we'll need
414 * to free them outside the lock.
416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 anon_vma->parent->num_children--;
421 list_del(&avc->same_vma);
422 anon_vma_chain_free(avc);
425 vma->anon_vma->num_active_vmas--;
428 * vma would still be needed after unlink, and anon_vma will be prepared
431 vma->anon_vma = NULL;
433 unlock_anon_vma_root(root);
436 * Iterate the list once more, it now only contains empty and unlinked
437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 * needing to write-acquire the anon_vma->root->rwsem.
440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 struct anon_vma *anon_vma = avc->anon_vma;
443 VM_WARN_ON(anon_vma->num_children);
444 VM_WARN_ON(anon_vma->num_active_vmas);
445 put_anon_vma(anon_vma);
447 list_del(&avc->same_vma);
448 anon_vma_chain_free(avc);
452 static void anon_vma_ctor(void *data)
454 struct anon_vma *anon_vma = data;
456 init_rwsem(&anon_vma->rwsem);
457 atomic_set(&anon_vma->refcount, 0);
458 anon_vma->rb_root = RB_ROOT_CACHED;
461 void __init anon_vma_init(void)
463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 SLAB_PANIC|SLAB_ACCOUNT);
471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
473 * Since there is no serialization what so ever against page_remove_rmap()
474 * the best this function can do is return a refcount increased anon_vma
475 * that might have been relevant to this page.
477 * The page might have been remapped to a different anon_vma or the anon_vma
478 * returned may already be freed (and even reused).
480 * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 * ensure that any anon_vma obtained from the page will still be valid for as
483 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
485 * All users of this function must be very careful when walking the anon_vma
486 * chain and verify that the page in question is indeed mapped in it
487 * [ something equivalent to page_mapped_in_vma() ].
489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491 * if there is a mapcount, we can dereference the anon_vma after observing
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
496 struct anon_vma *anon_vma = NULL;
497 unsigned long anon_mapping;
500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 if (!folio_mapped(folio))
506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 * If this folio is still mapped, then its anon_vma cannot have been
514 * freed. But if it has been unmapped, we have no security against the
515 * anon_vma structure being freed and reused (for another anon_vma:
516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 * above cannot corrupt).
519 if (!folio_mapped(folio)) {
521 put_anon_vma(anon_vma);
531 * Similar to folio_get_anon_vma() except it locks the anon_vma.
533 * Its a little more complex as it tries to keep the fast path to a single
534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535 * reference like with folio_get_anon_vma() and then block on the mutex
536 * on !rwc->try_lock case.
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 struct rmap_walk_control *rwc)
541 struct anon_vma *anon_vma = NULL;
542 struct anon_vma *root_anon_vma;
543 unsigned long anon_mapping;
546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
549 if (!folio_mapped(folio))
552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 root_anon_vma = READ_ONCE(anon_vma->root);
554 if (down_read_trylock(&root_anon_vma->rwsem)) {
556 * If the folio is still mapped, then this anon_vma is still
557 * its anon_vma, and holding the mutex ensures that it will
558 * not go away, see anon_vma_free().
560 if (!folio_mapped(folio)) {
561 up_read(&root_anon_vma->rwsem);
567 if (rwc && rwc->try_lock) {
569 rwc->contended = true;
573 /* trylock failed, we got to sleep */
574 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
579 if (!folio_mapped(folio)) {
581 put_anon_vma(anon_vma);
585 /* we pinned the anon_vma, its safe to sleep */
587 anon_vma_lock_read(anon_vma);
589 if (atomic_dec_and_test(&anon_vma->refcount)) {
591 * Oops, we held the last refcount, release the lock
592 * and bail -- can't simply use put_anon_vma() because
593 * we'll deadlock on the anon_vma_lock_write() recursion.
595 anon_vma_unlock_read(anon_vma);
596 __put_anon_vma(anon_vma);
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
614 void try_to_unmap_flush(void)
616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
618 if (!tlb_ubc->flush_required)
621 arch_tlbbatch_flush(&tlb_ubc->arch);
622 tlb_ubc->flush_required = false;
623 tlb_ubc->writable = false;
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640 #define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
649 bool writable = pte_dirty(pteval);
651 if (!pte_accessible(mm, pteval))
654 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
655 tlb_ubc->flush_required = true;
658 * Ensure compiler does not re-order the setting of tlb_flush_batched
659 * before the PTE is cleared.
662 batch = atomic_read(&mm->tlb_flush_batched);
664 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
666 * Prevent `pending' from catching up with `flushed' because of
667 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
668 * `pending' becomes large.
670 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
673 atomic_inc(&mm->tlb_flush_batched);
677 * If the PTE was dirty then it's best to assume it's writable. The
678 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
679 * before the page is queued for IO.
682 tlb_ubc->writable = true;
686 * Returns true if the TLB flush should be deferred to the end of a batch of
687 * unmap operations to reduce IPIs.
689 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691 bool should_defer = false;
693 if (!(flags & TTU_BATCH_FLUSH))
696 /* If remote CPUs need to be flushed then defer batch the flush */
697 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
705 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
706 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
707 * operation such as mprotect or munmap to race between reclaim unmapping
708 * the page and flushing the page. If this race occurs, it potentially allows
709 * access to data via a stale TLB entry. Tracking all mm's that have TLB
710 * batching in flight would be expensive during reclaim so instead track
711 * whether TLB batching occurred in the past and if so then do a flush here
712 * if required. This will cost one additional flush per reclaim cycle paid
713 * by the first operation at risk such as mprotect and mumap.
715 * This must be called under the PTL so that an access to tlb_flush_batched
716 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
719 void flush_tlb_batched_pending(struct mm_struct *mm)
721 int batch = atomic_read(&mm->tlb_flush_batched);
722 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
723 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
725 if (pending != flushed) {
728 * If the new TLB flushing is pending during flushing, leave
729 * mm->tlb_flush_batched as is, to avoid losing flushing.
731 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
732 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
736 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
740 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
744 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
747 * At what user virtual address is page expected in vma?
748 * Caller should check the page is actually part of the vma.
750 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
752 struct folio *folio = page_folio(page);
753 if (folio_test_anon(folio)) {
754 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
756 * Note: swapoff's unuse_vma() is more efficient with this
757 * check, and needs it to match anon_vma when KSM is active.
759 if (!vma->anon_vma || !page__anon_vma ||
760 vma->anon_vma->root != page__anon_vma->root)
762 } else if (!vma->vm_file) {
764 } else if (vma->vm_file->f_mapping != folio->mapping) {
768 return vma_address(page, vma);
772 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
773 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
776 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
783 pgd = pgd_offset(mm, address);
784 if (!pgd_present(*pgd))
787 p4d = p4d_offset(pgd, address);
788 if (!p4d_present(*p4d))
791 pud = pud_offset(p4d, address);
792 if (!pud_present(*pud))
795 pmd = pmd_offset(pud, address);
800 struct folio_referenced_arg {
803 unsigned long vm_flags;
804 struct mem_cgroup *memcg;
807 * arg: folio_referenced_arg will be passed
809 static bool folio_referenced_one(struct folio *folio,
810 struct vm_area_struct *vma, unsigned long address, void *arg)
812 struct folio_referenced_arg *pra = arg;
813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
816 while (page_vma_mapped_walk(&pvmw)) {
817 address = pvmw.address;
819 if ((vma->vm_flags & VM_LOCKED) &&
820 (!folio_test_large(folio) || !pvmw.pte)) {
821 /* Restore the mlock which got missed */
822 mlock_vma_folio(folio, vma, !pvmw.pte);
823 page_vma_mapped_walk_done(&pvmw);
824 pra->vm_flags |= VM_LOCKED;
825 return false; /* To break the loop */
829 if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
830 lru_gen_look_around(&pvmw);
834 if (ptep_clear_flush_young_notify(vma, address,
837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 if (pmdp_clear_flush_young_notify(vma, address,
842 /* unexpected pmd-mapped folio? */
850 folio_clear_idle(folio);
851 if (folio_test_clear_young(folio))
856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
860 return false; /* To break the loop */
865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
867 struct folio_referenced_arg *pra = arg;
868 struct mem_cgroup *memcg = pra->memcg;
871 * Ignore references from this mapping if it has no recency. If the
872 * folio has been used in another mapping, we will catch it; if this
873 * other mapping is already gone, the unmap path will have set the
874 * referenced flag or activated the folio in zap_pte_range().
876 if (!vma_has_recency(vma))
880 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
881 * of references from different cgroups.
883 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
890 * folio_referenced() - Test if the folio was referenced.
891 * @folio: The folio to test.
892 * @is_locked: Caller holds lock on the folio.
893 * @memcg: target memory cgroup
894 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
896 * Quick test_and_clear_referenced for all mappings of a folio,
898 * Return: The number of mappings which referenced the folio. Return -1 if
899 * the function bailed out due to rmap lock contention.
901 int folio_referenced(struct folio *folio, int is_locked,
902 struct mem_cgroup *memcg, unsigned long *vm_flags)
905 struct folio_referenced_arg pra = {
906 .mapcount = folio_mapcount(folio),
909 struct rmap_walk_control rwc = {
910 .rmap_one = folio_referenced_one,
912 .anon_lock = folio_lock_anon_vma_read,
914 .invalid_vma = invalid_folio_referenced_vma,
921 if (!folio_raw_mapping(folio))
924 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
925 we_locked = folio_trylock(folio);
930 rmap_walk(folio, &rwc);
931 *vm_flags = pra.vm_flags;
936 return rwc.contended ? -1 : pra.referenced;
939 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
942 struct vm_area_struct *vma = pvmw->vma;
943 struct mmu_notifier_range range;
944 unsigned long address = pvmw->address;
947 * We have to assume the worse case ie pmd for invalidation. Note that
948 * the folio can not be freed from this function.
950 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
951 vma->vm_mm, address, vma_address_end(pvmw));
952 mmu_notifier_invalidate_range_start(&range);
954 while (page_vma_mapped_walk(pvmw)) {
957 address = pvmw->address;
960 pte_t *pte = pvmw->pte;
962 if (!pte_dirty(*pte) && !pte_write(*pte))
965 flush_cache_page(vma, address, pte_pfn(*pte));
966 entry = ptep_clear_flush(vma, address, pte);
967 entry = pte_wrprotect(entry);
968 entry = pte_mkclean(entry);
969 set_pte_at(vma->vm_mm, address, pte, entry);
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 pmd_t *pmd = pvmw->pmd;
976 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
979 flush_cache_range(vma, address,
980 address + HPAGE_PMD_SIZE);
981 entry = pmdp_invalidate(vma, address, pmd);
982 entry = pmd_wrprotect(entry);
983 entry = pmd_mkclean(entry);
984 set_pmd_at(vma->vm_mm, address, pmd, entry);
987 /* unexpected pmd-mapped folio? */
993 * No need to call mmu_notifier_invalidate_range() as we are
994 * downgrading page table protection not changing it to point
997 * See Documentation/mm/mmu_notifier.rst
1003 mmu_notifier_invalidate_range_end(&range);
1008 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1009 unsigned long address, void *arg)
1011 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1014 *cleaned += page_vma_mkclean_one(&pvmw);
1019 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1021 if (vma->vm_flags & VM_SHARED)
1027 int folio_mkclean(struct folio *folio)
1030 struct address_space *mapping;
1031 struct rmap_walk_control rwc = {
1032 .arg = (void *)&cleaned,
1033 .rmap_one = page_mkclean_one,
1034 .invalid_vma = invalid_mkclean_vma,
1037 BUG_ON(!folio_test_locked(folio));
1039 if (!folio_mapped(folio))
1042 mapping = folio_mapping(folio);
1046 rmap_walk(folio, &rwc);
1050 EXPORT_SYMBOL_GPL(folio_mkclean);
1053 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1054 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1055 * within the @vma of shared mappings. And since clean PTEs
1056 * should also be readonly, write protects them too.
1058 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1059 * @pgoff: page offset that the @pfn mapped with.
1060 * @vma: vma that @pfn mapped within.
1062 * Returns the number of cleaned PTEs (including PMDs).
1064 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1065 struct vm_area_struct *vma)
1067 struct page_vma_mapped_walk pvmw = {
1069 .nr_pages = nr_pages,
1075 if (invalid_mkclean_vma(vma, NULL))
1078 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1079 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1081 return page_vma_mkclean_one(&pvmw);
1084 int folio_total_mapcount(struct folio *folio)
1086 int mapcount = folio_entire_mapcount(folio);
1090 /* In the common case, avoid the loop when no pages mapped by PTE */
1091 if (folio_nr_pages_mapped(folio) == 0)
1094 * Add all the PTE mappings of those pages mapped by PTE.
1095 * Limit the loop to folio_nr_pages_mapped()?
1096 * Perhaps: given all the raciness, that may be a good or a bad idea.
1098 nr_pages = folio_nr_pages(folio);
1099 for (i = 0; i < nr_pages; i++)
1100 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1102 /* But each of those _mapcounts was based on -1 */
1103 mapcount += nr_pages;
1108 * page_move_anon_rmap - move a page to our anon_vma
1109 * @page: the page to move to our anon_vma
1110 * @vma: the vma the page belongs to
1112 * When a page belongs exclusively to one process after a COW event,
1113 * that page can be moved into the anon_vma that belongs to just that
1114 * process, so the rmap code will not search the parent or sibling
1117 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1119 void *anon_vma = vma->anon_vma;
1120 struct folio *folio = page_folio(page);
1122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1123 VM_BUG_ON_VMA(!anon_vma, vma);
1125 anon_vma += PAGE_MAPPING_ANON;
1127 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1128 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1129 * folio_test_anon()) will not see one without the other.
1131 WRITE_ONCE(folio->mapping, anon_vma);
1132 SetPageAnonExclusive(page);
1136 * __page_set_anon_rmap - set up new anonymous rmap
1137 * @folio: Folio which contains page.
1138 * @page: Page to add to rmap.
1139 * @vma: VM area to add page to.
1140 * @address: User virtual address of the mapping
1141 * @exclusive: the page is exclusively owned by the current process
1143 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1144 struct vm_area_struct *vma, unsigned long address, int exclusive)
1146 struct anon_vma *anon_vma = vma->anon_vma;
1150 if (folio_test_anon(folio))
1154 * If the page isn't exclusively mapped into this vma,
1155 * we must use the _oldest_ possible anon_vma for the
1159 anon_vma = anon_vma->root;
1162 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1163 * Make sure the compiler doesn't split the stores of anon_vma and
1164 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1165 * could mistake the mapping for a struct address_space and crash.
1167 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1168 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1169 folio->index = linear_page_index(vma, address);
1172 SetPageAnonExclusive(page);
1176 * __page_check_anon_rmap - sanity check anonymous rmap addition
1177 * @page: the page to add the mapping to
1178 * @vma: the vm area in which the mapping is added
1179 * @address: the user virtual address mapped
1181 static void __page_check_anon_rmap(struct page *page,
1182 struct vm_area_struct *vma, unsigned long address)
1184 struct folio *folio = page_folio(page);
1186 * The page's anon-rmap details (mapping and index) are guaranteed to
1187 * be set up correctly at this point.
1189 * We have exclusion against page_add_anon_rmap because the caller
1190 * always holds the page locked.
1192 * We have exclusion against page_add_new_anon_rmap because those pages
1193 * are initially only visible via the pagetables, and the pte is locked
1194 * over the call to page_add_new_anon_rmap.
1196 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1198 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1203 * page_add_anon_rmap - add pte mapping to an anonymous page
1204 * @page: the page to add the mapping to
1205 * @vma: the vm area in which the mapping is added
1206 * @address: the user virtual address mapped
1207 * @flags: the rmap flags
1209 * The caller needs to hold the pte lock, and the page must be locked in
1210 * the anon_vma case: to serialize mapping,index checking after setting,
1211 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1212 * (but PageKsm is never downgraded to PageAnon).
1214 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1215 unsigned long address, rmap_t flags)
1217 struct folio *folio = page_folio(page);
1218 atomic_t *mapped = &folio->_nr_pages_mapped;
1219 int nr = 0, nr_pmdmapped = 0;
1220 bool compound = flags & RMAP_COMPOUND;
1223 /* Is page being mapped by PTE? Is this its first map to be added? */
1224 if (likely(!compound)) {
1225 first = atomic_inc_and_test(&page->_mapcount);
1227 if (first && folio_test_large(folio)) {
1228 nr = atomic_inc_return_relaxed(mapped);
1229 nr = (nr < COMPOUND_MAPPED);
1231 } else if (folio_test_pmd_mappable(folio)) {
1232 /* That test is redundant: it's for safety or to optimize out */
1234 first = atomic_inc_and_test(&folio->_entire_mapcount);
1236 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1237 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1238 nr_pmdmapped = folio_nr_pages(folio);
1239 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1240 /* Raced ahead of a remove and another add? */
1241 if (unlikely(nr < 0))
1244 /* Raced ahead of a remove of COMPOUND_MAPPED */
1250 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1251 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1254 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1256 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1258 if (likely(!folio_test_ksm(folio))) {
1259 /* address might be in next vma when migration races vma_merge */
1261 __page_set_anon_rmap(folio, page, vma, address,
1262 !!(flags & RMAP_EXCLUSIVE));
1264 __page_check_anon_rmap(page, vma, address);
1267 mlock_vma_folio(folio, vma, compound);
1271 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1272 * @folio: The folio to add the mapping to.
1273 * @vma: the vm area in which the mapping is added
1274 * @address: the user virtual address mapped
1276 * Like page_add_anon_rmap() but must only be called on *new* folios.
1277 * This means the inc-and-test can be bypassed.
1278 * The folio does not have to be locked.
1280 * If the folio is large, it is accounted as a THP. As the folio
1281 * is new, it's assumed to be mapped exclusively by a single process.
1283 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1284 unsigned long address)
1288 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1289 __folio_set_swapbacked(folio);
1291 if (likely(!folio_test_pmd_mappable(folio))) {
1292 /* increment count (starts at -1) */
1293 atomic_set(&folio->_mapcount, 0);
1296 /* increment count (starts at -1) */
1297 atomic_set(&folio->_entire_mapcount, 0);
1298 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1299 nr = folio_nr_pages(folio);
1300 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1303 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1304 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1308 * page_add_file_rmap - add pte mapping to a file page
1309 * @page: the page to add the mapping to
1310 * @vma: the vm area in which the mapping is added
1311 * @compound: charge the page as compound or small page
1313 * The caller needs to hold the pte lock.
1315 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1318 struct folio *folio = page_folio(page);
1319 atomic_t *mapped = &folio->_nr_pages_mapped;
1320 int nr = 0, nr_pmdmapped = 0;
1323 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1325 /* Is page being mapped by PTE? Is this its first map to be added? */
1326 if (likely(!compound)) {
1327 first = atomic_inc_and_test(&page->_mapcount);
1329 if (first && folio_test_large(folio)) {
1330 nr = atomic_inc_return_relaxed(mapped);
1331 nr = (nr < COMPOUND_MAPPED);
1333 } else if (folio_test_pmd_mappable(folio)) {
1334 /* That test is redundant: it's for safety or to optimize out */
1336 first = atomic_inc_and_test(&folio->_entire_mapcount);
1338 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1339 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1340 nr_pmdmapped = folio_nr_pages(folio);
1341 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1342 /* Raced ahead of a remove and another add? */
1343 if (unlikely(nr < 0))
1346 /* Raced ahead of a remove of COMPOUND_MAPPED */
1353 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1354 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1356 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1358 mlock_vma_folio(folio, vma, compound);
1362 * page_remove_rmap - take down pte mapping from a page
1363 * @page: page to remove mapping from
1364 * @vma: the vm area from which the mapping is removed
1365 * @compound: uncharge the page as compound or small page
1367 * The caller needs to hold the pte lock.
1369 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1372 struct folio *folio = page_folio(page);
1373 atomic_t *mapped = &folio->_nr_pages_mapped;
1374 int nr = 0, nr_pmdmapped = 0;
1376 enum node_stat_item idx;
1378 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1380 /* Hugetlb pages are not counted in NR_*MAPPED */
1381 if (unlikely(folio_test_hugetlb(folio))) {
1382 /* hugetlb pages are always mapped with pmds */
1383 atomic_dec(&folio->_entire_mapcount);
1387 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1388 if (likely(!compound)) {
1389 last = atomic_add_negative(-1, &page->_mapcount);
1391 if (last && folio_test_large(folio)) {
1392 nr = atomic_dec_return_relaxed(mapped);
1393 nr = (nr < COMPOUND_MAPPED);
1395 } else if (folio_test_pmd_mappable(folio)) {
1396 /* That test is redundant: it's for safety or to optimize out */
1398 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1400 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1401 if (likely(nr < COMPOUND_MAPPED)) {
1402 nr_pmdmapped = folio_nr_pages(folio);
1403 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1404 /* Raced ahead of another remove and an add? */
1405 if (unlikely(nr < 0))
1408 /* An add of COMPOUND_MAPPED raced ahead */
1415 if (folio_test_anon(folio))
1417 else if (folio_test_swapbacked(folio))
1418 idx = NR_SHMEM_PMDMAPPED;
1420 idx = NR_FILE_PMDMAPPED;
1421 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1424 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1425 __lruvec_stat_mod_folio(folio, idx, -nr);
1428 * Queue anon THP for deferred split if at least one
1429 * page of the folio is unmapped and at least one page
1432 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1433 if (!compound || nr < nr_pmdmapped)
1434 deferred_split_folio(folio);
1438 * It would be tidy to reset folio_test_anon mapping when fully
1439 * unmapped, but that might overwrite a racing page_add_anon_rmap
1440 * which increments mapcount after us but sets mapping before us:
1441 * so leave the reset to free_pages_prepare, and remember that
1442 * it's only reliable while mapped.
1445 munlock_vma_folio(folio, vma, compound);
1449 * @arg: enum ttu_flags will be passed to this argument
1451 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1452 unsigned long address, void *arg)
1454 struct mm_struct *mm = vma->vm_mm;
1455 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1457 struct page *subpage;
1458 bool anon_exclusive, ret = true;
1459 struct mmu_notifier_range range;
1460 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1463 * When racing against e.g. zap_pte_range() on another cpu,
1464 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1465 * try_to_unmap() may return before page_mapped() has become false,
1466 * if page table locking is skipped: use TTU_SYNC to wait for that.
1468 if (flags & TTU_SYNC)
1469 pvmw.flags = PVMW_SYNC;
1471 if (flags & TTU_SPLIT_HUGE_PMD)
1472 split_huge_pmd_address(vma, address, false, folio);
1475 * For THP, we have to assume the worse case ie pmd for invalidation.
1476 * For hugetlb, it could be much worse if we need to do pud
1477 * invalidation in the case of pmd sharing.
1479 * Note that the folio can not be freed in this function as call of
1480 * try_to_unmap() must hold a reference on the folio.
1482 range.end = vma_address_end(&pvmw);
1483 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1484 address, range.end);
1485 if (folio_test_hugetlb(folio)) {
1487 * If sharing is possible, start and end will be adjusted
1490 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1493 mmu_notifier_invalidate_range_start(&range);
1495 while (page_vma_mapped_walk(&pvmw)) {
1496 /* Unexpected PMD-mapped THP? */
1497 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1500 * If the folio is in an mlock()d vma, we must not swap it out.
1502 if (!(flags & TTU_IGNORE_MLOCK) &&
1503 (vma->vm_flags & VM_LOCKED)) {
1504 /* Restore the mlock which got missed */
1505 mlock_vma_folio(folio, vma, false);
1506 page_vma_mapped_walk_done(&pvmw);
1511 subpage = folio_page(folio,
1512 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1513 address = pvmw.address;
1514 anon_exclusive = folio_test_anon(folio) &&
1515 PageAnonExclusive(subpage);
1517 if (folio_test_hugetlb(folio)) {
1518 bool anon = folio_test_anon(folio);
1521 * The try_to_unmap() is only passed a hugetlb page
1522 * in the case where the hugetlb page is poisoned.
1524 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1526 * huge_pmd_unshare may unmap an entire PMD page.
1527 * There is no way of knowing exactly which PMDs may
1528 * be cached for this mm, so we must flush them all.
1529 * start/end were already adjusted above to cover this
1532 flush_cache_range(vma, range.start, range.end);
1535 * To call huge_pmd_unshare, i_mmap_rwsem must be
1536 * held in write mode. Caller needs to explicitly
1537 * do this outside rmap routines.
1539 * We also must hold hugetlb vma_lock in write mode.
1540 * Lock order dictates acquiring vma_lock BEFORE
1541 * i_mmap_rwsem. We can only try lock here and fail
1545 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1546 if (!hugetlb_vma_trylock_write(vma)) {
1547 page_vma_mapped_walk_done(&pvmw);
1551 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1552 hugetlb_vma_unlock_write(vma);
1553 flush_tlb_range(vma,
1554 range.start, range.end);
1555 mmu_notifier_invalidate_range(mm,
1556 range.start, range.end);
1558 * The ref count of the PMD page was
1559 * dropped which is part of the way map
1560 * counting is done for shared PMDs.
1561 * Return 'true' here. When there is
1562 * no other sharing, huge_pmd_unshare
1563 * returns false and we will unmap the
1564 * actual page and drop map count
1567 page_vma_mapped_walk_done(&pvmw);
1570 hugetlb_vma_unlock_write(vma);
1572 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1574 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1575 /* Nuke the page table entry. */
1576 if (should_defer_flush(mm, flags)) {
1578 * We clear the PTE but do not flush so potentially
1579 * a remote CPU could still be writing to the folio.
1580 * If the entry was previously clean then the
1581 * architecture must guarantee that a clear->dirty
1582 * transition on a cached TLB entry is written through
1583 * and traps if the PTE is unmapped.
1585 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1587 set_tlb_ubc_flush_pending(mm, pteval);
1589 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1594 * Now the pte is cleared. If this pte was uffd-wp armed,
1595 * we may want to replace a none pte with a marker pte if
1596 * it's file-backed, so we don't lose the tracking info.
1598 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1600 /* Set the dirty flag on the folio now the pte is gone. */
1601 if (pte_dirty(pteval))
1602 folio_mark_dirty(folio);
1604 /* Update high watermark before we lower rss */
1605 update_hiwater_rss(mm);
1607 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1608 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1609 if (folio_test_hugetlb(folio)) {
1610 hugetlb_count_sub(folio_nr_pages(folio), mm);
1611 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1613 dec_mm_counter(mm, mm_counter(&folio->page));
1614 set_pte_at(mm, address, pvmw.pte, pteval);
1617 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1619 * The guest indicated that the page content is of no
1620 * interest anymore. Simply discard the pte, vmscan
1621 * will take care of the rest.
1622 * A future reference will then fault in a new zero
1623 * page. When userfaultfd is active, we must not drop
1624 * this page though, as its main user (postcopy
1625 * migration) will not expect userfaults on already
1628 dec_mm_counter(mm, mm_counter(&folio->page));
1629 /* We have to invalidate as we cleared the pte */
1630 mmu_notifier_invalidate_range(mm, address,
1631 address + PAGE_SIZE);
1632 } else if (folio_test_anon(folio)) {
1633 swp_entry_t entry = { .val = page_private(subpage) };
1636 * Store the swap location in the pte.
1637 * See handle_pte_fault() ...
1639 if (unlikely(folio_test_swapbacked(folio) !=
1640 folio_test_swapcache(folio))) {
1643 /* We have to invalidate as we cleared the pte */
1644 mmu_notifier_invalidate_range(mm, address,
1645 address + PAGE_SIZE);
1646 page_vma_mapped_walk_done(&pvmw);
1650 /* MADV_FREE page check */
1651 if (!folio_test_swapbacked(folio)) {
1652 int ref_count, map_count;
1655 * Synchronize with gup_pte_range():
1656 * - clear PTE; barrier; read refcount
1657 * - inc refcount; barrier; read PTE
1661 ref_count = folio_ref_count(folio);
1662 map_count = folio_mapcount(folio);
1665 * Order reads for page refcount and dirty flag
1666 * (see comments in __remove_mapping()).
1671 * The only page refs must be one from isolation
1672 * plus the rmap(s) (dropped by discard:).
1674 if (ref_count == 1 + map_count &&
1675 !folio_test_dirty(folio)) {
1676 /* Invalidate as we cleared the pte */
1677 mmu_notifier_invalidate_range(mm,
1678 address, address + PAGE_SIZE);
1679 dec_mm_counter(mm, MM_ANONPAGES);
1684 * If the folio was redirtied, it cannot be
1685 * discarded. Remap the page to page table.
1687 set_pte_at(mm, address, pvmw.pte, pteval);
1688 folio_set_swapbacked(folio);
1690 page_vma_mapped_walk_done(&pvmw);
1694 if (swap_duplicate(entry) < 0) {
1695 set_pte_at(mm, address, pvmw.pte, pteval);
1697 page_vma_mapped_walk_done(&pvmw);
1700 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1702 set_pte_at(mm, address, pvmw.pte, pteval);
1704 page_vma_mapped_walk_done(&pvmw);
1708 /* See page_try_share_anon_rmap(): clear PTE first. */
1709 if (anon_exclusive &&
1710 page_try_share_anon_rmap(subpage)) {
1712 set_pte_at(mm, address, pvmw.pte, pteval);
1714 page_vma_mapped_walk_done(&pvmw);
1717 if (list_empty(&mm->mmlist)) {
1718 spin_lock(&mmlist_lock);
1719 if (list_empty(&mm->mmlist))
1720 list_add(&mm->mmlist, &init_mm.mmlist);
1721 spin_unlock(&mmlist_lock);
1723 dec_mm_counter(mm, MM_ANONPAGES);
1724 inc_mm_counter(mm, MM_SWAPENTS);
1725 swp_pte = swp_entry_to_pte(entry);
1727 swp_pte = pte_swp_mkexclusive(swp_pte);
1728 if (pte_soft_dirty(pteval))
1729 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1730 if (pte_uffd_wp(pteval))
1731 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1732 set_pte_at(mm, address, pvmw.pte, swp_pte);
1733 /* Invalidate as we cleared the pte */
1734 mmu_notifier_invalidate_range(mm, address,
1735 address + PAGE_SIZE);
1738 * This is a locked file-backed folio,
1739 * so it cannot be removed from the page
1740 * cache and replaced by a new folio before
1741 * mmu_notifier_invalidate_range_end, so no
1742 * concurrent thread might update its page table
1743 * to point at a new folio while a device is
1744 * still using this folio.
1746 * See Documentation/mm/mmu_notifier.rst
1748 dec_mm_counter(mm, mm_counter_file(&folio->page));
1752 * No need to call mmu_notifier_invalidate_range() it has be
1753 * done above for all cases requiring it to happen under page
1754 * table lock before mmu_notifier_invalidate_range_end()
1756 * See Documentation/mm/mmu_notifier.rst
1758 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1759 if (vma->vm_flags & VM_LOCKED)
1760 mlock_drain_local();
1764 mmu_notifier_invalidate_range_end(&range);
1769 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1771 return vma_is_temporary_stack(vma);
1774 static int folio_not_mapped(struct folio *folio)
1776 return !folio_mapped(folio);
1780 * try_to_unmap - Try to remove all page table mappings to a folio.
1781 * @folio: The folio to unmap.
1782 * @flags: action and flags
1784 * Tries to remove all the page table entries which are mapping this
1785 * folio. It is the caller's responsibility to check if the folio is
1786 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1788 * Context: Caller must hold the folio lock.
1790 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1792 struct rmap_walk_control rwc = {
1793 .rmap_one = try_to_unmap_one,
1794 .arg = (void *)flags,
1795 .done = folio_not_mapped,
1796 .anon_lock = folio_lock_anon_vma_read,
1799 if (flags & TTU_RMAP_LOCKED)
1800 rmap_walk_locked(folio, &rwc);
1802 rmap_walk(folio, &rwc);
1806 * @arg: enum ttu_flags will be passed to this argument.
1808 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1809 * containing migration entries.
1811 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1812 unsigned long address, void *arg)
1814 struct mm_struct *mm = vma->vm_mm;
1815 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1817 struct page *subpage;
1818 bool anon_exclusive, ret = true;
1819 struct mmu_notifier_range range;
1820 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1823 * When racing against e.g. zap_pte_range() on another cpu,
1824 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1825 * try_to_migrate() may return before page_mapped() has become false,
1826 * if page table locking is skipped: use TTU_SYNC to wait for that.
1828 if (flags & TTU_SYNC)
1829 pvmw.flags = PVMW_SYNC;
1832 * unmap_page() in mm/huge_memory.c is the only user of migration with
1833 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1835 if (flags & TTU_SPLIT_HUGE_PMD)
1836 split_huge_pmd_address(vma, address, true, folio);
1839 * For THP, we have to assume the worse case ie pmd for invalidation.
1840 * For hugetlb, it could be much worse if we need to do pud
1841 * invalidation in the case of pmd sharing.
1843 * Note that the page can not be free in this function as call of
1844 * try_to_unmap() must hold a reference on the page.
1846 range.end = vma_address_end(&pvmw);
1847 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1848 address, range.end);
1849 if (folio_test_hugetlb(folio)) {
1851 * If sharing is possible, start and end will be adjusted
1854 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1857 mmu_notifier_invalidate_range_start(&range);
1859 while (page_vma_mapped_walk(&pvmw)) {
1860 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861 /* PMD-mapped THP migration entry */
1863 subpage = folio_page(folio,
1864 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1865 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1866 !folio_test_pmd_mappable(folio), folio);
1868 if (set_pmd_migration_entry(&pvmw, subpage)) {
1870 page_vma_mapped_walk_done(&pvmw);
1877 /* Unexpected PMD-mapped THP? */
1878 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1880 if (folio_is_zone_device(folio)) {
1882 * Our PTE is a non-present device exclusive entry and
1883 * calculating the subpage as for the common case would
1884 * result in an invalid pointer.
1886 * Since only PAGE_SIZE pages can currently be
1887 * migrated, just set it to page. This will need to be
1888 * changed when hugepage migrations to device private
1889 * memory are supported.
1891 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1892 subpage = &folio->page;
1894 subpage = folio_page(folio,
1895 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1897 address = pvmw.address;
1898 anon_exclusive = folio_test_anon(folio) &&
1899 PageAnonExclusive(subpage);
1901 if (folio_test_hugetlb(folio)) {
1902 bool anon = folio_test_anon(folio);
1905 * huge_pmd_unshare may unmap an entire PMD page.
1906 * There is no way of knowing exactly which PMDs may
1907 * be cached for this mm, so we must flush them all.
1908 * start/end were already adjusted above to cover this
1911 flush_cache_range(vma, range.start, range.end);
1914 * To call huge_pmd_unshare, i_mmap_rwsem must be
1915 * held in write mode. Caller needs to explicitly
1916 * do this outside rmap routines.
1918 * We also must hold hugetlb vma_lock in write mode.
1919 * Lock order dictates acquiring vma_lock BEFORE
1920 * i_mmap_rwsem. We can only try lock here and
1921 * fail if unsuccessful.
1924 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1925 if (!hugetlb_vma_trylock_write(vma)) {
1926 page_vma_mapped_walk_done(&pvmw);
1930 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1931 hugetlb_vma_unlock_write(vma);
1932 flush_tlb_range(vma,
1933 range.start, range.end);
1934 mmu_notifier_invalidate_range(mm,
1935 range.start, range.end);
1938 * The ref count of the PMD page was
1939 * dropped which is part of the way map
1940 * counting is done for shared PMDs.
1941 * Return 'true' here. When there is
1942 * no other sharing, huge_pmd_unshare
1943 * returns false and we will unmap the
1944 * actual page and drop map count
1947 page_vma_mapped_walk_done(&pvmw);
1950 hugetlb_vma_unlock_write(vma);
1952 /* Nuke the hugetlb page table entry */
1953 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1955 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1956 /* Nuke the page table entry. */
1957 if (should_defer_flush(mm, flags)) {
1959 * We clear the PTE but do not flush so potentially
1960 * a remote CPU could still be writing to the folio.
1961 * If the entry was previously clean then the
1962 * architecture must guarantee that a clear->dirty
1963 * transition on a cached TLB entry is written through
1964 * and traps if the PTE is unmapped.
1966 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1968 set_tlb_ubc_flush_pending(mm, pteval);
1970 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1974 /* Set the dirty flag on the folio now the pte is gone. */
1975 if (pte_dirty(pteval))
1976 folio_mark_dirty(folio);
1978 /* Update high watermark before we lower rss */
1979 update_hiwater_rss(mm);
1981 if (folio_is_device_private(folio)) {
1982 unsigned long pfn = folio_pfn(folio);
1987 BUG_ON(page_try_share_anon_rmap(subpage));
1990 * Store the pfn of the page in a special migration
1991 * pte. do_swap_page() will wait until the migration
1992 * pte is removed and then restart fault handling.
1994 entry = pte_to_swp_entry(pteval);
1995 if (is_writable_device_private_entry(entry))
1996 entry = make_writable_migration_entry(pfn);
1997 else if (anon_exclusive)
1998 entry = make_readable_exclusive_migration_entry(pfn);
2000 entry = make_readable_migration_entry(pfn);
2001 swp_pte = swp_entry_to_pte(entry);
2004 * pteval maps a zone device page and is therefore
2007 if (pte_swp_soft_dirty(pteval))
2008 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2009 if (pte_swp_uffd_wp(pteval))
2010 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2011 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2012 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2013 compound_order(&folio->page));
2015 * No need to invalidate here it will synchronize on
2016 * against the special swap migration pte.
2018 } else if (PageHWPoison(subpage)) {
2019 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2020 if (folio_test_hugetlb(folio)) {
2021 hugetlb_count_sub(folio_nr_pages(folio), mm);
2022 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2024 dec_mm_counter(mm, mm_counter(&folio->page));
2025 set_pte_at(mm, address, pvmw.pte, pteval);
2028 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2030 * The guest indicated that the page content is of no
2031 * interest anymore. Simply discard the pte, vmscan
2032 * will take care of the rest.
2033 * A future reference will then fault in a new zero
2034 * page. When userfaultfd is active, we must not drop
2035 * this page though, as its main user (postcopy
2036 * migration) will not expect userfaults on already
2039 dec_mm_counter(mm, mm_counter(&folio->page));
2040 /* We have to invalidate as we cleared the pte */
2041 mmu_notifier_invalidate_range(mm, address,
2042 address + PAGE_SIZE);
2047 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2048 if (folio_test_hugetlb(folio))
2049 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2051 set_pte_at(mm, address, pvmw.pte, pteval);
2053 page_vma_mapped_walk_done(&pvmw);
2056 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2057 !anon_exclusive, subpage);
2059 /* See page_try_share_anon_rmap(): clear PTE first. */
2060 if (anon_exclusive &&
2061 page_try_share_anon_rmap(subpage)) {
2062 if (folio_test_hugetlb(folio))
2063 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2065 set_pte_at(mm, address, pvmw.pte, pteval);
2067 page_vma_mapped_walk_done(&pvmw);
2072 * Store the pfn of the page in a special migration
2073 * pte. do_swap_page() will wait until the migration
2074 * pte is removed and then restart fault handling.
2076 if (pte_write(pteval))
2077 entry = make_writable_migration_entry(
2078 page_to_pfn(subpage));
2079 else if (anon_exclusive)
2080 entry = make_readable_exclusive_migration_entry(
2081 page_to_pfn(subpage));
2083 entry = make_readable_migration_entry(
2084 page_to_pfn(subpage));
2085 if (pte_young(pteval))
2086 entry = make_migration_entry_young(entry);
2087 if (pte_dirty(pteval))
2088 entry = make_migration_entry_dirty(entry);
2089 swp_pte = swp_entry_to_pte(entry);
2090 if (pte_soft_dirty(pteval))
2091 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2092 if (pte_uffd_wp(pteval))
2093 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2094 if (folio_test_hugetlb(folio))
2095 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2097 set_pte_at(mm, address, pvmw.pte, swp_pte);
2098 trace_set_migration_pte(address, pte_val(swp_pte),
2099 compound_order(&folio->page));
2101 * No need to invalidate here it will synchronize on
2102 * against the special swap migration pte.
2107 * No need to call mmu_notifier_invalidate_range() it has be
2108 * done above for all cases requiring it to happen under page
2109 * table lock before mmu_notifier_invalidate_range_end()
2111 * See Documentation/mm/mmu_notifier.rst
2113 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2114 if (vma->vm_flags & VM_LOCKED)
2115 mlock_drain_local();
2119 mmu_notifier_invalidate_range_end(&range);
2125 * try_to_migrate - try to replace all page table mappings with swap entries
2126 * @folio: the folio to replace page table entries for
2127 * @flags: action and flags
2129 * Tries to remove all the page table entries which are mapping this folio and
2130 * replace them with special swap entries. Caller must hold the folio lock.
2132 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2134 struct rmap_walk_control rwc = {
2135 .rmap_one = try_to_migrate_one,
2136 .arg = (void *)flags,
2137 .done = folio_not_mapped,
2138 .anon_lock = folio_lock_anon_vma_read,
2142 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2143 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2145 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2146 TTU_SYNC | TTU_BATCH_FLUSH)))
2149 if (folio_is_zone_device(folio) &&
2150 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2154 * During exec, a temporary VMA is setup and later moved.
2155 * The VMA is moved under the anon_vma lock but not the
2156 * page tables leading to a race where migration cannot
2157 * find the migration ptes. Rather than increasing the
2158 * locking requirements of exec(), migration skips
2159 * temporary VMAs until after exec() completes.
2161 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2162 rwc.invalid_vma = invalid_migration_vma;
2164 if (flags & TTU_RMAP_LOCKED)
2165 rmap_walk_locked(folio, &rwc);
2167 rmap_walk(folio, &rwc);
2170 #ifdef CONFIG_DEVICE_PRIVATE
2171 struct make_exclusive_args {
2172 struct mm_struct *mm;
2173 unsigned long address;
2178 static bool page_make_device_exclusive_one(struct folio *folio,
2179 struct vm_area_struct *vma, unsigned long address, void *priv)
2181 struct mm_struct *mm = vma->vm_mm;
2182 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2183 struct make_exclusive_args *args = priv;
2185 struct page *subpage;
2187 struct mmu_notifier_range range;
2191 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2192 vma->vm_mm, address, min(vma->vm_end,
2193 address + folio_size(folio)),
2195 mmu_notifier_invalidate_range_start(&range);
2197 while (page_vma_mapped_walk(&pvmw)) {
2198 /* Unexpected PMD-mapped THP? */
2199 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2201 if (!pte_present(*pvmw.pte)) {
2203 page_vma_mapped_walk_done(&pvmw);
2207 subpage = folio_page(folio,
2208 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2209 address = pvmw.address;
2211 /* Nuke the page table entry. */
2212 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2213 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2215 /* Set the dirty flag on the folio now the pte is gone. */
2216 if (pte_dirty(pteval))
2217 folio_mark_dirty(folio);
2220 * Check that our target page is still mapped at the expected
2223 if (args->mm == mm && args->address == address &&
2228 * Store the pfn of the page in a special migration
2229 * pte. do_swap_page() will wait until the migration
2230 * pte is removed and then restart fault handling.
2232 if (pte_write(pteval))
2233 entry = make_writable_device_exclusive_entry(
2234 page_to_pfn(subpage));
2236 entry = make_readable_device_exclusive_entry(
2237 page_to_pfn(subpage));
2238 swp_pte = swp_entry_to_pte(entry);
2239 if (pte_soft_dirty(pteval))
2240 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2241 if (pte_uffd_wp(pteval))
2242 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2244 set_pte_at(mm, address, pvmw.pte, swp_pte);
2247 * There is a reference on the page for the swap entry which has
2248 * been removed, so shouldn't take another.
2250 page_remove_rmap(subpage, vma, false);
2253 mmu_notifier_invalidate_range_end(&range);
2259 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2260 * @folio: The folio to replace page table entries for.
2261 * @mm: The mm_struct where the folio is expected to be mapped.
2262 * @address: Address where the folio is expected to be mapped.
2263 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2265 * Tries to remove all the page table entries which are mapping this
2266 * folio and replace them with special device exclusive swap entries to
2267 * grant a device exclusive access to the folio.
2269 * Context: Caller must hold the folio lock.
2270 * Return: false if the page is still mapped, or if it could not be unmapped
2271 * from the expected address. Otherwise returns true (success).
2273 static bool folio_make_device_exclusive(struct folio *folio,
2274 struct mm_struct *mm, unsigned long address, void *owner)
2276 struct make_exclusive_args args = {
2282 struct rmap_walk_control rwc = {
2283 .rmap_one = page_make_device_exclusive_one,
2284 .done = folio_not_mapped,
2285 .anon_lock = folio_lock_anon_vma_read,
2290 * Restrict to anonymous folios for now to avoid potential writeback
2293 if (!folio_test_anon(folio))
2296 rmap_walk(folio, &rwc);
2298 return args.valid && !folio_mapcount(folio);
2302 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2303 * @mm: mm_struct of associated target process
2304 * @start: start of the region to mark for exclusive device access
2305 * @end: end address of region
2306 * @pages: returns the pages which were successfully marked for exclusive access
2307 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2309 * Returns: number of pages found in the range by GUP. A page is marked for
2310 * exclusive access only if the page pointer is non-NULL.
2312 * This function finds ptes mapping page(s) to the given address range, locks
2313 * them and replaces mappings with special swap entries preventing userspace CPU
2314 * access. On fault these entries are replaced with the original mapping after
2315 * calling MMU notifiers.
2317 * A driver using this to program access from a device must use a mmu notifier
2318 * critical section to hold a device specific lock during programming. Once
2319 * programming is complete it should drop the page lock and reference after
2320 * which point CPU access to the page will revoke the exclusive access.
2322 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2323 unsigned long end, struct page **pages,
2326 long npages = (end - start) >> PAGE_SHIFT;
2329 npages = get_user_pages_remote(mm, start, npages,
2330 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2335 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2336 struct folio *folio = page_folio(pages[i]);
2337 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2343 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2344 folio_unlock(folio);
2352 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2355 void __put_anon_vma(struct anon_vma *anon_vma)
2357 struct anon_vma *root = anon_vma->root;
2359 anon_vma_free(anon_vma);
2360 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2361 anon_vma_free(root);
2364 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2365 struct rmap_walk_control *rwc)
2367 struct anon_vma *anon_vma;
2370 return rwc->anon_lock(folio, rwc);
2373 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2374 * because that depends on page_mapped(); but not all its usages
2375 * are holding mmap_lock. Users without mmap_lock are required to
2376 * take a reference count to prevent the anon_vma disappearing
2378 anon_vma = folio_anon_vma(folio);
2382 if (anon_vma_trylock_read(anon_vma))
2385 if (rwc->try_lock) {
2387 rwc->contended = true;
2391 anon_vma_lock_read(anon_vma);
2397 * rmap_walk_anon - do something to anonymous page using the object-based
2399 * @page: the page to be handled
2400 * @rwc: control variable according to each walk type
2402 * Find all the mappings of a page using the mapping pointer and the vma chains
2403 * contained in the anon_vma struct it points to.
2405 static void rmap_walk_anon(struct folio *folio,
2406 struct rmap_walk_control *rwc, bool locked)
2408 struct anon_vma *anon_vma;
2409 pgoff_t pgoff_start, pgoff_end;
2410 struct anon_vma_chain *avc;
2413 anon_vma = folio_anon_vma(folio);
2414 /* anon_vma disappear under us? */
2415 VM_BUG_ON_FOLIO(!anon_vma, folio);
2417 anon_vma = rmap_walk_anon_lock(folio, rwc);
2422 pgoff_start = folio_pgoff(folio);
2423 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2424 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2425 pgoff_start, pgoff_end) {
2426 struct vm_area_struct *vma = avc->vma;
2427 unsigned long address = vma_address(&folio->page, vma);
2429 VM_BUG_ON_VMA(address == -EFAULT, vma);
2432 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2435 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2437 if (rwc->done && rwc->done(folio))
2442 anon_vma_unlock_read(anon_vma);
2446 * rmap_walk_file - do something to file page using the object-based rmap method
2447 * @page: the page to be handled
2448 * @rwc: control variable according to each walk type
2450 * Find all the mappings of a page using the mapping pointer and the vma chains
2451 * contained in the address_space struct it points to.
2453 static void rmap_walk_file(struct folio *folio,
2454 struct rmap_walk_control *rwc, bool locked)
2456 struct address_space *mapping = folio_mapping(folio);
2457 pgoff_t pgoff_start, pgoff_end;
2458 struct vm_area_struct *vma;
2461 * The page lock not only makes sure that page->mapping cannot
2462 * suddenly be NULLified by truncation, it makes sure that the
2463 * structure at mapping cannot be freed and reused yet,
2464 * so we can safely take mapping->i_mmap_rwsem.
2466 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2471 pgoff_start = folio_pgoff(folio);
2472 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2474 if (i_mmap_trylock_read(mapping))
2477 if (rwc->try_lock) {
2478 rwc->contended = true;
2482 i_mmap_lock_read(mapping);
2485 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2486 pgoff_start, pgoff_end) {
2487 unsigned long address = vma_address(&folio->page, vma);
2489 VM_BUG_ON_VMA(address == -EFAULT, vma);
2492 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2495 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2497 if (rwc->done && rwc->done(folio))
2503 i_mmap_unlock_read(mapping);
2506 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2508 if (unlikely(folio_test_ksm(folio)))
2509 rmap_walk_ksm(folio, rwc);
2510 else if (folio_test_anon(folio))
2511 rmap_walk_anon(folio, rwc, false);
2513 rmap_walk_file(folio, rwc, false);
2516 /* Like rmap_walk, but caller holds relevant rmap lock */
2517 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2519 /* no ksm support for now */
2520 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2521 if (folio_test_anon(folio))
2522 rmap_walk_anon(folio, rwc, true);
2524 rmap_walk_file(folio, rwc, true);
2527 #ifdef CONFIG_HUGETLB_PAGE
2529 * The following two functions are for anonymous (private mapped) hugepages.
2530 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2531 * and no lru code, because we handle hugepages differently from common pages.
2533 * RMAP_COMPOUND is ignored.
2535 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2536 unsigned long address, rmap_t flags)
2538 struct folio *folio = page_folio(page);
2539 struct anon_vma *anon_vma = vma->anon_vma;
2542 BUG_ON(!folio_test_locked(folio));
2544 /* address might be in next vma when migration races vma_merge */
2545 first = atomic_inc_and_test(&folio->_entire_mapcount);
2546 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2547 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2549 __page_set_anon_rmap(folio, page, vma, address,
2550 !!(flags & RMAP_EXCLUSIVE));
2553 void hugepage_add_new_anon_rmap(struct folio *folio,
2554 struct vm_area_struct *vma, unsigned long address)
2556 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2557 /* increment count (starts at -1) */
2558 atomic_set(&folio->_entire_mapcount, 0);
2559 folio_clear_hugetlb_restore_reserve(folio);
2560 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2562 #endif /* CONFIG_HUGETLB_PAGE */