2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
77 #include <asm/tlbflush.h>
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/tlb.h>
81 #include <trace/events/migrate.h>
85 static struct kmem_cache *anon_vma_cachep;
86 static struct kmem_cache *anon_vma_chain_cachep;
88 static inline struct anon_vma *anon_vma_alloc(void)
90 struct anon_vma *anon_vma;
92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 atomic_set(&anon_vma->refcount, 1);
95 anon_vma->degree = 1; /* Reference for first vma */
96 anon_vma->parent = anon_vma;
98 * Initialise the anon_vma root to point to itself. If called
99 * from fork, the root will be reset to the parents anon_vma.
101 anon_vma->root = anon_vma;
107 static inline void anon_vma_free(struct anon_vma *anon_vma)
109 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 * Synchronize against folio_lock_anon_vma_read() such that
113 * we can safely hold the lock without the anon_vma getting
116 * Relies on the full mb implied by the atomic_dec_and_test() from
117 * put_anon_vma() against the acquire barrier implied by
118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
120 * folio_lock_anon_vma_read() VS put_anon_vma()
121 * down_read_trylock() atomic_dec_and_test()
123 * atomic_read() rwsem_is_locked()
125 * LOCK should suffice since the actual taking of the lock must
126 * happen _before_ what follows.
129 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
130 anon_vma_lock_write(anon_vma);
131 anon_vma_unlock_write(anon_vma);
134 kmem_cache_free(anon_vma_cachep, anon_vma);
137 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 static void anon_vma_chain_link(struct vm_area_struct *vma,
148 struct anon_vma_chain *avc,
149 struct anon_vma *anon_vma)
152 avc->anon_vma = anon_vma;
153 list_add(&avc->same_vma, &vma->anon_vma_chain);
154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 * __anon_vma_prepare - attach an anon_vma to a memory region
159 * @vma: the memory region in question
161 * This makes sure the memory mapping described by 'vma' has
162 * an 'anon_vma' attached to it, so that we can associate the
163 * anonymous pages mapped into it with that anon_vma.
165 * The common case will be that we already have one, which
166 * is handled inline by anon_vma_prepare(). But if
167 * not we either need to find an adjacent mapping that we
168 * can re-use the anon_vma from (very common when the only
169 * reason for splitting a vma has been mprotect()), or we
170 * allocate a new one.
172 * Anon-vma allocations are very subtle, because we may have
173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
174 * and that may actually touch the rwsem even in the newly
175 * allocated vma (it depends on RCU to make sure that the
176 * anon_vma isn't actually destroyed).
178 * As a result, we need to do proper anon_vma locking even
179 * for the new allocation. At the same time, we do not want
180 * to do any locking for the common case of already having
183 * This must be called with the mmap_lock held for reading.
185 int __anon_vma_prepare(struct vm_area_struct *vma)
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
193 avc = anon_vma_chain_alloc(GFP_KERNEL);
197 anon_vma = find_mergeable_anon_vma(vma);
200 anon_vma = anon_vma_alloc();
201 if (unlikely(!anon_vma))
202 goto out_enomem_free_avc;
203 allocated = anon_vma;
206 anon_vma_lock_write(anon_vma);
207 /* page_table_lock to protect against threads */
208 spin_lock(&mm->page_table_lock);
209 if (likely(!vma->anon_vma)) {
210 vma->anon_vma = anon_vma;
211 anon_vma_chain_link(vma, avc, anon_vma);
212 /* vma reference or self-parent link for new root */
217 spin_unlock(&mm->page_table_lock);
218 anon_vma_unlock_write(anon_vma);
220 if (unlikely(allocated))
221 put_anon_vma(allocated);
223 anon_vma_chain_free(avc);
228 anon_vma_chain_free(avc);
234 * This is a useful helper function for locking the anon_vma root as
235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * Such anon_vma's should have the same root, so you'd expect to see
239 * just a single mutex_lock for the whole traversal.
241 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243 struct anon_vma *new_root = anon_vma->root;
244 if (new_root != root) {
245 if (WARN_ON_ONCE(root))
246 up_write(&root->rwsem);
248 down_write(&root->rwsem);
253 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 up_write(&root->rwsem);
260 * Attach the anon_vmas from src to dst.
261 * Returns 0 on success, -ENOMEM on failure.
263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
264 * anon_vma_fork(). The first three want an exact copy of src, while the last
265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271 * This prevents degradation of anon_vma hierarchy to endless linear chain in
272 * case of constantly forking task. On the other hand, an anon_vma with more
273 * than one child isn't reused even if there was no alive vma, thus rmap
274 * walker has a good chance of avoiding scanning the whole hierarchy when it
275 * searches where page is mapped.
277 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
279 struct anon_vma_chain *avc, *pavc;
280 struct anon_vma *root = NULL;
282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
283 struct anon_vma *anon_vma;
285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 if (unlikely(!avc)) {
287 unlock_anon_vma_root(root);
289 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 anon_vma = pavc->anon_vma;
294 root = lock_anon_vma_root(root, anon_vma);
295 anon_vma_chain_link(dst, avc, anon_vma);
298 * Reuse existing anon_vma if its degree lower than two,
299 * that means it has no vma and only one anon_vma child.
301 * Do not chose parent anon_vma, otherwise first child
302 * will always reuse it. Root anon_vma is never reused:
303 * it has self-parent reference and at least one child.
305 if (!dst->anon_vma && src->anon_vma &&
306 anon_vma != src->anon_vma && anon_vma->degree < 2)
307 dst->anon_vma = anon_vma;
310 dst->anon_vma->degree++;
311 unlock_anon_vma_root(root);
316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 * decremented in unlink_anon_vmas().
318 * We can safely do this because callers of anon_vma_clone() don't care
319 * about dst->anon_vma if anon_vma_clone() failed.
321 dst->anon_vma = NULL;
322 unlink_anon_vmas(dst);
327 * Attach vma to its own anon_vma, as well as to the anon_vmas that
328 * the corresponding VMA in the parent process is attached to.
329 * Returns 0 on success, non-zero on failure.
331 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
333 struct anon_vma_chain *avc;
334 struct anon_vma *anon_vma;
337 /* Don't bother if the parent process has no anon_vma here. */
341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 vma->anon_vma = NULL;
345 * First, attach the new VMA to the parent VMA's anon_vmas,
346 * so rmap can find non-COWed pages in child processes.
348 error = anon_vma_clone(vma, pvma);
352 /* An existing anon_vma has been reused, all done then. */
356 /* Then add our own anon_vma. */
357 anon_vma = anon_vma_alloc();
360 avc = anon_vma_chain_alloc(GFP_KERNEL);
362 goto out_error_free_anon_vma;
365 * The root anon_vma's rwsem is the lock actually used when we
366 * lock any of the anon_vmas in this anon_vma tree.
368 anon_vma->root = pvma->anon_vma->root;
369 anon_vma->parent = pvma->anon_vma;
371 * With refcounts, an anon_vma can stay around longer than the
372 * process it belongs to. The root anon_vma needs to be pinned until
373 * this anon_vma is freed, because the lock lives in the root.
375 get_anon_vma(anon_vma->root);
376 /* Mark this anon_vma as the one where our new (COWed) pages go. */
377 vma->anon_vma = anon_vma;
378 anon_vma_lock_write(anon_vma);
379 anon_vma_chain_link(vma, avc, anon_vma);
380 anon_vma->parent->degree++;
381 anon_vma_unlock_write(anon_vma);
385 out_error_free_anon_vma:
386 put_anon_vma(anon_vma);
388 unlink_anon_vmas(vma);
392 void unlink_anon_vmas(struct vm_area_struct *vma)
394 struct anon_vma_chain *avc, *next;
395 struct anon_vma *root = NULL;
398 * Unlink each anon_vma chained to the VMA. This list is ordered
399 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 struct anon_vma *anon_vma = avc->anon_vma;
404 root = lock_anon_vma_root(root, anon_vma);
405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
408 * Leave empty anon_vmas on the list - we'll need
409 * to free them outside the lock.
411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 anon_vma->parent->degree--;
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
420 vma->anon_vma->degree--;
423 * vma would still be needed after unlink, and anon_vma will be prepared
426 vma->anon_vma = NULL;
428 unlock_anon_vma_root(root);
431 * Iterate the list once more, it now only contains empty and unlinked
432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 * needing to write-acquire the anon_vma->root->rwsem.
435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 struct anon_vma *anon_vma = avc->anon_vma;
438 VM_WARN_ON(anon_vma->degree);
439 put_anon_vma(anon_vma);
441 list_del(&avc->same_vma);
442 anon_vma_chain_free(avc);
446 static void anon_vma_ctor(void *data)
448 struct anon_vma *anon_vma = data;
450 init_rwsem(&anon_vma->rwsem);
451 atomic_set(&anon_vma->refcount, 0);
452 anon_vma->rb_root = RB_ROOT_CACHED;
455 void __init anon_vma_init(void)
457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
461 SLAB_PANIC|SLAB_ACCOUNT);
465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 * Since there is no serialization what so ever against page_remove_rmap()
468 * the best this function can do is return a refcount increased anon_vma
469 * that might have been relevant to this page.
471 * The page might have been remapped to a different anon_vma or the anon_vma
472 * returned may already be freed (and even reused).
474 * In case it was remapped to a different anon_vma, the new anon_vma will be a
475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
476 * ensure that any anon_vma obtained from the page will still be valid for as
477 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 * All users of this function must be very careful when walking the anon_vma
480 * chain and verify that the page in question is indeed mapped in it
481 * [ something equivalent to page_mapped_in_vma() ].
483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
485 * if there is a mapcount, we can dereference the anon_vma after observing
488 struct anon_vma *page_get_anon_vma(struct page *page)
490 struct anon_vma *anon_vma = NULL;
491 unsigned long anon_mapping;
494 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
497 if (!page_mapped(page))
500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
501 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
507 * If this page is still mapped, then its anon_vma cannot have been
508 * freed. But if it has been unmapped, we have no security against the
509 * anon_vma structure being freed and reused (for another anon_vma:
510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
511 * above cannot corrupt).
513 if (!page_mapped(page)) {
515 put_anon_vma(anon_vma);
525 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 * Its a little more complex as it tries to keep the fast path to a single
528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
529 * reference like with page_get_anon_vma() and then block on the mutex.
531 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
533 struct anon_vma *anon_vma = NULL;
534 struct anon_vma *root_anon_vma;
535 unsigned long anon_mapping;
538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
541 if (!folio_mapped(folio))
544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
545 root_anon_vma = READ_ONCE(anon_vma->root);
546 if (down_read_trylock(&root_anon_vma->rwsem)) {
548 * If the folio is still mapped, then this anon_vma is still
549 * its anon_vma, and holding the mutex ensures that it will
550 * not go away, see anon_vma_free().
552 if (!folio_mapped(folio)) {
553 up_read(&root_anon_vma->rwsem);
559 /* trylock failed, we got to sleep */
560 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
565 if (!folio_mapped(folio)) {
567 put_anon_vma(anon_vma);
571 /* we pinned the anon_vma, its safe to sleep */
573 anon_vma_lock_read(anon_vma);
575 if (atomic_dec_and_test(&anon_vma->refcount)) {
577 * Oops, we held the last refcount, release the lock
578 * and bail -- can't simply use put_anon_vma() because
579 * we'll deadlock on the anon_vma_lock_write() recursion.
581 anon_vma_unlock_read(anon_vma);
582 __put_anon_vma(anon_vma);
593 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
595 anon_vma_unlock_read(anon_vma);
598 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
601 * important if a PTE was dirty when it was unmapped that it's flushed
602 * before any IO is initiated on the page to prevent lost writes. Similarly,
603 * it must be flushed before freeing to prevent data leakage.
605 void try_to_unmap_flush(void)
607 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
609 if (!tlb_ubc->flush_required)
612 arch_tlbbatch_flush(&tlb_ubc->arch);
613 tlb_ubc->flush_required = false;
614 tlb_ubc->writable = false;
617 /* Flush iff there are potentially writable TLB entries that can race with IO */
618 void try_to_unmap_flush_dirty(void)
620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
622 if (tlb_ubc->writable)
623 try_to_unmap_flush();
627 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
630 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
631 #define TLB_FLUSH_BATCH_PENDING_MASK \
632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
633 #define TLB_FLUSH_BATCH_PENDING_LARGE \
634 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
636 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
638 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
642 tlb_ubc->flush_required = true;
645 * Ensure compiler does not re-order the setting of tlb_flush_batched
646 * before the PTE is cleared.
649 batch = atomic_read(&mm->tlb_flush_batched);
651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
653 * Prevent `pending' from catching up with `flushed' because of
654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
655 * `pending' becomes large.
657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
658 if (nbatch != batch) {
663 atomic_inc(&mm->tlb_flush_batched);
667 * If the PTE was dirty then it's best to assume it's writable. The
668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
669 * before the page is queued for IO.
672 tlb_ubc->writable = true;
676 * Returns true if the TLB flush should be deferred to the end of a batch of
677 * unmap operations to reduce IPIs.
679 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
681 bool should_defer = false;
683 if (!(flags & TTU_BATCH_FLUSH))
686 /* If remote CPUs need to be flushed then defer batch the flush */
687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
697 * operation such as mprotect or munmap to race between reclaim unmapping
698 * the page and flushing the page. If this race occurs, it potentially allows
699 * access to data via a stale TLB entry. Tracking all mm's that have TLB
700 * batching in flight would be expensive during reclaim so instead track
701 * whether TLB batching occurred in the past and if so then do a flush here
702 * if required. This will cost one additional flush per reclaim cycle paid
703 * by the first operation at risk such as mprotect and mumap.
705 * This must be called under the PTL so that an access to tlb_flush_batched
706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
709 void flush_tlb_batched_pending(struct mm_struct *mm)
711 int batch = atomic_read(&mm->tlb_flush_batched);
712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
715 if (pending != flushed) {
718 * If the new TLB flushing is pending during flushing, leave
719 * mm->tlb_flush_batched as is, to avoid losing flushing.
721 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
726 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
730 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
734 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
737 * At what user virtual address is page expected in vma?
738 * Caller should check the page is actually part of the vma.
740 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
742 struct folio *folio = page_folio(page);
743 if (folio_test_anon(folio)) {
744 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
746 * Note: swapoff's unuse_vma() is more efficient with this
747 * check, and needs it to match anon_vma when KSM is active.
749 if (!vma->anon_vma || !page__anon_vma ||
750 vma->anon_vma->root != page__anon_vma->root)
752 } else if (!vma->vm_file) {
754 } else if (vma->vm_file->f_mapping != folio->mapping) {
758 return vma_address(page, vma);
761 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
769 pgd = pgd_offset(mm, address);
770 if (!pgd_present(*pgd))
773 p4d = p4d_offset(pgd, address);
774 if (!p4d_present(*p4d))
777 pud = pud_offset(p4d, address);
778 if (!pud_present(*pud))
781 pmd = pmd_offset(pud, address);
783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
784 * without holding anon_vma lock for write. So when looking for a
785 * genuine pmde (in which to find pte), test present and !THP together.
789 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
795 struct folio_referenced_arg {
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
802 * arg: folio_referenced_arg will be passed
804 static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
814 if ((vma->vm_flags & VM_LOCKED) &&
815 (!folio_test_large(folio) || !pvmw.pte)) {
816 /* Restore the mlock which got missed */
817 mlock_vma_folio(folio, vma, !pvmw.pte);
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
820 return false; /* To break the loop */
824 if (ptep_clear_flush_young_notify(vma, address,
827 * Don't treat a reference through
828 * a sequentially read mapping as such.
829 * If the folio has been used in another mapping,
830 * we will catch it; if this other mapping is
831 * already gone, the unmap path will have set
832 * the referenced flag or activated the folio.
834 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 if (pmdp_clear_flush_young_notify(vma, address,
842 /* unexpected pmd-mapped folio? */
850 folio_clear_idle(folio);
851 if (folio_test_clear_young(folio))
856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
860 return false; /* To break the loop */
865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
867 struct folio_referenced_arg *pra = arg;
868 struct mem_cgroup *memcg = pra->memcg;
870 if (!mm_match_cgroup(vma->vm_mm, memcg))
877 * folio_referenced() - Test if the folio was referenced.
878 * @folio: The folio to test.
879 * @is_locked: Caller holds lock on the folio.
880 * @memcg: target memory cgroup
881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
883 * Quick test_and_clear_referenced for all mappings of a folio,
885 * Return: The number of mappings which referenced the folio.
887 int folio_referenced(struct folio *folio, int is_locked,
888 struct mem_cgroup *memcg, unsigned long *vm_flags)
891 struct folio_referenced_arg pra = {
892 .mapcount = folio_mapcount(folio),
895 struct rmap_walk_control rwc = {
896 .rmap_one = folio_referenced_one,
898 .anon_lock = folio_lock_anon_vma_read,
905 if (!folio_raw_mapping(folio))
908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
909 we_locked = folio_trylock(folio);
915 * If we are reclaiming on behalf of a cgroup, skip
916 * counting on behalf of references from different
920 rwc.invalid_vma = invalid_folio_referenced_vma;
923 rmap_walk(folio, &rwc);
924 *vm_flags = pra.vm_flags;
929 return pra.referenced;
932 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
933 unsigned long address, void *arg)
935 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
936 struct mmu_notifier_range range;
940 * We have to assume the worse case ie pmd for invalidation. Note that
941 * the folio can not be freed from this function.
943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
944 0, vma, vma->vm_mm, address,
945 vma_address_end(&pvmw));
946 mmu_notifier_invalidate_range_start(&range);
948 while (page_vma_mapped_walk(&pvmw)) {
951 address = pvmw.address;
954 pte_t *pte = pvmw.pte;
956 if (!pte_dirty(*pte) && !pte_write(*pte))
959 flush_cache_page(vma, address, pte_pfn(*pte));
960 entry = ptep_clear_flush(vma, address, pte);
961 entry = pte_wrprotect(entry);
962 entry = pte_mkclean(entry);
963 set_pte_at(vma->vm_mm, address, pte, entry);
966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
967 pmd_t *pmd = pvmw.pmd;
970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
973 flush_cache_page(vma, address, folio_pfn(folio));
974 entry = pmdp_invalidate(vma, address, pmd);
975 entry = pmd_wrprotect(entry);
976 entry = pmd_mkclean(entry);
977 set_pmd_at(vma->vm_mm, address, pmd, entry);
980 /* unexpected pmd-mapped folio? */
986 * No need to call mmu_notifier_invalidate_range() as we are
987 * downgrading page table protection not changing it to point
990 * See Documentation/vm/mmu_notifier.rst
996 mmu_notifier_invalidate_range_end(&range);
1001 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1003 if (vma->vm_flags & VM_SHARED)
1009 int folio_mkclean(struct folio *folio)
1012 struct address_space *mapping;
1013 struct rmap_walk_control rwc = {
1014 .arg = (void *)&cleaned,
1015 .rmap_one = page_mkclean_one,
1016 .invalid_vma = invalid_mkclean_vma,
1019 BUG_ON(!folio_test_locked(folio));
1021 if (!folio_mapped(folio))
1024 mapping = folio_mapping(folio);
1028 rmap_walk(folio, &rwc);
1032 EXPORT_SYMBOL_GPL(folio_mkclean);
1035 * page_move_anon_rmap - move a page to our anon_vma
1036 * @page: the page to move to our anon_vma
1037 * @vma: the vma the page belongs to
1039 * When a page belongs exclusively to one process after a COW event,
1040 * that page can be moved into the anon_vma that belongs to just that
1041 * process, so the rmap code will not search the parent or sibling
1044 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1046 struct anon_vma *anon_vma = vma->anon_vma;
1048 page = compound_head(page);
1050 VM_BUG_ON_PAGE(!PageLocked(page), page);
1051 VM_BUG_ON_VMA(!anon_vma, vma);
1053 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1055 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1056 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1057 * folio_test_anon()) will not see one without the other.
1059 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1063 * __page_set_anon_rmap - set up new anonymous rmap
1064 * @page: Page or Hugepage to add to rmap
1065 * @vma: VM area to add page to.
1066 * @address: User virtual address of the mapping
1067 * @exclusive: the page is exclusively owned by the current process
1069 static void __page_set_anon_rmap(struct page *page,
1070 struct vm_area_struct *vma, unsigned long address, int exclusive)
1072 struct anon_vma *anon_vma = vma->anon_vma;
1080 * If the page isn't exclusively mapped into this vma,
1081 * we must use the _oldest_ possible anon_vma for the
1085 anon_vma = anon_vma->root;
1088 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1089 * Make sure the compiler doesn't split the stores of anon_vma and
1090 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1091 * could mistake the mapping for a struct address_space and crash.
1093 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1094 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1095 page->index = linear_page_index(vma, address);
1099 * __page_check_anon_rmap - sanity check anonymous rmap addition
1100 * @page: the page to add the mapping to
1101 * @vma: the vm area in which the mapping is added
1102 * @address: the user virtual address mapped
1104 static void __page_check_anon_rmap(struct page *page,
1105 struct vm_area_struct *vma, unsigned long address)
1107 struct folio *folio = page_folio(page);
1109 * The page's anon-rmap details (mapping and index) are guaranteed to
1110 * be set up correctly at this point.
1112 * We have exclusion against page_add_anon_rmap because the caller
1113 * always holds the page locked.
1115 * We have exclusion against page_add_new_anon_rmap because those pages
1116 * are initially only visible via the pagetables, and the pte is locked
1117 * over the call to page_add_new_anon_rmap.
1119 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1121 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1126 * page_add_anon_rmap - add pte mapping to an anonymous page
1127 * @page: the page to add the mapping to
1128 * @vma: the vm area in which the mapping is added
1129 * @address: the user virtual address mapped
1130 * @compound: charge the page as compound or small page
1132 * The caller needs to hold the pte lock, and the page must be locked in
1133 * the anon_vma case: to serialize mapping,index checking after setting,
1134 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1135 * (but PageKsm is never downgraded to PageAnon).
1137 void page_add_anon_rmap(struct page *page,
1138 struct vm_area_struct *vma, unsigned long address, bool compound)
1140 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1144 * Special version of the above for do_swap_page, which often runs
1145 * into pages that are exclusively owned by the current process.
1146 * Everybody else should continue to use page_add_anon_rmap above.
1148 void do_page_add_anon_rmap(struct page *page,
1149 struct vm_area_struct *vma, unsigned long address, int flags)
1151 bool compound = flags & RMAP_COMPOUND;
1154 if (unlikely(PageKsm(page)))
1155 lock_page_memcg(page);
1157 VM_BUG_ON_PAGE(!PageLocked(page), page);
1161 VM_BUG_ON_PAGE(!PageLocked(page), page);
1162 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1163 mapcount = compound_mapcount_ptr(page);
1164 first = atomic_inc_and_test(mapcount);
1166 first = atomic_inc_and_test(&page->_mapcount);
1170 int nr = compound ? thp_nr_pages(page) : 1;
1172 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1173 * these counters are not modified in interrupt context, and
1174 * pte lock(a spinlock) is held, which implies preemption
1178 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1179 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1182 if (unlikely(PageKsm(page)))
1183 unlock_page_memcg(page);
1185 /* address might be in next vma when migration races vma_adjust */
1187 __page_set_anon_rmap(page, vma, address,
1188 flags & RMAP_EXCLUSIVE);
1190 __page_check_anon_rmap(page, vma, address);
1192 mlock_vma_page(page, vma, compound);
1196 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1197 * @page: the page to add the mapping to
1198 * @vma: the vm area in which the mapping is added
1199 * @address: the user virtual address mapped
1200 * @compound: charge the page as compound or small page
1202 * Same as page_add_anon_rmap but must only be called on *new* pages.
1203 * This means the inc-and-test can be bypassed.
1204 * Page does not have to be locked.
1206 void page_add_new_anon_rmap(struct page *page,
1207 struct vm_area_struct *vma, unsigned long address, bool compound)
1209 int nr = compound ? thp_nr_pages(page) : 1;
1211 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1212 __SetPageSwapBacked(page);
1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 /* increment count (starts at -1) */
1216 atomic_set(compound_mapcount_ptr(page), 0);
1217 atomic_set(compound_pincount_ptr(page), 0);
1219 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1221 /* Anon THP always mapped first with PMD */
1222 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1223 /* increment count (starts at -1) */
1224 atomic_set(&page->_mapcount, 0);
1226 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1227 __page_set_anon_rmap(page, vma, address, 1);
1231 * page_add_file_rmap - add pte mapping to a file page
1232 * @page: the page to add the mapping to
1233 * @vma: the vm area in which the mapping is added
1234 * @compound: charge the page as compound or small page
1236 * The caller needs to hold the pte lock.
1238 void page_add_file_rmap(struct page *page,
1239 struct vm_area_struct *vma, bool compound)
1243 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1244 lock_page_memcg(page);
1245 if (compound && PageTransHuge(page)) {
1246 int nr_pages = thp_nr_pages(page);
1248 for (i = 0; i < nr_pages; i++) {
1249 if (atomic_inc_and_test(&page[i]._mapcount))
1252 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1256 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1257 * but page lock is held by all page_add_file_rmap() compound
1258 * callers, and SetPageDoubleMap below warns if !PageLocked:
1259 * so here is a place that DoubleMap can be safely cleared.
1261 VM_WARN_ON_ONCE(!PageLocked(page));
1262 if (nr == nr_pages && PageDoubleMap(page))
1263 ClearPageDoubleMap(page);
1265 if (PageSwapBacked(page))
1266 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1269 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1272 if (PageTransCompound(page) && page_mapping(page)) {
1273 VM_WARN_ON_ONCE(!PageLocked(page));
1274 SetPageDoubleMap(compound_head(page));
1276 if (atomic_inc_and_test(&page->_mapcount))
1281 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1282 unlock_page_memcg(page);
1284 mlock_vma_page(page, vma, compound);
1287 static void page_remove_file_rmap(struct page *page, bool compound)
1291 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1293 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1294 if (unlikely(PageHuge(page))) {
1295 /* hugetlb pages are always mapped with pmds */
1296 atomic_dec(compound_mapcount_ptr(page));
1300 /* page still mapped by someone else? */
1301 if (compound && PageTransHuge(page)) {
1302 int nr_pages = thp_nr_pages(page);
1304 for (i = 0; i < nr_pages; i++) {
1305 if (atomic_add_negative(-1, &page[i]._mapcount))
1308 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1310 if (PageSwapBacked(page))
1311 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1314 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1317 if (atomic_add_negative(-1, &page->_mapcount))
1322 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1325 static void page_remove_anon_compound_rmap(struct page *page)
1329 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1332 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1333 if (unlikely(PageHuge(page)))
1336 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1339 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1341 if (TestClearPageDoubleMap(page)) {
1343 * Subpages can be mapped with PTEs too. Check how many of
1344 * them are still mapped.
1346 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1347 if (atomic_add_negative(-1, &page[i]._mapcount))
1352 * Queue the page for deferred split if at least one small
1353 * page of the compound page is unmapped, but at least one
1354 * small page is still mapped.
1356 if (nr && nr < thp_nr_pages(page))
1357 deferred_split_huge_page(page);
1359 nr = thp_nr_pages(page);
1363 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1367 * page_remove_rmap - take down pte mapping from a page
1368 * @page: page to remove mapping from
1369 * @vma: the vm area from which the mapping is removed
1370 * @compound: uncharge the page as compound or small page
1372 * The caller needs to hold the pte lock.
1374 void page_remove_rmap(struct page *page,
1375 struct vm_area_struct *vma, bool compound)
1377 lock_page_memcg(page);
1379 if (!PageAnon(page)) {
1380 page_remove_file_rmap(page, compound);
1385 page_remove_anon_compound_rmap(page);
1389 /* page still mapped by someone else? */
1390 if (!atomic_add_negative(-1, &page->_mapcount))
1394 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1395 * these counters are not modified in interrupt context, and
1396 * pte lock(a spinlock) is held, which implies preemption disabled.
1398 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1400 if (PageTransCompound(page))
1401 deferred_split_huge_page(compound_head(page));
1404 * It would be tidy to reset the PageAnon mapping here,
1405 * but that might overwrite a racing page_add_anon_rmap
1406 * which increments mapcount after us but sets mapping
1407 * before us: so leave the reset to free_unref_page,
1408 * and remember that it's only reliable while mapped.
1409 * Leaving it set also helps swapoff to reinstate ptes
1410 * faster for those pages still in swapcache.
1413 unlock_page_memcg(page);
1415 munlock_vma_page(page, vma, compound);
1419 * @arg: enum ttu_flags will be passed to this argument
1421 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1422 unsigned long address, void *arg)
1424 struct mm_struct *mm = vma->vm_mm;
1425 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1427 struct page *subpage;
1429 struct mmu_notifier_range range;
1430 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1433 * When racing against e.g. zap_pte_range() on another cpu,
1434 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1435 * try_to_unmap() may return before page_mapped() has become false,
1436 * if page table locking is skipped: use TTU_SYNC to wait for that.
1438 if (flags & TTU_SYNC)
1439 pvmw.flags = PVMW_SYNC;
1441 if (flags & TTU_SPLIT_HUGE_PMD)
1442 split_huge_pmd_address(vma, address, false, folio);
1445 * For THP, we have to assume the worse case ie pmd for invalidation.
1446 * For hugetlb, it could be much worse if we need to do pud
1447 * invalidation in the case of pmd sharing.
1449 * Note that the folio can not be freed in this function as call of
1450 * try_to_unmap() must hold a reference on the folio.
1452 range.end = vma_address_end(&pvmw);
1453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1454 address, range.end);
1455 if (folio_test_hugetlb(folio)) {
1457 * If sharing is possible, start and end will be adjusted
1460 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1463 mmu_notifier_invalidate_range_start(&range);
1465 while (page_vma_mapped_walk(&pvmw)) {
1466 /* Unexpected PMD-mapped THP? */
1467 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1470 * If the folio is in an mlock()d vma, we must not swap it out.
1472 if (!(flags & TTU_IGNORE_MLOCK) &&
1473 (vma->vm_flags & VM_LOCKED)) {
1474 /* Restore the mlock which got missed */
1475 mlock_vma_folio(folio, vma, false);
1476 page_vma_mapped_walk_done(&pvmw);
1481 subpage = folio_page(folio,
1482 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1483 address = pvmw.address;
1485 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1487 * To call huge_pmd_unshare, i_mmap_rwsem must be
1488 * held in write mode. Caller needs to explicitly
1489 * do this outside rmap routines.
1491 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1492 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1494 * huge_pmd_unshare unmapped an entire PMD
1495 * page. There is no way of knowing exactly
1496 * which PMDs may be cached for this mm, so
1497 * we must flush them all. start/end were
1498 * already adjusted above to cover this range.
1500 flush_cache_range(vma, range.start, range.end);
1501 flush_tlb_range(vma, range.start, range.end);
1502 mmu_notifier_invalidate_range(mm, range.start,
1506 * The ref count of the PMD page was dropped
1507 * which is part of the way map counting
1508 * is done for shared PMDs. Return 'true'
1509 * here. When there is no other sharing,
1510 * huge_pmd_unshare returns false and we will
1511 * unmap the actual page and drop map count
1514 page_vma_mapped_walk_done(&pvmw);
1519 /* Nuke the page table entry. */
1520 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1521 if (should_defer_flush(mm, flags)) {
1523 * We clear the PTE but do not flush so potentially
1524 * a remote CPU could still be writing to the folio.
1525 * If the entry was previously clean then the
1526 * architecture must guarantee that a clear->dirty
1527 * transition on a cached TLB entry is written through
1528 * and traps if the PTE is unmapped.
1530 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1532 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1534 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1537 /* Set the dirty flag on the folio now the pte is gone. */
1538 if (pte_dirty(pteval))
1539 folio_mark_dirty(folio);
1541 /* Update high watermark before we lower rss */
1542 update_hiwater_rss(mm);
1544 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1545 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1546 if (folio_test_hugetlb(folio)) {
1547 hugetlb_count_sub(folio_nr_pages(folio), mm);
1548 set_huge_swap_pte_at(mm, address,
1550 vma_mmu_pagesize(vma));
1552 dec_mm_counter(mm, mm_counter(&folio->page));
1553 set_pte_at(mm, address, pvmw.pte, pteval);
1556 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1558 * The guest indicated that the page content is of no
1559 * interest anymore. Simply discard the pte, vmscan
1560 * will take care of the rest.
1561 * A future reference will then fault in a new zero
1562 * page. When userfaultfd is active, we must not drop
1563 * this page though, as its main user (postcopy
1564 * migration) will not expect userfaults on already
1567 dec_mm_counter(mm, mm_counter(&folio->page));
1568 /* We have to invalidate as we cleared the pte */
1569 mmu_notifier_invalidate_range(mm, address,
1570 address + PAGE_SIZE);
1571 } else if (folio_test_anon(folio)) {
1572 swp_entry_t entry = { .val = page_private(subpage) };
1575 * Store the swap location in the pte.
1576 * See handle_pte_fault() ...
1578 if (unlikely(folio_test_swapbacked(folio) !=
1579 folio_test_swapcache(folio))) {
1582 /* We have to invalidate as we cleared the pte */
1583 mmu_notifier_invalidate_range(mm, address,
1584 address + PAGE_SIZE);
1585 page_vma_mapped_walk_done(&pvmw);
1589 /* MADV_FREE page check */
1590 if (!folio_test_swapbacked(folio)) {
1591 int ref_count, map_count;
1594 * Synchronize with gup_pte_range():
1595 * - clear PTE; barrier; read refcount
1596 * - inc refcount; barrier; read PTE
1600 ref_count = folio_ref_count(folio);
1601 map_count = folio_mapcount(folio);
1604 * Order reads for page refcount and dirty flag
1605 * (see comments in __remove_mapping()).
1610 * The only page refs must be one from isolation
1611 * plus the rmap(s) (dropped by discard:).
1613 if (ref_count == 1 + map_count &&
1614 !folio_test_dirty(folio)) {
1615 /* Invalidate as we cleared the pte */
1616 mmu_notifier_invalidate_range(mm,
1617 address, address + PAGE_SIZE);
1618 dec_mm_counter(mm, MM_ANONPAGES);
1623 * If the folio was redirtied, it cannot be
1624 * discarded. Remap the page to page table.
1626 set_pte_at(mm, address, pvmw.pte, pteval);
1627 folio_set_swapbacked(folio);
1629 page_vma_mapped_walk_done(&pvmw);
1633 if (swap_duplicate(entry) < 0) {
1634 set_pte_at(mm, address, pvmw.pte, pteval);
1636 page_vma_mapped_walk_done(&pvmw);
1639 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1640 set_pte_at(mm, address, pvmw.pte, pteval);
1642 page_vma_mapped_walk_done(&pvmw);
1645 if (list_empty(&mm->mmlist)) {
1646 spin_lock(&mmlist_lock);
1647 if (list_empty(&mm->mmlist))
1648 list_add(&mm->mmlist, &init_mm.mmlist);
1649 spin_unlock(&mmlist_lock);
1651 dec_mm_counter(mm, MM_ANONPAGES);
1652 inc_mm_counter(mm, MM_SWAPENTS);
1653 swp_pte = swp_entry_to_pte(entry);
1654 if (pte_soft_dirty(pteval))
1655 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1656 if (pte_uffd_wp(pteval))
1657 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1658 set_pte_at(mm, address, pvmw.pte, swp_pte);
1659 /* Invalidate as we cleared the pte */
1660 mmu_notifier_invalidate_range(mm, address,
1661 address + PAGE_SIZE);
1664 * This is a locked file-backed folio,
1665 * so it cannot be removed from the page
1666 * cache and replaced by a new folio before
1667 * mmu_notifier_invalidate_range_end, so no
1668 * concurrent thread might update its page table
1669 * to point at a new folio while a device is
1670 * still using this folio.
1672 * See Documentation/vm/mmu_notifier.rst
1674 dec_mm_counter(mm, mm_counter_file(&folio->page));
1678 * No need to call mmu_notifier_invalidate_range() it has be
1679 * done above for all cases requiring it to happen under page
1680 * table lock before mmu_notifier_invalidate_range_end()
1682 * See Documentation/vm/mmu_notifier.rst
1684 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1685 if (vma->vm_flags & VM_LOCKED)
1686 mlock_page_drain_local();
1690 mmu_notifier_invalidate_range_end(&range);
1695 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1697 return vma_is_temporary_stack(vma);
1700 static int page_not_mapped(struct folio *folio)
1702 return !folio_mapped(folio);
1706 * try_to_unmap - Try to remove all page table mappings to a folio.
1707 * @folio: The folio to unmap.
1708 * @flags: action and flags
1710 * Tries to remove all the page table entries which are mapping this
1711 * folio. It is the caller's responsibility to check if the folio is
1712 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1714 * Context: Caller must hold the folio lock.
1716 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1718 struct rmap_walk_control rwc = {
1719 .rmap_one = try_to_unmap_one,
1720 .arg = (void *)flags,
1721 .done = page_not_mapped,
1722 .anon_lock = folio_lock_anon_vma_read,
1725 if (flags & TTU_RMAP_LOCKED)
1726 rmap_walk_locked(folio, &rwc);
1728 rmap_walk(folio, &rwc);
1732 * @arg: enum ttu_flags will be passed to this argument.
1734 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1735 * containing migration entries.
1737 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1738 unsigned long address, void *arg)
1740 struct mm_struct *mm = vma->vm_mm;
1741 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1743 struct page *subpage;
1745 struct mmu_notifier_range range;
1746 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1749 * When racing against e.g. zap_pte_range() on another cpu,
1750 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1751 * try_to_migrate() may return before page_mapped() has become false,
1752 * if page table locking is skipped: use TTU_SYNC to wait for that.
1754 if (flags & TTU_SYNC)
1755 pvmw.flags = PVMW_SYNC;
1758 * unmap_page() in mm/huge_memory.c is the only user of migration with
1759 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1761 if (flags & TTU_SPLIT_HUGE_PMD)
1762 split_huge_pmd_address(vma, address, true, folio);
1765 * For THP, we have to assume the worse case ie pmd for invalidation.
1766 * For hugetlb, it could be much worse if we need to do pud
1767 * invalidation in the case of pmd sharing.
1769 * Note that the page can not be free in this function as call of
1770 * try_to_unmap() must hold a reference on the page.
1772 range.end = vma_address_end(&pvmw);
1773 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1774 address, range.end);
1775 if (folio_test_hugetlb(folio)) {
1777 * If sharing is possible, start and end will be adjusted
1780 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1783 mmu_notifier_invalidate_range_start(&range);
1785 while (page_vma_mapped_walk(&pvmw)) {
1786 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1787 /* PMD-mapped THP migration entry */
1789 subpage = folio_page(folio,
1790 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1791 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1792 !folio_test_pmd_mappable(folio), folio);
1794 set_pmd_migration_entry(&pvmw, subpage);
1799 /* Unexpected PMD-mapped THP? */
1800 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1802 subpage = folio_page(folio,
1803 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1804 address = pvmw.address;
1806 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1808 * To call huge_pmd_unshare, i_mmap_rwsem must be
1809 * held in write mode. Caller needs to explicitly
1810 * do this outside rmap routines.
1812 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1813 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1815 * huge_pmd_unshare unmapped an entire PMD
1816 * page. There is no way of knowing exactly
1817 * which PMDs may be cached for this mm, so
1818 * we must flush them all. start/end were
1819 * already adjusted above to cover this range.
1821 flush_cache_range(vma, range.start, range.end);
1822 flush_tlb_range(vma, range.start, range.end);
1823 mmu_notifier_invalidate_range(mm, range.start,
1827 * The ref count of the PMD page was dropped
1828 * which is part of the way map counting
1829 * is done for shared PMDs. Return 'true'
1830 * here. When there is no other sharing,
1831 * huge_pmd_unshare returns false and we will
1832 * unmap the actual page and drop map count
1835 page_vma_mapped_walk_done(&pvmw);
1840 /* Nuke the page table entry. */
1841 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1842 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1844 /* Set the dirty flag on the folio now the pte is gone. */
1845 if (pte_dirty(pteval))
1846 folio_mark_dirty(folio);
1848 /* Update high watermark before we lower rss */
1849 update_hiwater_rss(mm);
1851 if (folio_is_zone_device(folio)) {
1852 unsigned long pfn = folio_pfn(folio);
1857 * Store the pfn of the page in a special migration
1858 * pte. do_swap_page() will wait until the migration
1859 * pte is removed and then restart fault handling.
1861 entry = pte_to_swp_entry(pteval);
1862 if (is_writable_device_private_entry(entry))
1863 entry = make_writable_migration_entry(pfn);
1865 entry = make_readable_migration_entry(pfn);
1866 swp_pte = swp_entry_to_pte(entry);
1869 * pteval maps a zone device page and is therefore
1872 if (pte_swp_soft_dirty(pteval))
1873 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1874 if (pte_swp_uffd_wp(pteval))
1875 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1876 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1877 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1878 compound_order(&folio->page));
1880 * No need to invalidate here it will synchronize on
1881 * against the special swap migration pte.
1883 * The assignment to subpage above was computed from a
1884 * swap PTE which results in an invalid pointer.
1885 * Since only PAGE_SIZE pages can currently be
1886 * migrated, just set it to page. This will need to be
1887 * changed when hugepage migrations to device private
1888 * memory are supported.
1890 subpage = &folio->page;
1891 } else if (PageHWPoison(subpage)) {
1892 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1893 if (folio_test_hugetlb(folio)) {
1894 hugetlb_count_sub(folio_nr_pages(folio), mm);
1895 set_huge_swap_pte_at(mm, address,
1897 vma_mmu_pagesize(vma));
1899 dec_mm_counter(mm, mm_counter(&folio->page));
1900 set_pte_at(mm, address, pvmw.pte, pteval);
1903 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1905 * The guest indicated that the page content is of no
1906 * interest anymore. Simply discard the pte, vmscan
1907 * will take care of the rest.
1908 * A future reference will then fault in a new zero
1909 * page. When userfaultfd is active, we must not drop
1910 * this page though, as its main user (postcopy
1911 * migration) will not expect userfaults on already
1914 dec_mm_counter(mm, mm_counter(&folio->page));
1915 /* We have to invalidate as we cleared the pte */
1916 mmu_notifier_invalidate_range(mm, address,
1917 address + PAGE_SIZE);
1922 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1923 set_pte_at(mm, address, pvmw.pte, pteval);
1925 page_vma_mapped_walk_done(&pvmw);
1930 * Store the pfn of the page in a special migration
1931 * pte. do_swap_page() will wait until the migration
1932 * pte is removed and then restart fault handling.
1934 if (pte_write(pteval))
1935 entry = make_writable_migration_entry(
1936 page_to_pfn(subpage));
1938 entry = make_readable_migration_entry(
1939 page_to_pfn(subpage));
1941 swp_pte = swp_entry_to_pte(entry);
1942 if (pte_soft_dirty(pteval))
1943 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1944 if (pte_uffd_wp(pteval))
1945 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1946 set_pte_at(mm, address, pvmw.pte, swp_pte);
1947 trace_set_migration_pte(address, pte_val(swp_pte),
1948 compound_order(&folio->page));
1950 * No need to invalidate here it will synchronize on
1951 * against the special swap migration pte.
1956 * No need to call mmu_notifier_invalidate_range() it has be
1957 * done above for all cases requiring it to happen under page
1958 * table lock before mmu_notifier_invalidate_range_end()
1960 * See Documentation/vm/mmu_notifier.rst
1962 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1963 if (vma->vm_flags & VM_LOCKED)
1964 mlock_page_drain_local();
1968 mmu_notifier_invalidate_range_end(&range);
1974 * try_to_migrate - try to replace all page table mappings with swap entries
1975 * @folio: the folio to replace page table entries for
1976 * @flags: action and flags
1978 * Tries to remove all the page table entries which are mapping this folio and
1979 * replace them with special swap entries. Caller must hold the folio lock.
1981 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
1983 struct rmap_walk_control rwc = {
1984 .rmap_one = try_to_migrate_one,
1985 .arg = (void *)flags,
1986 .done = page_not_mapped,
1987 .anon_lock = folio_lock_anon_vma_read,
1991 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1992 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1994 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1998 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
2002 * During exec, a temporary VMA is setup and later moved.
2003 * The VMA is moved under the anon_vma lock but not the
2004 * page tables leading to a race where migration cannot
2005 * find the migration ptes. Rather than increasing the
2006 * locking requirements of exec(), migration skips
2007 * temporary VMAs until after exec() completes.
2009 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2010 rwc.invalid_vma = invalid_migration_vma;
2012 if (flags & TTU_RMAP_LOCKED)
2013 rmap_walk_locked(folio, &rwc);
2015 rmap_walk(folio, &rwc);
2018 #ifdef CONFIG_DEVICE_PRIVATE
2019 struct make_exclusive_args {
2020 struct mm_struct *mm;
2021 unsigned long address;
2026 static bool page_make_device_exclusive_one(struct folio *folio,
2027 struct vm_area_struct *vma, unsigned long address, void *priv)
2029 struct mm_struct *mm = vma->vm_mm;
2030 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2031 struct make_exclusive_args *args = priv;
2033 struct page *subpage;
2035 struct mmu_notifier_range range;
2039 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2040 vma->vm_mm, address, min(vma->vm_end,
2041 address + folio_size(folio)),
2043 mmu_notifier_invalidate_range_start(&range);
2045 while (page_vma_mapped_walk(&pvmw)) {
2046 /* Unexpected PMD-mapped THP? */
2047 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2049 if (!pte_present(*pvmw.pte)) {
2051 page_vma_mapped_walk_done(&pvmw);
2055 subpage = folio_page(folio,
2056 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2057 address = pvmw.address;
2059 /* Nuke the page table entry. */
2060 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2061 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2063 /* Set the dirty flag on the folio now the pte is gone. */
2064 if (pte_dirty(pteval))
2065 folio_mark_dirty(folio);
2068 * Check that our target page is still mapped at the expected
2071 if (args->mm == mm && args->address == address &&
2076 * Store the pfn of the page in a special migration
2077 * pte. do_swap_page() will wait until the migration
2078 * pte is removed and then restart fault handling.
2080 if (pte_write(pteval))
2081 entry = make_writable_device_exclusive_entry(
2082 page_to_pfn(subpage));
2084 entry = make_readable_device_exclusive_entry(
2085 page_to_pfn(subpage));
2086 swp_pte = swp_entry_to_pte(entry);
2087 if (pte_soft_dirty(pteval))
2088 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2089 if (pte_uffd_wp(pteval))
2090 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092 set_pte_at(mm, address, pvmw.pte, swp_pte);
2095 * There is a reference on the page for the swap entry which has
2096 * been removed, so shouldn't take another.
2098 page_remove_rmap(subpage, vma, false);
2101 mmu_notifier_invalidate_range_end(&range);
2107 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2108 * @folio: The folio to replace page table entries for.
2109 * @mm: The mm_struct where the folio is expected to be mapped.
2110 * @address: Address where the folio is expected to be mapped.
2111 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2113 * Tries to remove all the page table entries which are mapping this
2114 * folio and replace them with special device exclusive swap entries to
2115 * grant a device exclusive access to the folio.
2117 * Context: Caller must hold the folio lock.
2118 * Return: false if the page is still mapped, or if it could not be unmapped
2119 * from the expected address. Otherwise returns true (success).
2121 static bool folio_make_device_exclusive(struct folio *folio,
2122 struct mm_struct *mm, unsigned long address, void *owner)
2124 struct make_exclusive_args args = {
2130 struct rmap_walk_control rwc = {
2131 .rmap_one = page_make_device_exclusive_one,
2132 .done = page_not_mapped,
2133 .anon_lock = folio_lock_anon_vma_read,
2138 * Restrict to anonymous folios for now to avoid potential writeback
2141 if (!folio_test_anon(folio))
2144 rmap_walk(folio, &rwc);
2146 return args.valid && !folio_mapcount(folio);
2150 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2151 * @mm: mm_struct of assoicated target process
2152 * @start: start of the region to mark for exclusive device access
2153 * @end: end address of region
2154 * @pages: returns the pages which were successfully marked for exclusive access
2155 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2157 * Returns: number of pages found in the range by GUP. A page is marked for
2158 * exclusive access only if the page pointer is non-NULL.
2160 * This function finds ptes mapping page(s) to the given address range, locks
2161 * them and replaces mappings with special swap entries preventing userspace CPU
2162 * access. On fault these entries are replaced with the original mapping after
2163 * calling MMU notifiers.
2165 * A driver using this to program access from a device must use a mmu notifier
2166 * critical section to hold a device specific lock during programming. Once
2167 * programming is complete it should drop the page lock and reference after
2168 * which point CPU access to the page will revoke the exclusive access.
2170 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2171 unsigned long end, struct page **pages,
2174 long npages = (end - start) >> PAGE_SHIFT;
2177 npages = get_user_pages_remote(mm, start, npages,
2178 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2183 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2184 struct folio *folio = page_folio(pages[i]);
2185 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2191 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2192 folio_unlock(folio);
2200 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2203 void __put_anon_vma(struct anon_vma *anon_vma)
2205 struct anon_vma *root = anon_vma->root;
2207 anon_vma_free(anon_vma);
2208 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2209 anon_vma_free(root);
2212 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2213 const struct rmap_walk_control *rwc)
2215 struct anon_vma *anon_vma;
2218 return rwc->anon_lock(folio);
2221 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2222 * because that depends on page_mapped(); but not all its usages
2223 * are holding mmap_lock. Users without mmap_lock are required to
2224 * take a reference count to prevent the anon_vma disappearing
2226 anon_vma = folio_anon_vma(folio);
2230 anon_vma_lock_read(anon_vma);
2235 * rmap_walk_anon - do something to anonymous page using the object-based
2237 * @page: the page to be handled
2238 * @rwc: control variable according to each walk type
2240 * Find all the mappings of a page using the mapping pointer and the vma chains
2241 * contained in the anon_vma struct it points to.
2243 static void rmap_walk_anon(struct folio *folio,
2244 const struct rmap_walk_control *rwc, bool locked)
2246 struct anon_vma *anon_vma;
2247 pgoff_t pgoff_start, pgoff_end;
2248 struct anon_vma_chain *avc;
2251 anon_vma = folio_anon_vma(folio);
2252 /* anon_vma disappear under us? */
2253 VM_BUG_ON_FOLIO(!anon_vma, folio);
2255 anon_vma = rmap_walk_anon_lock(folio, rwc);
2260 pgoff_start = folio_pgoff(folio);
2261 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2262 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2263 pgoff_start, pgoff_end) {
2264 struct vm_area_struct *vma = avc->vma;
2265 unsigned long address = vma_address(&folio->page, vma);
2267 VM_BUG_ON_VMA(address == -EFAULT, vma);
2270 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2273 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2275 if (rwc->done && rwc->done(folio))
2280 anon_vma_unlock_read(anon_vma);
2284 * rmap_walk_file - do something to file page using the object-based rmap method
2285 * @page: the page to be handled
2286 * @rwc: control variable according to each walk type
2288 * Find all the mappings of a page using the mapping pointer and the vma chains
2289 * contained in the address_space struct it points to.
2291 static void rmap_walk_file(struct folio *folio,
2292 const struct rmap_walk_control *rwc, bool locked)
2294 struct address_space *mapping = folio_mapping(folio);
2295 pgoff_t pgoff_start, pgoff_end;
2296 struct vm_area_struct *vma;
2299 * The page lock not only makes sure that page->mapping cannot
2300 * suddenly be NULLified by truncation, it makes sure that the
2301 * structure at mapping cannot be freed and reused yet,
2302 * so we can safely take mapping->i_mmap_rwsem.
2304 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2309 pgoff_start = folio_pgoff(folio);
2310 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2312 i_mmap_lock_read(mapping);
2313 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2314 pgoff_start, pgoff_end) {
2315 unsigned long address = vma_address(&folio->page, vma);
2317 VM_BUG_ON_VMA(address == -EFAULT, vma);
2320 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2323 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2325 if (rwc->done && rwc->done(folio))
2331 i_mmap_unlock_read(mapping);
2334 void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
2336 if (unlikely(folio_test_ksm(folio)))
2337 rmap_walk_ksm(folio, rwc);
2338 else if (folio_test_anon(folio))
2339 rmap_walk_anon(folio, rwc, false);
2341 rmap_walk_file(folio, rwc, false);
2344 /* Like rmap_walk, but caller holds relevant rmap lock */
2345 void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
2347 /* no ksm support for now */
2348 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2349 if (folio_test_anon(folio))
2350 rmap_walk_anon(folio, rwc, true);
2352 rmap_walk_file(folio, rwc, true);
2355 #ifdef CONFIG_HUGETLB_PAGE
2357 * The following two functions are for anonymous (private mapped) hugepages.
2358 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2359 * and no lru code, because we handle hugepages differently from common pages.
2361 void hugepage_add_anon_rmap(struct page *page,
2362 struct vm_area_struct *vma, unsigned long address)
2364 struct anon_vma *anon_vma = vma->anon_vma;
2367 BUG_ON(!PageLocked(page));
2369 /* address might be in next vma when migration races vma_adjust */
2370 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2372 __page_set_anon_rmap(page, vma, address, 0);
2375 void hugepage_add_new_anon_rmap(struct page *page,
2376 struct vm_area_struct *vma, unsigned long address)
2378 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2379 atomic_set(compound_mapcount_ptr(page), 0);
2380 atomic_set(compound_pincount_ptr(page), 0);
2382 __page_set_anon_rmap(page, vma, address, 1);
2384 #endif /* CONFIG_HUGETLB_PAGE */