2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
78 #include <asm/tlbflush.h>
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
89 static inline struct anon_vma *anon_vma_alloc(void)
91 struct anon_vma *anon_vma;
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->degree = 1; /* Reference for first vma */
97 anon_vma->parent = anon_vma;
99 * Initialise the anon_vma root to point to itself. If called
100 * from fork, the root will be reset to the parents anon_vma.
102 anon_vma->root = anon_vma;
108 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 * Synchronize against folio_lock_anon_vma_read() such that
114 * we can safely hold the lock without the anon_vma getting
117 * Relies on the full mb implied by the atomic_dec_and_test() from
118 * put_anon_vma() against the acquire barrier implied by
119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 * folio_lock_anon_vma_read() VS put_anon_vma()
122 * down_read_trylock() atomic_dec_and_test()
124 * atomic_read() rwsem_is_locked()
126 * LOCK should suffice since the actual taking of the lock must
127 * happen _before_ what follows.
130 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
131 anon_vma_lock_write(anon_vma);
132 anon_vma_unlock_write(anon_vma);
135 kmem_cache_free(anon_vma_cachep, anon_vma);
138 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 static void anon_vma_chain_link(struct vm_area_struct *vma,
149 struct anon_vma_chain *avc,
150 struct anon_vma *anon_vma)
153 avc->anon_vma = anon_vma;
154 list_add(&avc->same_vma, &vma->anon_vma_chain);
155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
159 * __anon_vma_prepare - attach an anon_vma to a memory region
160 * @vma: the memory region in question
162 * This makes sure the memory mapping described by 'vma' has
163 * an 'anon_vma' attached to it, so that we can associate the
164 * anonymous pages mapped into it with that anon_vma.
166 * The common case will be that we already have one, which
167 * is handled inline by anon_vma_prepare(). But if
168 * not we either need to find an adjacent mapping that we
169 * can re-use the anon_vma from (very common when the only
170 * reason for splitting a vma has been mprotect()), or we
171 * allocate a new one.
173 * Anon-vma allocations are very subtle, because we may have
174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
175 * and that may actually touch the rwsem even in the newly
176 * allocated vma (it depends on RCU to make sure that the
177 * anon_vma isn't actually destroyed).
179 * As a result, we need to do proper anon_vma locking even
180 * for the new allocation. At the same time, we do not want
181 * to do any locking for the common case of already having
184 * This must be called with the mmap_lock held for reading.
186 int __anon_vma_prepare(struct vm_area_struct *vma)
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
198 anon_vma = find_mergeable_anon_vma(vma);
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 allocated = anon_vma;
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 /* vma reference or self-parent link for new root */
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
224 anon_vma_chain_free(avc);
229 anon_vma_chain_free(avc);
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
247 up_write(&root->rwsem);
249 down_write(&root->rwsem);
254 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 up_write(&root->rwsem);
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
265 * anon_vma_fork(). The first three want an exact copy of src, while the last
266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
273 * case of constantly forking task. On the other hand, an anon_vma with more
274 * than one child isn't reused even if there was no alive vma, thus rmap
275 * walker has a good chance of avoiding scanning the whole hierarchy when it
276 * searches where page is mapped.
278 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 struct anon_vma_chain *avc, *pavc;
281 struct anon_vma *root = NULL;
283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
284 struct anon_vma *anon_vma;
286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 if (unlikely(!avc)) {
288 unlock_anon_vma_root(root);
290 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 anon_vma = pavc->anon_vma;
295 root = lock_anon_vma_root(root, anon_vma);
296 anon_vma_chain_link(dst, avc, anon_vma);
299 * Reuse existing anon_vma if its degree lower than two,
300 * that means it has no vma and only one anon_vma child.
302 * Do not choose parent anon_vma, otherwise first child
303 * will always reuse it. Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma != src->anon_vma && anon_vma->degree < 2)
308 dst->anon_vma = anon_vma;
311 dst->anon_vma->degree++;
312 unlock_anon_vma_root(root);
317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 * decremented in unlink_anon_vmas().
319 * We can safely do this because callers of anon_vma_clone() don't care
320 * about dst->anon_vma if anon_vma_clone() failed.
322 dst->anon_vma = NULL;
323 unlink_anon_vmas(dst);
328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
329 * the corresponding VMA in the parent process is attached to.
330 * Returns 0 on success, non-zero on failure.
332 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 struct anon_vma_chain *avc;
335 struct anon_vma *anon_vma;
338 /* Don't bother if the parent process has no anon_vma here. */
342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 vma->anon_vma = NULL;
346 * First, attach the new VMA to the parent VMA's anon_vmas,
347 * so rmap can find non-COWed pages in child processes.
349 error = anon_vma_clone(vma, pvma);
353 /* An existing anon_vma has been reused, all done then. */
357 /* Then add our own anon_vma. */
358 anon_vma = anon_vma_alloc();
361 avc = anon_vma_chain_alloc(GFP_KERNEL);
363 goto out_error_free_anon_vma;
366 * The root anon_vma's rwsem is the lock actually used when we
367 * lock any of the anon_vmas in this anon_vma tree.
369 anon_vma->root = pvma->anon_vma->root;
370 anon_vma->parent = pvma->anon_vma;
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
376 get_anon_vma(anon_vma->root);
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
379 anon_vma_lock_write(anon_vma);
380 anon_vma_chain_link(vma, avc, anon_vma);
381 anon_vma->parent->degree++;
382 anon_vma_unlock_write(anon_vma);
386 out_error_free_anon_vma:
387 put_anon_vma(anon_vma);
389 unlink_anon_vmas(vma);
393 void unlink_anon_vmas(struct vm_area_struct *vma)
395 struct anon_vma_chain *avc, *next;
396 struct anon_vma *root = NULL;
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
403 struct anon_vma *anon_vma = avc->anon_vma;
405 root = lock_anon_vma_root(root, anon_vma);
406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
413 anon_vma->parent->degree--;
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
421 vma->anon_vma->degree--;
424 * vma would still be needed after unlink, and anon_vma will be prepared
427 vma->anon_vma = NULL;
429 unlock_anon_vma_root(root);
432 * Iterate the list once more, it now only contains empty and unlinked
433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
434 * needing to write-acquire the anon_vma->root->rwsem.
436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 struct anon_vma *anon_vma = avc->anon_vma;
439 VM_WARN_ON(anon_vma->degree);
440 put_anon_vma(anon_vma);
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
447 static void anon_vma_ctor(void *data)
449 struct anon_vma *anon_vma = data;
451 init_rwsem(&anon_vma->rwsem);
452 atomic_set(&anon_vma->refcount, 0);
453 anon_vma->rb_root = RB_ROOT_CACHED;
456 void __init anon_vma_init(void)
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
468 * Since there is no serialization what so ever against page_remove_rmap()
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
489 struct anon_vma *page_get_anon_vma(struct page *page)
491 struct anon_vma *anon_vma = NULL;
492 unsigned long anon_mapping;
495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 if (!page_mapped(page))
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 * If this page is still mapped, then its anon_vma cannot have been
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
512 * above cannot corrupt).
514 if (!page_mapped(page)) {
516 put_anon_vma(anon_vma);
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530 * reference like with page_get_anon_vma() and then block on the mutex
531 * on !rwc->try_lock case.
533 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
534 struct rmap_walk_control *rwc)
536 struct anon_vma *anon_vma = NULL;
537 struct anon_vma *root_anon_vma;
538 unsigned long anon_mapping;
541 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
544 if (!folio_mapped(folio))
547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
548 root_anon_vma = READ_ONCE(anon_vma->root);
549 if (down_read_trylock(&root_anon_vma->rwsem)) {
551 * If the folio is still mapped, then this anon_vma is still
552 * its anon_vma, and holding the mutex ensures that it will
553 * not go away, see anon_vma_free().
555 if (!folio_mapped(folio)) {
556 up_read(&root_anon_vma->rwsem);
562 if (rwc && rwc->try_lock) {
564 rwc->contended = true;
568 /* trylock failed, we got to sleep */
569 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
574 if (!folio_mapped(folio)) {
576 put_anon_vma(anon_vma);
580 /* we pinned the anon_vma, its safe to sleep */
582 anon_vma_lock_read(anon_vma);
584 if (atomic_dec_and_test(&anon_vma->refcount)) {
586 * Oops, we held the last refcount, release the lock
587 * and bail -- can't simply use put_anon_vma() because
588 * we'll deadlock on the anon_vma_lock_write() recursion.
590 anon_vma_unlock_read(anon_vma);
591 __put_anon_vma(anon_vma);
602 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
604 anon_vma_unlock_read(anon_vma);
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
614 void try_to_unmap_flush(void)
616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
618 if (!tlb_ubc->flush_required)
621 arch_tlbbatch_flush(&tlb_ubc->arch);
622 tlb_ubc->flush_required = false;
623 tlb_ubc->writable = false;
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640 #define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
651 tlb_ubc->flush_required = true;
654 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 * before the PTE is cleared.
658 batch = atomic_read(&mm->tlb_flush_batched);
660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
662 * Prevent `pending' from catching up with `flushed' because of
663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
664 * `pending' becomes large.
666 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
667 if (nbatch != batch) {
672 atomic_inc(&mm->tlb_flush_batched);
676 * If the PTE was dirty then it's best to assume it's writable. The
677 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
678 * before the page is queued for IO.
681 tlb_ubc->writable = true;
685 * Returns true if the TLB flush should be deferred to the end of a batch of
686 * unmap operations to reduce IPIs.
688 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
690 bool should_defer = false;
692 if (!(flags & TTU_BATCH_FLUSH))
695 /* If remote CPUs need to be flushed then defer batch the flush */
696 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
706 * operation such as mprotect or munmap to race between reclaim unmapping
707 * the page and flushing the page. If this race occurs, it potentially allows
708 * access to data via a stale TLB entry. Tracking all mm's that have TLB
709 * batching in flight would be expensive during reclaim so instead track
710 * whether TLB batching occurred in the past and if so then do a flush here
711 * if required. This will cost one additional flush per reclaim cycle paid
712 * by the first operation at risk such as mprotect and mumap.
714 * This must be called under the PTL so that an access to tlb_flush_batched
715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
718 void flush_tlb_batched_pending(struct mm_struct *mm)
720 int batch = atomic_read(&mm->tlb_flush_batched);
721 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
722 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
724 if (pending != flushed) {
727 * If the new TLB flushing is pending during flushing, leave
728 * mm->tlb_flush_batched as is, to avoid losing flushing.
730 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
731 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
735 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
746 * At what user virtual address is page expected in vma?
747 * Caller should check the page is actually part of the vma.
749 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
751 struct folio *folio = page_folio(page);
752 if (folio_test_anon(folio)) {
753 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
755 * Note: swapoff's unuse_vma() is more efficient with this
756 * check, and needs it to match anon_vma when KSM is active.
758 if (!vma->anon_vma || !page__anon_vma ||
759 vma->anon_vma->root != page__anon_vma->root)
761 } else if (!vma->vm_file) {
763 } else if (vma->vm_file->f_mapping != folio->mapping) {
767 return vma_address(page, vma);
770 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(*pgd))
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(*p4d))
786 pud = pud_offset(p4d, address);
787 if (!pud_present(*pud))
790 pmd = pmd_offset(pud, address);
792 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
793 * without holding anon_vma lock for write. So when looking for a
794 * genuine pmde (in which to find pte), test present and !THP together.
798 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
804 struct folio_referenced_arg {
807 unsigned long vm_flags;
808 struct mem_cgroup *memcg;
811 * arg: folio_referenced_arg will be passed
813 static bool folio_referenced_one(struct folio *folio,
814 struct vm_area_struct *vma, unsigned long address, void *arg)
816 struct folio_referenced_arg *pra = arg;
817 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
820 while (page_vma_mapped_walk(&pvmw)) {
821 address = pvmw.address;
823 if ((vma->vm_flags & VM_LOCKED) &&
824 (!folio_test_large(folio) || !pvmw.pte)) {
825 /* Restore the mlock which got missed */
826 mlock_vma_folio(folio, vma, !pvmw.pte);
827 page_vma_mapped_walk_done(&pvmw);
828 pra->vm_flags |= VM_LOCKED;
829 return false; /* To break the loop */
833 if (ptep_clear_flush_young_notify(vma, address,
836 * Don't treat a reference through
837 * a sequentially read mapping as such.
838 * If the folio has been used in another mapping,
839 * we will catch it; if this other mapping is
840 * already gone, the unmap path will have set
841 * the referenced flag or activated the folio.
843 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
846 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
847 if (pmdp_clear_flush_young_notify(vma, address,
851 /* unexpected pmd-mapped folio? */
859 folio_clear_idle(folio);
860 if (folio_test_clear_young(folio))
865 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
869 return false; /* To break the loop */
874 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
876 struct folio_referenced_arg *pra = arg;
877 struct mem_cgroup *memcg = pra->memcg;
879 if (!mm_match_cgroup(vma->vm_mm, memcg))
886 * folio_referenced() - Test if the folio was referenced.
887 * @folio: The folio to test.
888 * @is_locked: Caller holds lock on the folio.
889 * @memcg: target memory cgroup
890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
892 * Quick test_and_clear_referenced for all mappings of a folio,
894 * Return: The number of mappings which referenced the folio. Return -1 if
895 * the function bailed out due to rmap lock contention.
897 int folio_referenced(struct folio *folio, int is_locked,
898 struct mem_cgroup *memcg, unsigned long *vm_flags)
901 struct folio_referenced_arg pra = {
902 .mapcount = folio_mapcount(folio),
905 struct rmap_walk_control rwc = {
906 .rmap_one = folio_referenced_one,
908 .anon_lock = folio_lock_anon_vma_read,
916 if (!folio_raw_mapping(folio))
919 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 we_locked = folio_trylock(folio);
926 * If we are reclaiming on behalf of a cgroup, skip
927 * counting on behalf of references from different
931 rwc.invalid_vma = invalid_folio_referenced_vma;
934 rmap_walk(folio, &rwc);
935 *vm_flags = pra.vm_flags;
940 return rwc.contended ? -1 : pra.referenced;
943 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
946 struct vm_area_struct *vma = pvmw->vma;
947 struct mmu_notifier_range range;
948 unsigned long address = pvmw->address;
951 * We have to assume the worse case ie pmd for invalidation. Note that
952 * the folio can not be freed from this function.
954 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
955 0, vma, vma->vm_mm, address,
956 vma_address_end(pvmw));
957 mmu_notifier_invalidate_range_start(&range);
959 while (page_vma_mapped_walk(pvmw)) {
962 address = pvmw->address;
965 pte_t *pte = pvmw->pte;
967 if (!pte_dirty(*pte) && !pte_write(*pte))
970 flush_cache_page(vma, address, pte_pfn(*pte));
971 entry = ptep_clear_flush(vma, address, pte);
972 entry = pte_wrprotect(entry);
973 entry = pte_mkclean(entry);
974 set_pte_at(vma->vm_mm, address, pte, entry);
977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 pmd_t *pmd = pvmw->pmd;
981 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
984 flush_cache_range(vma, address,
985 address + HPAGE_PMD_SIZE);
986 entry = pmdp_invalidate(vma, address, pmd);
987 entry = pmd_wrprotect(entry);
988 entry = pmd_mkclean(entry);
989 set_pmd_at(vma->vm_mm, address, pmd, entry);
992 /* unexpected pmd-mapped folio? */
998 * No need to call mmu_notifier_invalidate_range() as we are
999 * downgrading page table protection not changing it to point
1002 * See Documentation/vm/mmu_notifier.rst
1008 mmu_notifier_invalidate_range_end(&range);
1013 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1014 unsigned long address, void *arg)
1016 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1019 *cleaned += page_vma_mkclean_one(&pvmw);
1024 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1026 if (vma->vm_flags & VM_SHARED)
1032 int folio_mkclean(struct folio *folio)
1035 struct address_space *mapping;
1036 struct rmap_walk_control rwc = {
1037 .arg = (void *)&cleaned,
1038 .rmap_one = page_mkclean_one,
1039 .invalid_vma = invalid_mkclean_vma,
1042 BUG_ON(!folio_test_locked(folio));
1044 if (!folio_mapped(folio))
1047 mapping = folio_mapping(folio);
1051 rmap_walk(folio, &rwc);
1055 EXPORT_SYMBOL_GPL(folio_mkclean);
1058 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1059 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1060 * within the @vma of shared mappings. And since clean PTEs
1061 * should also be readonly, write protects them too.
1063 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1064 * @pgoff: page offset that the @pfn mapped with.
1065 * @vma: vma that @pfn mapped within.
1067 * Returns the number of cleaned PTEs (including PMDs).
1069 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1070 struct vm_area_struct *vma)
1072 struct page_vma_mapped_walk pvmw = {
1074 .nr_pages = nr_pages,
1080 if (invalid_mkclean_vma(vma, NULL))
1083 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1084 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1086 return page_vma_mkclean_one(&pvmw);
1090 * page_move_anon_rmap - move a page to our anon_vma
1091 * @page: the page to move to our anon_vma
1092 * @vma: the vma the page belongs to
1094 * When a page belongs exclusively to one process after a COW event,
1095 * that page can be moved into the anon_vma that belongs to just that
1096 * process, so the rmap code will not search the parent or sibling
1099 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1101 struct anon_vma *anon_vma = vma->anon_vma;
1102 struct page *subpage = page;
1104 page = compound_head(page);
1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
1107 VM_BUG_ON_VMA(!anon_vma, vma);
1109 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1111 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1112 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1113 * folio_test_anon()) will not see one without the other.
1115 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1116 SetPageAnonExclusive(subpage);
1120 * __page_set_anon_rmap - set up new anonymous rmap
1121 * @page: Page or Hugepage to add to rmap
1122 * @vma: VM area to add page to.
1123 * @address: User virtual address of the mapping
1124 * @exclusive: the page is exclusively owned by the current process
1126 static void __page_set_anon_rmap(struct page *page,
1127 struct vm_area_struct *vma, unsigned long address, int exclusive)
1129 struct anon_vma *anon_vma = vma->anon_vma;
1137 * If the page isn't exclusively mapped into this vma,
1138 * we must use the _oldest_ possible anon_vma for the
1142 anon_vma = anon_vma->root;
1145 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1146 * Make sure the compiler doesn't split the stores of anon_vma and
1147 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1148 * could mistake the mapping for a struct address_space and crash.
1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1151 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1152 page->index = linear_page_index(vma, address);
1155 SetPageAnonExclusive(page);
1159 * __page_check_anon_rmap - sanity check anonymous rmap addition
1160 * @page: the page to add the mapping to
1161 * @vma: the vm area in which the mapping is added
1162 * @address: the user virtual address mapped
1164 static void __page_check_anon_rmap(struct page *page,
1165 struct vm_area_struct *vma, unsigned long address)
1167 struct folio *folio = page_folio(page);
1169 * The page's anon-rmap details (mapping and index) are guaranteed to
1170 * be set up correctly at this point.
1172 * We have exclusion against page_add_anon_rmap because the caller
1173 * always holds the page locked.
1175 * We have exclusion against page_add_new_anon_rmap because those pages
1176 * are initially only visible via the pagetables, and the pte is locked
1177 * over the call to page_add_new_anon_rmap.
1179 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1181 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1186 * page_add_anon_rmap - add pte mapping to an anonymous page
1187 * @page: the page to add the mapping to
1188 * @vma: the vm area in which the mapping is added
1189 * @address: the user virtual address mapped
1190 * @flags: the rmap flags
1192 * The caller needs to hold the pte lock, and the page must be locked in
1193 * the anon_vma case: to serialize mapping,index checking after setting,
1194 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1195 * (but PageKsm is never downgraded to PageAnon).
1197 void page_add_anon_rmap(struct page *page,
1198 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1200 bool compound = flags & RMAP_COMPOUND;
1203 if (unlikely(PageKsm(page)))
1204 lock_page_memcg(page);
1206 VM_BUG_ON_PAGE(!PageLocked(page), page);
1210 VM_BUG_ON_PAGE(!PageLocked(page), page);
1211 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1212 mapcount = compound_mapcount_ptr(page);
1213 first = atomic_inc_and_test(mapcount);
1215 first = atomic_inc_and_test(&page->_mapcount);
1217 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1218 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1221 int nr = compound ? thp_nr_pages(page) : 1;
1223 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1224 * these counters are not modified in interrupt context, and
1225 * pte lock(a spinlock) is held, which implies preemption
1229 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1230 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1233 if (unlikely(PageKsm(page)))
1234 unlock_page_memcg(page);
1236 /* address might be in next vma when migration races vma_adjust */
1238 __page_set_anon_rmap(page, vma, address,
1239 !!(flags & RMAP_EXCLUSIVE));
1241 __page_check_anon_rmap(page, vma, address);
1243 mlock_vma_page(page, vma, compound);
1247 * page_add_new_anon_rmap - add mapping to a new anonymous page
1248 * @page: the page to add the mapping to
1249 * @vma: the vm area in which the mapping is added
1250 * @address: the user virtual address mapped
1252 * If it's a compound page, it is accounted as a compound page. As the page
1253 * is new, it's assume to get mapped exclusively by a single process.
1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
1256 * This means the inc-and-test can be bypassed.
1257 * Page does not have to be locked.
1259 void page_add_new_anon_rmap(struct page *page,
1260 struct vm_area_struct *vma, unsigned long address)
1262 const bool compound = PageCompound(page);
1263 int nr = compound ? thp_nr_pages(page) : 1;
1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 __SetPageSwapBacked(page);
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
1271 atomic_set(compound_pincount_ptr(page), 0);
1273 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
1278 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1279 __page_set_anon_rmap(page, vma, address, 1);
1283 * page_add_file_rmap - add pte mapping to a file page
1284 * @page: the page to add the mapping to
1285 * @vma: the vm area in which the mapping is added
1286 * @compound: charge the page as compound or small page
1288 * The caller needs to hold the pte lock.
1290 void page_add_file_rmap(struct page *page,
1291 struct vm_area_struct *vma, bool compound)
1295 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1296 lock_page_memcg(page);
1297 if (compound && PageTransHuge(page)) {
1298 int nr_pages = thp_nr_pages(page);
1300 for (i = 0; i < nr_pages; i++) {
1301 if (atomic_inc_and_test(&page[i]._mapcount))
1304 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1308 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1309 * but page lock is held by all page_add_file_rmap() compound
1310 * callers, and SetPageDoubleMap below warns if !PageLocked:
1311 * so here is a place that DoubleMap can be safely cleared.
1313 VM_WARN_ON_ONCE(!PageLocked(page));
1314 if (nr == nr_pages && PageDoubleMap(page))
1315 ClearPageDoubleMap(page);
1317 if (PageSwapBacked(page))
1318 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1321 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1324 if (PageTransCompound(page) && page_mapping(page)) {
1325 VM_WARN_ON_ONCE(!PageLocked(page));
1326 SetPageDoubleMap(compound_head(page));
1328 if (atomic_inc_and_test(&page->_mapcount))
1333 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1334 unlock_page_memcg(page);
1336 mlock_vma_page(page, vma, compound);
1339 static void page_remove_file_rmap(struct page *page, bool compound)
1343 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1345 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1346 if (unlikely(PageHuge(page))) {
1347 /* hugetlb pages are always mapped with pmds */
1348 atomic_dec(compound_mapcount_ptr(page));
1352 /* page still mapped by someone else? */
1353 if (compound && PageTransHuge(page)) {
1354 int nr_pages = thp_nr_pages(page);
1356 for (i = 0; i < nr_pages; i++) {
1357 if (atomic_add_negative(-1, &page[i]._mapcount))
1360 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1362 if (PageSwapBacked(page))
1363 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1366 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1369 if (atomic_add_negative(-1, &page->_mapcount))
1374 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1377 static void page_remove_anon_compound_rmap(struct page *page)
1381 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1384 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1385 if (unlikely(PageHuge(page)))
1388 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1391 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1393 if (TestClearPageDoubleMap(page)) {
1395 * Subpages can be mapped with PTEs too. Check how many of
1396 * them are still mapped.
1398 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1399 if (atomic_add_negative(-1, &page[i]._mapcount))
1404 * Queue the page for deferred split if at least one small
1405 * page of the compound page is unmapped, but at least one
1406 * small page is still mapped.
1408 if (nr && nr < thp_nr_pages(page))
1409 deferred_split_huge_page(page);
1411 nr = thp_nr_pages(page);
1415 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1419 * page_remove_rmap - take down pte mapping from a page
1420 * @page: page to remove mapping from
1421 * @vma: the vm area from which the mapping is removed
1422 * @compound: uncharge the page as compound or small page
1424 * The caller needs to hold the pte lock.
1426 void page_remove_rmap(struct page *page,
1427 struct vm_area_struct *vma, bool compound)
1429 lock_page_memcg(page);
1431 if (!PageAnon(page)) {
1432 page_remove_file_rmap(page, compound);
1437 page_remove_anon_compound_rmap(page);
1441 /* page still mapped by someone else? */
1442 if (!atomic_add_negative(-1, &page->_mapcount))
1446 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1447 * these counters are not modified in interrupt context, and
1448 * pte lock(a spinlock) is held, which implies preemption disabled.
1450 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1452 if (PageTransCompound(page))
1453 deferred_split_huge_page(compound_head(page));
1456 * It would be tidy to reset the PageAnon mapping here,
1457 * but that might overwrite a racing page_add_anon_rmap
1458 * which increments mapcount after us but sets mapping
1459 * before us: so leave the reset to free_unref_page,
1460 * and remember that it's only reliable while mapped.
1461 * Leaving it set also helps swapoff to reinstate ptes
1462 * faster for those pages still in swapcache.
1465 unlock_page_memcg(page);
1467 munlock_vma_page(page, vma, compound);
1471 * @arg: enum ttu_flags will be passed to this argument
1473 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1474 unsigned long address, void *arg)
1476 struct mm_struct *mm = vma->vm_mm;
1477 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1479 struct page *subpage;
1480 bool anon_exclusive, ret = true;
1481 struct mmu_notifier_range range;
1482 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1485 * When racing against e.g. zap_pte_range() on another cpu,
1486 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1487 * try_to_unmap() may return before page_mapped() has become false,
1488 * if page table locking is skipped: use TTU_SYNC to wait for that.
1490 if (flags & TTU_SYNC)
1491 pvmw.flags = PVMW_SYNC;
1493 if (flags & TTU_SPLIT_HUGE_PMD)
1494 split_huge_pmd_address(vma, address, false, folio);
1497 * For THP, we have to assume the worse case ie pmd for invalidation.
1498 * For hugetlb, it could be much worse if we need to do pud
1499 * invalidation in the case of pmd sharing.
1501 * Note that the folio can not be freed in this function as call of
1502 * try_to_unmap() must hold a reference on the folio.
1504 range.end = vma_address_end(&pvmw);
1505 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1506 address, range.end);
1507 if (folio_test_hugetlb(folio)) {
1509 * If sharing is possible, start and end will be adjusted
1512 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1515 mmu_notifier_invalidate_range_start(&range);
1517 while (page_vma_mapped_walk(&pvmw)) {
1518 /* Unexpected PMD-mapped THP? */
1519 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1522 * If the folio is in an mlock()d vma, we must not swap it out.
1524 if (!(flags & TTU_IGNORE_MLOCK) &&
1525 (vma->vm_flags & VM_LOCKED)) {
1526 /* Restore the mlock which got missed */
1527 mlock_vma_folio(folio, vma, false);
1528 page_vma_mapped_walk_done(&pvmw);
1533 subpage = folio_page(folio,
1534 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1535 address = pvmw.address;
1536 anon_exclusive = folio_test_anon(folio) &&
1537 PageAnonExclusive(subpage);
1539 if (folio_test_hugetlb(folio)) {
1541 * The try_to_unmap() is only passed a hugetlb page
1542 * in the case where the hugetlb page is poisoned.
1544 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1546 * huge_pmd_unshare may unmap an entire PMD page.
1547 * There is no way of knowing exactly which PMDs may
1548 * be cached for this mm, so we must flush them all.
1549 * start/end were already adjusted above to cover this
1552 flush_cache_range(vma, range.start, range.end);
1554 if (!folio_test_anon(folio)) {
1556 * To call huge_pmd_unshare, i_mmap_rwsem must be
1557 * held in write mode. Caller needs to explicitly
1558 * do this outside rmap routines.
1560 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1562 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1563 flush_tlb_range(vma, range.start, range.end);
1564 mmu_notifier_invalidate_range(mm, range.start,
1568 * The ref count of the PMD page was dropped
1569 * which is part of the way map counting
1570 * is done for shared PMDs. Return 'true'
1571 * here. When there is no other sharing,
1572 * huge_pmd_unshare returns false and we will
1573 * unmap the actual page and drop map count
1576 page_vma_mapped_walk_done(&pvmw);
1580 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1582 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1584 * Nuke the page table entry. When having to clear
1585 * PageAnonExclusive(), we always have to flush.
1587 if (should_defer_flush(mm, flags) && !anon_exclusive) {
1589 * We clear the PTE but do not flush so potentially
1590 * a remote CPU could still be writing to the folio.
1591 * If the entry was previously clean then the
1592 * architecture must guarantee that a clear->dirty
1593 * transition on a cached TLB entry is written through
1594 * and traps if the PTE is unmapped.
1596 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1598 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1600 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1605 * Now the pte is cleared. If this pte was uffd-wp armed,
1606 * we may want to replace a none pte with a marker pte if
1607 * it's file-backed, so we don't lose the tracking info.
1609 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1611 /* Set the dirty flag on the folio now the pte is gone. */
1612 if (pte_dirty(pteval))
1613 folio_mark_dirty(folio);
1615 /* Update high watermark before we lower rss */
1616 update_hiwater_rss(mm);
1618 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1619 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1620 if (folio_test_hugetlb(folio)) {
1621 hugetlb_count_sub(folio_nr_pages(folio), mm);
1622 set_huge_swap_pte_at(mm, address,
1624 vma_mmu_pagesize(vma));
1626 dec_mm_counter(mm, mm_counter(&folio->page));
1627 set_pte_at(mm, address, pvmw.pte, pteval);
1630 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1632 * The guest indicated that the page content is of no
1633 * interest anymore. Simply discard the pte, vmscan
1634 * will take care of the rest.
1635 * A future reference will then fault in a new zero
1636 * page. When userfaultfd is active, we must not drop
1637 * this page though, as its main user (postcopy
1638 * migration) will not expect userfaults on already
1641 dec_mm_counter(mm, mm_counter(&folio->page));
1642 /* We have to invalidate as we cleared the pte */
1643 mmu_notifier_invalidate_range(mm, address,
1644 address + PAGE_SIZE);
1645 } else if (folio_test_anon(folio)) {
1646 swp_entry_t entry = { .val = page_private(subpage) };
1649 * Store the swap location in the pte.
1650 * See handle_pte_fault() ...
1652 if (unlikely(folio_test_swapbacked(folio) !=
1653 folio_test_swapcache(folio))) {
1656 /* We have to invalidate as we cleared the pte */
1657 mmu_notifier_invalidate_range(mm, address,
1658 address + PAGE_SIZE);
1659 page_vma_mapped_walk_done(&pvmw);
1663 /* MADV_FREE page check */
1664 if (!folio_test_swapbacked(folio)) {
1665 int ref_count, map_count;
1668 * Synchronize with gup_pte_range():
1669 * - clear PTE; barrier; read refcount
1670 * - inc refcount; barrier; read PTE
1674 ref_count = folio_ref_count(folio);
1675 map_count = folio_mapcount(folio);
1678 * Order reads for page refcount and dirty flag
1679 * (see comments in __remove_mapping()).
1684 * The only page refs must be one from isolation
1685 * plus the rmap(s) (dropped by discard:).
1687 if (ref_count == 1 + map_count &&
1688 !folio_test_dirty(folio)) {
1689 /* Invalidate as we cleared the pte */
1690 mmu_notifier_invalidate_range(mm,
1691 address, address + PAGE_SIZE);
1692 dec_mm_counter(mm, MM_ANONPAGES);
1697 * If the folio was redirtied, it cannot be
1698 * discarded. Remap the page to page table.
1700 set_pte_at(mm, address, pvmw.pte, pteval);
1701 folio_set_swapbacked(folio);
1703 page_vma_mapped_walk_done(&pvmw);
1707 if (swap_duplicate(entry) < 0) {
1708 set_pte_at(mm, address, pvmw.pte, pteval);
1710 page_vma_mapped_walk_done(&pvmw);
1713 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1715 set_pte_at(mm, address, pvmw.pte, pteval);
1717 page_vma_mapped_walk_done(&pvmw);
1720 if (anon_exclusive &&
1721 page_try_share_anon_rmap(subpage)) {
1723 set_pte_at(mm, address, pvmw.pte, pteval);
1725 page_vma_mapped_walk_done(&pvmw);
1729 * Note: We *don't* remember if the page was mapped
1730 * exclusively in the swap pte if the architecture
1731 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1732 * that case, swapin code has to re-determine that
1733 * manually and might detect the page as possibly
1734 * shared, for example, if there are other references on
1735 * the page or if the page is under writeback. We made
1736 * sure that there are no GUP pins on the page that
1737 * would rely on it, so for GUP pins this is fine.
1739 if (list_empty(&mm->mmlist)) {
1740 spin_lock(&mmlist_lock);
1741 if (list_empty(&mm->mmlist))
1742 list_add(&mm->mmlist, &init_mm.mmlist);
1743 spin_unlock(&mmlist_lock);
1745 dec_mm_counter(mm, MM_ANONPAGES);
1746 inc_mm_counter(mm, MM_SWAPENTS);
1747 swp_pte = swp_entry_to_pte(entry);
1749 swp_pte = pte_swp_mkexclusive(swp_pte);
1750 if (pte_soft_dirty(pteval))
1751 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1752 if (pte_uffd_wp(pteval))
1753 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1754 set_pte_at(mm, address, pvmw.pte, swp_pte);
1755 /* Invalidate as we cleared the pte */
1756 mmu_notifier_invalidate_range(mm, address,
1757 address + PAGE_SIZE);
1760 * This is a locked file-backed folio,
1761 * so it cannot be removed from the page
1762 * cache and replaced by a new folio before
1763 * mmu_notifier_invalidate_range_end, so no
1764 * concurrent thread might update its page table
1765 * to point at a new folio while a device is
1766 * still using this folio.
1768 * See Documentation/vm/mmu_notifier.rst
1770 dec_mm_counter(mm, mm_counter_file(&folio->page));
1774 * No need to call mmu_notifier_invalidate_range() it has be
1775 * done above for all cases requiring it to happen under page
1776 * table lock before mmu_notifier_invalidate_range_end()
1778 * See Documentation/vm/mmu_notifier.rst
1780 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1781 if (vma->vm_flags & VM_LOCKED)
1782 mlock_page_drain_local();
1786 mmu_notifier_invalidate_range_end(&range);
1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1793 return vma_is_temporary_stack(vma);
1796 static int page_not_mapped(struct folio *folio)
1798 return !folio_mapped(folio);
1802 * try_to_unmap - Try to remove all page table mappings to a folio.
1803 * @folio: The folio to unmap.
1804 * @flags: action and flags
1806 * Tries to remove all the page table entries which are mapping this
1807 * folio. It is the caller's responsibility to check if the folio is
1808 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1810 * Context: Caller must hold the folio lock.
1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1814 struct rmap_walk_control rwc = {
1815 .rmap_one = try_to_unmap_one,
1816 .arg = (void *)flags,
1817 .done = page_not_mapped,
1818 .anon_lock = folio_lock_anon_vma_read,
1821 if (flags & TTU_RMAP_LOCKED)
1822 rmap_walk_locked(folio, &rwc);
1824 rmap_walk(folio, &rwc);
1828 * @arg: enum ttu_flags will be passed to this argument.
1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1831 * containing migration entries.
1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1834 unsigned long address, void *arg)
1836 struct mm_struct *mm = vma->vm_mm;
1837 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1839 struct page *subpage;
1840 bool anon_exclusive, ret = true;
1841 struct mmu_notifier_range range;
1842 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1845 * When racing against e.g. zap_pte_range() on another cpu,
1846 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1847 * try_to_migrate() may return before page_mapped() has become false,
1848 * if page table locking is skipped: use TTU_SYNC to wait for that.
1850 if (flags & TTU_SYNC)
1851 pvmw.flags = PVMW_SYNC;
1854 * unmap_page() in mm/huge_memory.c is the only user of migration with
1855 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1857 if (flags & TTU_SPLIT_HUGE_PMD)
1858 split_huge_pmd_address(vma, address, true, folio);
1861 * For THP, we have to assume the worse case ie pmd for invalidation.
1862 * For hugetlb, it could be much worse if we need to do pud
1863 * invalidation in the case of pmd sharing.
1865 * Note that the page can not be free in this function as call of
1866 * try_to_unmap() must hold a reference on the page.
1868 range.end = vma_address_end(&pvmw);
1869 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1870 address, range.end);
1871 if (folio_test_hugetlb(folio)) {
1873 * If sharing is possible, start and end will be adjusted
1876 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1879 mmu_notifier_invalidate_range_start(&range);
1881 while (page_vma_mapped_walk(&pvmw)) {
1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1883 /* PMD-mapped THP migration entry */
1885 subpage = folio_page(folio,
1886 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1887 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1888 !folio_test_pmd_mappable(folio), folio);
1890 if (set_pmd_migration_entry(&pvmw, subpage)) {
1892 page_vma_mapped_walk_done(&pvmw);
1899 /* Unexpected PMD-mapped THP? */
1900 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1902 if (folio_is_zone_device(folio)) {
1904 * Our PTE is a non-present device exclusive entry and
1905 * calculating the subpage as for the common case would
1906 * result in an invalid pointer.
1908 * Since only PAGE_SIZE pages can currently be
1909 * migrated, just set it to page. This will need to be
1910 * changed when hugepage migrations to device private
1911 * memory are supported.
1913 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1914 subpage = &folio->page;
1916 subpage = folio_page(folio,
1917 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1919 address = pvmw.address;
1920 anon_exclusive = folio_test_anon(folio) &&
1921 PageAnonExclusive(subpage);
1923 if (folio_test_hugetlb(folio)) {
1925 * huge_pmd_unshare may unmap an entire PMD page.
1926 * There is no way of knowing exactly which PMDs may
1927 * be cached for this mm, so we must flush them all.
1928 * start/end were already adjusted above to cover this
1931 flush_cache_range(vma, range.start, range.end);
1933 if (!folio_test_anon(folio)) {
1935 * To call huge_pmd_unshare, i_mmap_rwsem must be
1936 * held in write mode. Caller needs to explicitly
1937 * do this outside rmap routines.
1939 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1941 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1942 flush_tlb_range(vma, range.start, range.end);
1943 mmu_notifier_invalidate_range(mm, range.start,
1947 * The ref count of the PMD page was dropped
1948 * which is part of the way map counting
1949 * is done for shared PMDs. Return 'true'
1950 * here. When there is no other sharing,
1951 * huge_pmd_unshare returns false and we will
1952 * unmap the actual page and drop map count
1955 page_vma_mapped_walk_done(&pvmw);
1960 /* Nuke the hugetlb page table entry */
1961 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1963 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1964 /* Nuke the page table entry. */
1965 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1968 /* Set the dirty flag on the folio now the pte is gone. */
1969 if (pte_dirty(pteval))
1970 folio_mark_dirty(folio);
1972 /* Update high watermark before we lower rss */
1973 update_hiwater_rss(mm);
1975 if (folio_is_zone_device(folio)) {
1976 unsigned long pfn = folio_pfn(folio);
1981 BUG_ON(page_try_share_anon_rmap(subpage));
1984 * Store the pfn of the page in a special migration
1985 * pte. do_swap_page() will wait until the migration
1986 * pte is removed and then restart fault handling.
1988 entry = pte_to_swp_entry(pteval);
1989 if (is_writable_device_private_entry(entry))
1990 entry = make_writable_migration_entry(pfn);
1991 else if (anon_exclusive)
1992 entry = make_readable_exclusive_migration_entry(pfn);
1994 entry = make_readable_migration_entry(pfn);
1995 swp_pte = swp_entry_to_pte(entry);
1998 * pteval maps a zone device page and is therefore
2001 if (pte_swp_soft_dirty(pteval))
2002 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2003 if (pte_swp_uffd_wp(pteval))
2004 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2005 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2006 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2007 compound_order(&folio->page));
2009 * No need to invalidate here it will synchronize on
2010 * against the special swap migration pte.
2012 } else if (PageHWPoison(subpage)) {
2013 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2014 if (folio_test_hugetlb(folio)) {
2015 hugetlb_count_sub(folio_nr_pages(folio), mm);
2016 set_huge_swap_pte_at(mm, address,
2018 vma_mmu_pagesize(vma));
2020 dec_mm_counter(mm, mm_counter(&folio->page));
2021 set_pte_at(mm, address, pvmw.pte, pteval);
2024 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2026 * The guest indicated that the page content is of no
2027 * interest anymore. Simply discard the pte, vmscan
2028 * will take care of the rest.
2029 * A future reference will then fault in a new zero
2030 * page. When userfaultfd is active, we must not drop
2031 * this page though, as its main user (postcopy
2032 * migration) will not expect userfaults on already
2035 dec_mm_counter(mm, mm_counter(&folio->page));
2036 /* We have to invalidate as we cleared the pte */
2037 mmu_notifier_invalidate_range(mm, address,
2038 address + PAGE_SIZE);
2043 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2044 if (folio_test_hugetlb(folio))
2045 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2047 set_pte_at(mm, address, pvmw.pte, pteval);
2049 page_vma_mapped_walk_done(&pvmw);
2052 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2053 !anon_exclusive, subpage);
2054 if (anon_exclusive &&
2055 page_try_share_anon_rmap(subpage)) {
2056 if (folio_test_hugetlb(folio))
2057 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2059 set_pte_at(mm, address, pvmw.pte, pteval);
2061 page_vma_mapped_walk_done(&pvmw);
2066 * Store the pfn of the page in a special migration
2067 * pte. do_swap_page() will wait until the migration
2068 * pte is removed and then restart fault handling.
2070 if (pte_write(pteval))
2071 entry = make_writable_migration_entry(
2072 page_to_pfn(subpage));
2073 else if (anon_exclusive)
2074 entry = make_readable_exclusive_migration_entry(
2075 page_to_pfn(subpage));
2077 entry = make_readable_migration_entry(
2078 page_to_pfn(subpage));
2080 swp_pte = swp_entry_to_pte(entry);
2081 if (pte_soft_dirty(pteval))
2082 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2083 if (pte_uffd_wp(pteval))
2084 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2085 if (folio_test_hugetlb(folio))
2086 set_huge_swap_pte_at(mm, address, pvmw.pte,
2087 swp_pte, vma_mmu_pagesize(vma));
2089 set_pte_at(mm, address, pvmw.pte, swp_pte);
2090 trace_set_migration_pte(address, pte_val(swp_pte),
2091 compound_order(&folio->page));
2093 * No need to invalidate here it will synchronize on
2094 * against the special swap migration pte.
2099 * No need to call mmu_notifier_invalidate_range() it has be
2100 * done above for all cases requiring it to happen under page
2101 * table lock before mmu_notifier_invalidate_range_end()
2103 * See Documentation/vm/mmu_notifier.rst
2105 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2106 if (vma->vm_flags & VM_LOCKED)
2107 mlock_page_drain_local();
2111 mmu_notifier_invalidate_range_end(&range);
2117 * try_to_migrate - try to replace all page table mappings with swap entries
2118 * @folio: the folio to replace page table entries for
2119 * @flags: action and flags
2121 * Tries to remove all the page table entries which are mapping this folio and
2122 * replace them with special swap entries. Caller must hold the folio lock.
2124 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2126 struct rmap_walk_control rwc = {
2127 .rmap_one = try_to_migrate_one,
2128 .arg = (void *)flags,
2129 .done = page_not_mapped,
2130 .anon_lock = folio_lock_anon_vma_read,
2134 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2135 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2137 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2141 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
2145 * During exec, a temporary VMA is setup and later moved.
2146 * The VMA is moved under the anon_vma lock but not the
2147 * page tables leading to a race where migration cannot
2148 * find the migration ptes. Rather than increasing the
2149 * locking requirements of exec(), migration skips
2150 * temporary VMAs until after exec() completes.
2152 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2153 rwc.invalid_vma = invalid_migration_vma;
2155 if (flags & TTU_RMAP_LOCKED)
2156 rmap_walk_locked(folio, &rwc);
2158 rmap_walk(folio, &rwc);
2161 #ifdef CONFIG_DEVICE_PRIVATE
2162 struct make_exclusive_args {
2163 struct mm_struct *mm;
2164 unsigned long address;
2169 static bool page_make_device_exclusive_one(struct folio *folio,
2170 struct vm_area_struct *vma, unsigned long address, void *priv)
2172 struct mm_struct *mm = vma->vm_mm;
2173 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2174 struct make_exclusive_args *args = priv;
2176 struct page *subpage;
2178 struct mmu_notifier_range range;
2182 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2183 vma->vm_mm, address, min(vma->vm_end,
2184 address + folio_size(folio)),
2186 mmu_notifier_invalidate_range_start(&range);
2188 while (page_vma_mapped_walk(&pvmw)) {
2189 /* Unexpected PMD-mapped THP? */
2190 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2192 if (!pte_present(*pvmw.pte)) {
2194 page_vma_mapped_walk_done(&pvmw);
2198 subpage = folio_page(folio,
2199 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2200 address = pvmw.address;
2202 /* Nuke the page table entry. */
2203 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2204 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2206 /* Set the dirty flag on the folio now the pte is gone. */
2207 if (pte_dirty(pteval))
2208 folio_mark_dirty(folio);
2211 * Check that our target page is still mapped at the expected
2214 if (args->mm == mm && args->address == address &&
2219 * Store the pfn of the page in a special migration
2220 * pte. do_swap_page() will wait until the migration
2221 * pte is removed and then restart fault handling.
2223 if (pte_write(pteval))
2224 entry = make_writable_device_exclusive_entry(
2225 page_to_pfn(subpage));
2227 entry = make_readable_device_exclusive_entry(
2228 page_to_pfn(subpage));
2229 swp_pte = swp_entry_to_pte(entry);
2230 if (pte_soft_dirty(pteval))
2231 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2232 if (pte_uffd_wp(pteval))
2233 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2235 set_pte_at(mm, address, pvmw.pte, swp_pte);
2238 * There is a reference on the page for the swap entry which has
2239 * been removed, so shouldn't take another.
2241 page_remove_rmap(subpage, vma, false);
2244 mmu_notifier_invalidate_range_end(&range);
2250 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2251 * @folio: The folio to replace page table entries for.
2252 * @mm: The mm_struct where the folio is expected to be mapped.
2253 * @address: Address where the folio is expected to be mapped.
2254 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2256 * Tries to remove all the page table entries which are mapping this
2257 * folio and replace them with special device exclusive swap entries to
2258 * grant a device exclusive access to the folio.
2260 * Context: Caller must hold the folio lock.
2261 * Return: false if the page is still mapped, or if it could not be unmapped
2262 * from the expected address. Otherwise returns true (success).
2264 static bool folio_make_device_exclusive(struct folio *folio,
2265 struct mm_struct *mm, unsigned long address, void *owner)
2267 struct make_exclusive_args args = {
2273 struct rmap_walk_control rwc = {
2274 .rmap_one = page_make_device_exclusive_one,
2275 .done = page_not_mapped,
2276 .anon_lock = folio_lock_anon_vma_read,
2281 * Restrict to anonymous folios for now to avoid potential writeback
2284 if (!folio_test_anon(folio))
2287 rmap_walk(folio, &rwc);
2289 return args.valid && !folio_mapcount(folio);
2293 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2294 * @mm: mm_struct of associated target process
2295 * @start: start of the region to mark for exclusive device access
2296 * @end: end address of region
2297 * @pages: returns the pages which were successfully marked for exclusive access
2298 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2300 * Returns: number of pages found in the range by GUP. A page is marked for
2301 * exclusive access only if the page pointer is non-NULL.
2303 * This function finds ptes mapping page(s) to the given address range, locks
2304 * them and replaces mappings with special swap entries preventing userspace CPU
2305 * access. On fault these entries are replaced with the original mapping after
2306 * calling MMU notifiers.
2308 * A driver using this to program access from a device must use a mmu notifier
2309 * critical section to hold a device specific lock during programming. Once
2310 * programming is complete it should drop the page lock and reference after
2311 * which point CPU access to the page will revoke the exclusive access.
2313 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2314 unsigned long end, struct page **pages,
2317 long npages = (end - start) >> PAGE_SHIFT;
2320 npages = get_user_pages_remote(mm, start, npages,
2321 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2326 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2327 struct folio *folio = page_folio(pages[i]);
2328 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2334 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2335 folio_unlock(folio);
2343 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2346 void __put_anon_vma(struct anon_vma *anon_vma)
2348 struct anon_vma *root = anon_vma->root;
2350 anon_vma_free(anon_vma);
2351 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2352 anon_vma_free(root);
2355 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2356 struct rmap_walk_control *rwc)
2358 struct anon_vma *anon_vma;
2361 return rwc->anon_lock(folio, rwc);
2364 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2365 * because that depends on page_mapped(); but not all its usages
2366 * are holding mmap_lock. Users without mmap_lock are required to
2367 * take a reference count to prevent the anon_vma disappearing
2369 anon_vma = folio_anon_vma(folio);
2373 if (anon_vma_trylock_read(anon_vma))
2376 if (rwc->try_lock) {
2378 rwc->contended = true;
2382 anon_vma_lock_read(anon_vma);
2388 * rmap_walk_anon - do something to anonymous page using the object-based
2390 * @page: the page to be handled
2391 * @rwc: control variable according to each walk type
2393 * Find all the mappings of a page using the mapping pointer and the vma chains
2394 * contained in the anon_vma struct it points to.
2396 static void rmap_walk_anon(struct folio *folio,
2397 struct rmap_walk_control *rwc, bool locked)
2399 struct anon_vma *anon_vma;
2400 pgoff_t pgoff_start, pgoff_end;
2401 struct anon_vma_chain *avc;
2404 anon_vma = folio_anon_vma(folio);
2405 /* anon_vma disappear under us? */
2406 VM_BUG_ON_FOLIO(!anon_vma, folio);
2408 anon_vma = rmap_walk_anon_lock(folio, rwc);
2413 pgoff_start = folio_pgoff(folio);
2414 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2415 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2416 pgoff_start, pgoff_end) {
2417 struct vm_area_struct *vma = avc->vma;
2418 unsigned long address = vma_address(&folio->page, vma);
2420 VM_BUG_ON_VMA(address == -EFAULT, vma);
2423 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2426 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2428 if (rwc->done && rwc->done(folio))
2433 anon_vma_unlock_read(anon_vma);
2437 * rmap_walk_file - do something to file page using the object-based rmap method
2438 * @page: the page to be handled
2439 * @rwc: control variable according to each walk type
2441 * Find all the mappings of a page using the mapping pointer and the vma chains
2442 * contained in the address_space struct it points to.
2444 static void rmap_walk_file(struct folio *folio,
2445 struct rmap_walk_control *rwc, bool locked)
2447 struct address_space *mapping = folio_mapping(folio);
2448 pgoff_t pgoff_start, pgoff_end;
2449 struct vm_area_struct *vma;
2452 * The page lock not only makes sure that page->mapping cannot
2453 * suddenly be NULLified by truncation, it makes sure that the
2454 * structure at mapping cannot be freed and reused yet,
2455 * so we can safely take mapping->i_mmap_rwsem.
2457 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2462 pgoff_start = folio_pgoff(folio);
2463 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2465 if (i_mmap_trylock_read(mapping))
2468 if (rwc->try_lock) {
2469 rwc->contended = true;
2473 i_mmap_lock_read(mapping);
2476 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2477 pgoff_start, pgoff_end) {
2478 unsigned long address = vma_address(&folio->page, vma);
2480 VM_BUG_ON_VMA(address == -EFAULT, vma);
2483 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2486 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2488 if (rwc->done && rwc->done(folio))
2494 i_mmap_unlock_read(mapping);
2497 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2499 if (unlikely(folio_test_ksm(folio)))
2500 rmap_walk_ksm(folio, rwc);
2501 else if (folio_test_anon(folio))
2502 rmap_walk_anon(folio, rwc, false);
2504 rmap_walk_file(folio, rwc, false);
2507 /* Like rmap_walk, but caller holds relevant rmap lock */
2508 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2510 /* no ksm support for now */
2511 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2512 if (folio_test_anon(folio))
2513 rmap_walk_anon(folio, rwc, true);
2515 rmap_walk_file(folio, rwc, true);
2518 #ifdef CONFIG_HUGETLB_PAGE
2520 * The following two functions are for anonymous (private mapped) hugepages.
2521 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2522 * and no lru code, because we handle hugepages differently from common pages.
2524 * RMAP_COMPOUND is ignored.
2526 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2527 unsigned long address, rmap_t flags)
2529 struct anon_vma *anon_vma = vma->anon_vma;
2532 BUG_ON(!PageLocked(page));
2534 /* address might be in next vma when migration races vma_adjust */
2535 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2536 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2537 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2539 __page_set_anon_rmap(page, vma, address,
2540 !!(flags & RMAP_EXCLUSIVE));
2543 void hugepage_add_new_anon_rmap(struct page *page,
2544 struct vm_area_struct *vma, unsigned long address)
2546 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2547 atomic_set(compound_mapcount_ptr(page), 0);
2548 atomic_set(compound_pincount_ptr(page), 0);
2550 __page_set_anon_rmap(page, vma, address, 1);
2552 #endif /* CONFIG_HUGETLB_PAGE */