2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in lock_page_lruvec_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
77 #include <asm/tlbflush.h>
79 #include <trace/events/tlb.h>
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
86 static inline struct anon_vma *anon_vma_alloc(void)
88 struct anon_vma *anon_vma;
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
92 atomic_set(&anon_vma->refcount, 1);
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
99 anon_vma->root = anon_vma;
105 static inline void anon_vma_free(struct anon_vma *anon_vma)
107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
110 * Synchronize against page_lock_anon_vma_read() such that
111 * we can safely hold the lock without the anon_vma getting
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
121 * atomic_read() rwsem_is_locked()
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
128 anon_vma_lock_write(anon_vma);
129 anon_vma_unlock_write(anon_vma);
132 kmem_cache_free(anon_vma_cachep, anon_vma);
135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145 static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
156 * __anon_vma_prepare - attach an anon_vma to a memory region
157 * @vma: the memory region in question
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
165 * not we either need to find an adjacent mapping that we
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
170 * Anon-vma allocations are very subtle, because we may have
171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
172 * and that may actually touch the rwsem even in the newly
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
181 * This must be called with the mmap_lock held for reading.
183 int __anon_vma_prepare(struct vm_area_struct *vma)
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
187 struct anon_vma_chain *avc;
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 anon_vma = find_mergeable_anon_vma(vma);
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
221 anon_vma_chain_free(avc);
226 anon_vma_chain_free(avc);
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
244 up_write(&root->rwsem);
246 down_write(&root->rwsem);
251 static inline void unlock_anon_vma_root(struct anon_vma *root)
254 up_write(&root->rwsem);
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
277 struct anon_vma_chain *avc, *pavc;
278 struct anon_vma *root = NULL;
280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
281 struct anon_vma *anon_vma;
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
305 dst->anon_vma = anon_vma;
308 dst->anon_vma->degree++;
309 unlock_anon_vma_root(root);
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
319 dst->anon_vma = NULL;
320 unlink_anon_vmas(dst);
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
335 /* Don't bother if the parent process has no anon_vma here. */
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
346 error = anon_vma_clone(vma, pvma);
350 /* An existing anon_vma has been reused, all done then. */
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
358 avc = anon_vma_chain_alloc(GFP_KERNEL);
360 goto out_error_free_anon_vma;
363 * The root anon_vma's rwsem is the lock actually used when we
364 * lock any of the anon_vmas in this anon_vma tree.
366 anon_vma->root = pvma->anon_vma->root;
367 anon_vma->parent = pvma->anon_vma;
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
373 get_anon_vma(anon_vma->root);
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
376 anon_vma_lock_write(anon_vma);
377 anon_vma_chain_link(vma, avc, anon_vma);
378 anon_vma->parent->degree++;
379 anon_vma_unlock_write(anon_vma);
383 out_error_free_anon_vma:
384 put_anon_vma(anon_vma);
386 unlink_anon_vmas(vma);
390 void unlink_anon_vmas(struct vm_area_struct *vma)
392 struct anon_vma_chain *avc, *next;
393 struct anon_vma *root = NULL;
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
400 struct anon_vma *anon_vma = avc->anon_vma;
402 root = lock_anon_vma_root(root, anon_vma);
403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
410 anon_vma->parent->degree--;
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
418 vma->anon_vma->degree--;
421 * vma would still be needed after unlink, and anon_vma will be prepared
424 vma->anon_vma = NULL;
426 unlock_anon_vma_root(root);
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
431 * needing to write-acquire the anon_vma->root->rwsem.
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
436 VM_WARN_ON(anon_vma->degree);
437 put_anon_vma(anon_vma);
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
444 static void anon_vma_ctor(void *data)
446 struct anon_vma *anon_vma = data;
448 init_rwsem(&anon_vma->rwsem);
449 atomic_set(&anon_vma->refcount, 0);
450 anon_vma->rb_root = RB_ROOT_CACHED;
453 void __init anon_vma_init(void)
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
465 * Since there is no serialization what so ever against page_remove_rmap()
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
486 struct anon_vma *page_get_anon_vma(struct page *page)
488 struct anon_vma *anon_vma = NULL;
489 unsigned long anon_mapping;
492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
495 if (!page_mapped(page))
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
505 * If this page is still mapped, then its anon_vma cannot have been
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
509 * above cannot corrupt).
511 if (!page_mapped(page)) {
513 put_anon_vma(anon_vma);
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
529 struct anon_vma *page_lock_anon_vma_read(struct page *page)
531 struct anon_vma *anon_vma = NULL;
532 struct anon_vma *root_anon_vma;
533 unsigned long anon_mapping;
536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
539 if (!page_mapped(page))
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
543 root_anon_vma = READ_ONCE(anon_vma->root);
544 if (down_read_trylock(&root_anon_vma->rwsem)) {
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
548 * not go away, see anon_vma_free().
550 if (!page_mapped(page)) {
551 up_read(&root_anon_vma->rwsem);
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
563 if (!page_mapped(page)) {
565 put_anon_vma(anon_vma);
569 /* we pinned the anon_vma, its safe to sleep */
571 anon_vma_lock_read(anon_vma);
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
577 * we'll deadlock on the anon_vma_lock_write() recursion.
579 anon_vma_unlock_read(anon_vma);
580 __put_anon_vma(anon_vma);
591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
593 anon_vma_unlock_read(anon_vma);
596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
603 void try_to_unmap_flush(void)
605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
607 if (!tlb_ubc->flush_required)
610 arch_tlbbatch_flush(&tlb_ubc->arch);
611 tlb_ubc->flush_required = false;
612 tlb_ubc->writable = false;
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
618 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
624 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
626 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
628 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
629 tlb_ubc->flush_required = true;
632 * Ensure compiler does not re-order the setting of tlb_flush_batched
633 * before the PTE is cleared.
636 mm->tlb_flush_batched = true;
639 * If the PTE was dirty then it's best to assume it's writable. The
640 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
641 * before the page is queued for IO.
644 tlb_ubc->writable = true;
648 * Returns true if the TLB flush should be deferred to the end of a batch of
649 * unmap operations to reduce IPIs.
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
653 bool should_defer = false;
655 if (!(flags & TTU_BATCH_FLUSH))
658 /* If remote CPUs need to be flushed then defer batch the flush */
659 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
667 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
668 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
669 * operation such as mprotect or munmap to race between reclaim unmapping
670 * the page and flushing the page. If this race occurs, it potentially allows
671 * access to data via a stale TLB entry. Tracking all mm's that have TLB
672 * batching in flight would be expensive during reclaim so instead track
673 * whether TLB batching occurred in the past and if so then do a flush here
674 * if required. This will cost one additional flush per reclaim cycle paid
675 * by the first operation at risk such as mprotect and mumap.
677 * This must be called under the PTL so that an access to tlb_flush_batched
678 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
681 void flush_tlb_batched_pending(struct mm_struct *mm)
683 if (data_race(mm->tlb_flush_batched)) {
687 * Do not allow the compiler to re-order the clearing of
688 * tlb_flush_batched before the tlb is flushed.
691 mm->tlb_flush_batched = false;
695 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
699 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
703 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
706 * At what user virtual address is page expected in vma?
707 * Caller should check the page is actually part of the vma.
709 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
711 if (PageAnon(page)) {
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
720 } else if (!vma->vm_file) {
722 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
726 return vma_address(page, vma);
729 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
737 pgd = pgd_offset(mm, address);
738 if (!pgd_present(*pgd))
741 p4d = p4d_offset(pgd, address);
742 if (!p4d_present(*p4d))
745 pud = pud_offset(p4d, address);
746 if (!pud_present(*pud))
749 pmd = pmd_offset(pud, address);
751 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
752 * without holding anon_vma lock for write. So when looking for a
753 * genuine pmde (in which to find pte), test present and !THP together.
757 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
763 struct page_referenced_arg {
766 unsigned long vm_flags;
767 struct mem_cgroup *memcg;
770 * arg: page_referenced_arg will be passed
772 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
773 unsigned long address, void *arg)
775 struct page_referenced_arg *pra = arg;
776 struct page_vma_mapped_walk pvmw = {
783 while (page_vma_mapped_walk(&pvmw)) {
784 address = pvmw.address;
786 if (vma->vm_flags & VM_LOCKED) {
787 page_vma_mapped_walk_done(&pvmw);
788 pra->vm_flags |= VM_LOCKED;
789 return false; /* To break the loop */
793 if (ptep_clear_flush_young_notify(vma, address,
796 * Don't treat a reference through
797 * a sequentially read mapping as such.
798 * If the page has been used in another mapping,
799 * we will catch it; if this other mapping is
800 * already gone, the unmap path will have set
801 * PG_referenced or activated the page.
803 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
807 if (pmdp_clear_flush_young_notify(vma, address,
811 /* unexpected pmd-mapped page? */
819 clear_page_idle(page);
820 if (test_and_clear_page_young(page))
825 pra->vm_flags |= vma->vm_flags;
829 return false; /* To break the loop */
834 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
836 struct page_referenced_arg *pra = arg;
837 struct mem_cgroup *memcg = pra->memcg;
839 if (!mm_match_cgroup(vma->vm_mm, memcg))
846 * page_referenced - test if the page was referenced
847 * @page: the page to test
848 * @is_locked: caller holds lock on the page
849 * @memcg: target memory cgroup
850 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
852 * Quick test_and_clear_referenced for all mappings to a page,
853 * returns the number of ptes which referenced the page.
855 int page_referenced(struct page *page,
857 struct mem_cgroup *memcg,
858 unsigned long *vm_flags)
861 struct page_referenced_arg pra = {
862 .mapcount = total_mapcount(page),
865 struct rmap_walk_control rwc = {
866 .rmap_one = page_referenced_one,
868 .anon_lock = page_lock_anon_vma_read,
875 if (!page_rmapping(page))
878 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
879 we_locked = trylock_page(page);
885 * If we are reclaiming on behalf of a cgroup, skip
886 * counting on behalf of references from different
890 rwc.invalid_vma = invalid_page_referenced_vma;
893 rmap_walk(page, &rwc);
894 *vm_flags = pra.vm_flags;
899 return pra.referenced;
902 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
903 unsigned long address, void *arg)
905 struct page_vma_mapped_walk pvmw = {
911 struct mmu_notifier_range range;
915 * We have to assume the worse case ie pmd for invalidation. Note that
916 * the page can not be free from this function.
918 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
919 0, vma, vma->vm_mm, address,
920 vma_address_end(page, vma));
921 mmu_notifier_invalidate_range_start(&range);
923 while (page_vma_mapped_walk(&pvmw)) {
926 address = pvmw.address;
929 pte_t *pte = pvmw.pte;
931 if (!pte_dirty(*pte) && !pte_write(*pte))
934 flush_cache_page(vma, address, pte_pfn(*pte));
935 entry = ptep_clear_flush(vma, address, pte);
936 entry = pte_wrprotect(entry);
937 entry = pte_mkclean(entry);
938 set_pte_at(vma->vm_mm, address, pte, entry);
941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
942 pmd_t *pmd = pvmw.pmd;
945 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 flush_cache_page(vma, address, page_to_pfn(page));
949 entry = pmdp_invalidate(vma, address, pmd);
950 entry = pmd_wrprotect(entry);
951 entry = pmd_mkclean(entry);
952 set_pmd_at(vma->vm_mm, address, pmd, entry);
955 /* unexpected pmd-mapped page? */
961 * No need to call mmu_notifier_invalidate_range() as we are
962 * downgrading page table protection not changing it to point
965 * See Documentation/vm/mmu_notifier.rst
971 mmu_notifier_invalidate_range_end(&range);
976 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
978 if (vma->vm_flags & VM_SHARED)
984 int page_mkclean(struct page *page)
987 struct address_space *mapping;
988 struct rmap_walk_control rwc = {
989 .arg = (void *)&cleaned,
990 .rmap_one = page_mkclean_one,
991 .invalid_vma = invalid_mkclean_vma,
994 BUG_ON(!PageLocked(page));
996 if (!page_mapped(page))
999 mapping = page_mapping(page);
1003 rmap_walk(page, &rwc);
1007 EXPORT_SYMBOL_GPL(page_mkclean);
1010 * page_move_anon_rmap - move a page to our anon_vma
1011 * @page: the page to move to our anon_vma
1012 * @vma: the vma the page belongs to
1014 * When a page belongs exclusively to one process after a COW event,
1015 * that page can be moved into the anon_vma that belongs to just that
1016 * process, so the rmap code will not search the parent or sibling
1019 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1021 struct anon_vma *anon_vma = vma->anon_vma;
1023 page = compound_head(page);
1025 VM_BUG_ON_PAGE(!PageLocked(page), page);
1026 VM_BUG_ON_VMA(!anon_vma, vma);
1028 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1030 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1031 * simultaneously, so a concurrent reader (eg page_referenced()'s
1032 * PageAnon()) will not see one without the other.
1034 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1038 * __page_set_anon_rmap - set up new anonymous rmap
1039 * @page: Page or Hugepage to add to rmap
1040 * @vma: VM area to add page to.
1041 * @address: User virtual address of the mapping
1042 * @exclusive: the page is exclusively owned by the current process
1044 static void __page_set_anon_rmap(struct page *page,
1045 struct vm_area_struct *vma, unsigned long address, int exclusive)
1047 struct anon_vma *anon_vma = vma->anon_vma;
1055 * If the page isn't exclusively mapped into this vma,
1056 * we must use the _oldest_ possible anon_vma for the
1060 anon_vma = anon_vma->root;
1063 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1064 * Make sure the compiler doesn't split the stores of anon_vma and
1065 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1066 * could mistake the mapping for a struct address_space and crash.
1068 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070 page->index = linear_page_index(vma, address);
1074 * __page_check_anon_rmap - sanity check anonymous rmap addition
1075 * @page: the page to add the mapping to
1076 * @vma: the vm area in which the mapping is added
1077 * @address: the user virtual address mapped
1079 static void __page_check_anon_rmap(struct page *page,
1080 struct vm_area_struct *vma, unsigned long address)
1083 * The page's anon-rmap details (mapping and index) are guaranteed to
1084 * be set up correctly at this point.
1086 * We have exclusion against page_add_anon_rmap because the caller
1087 * always holds the page locked.
1089 * We have exclusion against page_add_new_anon_rmap because those pages
1090 * are initially only visible via the pagetables, and the pte is locked
1091 * over the call to page_add_new_anon_rmap.
1093 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1094 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1099 * page_add_anon_rmap - add pte mapping to an anonymous page
1100 * @page: the page to add the mapping to
1101 * @vma: the vm area in which the mapping is added
1102 * @address: the user virtual address mapped
1103 * @compound: charge the page as compound or small page
1105 * The caller needs to hold the pte lock, and the page must be locked in
1106 * the anon_vma case: to serialize mapping,index checking after setting,
1107 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1108 * (but PageKsm is never downgraded to PageAnon).
1110 void page_add_anon_rmap(struct page *page,
1111 struct vm_area_struct *vma, unsigned long address, bool compound)
1113 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1117 * Special version of the above for do_swap_page, which often runs
1118 * into pages that are exclusively owned by the current process.
1119 * Everybody else should continue to use page_add_anon_rmap above.
1121 void do_page_add_anon_rmap(struct page *page,
1122 struct vm_area_struct *vma, unsigned long address, int flags)
1124 bool compound = flags & RMAP_COMPOUND;
1127 if (unlikely(PageKsm(page)))
1128 lock_page_memcg(page);
1130 VM_BUG_ON_PAGE(!PageLocked(page), page);
1134 VM_BUG_ON_PAGE(!PageLocked(page), page);
1135 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1136 mapcount = compound_mapcount_ptr(page);
1137 first = atomic_inc_and_test(mapcount);
1139 first = atomic_inc_and_test(&page->_mapcount);
1143 int nr = compound ? thp_nr_pages(page) : 1;
1145 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1146 * these counters are not modified in interrupt context, and
1147 * pte lock(a spinlock) is held, which implies preemption
1151 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1152 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1155 if (unlikely(PageKsm(page))) {
1156 unlock_page_memcg(page);
1160 /* address might be in next vma when migration races vma_adjust */
1162 __page_set_anon_rmap(page, vma, address,
1163 flags & RMAP_EXCLUSIVE);
1165 __page_check_anon_rmap(page, vma, address);
1169 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1170 * @page: the page to add the mapping to
1171 * @vma: the vm area in which the mapping is added
1172 * @address: the user virtual address mapped
1173 * @compound: charge the page as compound or small page
1175 * Same as page_add_anon_rmap but must only be called on *new* pages.
1176 * This means the inc-and-test can be bypassed.
1177 * Page does not have to be locked.
1179 void page_add_new_anon_rmap(struct page *page,
1180 struct vm_area_struct *vma, unsigned long address, bool compound)
1182 int nr = compound ? thp_nr_pages(page) : 1;
1184 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1185 __SetPageSwapBacked(page);
1187 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1188 /* increment count (starts at -1) */
1189 atomic_set(compound_mapcount_ptr(page), 0);
1190 if (hpage_pincount_available(page))
1191 atomic_set(compound_pincount_ptr(page), 0);
1193 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1195 /* Anon THP always mapped first with PMD */
1196 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1197 /* increment count (starts at -1) */
1198 atomic_set(&page->_mapcount, 0);
1200 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1201 __page_set_anon_rmap(page, vma, address, 1);
1205 * page_add_file_rmap - add pte mapping to a file page
1206 * @page: the page to add the mapping to
1207 * @compound: charge the page as compound or small page
1209 * The caller needs to hold the pte lock.
1211 void page_add_file_rmap(struct page *page, bool compound)
1215 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1216 lock_page_memcg(page);
1217 if (compound && PageTransHuge(page)) {
1218 int nr_pages = thp_nr_pages(page);
1220 for (i = 0, nr = 0; i < nr_pages; i++) {
1221 if (atomic_inc_and_test(&page[i]._mapcount))
1224 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1226 if (PageSwapBacked(page))
1227 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1230 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1233 if (PageTransCompound(page) && page_mapping(page)) {
1234 struct page *head = compound_head(page);
1236 VM_WARN_ON_ONCE(!PageLocked(page));
1238 SetPageDoubleMap(head);
1239 if (PageMlocked(page))
1240 clear_page_mlock(head);
1242 if (!atomic_inc_and_test(&page->_mapcount))
1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1247 unlock_page_memcg(page);
1250 static void page_remove_file_rmap(struct page *page, bool compound)
1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257 if (unlikely(PageHuge(page))) {
1258 /* hugetlb pages are always mapped with pmds */
1259 atomic_dec(compound_mapcount_ptr(page));
1263 /* page still mapped by someone else? */
1264 if (compound && PageTransHuge(page)) {
1265 int nr_pages = thp_nr_pages(page);
1267 for (i = 0, nr = 0; i < nr_pages; i++) {
1268 if (atomic_add_negative(-1, &page[i]._mapcount))
1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1273 if (PageSwapBacked(page))
1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1280 if (!atomic_add_negative(-1, &page->_mapcount))
1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286 * these counters are not modified in interrupt context, and
1287 * pte lock(a spinlock) is held, which implies preemption disabled.
1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1291 if (unlikely(PageMlocked(page)))
1292 clear_page_mlock(page);
1295 static void page_remove_anon_compound_rmap(struct page *page)
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303 if (unlikely(PageHuge(page)))
1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1311 if (TestClearPageDoubleMap(page)) {
1313 * Subpages can be mapped with PTEs too. Check how many of
1314 * them are still mapped.
1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317 if (atomic_add_negative(-1, &page[i]._mapcount))
1322 * Queue the page for deferred split if at least one small
1323 * page of the compound page is unmapped, but at least one
1324 * small page is still mapped.
1326 if (nr && nr < thp_nr_pages(page))
1327 deferred_split_huge_page(page);
1329 nr = thp_nr_pages(page);
1332 if (unlikely(PageMlocked(page)))
1333 clear_page_mlock(page);
1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1340 * page_remove_rmap - take down pte mapping from a page
1341 * @page: page to remove mapping from
1342 * @compound: uncharge the page as compound or small page
1344 * The caller needs to hold the pte lock.
1346 void page_remove_rmap(struct page *page, bool compound)
1348 lock_page_memcg(page);
1350 if (!PageAnon(page)) {
1351 page_remove_file_rmap(page, compound);
1356 page_remove_anon_compound_rmap(page);
1360 /* page still mapped by someone else? */
1361 if (!atomic_add_negative(-1, &page->_mapcount))
1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366 * these counters are not modified in interrupt context, and
1367 * pte lock(a spinlock) is held, which implies preemption disabled.
1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1371 if (unlikely(PageMlocked(page)))
1372 clear_page_mlock(page);
1374 if (PageTransCompound(page))
1375 deferred_split_huge_page(compound_head(page));
1378 * It would be tidy to reset the PageAnon mapping here,
1379 * but that might overwrite a racing page_add_anon_rmap
1380 * which increments mapcount after us but sets mapping
1381 * before us: so leave the reset to free_unref_page,
1382 * and remember that it's only reliable while mapped.
1383 * Leaving it set also helps swapoff to reinstate ptes
1384 * faster for those pages still in swapcache.
1387 unlock_page_memcg(page);
1391 * @arg: enum ttu_flags will be passed to this argument
1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394 unsigned long address, void *arg)
1396 struct mm_struct *mm = vma->vm_mm;
1397 struct page_vma_mapped_walk pvmw = {
1403 struct page *subpage;
1405 struct mmu_notifier_range range;
1406 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1409 * When racing against e.g. zap_pte_range() on another cpu,
1410 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1411 * try_to_unmap() may return before page_mapped() has become false,
1412 * if page table locking is skipped: use TTU_SYNC to wait for that.
1414 if (flags & TTU_SYNC)
1415 pvmw.flags = PVMW_SYNC;
1417 if (flags & TTU_SPLIT_HUGE_PMD)
1418 split_huge_pmd_address(vma, address, false, page);
1421 * For THP, we have to assume the worse case ie pmd for invalidation.
1422 * For hugetlb, it could be much worse if we need to do pud
1423 * invalidation in the case of pmd sharing.
1425 * Note that the page can not be free in this function as call of
1426 * try_to_unmap() must hold a reference on the page.
1428 range.end = PageKsm(page) ?
1429 address + PAGE_SIZE : vma_address_end(page, vma);
1430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1431 address, range.end);
1432 if (PageHuge(page)) {
1434 * If sharing is possible, start and end will be adjusted
1437 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1440 mmu_notifier_invalidate_range_start(&range);
1442 while (page_vma_mapped_walk(&pvmw)) {
1444 * If the page is mlock()d, we cannot swap it out.
1446 if (!(flags & TTU_IGNORE_MLOCK) &&
1447 (vma->vm_flags & VM_LOCKED)) {
1449 * PTE-mapped THP are never marked as mlocked: so do
1450 * not set it on a DoubleMap THP, nor on an Anon THP
1451 * (which may still be PTE-mapped after DoubleMap was
1452 * cleared). But stop unmapping even in those cases.
1454 if (!PageTransCompound(page) || (PageHead(page) &&
1455 !PageDoubleMap(page) && !PageAnon(page)))
1456 mlock_vma_page(page);
1457 page_vma_mapped_walk_done(&pvmw);
1462 /* Unexpected PMD-mapped THP? */
1463 VM_BUG_ON_PAGE(!pvmw.pte, page);
1465 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1466 address = pvmw.address;
1468 if (PageHuge(page) && !PageAnon(page)) {
1470 * To call huge_pmd_unshare, i_mmap_rwsem must be
1471 * held in write mode. Caller needs to explicitly
1472 * do this outside rmap routines.
1474 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1475 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1477 * huge_pmd_unshare unmapped an entire PMD
1478 * page. There is no way of knowing exactly
1479 * which PMDs may be cached for this mm, so
1480 * we must flush them all. start/end were
1481 * already adjusted above to cover this range.
1483 flush_cache_range(vma, range.start, range.end);
1484 flush_tlb_range(vma, range.start, range.end);
1485 mmu_notifier_invalidate_range(mm, range.start,
1489 * The ref count of the PMD page was dropped
1490 * which is part of the way map counting
1491 * is done for shared PMDs. Return 'true'
1492 * here. When there is no other sharing,
1493 * huge_pmd_unshare returns false and we will
1494 * unmap the actual page and drop map count
1497 page_vma_mapped_walk_done(&pvmw);
1502 /* Nuke the page table entry. */
1503 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1504 if (should_defer_flush(mm, flags)) {
1506 * We clear the PTE but do not flush so potentially
1507 * a remote CPU could still be writing to the page.
1508 * If the entry was previously clean then the
1509 * architecture must guarantee that a clear->dirty
1510 * transition on a cached TLB entry is written through
1511 * and traps if the PTE is unmapped.
1513 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1515 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1517 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1520 /* Move the dirty bit to the page. Now the pte is gone. */
1521 if (pte_dirty(pteval))
1522 set_page_dirty(page);
1524 /* Update high watermark before we lower rss */
1525 update_hiwater_rss(mm);
1527 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1528 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1529 if (PageHuge(page)) {
1530 hugetlb_count_sub(compound_nr(page), mm);
1531 set_huge_swap_pte_at(mm, address,
1533 vma_mmu_pagesize(vma));
1535 dec_mm_counter(mm, mm_counter(page));
1536 set_pte_at(mm, address, pvmw.pte, pteval);
1539 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1541 * The guest indicated that the page content is of no
1542 * interest anymore. Simply discard the pte, vmscan
1543 * will take care of the rest.
1544 * A future reference will then fault in a new zero
1545 * page. When userfaultfd is active, we must not drop
1546 * this page though, as its main user (postcopy
1547 * migration) will not expect userfaults on already
1550 dec_mm_counter(mm, mm_counter(page));
1551 /* We have to invalidate as we cleared the pte */
1552 mmu_notifier_invalidate_range(mm, address,
1553 address + PAGE_SIZE);
1554 } else if (PageAnon(page)) {
1555 swp_entry_t entry = { .val = page_private(subpage) };
1558 * Store the swap location in the pte.
1559 * See handle_pte_fault() ...
1561 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1564 /* We have to invalidate as we cleared the pte */
1565 mmu_notifier_invalidate_range(mm, address,
1566 address + PAGE_SIZE);
1567 page_vma_mapped_walk_done(&pvmw);
1571 /* MADV_FREE page check */
1572 if (!PageSwapBacked(page)) {
1573 if (!PageDirty(page)) {
1574 /* Invalidate as we cleared the pte */
1575 mmu_notifier_invalidate_range(mm,
1576 address, address + PAGE_SIZE);
1577 dec_mm_counter(mm, MM_ANONPAGES);
1582 * If the page was redirtied, it cannot be
1583 * discarded. Remap the page to page table.
1585 set_pte_at(mm, address, pvmw.pte, pteval);
1586 SetPageSwapBacked(page);
1588 page_vma_mapped_walk_done(&pvmw);
1592 if (swap_duplicate(entry) < 0) {
1593 set_pte_at(mm, address, pvmw.pte, pteval);
1595 page_vma_mapped_walk_done(&pvmw);
1598 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1599 set_pte_at(mm, address, pvmw.pte, pteval);
1601 page_vma_mapped_walk_done(&pvmw);
1604 if (list_empty(&mm->mmlist)) {
1605 spin_lock(&mmlist_lock);
1606 if (list_empty(&mm->mmlist))
1607 list_add(&mm->mmlist, &init_mm.mmlist);
1608 spin_unlock(&mmlist_lock);
1610 dec_mm_counter(mm, MM_ANONPAGES);
1611 inc_mm_counter(mm, MM_SWAPENTS);
1612 swp_pte = swp_entry_to_pte(entry);
1613 if (pte_soft_dirty(pteval))
1614 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1615 if (pte_uffd_wp(pteval))
1616 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1617 set_pte_at(mm, address, pvmw.pte, swp_pte);
1618 /* Invalidate as we cleared the pte */
1619 mmu_notifier_invalidate_range(mm, address,
1620 address + PAGE_SIZE);
1623 * This is a locked file-backed page, thus it cannot
1624 * be removed from the page cache and replaced by a new
1625 * page before mmu_notifier_invalidate_range_end, so no
1626 * concurrent thread might update its page table to
1627 * point at new page while a device still is using this
1630 * See Documentation/vm/mmu_notifier.rst
1632 dec_mm_counter(mm, mm_counter_file(page));
1636 * No need to call mmu_notifier_invalidate_range() it has be
1637 * done above for all cases requiring it to happen under page
1638 * table lock before mmu_notifier_invalidate_range_end()
1640 * See Documentation/vm/mmu_notifier.rst
1642 page_remove_rmap(subpage, PageHuge(page));
1646 mmu_notifier_invalidate_range_end(&range);
1651 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1653 return vma_is_temporary_stack(vma);
1656 static int page_not_mapped(struct page *page)
1658 return !page_mapped(page);
1662 * try_to_unmap - try to remove all page table mappings to a page
1663 * @page: the page to get unmapped
1664 * @flags: action and flags
1666 * Tries to remove all the page table entries which are mapping this
1667 * page, used in the pageout path. Caller must hold the page lock.
1669 * It is the caller's responsibility to check if the page is still
1670 * mapped when needed (use TTU_SYNC to prevent accounting races).
1672 void try_to_unmap(struct page *page, enum ttu_flags flags)
1674 struct rmap_walk_control rwc = {
1675 .rmap_one = try_to_unmap_one,
1676 .arg = (void *)flags,
1677 .done = page_not_mapped,
1678 .anon_lock = page_lock_anon_vma_read,
1681 if (flags & TTU_RMAP_LOCKED)
1682 rmap_walk_locked(page, &rwc);
1684 rmap_walk(page, &rwc);
1688 * @arg: enum ttu_flags will be passed to this argument.
1690 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1691 * containing migration entries.
1693 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1694 unsigned long address, void *arg)
1696 struct mm_struct *mm = vma->vm_mm;
1697 struct page_vma_mapped_walk pvmw = {
1703 struct page *subpage;
1705 struct mmu_notifier_range range;
1706 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1709 * When racing against e.g. zap_pte_range() on another cpu,
1710 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1711 * try_to_migrate() may return before page_mapped() has become false,
1712 * if page table locking is skipped: use TTU_SYNC to wait for that.
1714 if (flags & TTU_SYNC)
1715 pvmw.flags = PVMW_SYNC;
1718 * unmap_page() in mm/huge_memory.c is the only user of migration with
1719 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1721 if (flags & TTU_SPLIT_HUGE_PMD)
1722 split_huge_pmd_address(vma, address, true, page);
1725 * For THP, we have to assume the worse case ie pmd for invalidation.
1726 * For hugetlb, it could be much worse if we need to do pud
1727 * invalidation in the case of pmd sharing.
1729 * Note that the page can not be free in this function as call of
1730 * try_to_unmap() must hold a reference on the page.
1732 range.end = PageKsm(page) ?
1733 address + PAGE_SIZE : vma_address_end(page, vma);
1734 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1735 address, range.end);
1736 if (PageHuge(page)) {
1738 * If sharing is possible, start and end will be adjusted
1741 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1744 mmu_notifier_invalidate_range_start(&range);
1746 while (page_vma_mapped_walk(&pvmw)) {
1747 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1748 /* PMD-mapped THP migration entry */
1750 VM_BUG_ON_PAGE(PageHuge(page) ||
1751 !PageTransCompound(page), page);
1753 set_pmd_migration_entry(&pvmw, page);
1758 /* Unexpected PMD-mapped THP? */
1759 VM_BUG_ON_PAGE(!pvmw.pte, page);
1761 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1762 address = pvmw.address;
1764 if (PageHuge(page) && !PageAnon(page)) {
1766 * To call huge_pmd_unshare, i_mmap_rwsem must be
1767 * held in write mode. Caller needs to explicitly
1768 * do this outside rmap routines.
1770 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1771 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1773 * huge_pmd_unshare unmapped an entire PMD
1774 * page. There is no way of knowing exactly
1775 * which PMDs may be cached for this mm, so
1776 * we must flush them all. start/end were
1777 * already adjusted above to cover this range.
1779 flush_cache_range(vma, range.start, range.end);
1780 flush_tlb_range(vma, range.start, range.end);
1781 mmu_notifier_invalidate_range(mm, range.start,
1785 * The ref count of the PMD page was dropped
1786 * which is part of the way map counting
1787 * is done for shared PMDs. Return 'true'
1788 * here. When there is no other sharing,
1789 * huge_pmd_unshare returns false and we will
1790 * unmap the actual page and drop map count
1793 page_vma_mapped_walk_done(&pvmw);
1798 /* Nuke the page table entry. */
1799 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1800 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1802 /* Move the dirty bit to the page. Now the pte is gone. */
1803 if (pte_dirty(pteval))
1804 set_page_dirty(page);
1806 /* Update high watermark before we lower rss */
1807 update_hiwater_rss(mm);
1809 if (is_zone_device_page(page)) {
1814 * Store the pfn of the page in a special migration
1815 * pte. do_swap_page() will wait until the migration
1816 * pte is removed and then restart fault handling.
1818 entry = make_readable_migration_entry(
1820 swp_pte = swp_entry_to_pte(entry);
1823 * pteval maps a zone device page and is therefore
1826 if (pte_swp_soft_dirty(pteval))
1827 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1828 if (pte_swp_uffd_wp(pteval))
1829 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1830 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1832 * No need to invalidate here it will synchronize on
1833 * against the special swap migration pte.
1835 * The assignment to subpage above was computed from a
1836 * swap PTE which results in an invalid pointer.
1837 * Since only PAGE_SIZE pages can currently be
1838 * migrated, just set it to page. This will need to be
1839 * changed when hugepage migrations to device private
1840 * memory are supported.
1843 } else if (PageHWPoison(page)) {
1844 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1845 if (PageHuge(page)) {
1846 hugetlb_count_sub(compound_nr(page), mm);
1847 set_huge_swap_pte_at(mm, address,
1849 vma_mmu_pagesize(vma));
1851 dec_mm_counter(mm, mm_counter(page));
1852 set_pte_at(mm, address, pvmw.pte, pteval);
1855 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1857 * The guest indicated that the page content is of no
1858 * interest anymore. Simply discard the pte, vmscan
1859 * will take care of the rest.
1860 * A future reference will then fault in a new zero
1861 * page. When userfaultfd is active, we must not drop
1862 * this page though, as its main user (postcopy
1863 * migration) will not expect userfaults on already
1866 dec_mm_counter(mm, mm_counter(page));
1867 /* We have to invalidate as we cleared the pte */
1868 mmu_notifier_invalidate_range(mm, address,
1869 address + PAGE_SIZE);
1874 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1875 set_pte_at(mm, address, pvmw.pte, pteval);
1877 page_vma_mapped_walk_done(&pvmw);
1882 * Store the pfn of the page in a special migration
1883 * pte. do_swap_page() will wait until the migration
1884 * pte is removed and then restart fault handling.
1886 if (pte_write(pteval))
1887 entry = make_writable_migration_entry(
1888 page_to_pfn(subpage));
1890 entry = make_readable_migration_entry(
1891 page_to_pfn(subpage));
1893 swp_pte = swp_entry_to_pte(entry);
1894 if (pte_soft_dirty(pteval))
1895 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1896 if (pte_uffd_wp(pteval))
1897 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1898 set_pte_at(mm, address, pvmw.pte, swp_pte);
1900 * No need to invalidate here it will synchronize on
1901 * against the special swap migration pte.
1906 * No need to call mmu_notifier_invalidate_range() it has be
1907 * done above for all cases requiring it to happen under page
1908 * table lock before mmu_notifier_invalidate_range_end()
1910 * See Documentation/vm/mmu_notifier.rst
1912 page_remove_rmap(subpage, PageHuge(page));
1916 mmu_notifier_invalidate_range_end(&range);
1922 * try_to_migrate - try to replace all page table mappings with swap entries
1923 * @page: the page to replace page table entries for
1924 * @flags: action and flags
1926 * Tries to remove all the page table entries which are mapping this page and
1927 * replace them with special swap entries. Caller must hold the page lock.
1929 void try_to_migrate(struct page *page, enum ttu_flags flags)
1931 struct rmap_walk_control rwc = {
1932 .rmap_one = try_to_migrate_one,
1933 .arg = (void *)flags,
1934 .done = page_not_mapped,
1935 .anon_lock = page_lock_anon_vma_read,
1939 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1940 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1942 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1946 if (is_zone_device_page(page) && !is_device_private_page(page))
1950 * During exec, a temporary VMA is setup and later moved.
1951 * The VMA is moved under the anon_vma lock but not the
1952 * page tables leading to a race where migration cannot
1953 * find the migration ptes. Rather than increasing the
1954 * locking requirements of exec(), migration skips
1955 * temporary VMAs until after exec() completes.
1957 if (!PageKsm(page) && PageAnon(page))
1958 rwc.invalid_vma = invalid_migration_vma;
1960 if (flags & TTU_RMAP_LOCKED)
1961 rmap_walk_locked(page, &rwc);
1963 rmap_walk(page, &rwc);
1967 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1968 * found. Once one is found the page is locked and the scan can be terminated.
1970 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1971 unsigned long address, void *unused)
1973 struct page_vma_mapped_walk pvmw = {
1979 /* An un-locked vma doesn't have any pages to lock, continue the scan */
1980 if (!(vma->vm_flags & VM_LOCKED))
1983 while (page_vma_mapped_walk(&pvmw)) {
1985 * Need to recheck under the ptl to serialise with
1986 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1987 * munlock_vma_pages_range().
1989 if (vma->vm_flags & VM_LOCKED) {
1991 * PTE-mapped THP are never marked as mlocked; but
1992 * this function is never called on a DoubleMap THP,
1993 * nor on an Anon THP (which may still be PTE-mapped
1994 * after DoubleMap was cleared).
1996 mlock_vma_page(page);
1998 * No need to scan further once the page is marked
2001 page_vma_mapped_walk_done(&pvmw);
2010 * page_mlock - try to mlock a page
2011 * @page: the page to be mlocked
2013 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2014 * the page if any are found. The page will be returned with PG_mlocked cleared
2015 * if it is not mapped by any locked vmas.
2017 void page_mlock(struct page *page)
2019 struct rmap_walk_control rwc = {
2020 .rmap_one = page_mlock_one,
2021 .done = page_not_mapped,
2022 .anon_lock = page_lock_anon_vma_read,
2026 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2027 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2029 /* Anon THP are only marked as mlocked when singly mapped */
2030 if (PageTransCompound(page) && PageAnon(page))
2033 rmap_walk(page, &rwc);
2036 #ifdef CONFIG_DEVICE_PRIVATE
2037 struct make_exclusive_args {
2038 struct mm_struct *mm;
2039 unsigned long address;
2044 static bool page_make_device_exclusive_one(struct page *page,
2045 struct vm_area_struct *vma, unsigned long address, void *priv)
2047 struct mm_struct *mm = vma->vm_mm;
2048 struct page_vma_mapped_walk pvmw = {
2053 struct make_exclusive_args *args = priv;
2055 struct page *subpage;
2057 struct mmu_notifier_range range;
2061 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2062 vma->vm_mm, address, min(vma->vm_end,
2063 address + page_size(page)), args->owner);
2064 mmu_notifier_invalidate_range_start(&range);
2066 while (page_vma_mapped_walk(&pvmw)) {
2067 /* Unexpected PMD-mapped THP? */
2068 VM_BUG_ON_PAGE(!pvmw.pte, page);
2070 if (!pte_present(*pvmw.pte)) {
2072 page_vma_mapped_walk_done(&pvmw);
2076 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2077 address = pvmw.address;
2079 /* Nuke the page table entry. */
2080 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2081 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2083 /* Move the dirty bit to the page. Now the pte is gone. */
2084 if (pte_dirty(pteval))
2085 set_page_dirty(page);
2088 * Check that our target page is still mapped at the expected
2091 if (args->mm == mm && args->address == address &&
2096 * Store the pfn of the page in a special migration
2097 * pte. do_swap_page() will wait until the migration
2098 * pte is removed and then restart fault handling.
2100 if (pte_write(pteval))
2101 entry = make_writable_device_exclusive_entry(
2102 page_to_pfn(subpage));
2104 entry = make_readable_device_exclusive_entry(
2105 page_to_pfn(subpage));
2106 swp_pte = swp_entry_to_pte(entry);
2107 if (pte_soft_dirty(pteval))
2108 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2109 if (pte_uffd_wp(pteval))
2110 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2112 set_pte_at(mm, address, pvmw.pte, swp_pte);
2115 * There is a reference on the page for the swap entry which has
2116 * been removed, so shouldn't take another.
2118 page_remove_rmap(subpage, false);
2121 mmu_notifier_invalidate_range_end(&range);
2127 * page_make_device_exclusive - mark the page exclusively owned by a device
2128 * @page: the page to replace page table entries for
2129 * @mm: the mm_struct where the page is expected to be mapped
2130 * @address: address where the page is expected to be mapped
2131 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2133 * Tries to remove all the page table entries which are mapping this page and
2134 * replace them with special device exclusive swap entries to grant a device
2135 * exclusive access to the page. Caller must hold the page lock.
2137 * Returns false if the page is still mapped, or if it could not be unmapped
2138 * from the expected address. Otherwise returns true (success).
2140 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2141 unsigned long address, void *owner)
2143 struct make_exclusive_args args = {
2149 struct rmap_walk_control rwc = {
2150 .rmap_one = page_make_device_exclusive_one,
2151 .done = page_not_mapped,
2152 .anon_lock = page_lock_anon_vma_read,
2157 * Restrict to anonymous pages for now to avoid potential writeback
2158 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2161 if (!PageAnon(page) || PageTail(page))
2164 rmap_walk(page, &rwc);
2166 return args.valid && !page_mapcount(page);
2170 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2171 * @mm: mm_struct of assoicated target process
2172 * @start: start of the region to mark for exclusive device access
2173 * @end: end address of region
2174 * @pages: returns the pages which were successfully marked for exclusive access
2175 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2177 * Returns: number of pages found in the range by GUP. A page is marked for
2178 * exclusive access only if the page pointer is non-NULL.
2180 * This function finds ptes mapping page(s) to the given address range, locks
2181 * them and replaces mappings with special swap entries preventing userspace CPU
2182 * access. On fault these entries are replaced with the original mapping after
2183 * calling MMU notifiers.
2185 * A driver using this to program access from a device must use a mmu notifier
2186 * critical section to hold a device specific lock during programming. Once
2187 * programming is complete it should drop the page lock and reference after
2188 * which point CPU access to the page will revoke the exclusive access.
2190 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2191 unsigned long end, struct page **pages,
2194 long npages = (end - start) >> PAGE_SHIFT;
2197 npages = get_user_pages_remote(mm, start, npages,
2198 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2203 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2204 if (!trylock_page(pages[i])) {
2210 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2211 unlock_page(pages[i]);
2219 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2222 void __put_anon_vma(struct anon_vma *anon_vma)
2224 struct anon_vma *root = anon_vma->root;
2226 anon_vma_free(anon_vma);
2227 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2228 anon_vma_free(root);
2231 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2232 struct rmap_walk_control *rwc)
2234 struct anon_vma *anon_vma;
2237 return rwc->anon_lock(page);
2240 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2241 * because that depends on page_mapped(); but not all its usages
2242 * are holding mmap_lock. Users without mmap_lock are required to
2243 * take a reference count to prevent the anon_vma disappearing
2245 anon_vma = page_anon_vma(page);
2249 anon_vma_lock_read(anon_vma);
2254 * rmap_walk_anon - do something to anonymous page using the object-based
2256 * @page: the page to be handled
2257 * @rwc: control variable according to each walk type
2259 * Find all the mappings of a page using the mapping pointer and the vma chains
2260 * contained in the anon_vma struct it points to.
2262 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2263 * where the page was found will be held for write. So, we won't recheck
2264 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2267 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2270 struct anon_vma *anon_vma;
2271 pgoff_t pgoff_start, pgoff_end;
2272 struct anon_vma_chain *avc;
2275 anon_vma = page_anon_vma(page);
2276 /* anon_vma disappear under us? */
2277 VM_BUG_ON_PAGE(!anon_vma, page);
2279 anon_vma = rmap_walk_anon_lock(page, rwc);
2284 pgoff_start = page_to_pgoff(page);
2285 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2286 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2287 pgoff_start, pgoff_end) {
2288 struct vm_area_struct *vma = avc->vma;
2289 unsigned long address = vma_address(page, vma);
2291 VM_BUG_ON_VMA(address == -EFAULT, vma);
2294 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2297 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2299 if (rwc->done && rwc->done(page))
2304 anon_vma_unlock_read(anon_vma);
2308 * rmap_walk_file - do something to file page using the object-based rmap method
2309 * @page: the page to be handled
2310 * @rwc: control variable according to each walk type
2312 * Find all the mappings of a page using the mapping pointer and the vma chains
2313 * contained in the address_space struct it points to.
2315 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2316 * where the page was found will be held for write. So, we won't recheck
2317 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2320 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2323 struct address_space *mapping = page_mapping(page);
2324 pgoff_t pgoff_start, pgoff_end;
2325 struct vm_area_struct *vma;
2328 * The page lock not only makes sure that page->mapping cannot
2329 * suddenly be NULLified by truncation, it makes sure that the
2330 * structure at mapping cannot be freed and reused yet,
2331 * so we can safely take mapping->i_mmap_rwsem.
2333 VM_BUG_ON_PAGE(!PageLocked(page), page);
2338 pgoff_start = page_to_pgoff(page);
2339 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2341 i_mmap_lock_read(mapping);
2342 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2343 pgoff_start, pgoff_end) {
2344 unsigned long address = vma_address(page, vma);
2346 VM_BUG_ON_VMA(address == -EFAULT, vma);
2349 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2352 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2354 if (rwc->done && rwc->done(page))
2360 i_mmap_unlock_read(mapping);
2363 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2365 if (unlikely(PageKsm(page)))
2366 rmap_walk_ksm(page, rwc);
2367 else if (PageAnon(page))
2368 rmap_walk_anon(page, rwc, false);
2370 rmap_walk_file(page, rwc, false);
2373 /* Like rmap_walk, but caller holds relevant rmap lock */
2374 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2376 /* no ksm support for now */
2377 VM_BUG_ON_PAGE(PageKsm(page), page);
2379 rmap_walk_anon(page, rwc, true);
2381 rmap_walk_file(page, rwc, true);
2384 #ifdef CONFIG_HUGETLB_PAGE
2386 * The following two functions are for anonymous (private mapped) hugepages.
2387 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2388 * and no lru code, because we handle hugepages differently from common pages.
2390 void hugepage_add_anon_rmap(struct page *page,
2391 struct vm_area_struct *vma, unsigned long address)
2393 struct anon_vma *anon_vma = vma->anon_vma;
2396 BUG_ON(!PageLocked(page));
2398 /* address might be in next vma when migration races vma_adjust */
2399 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2401 __page_set_anon_rmap(page, vma, address, 0);
2404 void hugepage_add_new_anon_rmap(struct page *page,
2405 struct vm_area_struct *vma, unsigned long address)
2407 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2408 atomic_set(compound_mapcount_ptr(page), 0);
2409 if (hpage_pincount_available(page))
2410 atomic_set(compound_pincount_ptr(page), 0);
2412 __page_set_anon_rmap(page, vma, address, 1);
2414 #endif /* CONFIG_HUGETLB_PAGE */