arm64: dts: mediatek: asurada: Add display backlight
[platform/kernel/linux-starfive.git] / mm / rmap.c
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem       (while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           mapping->i_mmap_rwsem
29  *             anon_vma->rwsem
30  *               mm->page_table_lock or pte_lock
31  *                 swap_lock (in swap_duplicate, swap_info_get)
32  *                   mmlist_lock (in mmput, drain_mmlist and others)
33  *                   mapping->private_lock (in block_dirty_folio)
34  *                     folio_lock_memcg move_lock (in block_dirty_folio)
35  *                       i_pages lock (widely used)
36  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                     i_pages lock (widely used, in set_page_dirty,
41  *                               in arch-dependent flush_dcache_mmap_lock,
42  *                               within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         page->flags PG_locked (lock_page)
53  */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77
78 #include <asm/tlbflush.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91         struct anon_vma *anon_vma;
92
93         anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94         if (anon_vma) {
95                 atomic_set(&anon_vma->refcount, 1);
96                 anon_vma->num_children = 0;
97                 anon_vma->num_active_vmas = 0;
98                 anon_vma->parent = anon_vma;
99                 /*
100                  * Initialise the anon_vma root to point to itself. If called
101                  * from fork, the root will be reset to the parents anon_vma.
102                  */
103                 anon_vma->root = anon_vma;
104         }
105
106         return anon_vma;
107 }
108
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111         VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113         /*
114          * Synchronize against folio_lock_anon_vma_read() such that
115          * we can safely hold the lock without the anon_vma getting
116          * freed.
117          *
118          * Relies on the full mb implied by the atomic_dec_and_test() from
119          * put_anon_vma() against the acquire barrier implied by
120          * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121          *
122          * folio_lock_anon_vma_read()   VS      put_anon_vma()
123          *   down_read_trylock()                  atomic_dec_and_test()
124          *   LOCK                                 MB
125          *   atomic_read()                        rwsem_is_locked()
126          *
127          * LOCK should suffice since the actual taking of the lock must
128          * happen _before_ what follows.
129          */
130         might_sleep();
131         if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132                 anon_vma_lock_write(anon_vma);
133                 anon_vma_unlock_write(anon_vma);
134         }
135
136         kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141         return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146         kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150                                 struct anon_vma_chain *avc,
151                                 struct anon_vma *anon_vma)
152 {
153         avc->vma = vma;
154         avc->anon_vma = anon_vma;
155         list_add(&avc->same_vma, &vma->anon_vma_chain);
156         anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189         struct mm_struct *mm = vma->vm_mm;
190         struct anon_vma *anon_vma, *allocated;
191         struct anon_vma_chain *avc;
192
193         might_sleep();
194
195         avc = anon_vma_chain_alloc(GFP_KERNEL);
196         if (!avc)
197                 goto out_enomem;
198
199         anon_vma = find_mergeable_anon_vma(vma);
200         allocated = NULL;
201         if (!anon_vma) {
202                 anon_vma = anon_vma_alloc();
203                 if (unlikely(!anon_vma))
204                         goto out_enomem_free_avc;
205                 anon_vma->num_children++; /* self-parent link for new root */
206                 allocated = anon_vma;
207         }
208
209         anon_vma_lock_write(anon_vma);
210         /* page_table_lock to protect against threads */
211         spin_lock(&mm->page_table_lock);
212         if (likely(!vma->anon_vma)) {
213                 vma->anon_vma = anon_vma;
214                 anon_vma_chain_link(vma, avc, anon_vma);
215                 anon_vma->num_active_vmas++;
216                 allocated = NULL;
217                 avc = NULL;
218         }
219         spin_unlock(&mm->page_table_lock);
220         anon_vma_unlock_write(anon_vma);
221
222         if (unlikely(allocated))
223                 put_anon_vma(allocated);
224         if (unlikely(avc))
225                 anon_vma_chain_free(avc);
226
227         return 0;
228
229  out_enomem_free_avc:
230         anon_vma_chain_free(avc);
231  out_enomem:
232         return -ENOMEM;
233 }
234
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245         struct anon_vma *new_root = anon_vma->root;
246         if (new_root != root) {
247                 if (WARN_ON_ONCE(root))
248                         up_write(&root->rwsem);
249                 root = new_root;
250                 down_write(&root->rwsem);
251         }
252         return root;
253 }
254
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257         if (root)
258                 up_write(&root->rwsem);
259 }
260
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266  * anon_vma_fork(). The first three want an exact copy of src, while the last
267  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270  *
271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
274  * case of constantly forking task. On the other hand, an anon_vma with more
275  * than one child isn't reused even if there was no alive vma, thus rmap
276  * walker has a good chance of avoiding scanning the whole hierarchy when it
277  * searches where page is mapped.
278  */
279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281         struct anon_vma_chain *avc, *pavc;
282         struct anon_vma *root = NULL;
283
284         list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285                 struct anon_vma *anon_vma;
286
287                 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288                 if (unlikely(!avc)) {
289                         unlock_anon_vma_root(root);
290                         root = NULL;
291                         avc = anon_vma_chain_alloc(GFP_KERNEL);
292                         if (!avc)
293                                 goto enomem_failure;
294                 }
295                 anon_vma = pavc->anon_vma;
296                 root = lock_anon_vma_root(root, anon_vma);
297                 anon_vma_chain_link(dst, avc, anon_vma);
298
299                 /*
300                  * Reuse existing anon_vma if it has no vma and only one
301                  * anon_vma child.
302                  *
303                  * Root anon_vma is never reused:
304                  * it has self-parent reference and at least one child.
305                  */
306                 if (!dst->anon_vma && src->anon_vma &&
307                     anon_vma->num_children < 2 &&
308                     anon_vma->num_active_vmas == 0)
309                         dst->anon_vma = anon_vma;
310         }
311         if (dst->anon_vma)
312                 dst->anon_vma->num_active_vmas++;
313         unlock_anon_vma_root(root);
314         return 0;
315
316  enomem_failure:
317         /*
318          * dst->anon_vma is dropped here otherwise its num_active_vmas can
319          * be incorrectly decremented in unlink_anon_vmas().
320          * We can safely do this because callers of anon_vma_clone() don't care
321          * about dst->anon_vma if anon_vma_clone() failed.
322          */
323         dst->anon_vma = NULL;
324         unlink_anon_vmas(dst);
325         return -ENOMEM;
326 }
327
328 /*
329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
330  * the corresponding VMA in the parent process is attached to.
331  * Returns 0 on success, non-zero on failure.
332  */
333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335         struct anon_vma_chain *avc;
336         struct anon_vma *anon_vma;
337         int error;
338
339         /* Don't bother if the parent process has no anon_vma here. */
340         if (!pvma->anon_vma)
341                 return 0;
342
343         /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344         vma->anon_vma = NULL;
345
346         /*
347          * First, attach the new VMA to the parent VMA's anon_vmas,
348          * so rmap can find non-COWed pages in child processes.
349          */
350         error = anon_vma_clone(vma, pvma);
351         if (error)
352                 return error;
353
354         /* An existing anon_vma has been reused, all done then. */
355         if (vma->anon_vma)
356                 return 0;
357
358         /* Then add our own anon_vma. */
359         anon_vma = anon_vma_alloc();
360         if (!anon_vma)
361                 goto out_error;
362         anon_vma->num_active_vmas++;
363         avc = anon_vma_chain_alloc(GFP_KERNEL);
364         if (!avc)
365                 goto out_error_free_anon_vma;
366
367         /*
368          * The root anon_vma's rwsem is the lock actually used when we
369          * lock any of the anon_vmas in this anon_vma tree.
370          */
371         anon_vma->root = pvma->anon_vma->root;
372         anon_vma->parent = pvma->anon_vma;
373         /*
374          * With refcounts, an anon_vma can stay around longer than the
375          * process it belongs to. The root anon_vma needs to be pinned until
376          * this anon_vma is freed, because the lock lives in the root.
377          */
378         get_anon_vma(anon_vma->root);
379         /* Mark this anon_vma as the one where our new (COWed) pages go. */
380         vma->anon_vma = anon_vma;
381         anon_vma_lock_write(anon_vma);
382         anon_vma_chain_link(vma, avc, anon_vma);
383         anon_vma->parent->num_children++;
384         anon_vma_unlock_write(anon_vma);
385
386         return 0;
387
388  out_error_free_anon_vma:
389         put_anon_vma(anon_vma);
390  out_error:
391         unlink_anon_vmas(vma);
392         return -ENOMEM;
393 }
394
395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397         struct anon_vma_chain *avc, *next;
398         struct anon_vma *root = NULL;
399
400         /*
401          * Unlink each anon_vma chained to the VMA.  This list is ordered
402          * from newest to oldest, ensuring the root anon_vma gets freed last.
403          */
404         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405                 struct anon_vma *anon_vma = avc->anon_vma;
406
407                 root = lock_anon_vma_root(root, anon_vma);
408                 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410                 /*
411                  * Leave empty anon_vmas on the list - we'll need
412                  * to free them outside the lock.
413                  */
414                 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415                         anon_vma->parent->num_children--;
416                         continue;
417                 }
418
419                 list_del(&avc->same_vma);
420                 anon_vma_chain_free(avc);
421         }
422         if (vma->anon_vma) {
423                 vma->anon_vma->num_active_vmas--;
424
425                 /*
426                  * vma would still be needed after unlink, and anon_vma will be prepared
427                  * when handle fault.
428                  */
429                 vma->anon_vma = NULL;
430         }
431         unlock_anon_vma_root(root);
432
433         /*
434          * Iterate the list once more, it now only contains empty and unlinked
435          * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436          * needing to write-acquire the anon_vma->root->rwsem.
437          */
438         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439                 struct anon_vma *anon_vma = avc->anon_vma;
440
441                 VM_WARN_ON(anon_vma->num_children);
442                 VM_WARN_ON(anon_vma->num_active_vmas);
443                 put_anon_vma(anon_vma);
444
445                 list_del(&avc->same_vma);
446                 anon_vma_chain_free(avc);
447         }
448 }
449
450 static void anon_vma_ctor(void *data)
451 {
452         struct anon_vma *anon_vma = data;
453
454         init_rwsem(&anon_vma->rwsem);
455         atomic_set(&anon_vma->refcount, 0);
456         anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458
459 void __init anon_vma_init(void)
460 {
461         anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462                         0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463                         anon_vma_ctor);
464         anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465                         SLAB_PANIC|SLAB_ACCOUNT);
466 }
467
468 /*
469  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470  *
471  * Since there is no serialization what so ever against page_remove_rmap()
472  * the best this function can do is return a refcount increased anon_vma
473  * that might have been relevant to this page.
474  *
475  * The page might have been remapped to a different anon_vma or the anon_vma
476  * returned may already be freed (and even reused).
477  *
478  * In case it was remapped to a different anon_vma, the new anon_vma will be a
479  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480  * ensure that any anon_vma obtained from the page will still be valid for as
481  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482  *
483  * All users of this function must be very careful when walking the anon_vma
484  * chain and verify that the page in question is indeed mapped in it
485  * [ something equivalent to page_mapped_in_vma() ].
486  *
487  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489  * if there is a mapcount, we can dereference the anon_vma after observing
490  * those.
491  */
492 struct anon_vma *folio_get_anon_vma(struct folio *folio)
493 {
494         struct anon_vma *anon_vma = NULL;
495         unsigned long anon_mapping;
496
497         rcu_read_lock();
498         anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
499         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500                 goto out;
501         if (!folio_mapped(folio))
502                 goto out;
503
504         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506                 anon_vma = NULL;
507                 goto out;
508         }
509
510         /*
511          * If this folio is still mapped, then its anon_vma cannot have been
512          * freed.  But if it has been unmapped, we have no security against the
513          * anon_vma structure being freed and reused (for another anon_vma:
514          * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515          * above cannot corrupt).
516          */
517         if (!folio_mapped(folio)) {
518                 rcu_read_unlock();
519                 put_anon_vma(anon_vma);
520                 return NULL;
521         }
522 out:
523         rcu_read_unlock();
524
525         return anon_vma;
526 }
527
528 /*
529  * Similar to folio_get_anon_vma() except it locks the anon_vma.
530  *
531  * Its a little more complex as it tries to keep the fast path to a single
532  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533  * reference like with folio_get_anon_vma() and then block on the mutex
534  * on !rwc->try_lock case.
535  */
536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537                                           struct rmap_walk_control *rwc)
538 {
539         struct anon_vma *anon_vma = NULL;
540         struct anon_vma *root_anon_vma;
541         unsigned long anon_mapping;
542
543         rcu_read_lock();
544         anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546                 goto out;
547         if (!folio_mapped(folio))
548                 goto out;
549
550         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551         root_anon_vma = READ_ONCE(anon_vma->root);
552         if (down_read_trylock(&root_anon_vma->rwsem)) {
553                 /*
554                  * If the folio is still mapped, then this anon_vma is still
555                  * its anon_vma, and holding the mutex ensures that it will
556                  * not go away, see anon_vma_free().
557                  */
558                 if (!folio_mapped(folio)) {
559                         up_read(&root_anon_vma->rwsem);
560                         anon_vma = NULL;
561                 }
562                 goto out;
563         }
564
565         if (rwc && rwc->try_lock) {
566                 anon_vma = NULL;
567                 rwc->contended = true;
568                 goto out;
569         }
570
571         /* trylock failed, we got to sleep */
572         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573                 anon_vma = NULL;
574                 goto out;
575         }
576
577         if (!folio_mapped(folio)) {
578                 rcu_read_unlock();
579                 put_anon_vma(anon_vma);
580                 return NULL;
581         }
582
583         /* we pinned the anon_vma, its safe to sleep */
584         rcu_read_unlock();
585         anon_vma_lock_read(anon_vma);
586
587         if (atomic_dec_and_test(&anon_vma->refcount)) {
588                 /*
589                  * Oops, we held the last refcount, release the lock
590                  * and bail -- can't simply use put_anon_vma() because
591                  * we'll deadlock on the anon_vma_lock_write() recursion.
592                  */
593                 anon_vma_unlock_read(anon_vma);
594                 __put_anon_vma(anon_vma);
595                 anon_vma = NULL;
596         }
597
598         return anon_vma;
599
600 out:
601         rcu_read_unlock();
602         return anon_vma;
603 }
604
605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
606 /*
607  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
608  * important if a PTE was dirty when it was unmapped that it's flushed
609  * before any IO is initiated on the page to prevent lost writes. Similarly,
610  * it must be flushed before freeing to prevent data leakage.
611  */
612 void try_to_unmap_flush(void)
613 {
614         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615
616         if (!tlb_ubc->flush_required)
617                 return;
618
619         arch_tlbbatch_flush(&tlb_ubc->arch);
620         tlb_ubc->flush_required = false;
621         tlb_ubc->writable = false;
622 }
623
624 /* Flush iff there are potentially writable TLB entries that can race with IO */
625 void try_to_unmap_flush_dirty(void)
626 {
627         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629         if (tlb_ubc->writable)
630                 try_to_unmap_flush();
631 }
632
633 /*
634  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
635  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
636  */
637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT   16
638 #define TLB_FLUSH_BATCH_PENDING_MASK                    \
639         ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
640 #define TLB_FLUSH_BATCH_PENDING_LARGE                   \
641         (TLB_FLUSH_BATCH_PENDING_MASK / 2)
642
643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
644 {
645         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646         int batch, nbatch;
647
648         arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
649         tlb_ubc->flush_required = true;
650
651         /*
652          * Ensure compiler does not re-order the setting of tlb_flush_batched
653          * before the PTE is cleared.
654          */
655         barrier();
656         batch = atomic_read(&mm->tlb_flush_batched);
657 retry:
658         if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
659                 /*
660                  * Prevent `pending' from catching up with `flushed' because of
661                  * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
662                  * `pending' becomes large.
663                  */
664                 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
665                 if (nbatch != batch) {
666                         batch = nbatch;
667                         goto retry;
668                 }
669         } else {
670                 atomic_inc(&mm->tlb_flush_batched);
671         }
672
673         /*
674          * If the PTE was dirty then it's best to assume it's writable. The
675          * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
676          * before the page is queued for IO.
677          */
678         if (writable)
679                 tlb_ubc->writable = true;
680 }
681
682 /*
683  * Returns true if the TLB flush should be deferred to the end of a batch of
684  * unmap operations to reduce IPIs.
685  */
686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687 {
688         bool should_defer = false;
689
690         if (!(flags & TTU_BATCH_FLUSH))
691                 return false;
692
693         /* If remote CPUs need to be flushed then defer batch the flush */
694         if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695                 should_defer = true;
696         put_cpu();
697
698         return should_defer;
699 }
700
701 /*
702  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
703  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
704  * operation such as mprotect or munmap to race between reclaim unmapping
705  * the page and flushing the page. If this race occurs, it potentially allows
706  * access to data via a stale TLB entry. Tracking all mm's that have TLB
707  * batching in flight would be expensive during reclaim so instead track
708  * whether TLB batching occurred in the past and if so then do a flush here
709  * if required. This will cost one additional flush per reclaim cycle paid
710  * by the first operation at risk such as mprotect and mumap.
711  *
712  * This must be called under the PTL so that an access to tlb_flush_batched
713  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714  * via the PTL.
715  */
716 void flush_tlb_batched_pending(struct mm_struct *mm)
717 {
718         int batch = atomic_read(&mm->tlb_flush_batched);
719         int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
720         int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
721
722         if (pending != flushed) {
723                 flush_tlb_mm(mm);
724                 /*
725                  * If the new TLB flushing is pending during flushing, leave
726                  * mm->tlb_flush_batched as is, to avoid losing flushing.
727                  */
728                 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
729                                pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
730         }
731 }
732 #else
733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
734 {
735 }
736
737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
738 {
739         return false;
740 }
741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742
743 /*
744  * At what user virtual address is page expected in vma?
745  * Caller should check the page is actually part of the vma.
746  */
747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
748 {
749         struct folio *folio = page_folio(page);
750         if (folio_test_anon(folio)) {
751                 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
752                 /*
753                  * Note: swapoff's unuse_vma() is more efficient with this
754                  * check, and needs it to match anon_vma when KSM is active.
755                  */
756                 if (!vma->anon_vma || !page__anon_vma ||
757                     vma->anon_vma->root != page__anon_vma->root)
758                         return -EFAULT;
759         } else if (!vma->vm_file) {
760                 return -EFAULT;
761         } else if (vma->vm_file->f_mapping != folio->mapping) {
762                 return -EFAULT;
763         }
764
765         return vma_address(page, vma);
766 }
767
768 /*
769  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
770  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
771  * represents.
772  */
773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774 {
775         pgd_t *pgd;
776         p4d_t *p4d;
777         pud_t *pud;
778         pmd_t *pmd = NULL;
779
780         pgd = pgd_offset(mm, address);
781         if (!pgd_present(*pgd))
782                 goto out;
783
784         p4d = p4d_offset(pgd, address);
785         if (!p4d_present(*p4d))
786                 goto out;
787
788         pud = pud_offset(p4d, address);
789         if (!pud_present(*pud))
790                 goto out;
791
792         pmd = pmd_offset(pud, address);
793 out:
794         return pmd;
795 }
796
797 struct folio_referenced_arg {
798         int mapcount;
799         int referenced;
800         unsigned long vm_flags;
801         struct mem_cgroup *memcg;
802 };
803 /*
804  * arg: folio_referenced_arg will be passed
805  */
806 static bool folio_referenced_one(struct folio *folio,
807                 struct vm_area_struct *vma, unsigned long address, void *arg)
808 {
809         struct folio_referenced_arg *pra = arg;
810         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811         int referenced = 0;
812
813         while (page_vma_mapped_walk(&pvmw)) {
814                 address = pvmw.address;
815
816                 if ((vma->vm_flags & VM_LOCKED) &&
817                     (!folio_test_large(folio) || !pvmw.pte)) {
818                         /* Restore the mlock which got missed */
819                         mlock_vma_folio(folio, vma, !pvmw.pte);
820                         page_vma_mapped_walk_done(&pvmw);
821                         pra->vm_flags |= VM_LOCKED;
822                         return false; /* To break the loop */
823                 }
824
825                 if (pvmw.pte) {
826                         if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
827                             !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
828                                 lru_gen_look_around(&pvmw);
829                                 referenced++;
830                         }
831
832                         if (ptep_clear_flush_young_notify(vma, address,
833                                                 pvmw.pte)) {
834                                 /*
835                                  * Don't treat a reference through
836                                  * a sequentially read mapping as such.
837                                  * If the folio has been used in another mapping,
838                                  * we will catch it; if this other mapping is
839                                  * already gone, the unmap path will have set
840                                  * the referenced flag or activated the folio.
841                                  */
842                                 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
843                                         referenced++;
844                         }
845                 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
846                         if (pmdp_clear_flush_young_notify(vma, address,
847                                                 pvmw.pmd))
848                                 referenced++;
849                 } else {
850                         /* unexpected pmd-mapped folio? */
851                         WARN_ON_ONCE(1);
852                 }
853
854                 pra->mapcount--;
855         }
856
857         if (referenced)
858                 folio_clear_idle(folio);
859         if (folio_test_clear_young(folio))
860                 referenced++;
861
862         if (referenced) {
863                 pra->referenced++;
864                 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
865         }
866
867         if (!pra->mapcount)
868                 return false; /* To break the loop */
869
870         return true;
871 }
872
873 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
874 {
875         struct folio_referenced_arg *pra = arg;
876         struct mem_cgroup *memcg = pra->memcg;
877
878         if (!mm_match_cgroup(vma->vm_mm, memcg))
879                 return true;
880
881         return false;
882 }
883
884 /**
885  * folio_referenced() - Test if the folio was referenced.
886  * @folio: The folio to test.
887  * @is_locked: Caller holds lock on the folio.
888  * @memcg: target memory cgroup
889  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
890  *
891  * Quick test_and_clear_referenced for all mappings of a folio,
892  *
893  * Return: The number of mappings which referenced the folio. Return -1 if
894  * the function bailed out due to rmap lock contention.
895  */
896 int folio_referenced(struct folio *folio, int is_locked,
897                      struct mem_cgroup *memcg, unsigned long *vm_flags)
898 {
899         int we_locked = 0;
900         struct folio_referenced_arg pra = {
901                 .mapcount = folio_mapcount(folio),
902                 .memcg = memcg,
903         };
904         struct rmap_walk_control rwc = {
905                 .rmap_one = folio_referenced_one,
906                 .arg = (void *)&pra,
907                 .anon_lock = folio_lock_anon_vma_read,
908                 .try_lock = true,
909         };
910
911         *vm_flags = 0;
912         if (!pra.mapcount)
913                 return 0;
914
915         if (!folio_raw_mapping(folio))
916                 return 0;
917
918         if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
919                 we_locked = folio_trylock(folio);
920                 if (!we_locked)
921                         return 1;
922         }
923
924         /*
925          * If we are reclaiming on behalf of a cgroup, skip
926          * counting on behalf of references from different
927          * cgroups
928          */
929         if (memcg) {
930                 rwc.invalid_vma = invalid_folio_referenced_vma;
931         }
932
933         rmap_walk(folio, &rwc);
934         *vm_flags = pra.vm_flags;
935
936         if (we_locked)
937                 folio_unlock(folio);
938
939         return rwc.contended ? -1 : pra.referenced;
940 }
941
942 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
943 {
944         int cleaned = 0;
945         struct vm_area_struct *vma = pvmw->vma;
946         struct mmu_notifier_range range;
947         unsigned long address = pvmw->address;
948
949         /*
950          * We have to assume the worse case ie pmd for invalidation. Note that
951          * the folio can not be freed from this function.
952          */
953         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
954                                 0, vma, vma->vm_mm, address,
955                                 vma_address_end(pvmw));
956         mmu_notifier_invalidate_range_start(&range);
957
958         while (page_vma_mapped_walk(pvmw)) {
959                 int ret = 0;
960
961                 address = pvmw->address;
962                 if (pvmw->pte) {
963                         pte_t entry;
964                         pte_t *pte = pvmw->pte;
965
966                         if (!pte_dirty(*pte) && !pte_write(*pte))
967                                 continue;
968
969                         flush_cache_page(vma, address, pte_pfn(*pte));
970                         entry = ptep_clear_flush(vma, address, pte);
971                         entry = pte_wrprotect(entry);
972                         entry = pte_mkclean(entry);
973                         set_pte_at(vma->vm_mm, address, pte, entry);
974                         ret = 1;
975                 } else {
976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
977                         pmd_t *pmd = pvmw->pmd;
978                         pmd_t entry;
979
980                         if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
981                                 continue;
982
983                         flush_cache_range(vma, address,
984                                           address + HPAGE_PMD_SIZE);
985                         entry = pmdp_invalidate(vma, address, pmd);
986                         entry = pmd_wrprotect(entry);
987                         entry = pmd_mkclean(entry);
988                         set_pmd_at(vma->vm_mm, address, pmd, entry);
989                         ret = 1;
990 #else
991                         /* unexpected pmd-mapped folio? */
992                         WARN_ON_ONCE(1);
993 #endif
994                 }
995
996                 /*
997                  * No need to call mmu_notifier_invalidate_range() as we are
998                  * downgrading page table protection not changing it to point
999                  * to a new page.
1000                  *
1001                  * See Documentation/mm/mmu_notifier.rst
1002                  */
1003                 if (ret)
1004                         cleaned++;
1005         }
1006
1007         mmu_notifier_invalidate_range_end(&range);
1008
1009         return cleaned;
1010 }
1011
1012 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1013                              unsigned long address, void *arg)
1014 {
1015         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1016         int *cleaned = arg;
1017
1018         *cleaned += page_vma_mkclean_one(&pvmw);
1019
1020         return true;
1021 }
1022
1023 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1024 {
1025         if (vma->vm_flags & VM_SHARED)
1026                 return false;
1027
1028         return true;
1029 }
1030
1031 int folio_mkclean(struct folio *folio)
1032 {
1033         int cleaned = 0;
1034         struct address_space *mapping;
1035         struct rmap_walk_control rwc = {
1036                 .arg = (void *)&cleaned,
1037                 .rmap_one = page_mkclean_one,
1038                 .invalid_vma = invalid_mkclean_vma,
1039         };
1040
1041         BUG_ON(!folio_test_locked(folio));
1042
1043         if (!folio_mapped(folio))
1044                 return 0;
1045
1046         mapping = folio_mapping(folio);
1047         if (!mapping)
1048                 return 0;
1049
1050         rmap_walk(folio, &rwc);
1051
1052         return cleaned;
1053 }
1054 EXPORT_SYMBOL_GPL(folio_mkclean);
1055
1056 /**
1057  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1058  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1059  *                     within the @vma of shared mappings. And since clean PTEs
1060  *                     should also be readonly, write protects them too.
1061  * @pfn: start pfn.
1062  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1063  * @pgoff: page offset that the @pfn mapped with.
1064  * @vma: vma that @pfn mapped within.
1065  *
1066  * Returns the number of cleaned PTEs (including PMDs).
1067  */
1068 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1069                       struct vm_area_struct *vma)
1070 {
1071         struct page_vma_mapped_walk pvmw = {
1072                 .pfn            = pfn,
1073                 .nr_pages       = nr_pages,
1074                 .pgoff          = pgoff,
1075                 .vma            = vma,
1076                 .flags          = PVMW_SYNC,
1077         };
1078
1079         if (invalid_mkclean_vma(vma, NULL))
1080                 return 0;
1081
1082         pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1083         VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1084
1085         return page_vma_mkclean_one(&pvmw);
1086 }
1087
1088 int total_compound_mapcount(struct page *head)
1089 {
1090         int mapcount = head_compound_mapcount(head);
1091         int nr_subpages;
1092         int i;
1093
1094         /* In the common case, avoid the loop when no subpages mapped by PTE */
1095         if (head_subpages_mapcount(head) == 0)
1096                 return mapcount;
1097         /*
1098          * Add all the PTE mappings of those subpages mapped by PTE.
1099          * Limit the loop, knowing that only subpages_mapcount are mapped?
1100          * Perhaps: given all the raciness, that may be a good or a bad idea.
1101          */
1102         nr_subpages = thp_nr_pages(head);
1103         for (i = 0; i < nr_subpages; i++)
1104                 mapcount += atomic_read(&head[i]._mapcount);
1105
1106         /* But each of those _mapcounts was based on -1 */
1107         mapcount += nr_subpages;
1108         return mapcount;
1109 }
1110
1111 /**
1112  * page_move_anon_rmap - move a page to our anon_vma
1113  * @page:       the page to move to our anon_vma
1114  * @vma:        the vma the page belongs to
1115  *
1116  * When a page belongs exclusively to one process after a COW event,
1117  * that page can be moved into the anon_vma that belongs to just that
1118  * process, so the rmap code will not search the parent or sibling
1119  * processes.
1120  */
1121 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1122 {
1123         void *anon_vma = vma->anon_vma;
1124         struct folio *folio = page_folio(page);
1125
1126         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1127         VM_BUG_ON_VMA(!anon_vma, vma);
1128
1129         anon_vma += PAGE_MAPPING_ANON;
1130         /*
1131          * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1132          * simultaneously, so a concurrent reader (eg folio_referenced()'s
1133          * folio_test_anon()) will not see one without the other.
1134          */
1135         WRITE_ONCE(folio->mapping, anon_vma);
1136         SetPageAnonExclusive(page);
1137 }
1138
1139 /**
1140  * __page_set_anon_rmap - set up new anonymous rmap
1141  * @page:       Page or Hugepage to add to rmap
1142  * @vma:        VM area to add page to.
1143  * @address:    User virtual address of the mapping     
1144  * @exclusive:  the page is exclusively owned by the current process
1145  */
1146 static void __page_set_anon_rmap(struct page *page,
1147         struct vm_area_struct *vma, unsigned long address, int exclusive)
1148 {
1149         struct anon_vma *anon_vma = vma->anon_vma;
1150
1151         BUG_ON(!anon_vma);
1152
1153         if (PageAnon(page))
1154                 goto out;
1155
1156         /*
1157          * If the page isn't exclusively mapped into this vma,
1158          * we must use the _oldest_ possible anon_vma for the
1159          * page mapping!
1160          */
1161         if (!exclusive)
1162                 anon_vma = anon_vma->root;
1163
1164         /*
1165          * page_idle does a lockless/optimistic rmap scan on page->mapping.
1166          * Make sure the compiler doesn't split the stores of anon_vma and
1167          * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1168          * could mistake the mapping for a struct address_space and crash.
1169          */
1170         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1171         WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1172         page->index = linear_page_index(vma, address);
1173 out:
1174         if (exclusive)
1175                 SetPageAnonExclusive(page);
1176 }
1177
1178 /**
1179  * __page_check_anon_rmap - sanity check anonymous rmap addition
1180  * @page:       the page to add the mapping to
1181  * @vma:        the vm area in which the mapping is added
1182  * @address:    the user virtual address mapped
1183  */
1184 static void __page_check_anon_rmap(struct page *page,
1185         struct vm_area_struct *vma, unsigned long address)
1186 {
1187         struct folio *folio = page_folio(page);
1188         /*
1189          * The page's anon-rmap details (mapping and index) are guaranteed to
1190          * be set up correctly at this point.
1191          *
1192          * We have exclusion against page_add_anon_rmap because the caller
1193          * always holds the page locked.
1194          *
1195          * We have exclusion against page_add_new_anon_rmap because those pages
1196          * are initially only visible via the pagetables, and the pte is locked
1197          * over the call to page_add_new_anon_rmap.
1198          */
1199         VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1200                         folio);
1201         VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1202                        page);
1203 }
1204
1205 /**
1206  * page_add_anon_rmap - add pte mapping to an anonymous page
1207  * @page:       the page to add the mapping to
1208  * @vma:        the vm area in which the mapping is added
1209  * @address:    the user virtual address mapped
1210  * @flags:      the rmap flags
1211  *
1212  * The caller needs to hold the pte lock, and the page must be locked in
1213  * the anon_vma case: to serialize mapping,index checking after setting,
1214  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1215  * (but PageKsm is never downgraded to PageAnon).
1216  */
1217 void page_add_anon_rmap(struct page *page,
1218         struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1219 {
1220         atomic_t *mapped;
1221         int nr = 0, nr_pmdmapped = 0;
1222         bool compound = flags & RMAP_COMPOUND;
1223         bool first = true;
1224
1225         if (unlikely(PageKsm(page)))
1226                 lock_page_memcg(page);
1227
1228         /* Is page being mapped by PTE? Is this its first map to be added? */
1229         if (likely(!compound)) {
1230                 first = atomic_inc_and_test(&page->_mapcount);
1231                 nr = first;
1232                 if (first && PageCompound(page)) {
1233                         mapped = subpages_mapcount_ptr(compound_head(page));
1234                         nr = atomic_inc_return_relaxed(mapped);
1235                         nr = (nr < COMPOUND_MAPPED);
1236                 }
1237         } else if (PageTransHuge(page)) {
1238                 /* That test is redundant: it's for safety or to optimize out */
1239
1240                 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1241                 if (first) {
1242                         mapped = subpages_mapcount_ptr(page);
1243                         nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1244                         if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1245                                 nr_pmdmapped = thp_nr_pages(page);
1246                                 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1247                                 /* Raced ahead of a remove and another add? */
1248                                 if (unlikely(nr < 0))
1249                                         nr = 0;
1250                         } else {
1251                                 /* Raced ahead of a remove of COMPOUND_MAPPED */
1252                                 nr = 0;
1253                         }
1254                 }
1255         }
1256
1257         VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1258         VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1259
1260         if (nr_pmdmapped)
1261                 __mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped);
1262         if (nr)
1263                 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1264
1265         if (unlikely(PageKsm(page)))
1266                 unlock_page_memcg(page);
1267
1268         /* address might be in next vma when migration races vma_adjust */
1269         else if (first)
1270                 __page_set_anon_rmap(page, vma, address,
1271                                      !!(flags & RMAP_EXCLUSIVE));
1272         else
1273                 __page_check_anon_rmap(page, vma, address);
1274
1275         mlock_vma_page(page, vma, compound);
1276 }
1277
1278 /**
1279  * page_add_new_anon_rmap - add mapping to a new anonymous page
1280  * @page:       the page to add the mapping to
1281  * @vma:        the vm area in which the mapping is added
1282  * @address:    the user virtual address mapped
1283  *
1284  * If it's a compound page, it is accounted as a compound page. As the page
1285  * is new, it's assume to get mapped exclusively by a single process.
1286  *
1287  * Same as page_add_anon_rmap but must only be called on *new* pages.
1288  * This means the inc-and-test can be bypassed.
1289  * Page does not have to be locked.
1290  */
1291 void page_add_new_anon_rmap(struct page *page,
1292         struct vm_area_struct *vma, unsigned long address)
1293 {
1294         int nr;
1295
1296         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1297         __SetPageSwapBacked(page);
1298
1299         if (likely(!PageCompound(page))) {
1300                 /* increment count (starts at -1) */
1301                 atomic_set(&page->_mapcount, 0);
1302                 nr = 1;
1303         } else {
1304                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1305                 /* increment count (starts at -1) */
1306                 atomic_set(compound_mapcount_ptr(page), 0);
1307                 atomic_set(subpages_mapcount_ptr(page), COMPOUND_MAPPED);
1308                 nr = thp_nr_pages(page);
1309                 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1310         }
1311
1312         __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1313         __page_set_anon_rmap(page, vma, address, 1);
1314 }
1315
1316 /**
1317  * page_add_file_rmap - add pte mapping to a file page
1318  * @page:       the page to add the mapping to
1319  * @vma:        the vm area in which the mapping is added
1320  * @compound:   charge the page as compound or small page
1321  *
1322  * The caller needs to hold the pte lock.
1323  */
1324 void page_add_file_rmap(struct page *page,
1325         struct vm_area_struct *vma, bool compound)
1326 {
1327         atomic_t *mapped;
1328         int nr = 0, nr_pmdmapped = 0;
1329         bool first;
1330
1331         VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1332         lock_page_memcg(page);
1333
1334         /* Is page being mapped by PTE? Is this its first map to be added? */
1335         if (likely(!compound)) {
1336                 first = atomic_inc_and_test(&page->_mapcount);
1337                 nr = first;
1338                 if (first && PageCompound(page)) {
1339                         mapped = subpages_mapcount_ptr(compound_head(page));
1340                         nr = atomic_inc_return_relaxed(mapped);
1341                         nr = (nr < COMPOUND_MAPPED);
1342                 }
1343         } else if (PageTransHuge(page)) {
1344                 /* That test is redundant: it's for safety or to optimize out */
1345
1346                 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1347                 if (first) {
1348                         mapped = subpages_mapcount_ptr(page);
1349                         nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1350                         if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1351                                 nr_pmdmapped = thp_nr_pages(page);
1352                                 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1353                                 /* Raced ahead of a remove and another add? */
1354                                 if (unlikely(nr < 0))
1355                                         nr = 0;
1356                         } else {
1357                                 /* Raced ahead of a remove of COMPOUND_MAPPED */
1358                                 nr = 0;
1359                         }
1360                 }
1361         }
1362
1363         if (nr_pmdmapped)
1364                 __mod_lruvec_page_state(page, PageSwapBacked(page) ?
1365                         NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1366         if (nr)
1367                 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1368         unlock_page_memcg(page);
1369
1370         mlock_vma_page(page, vma, compound);
1371 }
1372
1373 /**
1374  * page_remove_rmap - take down pte mapping from a page
1375  * @page:       page to remove mapping from
1376  * @vma:        the vm area from which the mapping is removed
1377  * @compound:   uncharge the page as compound or small page
1378  *
1379  * The caller needs to hold the pte lock.
1380  */
1381 void page_remove_rmap(struct page *page,
1382         struct vm_area_struct *vma, bool compound)
1383 {
1384         atomic_t *mapped;
1385         int nr = 0, nr_pmdmapped = 0;
1386         bool last;
1387
1388         VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1389
1390         /* Hugetlb pages are not counted in NR_*MAPPED */
1391         if (unlikely(PageHuge(page))) {
1392                 /* hugetlb pages are always mapped with pmds */
1393                 atomic_dec(compound_mapcount_ptr(page));
1394                 return;
1395         }
1396
1397         lock_page_memcg(page);
1398
1399         /* Is page being unmapped by PTE? Is this its last map to be removed? */
1400         if (likely(!compound)) {
1401                 last = atomic_add_negative(-1, &page->_mapcount);
1402                 nr = last;
1403                 if (last && PageCompound(page)) {
1404                         mapped = subpages_mapcount_ptr(compound_head(page));
1405                         nr = atomic_dec_return_relaxed(mapped);
1406                         nr = (nr < COMPOUND_MAPPED);
1407                 }
1408         } else if (PageTransHuge(page)) {
1409                 /* That test is redundant: it's for safety or to optimize out */
1410
1411                 last = atomic_add_negative(-1, compound_mapcount_ptr(page));
1412                 if (last) {
1413                         mapped = subpages_mapcount_ptr(page);
1414                         nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1415                         if (likely(nr < COMPOUND_MAPPED)) {
1416                                 nr_pmdmapped = thp_nr_pages(page);
1417                                 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1418                                 /* Raced ahead of another remove and an add? */
1419                                 if (unlikely(nr < 0))
1420                                         nr = 0;
1421                         } else {
1422                                 /* An add of COMPOUND_MAPPED raced ahead */
1423                                 nr = 0;
1424                         }
1425                 }
1426         }
1427
1428         if (nr_pmdmapped) {
1429                 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS :
1430                                 (PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED :
1431                                 NR_FILE_PMDMAPPED), -nr_pmdmapped);
1432         }
1433         if (nr) {
1434                 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED :
1435                                 NR_FILE_MAPPED, -nr);
1436                 /*
1437                  * Queue anon THP for deferred split if at least one small
1438                  * page of the compound page is unmapped, but at least one
1439                  * small page is still mapped.
1440                  */
1441                 if (PageTransCompound(page) && PageAnon(page))
1442                         if (!compound || nr < nr_pmdmapped)
1443                                 deferred_split_huge_page(compound_head(page));
1444         }
1445
1446         /*
1447          * It would be tidy to reset PageAnon mapping when fully unmapped,
1448          * but that might overwrite a racing page_add_anon_rmap
1449          * which increments mapcount after us but sets mapping
1450          * before us: so leave the reset to free_pages_prepare,
1451          * and remember that it's only reliable while mapped.
1452          */
1453
1454         unlock_page_memcg(page);
1455
1456         munlock_vma_page(page, vma, compound);
1457 }
1458
1459 /*
1460  * @arg: enum ttu_flags will be passed to this argument
1461  */
1462 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1463                      unsigned long address, void *arg)
1464 {
1465         struct mm_struct *mm = vma->vm_mm;
1466         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1467         pte_t pteval;
1468         struct page *subpage;
1469         bool anon_exclusive, ret = true;
1470         struct mmu_notifier_range range;
1471         enum ttu_flags flags = (enum ttu_flags)(long)arg;
1472
1473         /*
1474          * When racing against e.g. zap_pte_range() on another cpu,
1475          * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1476          * try_to_unmap() may return before page_mapped() has become false,
1477          * if page table locking is skipped: use TTU_SYNC to wait for that.
1478          */
1479         if (flags & TTU_SYNC)
1480                 pvmw.flags = PVMW_SYNC;
1481
1482         if (flags & TTU_SPLIT_HUGE_PMD)
1483                 split_huge_pmd_address(vma, address, false, folio);
1484
1485         /*
1486          * For THP, we have to assume the worse case ie pmd for invalidation.
1487          * For hugetlb, it could be much worse if we need to do pud
1488          * invalidation in the case of pmd sharing.
1489          *
1490          * Note that the folio can not be freed in this function as call of
1491          * try_to_unmap() must hold a reference on the folio.
1492          */
1493         range.end = vma_address_end(&pvmw);
1494         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1495                                 address, range.end);
1496         if (folio_test_hugetlb(folio)) {
1497                 /*
1498                  * If sharing is possible, start and end will be adjusted
1499                  * accordingly.
1500                  */
1501                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1502                                                      &range.end);
1503         }
1504         mmu_notifier_invalidate_range_start(&range);
1505
1506         while (page_vma_mapped_walk(&pvmw)) {
1507                 /* Unexpected PMD-mapped THP? */
1508                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1509
1510                 /*
1511                  * If the folio is in an mlock()d vma, we must not swap it out.
1512                  */
1513                 if (!(flags & TTU_IGNORE_MLOCK) &&
1514                     (vma->vm_flags & VM_LOCKED)) {
1515                         /* Restore the mlock which got missed */
1516                         mlock_vma_folio(folio, vma, false);
1517                         page_vma_mapped_walk_done(&pvmw);
1518                         ret = false;
1519                         break;
1520                 }
1521
1522                 subpage = folio_page(folio,
1523                                         pte_pfn(*pvmw.pte) - folio_pfn(folio));
1524                 address = pvmw.address;
1525                 anon_exclusive = folio_test_anon(folio) &&
1526                                  PageAnonExclusive(subpage);
1527
1528                 if (folio_test_hugetlb(folio)) {
1529                         bool anon = folio_test_anon(folio);
1530
1531                         /*
1532                          * The try_to_unmap() is only passed a hugetlb page
1533                          * in the case where the hugetlb page is poisoned.
1534                          */
1535                         VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1536                         /*
1537                          * huge_pmd_unshare may unmap an entire PMD page.
1538                          * There is no way of knowing exactly which PMDs may
1539                          * be cached for this mm, so we must flush them all.
1540                          * start/end were already adjusted above to cover this
1541                          * range.
1542                          */
1543                         flush_cache_range(vma, range.start, range.end);
1544
1545                         /*
1546                          * To call huge_pmd_unshare, i_mmap_rwsem must be
1547                          * held in write mode.  Caller needs to explicitly
1548                          * do this outside rmap routines.
1549                          *
1550                          * We also must hold hugetlb vma_lock in write mode.
1551                          * Lock order dictates acquiring vma_lock BEFORE
1552                          * i_mmap_rwsem.  We can only try lock here and fail
1553                          * if unsuccessful.
1554                          */
1555                         if (!anon) {
1556                                 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1557                                 if (!hugetlb_vma_trylock_write(vma)) {
1558                                         page_vma_mapped_walk_done(&pvmw);
1559                                         ret = false;
1560                                         break;
1561                                 }
1562                                 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1563                                         hugetlb_vma_unlock_write(vma);
1564                                         flush_tlb_range(vma,
1565                                                 range.start, range.end);
1566                                         mmu_notifier_invalidate_range(mm,
1567                                                 range.start, range.end);
1568                                         /*
1569                                          * The ref count of the PMD page was
1570                                          * dropped which is part of the way map
1571                                          * counting is done for shared PMDs.
1572                                          * Return 'true' here.  When there is
1573                                          * no other sharing, huge_pmd_unshare
1574                                          * returns false and we will unmap the
1575                                          * actual page and drop map count
1576                                          * to zero.
1577                                          */
1578                                         page_vma_mapped_walk_done(&pvmw);
1579                                         break;
1580                                 }
1581                                 hugetlb_vma_unlock_write(vma);
1582                         }
1583                         pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1584                 } else {
1585                         flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1586                         /* Nuke the page table entry. */
1587                         if (should_defer_flush(mm, flags)) {
1588                                 /*
1589                                  * We clear the PTE but do not flush so potentially
1590                                  * a remote CPU could still be writing to the folio.
1591                                  * If the entry was previously clean then the
1592                                  * architecture must guarantee that a clear->dirty
1593                                  * transition on a cached TLB entry is written through
1594                                  * and traps if the PTE is unmapped.
1595                                  */
1596                                 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1597
1598                                 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1599                         } else {
1600                                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1601                         }
1602                 }
1603
1604                 /*
1605                  * Now the pte is cleared. If this pte was uffd-wp armed,
1606                  * we may want to replace a none pte with a marker pte if
1607                  * it's file-backed, so we don't lose the tracking info.
1608                  */
1609                 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1610
1611                 /* Set the dirty flag on the folio now the pte is gone. */
1612                 if (pte_dirty(pteval))
1613                         folio_mark_dirty(folio);
1614
1615                 /* Update high watermark before we lower rss */
1616                 update_hiwater_rss(mm);
1617
1618                 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1619                         pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1620                         if (folio_test_hugetlb(folio)) {
1621                                 hugetlb_count_sub(folio_nr_pages(folio), mm);
1622                                 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1623                         } else {
1624                                 dec_mm_counter(mm, mm_counter(&folio->page));
1625                                 set_pte_at(mm, address, pvmw.pte, pteval);
1626                         }
1627
1628                 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1629                         /*
1630                          * The guest indicated that the page content is of no
1631                          * interest anymore. Simply discard the pte, vmscan
1632                          * will take care of the rest.
1633                          * A future reference will then fault in a new zero
1634                          * page. When userfaultfd is active, we must not drop
1635                          * this page though, as its main user (postcopy
1636                          * migration) will not expect userfaults on already
1637                          * copied pages.
1638                          */
1639                         dec_mm_counter(mm, mm_counter(&folio->page));
1640                         /* We have to invalidate as we cleared the pte */
1641                         mmu_notifier_invalidate_range(mm, address,
1642                                                       address + PAGE_SIZE);
1643                 } else if (folio_test_anon(folio)) {
1644                         swp_entry_t entry = { .val = page_private(subpage) };
1645                         pte_t swp_pte;
1646                         /*
1647                          * Store the swap location in the pte.
1648                          * See handle_pte_fault() ...
1649                          */
1650                         if (unlikely(folio_test_swapbacked(folio) !=
1651                                         folio_test_swapcache(folio))) {
1652                                 WARN_ON_ONCE(1);
1653                                 ret = false;
1654                                 /* We have to invalidate as we cleared the pte */
1655                                 mmu_notifier_invalidate_range(mm, address,
1656                                                         address + PAGE_SIZE);
1657                                 page_vma_mapped_walk_done(&pvmw);
1658                                 break;
1659                         }
1660
1661                         /* MADV_FREE page check */
1662                         if (!folio_test_swapbacked(folio)) {
1663                                 int ref_count, map_count;
1664
1665                                 /*
1666                                  * Synchronize with gup_pte_range():
1667                                  * - clear PTE; barrier; read refcount
1668                                  * - inc refcount; barrier; read PTE
1669                                  */
1670                                 smp_mb();
1671
1672                                 ref_count = folio_ref_count(folio);
1673                                 map_count = folio_mapcount(folio);
1674
1675                                 /*
1676                                  * Order reads for page refcount and dirty flag
1677                                  * (see comments in __remove_mapping()).
1678                                  */
1679                                 smp_rmb();
1680
1681                                 /*
1682                                  * The only page refs must be one from isolation
1683                                  * plus the rmap(s) (dropped by discard:).
1684                                  */
1685                                 if (ref_count == 1 + map_count &&
1686                                     !folio_test_dirty(folio)) {
1687                                         /* Invalidate as we cleared the pte */
1688                                         mmu_notifier_invalidate_range(mm,
1689                                                 address, address + PAGE_SIZE);
1690                                         dec_mm_counter(mm, MM_ANONPAGES);
1691                                         goto discard;
1692                                 }
1693
1694                                 /*
1695                                  * If the folio was redirtied, it cannot be
1696                                  * discarded. Remap the page to page table.
1697                                  */
1698                                 set_pte_at(mm, address, pvmw.pte, pteval);
1699                                 folio_set_swapbacked(folio);
1700                                 ret = false;
1701                                 page_vma_mapped_walk_done(&pvmw);
1702                                 break;
1703                         }
1704
1705                         if (swap_duplicate(entry) < 0) {
1706                                 set_pte_at(mm, address, pvmw.pte, pteval);
1707                                 ret = false;
1708                                 page_vma_mapped_walk_done(&pvmw);
1709                                 break;
1710                         }
1711                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1712                                 swap_free(entry);
1713                                 set_pte_at(mm, address, pvmw.pte, pteval);
1714                                 ret = false;
1715                                 page_vma_mapped_walk_done(&pvmw);
1716                                 break;
1717                         }
1718
1719                         /* See page_try_share_anon_rmap(): clear PTE first. */
1720                         if (anon_exclusive &&
1721                             page_try_share_anon_rmap(subpage)) {
1722                                 swap_free(entry);
1723                                 set_pte_at(mm, address, pvmw.pte, pteval);
1724                                 ret = false;
1725                                 page_vma_mapped_walk_done(&pvmw);
1726                                 break;
1727                         }
1728                         /*
1729                          * Note: We *don't* remember if the page was mapped
1730                          * exclusively in the swap pte if the architecture
1731                          * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1732                          * that case, swapin code has to re-determine that
1733                          * manually and might detect the page as possibly
1734                          * shared, for example, if there are other references on
1735                          * the page or if the page is under writeback. We made
1736                          * sure that there are no GUP pins on the page that
1737                          * would rely on it, so for GUP pins this is fine.
1738                          */
1739                         if (list_empty(&mm->mmlist)) {
1740                                 spin_lock(&mmlist_lock);
1741                                 if (list_empty(&mm->mmlist))
1742                                         list_add(&mm->mmlist, &init_mm.mmlist);
1743                                 spin_unlock(&mmlist_lock);
1744                         }
1745                         dec_mm_counter(mm, MM_ANONPAGES);
1746                         inc_mm_counter(mm, MM_SWAPENTS);
1747                         swp_pte = swp_entry_to_pte(entry);
1748                         if (anon_exclusive)
1749                                 swp_pte = pte_swp_mkexclusive(swp_pte);
1750                         if (pte_soft_dirty(pteval))
1751                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1752                         if (pte_uffd_wp(pteval))
1753                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1754                         set_pte_at(mm, address, pvmw.pte, swp_pte);
1755                         /* Invalidate as we cleared the pte */
1756                         mmu_notifier_invalidate_range(mm, address,
1757                                                       address + PAGE_SIZE);
1758                 } else {
1759                         /*
1760                          * This is a locked file-backed folio,
1761                          * so it cannot be removed from the page
1762                          * cache and replaced by a new folio before
1763                          * mmu_notifier_invalidate_range_end, so no
1764                          * concurrent thread might update its page table
1765                          * to point at a new folio while a device is
1766                          * still using this folio.
1767                          *
1768                          * See Documentation/mm/mmu_notifier.rst
1769                          */
1770                         dec_mm_counter(mm, mm_counter_file(&folio->page));
1771                 }
1772 discard:
1773                 /*
1774                  * No need to call mmu_notifier_invalidate_range() it has be
1775                  * done above for all cases requiring it to happen under page
1776                  * table lock before mmu_notifier_invalidate_range_end()
1777                  *
1778                  * See Documentation/mm/mmu_notifier.rst
1779                  */
1780                 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1781                 if (vma->vm_flags & VM_LOCKED)
1782                         mlock_page_drain_local();
1783                 folio_put(folio);
1784         }
1785
1786         mmu_notifier_invalidate_range_end(&range);
1787
1788         return ret;
1789 }
1790
1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1792 {
1793         return vma_is_temporary_stack(vma);
1794 }
1795
1796 static int folio_not_mapped(struct folio *folio)
1797 {
1798         return !folio_mapped(folio);
1799 }
1800
1801 /**
1802  * try_to_unmap - Try to remove all page table mappings to a folio.
1803  * @folio: The folio to unmap.
1804  * @flags: action and flags
1805  *
1806  * Tries to remove all the page table entries which are mapping this
1807  * folio.  It is the caller's responsibility to check if the folio is
1808  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1809  *
1810  * Context: Caller must hold the folio lock.
1811  */
1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1813 {
1814         struct rmap_walk_control rwc = {
1815                 .rmap_one = try_to_unmap_one,
1816                 .arg = (void *)flags,
1817                 .done = folio_not_mapped,
1818                 .anon_lock = folio_lock_anon_vma_read,
1819         };
1820
1821         if (flags & TTU_RMAP_LOCKED)
1822                 rmap_walk_locked(folio, &rwc);
1823         else
1824                 rmap_walk(folio, &rwc);
1825 }
1826
1827 /*
1828  * @arg: enum ttu_flags will be passed to this argument.
1829  *
1830  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1831  * containing migration entries.
1832  */
1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1834                      unsigned long address, void *arg)
1835 {
1836         struct mm_struct *mm = vma->vm_mm;
1837         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1838         pte_t pteval;
1839         struct page *subpage;
1840         bool anon_exclusive, ret = true;
1841         struct mmu_notifier_range range;
1842         enum ttu_flags flags = (enum ttu_flags)(long)arg;
1843
1844         /*
1845          * When racing against e.g. zap_pte_range() on another cpu,
1846          * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1847          * try_to_migrate() may return before page_mapped() has become false,
1848          * if page table locking is skipped: use TTU_SYNC to wait for that.
1849          */
1850         if (flags & TTU_SYNC)
1851                 pvmw.flags = PVMW_SYNC;
1852
1853         /*
1854          * unmap_page() in mm/huge_memory.c is the only user of migration with
1855          * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1856          */
1857         if (flags & TTU_SPLIT_HUGE_PMD)
1858                 split_huge_pmd_address(vma, address, true, folio);
1859
1860         /*
1861          * For THP, we have to assume the worse case ie pmd for invalidation.
1862          * For hugetlb, it could be much worse if we need to do pud
1863          * invalidation in the case of pmd sharing.
1864          *
1865          * Note that the page can not be free in this function as call of
1866          * try_to_unmap() must hold a reference on the page.
1867          */
1868         range.end = vma_address_end(&pvmw);
1869         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1870                                 address, range.end);
1871         if (folio_test_hugetlb(folio)) {
1872                 /*
1873                  * If sharing is possible, start and end will be adjusted
1874                  * accordingly.
1875                  */
1876                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1877                                                      &range.end);
1878         }
1879         mmu_notifier_invalidate_range_start(&range);
1880
1881         while (page_vma_mapped_walk(&pvmw)) {
1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1883                 /* PMD-mapped THP migration entry */
1884                 if (!pvmw.pte) {
1885                         subpage = folio_page(folio,
1886                                 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1887                         VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1888                                         !folio_test_pmd_mappable(folio), folio);
1889
1890                         if (set_pmd_migration_entry(&pvmw, subpage)) {
1891                                 ret = false;
1892                                 page_vma_mapped_walk_done(&pvmw);
1893                                 break;
1894                         }
1895                         continue;
1896                 }
1897 #endif
1898
1899                 /* Unexpected PMD-mapped THP? */
1900                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1901
1902                 if (folio_is_zone_device(folio)) {
1903                         /*
1904                          * Our PTE is a non-present device exclusive entry and
1905                          * calculating the subpage as for the common case would
1906                          * result in an invalid pointer.
1907                          *
1908                          * Since only PAGE_SIZE pages can currently be
1909                          * migrated, just set it to page. This will need to be
1910                          * changed when hugepage migrations to device private
1911                          * memory are supported.
1912                          */
1913                         VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1914                         subpage = &folio->page;
1915                 } else {
1916                         subpage = folio_page(folio,
1917                                         pte_pfn(*pvmw.pte) - folio_pfn(folio));
1918                 }
1919                 address = pvmw.address;
1920                 anon_exclusive = folio_test_anon(folio) &&
1921                                  PageAnonExclusive(subpage);
1922
1923                 if (folio_test_hugetlb(folio)) {
1924                         bool anon = folio_test_anon(folio);
1925
1926                         /*
1927                          * huge_pmd_unshare may unmap an entire PMD page.
1928                          * There is no way of knowing exactly which PMDs may
1929                          * be cached for this mm, so we must flush them all.
1930                          * start/end were already adjusted above to cover this
1931                          * range.
1932                          */
1933                         flush_cache_range(vma, range.start, range.end);
1934
1935                         /*
1936                          * To call huge_pmd_unshare, i_mmap_rwsem must be
1937                          * held in write mode.  Caller needs to explicitly
1938                          * do this outside rmap routines.
1939                          *
1940                          * We also must hold hugetlb vma_lock in write mode.
1941                          * Lock order dictates acquiring vma_lock BEFORE
1942                          * i_mmap_rwsem.  We can only try lock here and
1943                          * fail if unsuccessful.
1944                          */
1945                         if (!anon) {
1946                                 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1947                                 if (!hugetlb_vma_trylock_write(vma)) {
1948                                         page_vma_mapped_walk_done(&pvmw);
1949                                         ret = false;
1950                                         break;
1951                                 }
1952                                 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1953                                         hugetlb_vma_unlock_write(vma);
1954                                         flush_tlb_range(vma,
1955                                                 range.start, range.end);
1956                                         mmu_notifier_invalidate_range(mm,
1957                                                 range.start, range.end);
1958
1959                                         /*
1960                                          * The ref count of the PMD page was
1961                                          * dropped which is part of the way map
1962                                          * counting is done for shared PMDs.
1963                                          * Return 'true' here.  When there is
1964                                          * no other sharing, huge_pmd_unshare
1965                                          * returns false and we will unmap the
1966                                          * actual page and drop map count
1967                                          * to zero.
1968                                          */
1969                                         page_vma_mapped_walk_done(&pvmw);
1970                                         break;
1971                                 }
1972                                 hugetlb_vma_unlock_write(vma);
1973                         }
1974                         /* Nuke the hugetlb page table entry */
1975                         pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1976                 } else {
1977                         flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1978                         /* Nuke the page table entry. */
1979                         pteval = ptep_clear_flush(vma, address, pvmw.pte);
1980                 }
1981
1982                 /* Set the dirty flag on the folio now the pte is gone. */
1983                 if (pte_dirty(pteval))
1984                         folio_mark_dirty(folio);
1985
1986                 /* Update high watermark before we lower rss */
1987                 update_hiwater_rss(mm);
1988
1989                 if (folio_is_device_private(folio)) {
1990                         unsigned long pfn = folio_pfn(folio);
1991                         swp_entry_t entry;
1992                         pte_t swp_pte;
1993
1994                         if (anon_exclusive)
1995                                 BUG_ON(page_try_share_anon_rmap(subpage));
1996
1997                         /*
1998                          * Store the pfn of the page in a special migration
1999                          * pte. do_swap_page() will wait until the migration
2000                          * pte is removed and then restart fault handling.
2001                          */
2002                         entry = pte_to_swp_entry(pteval);
2003                         if (is_writable_device_private_entry(entry))
2004                                 entry = make_writable_migration_entry(pfn);
2005                         else if (anon_exclusive)
2006                                 entry = make_readable_exclusive_migration_entry(pfn);
2007                         else
2008                                 entry = make_readable_migration_entry(pfn);
2009                         swp_pte = swp_entry_to_pte(entry);
2010
2011                         /*
2012                          * pteval maps a zone device page and is therefore
2013                          * a swap pte.
2014                          */
2015                         if (pte_swp_soft_dirty(pteval))
2016                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2017                         if (pte_swp_uffd_wp(pteval))
2018                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2019                         set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2020                         trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2021                                                 compound_order(&folio->page));
2022                         /*
2023                          * No need to invalidate here it will synchronize on
2024                          * against the special swap migration pte.
2025                          */
2026                 } else if (PageHWPoison(subpage)) {
2027                         pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2028                         if (folio_test_hugetlb(folio)) {
2029                                 hugetlb_count_sub(folio_nr_pages(folio), mm);
2030                                 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2031                         } else {
2032                                 dec_mm_counter(mm, mm_counter(&folio->page));
2033                                 set_pte_at(mm, address, pvmw.pte, pteval);
2034                         }
2035
2036                 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2037                         /*
2038                          * The guest indicated that the page content is of no
2039                          * interest anymore. Simply discard the pte, vmscan
2040                          * will take care of the rest.
2041                          * A future reference will then fault in a new zero
2042                          * page. When userfaultfd is active, we must not drop
2043                          * this page though, as its main user (postcopy
2044                          * migration) will not expect userfaults on already
2045                          * copied pages.
2046                          */
2047                         dec_mm_counter(mm, mm_counter(&folio->page));
2048                         /* We have to invalidate as we cleared the pte */
2049                         mmu_notifier_invalidate_range(mm, address,
2050                                                       address + PAGE_SIZE);
2051                 } else {
2052                         swp_entry_t entry;
2053                         pte_t swp_pte;
2054
2055                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2056                                 if (folio_test_hugetlb(folio))
2057                                         set_huge_pte_at(mm, address, pvmw.pte, pteval);
2058                                 else
2059                                         set_pte_at(mm, address, pvmw.pte, pteval);
2060                                 ret = false;
2061                                 page_vma_mapped_walk_done(&pvmw);
2062                                 break;
2063                         }
2064                         VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2065                                        !anon_exclusive, subpage);
2066
2067                         /* See page_try_share_anon_rmap(): clear PTE first. */
2068                         if (anon_exclusive &&
2069                             page_try_share_anon_rmap(subpage)) {
2070                                 if (folio_test_hugetlb(folio))
2071                                         set_huge_pte_at(mm, address, pvmw.pte, pteval);
2072                                 else
2073                                         set_pte_at(mm, address, pvmw.pte, pteval);
2074                                 ret = false;
2075                                 page_vma_mapped_walk_done(&pvmw);
2076                                 break;
2077                         }
2078
2079                         /*
2080                          * Store the pfn of the page in a special migration
2081                          * pte. do_swap_page() will wait until the migration
2082                          * pte is removed and then restart fault handling.
2083                          */
2084                         if (pte_write(pteval))
2085                                 entry = make_writable_migration_entry(
2086                                                         page_to_pfn(subpage));
2087                         else if (anon_exclusive)
2088                                 entry = make_readable_exclusive_migration_entry(
2089                                                         page_to_pfn(subpage));
2090                         else
2091                                 entry = make_readable_migration_entry(
2092                                                         page_to_pfn(subpage));
2093                         if (pte_young(pteval))
2094                                 entry = make_migration_entry_young(entry);
2095                         if (pte_dirty(pteval))
2096                                 entry = make_migration_entry_dirty(entry);
2097                         swp_pte = swp_entry_to_pte(entry);
2098                         if (pte_soft_dirty(pteval))
2099                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2100                         if (pte_uffd_wp(pteval))
2101                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2102                         if (folio_test_hugetlb(folio))
2103                                 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2104                         else
2105                                 set_pte_at(mm, address, pvmw.pte, swp_pte);
2106                         trace_set_migration_pte(address, pte_val(swp_pte),
2107                                                 compound_order(&folio->page));
2108                         /*
2109                          * No need to invalidate here it will synchronize on
2110                          * against the special swap migration pte.
2111                          */
2112                 }
2113
2114                 /*
2115                  * No need to call mmu_notifier_invalidate_range() it has be
2116                  * done above for all cases requiring it to happen under page
2117                  * table lock before mmu_notifier_invalidate_range_end()
2118                  *
2119                  * See Documentation/mm/mmu_notifier.rst
2120                  */
2121                 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2122                 if (vma->vm_flags & VM_LOCKED)
2123                         mlock_page_drain_local();
2124                 folio_put(folio);
2125         }
2126
2127         mmu_notifier_invalidate_range_end(&range);
2128
2129         return ret;
2130 }
2131
2132 /**
2133  * try_to_migrate - try to replace all page table mappings with swap entries
2134  * @folio: the folio to replace page table entries for
2135  * @flags: action and flags
2136  *
2137  * Tries to remove all the page table entries which are mapping this folio and
2138  * replace them with special swap entries. Caller must hold the folio lock.
2139  */
2140 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2141 {
2142         struct rmap_walk_control rwc = {
2143                 .rmap_one = try_to_migrate_one,
2144                 .arg = (void *)flags,
2145                 .done = folio_not_mapped,
2146                 .anon_lock = folio_lock_anon_vma_read,
2147         };
2148
2149         /*
2150          * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2151          * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2152          */
2153         if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2154                                         TTU_SYNC)))
2155                 return;
2156
2157         if (folio_is_zone_device(folio) &&
2158             (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2159                 return;
2160
2161         /*
2162          * During exec, a temporary VMA is setup and later moved.
2163          * The VMA is moved under the anon_vma lock but not the
2164          * page tables leading to a race where migration cannot
2165          * find the migration ptes. Rather than increasing the
2166          * locking requirements of exec(), migration skips
2167          * temporary VMAs until after exec() completes.
2168          */
2169         if (!folio_test_ksm(folio) && folio_test_anon(folio))
2170                 rwc.invalid_vma = invalid_migration_vma;
2171
2172         if (flags & TTU_RMAP_LOCKED)
2173                 rmap_walk_locked(folio, &rwc);
2174         else
2175                 rmap_walk(folio, &rwc);
2176 }
2177
2178 #ifdef CONFIG_DEVICE_PRIVATE
2179 struct make_exclusive_args {
2180         struct mm_struct *mm;
2181         unsigned long address;
2182         void *owner;
2183         bool valid;
2184 };
2185
2186 static bool page_make_device_exclusive_one(struct folio *folio,
2187                 struct vm_area_struct *vma, unsigned long address, void *priv)
2188 {
2189         struct mm_struct *mm = vma->vm_mm;
2190         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2191         struct make_exclusive_args *args = priv;
2192         pte_t pteval;
2193         struct page *subpage;
2194         bool ret = true;
2195         struct mmu_notifier_range range;
2196         swp_entry_t entry;
2197         pte_t swp_pte;
2198
2199         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2200                                       vma->vm_mm, address, min(vma->vm_end,
2201                                       address + folio_size(folio)),
2202                                       args->owner);
2203         mmu_notifier_invalidate_range_start(&range);
2204
2205         while (page_vma_mapped_walk(&pvmw)) {
2206                 /* Unexpected PMD-mapped THP? */
2207                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2208
2209                 if (!pte_present(*pvmw.pte)) {
2210                         ret = false;
2211                         page_vma_mapped_walk_done(&pvmw);
2212                         break;
2213                 }
2214
2215                 subpage = folio_page(folio,
2216                                 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2217                 address = pvmw.address;
2218
2219                 /* Nuke the page table entry. */
2220                 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2221                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2222
2223                 /* Set the dirty flag on the folio now the pte is gone. */
2224                 if (pte_dirty(pteval))
2225                         folio_mark_dirty(folio);
2226
2227                 /*
2228                  * Check that our target page is still mapped at the expected
2229                  * address.
2230                  */
2231                 if (args->mm == mm && args->address == address &&
2232                     pte_write(pteval))
2233                         args->valid = true;
2234
2235                 /*
2236                  * Store the pfn of the page in a special migration
2237                  * pte. do_swap_page() will wait until the migration
2238                  * pte is removed and then restart fault handling.
2239                  */
2240                 if (pte_write(pteval))
2241                         entry = make_writable_device_exclusive_entry(
2242                                                         page_to_pfn(subpage));
2243                 else
2244                         entry = make_readable_device_exclusive_entry(
2245                                                         page_to_pfn(subpage));
2246                 swp_pte = swp_entry_to_pte(entry);
2247                 if (pte_soft_dirty(pteval))
2248                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2249                 if (pte_uffd_wp(pteval))
2250                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2251
2252                 set_pte_at(mm, address, pvmw.pte, swp_pte);
2253
2254                 /*
2255                  * There is a reference on the page for the swap entry which has
2256                  * been removed, so shouldn't take another.
2257                  */
2258                 page_remove_rmap(subpage, vma, false);
2259         }
2260
2261         mmu_notifier_invalidate_range_end(&range);
2262
2263         return ret;
2264 }
2265
2266 /**
2267  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2268  * @folio: The folio to replace page table entries for.
2269  * @mm: The mm_struct where the folio is expected to be mapped.
2270  * @address: Address where the folio is expected to be mapped.
2271  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2272  *
2273  * Tries to remove all the page table entries which are mapping this
2274  * folio and replace them with special device exclusive swap entries to
2275  * grant a device exclusive access to the folio.
2276  *
2277  * Context: Caller must hold the folio lock.
2278  * Return: false if the page is still mapped, or if it could not be unmapped
2279  * from the expected address. Otherwise returns true (success).
2280  */
2281 static bool folio_make_device_exclusive(struct folio *folio,
2282                 struct mm_struct *mm, unsigned long address, void *owner)
2283 {
2284         struct make_exclusive_args args = {
2285                 .mm = mm,
2286                 .address = address,
2287                 .owner = owner,
2288                 .valid = false,
2289         };
2290         struct rmap_walk_control rwc = {
2291                 .rmap_one = page_make_device_exclusive_one,
2292                 .done = folio_not_mapped,
2293                 .anon_lock = folio_lock_anon_vma_read,
2294                 .arg = &args,
2295         };
2296
2297         /*
2298          * Restrict to anonymous folios for now to avoid potential writeback
2299          * issues.
2300          */
2301         if (!folio_test_anon(folio))
2302                 return false;
2303
2304         rmap_walk(folio, &rwc);
2305
2306         return args.valid && !folio_mapcount(folio);
2307 }
2308
2309 /**
2310  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2311  * @mm: mm_struct of associated target process
2312  * @start: start of the region to mark for exclusive device access
2313  * @end: end address of region
2314  * @pages: returns the pages which were successfully marked for exclusive access
2315  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2316  *
2317  * Returns: number of pages found in the range by GUP. A page is marked for
2318  * exclusive access only if the page pointer is non-NULL.
2319  *
2320  * This function finds ptes mapping page(s) to the given address range, locks
2321  * them and replaces mappings with special swap entries preventing userspace CPU
2322  * access. On fault these entries are replaced with the original mapping after
2323  * calling MMU notifiers.
2324  *
2325  * A driver using this to program access from a device must use a mmu notifier
2326  * critical section to hold a device specific lock during programming. Once
2327  * programming is complete it should drop the page lock and reference after
2328  * which point CPU access to the page will revoke the exclusive access.
2329  */
2330 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2331                                 unsigned long end, struct page **pages,
2332                                 void *owner)
2333 {
2334         long npages = (end - start) >> PAGE_SHIFT;
2335         long i;
2336
2337         npages = get_user_pages_remote(mm, start, npages,
2338                                        FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2339                                        pages, NULL, NULL);
2340         if (npages < 0)
2341                 return npages;
2342
2343         for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2344                 struct folio *folio = page_folio(pages[i]);
2345                 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2346                         folio_put(folio);
2347                         pages[i] = NULL;
2348                         continue;
2349                 }
2350
2351                 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2352                         folio_unlock(folio);
2353                         folio_put(folio);
2354                         pages[i] = NULL;
2355                 }
2356         }
2357
2358         return npages;
2359 }
2360 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2361 #endif
2362
2363 void __put_anon_vma(struct anon_vma *anon_vma)
2364 {
2365         struct anon_vma *root = anon_vma->root;
2366
2367         anon_vma_free(anon_vma);
2368         if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2369                 anon_vma_free(root);
2370 }
2371
2372 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2373                                             struct rmap_walk_control *rwc)
2374 {
2375         struct anon_vma *anon_vma;
2376
2377         if (rwc->anon_lock)
2378                 return rwc->anon_lock(folio, rwc);
2379
2380         /*
2381          * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2382          * because that depends on page_mapped(); but not all its usages
2383          * are holding mmap_lock. Users without mmap_lock are required to
2384          * take a reference count to prevent the anon_vma disappearing
2385          */
2386         anon_vma = folio_anon_vma(folio);
2387         if (!anon_vma)
2388                 return NULL;
2389
2390         if (anon_vma_trylock_read(anon_vma))
2391                 goto out;
2392
2393         if (rwc->try_lock) {
2394                 anon_vma = NULL;
2395                 rwc->contended = true;
2396                 goto out;
2397         }
2398
2399         anon_vma_lock_read(anon_vma);
2400 out:
2401         return anon_vma;
2402 }
2403
2404 /*
2405  * rmap_walk_anon - do something to anonymous page using the object-based
2406  * rmap method
2407  * @page: the page to be handled
2408  * @rwc: control variable according to each walk type
2409  *
2410  * Find all the mappings of a page using the mapping pointer and the vma chains
2411  * contained in the anon_vma struct it points to.
2412  */
2413 static void rmap_walk_anon(struct folio *folio,
2414                 struct rmap_walk_control *rwc, bool locked)
2415 {
2416         struct anon_vma *anon_vma;
2417         pgoff_t pgoff_start, pgoff_end;
2418         struct anon_vma_chain *avc;
2419
2420         if (locked) {
2421                 anon_vma = folio_anon_vma(folio);
2422                 /* anon_vma disappear under us? */
2423                 VM_BUG_ON_FOLIO(!anon_vma, folio);
2424         } else {
2425                 anon_vma = rmap_walk_anon_lock(folio, rwc);
2426         }
2427         if (!anon_vma)
2428                 return;
2429
2430         pgoff_start = folio_pgoff(folio);
2431         pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2432         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2433                         pgoff_start, pgoff_end) {
2434                 struct vm_area_struct *vma = avc->vma;
2435                 unsigned long address = vma_address(&folio->page, vma);
2436
2437                 VM_BUG_ON_VMA(address == -EFAULT, vma);
2438                 cond_resched();
2439
2440                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2441                         continue;
2442
2443                 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2444                         break;
2445                 if (rwc->done && rwc->done(folio))
2446                         break;
2447         }
2448
2449         if (!locked)
2450                 anon_vma_unlock_read(anon_vma);
2451 }
2452
2453 /*
2454  * rmap_walk_file - do something to file page using the object-based rmap method
2455  * @page: the page to be handled
2456  * @rwc: control variable according to each walk type
2457  *
2458  * Find all the mappings of a page using the mapping pointer and the vma chains
2459  * contained in the address_space struct it points to.
2460  */
2461 static void rmap_walk_file(struct folio *folio,
2462                 struct rmap_walk_control *rwc, bool locked)
2463 {
2464         struct address_space *mapping = folio_mapping(folio);
2465         pgoff_t pgoff_start, pgoff_end;
2466         struct vm_area_struct *vma;
2467
2468         /*
2469          * The page lock not only makes sure that page->mapping cannot
2470          * suddenly be NULLified by truncation, it makes sure that the
2471          * structure at mapping cannot be freed and reused yet,
2472          * so we can safely take mapping->i_mmap_rwsem.
2473          */
2474         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2475
2476         if (!mapping)
2477                 return;
2478
2479         pgoff_start = folio_pgoff(folio);
2480         pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2481         if (!locked) {
2482                 if (i_mmap_trylock_read(mapping))
2483                         goto lookup;
2484
2485                 if (rwc->try_lock) {
2486                         rwc->contended = true;
2487                         return;
2488                 }
2489
2490                 i_mmap_lock_read(mapping);
2491         }
2492 lookup:
2493         vma_interval_tree_foreach(vma, &mapping->i_mmap,
2494                         pgoff_start, pgoff_end) {
2495                 unsigned long address = vma_address(&folio->page, vma);
2496
2497                 VM_BUG_ON_VMA(address == -EFAULT, vma);
2498                 cond_resched();
2499
2500                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2501                         continue;
2502
2503                 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2504                         goto done;
2505                 if (rwc->done && rwc->done(folio))
2506                         goto done;
2507         }
2508
2509 done:
2510         if (!locked)
2511                 i_mmap_unlock_read(mapping);
2512 }
2513
2514 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2515 {
2516         if (unlikely(folio_test_ksm(folio)))
2517                 rmap_walk_ksm(folio, rwc);
2518         else if (folio_test_anon(folio))
2519                 rmap_walk_anon(folio, rwc, false);
2520         else
2521                 rmap_walk_file(folio, rwc, false);
2522 }
2523
2524 /* Like rmap_walk, but caller holds relevant rmap lock */
2525 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2526 {
2527         /* no ksm support for now */
2528         VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2529         if (folio_test_anon(folio))
2530                 rmap_walk_anon(folio, rwc, true);
2531         else
2532                 rmap_walk_file(folio, rwc, true);
2533 }
2534
2535 #ifdef CONFIG_HUGETLB_PAGE
2536 /*
2537  * The following two functions are for anonymous (private mapped) hugepages.
2538  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2539  * and no lru code, because we handle hugepages differently from common pages.
2540  *
2541  * RMAP_COMPOUND is ignored.
2542  */
2543 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2544                             unsigned long address, rmap_t flags)
2545 {
2546         struct anon_vma *anon_vma = vma->anon_vma;
2547         int first;
2548
2549         BUG_ON(!PageLocked(page));
2550         BUG_ON(!anon_vma);
2551         /* address might be in next vma when migration races vma_adjust */
2552         first = atomic_inc_and_test(compound_mapcount_ptr(page));
2553         VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2554         VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2555         if (first)
2556                 __page_set_anon_rmap(page, vma, address,
2557                                      !!(flags & RMAP_EXCLUSIVE));
2558 }
2559
2560 void hugepage_add_new_anon_rmap(struct page *page,
2561                         struct vm_area_struct *vma, unsigned long address)
2562 {
2563         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2564         /* increment count (starts at -1) */
2565         atomic_set(compound_mapcount_ptr(page), 0);
2566         ClearHPageRestoreReserve(page);
2567         __page_set_anon_rmap(page, vma, address, 1);
2568 }
2569 #endif /* CONFIG_HUGETLB_PAGE */