oom: use pte pages in OOM score
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / rmap.c
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex       (while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37  *                 mapping->tree_lock (widely used, in set_page_dirty,
38  *                           in arch-dependent flush_dcache_mmap_lock,
39  *                           within inode_wb_list_lock in __sync_single_inode)
40  *
41  * (code doesn't rely on that order so it could be switched around)
42  * ->tasklist_lock
43  *   anon_vma->lock      (memory_failure, collect_procs_anon)
44  *     pte map lock
45  */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61
62 #include <asm/tlbflush.h>
63
64 #include "internal.h"
65
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71         struct anon_vma *anon_vma;
72
73         anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74         if (anon_vma) {
75                 atomic_set(&anon_vma->refcount, 1);
76                 /*
77                  * Initialise the anon_vma root to point to itself. If called
78                  * from fork, the root will be reset to the parents anon_vma.
79                  */
80                 anon_vma->root = anon_vma;
81         }
82
83         return anon_vma;
84 }
85
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88         VM_BUG_ON(atomic_read(&anon_vma->refcount));
89         kmem_cache_free(anon_vma_cachep, anon_vma);
90 }
91
92 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93 {
94         return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95 }
96
97 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
98 {
99         kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100 }
101
102 /**
103  * anon_vma_prepare - attach an anon_vma to a memory region
104  * @vma: the memory region in question
105  *
106  * This makes sure the memory mapping described by 'vma' has
107  * an 'anon_vma' attached to it, so that we can associate the
108  * anonymous pages mapped into it with that anon_vma.
109  *
110  * The common case will be that we already have one, but if
111  * not we either need to find an adjacent mapping that we
112  * can re-use the anon_vma from (very common when the only
113  * reason for splitting a vma has been mprotect()), or we
114  * allocate a new one.
115  *
116  * Anon-vma allocations are very subtle, because we may have
117  * optimistically looked up an anon_vma in page_lock_anon_vma()
118  * and that may actually touch the spinlock even in the newly
119  * allocated vma (it depends on RCU to make sure that the
120  * anon_vma isn't actually destroyed).
121  *
122  * As a result, we need to do proper anon_vma locking even
123  * for the new allocation. At the same time, we do not want
124  * to do any locking for the common case of already having
125  * an anon_vma.
126  *
127  * This must be called with the mmap_sem held for reading.
128  */
129 int anon_vma_prepare(struct vm_area_struct *vma)
130 {
131         struct anon_vma *anon_vma = vma->anon_vma;
132         struct anon_vma_chain *avc;
133
134         might_sleep();
135         if (unlikely(!anon_vma)) {
136                 struct mm_struct *mm = vma->vm_mm;
137                 struct anon_vma *allocated;
138
139                 avc = anon_vma_chain_alloc();
140                 if (!avc)
141                         goto out_enomem;
142
143                 anon_vma = find_mergeable_anon_vma(vma);
144                 allocated = NULL;
145                 if (!anon_vma) {
146                         anon_vma = anon_vma_alloc();
147                         if (unlikely(!anon_vma))
148                                 goto out_enomem_free_avc;
149                         allocated = anon_vma;
150                 }
151
152                 anon_vma_lock(anon_vma);
153                 /* page_table_lock to protect against threads */
154                 spin_lock(&mm->page_table_lock);
155                 if (likely(!vma->anon_vma)) {
156                         vma->anon_vma = anon_vma;
157                         avc->anon_vma = anon_vma;
158                         avc->vma = vma;
159                         list_add(&avc->same_vma, &vma->anon_vma_chain);
160                         list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161                         allocated = NULL;
162                         avc = NULL;
163                 }
164                 spin_unlock(&mm->page_table_lock);
165                 anon_vma_unlock(anon_vma);
166
167                 if (unlikely(allocated))
168                         put_anon_vma(allocated);
169                 if (unlikely(avc))
170                         anon_vma_chain_free(avc);
171         }
172         return 0;
173
174  out_enomem_free_avc:
175         anon_vma_chain_free(avc);
176  out_enomem:
177         return -ENOMEM;
178 }
179
180 static void anon_vma_chain_link(struct vm_area_struct *vma,
181                                 struct anon_vma_chain *avc,
182                                 struct anon_vma *anon_vma)
183 {
184         avc->vma = vma;
185         avc->anon_vma = anon_vma;
186         list_add(&avc->same_vma, &vma->anon_vma_chain);
187
188         anon_vma_lock(anon_vma);
189         /*
190          * It's critical to add new vmas to the tail of the anon_vma,
191          * see comment in huge_memory.c:__split_huge_page().
192          */
193         list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194         anon_vma_unlock(anon_vma);
195 }
196
197 /*
198  * Attach the anon_vmas from src to dst.
199  * Returns 0 on success, -ENOMEM on failure.
200  */
201 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
202 {
203         struct anon_vma_chain *avc, *pavc;
204
205         list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206                 avc = anon_vma_chain_alloc();
207                 if (!avc)
208                         goto enomem_failure;
209                 anon_vma_chain_link(dst, avc, pavc->anon_vma);
210         }
211         return 0;
212
213  enomem_failure:
214         unlink_anon_vmas(dst);
215         return -ENOMEM;
216 }
217
218 /*
219  * Attach vma to its own anon_vma, as well as to the anon_vmas that
220  * the corresponding VMA in the parent process is attached to.
221  * Returns 0 on success, non-zero on failure.
222  */
223 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
224 {
225         struct anon_vma_chain *avc;
226         struct anon_vma *anon_vma;
227
228         /* Don't bother if the parent process has no anon_vma here. */
229         if (!pvma->anon_vma)
230                 return 0;
231
232         /*
233          * First, attach the new VMA to the parent VMA's anon_vmas,
234          * so rmap can find non-COWed pages in child processes.
235          */
236         if (anon_vma_clone(vma, pvma))
237                 return -ENOMEM;
238
239         /* Then add our own anon_vma. */
240         anon_vma = anon_vma_alloc();
241         if (!anon_vma)
242                 goto out_error;
243         avc = anon_vma_chain_alloc();
244         if (!avc)
245                 goto out_error_free_anon_vma;
246
247         /*
248          * The root anon_vma's spinlock is the lock actually used when we
249          * lock any of the anon_vmas in this anon_vma tree.
250          */
251         anon_vma->root = pvma->anon_vma->root;
252         /*
253          * With refcounts, an anon_vma can stay around longer than the
254          * process it belongs to. The root anon_vma needs to be pinned until
255          * this anon_vma is freed, because the lock lives in the root.
256          */
257         get_anon_vma(anon_vma->root);
258         /* Mark this anon_vma as the one where our new (COWed) pages go. */
259         vma->anon_vma = anon_vma;
260         anon_vma_chain_link(vma, avc, anon_vma);
261
262         return 0;
263
264  out_error_free_anon_vma:
265         put_anon_vma(anon_vma);
266  out_error:
267         unlink_anon_vmas(vma);
268         return -ENOMEM;
269 }
270
271 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
272 {
273         struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274         int empty;
275
276         /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277         if (!anon_vma)
278                 return;
279
280         anon_vma_lock(anon_vma);
281         list_del(&anon_vma_chain->same_anon_vma);
282
283         /* We must garbage collect the anon_vma if it's empty */
284         empty = list_empty(&anon_vma->head);
285         anon_vma_unlock(anon_vma);
286
287         if (empty)
288                 put_anon_vma(anon_vma);
289 }
290
291 void unlink_anon_vmas(struct vm_area_struct *vma)
292 {
293         struct anon_vma_chain *avc, *next;
294
295         /*
296          * Unlink each anon_vma chained to the VMA.  This list is ordered
297          * from newest to oldest, ensuring the root anon_vma gets freed last.
298          */
299         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300                 anon_vma_unlink(avc);
301                 list_del(&avc->same_vma);
302                 anon_vma_chain_free(avc);
303         }
304 }
305
306 static void anon_vma_ctor(void *data)
307 {
308         struct anon_vma *anon_vma = data;
309
310         spin_lock_init(&anon_vma->lock);
311         atomic_set(&anon_vma->refcount, 0);
312         INIT_LIST_HEAD(&anon_vma->head);
313 }
314
315 void __init anon_vma_init(void)
316 {
317         anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318                         0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319         anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
320 }
321
322 /*
323  * Getting a lock on a stable anon_vma from a page off the LRU is
324  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325  */
326 struct anon_vma *__page_lock_anon_vma(struct page *page)
327 {
328         struct anon_vma *anon_vma, *root_anon_vma;
329         unsigned long anon_mapping;
330
331         rcu_read_lock();
332         anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
333         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
334                 goto out;
335         if (!page_mapped(page))
336                 goto out;
337
338         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
339         root_anon_vma = ACCESS_ONCE(anon_vma->root);
340         spin_lock(&root_anon_vma->lock);
341
342         /*
343          * If this page is still mapped, then its anon_vma cannot have been
344          * freed.  But if it has been unmapped, we have no security against
345          * the anon_vma structure being freed and reused (for another anon_vma:
346          * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347          * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348          * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349          */
350         if (page_mapped(page))
351                 return anon_vma;
352
353         spin_unlock(&root_anon_vma->lock);
354 out:
355         rcu_read_unlock();
356         return NULL;
357 }
358
359 void page_unlock_anon_vma(struct anon_vma *anon_vma)
360         __releases(&anon_vma->root->lock)
361         __releases(RCU)
362 {
363         anon_vma_unlock(anon_vma);
364         rcu_read_unlock();
365 }
366
367 /*
368  * At what user virtual address is page expected in @vma?
369  * Returns virtual address or -EFAULT if page's index/offset is not
370  * within the range mapped the @vma.
371  */
372 inline unsigned long
373 vma_address(struct page *page, struct vm_area_struct *vma)
374 {
375         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
376         unsigned long address;
377
378         if (unlikely(is_vm_hugetlb_page(vma)))
379                 pgoff = page->index << huge_page_order(page_hstate(page));
380         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
381         if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
382                 /* page should be within @vma mapping range */
383                 return -EFAULT;
384         }
385         return address;
386 }
387
388 /*
389  * At what user virtual address is page expected in vma?
390  * Caller should check the page is actually part of the vma.
391  */
392 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
393 {
394         if (PageAnon(page)) {
395                 struct anon_vma *page__anon_vma = page_anon_vma(page);
396                 /*
397                  * Note: swapoff's unuse_vma() is more efficient with this
398                  * check, and needs it to match anon_vma when KSM is active.
399                  */
400                 if (!vma->anon_vma || !page__anon_vma ||
401                     vma->anon_vma->root != page__anon_vma->root)
402                         return -EFAULT;
403         } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
404                 if (!vma->vm_file ||
405                     vma->vm_file->f_mapping != page->mapping)
406                         return -EFAULT;
407         } else
408                 return -EFAULT;
409         return vma_address(page, vma);
410 }
411
412 /*
413  * Check that @page is mapped at @address into @mm.
414  *
415  * If @sync is false, page_check_address may perform a racy check to avoid
416  * the page table lock when the pte is not present (helpful when reclaiming
417  * highly shared pages).
418  *
419  * On success returns with pte mapped and locked.
420  */
421 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
422                           unsigned long address, spinlock_t **ptlp, int sync)
423 {
424         pgd_t *pgd;
425         pud_t *pud;
426         pmd_t *pmd;
427         pte_t *pte;
428         spinlock_t *ptl;
429
430         if (unlikely(PageHuge(page))) {
431                 pte = huge_pte_offset(mm, address);
432                 ptl = &mm->page_table_lock;
433                 goto check;
434         }
435
436         pgd = pgd_offset(mm, address);
437         if (!pgd_present(*pgd))
438                 return NULL;
439
440         pud = pud_offset(pgd, address);
441         if (!pud_present(*pud))
442                 return NULL;
443
444         pmd = pmd_offset(pud, address);
445         if (!pmd_present(*pmd))
446                 return NULL;
447         if (pmd_trans_huge(*pmd))
448                 return NULL;
449
450         pte = pte_offset_map(pmd, address);
451         /* Make a quick check before getting the lock */
452         if (!sync && !pte_present(*pte)) {
453                 pte_unmap(pte);
454                 return NULL;
455         }
456
457         ptl = pte_lockptr(mm, pmd);
458 check:
459         spin_lock(ptl);
460         if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
461                 *ptlp = ptl;
462                 return pte;
463         }
464         pte_unmap_unlock(pte, ptl);
465         return NULL;
466 }
467
468 /**
469  * page_mapped_in_vma - check whether a page is really mapped in a VMA
470  * @page: the page to test
471  * @vma: the VMA to test
472  *
473  * Returns 1 if the page is mapped into the page tables of the VMA, 0
474  * if the page is not mapped into the page tables of this VMA.  Only
475  * valid for normal file or anonymous VMAs.
476  */
477 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
478 {
479         unsigned long address;
480         pte_t *pte;
481         spinlock_t *ptl;
482
483         address = vma_address(page, vma);
484         if (address == -EFAULT)         /* out of vma range */
485                 return 0;
486         pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
487         if (!pte)                       /* the page is not in this mm */
488                 return 0;
489         pte_unmap_unlock(pte, ptl);
490
491         return 1;
492 }
493
494 /*
495  * Subfunctions of page_referenced: page_referenced_one called
496  * repeatedly from either page_referenced_anon or page_referenced_file.
497  */
498 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
499                         unsigned long address, unsigned int *mapcount,
500                         unsigned long *vm_flags)
501 {
502         struct mm_struct *mm = vma->vm_mm;
503         int referenced = 0;
504
505         if (unlikely(PageTransHuge(page))) {
506                 pmd_t *pmd;
507
508                 spin_lock(&mm->page_table_lock);
509                 /*
510                  * rmap might return false positives; we must filter
511                  * these out using page_check_address_pmd().
512                  */
513                 pmd = page_check_address_pmd(page, mm, address,
514                                              PAGE_CHECK_ADDRESS_PMD_FLAG);
515                 if (!pmd) {
516                         spin_unlock(&mm->page_table_lock);
517                         goto out;
518                 }
519
520                 if (vma->vm_flags & VM_LOCKED) {
521                         spin_unlock(&mm->page_table_lock);
522                         *mapcount = 0;  /* break early from loop */
523                         *vm_flags |= VM_LOCKED;
524                         goto out;
525                 }
526
527                 /* go ahead even if the pmd is pmd_trans_splitting() */
528                 if (pmdp_clear_flush_young_notify(vma, address, pmd))
529                         referenced++;
530                 spin_unlock(&mm->page_table_lock);
531         } else {
532                 pte_t *pte;
533                 spinlock_t *ptl;
534
535                 /*
536                  * rmap might return false positives; we must filter
537                  * these out using page_check_address().
538                  */
539                 pte = page_check_address(page, mm, address, &ptl, 0);
540                 if (!pte)
541                         goto out;
542
543                 if (vma->vm_flags & VM_LOCKED) {
544                         pte_unmap_unlock(pte, ptl);
545                         *mapcount = 0;  /* break early from loop */
546                         *vm_flags |= VM_LOCKED;
547                         goto out;
548                 }
549
550                 if (ptep_clear_flush_young_notify(vma, address, pte)) {
551                         /*
552                          * Don't treat a reference through a sequentially read
553                          * mapping as such.  If the page has been used in
554                          * another mapping, we will catch it; if this other
555                          * mapping is already gone, the unmap path will have
556                          * set PG_referenced or activated the page.
557                          */
558                         if (likely(!VM_SequentialReadHint(vma)))
559                                 referenced++;
560                 }
561                 pte_unmap_unlock(pte, ptl);
562         }
563
564         /* Pretend the page is referenced if the task has the
565            swap token and is in the middle of a page fault. */
566         if (mm != current->mm && has_swap_token(mm) &&
567                         rwsem_is_locked(&mm->mmap_sem))
568                 referenced++;
569
570         (*mapcount)--;
571
572         if (referenced)
573                 *vm_flags |= vma->vm_flags;
574 out:
575         return referenced;
576 }
577
578 static int page_referenced_anon(struct page *page,
579                                 struct mem_cgroup *mem_cont,
580                                 unsigned long *vm_flags)
581 {
582         unsigned int mapcount;
583         struct anon_vma *anon_vma;
584         struct anon_vma_chain *avc;
585         int referenced = 0;
586
587         anon_vma = page_lock_anon_vma(page);
588         if (!anon_vma)
589                 return referenced;
590
591         mapcount = page_mapcount(page);
592         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
593                 struct vm_area_struct *vma = avc->vma;
594                 unsigned long address = vma_address(page, vma);
595                 if (address == -EFAULT)
596                         continue;
597                 /*
598                  * If we are reclaiming on behalf of a cgroup, skip
599                  * counting on behalf of references from different
600                  * cgroups
601                  */
602                 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
603                         continue;
604                 referenced += page_referenced_one(page, vma, address,
605                                                   &mapcount, vm_flags);
606                 if (!mapcount)
607                         break;
608         }
609
610         page_unlock_anon_vma(anon_vma);
611         return referenced;
612 }
613
614 /**
615  * page_referenced_file - referenced check for object-based rmap
616  * @page: the page we're checking references on.
617  * @mem_cont: target memory controller
618  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619  *
620  * For an object-based mapped page, find all the places it is mapped and
621  * check/clear the referenced flag.  This is done by following the page->mapping
622  * pointer, then walking the chain of vmas it holds.  It returns the number
623  * of references it found.
624  *
625  * This function is only called from page_referenced for object-based pages.
626  */
627 static int page_referenced_file(struct page *page,
628                                 struct mem_cgroup *mem_cont,
629                                 unsigned long *vm_flags)
630 {
631         unsigned int mapcount;
632         struct address_space *mapping = page->mapping;
633         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
634         struct vm_area_struct *vma;
635         struct prio_tree_iter iter;
636         int referenced = 0;
637
638         /*
639          * The caller's checks on page->mapping and !PageAnon have made
640          * sure that this is a file page: the check for page->mapping
641          * excludes the case just before it gets set on an anon page.
642          */
643         BUG_ON(PageAnon(page));
644
645         /*
646          * The page lock not only makes sure that page->mapping cannot
647          * suddenly be NULLified by truncation, it makes sure that the
648          * structure at mapping cannot be freed and reused yet,
649          * so we can safely take mapping->i_mmap_lock.
650          */
651         BUG_ON(!PageLocked(page));
652
653         spin_lock(&mapping->i_mmap_lock);
654
655         /*
656          * i_mmap_lock does not stabilize mapcount at all, but mapcount
657          * is more likely to be accurate if we note it after spinning.
658          */
659         mapcount = page_mapcount(page);
660
661         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
662                 unsigned long address = vma_address(page, vma);
663                 if (address == -EFAULT)
664                         continue;
665                 /*
666                  * If we are reclaiming on behalf of a cgroup, skip
667                  * counting on behalf of references from different
668                  * cgroups
669                  */
670                 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
671                         continue;
672                 referenced += page_referenced_one(page, vma, address,
673                                                   &mapcount, vm_flags);
674                 if (!mapcount)
675                         break;
676         }
677
678         spin_unlock(&mapping->i_mmap_lock);
679         return referenced;
680 }
681
682 /**
683  * page_referenced - test if the page was referenced
684  * @page: the page to test
685  * @is_locked: caller holds lock on the page
686  * @mem_cont: target memory controller
687  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
688  *
689  * Quick test_and_clear_referenced for all mappings to a page,
690  * returns the number of ptes which referenced the page.
691  */
692 int page_referenced(struct page *page,
693                     int is_locked,
694                     struct mem_cgroup *mem_cont,
695                     unsigned long *vm_flags)
696 {
697         int referenced = 0;
698         int we_locked = 0;
699
700         *vm_flags = 0;
701         if (page_mapped(page) && page_rmapping(page)) {
702                 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
703                         we_locked = trylock_page(page);
704                         if (!we_locked) {
705                                 referenced++;
706                                 goto out;
707                         }
708                 }
709                 if (unlikely(PageKsm(page)))
710                         referenced += page_referenced_ksm(page, mem_cont,
711                                                                 vm_flags);
712                 else if (PageAnon(page))
713                         referenced += page_referenced_anon(page, mem_cont,
714                                                                 vm_flags);
715                 else if (page->mapping)
716                         referenced += page_referenced_file(page, mem_cont,
717                                                                 vm_flags);
718                 if (we_locked)
719                         unlock_page(page);
720         }
721 out:
722         if (page_test_and_clear_young(page))
723                 referenced++;
724
725         return referenced;
726 }
727
728 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
729                             unsigned long address)
730 {
731         struct mm_struct *mm = vma->vm_mm;
732         pte_t *pte;
733         spinlock_t *ptl;
734         int ret = 0;
735
736         pte = page_check_address(page, mm, address, &ptl, 1);
737         if (!pte)
738                 goto out;
739
740         if (pte_dirty(*pte) || pte_write(*pte)) {
741                 pte_t entry;
742
743                 flush_cache_page(vma, address, pte_pfn(*pte));
744                 entry = ptep_clear_flush_notify(vma, address, pte);
745                 entry = pte_wrprotect(entry);
746                 entry = pte_mkclean(entry);
747                 set_pte_at(mm, address, pte, entry);
748                 ret = 1;
749         }
750
751         pte_unmap_unlock(pte, ptl);
752 out:
753         return ret;
754 }
755
756 static int page_mkclean_file(struct address_space *mapping, struct page *page)
757 {
758         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759         struct vm_area_struct *vma;
760         struct prio_tree_iter iter;
761         int ret = 0;
762
763         BUG_ON(PageAnon(page));
764
765         spin_lock(&mapping->i_mmap_lock);
766         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767                 if (vma->vm_flags & VM_SHARED) {
768                         unsigned long address = vma_address(page, vma);
769                         if (address == -EFAULT)
770                                 continue;
771                         ret += page_mkclean_one(page, vma, address);
772                 }
773         }
774         spin_unlock(&mapping->i_mmap_lock);
775         return ret;
776 }
777
778 int page_mkclean(struct page *page)
779 {
780         int ret = 0;
781
782         BUG_ON(!PageLocked(page));
783
784         if (page_mapped(page)) {
785                 struct address_space *mapping = page_mapping(page);
786                 if (mapping) {
787                         ret = page_mkclean_file(mapping, page);
788                         if (page_test_dirty(page)) {
789                                 page_clear_dirty(page, 1);
790                                 ret = 1;
791                         }
792                 }
793         }
794
795         return ret;
796 }
797 EXPORT_SYMBOL_GPL(page_mkclean);
798
799 /**
800  * page_move_anon_rmap - move a page to our anon_vma
801  * @page:       the page to move to our anon_vma
802  * @vma:        the vma the page belongs to
803  * @address:    the user virtual address mapped
804  *
805  * When a page belongs exclusively to one process after a COW event,
806  * that page can be moved into the anon_vma that belongs to just that
807  * process, so the rmap code will not search the parent or sibling
808  * processes.
809  */
810 void page_move_anon_rmap(struct page *page,
811         struct vm_area_struct *vma, unsigned long address)
812 {
813         struct anon_vma *anon_vma = vma->anon_vma;
814
815         VM_BUG_ON(!PageLocked(page));
816         VM_BUG_ON(!anon_vma);
817         VM_BUG_ON(page->index != linear_page_index(vma, address));
818
819         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
820         page->mapping = (struct address_space *) anon_vma;
821 }
822
823 /**
824  * __page_set_anon_rmap - set up new anonymous rmap
825  * @page:       Page to add to rmap     
826  * @vma:        VM area to add page to.
827  * @address:    User virtual address of the mapping     
828  * @exclusive:  the page is exclusively owned by the current process
829  */
830 static void __page_set_anon_rmap(struct page *page,
831         struct vm_area_struct *vma, unsigned long address, int exclusive)
832 {
833         struct anon_vma *anon_vma = vma->anon_vma;
834
835         BUG_ON(!anon_vma);
836
837         if (PageAnon(page))
838                 return;
839
840         /*
841          * If the page isn't exclusively mapped into this vma,
842          * we must use the _oldest_ possible anon_vma for the
843          * page mapping!
844          */
845         if (!exclusive)
846                 anon_vma = anon_vma->root;
847
848         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
849         page->mapping = (struct address_space *) anon_vma;
850         page->index = linear_page_index(vma, address);
851 }
852
853 /**
854  * __page_check_anon_rmap - sanity check anonymous rmap addition
855  * @page:       the page to add the mapping to
856  * @vma:        the vm area in which the mapping is added
857  * @address:    the user virtual address mapped
858  */
859 static void __page_check_anon_rmap(struct page *page,
860         struct vm_area_struct *vma, unsigned long address)
861 {
862 #ifdef CONFIG_DEBUG_VM
863         /*
864          * The page's anon-rmap details (mapping and index) are guaranteed to
865          * be set up correctly at this point.
866          *
867          * We have exclusion against page_add_anon_rmap because the caller
868          * always holds the page locked, except if called from page_dup_rmap,
869          * in which case the page is already known to be setup.
870          *
871          * We have exclusion against page_add_new_anon_rmap because those pages
872          * are initially only visible via the pagetables, and the pte is locked
873          * over the call to page_add_new_anon_rmap.
874          */
875         BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
876         BUG_ON(page->index != linear_page_index(vma, address));
877 #endif
878 }
879
880 /**
881  * page_add_anon_rmap - add pte mapping to an anonymous page
882  * @page:       the page to add the mapping to
883  * @vma:        the vm area in which the mapping is added
884  * @address:    the user virtual address mapped
885  *
886  * The caller needs to hold the pte lock, and the page must be locked in
887  * the anon_vma case: to serialize mapping,index checking after setting,
888  * and to ensure that PageAnon is not being upgraded racily to PageKsm
889  * (but PageKsm is never downgraded to PageAnon).
890  */
891 void page_add_anon_rmap(struct page *page,
892         struct vm_area_struct *vma, unsigned long address)
893 {
894         do_page_add_anon_rmap(page, vma, address, 0);
895 }
896
897 /*
898  * Special version of the above for do_swap_page, which often runs
899  * into pages that are exclusively owned by the current process.
900  * Everybody else should continue to use page_add_anon_rmap above.
901  */
902 void do_page_add_anon_rmap(struct page *page,
903         struct vm_area_struct *vma, unsigned long address, int exclusive)
904 {
905         int first = atomic_inc_and_test(&page->_mapcount);
906         if (first) {
907                 if (!PageTransHuge(page))
908                         __inc_zone_page_state(page, NR_ANON_PAGES);
909                 else
910                         __inc_zone_page_state(page,
911                                               NR_ANON_TRANSPARENT_HUGEPAGES);
912         }
913         if (unlikely(PageKsm(page)))
914                 return;
915
916         VM_BUG_ON(!PageLocked(page));
917         VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
918         if (first)
919                 __page_set_anon_rmap(page, vma, address, exclusive);
920         else
921                 __page_check_anon_rmap(page, vma, address);
922 }
923
924 /**
925  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
926  * @page:       the page to add the mapping to
927  * @vma:        the vm area in which the mapping is added
928  * @address:    the user virtual address mapped
929  *
930  * Same as page_add_anon_rmap but must only be called on *new* pages.
931  * This means the inc-and-test can be bypassed.
932  * Page does not have to be locked.
933  */
934 void page_add_new_anon_rmap(struct page *page,
935         struct vm_area_struct *vma, unsigned long address)
936 {
937         VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
938         SetPageSwapBacked(page);
939         atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
940         if (!PageTransHuge(page))
941                 __inc_zone_page_state(page, NR_ANON_PAGES);
942         else
943                 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
944         __page_set_anon_rmap(page, vma, address, 1);
945         if (page_evictable(page, vma))
946                 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
947         else
948                 add_page_to_unevictable_list(page);
949 }
950
951 /**
952  * page_add_file_rmap - add pte mapping to a file page
953  * @page: the page to add the mapping to
954  *
955  * The caller needs to hold the pte lock.
956  */
957 void page_add_file_rmap(struct page *page)
958 {
959         if (atomic_inc_and_test(&page->_mapcount)) {
960                 __inc_zone_page_state(page, NR_FILE_MAPPED);
961                 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
962         }
963 }
964
965 /**
966  * page_remove_rmap - take down pte mapping from a page
967  * @page: page to remove mapping from
968  *
969  * The caller needs to hold the pte lock.
970  */
971 void page_remove_rmap(struct page *page)
972 {
973         /* page still mapped by someone else? */
974         if (!atomic_add_negative(-1, &page->_mapcount))
975                 return;
976
977         /*
978          * Now that the last pte has gone, s390 must transfer dirty
979          * flag from storage key to struct page.  We can usually skip
980          * this if the page is anon, so about to be freed; but perhaps
981          * not if it's in swapcache - there might be another pte slot
982          * containing the swap entry, but page not yet written to swap.
983          */
984         if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
985                 page_clear_dirty(page, 1);
986                 set_page_dirty(page);
987         }
988         /*
989          * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
990          * and not charged by memcg for now.
991          */
992         if (unlikely(PageHuge(page)))
993                 return;
994         if (PageAnon(page)) {
995                 mem_cgroup_uncharge_page(page);
996                 if (!PageTransHuge(page))
997                         __dec_zone_page_state(page, NR_ANON_PAGES);
998                 else
999                         __dec_zone_page_state(page,
1000                                               NR_ANON_TRANSPARENT_HUGEPAGES);
1001         } else {
1002                 __dec_zone_page_state(page, NR_FILE_MAPPED);
1003                 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1004         }
1005         /*
1006          * It would be tidy to reset the PageAnon mapping here,
1007          * but that might overwrite a racing page_add_anon_rmap
1008          * which increments mapcount after us but sets mapping
1009          * before us: so leave the reset to free_hot_cold_page,
1010          * and remember that it's only reliable while mapped.
1011          * Leaving it set also helps swapoff to reinstate ptes
1012          * faster for those pages still in swapcache.
1013          */
1014 }
1015
1016 /*
1017  * Subfunctions of try_to_unmap: try_to_unmap_one called
1018  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1019  */
1020 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1021                      unsigned long address, enum ttu_flags flags)
1022 {
1023         struct mm_struct *mm = vma->vm_mm;
1024         pte_t *pte;
1025         pte_t pteval;
1026         spinlock_t *ptl;
1027         int ret = SWAP_AGAIN;
1028
1029         pte = page_check_address(page, mm, address, &ptl, 0);
1030         if (!pte)
1031                 goto out;
1032
1033         /*
1034          * If the page is mlock()d, we cannot swap it out.
1035          * If it's recently referenced (perhaps page_referenced
1036          * skipped over this mm) then we should reactivate it.
1037          */
1038         if (!(flags & TTU_IGNORE_MLOCK)) {
1039                 if (vma->vm_flags & VM_LOCKED)
1040                         goto out_mlock;
1041
1042                 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1043                         goto out_unmap;
1044         }
1045         if (!(flags & TTU_IGNORE_ACCESS)) {
1046                 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1047                         ret = SWAP_FAIL;
1048                         goto out_unmap;
1049                 }
1050         }
1051
1052         /* Nuke the page table entry. */
1053         flush_cache_page(vma, address, page_to_pfn(page));
1054         pteval = ptep_clear_flush_notify(vma, address, pte);
1055
1056         /* Move the dirty bit to the physical page now the pte is gone. */
1057         if (pte_dirty(pteval))
1058                 set_page_dirty(page);
1059
1060         /* Update high watermark before we lower rss */
1061         update_hiwater_rss(mm);
1062
1063         if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1064                 if (PageAnon(page))
1065                         dec_mm_counter(mm, MM_ANONPAGES);
1066                 else
1067                         dec_mm_counter(mm, MM_FILEPAGES);
1068                 set_pte_at(mm, address, pte,
1069                                 swp_entry_to_pte(make_hwpoison_entry(page)));
1070         } else if (PageAnon(page)) {
1071                 swp_entry_t entry = { .val = page_private(page) };
1072
1073                 if (PageSwapCache(page)) {
1074                         /*
1075                          * Store the swap location in the pte.
1076                          * See handle_pte_fault() ...
1077                          */
1078                         if (swap_duplicate(entry) < 0) {
1079                                 set_pte_at(mm, address, pte, pteval);
1080                                 ret = SWAP_FAIL;
1081                                 goto out_unmap;
1082                         }
1083                         if (list_empty(&mm->mmlist)) {
1084                                 spin_lock(&mmlist_lock);
1085                                 if (list_empty(&mm->mmlist))
1086                                         list_add(&mm->mmlist, &init_mm.mmlist);
1087                                 spin_unlock(&mmlist_lock);
1088                         }
1089                         dec_mm_counter(mm, MM_ANONPAGES);
1090                         inc_mm_counter(mm, MM_SWAPENTS);
1091                 } else if (PAGE_MIGRATION) {
1092                         /*
1093                          * Store the pfn of the page in a special migration
1094                          * pte. do_swap_page() will wait until the migration
1095                          * pte is removed and then restart fault handling.
1096                          */
1097                         BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1098                         entry = make_migration_entry(page, pte_write(pteval));
1099                 }
1100                 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1101                 BUG_ON(pte_file(*pte));
1102         } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1103                 /* Establish migration entry for a file page */
1104                 swp_entry_t entry;
1105                 entry = make_migration_entry(page, pte_write(pteval));
1106                 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1107         } else
1108                 dec_mm_counter(mm, MM_FILEPAGES);
1109
1110         page_remove_rmap(page);
1111         page_cache_release(page);
1112
1113 out_unmap:
1114         pte_unmap_unlock(pte, ptl);
1115 out:
1116         return ret;
1117
1118 out_mlock:
1119         pte_unmap_unlock(pte, ptl);
1120
1121
1122         /*
1123          * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1124          * unstable result and race. Plus, We can't wait here because
1125          * we now hold anon_vma->lock or mapping->i_mmap_lock.
1126          * if trylock failed, the page remain in evictable lru and later
1127          * vmscan could retry to move the page to unevictable lru if the
1128          * page is actually mlocked.
1129          */
1130         if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1131                 if (vma->vm_flags & VM_LOCKED) {
1132                         mlock_vma_page(page);
1133                         ret = SWAP_MLOCK;
1134                 }
1135                 up_read(&vma->vm_mm->mmap_sem);
1136         }
1137         return ret;
1138 }
1139
1140 /*
1141  * objrmap doesn't work for nonlinear VMAs because the assumption that
1142  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1143  * Consequently, given a particular page and its ->index, we cannot locate the
1144  * ptes which are mapping that page without an exhaustive linear search.
1145  *
1146  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1147  * maps the file to which the target page belongs.  The ->vm_private_data field
1148  * holds the current cursor into that scan.  Successive searches will circulate
1149  * around the vma's virtual address space.
1150  *
1151  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1152  * more scanning pressure is placed against them as well.   Eventually pages
1153  * will become fully unmapped and are eligible for eviction.
1154  *
1155  * For very sparsely populated VMAs this is a little inefficient - chances are
1156  * there there won't be many ptes located within the scan cluster.  In this case
1157  * maybe we could scan further - to the end of the pte page, perhaps.
1158  *
1159  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1160  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1161  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1162  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1163  */
1164 #define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
1165 #define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
1166
1167 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1168                 struct vm_area_struct *vma, struct page *check_page)
1169 {
1170         struct mm_struct *mm = vma->vm_mm;
1171         pgd_t *pgd;
1172         pud_t *pud;
1173         pmd_t *pmd;
1174         pte_t *pte;
1175         pte_t pteval;
1176         spinlock_t *ptl;
1177         struct page *page;
1178         unsigned long address;
1179         unsigned long end;
1180         int ret = SWAP_AGAIN;
1181         int locked_vma = 0;
1182
1183         address = (vma->vm_start + cursor) & CLUSTER_MASK;
1184         end = address + CLUSTER_SIZE;
1185         if (address < vma->vm_start)
1186                 address = vma->vm_start;
1187         if (end > vma->vm_end)
1188                 end = vma->vm_end;
1189
1190         pgd = pgd_offset(mm, address);
1191         if (!pgd_present(*pgd))
1192                 return ret;
1193
1194         pud = pud_offset(pgd, address);
1195         if (!pud_present(*pud))
1196                 return ret;
1197
1198         pmd = pmd_offset(pud, address);
1199         if (!pmd_present(*pmd))
1200                 return ret;
1201
1202         /*
1203          * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1204          * keep the sem while scanning the cluster for mlocking pages.
1205          */
1206         if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1207                 locked_vma = (vma->vm_flags & VM_LOCKED);
1208                 if (!locked_vma)
1209                         up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1210         }
1211
1212         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1213
1214         /* Update high watermark before we lower rss */
1215         update_hiwater_rss(mm);
1216
1217         for (; address < end; pte++, address += PAGE_SIZE) {
1218                 if (!pte_present(*pte))
1219                         continue;
1220                 page = vm_normal_page(vma, address, *pte);
1221                 BUG_ON(!page || PageAnon(page));
1222
1223                 if (locked_vma) {
1224                         mlock_vma_page(page);   /* no-op if already mlocked */
1225                         if (page == check_page)
1226                                 ret = SWAP_MLOCK;
1227                         continue;       /* don't unmap */
1228                 }
1229
1230                 if (ptep_clear_flush_young_notify(vma, address, pte))
1231                         continue;
1232
1233                 /* Nuke the page table entry. */
1234                 flush_cache_page(vma, address, pte_pfn(*pte));
1235                 pteval = ptep_clear_flush_notify(vma, address, pte);
1236
1237                 /* If nonlinear, store the file page offset in the pte. */
1238                 if (page->index != linear_page_index(vma, address))
1239                         set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1240
1241                 /* Move the dirty bit to the physical page now the pte is gone. */
1242                 if (pte_dirty(pteval))
1243                         set_page_dirty(page);
1244
1245                 page_remove_rmap(page);
1246                 page_cache_release(page);
1247                 dec_mm_counter(mm, MM_FILEPAGES);
1248                 (*mapcount)--;
1249         }
1250         pte_unmap_unlock(pte - 1, ptl);
1251         if (locked_vma)
1252                 up_read(&vma->vm_mm->mmap_sem);
1253         return ret;
1254 }
1255
1256 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1257 {
1258         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1259
1260         if (!maybe_stack)
1261                 return false;
1262
1263         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1264                                                 VM_STACK_INCOMPLETE_SETUP)
1265                 return true;
1266
1267         return false;
1268 }
1269
1270 /**
1271  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1272  * rmap method
1273  * @page: the page to unmap/unlock
1274  * @flags: action and flags
1275  *
1276  * Find all the mappings of a page using the mapping pointer and the vma chains
1277  * contained in the anon_vma struct it points to.
1278  *
1279  * This function is only called from try_to_unmap/try_to_munlock for
1280  * anonymous pages.
1281  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1282  * where the page was found will be held for write.  So, we won't recheck
1283  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1284  * 'LOCKED.
1285  */
1286 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1287 {
1288         struct anon_vma *anon_vma;
1289         struct anon_vma_chain *avc;
1290         int ret = SWAP_AGAIN;
1291
1292         anon_vma = page_lock_anon_vma(page);
1293         if (!anon_vma)
1294                 return ret;
1295
1296         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1297                 struct vm_area_struct *vma = avc->vma;
1298                 unsigned long address;
1299
1300                 /*
1301                  * During exec, a temporary VMA is setup and later moved.
1302                  * The VMA is moved under the anon_vma lock but not the
1303                  * page tables leading to a race where migration cannot
1304                  * find the migration ptes. Rather than increasing the
1305                  * locking requirements of exec(), migration skips
1306                  * temporary VMAs until after exec() completes.
1307                  */
1308                 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1309                                 is_vma_temporary_stack(vma))
1310                         continue;
1311
1312                 address = vma_address(page, vma);
1313                 if (address == -EFAULT)
1314                         continue;
1315                 ret = try_to_unmap_one(page, vma, address, flags);
1316                 if (ret != SWAP_AGAIN || !page_mapped(page))
1317                         break;
1318         }
1319
1320         page_unlock_anon_vma(anon_vma);
1321         return ret;
1322 }
1323
1324 /**
1325  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1326  * @page: the page to unmap/unlock
1327  * @flags: action and flags
1328  *
1329  * Find all the mappings of a page using the mapping pointer and the vma chains
1330  * contained in the address_space struct it points to.
1331  *
1332  * This function is only called from try_to_unmap/try_to_munlock for
1333  * object-based pages.
1334  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1335  * where the page was found will be held for write.  So, we won't recheck
1336  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1337  * 'LOCKED.
1338  */
1339 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1340 {
1341         struct address_space *mapping = page->mapping;
1342         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1343         struct vm_area_struct *vma;
1344         struct prio_tree_iter iter;
1345         int ret = SWAP_AGAIN;
1346         unsigned long cursor;
1347         unsigned long max_nl_cursor = 0;
1348         unsigned long max_nl_size = 0;
1349         unsigned int mapcount;
1350
1351         spin_lock(&mapping->i_mmap_lock);
1352         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1353                 unsigned long address = vma_address(page, vma);
1354                 if (address == -EFAULT)
1355                         continue;
1356                 ret = try_to_unmap_one(page, vma, address, flags);
1357                 if (ret != SWAP_AGAIN || !page_mapped(page))
1358                         goto out;
1359         }
1360
1361         if (list_empty(&mapping->i_mmap_nonlinear))
1362                 goto out;
1363
1364         /*
1365          * We don't bother to try to find the munlocked page in nonlinears.
1366          * It's costly. Instead, later, page reclaim logic may call
1367          * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1368          */
1369         if (TTU_ACTION(flags) == TTU_MUNLOCK)
1370                 goto out;
1371
1372         list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1373                                                 shared.vm_set.list) {
1374                 cursor = (unsigned long) vma->vm_private_data;
1375                 if (cursor > max_nl_cursor)
1376                         max_nl_cursor = cursor;
1377                 cursor = vma->vm_end - vma->vm_start;
1378                 if (cursor > max_nl_size)
1379                         max_nl_size = cursor;
1380         }
1381
1382         if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1383                 ret = SWAP_FAIL;
1384                 goto out;
1385         }
1386
1387         /*
1388          * We don't try to search for this page in the nonlinear vmas,
1389          * and page_referenced wouldn't have found it anyway.  Instead
1390          * just walk the nonlinear vmas trying to age and unmap some.
1391          * The mapcount of the page we came in with is irrelevant,
1392          * but even so use it as a guide to how hard we should try?
1393          */
1394         mapcount = page_mapcount(page);
1395         if (!mapcount)
1396                 goto out;
1397         cond_resched_lock(&mapping->i_mmap_lock);
1398
1399         max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1400         if (max_nl_cursor == 0)
1401                 max_nl_cursor = CLUSTER_SIZE;
1402
1403         do {
1404                 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1405                                                 shared.vm_set.list) {
1406                         cursor = (unsigned long) vma->vm_private_data;
1407                         while ( cursor < max_nl_cursor &&
1408                                 cursor < vma->vm_end - vma->vm_start) {
1409                                 if (try_to_unmap_cluster(cursor, &mapcount,
1410                                                 vma, page) == SWAP_MLOCK)
1411                                         ret = SWAP_MLOCK;
1412                                 cursor += CLUSTER_SIZE;
1413                                 vma->vm_private_data = (void *) cursor;
1414                                 if ((int)mapcount <= 0)
1415                                         goto out;
1416                         }
1417                         vma->vm_private_data = (void *) max_nl_cursor;
1418                 }
1419                 cond_resched_lock(&mapping->i_mmap_lock);
1420                 max_nl_cursor += CLUSTER_SIZE;
1421         } while (max_nl_cursor <= max_nl_size);
1422
1423         /*
1424          * Don't loop forever (perhaps all the remaining pages are
1425          * in locked vmas).  Reset cursor on all unreserved nonlinear
1426          * vmas, now forgetting on which ones it had fallen behind.
1427          */
1428         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1429                 vma->vm_private_data = NULL;
1430 out:
1431         spin_unlock(&mapping->i_mmap_lock);
1432         return ret;
1433 }
1434
1435 /**
1436  * try_to_unmap - try to remove all page table mappings to a page
1437  * @page: the page to get unmapped
1438  * @flags: action and flags
1439  *
1440  * Tries to remove all the page table entries which are mapping this
1441  * page, used in the pageout path.  Caller must hold the page lock.
1442  * Return values are:
1443  *
1444  * SWAP_SUCCESS - we succeeded in removing all mappings
1445  * SWAP_AGAIN   - we missed a mapping, try again later
1446  * SWAP_FAIL    - the page is unswappable
1447  * SWAP_MLOCK   - page is mlocked.
1448  */
1449 int try_to_unmap(struct page *page, enum ttu_flags flags)
1450 {
1451         int ret;
1452
1453         BUG_ON(!PageLocked(page));
1454         VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1455
1456         if (unlikely(PageKsm(page)))
1457                 ret = try_to_unmap_ksm(page, flags);
1458         else if (PageAnon(page))
1459                 ret = try_to_unmap_anon(page, flags);
1460         else
1461                 ret = try_to_unmap_file(page, flags);
1462         if (ret != SWAP_MLOCK && !page_mapped(page))
1463                 ret = SWAP_SUCCESS;
1464         return ret;
1465 }
1466
1467 /**
1468  * try_to_munlock - try to munlock a page
1469  * @page: the page to be munlocked
1470  *
1471  * Called from munlock code.  Checks all of the VMAs mapping the page
1472  * to make sure nobody else has this page mlocked. The page will be
1473  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1474  *
1475  * Return values are:
1476  *
1477  * SWAP_AGAIN   - no vma is holding page mlocked, or,
1478  * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1479  * SWAP_FAIL    - page cannot be located at present
1480  * SWAP_MLOCK   - page is now mlocked.
1481  */
1482 int try_to_munlock(struct page *page)
1483 {
1484         VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1485
1486         if (unlikely(PageKsm(page)))
1487                 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1488         else if (PageAnon(page))
1489                 return try_to_unmap_anon(page, TTU_MUNLOCK);
1490         else
1491                 return try_to_unmap_file(page, TTU_MUNLOCK);
1492 }
1493
1494 void __put_anon_vma(struct anon_vma *anon_vma)
1495 {
1496         struct anon_vma *root = anon_vma->root;
1497
1498         if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1499                 anon_vma_free(root);
1500
1501         anon_vma_free(anon_vma);
1502 }
1503
1504 #ifdef CONFIG_MIGRATION
1505 /*
1506  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1507  * Called by migrate.c to remove migration ptes, but might be used more later.
1508  */
1509 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1510                 struct vm_area_struct *, unsigned long, void *), void *arg)
1511 {
1512         struct anon_vma *anon_vma;
1513         struct anon_vma_chain *avc;
1514         int ret = SWAP_AGAIN;
1515
1516         /*
1517          * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1518          * because that depends on page_mapped(); but not all its usages
1519          * are holding mmap_sem. Users without mmap_sem are required to
1520          * take a reference count to prevent the anon_vma disappearing
1521          */
1522         anon_vma = page_anon_vma(page);
1523         if (!anon_vma)
1524                 return ret;
1525         anon_vma_lock(anon_vma);
1526         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1527                 struct vm_area_struct *vma = avc->vma;
1528                 unsigned long address = vma_address(page, vma);
1529                 if (address == -EFAULT)
1530                         continue;
1531                 ret = rmap_one(page, vma, address, arg);
1532                 if (ret != SWAP_AGAIN)
1533                         break;
1534         }
1535         anon_vma_unlock(anon_vma);
1536         return ret;
1537 }
1538
1539 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1540                 struct vm_area_struct *, unsigned long, void *), void *arg)
1541 {
1542         struct address_space *mapping = page->mapping;
1543         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1544         struct vm_area_struct *vma;
1545         struct prio_tree_iter iter;
1546         int ret = SWAP_AGAIN;
1547
1548         if (!mapping)
1549                 return ret;
1550         spin_lock(&mapping->i_mmap_lock);
1551         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1552                 unsigned long address = vma_address(page, vma);
1553                 if (address == -EFAULT)
1554                         continue;
1555                 ret = rmap_one(page, vma, address, arg);
1556                 if (ret != SWAP_AGAIN)
1557                         break;
1558         }
1559         /*
1560          * No nonlinear handling: being always shared, nonlinear vmas
1561          * never contain migration ptes.  Decide what to do about this
1562          * limitation to linear when we need rmap_walk() on nonlinear.
1563          */
1564         spin_unlock(&mapping->i_mmap_lock);
1565         return ret;
1566 }
1567
1568 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1569                 struct vm_area_struct *, unsigned long, void *), void *arg)
1570 {
1571         VM_BUG_ON(!PageLocked(page));
1572
1573         if (unlikely(PageKsm(page)))
1574                 return rmap_walk_ksm(page, rmap_one, arg);
1575         else if (PageAnon(page))
1576                 return rmap_walk_anon(page, rmap_one, arg);
1577         else
1578                 return rmap_walk_file(page, rmap_one, arg);
1579 }
1580 #endif /* CONFIG_MIGRATION */
1581
1582 #ifdef CONFIG_HUGETLB_PAGE
1583 /*
1584  * The following three functions are for anonymous (private mapped) hugepages.
1585  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1586  * and no lru code, because we handle hugepages differently from common pages.
1587  */
1588 static void __hugepage_set_anon_rmap(struct page *page,
1589         struct vm_area_struct *vma, unsigned long address, int exclusive)
1590 {
1591         struct anon_vma *anon_vma = vma->anon_vma;
1592
1593         BUG_ON(!anon_vma);
1594
1595         if (PageAnon(page))
1596                 return;
1597         if (!exclusive)
1598                 anon_vma = anon_vma->root;
1599
1600         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1601         page->mapping = (struct address_space *) anon_vma;
1602         page->index = linear_page_index(vma, address);
1603 }
1604
1605 void hugepage_add_anon_rmap(struct page *page,
1606                             struct vm_area_struct *vma, unsigned long address)
1607 {
1608         struct anon_vma *anon_vma = vma->anon_vma;
1609         int first;
1610
1611         BUG_ON(!PageLocked(page));
1612         BUG_ON(!anon_vma);
1613         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1614         first = atomic_inc_and_test(&page->_mapcount);
1615         if (first)
1616                 __hugepage_set_anon_rmap(page, vma, address, 0);
1617 }
1618
1619 void hugepage_add_new_anon_rmap(struct page *page,
1620                         struct vm_area_struct *vma, unsigned long address)
1621 {
1622         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1623         atomic_set(&page->_mapcount, 0);
1624         __hugepage_set_anon_rmap(page, vma, address, 1);
1625 }
1626 #endif /* CONFIG_HUGETLB_PAGE */