2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * mapping->i_mmap_rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
78 #include <asm/tlbflush.h>
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
89 static inline struct anon_vma *anon_vma_alloc(void)
91 struct anon_vma *anon_vma;
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
103 anon_vma->root = anon_vma;
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
125 * atomic_read() rwsem_is_locked()
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
136 kmem_cache_free(anon_vma_cachep, anon_vma);
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
185 * This must be called with the mmap_lock held for reading.
187 int __anon_vma_prepare(struct vm_area_struct *vma)
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
199 anon_vma = find_mergeable_anon_vma(vma);
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
225 anon_vma_chain_free(avc);
230 anon_vma_chain_free(avc);
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
250 down_write(&root->rwsem);
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
258 up_write(&root->rwsem);
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
301 * Reuse existing anon_vma if it has no vma and only one
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
340 /* Don't bother if the parent process has no anon_vma here. */
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
351 error = anon_vma_clone(vma, pvma);
355 /* An existing anon_vma has been reused, all done then. */
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
366 goto out_error_free_anon_vma;
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
392 unlink_anon_vmas(vma);
396 void unlink_anon_vmas(struct vm_area_struct *vma)
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
424 vma->anon_vma->num_active_vmas--;
427 * vma would still be needed after unlink, and anon_vma will be prepared
430 vma->anon_vma = NULL;
432 unlock_anon_vma_root(root);
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
451 static void anon_vma_ctor(void *data)
453 struct anon_vma *anon_vma = data;
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
460 void __init anon_vma_init(void)
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 * Since there is no serialization what so ever against page_remove_rmap()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
493 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 struct anon_vma *anon_vma = NULL;
496 unsigned long anon_mapping;
499 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
500 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 if (!folio_mapped(folio))
505 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
506 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
512 * If this folio is still mapped, then its anon_vma cannot have been
513 * freed. But if it has been unmapped, we have no security against the
514 * anon_vma structure being freed and reused (for another anon_vma:
515 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
516 * above cannot corrupt).
518 if (!folio_mapped(folio)) {
520 put_anon_vma(anon_vma);
530 * Similar to folio_get_anon_vma() except it locks the anon_vma.
532 * Its a little more complex as it tries to keep the fast path to a single
533 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
534 * reference like with folio_get_anon_vma() and then block on the mutex
535 * on !rwc->try_lock case.
537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
538 struct rmap_walk_control *rwc)
540 struct anon_vma *anon_vma = NULL;
541 struct anon_vma *root_anon_vma;
542 unsigned long anon_mapping;
545 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
546 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 if (!folio_mapped(folio))
551 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
552 root_anon_vma = READ_ONCE(anon_vma->root);
553 if (down_read_trylock(&root_anon_vma->rwsem)) {
555 * If the folio is still mapped, then this anon_vma is still
556 * its anon_vma, and holding the mutex ensures that it will
557 * not go away, see anon_vma_free().
559 if (!folio_mapped(folio)) {
560 up_read(&root_anon_vma->rwsem);
566 if (rwc && rwc->try_lock) {
568 rwc->contended = true;
572 /* trylock failed, we got to sleep */
573 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
578 if (!folio_mapped(folio)) {
580 put_anon_vma(anon_vma);
584 /* we pinned the anon_vma, its safe to sleep */
586 anon_vma_lock_read(anon_vma);
588 if (atomic_dec_and_test(&anon_vma->refcount)) {
590 * Oops, we held the last refcount, release the lock
591 * and bail -- can't simply use put_anon_vma() because
592 * we'll deadlock on the anon_vma_lock_write() recursion.
594 anon_vma_unlock_read(anon_vma);
595 __put_anon_vma(anon_vma);
606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
609 * important if a PTE was dirty when it was unmapped that it's flushed
610 * before any IO is initiated on the page to prevent lost writes. Similarly,
611 * it must be flushed before freeing to prevent data leakage.
613 void try_to_unmap_flush(void)
615 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
617 if (!tlb_ubc->flush_required)
620 arch_tlbbatch_flush(&tlb_ubc->arch);
621 tlb_ubc->flush_required = false;
622 tlb_ubc->writable = false;
625 /* Flush iff there are potentially writable TLB entries that can race with IO */
626 void try_to_unmap_flush_dirty(void)
628 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
630 if (tlb_ubc->writable)
631 try_to_unmap_flush();
635 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
636 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
639 #define TLB_FLUSH_BATCH_PENDING_MASK \
640 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
641 #define TLB_FLUSH_BATCH_PENDING_LARGE \
642 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
649 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
650 tlb_ubc->flush_required = true;
653 * Ensure compiler does not re-order the setting of tlb_flush_batched
654 * before the PTE is cleared.
657 batch = atomic_read(&mm->tlb_flush_batched);
659 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 * Prevent `pending' from catching up with `flushed' because of
662 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
663 * `pending' becomes large.
665 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
666 if (nbatch != batch) {
671 atomic_inc(&mm->tlb_flush_batched);
675 * If the PTE was dirty then it's best to assume it's writable. The
676 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
677 * before the page is queued for IO.
680 tlb_ubc->writable = true;
684 * Returns true if the TLB flush should be deferred to the end of a batch of
685 * unmap operations to reduce IPIs.
687 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689 bool should_defer = false;
691 if (!(flags & TTU_BATCH_FLUSH))
694 /* If remote CPUs need to be flushed then defer batch the flush */
695 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
703 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
704 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
705 * operation such as mprotect or munmap to race between reclaim unmapping
706 * the page and flushing the page. If this race occurs, it potentially allows
707 * access to data via a stale TLB entry. Tracking all mm's that have TLB
708 * batching in flight would be expensive during reclaim so instead track
709 * whether TLB batching occurred in the past and if so then do a flush here
710 * if required. This will cost one additional flush per reclaim cycle paid
711 * by the first operation at risk such as mprotect and mumap.
713 * This must be called under the PTL so that an access to tlb_flush_batched
714 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
717 void flush_tlb_batched_pending(struct mm_struct *mm)
719 int batch = atomic_read(&mm->tlb_flush_batched);
720 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
721 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
723 if (pending != flushed) {
726 * If the new TLB flushing is pending during flushing, leave
727 * mm->tlb_flush_batched as is, to avoid losing flushing.
729 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
730 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
738 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
742 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
745 * At what user virtual address is page expected in vma?
746 * Caller should check the page is actually part of the vma.
748 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
750 struct folio *folio = page_folio(page);
751 if (folio_test_anon(folio)) {
752 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
754 * Note: swapoff's unuse_vma() is more efficient with this
755 * check, and needs it to match anon_vma when KSM is active.
757 if (!vma->anon_vma || !page__anon_vma ||
758 vma->anon_vma->root != page__anon_vma->root)
760 } else if (!vma->vm_file) {
762 } else if (vma->vm_file->f_mapping != folio->mapping) {
766 return vma_address(page, vma);
770 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
771 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
774 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
781 pgd = pgd_offset(mm, address);
782 if (!pgd_present(*pgd))
785 p4d = p4d_offset(pgd, address);
786 if (!p4d_present(*p4d))
789 pud = pud_offset(p4d, address);
790 if (!pud_present(*pud))
793 pmd = pmd_offset(pud, address);
798 struct folio_referenced_arg {
801 unsigned long vm_flags;
802 struct mem_cgroup *memcg;
805 * arg: folio_referenced_arg will be passed
807 static bool folio_referenced_one(struct folio *folio,
808 struct vm_area_struct *vma, unsigned long address, void *arg)
810 struct folio_referenced_arg *pra = arg;
811 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
814 while (page_vma_mapped_walk(&pvmw)) {
815 address = pvmw.address;
817 if ((vma->vm_flags & VM_LOCKED) &&
818 (!folio_test_large(folio) || !pvmw.pte)) {
819 /* Restore the mlock which got missed */
820 mlock_vma_folio(folio, vma, !pvmw.pte);
821 page_vma_mapped_walk_done(&pvmw);
822 pra->vm_flags |= VM_LOCKED;
823 return false; /* To break the loop */
827 if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
828 lru_gen_look_around(&pvmw);
832 if (ptep_clear_flush_young_notify(vma, address,
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
840 /* unexpected pmd-mapped folio? */
848 folio_clear_idle(folio);
849 if (folio_test_clear_young(folio))
854 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
858 return false; /* To break the loop */
863 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
865 struct folio_referenced_arg *pra = arg;
866 struct mem_cgroup *memcg = pra->memcg;
869 * Ignore references from this mapping if it has no recency. If the
870 * folio has been used in another mapping, we will catch it; if this
871 * other mapping is already gone, the unmap path will have set the
872 * referenced flag or activated the folio in zap_pte_range().
874 if (!vma_has_recency(vma))
878 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
879 * of references from different cgroups.
881 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
888 * folio_referenced() - Test if the folio was referenced.
889 * @folio: The folio to test.
890 * @is_locked: Caller holds lock on the folio.
891 * @memcg: target memory cgroup
892 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
894 * Quick test_and_clear_referenced for all mappings of a folio,
896 * Return: The number of mappings which referenced the folio. Return -1 if
897 * the function bailed out due to rmap lock contention.
899 int folio_referenced(struct folio *folio, int is_locked,
900 struct mem_cgroup *memcg, unsigned long *vm_flags)
903 struct folio_referenced_arg pra = {
904 .mapcount = folio_mapcount(folio),
907 struct rmap_walk_control rwc = {
908 .rmap_one = folio_referenced_one,
910 .anon_lock = folio_lock_anon_vma_read,
912 .invalid_vma = invalid_folio_referenced_vma,
919 if (!folio_raw_mapping(folio))
922 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
923 we_locked = folio_trylock(folio);
928 rmap_walk(folio, &rwc);
929 *vm_flags = pra.vm_flags;
934 return rwc.contended ? -1 : pra.referenced;
937 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
940 struct vm_area_struct *vma = pvmw->vma;
941 struct mmu_notifier_range range;
942 unsigned long address = pvmw->address;
945 * We have to assume the worse case ie pmd for invalidation. Note that
946 * the folio can not be freed from this function.
948 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
949 vma->vm_mm, address, vma_address_end(pvmw));
950 mmu_notifier_invalidate_range_start(&range);
952 while (page_vma_mapped_walk(pvmw)) {
955 address = pvmw->address;
958 pte_t *pte = pvmw->pte;
960 if (!pte_dirty(*pte) && !pte_write(*pte))
963 flush_cache_page(vma, address, pte_pfn(*pte));
964 entry = ptep_clear_flush(vma, address, pte);
965 entry = pte_wrprotect(entry);
966 entry = pte_mkclean(entry);
967 set_pte_at(vma->vm_mm, address, pte, entry);
970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 pmd_t *pmd = pvmw->pmd;
974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
977 flush_cache_range(vma, address,
978 address + HPAGE_PMD_SIZE);
979 entry = pmdp_invalidate(vma, address, pmd);
980 entry = pmd_wrprotect(entry);
981 entry = pmd_mkclean(entry);
982 set_pmd_at(vma->vm_mm, address, pmd, entry);
985 /* unexpected pmd-mapped folio? */
991 * No need to call mmu_notifier_invalidate_range() as we are
992 * downgrading page table protection not changing it to point
995 * See Documentation/mm/mmu_notifier.rst
1001 mmu_notifier_invalidate_range_end(&range);
1006 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1007 unsigned long address, void *arg)
1009 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1012 *cleaned += page_vma_mkclean_one(&pvmw);
1017 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1019 if (vma->vm_flags & VM_SHARED)
1025 int folio_mkclean(struct folio *folio)
1028 struct address_space *mapping;
1029 struct rmap_walk_control rwc = {
1030 .arg = (void *)&cleaned,
1031 .rmap_one = page_mkclean_one,
1032 .invalid_vma = invalid_mkclean_vma,
1035 BUG_ON(!folio_test_locked(folio));
1037 if (!folio_mapped(folio))
1040 mapping = folio_mapping(folio);
1044 rmap_walk(folio, &rwc);
1048 EXPORT_SYMBOL_GPL(folio_mkclean);
1051 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1052 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1053 * within the @vma of shared mappings. And since clean PTEs
1054 * should also be readonly, write protects them too.
1056 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1057 * @pgoff: page offset that the @pfn mapped with.
1058 * @vma: vma that @pfn mapped within.
1060 * Returns the number of cleaned PTEs (including PMDs).
1062 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1063 struct vm_area_struct *vma)
1065 struct page_vma_mapped_walk pvmw = {
1067 .nr_pages = nr_pages,
1073 if (invalid_mkclean_vma(vma, NULL))
1076 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1077 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1079 return page_vma_mkclean_one(&pvmw);
1082 int folio_total_mapcount(struct folio *folio)
1084 int mapcount = folio_entire_mapcount(folio);
1088 /* In the common case, avoid the loop when no pages mapped by PTE */
1089 if (folio_nr_pages_mapped(folio) == 0)
1092 * Add all the PTE mappings of those pages mapped by PTE.
1093 * Limit the loop to folio_nr_pages_mapped()?
1094 * Perhaps: given all the raciness, that may be a good or a bad idea.
1096 nr_pages = folio_nr_pages(folio);
1097 for (i = 0; i < nr_pages; i++)
1098 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1100 /* But each of those _mapcounts was based on -1 */
1101 mapcount += nr_pages;
1106 * page_move_anon_rmap - move a page to our anon_vma
1107 * @page: the page to move to our anon_vma
1108 * @vma: the vma the page belongs to
1110 * When a page belongs exclusively to one process after a COW event,
1111 * that page can be moved into the anon_vma that belongs to just that
1112 * process, so the rmap code will not search the parent or sibling
1115 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1117 void *anon_vma = vma->anon_vma;
1118 struct folio *folio = page_folio(page);
1120 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1121 VM_BUG_ON_VMA(!anon_vma, vma);
1123 anon_vma += PAGE_MAPPING_ANON;
1125 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1126 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1127 * folio_test_anon()) will not see one without the other.
1129 WRITE_ONCE(folio->mapping, anon_vma);
1130 SetPageAnonExclusive(page);
1134 * __page_set_anon_rmap - set up new anonymous rmap
1135 * @folio: Folio which contains page.
1136 * @page: Page to add to rmap.
1137 * @vma: VM area to add page to.
1138 * @address: User virtual address of the mapping
1139 * @exclusive: the page is exclusively owned by the current process
1141 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1142 struct vm_area_struct *vma, unsigned long address, int exclusive)
1144 struct anon_vma *anon_vma = vma->anon_vma;
1148 if (folio_test_anon(folio))
1152 * If the page isn't exclusively mapped into this vma,
1153 * we must use the _oldest_ possible anon_vma for the
1157 anon_vma = anon_vma->root;
1160 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1161 * Make sure the compiler doesn't split the stores of anon_vma and
1162 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1163 * could mistake the mapping for a struct address_space and crash.
1165 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1166 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1167 folio->index = linear_page_index(vma, address);
1170 SetPageAnonExclusive(page);
1174 * __page_check_anon_rmap - sanity check anonymous rmap addition
1175 * @page: the page to add the mapping to
1176 * @vma: the vm area in which the mapping is added
1177 * @address: the user virtual address mapped
1179 static void __page_check_anon_rmap(struct page *page,
1180 struct vm_area_struct *vma, unsigned long address)
1182 struct folio *folio = page_folio(page);
1184 * The page's anon-rmap details (mapping and index) are guaranteed to
1185 * be set up correctly at this point.
1187 * We have exclusion against page_add_anon_rmap because the caller
1188 * always holds the page locked.
1190 * We have exclusion against page_add_new_anon_rmap because those pages
1191 * are initially only visible via the pagetables, and the pte is locked
1192 * over the call to page_add_new_anon_rmap.
1194 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1196 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1201 * page_add_anon_rmap - add pte mapping to an anonymous page
1202 * @page: the page to add the mapping to
1203 * @vma: the vm area in which the mapping is added
1204 * @address: the user virtual address mapped
1205 * @flags: the rmap flags
1207 * The caller needs to hold the pte lock, and the page must be locked in
1208 * the anon_vma case: to serialize mapping,index checking after setting,
1209 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1210 * (but PageKsm is never downgraded to PageAnon).
1212 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1213 unsigned long address, rmap_t flags)
1215 struct folio *folio = page_folio(page);
1216 atomic_t *mapped = &folio->_nr_pages_mapped;
1217 int nr = 0, nr_pmdmapped = 0;
1218 bool compound = flags & RMAP_COMPOUND;
1221 /* Is page being mapped by PTE? Is this its first map to be added? */
1222 if (likely(!compound)) {
1223 first = atomic_inc_and_test(&page->_mapcount);
1225 if (first && folio_test_large(folio)) {
1226 nr = atomic_inc_return_relaxed(mapped);
1227 nr = (nr < COMPOUND_MAPPED);
1229 } else if (folio_test_pmd_mappable(folio)) {
1230 /* That test is redundant: it's for safety or to optimize out */
1232 first = atomic_inc_and_test(&folio->_entire_mapcount);
1234 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1235 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1236 nr_pmdmapped = folio_nr_pages(folio);
1237 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1238 /* Raced ahead of a remove and another add? */
1239 if (unlikely(nr < 0))
1242 /* Raced ahead of a remove of COMPOUND_MAPPED */
1248 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1249 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1252 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1254 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1256 if (likely(!folio_test_ksm(folio))) {
1257 /* address might be in next vma when migration races vma_merge */
1259 __page_set_anon_rmap(folio, page, vma, address,
1260 !!(flags & RMAP_EXCLUSIVE));
1262 __page_check_anon_rmap(page, vma, address);
1265 mlock_vma_folio(folio, vma, compound);
1269 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1270 * @folio: The folio to add the mapping to.
1271 * @vma: the vm area in which the mapping is added
1272 * @address: the user virtual address mapped
1274 * Like page_add_anon_rmap() but must only be called on *new* folios.
1275 * This means the inc-and-test can be bypassed.
1276 * The folio does not have to be locked.
1278 * If the folio is large, it is accounted as a THP. As the folio
1279 * is new, it's assumed to be mapped exclusively by a single process.
1281 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1282 unsigned long address)
1286 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1287 __folio_set_swapbacked(folio);
1289 if (likely(!folio_test_pmd_mappable(folio))) {
1290 /* increment count (starts at -1) */
1291 atomic_set(&folio->_mapcount, 0);
1294 /* increment count (starts at -1) */
1295 atomic_set(&folio->_entire_mapcount, 0);
1296 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1297 nr = folio_nr_pages(folio);
1298 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1301 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1302 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1306 * page_add_file_rmap - add pte mapping to a file page
1307 * @page: the page to add the mapping to
1308 * @vma: the vm area in which the mapping is added
1309 * @compound: charge the page as compound or small page
1311 * The caller needs to hold the pte lock.
1313 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1316 struct folio *folio = page_folio(page);
1317 atomic_t *mapped = &folio->_nr_pages_mapped;
1318 int nr = 0, nr_pmdmapped = 0;
1321 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1323 /* Is page being mapped by PTE? Is this its first map to be added? */
1324 if (likely(!compound)) {
1325 first = atomic_inc_and_test(&page->_mapcount);
1327 if (first && folio_test_large(folio)) {
1328 nr = atomic_inc_return_relaxed(mapped);
1329 nr = (nr < COMPOUND_MAPPED);
1331 } else if (folio_test_pmd_mappable(folio)) {
1332 /* That test is redundant: it's for safety or to optimize out */
1334 first = atomic_inc_and_test(&folio->_entire_mapcount);
1336 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1337 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1338 nr_pmdmapped = folio_nr_pages(folio);
1339 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1340 /* Raced ahead of a remove and another add? */
1341 if (unlikely(nr < 0))
1344 /* Raced ahead of a remove of COMPOUND_MAPPED */
1351 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1352 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1354 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1356 mlock_vma_folio(folio, vma, compound);
1360 * page_remove_rmap - take down pte mapping from a page
1361 * @page: page to remove mapping from
1362 * @vma: the vm area from which the mapping is removed
1363 * @compound: uncharge the page as compound or small page
1365 * The caller needs to hold the pte lock.
1367 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1370 struct folio *folio = page_folio(page);
1371 atomic_t *mapped = &folio->_nr_pages_mapped;
1372 int nr = 0, nr_pmdmapped = 0;
1374 enum node_stat_item idx;
1376 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1378 /* Hugetlb pages are not counted in NR_*MAPPED */
1379 if (unlikely(folio_test_hugetlb(folio))) {
1380 /* hugetlb pages are always mapped with pmds */
1381 atomic_dec(&folio->_entire_mapcount);
1385 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1386 if (likely(!compound)) {
1387 last = atomic_add_negative(-1, &page->_mapcount);
1389 if (last && folio_test_large(folio)) {
1390 nr = atomic_dec_return_relaxed(mapped);
1391 nr = (nr < COMPOUND_MAPPED);
1393 } else if (folio_test_pmd_mappable(folio)) {
1394 /* That test is redundant: it's for safety or to optimize out */
1396 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1398 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1399 if (likely(nr < COMPOUND_MAPPED)) {
1400 nr_pmdmapped = folio_nr_pages(folio);
1401 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1402 /* Raced ahead of another remove and an add? */
1403 if (unlikely(nr < 0))
1406 /* An add of COMPOUND_MAPPED raced ahead */
1413 if (folio_test_anon(folio))
1415 else if (folio_test_swapbacked(folio))
1416 idx = NR_SHMEM_PMDMAPPED;
1418 idx = NR_FILE_PMDMAPPED;
1419 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1422 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1423 __lruvec_stat_mod_folio(folio, idx, -nr);
1426 * Queue anon THP for deferred split if at least one
1427 * page of the folio is unmapped and at least one page
1430 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1431 if (!compound || nr < nr_pmdmapped)
1432 deferred_split_folio(folio);
1436 * It would be tidy to reset folio_test_anon mapping when fully
1437 * unmapped, but that might overwrite a racing page_add_anon_rmap
1438 * which increments mapcount after us but sets mapping before us:
1439 * so leave the reset to free_pages_prepare, and remember that
1440 * it's only reliable while mapped.
1443 munlock_vma_folio(folio, vma, compound);
1447 * @arg: enum ttu_flags will be passed to this argument
1449 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1450 unsigned long address, void *arg)
1452 struct mm_struct *mm = vma->vm_mm;
1453 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1455 struct page *subpage;
1456 bool anon_exclusive, ret = true;
1457 struct mmu_notifier_range range;
1458 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1461 * When racing against e.g. zap_pte_range() on another cpu,
1462 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1463 * try_to_unmap() may return before page_mapped() has become false,
1464 * if page table locking is skipped: use TTU_SYNC to wait for that.
1466 if (flags & TTU_SYNC)
1467 pvmw.flags = PVMW_SYNC;
1469 if (flags & TTU_SPLIT_HUGE_PMD)
1470 split_huge_pmd_address(vma, address, false, folio);
1473 * For THP, we have to assume the worse case ie pmd for invalidation.
1474 * For hugetlb, it could be much worse if we need to do pud
1475 * invalidation in the case of pmd sharing.
1477 * Note that the folio can not be freed in this function as call of
1478 * try_to_unmap() must hold a reference on the folio.
1480 range.end = vma_address_end(&pvmw);
1481 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1482 address, range.end);
1483 if (folio_test_hugetlb(folio)) {
1485 * If sharing is possible, start and end will be adjusted
1488 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1491 mmu_notifier_invalidate_range_start(&range);
1493 while (page_vma_mapped_walk(&pvmw)) {
1494 /* Unexpected PMD-mapped THP? */
1495 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1498 * If the folio is in an mlock()d vma, we must not swap it out.
1500 if (!(flags & TTU_IGNORE_MLOCK) &&
1501 (vma->vm_flags & VM_LOCKED)) {
1502 /* Restore the mlock which got missed */
1503 mlock_vma_folio(folio, vma, false);
1504 page_vma_mapped_walk_done(&pvmw);
1509 subpage = folio_page(folio,
1510 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1511 address = pvmw.address;
1512 anon_exclusive = folio_test_anon(folio) &&
1513 PageAnonExclusive(subpage);
1515 if (folio_test_hugetlb(folio)) {
1516 bool anon = folio_test_anon(folio);
1519 * The try_to_unmap() is only passed a hugetlb page
1520 * in the case where the hugetlb page is poisoned.
1522 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1524 * huge_pmd_unshare may unmap an entire PMD page.
1525 * There is no way of knowing exactly which PMDs may
1526 * be cached for this mm, so we must flush them all.
1527 * start/end were already adjusted above to cover this
1530 flush_cache_range(vma, range.start, range.end);
1533 * To call huge_pmd_unshare, i_mmap_rwsem must be
1534 * held in write mode. Caller needs to explicitly
1535 * do this outside rmap routines.
1537 * We also must hold hugetlb vma_lock in write mode.
1538 * Lock order dictates acquiring vma_lock BEFORE
1539 * i_mmap_rwsem. We can only try lock here and fail
1543 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1544 if (!hugetlb_vma_trylock_write(vma)) {
1545 page_vma_mapped_walk_done(&pvmw);
1549 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1550 hugetlb_vma_unlock_write(vma);
1551 flush_tlb_range(vma,
1552 range.start, range.end);
1553 mmu_notifier_invalidate_range(mm,
1554 range.start, range.end);
1556 * The ref count of the PMD page was
1557 * dropped which is part of the way map
1558 * counting is done for shared PMDs.
1559 * Return 'true' here. When there is
1560 * no other sharing, huge_pmd_unshare
1561 * returns false and we will unmap the
1562 * actual page and drop map count
1565 page_vma_mapped_walk_done(&pvmw);
1568 hugetlb_vma_unlock_write(vma);
1570 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1572 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1573 /* Nuke the page table entry. */
1574 if (should_defer_flush(mm, flags)) {
1576 * We clear the PTE but do not flush so potentially
1577 * a remote CPU could still be writing to the folio.
1578 * If the entry was previously clean then the
1579 * architecture must guarantee that a clear->dirty
1580 * transition on a cached TLB entry is written through
1581 * and traps if the PTE is unmapped.
1583 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1585 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1587 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1592 * Now the pte is cleared. If this pte was uffd-wp armed,
1593 * we may want to replace a none pte with a marker pte if
1594 * it's file-backed, so we don't lose the tracking info.
1596 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1598 /* Set the dirty flag on the folio now the pte is gone. */
1599 if (pte_dirty(pteval))
1600 folio_mark_dirty(folio);
1602 /* Update high watermark before we lower rss */
1603 update_hiwater_rss(mm);
1605 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1606 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1607 if (folio_test_hugetlb(folio)) {
1608 hugetlb_count_sub(folio_nr_pages(folio), mm);
1609 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1611 dec_mm_counter(mm, mm_counter(&folio->page));
1612 set_pte_at(mm, address, pvmw.pte, pteval);
1615 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1617 * The guest indicated that the page content is of no
1618 * interest anymore. Simply discard the pte, vmscan
1619 * will take care of the rest.
1620 * A future reference will then fault in a new zero
1621 * page. When userfaultfd is active, we must not drop
1622 * this page though, as its main user (postcopy
1623 * migration) will not expect userfaults on already
1626 dec_mm_counter(mm, mm_counter(&folio->page));
1627 /* We have to invalidate as we cleared the pte */
1628 mmu_notifier_invalidate_range(mm, address,
1629 address + PAGE_SIZE);
1630 } else if (folio_test_anon(folio)) {
1631 swp_entry_t entry = { .val = page_private(subpage) };
1634 * Store the swap location in the pte.
1635 * See handle_pte_fault() ...
1637 if (unlikely(folio_test_swapbacked(folio) !=
1638 folio_test_swapcache(folio))) {
1641 /* We have to invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1644 page_vma_mapped_walk_done(&pvmw);
1648 /* MADV_FREE page check */
1649 if (!folio_test_swapbacked(folio)) {
1650 int ref_count, map_count;
1653 * Synchronize with gup_pte_range():
1654 * - clear PTE; barrier; read refcount
1655 * - inc refcount; barrier; read PTE
1659 ref_count = folio_ref_count(folio);
1660 map_count = folio_mapcount(folio);
1663 * Order reads for page refcount and dirty flag
1664 * (see comments in __remove_mapping()).
1669 * The only page refs must be one from isolation
1670 * plus the rmap(s) (dropped by discard:).
1672 if (ref_count == 1 + map_count &&
1673 !folio_test_dirty(folio)) {
1674 /* Invalidate as we cleared the pte */
1675 mmu_notifier_invalidate_range(mm,
1676 address, address + PAGE_SIZE);
1677 dec_mm_counter(mm, MM_ANONPAGES);
1682 * If the folio was redirtied, it cannot be
1683 * discarded. Remap the page to page table.
1685 set_pte_at(mm, address, pvmw.pte, pteval);
1686 folio_set_swapbacked(folio);
1688 page_vma_mapped_walk_done(&pvmw);
1692 if (swap_duplicate(entry) < 0) {
1693 set_pte_at(mm, address, pvmw.pte, pteval);
1695 page_vma_mapped_walk_done(&pvmw);
1698 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1700 set_pte_at(mm, address, pvmw.pte, pteval);
1702 page_vma_mapped_walk_done(&pvmw);
1706 /* See page_try_share_anon_rmap(): clear PTE first. */
1707 if (anon_exclusive &&
1708 page_try_share_anon_rmap(subpage)) {
1710 set_pte_at(mm, address, pvmw.pte, pteval);
1712 page_vma_mapped_walk_done(&pvmw);
1715 if (list_empty(&mm->mmlist)) {
1716 spin_lock(&mmlist_lock);
1717 if (list_empty(&mm->mmlist))
1718 list_add(&mm->mmlist, &init_mm.mmlist);
1719 spin_unlock(&mmlist_lock);
1721 dec_mm_counter(mm, MM_ANONPAGES);
1722 inc_mm_counter(mm, MM_SWAPENTS);
1723 swp_pte = swp_entry_to_pte(entry);
1725 swp_pte = pte_swp_mkexclusive(swp_pte);
1726 if (pte_soft_dirty(pteval))
1727 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1728 if (pte_uffd_wp(pteval))
1729 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1730 set_pte_at(mm, address, pvmw.pte, swp_pte);
1731 /* Invalidate as we cleared the pte */
1732 mmu_notifier_invalidate_range(mm, address,
1733 address + PAGE_SIZE);
1736 * This is a locked file-backed folio,
1737 * so it cannot be removed from the page
1738 * cache and replaced by a new folio before
1739 * mmu_notifier_invalidate_range_end, so no
1740 * concurrent thread might update its page table
1741 * to point at a new folio while a device is
1742 * still using this folio.
1744 * See Documentation/mm/mmu_notifier.rst
1746 dec_mm_counter(mm, mm_counter_file(&folio->page));
1750 * No need to call mmu_notifier_invalidate_range() it has be
1751 * done above for all cases requiring it to happen under page
1752 * table lock before mmu_notifier_invalidate_range_end()
1754 * See Documentation/mm/mmu_notifier.rst
1756 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1757 if (vma->vm_flags & VM_LOCKED)
1758 mlock_drain_local();
1762 mmu_notifier_invalidate_range_end(&range);
1767 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1769 return vma_is_temporary_stack(vma);
1772 static int folio_not_mapped(struct folio *folio)
1774 return !folio_mapped(folio);
1778 * try_to_unmap - Try to remove all page table mappings to a folio.
1779 * @folio: The folio to unmap.
1780 * @flags: action and flags
1782 * Tries to remove all the page table entries which are mapping this
1783 * folio. It is the caller's responsibility to check if the folio is
1784 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1786 * Context: Caller must hold the folio lock.
1788 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1790 struct rmap_walk_control rwc = {
1791 .rmap_one = try_to_unmap_one,
1792 .arg = (void *)flags,
1793 .done = folio_not_mapped,
1794 .anon_lock = folio_lock_anon_vma_read,
1797 if (flags & TTU_RMAP_LOCKED)
1798 rmap_walk_locked(folio, &rwc);
1800 rmap_walk(folio, &rwc);
1804 * @arg: enum ttu_flags will be passed to this argument.
1806 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1807 * containing migration entries.
1809 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1810 unsigned long address, void *arg)
1812 struct mm_struct *mm = vma->vm_mm;
1813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1815 struct page *subpage;
1816 bool anon_exclusive, ret = true;
1817 struct mmu_notifier_range range;
1818 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1821 * When racing against e.g. zap_pte_range() on another cpu,
1822 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1823 * try_to_migrate() may return before page_mapped() has become false,
1824 * if page table locking is skipped: use TTU_SYNC to wait for that.
1826 if (flags & TTU_SYNC)
1827 pvmw.flags = PVMW_SYNC;
1830 * unmap_page() in mm/huge_memory.c is the only user of migration with
1831 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1833 if (flags & TTU_SPLIT_HUGE_PMD)
1834 split_huge_pmd_address(vma, address, true, folio);
1837 * For THP, we have to assume the worse case ie pmd for invalidation.
1838 * For hugetlb, it could be much worse if we need to do pud
1839 * invalidation in the case of pmd sharing.
1841 * Note that the page can not be free in this function as call of
1842 * try_to_unmap() must hold a reference on the page.
1844 range.end = vma_address_end(&pvmw);
1845 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1846 address, range.end);
1847 if (folio_test_hugetlb(folio)) {
1849 * If sharing is possible, start and end will be adjusted
1852 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1855 mmu_notifier_invalidate_range_start(&range);
1857 while (page_vma_mapped_walk(&pvmw)) {
1858 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1859 /* PMD-mapped THP migration entry */
1861 subpage = folio_page(folio,
1862 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1863 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1864 !folio_test_pmd_mappable(folio), folio);
1866 if (set_pmd_migration_entry(&pvmw, subpage)) {
1868 page_vma_mapped_walk_done(&pvmw);
1875 /* Unexpected PMD-mapped THP? */
1876 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1878 if (folio_is_zone_device(folio)) {
1880 * Our PTE is a non-present device exclusive entry and
1881 * calculating the subpage as for the common case would
1882 * result in an invalid pointer.
1884 * Since only PAGE_SIZE pages can currently be
1885 * migrated, just set it to page. This will need to be
1886 * changed when hugepage migrations to device private
1887 * memory are supported.
1889 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1890 subpage = &folio->page;
1892 subpage = folio_page(folio,
1893 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1895 address = pvmw.address;
1896 anon_exclusive = folio_test_anon(folio) &&
1897 PageAnonExclusive(subpage);
1899 if (folio_test_hugetlb(folio)) {
1900 bool anon = folio_test_anon(folio);
1903 * huge_pmd_unshare may unmap an entire PMD page.
1904 * There is no way of knowing exactly which PMDs may
1905 * be cached for this mm, so we must flush them all.
1906 * start/end were already adjusted above to cover this
1909 flush_cache_range(vma, range.start, range.end);
1912 * To call huge_pmd_unshare, i_mmap_rwsem must be
1913 * held in write mode. Caller needs to explicitly
1914 * do this outside rmap routines.
1916 * We also must hold hugetlb vma_lock in write mode.
1917 * Lock order dictates acquiring vma_lock BEFORE
1918 * i_mmap_rwsem. We can only try lock here and
1919 * fail if unsuccessful.
1922 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1923 if (!hugetlb_vma_trylock_write(vma)) {
1924 page_vma_mapped_walk_done(&pvmw);
1928 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1929 hugetlb_vma_unlock_write(vma);
1930 flush_tlb_range(vma,
1931 range.start, range.end);
1932 mmu_notifier_invalidate_range(mm,
1933 range.start, range.end);
1936 * The ref count of the PMD page was
1937 * dropped which is part of the way map
1938 * counting is done for shared PMDs.
1939 * Return 'true' here. When there is
1940 * no other sharing, huge_pmd_unshare
1941 * returns false and we will unmap the
1942 * actual page and drop map count
1945 page_vma_mapped_walk_done(&pvmw);
1948 hugetlb_vma_unlock_write(vma);
1950 /* Nuke the hugetlb page table entry */
1951 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1953 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1954 /* Nuke the page table entry. */
1955 if (should_defer_flush(mm, flags)) {
1957 * We clear the PTE but do not flush so potentially
1958 * a remote CPU could still be writing to the folio.
1959 * If the entry was previously clean then the
1960 * architecture must guarantee that a clear->dirty
1961 * transition on a cached TLB entry is written through
1962 * and traps if the PTE is unmapped.
1964 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1966 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1968 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1972 /* Set the dirty flag on the folio now the pte is gone. */
1973 if (pte_dirty(pteval))
1974 folio_mark_dirty(folio);
1976 /* Update high watermark before we lower rss */
1977 update_hiwater_rss(mm);
1979 if (folio_is_device_private(folio)) {
1980 unsigned long pfn = folio_pfn(folio);
1985 BUG_ON(page_try_share_anon_rmap(subpage));
1988 * Store the pfn of the page in a special migration
1989 * pte. do_swap_page() will wait until the migration
1990 * pte is removed and then restart fault handling.
1992 entry = pte_to_swp_entry(pteval);
1993 if (is_writable_device_private_entry(entry))
1994 entry = make_writable_migration_entry(pfn);
1995 else if (anon_exclusive)
1996 entry = make_readable_exclusive_migration_entry(pfn);
1998 entry = make_readable_migration_entry(pfn);
1999 swp_pte = swp_entry_to_pte(entry);
2002 * pteval maps a zone device page and is therefore
2005 if (pte_swp_soft_dirty(pteval))
2006 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2007 if (pte_swp_uffd_wp(pteval))
2008 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2009 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2010 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2011 compound_order(&folio->page));
2013 * No need to invalidate here it will synchronize on
2014 * against the special swap migration pte.
2016 } else if (PageHWPoison(subpage)) {
2017 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2018 if (folio_test_hugetlb(folio)) {
2019 hugetlb_count_sub(folio_nr_pages(folio), mm);
2020 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2022 dec_mm_counter(mm, mm_counter(&folio->page));
2023 set_pte_at(mm, address, pvmw.pte, pteval);
2026 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2028 * The guest indicated that the page content is of no
2029 * interest anymore. Simply discard the pte, vmscan
2030 * will take care of the rest.
2031 * A future reference will then fault in a new zero
2032 * page. When userfaultfd is active, we must not drop
2033 * this page though, as its main user (postcopy
2034 * migration) will not expect userfaults on already
2037 dec_mm_counter(mm, mm_counter(&folio->page));
2038 /* We have to invalidate as we cleared the pte */
2039 mmu_notifier_invalidate_range(mm, address,
2040 address + PAGE_SIZE);
2045 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2046 if (folio_test_hugetlb(folio))
2047 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2049 set_pte_at(mm, address, pvmw.pte, pteval);
2051 page_vma_mapped_walk_done(&pvmw);
2054 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2055 !anon_exclusive, subpage);
2057 /* See page_try_share_anon_rmap(): clear PTE first. */
2058 if (anon_exclusive &&
2059 page_try_share_anon_rmap(subpage)) {
2060 if (folio_test_hugetlb(folio))
2061 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2063 set_pte_at(mm, address, pvmw.pte, pteval);
2065 page_vma_mapped_walk_done(&pvmw);
2070 * Store the pfn of the page in a special migration
2071 * pte. do_swap_page() will wait until the migration
2072 * pte is removed and then restart fault handling.
2074 if (pte_write(pteval))
2075 entry = make_writable_migration_entry(
2076 page_to_pfn(subpage));
2077 else if (anon_exclusive)
2078 entry = make_readable_exclusive_migration_entry(
2079 page_to_pfn(subpage));
2081 entry = make_readable_migration_entry(
2082 page_to_pfn(subpage));
2083 if (pte_young(pteval))
2084 entry = make_migration_entry_young(entry);
2085 if (pte_dirty(pteval))
2086 entry = make_migration_entry_dirty(entry);
2087 swp_pte = swp_entry_to_pte(entry);
2088 if (pte_soft_dirty(pteval))
2089 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2090 if (pte_uffd_wp(pteval))
2091 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092 if (folio_test_hugetlb(folio))
2093 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2095 set_pte_at(mm, address, pvmw.pte, swp_pte);
2096 trace_set_migration_pte(address, pte_val(swp_pte),
2097 compound_order(&folio->page));
2099 * No need to invalidate here it will synchronize on
2100 * against the special swap migration pte.
2105 * No need to call mmu_notifier_invalidate_range() it has be
2106 * done above for all cases requiring it to happen under page
2107 * table lock before mmu_notifier_invalidate_range_end()
2109 * See Documentation/mm/mmu_notifier.rst
2111 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2112 if (vma->vm_flags & VM_LOCKED)
2113 mlock_drain_local();
2117 mmu_notifier_invalidate_range_end(&range);
2123 * try_to_migrate - try to replace all page table mappings with swap entries
2124 * @folio: the folio to replace page table entries for
2125 * @flags: action and flags
2127 * Tries to remove all the page table entries which are mapping this folio and
2128 * replace them with special swap entries. Caller must hold the folio lock.
2130 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2132 struct rmap_walk_control rwc = {
2133 .rmap_one = try_to_migrate_one,
2134 .arg = (void *)flags,
2135 .done = folio_not_mapped,
2136 .anon_lock = folio_lock_anon_vma_read,
2140 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2141 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2143 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2144 TTU_SYNC | TTU_BATCH_FLUSH)))
2147 if (folio_is_zone_device(folio) &&
2148 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2152 * During exec, a temporary VMA is setup and later moved.
2153 * The VMA is moved under the anon_vma lock but not the
2154 * page tables leading to a race where migration cannot
2155 * find the migration ptes. Rather than increasing the
2156 * locking requirements of exec(), migration skips
2157 * temporary VMAs until after exec() completes.
2159 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2160 rwc.invalid_vma = invalid_migration_vma;
2162 if (flags & TTU_RMAP_LOCKED)
2163 rmap_walk_locked(folio, &rwc);
2165 rmap_walk(folio, &rwc);
2168 #ifdef CONFIG_DEVICE_PRIVATE
2169 struct make_exclusive_args {
2170 struct mm_struct *mm;
2171 unsigned long address;
2176 static bool page_make_device_exclusive_one(struct folio *folio,
2177 struct vm_area_struct *vma, unsigned long address, void *priv)
2179 struct mm_struct *mm = vma->vm_mm;
2180 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2181 struct make_exclusive_args *args = priv;
2183 struct page *subpage;
2185 struct mmu_notifier_range range;
2189 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2190 vma->vm_mm, address, min(vma->vm_end,
2191 address + folio_size(folio)),
2193 mmu_notifier_invalidate_range_start(&range);
2195 while (page_vma_mapped_walk(&pvmw)) {
2196 /* Unexpected PMD-mapped THP? */
2197 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2199 if (!pte_present(*pvmw.pte)) {
2201 page_vma_mapped_walk_done(&pvmw);
2205 subpage = folio_page(folio,
2206 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2207 address = pvmw.address;
2209 /* Nuke the page table entry. */
2210 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2211 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2213 /* Set the dirty flag on the folio now the pte is gone. */
2214 if (pte_dirty(pteval))
2215 folio_mark_dirty(folio);
2218 * Check that our target page is still mapped at the expected
2221 if (args->mm == mm && args->address == address &&
2226 * Store the pfn of the page in a special migration
2227 * pte. do_swap_page() will wait until the migration
2228 * pte is removed and then restart fault handling.
2230 if (pte_write(pteval))
2231 entry = make_writable_device_exclusive_entry(
2232 page_to_pfn(subpage));
2234 entry = make_readable_device_exclusive_entry(
2235 page_to_pfn(subpage));
2236 swp_pte = swp_entry_to_pte(entry);
2237 if (pte_soft_dirty(pteval))
2238 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2239 if (pte_uffd_wp(pteval))
2240 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2242 set_pte_at(mm, address, pvmw.pte, swp_pte);
2245 * There is a reference on the page for the swap entry which has
2246 * been removed, so shouldn't take another.
2248 page_remove_rmap(subpage, vma, false);
2251 mmu_notifier_invalidate_range_end(&range);
2257 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2258 * @folio: The folio to replace page table entries for.
2259 * @mm: The mm_struct where the folio is expected to be mapped.
2260 * @address: Address where the folio is expected to be mapped.
2261 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2263 * Tries to remove all the page table entries which are mapping this
2264 * folio and replace them with special device exclusive swap entries to
2265 * grant a device exclusive access to the folio.
2267 * Context: Caller must hold the folio lock.
2268 * Return: false if the page is still mapped, or if it could not be unmapped
2269 * from the expected address. Otherwise returns true (success).
2271 static bool folio_make_device_exclusive(struct folio *folio,
2272 struct mm_struct *mm, unsigned long address, void *owner)
2274 struct make_exclusive_args args = {
2280 struct rmap_walk_control rwc = {
2281 .rmap_one = page_make_device_exclusive_one,
2282 .done = folio_not_mapped,
2283 .anon_lock = folio_lock_anon_vma_read,
2288 * Restrict to anonymous folios for now to avoid potential writeback
2291 if (!folio_test_anon(folio))
2294 rmap_walk(folio, &rwc);
2296 return args.valid && !folio_mapcount(folio);
2300 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2301 * @mm: mm_struct of associated target process
2302 * @start: start of the region to mark for exclusive device access
2303 * @end: end address of region
2304 * @pages: returns the pages which were successfully marked for exclusive access
2305 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2307 * Returns: number of pages found in the range by GUP. A page is marked for
2308 * exclusive access only if the page pointer is non-NULL.
2310 * This function finds ptes mapping page(s) to the given address range, locks
2311 * them and replaces mappings with special swap entries preventing userspace CPU
2312 * access. On fault these entries are replaced with the original mapping after
2313 * calling MMU notifiers.
2315 * A driver using this to program access from a device must use a mmu notifier
2316 * critical section to hold a device specific lock during programming. Once
2317 * programming is complete it should drop the page lock and reference after
2318 * which point CPU access to the page will revoke the exclusive access.
2320 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2321 unsigned long end, struct page **pages,
2324 long npages = (end - start) >> PAGE_SHIFT;
2327 npages = get_user_pages_remote(mm, start, npages,
2328 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2333 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2334 struct folio *folio = page_folio(pages[i]);
2335 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2341 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2342 folio_unlock(folio);
2350 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2353 void __put_anon_vma(struct anon_vma *anon_vma)
2355 struct anon_vma *root = anon_vma->root;
2357 anon_vma_free(anon_vma);
2358 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2359 anon_vma_free(root);
2362 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2363 struct rmap_walk_control *rwc)
2365 struct anon_vma *anon_vma;
2368 return rwc->anon_lock(folio, rwc);
2371 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2372 * because that depends on page_mapped(); but not all its usages
2373 * are holding mmap_lock. Users without mmap_lock are required to
2374 * take a reference count to prevent the anon_vma disappearing
2376 anon_vma = folio_anon_vma(folio);
2380 if (anon_vma_trylock_read(anon_vma))
2383 if (rwc->try_lock) {
2385 rwc->contended = true;
2389 anon_vma_lock_read(anon_vma);
2395 * rmap_walk_anon - do something to anonymous page using the object-based
2397 * @page: the page to be handled
2398 * @rwc: control variable according to each walk type
2400 * Find all the mappings of a page using the mapping pointer and the vma chains
2401 * contained in the anon_vma struct it points to.
2403 static void rmap_walk_anon(struct folio *folio,
2404 struct rmap_walk_control *rwc, bool locked)
2406 struct anon_vma *anon_vma;
2407 pgoff_t pgoff_start, pgoff_end;
2408 struct anon_vma_chain *avc;
2411 anon_vma = folio_anon_vma(folio);
2412 /* anon_vma disappear under us? */
2413 VM_BUG_ON_FOLIO(!anon_vma, folio);
2415 anon_vma = rmap_walk_anon_lock(folio, rwc);
2420 pgoff_start = folio_pgoff(folio);
2421 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2422 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2423 pgoff_start, pgoff_end) {
2424 struct vm_area_struct *vma = avc->vma;
2425 unsigned long address = vma_address(&folio->page, vma);
2427 VM_BUG_ON_VMA(address == -EFAULT, vma);
2430 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2433 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2435 if (rwc->done && rwc->done(folio))
2440 anon_vma_unlock_read(anon_vma);
2444 * rmap_walk_file - do something to file page using the object-based rmap method
2445 * @page: the page to be handled
2446 * @rwc: control variable according to each walk type
2448 * Find all the mappings of a page using the mapping pointer and the vma chains
2449 * contained in the address_space struct it points to.
2451 static void rmap_walk_file(struct folio *folio,
2452 struct rmap_walk_control *rwc, bool locked)
2454 struct address_space *mapping = folio_mapping(folio);
2455 pgoff_t pgoff_start, pgoff_end;
2456 struct vm_area_struct *vma;
2459 * The page lock not only makes sure that page->mapping cannot
2460 * suddenly be NULLified by truncation, it makes sure that the
2461 * structure at mapping cannot be freed and reused yet,
2462 * so we can safely take mapping->i_mmap_rwsem.
2464 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2469 pgoff_start = folio_pgoff(folio);
2470 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2472 if (i_mmap_trylock_read(mapping))
2475 if (rwc->try_lock) {
2476 rwc->contended = true;
2480 i_mmap_lock_read(mapping);
2483 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2484 pgoff_start, pgoff_end) {
2485 unsigned long address = vma_address(&folio->page, vma);
2487 VM_BUG_ON_VMA(address == -EFAULT, vma);
2490 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2493 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2495 if (rwc->done && rwc->done(folio))
2501 i_mmap_unlock_read(mapping);
2504 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2506 if (unlikely(folio_test_ksm(folio)))
2507 rmap_walk_ksm(folio, rwc);
2508 else if (folio_test_anon(folio))
2509 rmap_walk_anon(folio, rwc, false);
2511 rmap_walk_file(folio, rwc, false);
2514 /* Like rmap_walk, but caller holds relevant rmap lock */
2515 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2517 /* no ksm support for now */
2518 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2519 if (folio_test_anon(folio))
2520 rmap_walk_anon(folio, rwc, true);
2522 rmap_walk_file(folio, rwc, true);
2525 #ifdef CONFIG_HUGETLB_PAGE
2527 * The following two functions are for anonymous (private mapped) hugepages.
2528 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2529 * and no lru code, because we handle hugepages differently from common pages.
2531 * RMAP_COMPOUND is ignored.
2533 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2534 unsigned long address, rmap_t flags)
2536 struct folio *folio = page_folio(page);
2537 struct anon_vma *anon_vma = vma->anon_vma;
2540 BUG_ON(!folio_test_locked(folio));
2542 /* address might be in next vma when migration races vma_merge */
2543 first = atomic_inc_and_test(&folio->_entire_mapcount);
2544 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2545 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2547 __page_set_anon_rmap(folio, page, vma, address,
2548 !!(flags & RMAP_EXCLUSIVE));
2551 void hugepage_add_new_anon_rmap(struct folio *folio,
2552 struct vm_area_struct *vma, unsigned long address)
2554 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2555 /* increment count (starts at -1) */
2556 atomic_set(&folio->_entire_mapcount, 0);
2557 folio_clear_hugetlb_restore_reserve(folio);
2558 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2560 #endif /* CONFIG_HUGETLB_PAGE */