Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-starfive.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009           SUSE Linux Products GmbH
6  * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017           Facebook Inc.
9  * Copyright (C) 2017           Dennis Zhou <dennisszhou@gmail.com>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * tries to allocate from the fullest chunk first.  Each chunk is managed
41  * by a bitmap with metadata blocks.  The allocation map is updated on
42  * every allocation and free to reflect the current state while the boundary
43  * map is only updated on allocation.  Each metadata block contains
44  * information to help mitigate the need to iterate over large portions
45  * of the bitmap.  The reverse mapping from page to chunk is stored in
46  * the page's index.  Lastly, units are lazily backed and grow in unison.
47  *
48  * There is a unique conversion that goes on here between bytes and bits.
49  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
50  * tracks the number of pages it is responsible for in nr_pages.  Helper
51  * functions are used to convert from between the bytes, bits, and blocks.
52  * All hints are managed in bits unless explicitly stated.
53  *
54  * To use this allocator, arch code should do the following:
55  *
56  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57  *   regular address to percpu pointer and back if they need to be
58  *   different from the default
59  *
60  * - use pcpu_setup_first_chunk() during percpu area initialization to
61  *   setup the first chunk containing the kernel static percpu area
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91
92 #include "percpu-internal.h"
93
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT            5
96 /* chunks in slots below this are subject to being sidelined on failed alloc */
97 #define PCPU_SLOT_FAIL_THRESHOLD        3
98
99 #define PCPU_EMPTY_POP_PAGES_LOW        2
100 #define PCPU_EMPTY_POP_PAGES_HIGH       4
101
102 #ifdef CONFIG_SMP
103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
104 #ifndef __addr_to_pcpu_ptr
105 #define __addr_to_pcpu_ptr(addr)                                        \
106         (void __percpu *)((unsigned long)(addr) -                       \
107                           (unsigned long)pcpu_base_addr +               \
108                           (unsigned long)__per_cpu_start)
109 #endif
110 #ifndef __pcpu_ptr_to_addr
111 #define __pcpu_ptr_to_addr(ptr)                                         \
112         (void __force *)((unsigned long)(ptr) +                         \
113                          (unsigned long)pcpu_base_addr -                \
114                          (unsigned long)__per_cpu_start)
115 #endif
116 #else   /* CONFIG_SMP */
117 /* on UP, it's always identity mapped */
118 #define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
119 #define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
120 #endif  /* CONFIG_SMP */
121
122 static int pcpu_unit_pages __ro_after_init;
123 static int pcpu_unit_size __ro_after_init;
124 static int pcpu_nr_units __ro_after_init;
125 static int pcpu_atom_size __ro_after_init;
126 int pcpu_nr_slots __ro_after_init;
127 static size_t pcpu_chunk_struct_size __ro_after_init;
128
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __ro_after_init;
131 static unsigned int pcpu_high_unit_cpu __ro_after_init;
132
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __ro_after_init;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
137 static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
139
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __ro_after_init;
142 static const unsigned long *pcpu_group_offsets __ro_after_init;
143 static const size_t *pcpu_group_sizes __ro_after_init;
144
145 /*
146  * The first chunk which always exists.  Note that unlike other
147  * chunks, this one can be allocated and mapped in several different
148  * ways and thus often doesn't live in the vmalloc area.
149  */
150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
151
152 /*
153  * Optional reserved chunk.  This chunk reserves part of the first
154  * chunk and serves it for reserved allocations.  When the reserved
155  * region doesn't exist, the following variable is NULL.
156  */
157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
158
159 DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
160 static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
161
162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
163
164 /* chunks which need their map areas extended, protected by pcpu_lock */
165 static LIST_HEAD(pcpu_map_extend_chunks);
166
167 /*
168  * The number of empty populated pages, protected by pcpu_lock.  The
169  * reserved chunk doesn't contribute to the count.
170  */
171 int pcpu_nr_empty_pop_pages;
172
173 /*
174  * The number of populated pages in use by the allocator, protected by
175  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
176  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
177  * and increments/decrements this count by 1).
178  */
179 static unsigned long pcpu_nr_populated;
180
181 /*
182  * Balance work is used to populate or destroy chunks asynchronously.  We
183  * try to keep the number of populated free pages between
184  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
185  * empty chunk.
186  */
187 static void pcpu_balance_workfn(struct work_struct *work);
188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
189 static bool pcpu_async_enabled __read_mostly;
190 static bool pcpu_atomic_alloc_failed;
191
192 static void pcpu_schedule_balance_work(void)
193 {
194         if (pcpu_async_enabled)
195                 schedule_work(&pcpu_balance_work);
196 }
197
198 /**
199  * pcpu_addr_in_chunk - check if the address is served from this chunk
200  * @chunk: chunk of interest
201  * @addr: percpu address
202  *
203  * RETURNS:
204  * True if the address is served from this chunk.
205  */
206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
207 {
208         void *start_addr, *end_addr;
209
210         if (!chunk)
211                 return false;
212
213         start_addr = chunk->base_addr + chunk->start_offset;
214         end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
215                    chunk->end_offset;
216
217         return addr >= start_addr && addr < end_addr;
218 }
219
220 static int __pcpu_size_to_slot(int size)
221 {
222         int highbit = fls(size);        /* size is in bytes */
223         return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
224 }
225
226 static int pcpu_size_to_slot(int size)
227 {
228         if (size == pcpu_unit_size)
229                 return pcpu_nr_slots - 1;
230         return __pcpu_size_to_slot(size);
231 }
232
233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
234 {
235         const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
236
237         if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
238             chunk_md->contig_hint == 0)
239                 return 0;
240
241         return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
242 }
243
244 /* set the pointer to a chunk in a page struct */
245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
246 {
247         page->index = (unsigned long)pcpu;
248 }
249
250 /* obtain pointer to a chunk from a page struct */
251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
252 {
253         return (struct pcpu_chunk *)page->index;
254 }
255
256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
257 {
258         return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
259 }
260
261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
262 {
263         return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
264 }
265
266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
267                                      unsigned int cpu, int page_idx)
268 {
269         return (unsigned long)chunk->base_addr +
270                pcpu_unit_page_offset(cpu, page_idx);
271 }
272
273 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
274 {
275         *rs = find_next_zero_bit(bitmap, end, *rs);
276         *re = find_next_bit(bitmap, end, *rs + 1);
277 }
278
279 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
280 {
281         *rs = find_next_bit(bitmap, end, *rs);
282         *re = find_next_zero_bit(bitmap, end, *rs + 1);
283 }
284
285 /*
286  * Bitmap region iterators.  Iterates over the bitmap between
287  * [@start, @end) in @chunk.  @rs and @re should be integer variables
288  * and will be set to start and end index of the current free region.
289  */
290 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)               \
291         for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
292              (rs) < (re);                                                    \
293              (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
294
295 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)                 \
296         for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
297              (rs) < (re);                                                    \
298              (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
299
300 /*
301  * The following are helper functions to help access bitmaps and convert
302  * between bitmap offsets to address offsets.
303  */
304 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
305 {
306         return chunk->alloc_map +
307                (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
308 }
309
310 static unsigned long pcpu_off_to_block_index(int off)
311 {
312         return off / PCPU_BITMAP_BLOCK_BITS;
313 }
314
315 static unsigned long pcpu_off_to_block_off(int off)
316 {
317         return off & (PCPU_BITMAP_BLOCK_BITS - 1);
318 }
319
320 static unsigned long pcpu_block_off_to_off(int index, int off)
321 {
322         return index * PCPU_BITMAP_BLOCK_BITS + off;
323 }
324
325 /*
326  * pcpu_next_hint - determine which hint to use
327  * @block: block of interest
328  * @alloc_bits: size of allocation
329  *
330  * This determines if we should scan based on the scan_hint or first_free.
331  * In general, we want to scan from first_free to fulfill allocations by
332  * first fit.  However, if we know a scan_hint at position scan_hint_start
333  * cannot fulfill an allocation, we can begin scanning from there knowing
334  * the contig_hint will be our fallback.
335  */
336 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
337 {
338         /*
339          * The three conditions below determine if we can skip past the
340          * scan_hint.  First, does the scan hint exist.  Second, is the
341          * contig_hint after the scan_hint (possibly not true iff
342          * contig_hint == scan_hint).  Third, is the allocation request
343          * larger than the scan_hint.
344          */
345         if (block->scan_hint &&
346             block->contig_hint_start > block->scan_hint_start &&
347             alloc_bits > block->scan_hint)
348                 return block->scan_hint_start + block->scan_hint;
349
350         return block->first_free;
351 }
352
353 /**
354  * pcpu_next_md_free_region - finds the next hint free area
355  * @chunk: chunk of interest
356  * @bit_off: chunk offset
357  * @bits: size of free area
358  *
359  * Helper function for pcpu_for_each_md_free_region.  It checks
360  * block->contig_hint and performs aggregation across blocks to find the
361  * next hint.  It modifies bit_off and bits in-place to be consumed in the
362  * loop.
363  */
364 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
365                                      int *bits)
366 {
367         int i = pcpu_off_to_block_index(*bit_off);
368         int block_off = pcpu_off_to_block_off(*bit_off);
369         struct pcpu_block_md *block;
370
371         *bits = 0;
372         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
373              block++, i++) {
374                 /* handles contig area across blocks */
375                 if (*bits) {
376                         *bits += block->left_free;
377                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
378                                 continue;
379                         return;
380                 }
381
382                 /*
383                  * This checks three things.  First is there a contig_hint to
384                  * check.  Second, have we checked this hint before by
385                  * comparing the block_off.  Third, is this the same as the
386                  * right contig hint.  In the last case, it spills over into
387                  * the next block and should be handled by the contig area
388                  * across blocks code.
389                  */
390                 *bits = block->contig_hint;
391                 if (*bits && block->contig_hint_start >= block_off &&
392                     *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
393                         *bit_off = pcpu_block_off_to_off(i,
394                                         block->contig_hint_start);
395                         return;
396                 }
397                 /* reset to satisfy the second predicate above */
398                 block_off = 0;
399
400                 *bits = block->right_free;
401                 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
402         }
403 }
404
405 /**
406  * pcpu_next_fit_region - finds fit areas for a given allocation request
407  * @chunk: chunk of interest
408  * @alloc_bits: size of allocation
409  * @align: alignment of area (max PAGE_SIZE)
410  * @bit_off: chunk offset
411  * @bits: size of free area
412  *
413  * Finds the next free region that is viable for use with a given size and
414  * alignment.  This only returns if there is a valid area to be used for this
415  * allocation.  block->first_free is returned if the allocation request fits
416  * within the block to see if the request can be fulfilled prior to the contig
417  * hint.
418  */
419 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
420                                  int align, int *bit_off, int *bits)
421 {
422         int i = pcpu_off_to_block_index(*bit_off);
423         int block_off = pcpu_off_to_block_off(*bit_off);
424         struct pcpu_block_md *block;
425
426         *bits = 0;
427         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
428              block++, i++) {
429                 /* handles contig area across blocks */
430                 if (*bits) {
431                         *bits += block->left_free;
432                         if (*bits >= alloc_bits)
433                                 return;
434                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
435                                 continue;
436                 }
437
438                 /* check block->contig_hint */
439                 *bits = ALIGN(block->contig_hint_start, align) -
440                         block->contig_hint_start;
441                 /*
442                  * This uses the block offset to determine if this has been
443                  * checked in the prior iteration.
444                  */
445                 if (block->contig_hint &&
446                     block->contig_hint_start >= block_off &&
447                     block->contig_hint >= *bits + alloc_bits) {
448                         int start = pcpu_next_hint(block, alloc_bits);
449
450                         *bits += alloc_bits + block->contig_hint_start -
451                                  start;
452                         *bit_off = pcpu_block_off_to_off(i, start);
453                         return;
454                 }
455                 /* reset to satisfy the second predicate above */
456                 block_off = 0;
457
458                 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
459                                  align);
460                 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
461                 *bit_off = pcpu_block_off_to_off(i, *bit_off);
462                 if (*bits >= alloc_bits)
463                         return;
464         }
465
466         /* no valid offsets were found - fail condition */
467         *bit_off = pcpu_chunk_map_bits(chunk);
468 }
469
470 /*
471  * Metadata free area iterators.  These perform aggregation of free areas
472  * based on the metadata blocks and return the offset @bit_off and size in
473  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
474  * a fit is found for the allocation request.
475  */
476 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
477         for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
478              (bit_off) < pcpu_chunk_map_bits((chunk));                  \
479              (bit_off) += (bits) + 1,                                   \
480              pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
481
482 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
483         for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
484                                   &(bits));                                   \
485              (bit_off) < pcpu_chunk_map_bits((chunk));                        \
486              (bit_off) += (bits),                                             \
487              pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
488                                   &(bits)))
489
490 /**
491  * pcpu_mem_zalloc - allocate memory
492  * @size: bytes to allocate
493  * @gfp: allocation flags
494  *
495  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
496  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
497  * This is to facilitate passing through whitelisted flags.  The
498  * returned memory is always zeroed.
499  *
500  * RETURNS:
501  * Pointer to the allocated area on success, NULL on failure.
502  */
503 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
504 {
505         if (WARN_ON_ONCE(!slab_is_available()))
506                 return NULL;
507
508         if (size <= PAGE_SIZE)
509                 return kzalloc(size, gfp);
510         else
511                 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
512 }
513
514 /**
515  * pcpu_mem_free - free memory
516  * @ptr: memory to free
517  *
518  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
519  */
520 static void pcpu_mem_free(void *ptr)
521 {
522         kvfree(ptr);
523 }
524
525 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
526                               bool move_front)
527 {
528         if (chunk != pcpu_reserved_chunk) {
529                 if (move_front)
530                         list_move(&chunk->list, &pcpu_slot[slot]);
531                 else
532                         list_move_tail(&chunk->list, &pcpu_slot[slot]);
533         }
534 }
535
536 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
537 {
538         __pcpu_chunk_move(chunk, slot, true);
539 }
540
541 /**
542  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
543  * @chunk: chunk of interest
544  * @oslot: the previous slot it was on
545  *
546  * This function is called after an allocation or free changed @chunk.
547  * New slot according to the changed state is determined and @chunk is
548  * moved to the slot.  Note that the reserved chunk is never put on
549  * chunk slots.
550  *
551  * CONTEXT:
552  * pcpu_lock.
553  */
554 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
555 {
556         int nslot = pcpu_chunk_slot(chunk);
557
558         if (oslot != nslot)
559                 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
560 }
561
562 /*
563  * pcpu_update_empty_pages - update empty page counters
564  * @chunk: chunk of interest
565  * @nr: nr of empty pages
566  *
567  * This is used to keep track of the empty pages now based on the premise
568  * a md_block covers a page.  The hint update functions recognize if a block
569  * is made full or broken to calculate deltas for keeping track of free pages.
570  */
571 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
572 {
573         chunk->nr_empty_pop_pages += nr;
574         if (chunk != pcpu_reserved_chunk)
575                 pcpu_nr_empty_pop_pages += nr;
576 }
577
578 /*
579  * pcpu_region_overlap - determines if two regions overlap
580  * @a: start of first region, inclusive
581  * @b: end of first region, exclusive
582  * @x: start of second region, inclusive
583  * @y: end of second region, exclusive
584  *
585  * This is used to determine if the hint region [a, b) overlaps with the
586  * allocated region [x, y).
587  */
588 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
589 {
590         return (a < y) && (x < b);
591 }
592
593 /**
594  * pcpu_block_update - updates a block given a free area
595  * @block: block of interest
596  * @start: start offset in block
597  * @end: end offset in block
598  *
599  * Updates a block given a known free area.  The region [start, end) is
600  * expected to be the entirety of the free area within a block.  Chooses
601  * the best starting offset if the contig hints are equal.
602  */
603 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
604 {
605         int contig = end - start;
606
607         block->first_free = min(block->first_free, start);
608         if (start == 0)
609                 block->left_free = contig;
610
611         if (end == block->nr_bits)
612                 block->right_free = contig;
613
614         if (contig > block->contig_hint) {
615                 /* promote the old contig_hint to be the new scan_hint */
616                 if (start > block->contig_hint_start) {
617                         if (block->contig_hint > block->scan_hint) {
618                                 block->scan_hint_start =
619                                         block->contig_hint_start;
620                                 block->scan_hint = block->contig_hint;
621                         } else if (start < block->scan_hint_start) {
622                                 /*
623                                  * The old contig_hint == scan_hint.  But, the
624                                  * new contig is larger so hold the invariant
625                                  * scan_hint_start < contig_hint_start.
626                                  */
627                                 block->scan_hint = 0;
628                         }
629                 } else {
630                         block->scan_hint = 0;
631                 }
632                 block->contig_hint_start = start;
633                 block->contig_hint = contig;
634         } else if (contig == block->contig_hint) {
635                 if (block->contig_hint_start &&
636                     (!start ||
637                      __ffs(start) > __ffs(block->contig_hint_start))) {
638                         /* start has a better alignment so use it */
639                         block->contig_hint_start = start;
640                         if (start < block->scan_hint_start &&
641                             block->contig_hint > block->scan_hint)
642                                 block->scan_hint = 0;
643                 } else if (start > block->scan_hint_start ||
644                            block->contig_hint > block->scan_hint) {
645                         /*
646                          * Knowing contig == contig_hint, update the scan_hint
647                          * if it is farther than or larger than the current
648                          * scan_hint.
649                          */
650                         block->scan_hint_start = start;
651                         block->scan_hint = contig;
652                 }
653         } else {
654                 /*
655                  * The region is smaller than the contig_hint.  So only update
656                  * the scan_hint if it is larger than or equal and farther than
657                  * the current scan_hint.
658                  */
659                 if ((start < block->contig_hint_start &&
660                      (contig > block->scan_hint ||
661                       (contig == block->scan_hint &&
662                        start > block->scan_hint_start)))) {
663                         block->scan_hint_start = start;
664                         block->scan_hint = contig;
665                 }
666         }
667 }
668
669 /*
670  * pcpu_block_update_scan - update a block given a free area from a scan
671  * @chunk: chunk of interest
672  * @bit_off: chunk offset
673  * @bits: size of free area
674  *
675  * Finding the final allocation spot first goes through pcpu_find_block_fit()
676  * to find a block that can hold the allocation and then pcpu_alloc_area()
677  * where a scan is used.  When allocations require specific alignments,
678  * we can inadvertently create holes which will not be seen in the alloc
679  * or free paths.
680  *
681  * This takes a given free area hole and updates a block as it may change the
682  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
683  * from alignment.
684  */
685 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
686                                    int bits)
687 {
688         int s_off = pcpu_off_to_block_off(bit_off);
689         int e_off = s_off + bits;
690         int s_index, l_bit;
691         struct pcpu_block_md *block;
692
693         if (e_off > PCPU_BITMAP_BLOCK_BITS)
694                 return;
695
696         s_index = pcpu_off_to_block_index(bit_off);
697         block = chunk->md_blocks + s_index;
698
699         /* scan backwards in case of alignment skipping free bits */
700         l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
701         s_off = (s_off == l_bit) ? 0 : l_bit + 1;
702
703         pcpu_block_update(block, s_off, e_off);
704 }
705
706 /**
707  * pcpu_chunk_refresh_hint - updates metadata about a chunk
708  * @chunk: chunk of interest
709  * @full_scan: if we should scan from the beginning
710  *
711  * Iterates over the metadata blocks to find the largest contig area.
712  * A full scan can be avoided on the allocation path as this is triggered
713  * if we broke the contig_hint.  In doing so, the scan_hint will be before
714  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
715  * be prevented on freeing as we want to find the largest area possibly
716  * spanning blocks.
717  */
718 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
719 {
720         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
721         int bit_off, bits;
722
723         /* promote scan_hint to contig_hint */
724         if (!full_scan && chunk_md->scan_hint) {
725                 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
726                 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
727                 chunk_md->contig_hint = chunk_md->scan_hint;
728                 chunk_md->scan_hint = 0;
729         } else {
730                 bit_off = chunk_md->first_free;
731                 chunk_md->contig_hint = 0;
732         }
733
734         bits = 0;
735         pcpu_for_each_md_free_region(chunk, bit_off, bits) {
736                 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
737         }
738 }
739
740 /**
741  * pcpu_block_refresh_hint
742  * @chunk: chunk of interest
743  * @index: index of the metadata block
744  *
745  * Scans over the block beginning at first_free and updates the block
746  * metadata accordingly.
747  */
748 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
749 {
750         struct pcpu_block_md *block = chunk->md_blocks + index;
751         unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
752         int rs, re, start;      /* region start, region end */
753
754         /* promote scan_hint to contig_hint */
755         if (block->scan_hint) {
756                 start = block->scan_hint_start + block->scan_hint;
757                 block->contig_hint_start = block->scan_hint_start;
758                 block->contig_hint = block->scan_hint;
759                 block->scan_hint = 0;
760         } else {
761                 start = block->first_free;
762                 block->contig_hint = 0;
763         }
764
765         block->right_free = 0;
766
767         /* iterate over free areas and update the contig hints */
768         pcpu_for_each_unpop_region(alloc_map, rs, re, start,
769                                    PCPU_BITMAP_BLOCK_BITS) {
770                 pcpu_block_update(block, rs, re);
771         }
772 }
773
774 /**
775  * pcpu_block_update_hint_alloc - update hint on allocation path
776  * @chunk: chunk of interest
777  * @bit_off: chunk offset
778  * @bits: size of request
779  *
780  * Updates metadata for the allocation path.  The metadata only has to be
781  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
782  * scans are required if the block's contig hint is broken.
783  */
784 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
785                                          int bits)
786 {
787         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
788         int nr_empty_pages = 0;
789         struct pcpu_block_md *s_block, *e_block, *block;
790         int s_index, e_index;   /* block indexes of the freed allocation */
791         int s_off, e_off;       /* block offsets of the freed allocation */
792
793         /*
794          * Calculate per block offsets.
795          * The calculation uses an inclusive range, but the resulting offsets
796          * are [start, end).  e_index always points to the last block in the
797          * range.
798          */
799         s_index = pcpu_off_to_block_index(bit_off);
800         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
801         s_off = pcpu_off_to_block_off(bit_off);
802         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
803
804         s_block = chunk->md_blocks + s_index;
805         e_block = chunk->md_blocks + e_index;
806
807         /*
808          * Update s_block.
809          * block->first_free must be updated if the allocation takes its place.
810          * If the allocation breaks the contig_hint, a scan is required to
811          * restore this hint.
812          */
813         if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
814                 nr_empty_pages++;
815
816         if (s_off == s_block->first_free)
817                 s_block->first_free = find_next_zero_bit(
818                                         pcpu_index_alloc_map(chunk, s_index),
819                                         PCPU_BITMAP_BLOCK_BITS,
820                                         s_off + bits);
821
822         if (pcpu_region_overlap(s_block->scan_hint_start,
823                                 s_block->scan_hint_start + s_block->scan_hint,
824                                 s_off,
825                                 s_off + bits))
826                 s_block->scan_hint = 0;
827
828         if (pcpu_region_overlap(s_block->contig_hint_start,
829                                 s_block->contig_hint_start +
830                                 s_block->contig_hint,
831                                 s_off,
832                                 s_off + bits)) {
833                 /* block contig hint is broken - scan to fix it */
834                 if (!s_off)
835                         s_block->left_free = 0;
836                 pcpu_block_refresh_hint(chunk, s_index);
837         } else {
838                 /* update left and right contig manually */
839                 s_block->left_free = min(s_block->left_free, s_off);
840                 if (s_index == e_index)
841                         s_block->right_free = min_t(int, s_block->right_free,
842                                         PCPU_BITMAP_BLOCK_BITS - e_off);
843                 else
844                         s_block->right_free = 0;
845         }
846
847         /*
848          * Update e_block.
849          */
850         if (s_index != e_index) {
851                 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
852                         nr_empty_pages++;
853
854                 /*
855                  * When the allocation is across blocks, the end is along
856                  * the left part of the e_block.
857                  */
858                 e_block->first_free = find_next_zero_bit(
859                                 pcpu_index_alloc_map(chunk, e_index),
860                                 PCPU_BITMAP_BLOCK_BITS, e_off);
861
862                 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
863                         /* reset the block */
864                         e_block++;
865                 } else {
866                         if (e_off > e_block->scan_hint_start)
867                                 e_block->scan_hint = 0;
868
869                         e_block->left_free = 0;
870                         if (e_off > e_block->contig_hint_start) {
871                                 /* contig hint is broken - scan to fix it */
872                                 pcpu_block_refresh_hint(chunk, e_index);
873                         } else {
874                                 e_block->right_free =
875                                         min_t(int, e_block->right_free,
876                                               PCPU_BITMAP_BLOCK_BITS - e_off);
877                         }
878                 }
879
880                 /* update in-between md_blocks */
881                 nr_empty_pages += (e_index - s_index - 1);
882                 for (block = s_block + 1; block < e_block; block++) {
883                         block->scan_hint = 0;
884                         block->contig_hint = 0;
885                         block->left_free = 0;
886                         block->right_free = 0;
887                 }
888         }
889
890         if (nr_empty_pages)
891                 pcpu_update_empty_pages(chunk, -nr_empty_pages);
892
893         if (pcpu_region_overlap(chunk_md->scan_hint_start,
894                                 chunk_md->scan_hint_start +
895                                 chunk_md->scan_hint,
896                                 bit_off,
897                                 bit_off + bits))
898                 chunk_md->scan_hint = 0;
899
900         /*
901          * The only time a full chunk scan is required is if the chunk
902          * contig hint is broken.  Otherwise, it means a smaller space
903          * was used and therefore the chunk contig hint is still correct.
904          */
905         if (pcpu_region_overlap(chunk_md->contig_hint_start,
906                                 chunk_md->contig_hint_start +
907                                 chunk_md->contig_hint,
908                                 bit_off,
909                                 bit_off + bits))
910                 pcpu_chunk_refresh_hint(chunk, false);
911 }
912
913 /**
914  * pcpu_block_update_hint_free - updates the block hints on the free path
915  * @chunk: chunk of interest
916  * @bit_off: chunk offset
917  * @bits: size of request
918  *
919  * Updates metadata for the allocation path.  This avoids a blind block
920  * refresh by making use of the block contig hints.  If this fails, it scans
921  * forward and backward to determine the extent of the free area.  This is
922  * capped at the boundary of blocks.
923  *
924  * A chunk update is triggered if a page becomes free, a block becomes free,
925  * or the free spans across blocks.  This tradeoff is to minimize iterating
926  * over the block metadata to update chunk_md->contig_hint.
927  * chunk_md->contig_hint may be off by up to a page, but it will never be more
928  * than the available space.  If the contig hint is contained in one block, it
929  * will be accurate.
930  */
931 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
932                                         int bits)
933 {
934         int nr_empty_pages = 0;
935         struct pcpu_block_md *s_block, *e_block, *block;
936         int s_index, e_index;   /* block indexes of the freed allocation */
937         int s_off, e_off;       /* block offsets of the freed allocation */
938         int start, end;         /* start and end of the whole free area */
939
940         /*
941          * Calculate per block offsets.
942          * The calculation uses an inclusive range, but the resulting offsets
943          * are [start, end).  e_index always points to the last block in the
944          * range.
945          */
946         s_index = pcpu_off_to_block_index(bit_off);
947         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
948         s_off = pcpu_off_to_block_off(bit_off);
949         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
950
951         s_block = chunk->md_blocks + s_index;
952         e_block = chunk->md_blocks + e_index;
953
954         /*
955          * Check if the freed area aligns with the block->contig_hint.
956          * If it does, then the scan to find the beginning/end of the
957          * larger free area can be avoided.
958          *
959          * start and end refer to beginning and end of the free area
960          * within each their respective blocks.  This is not necessarily
961          * the entire free area as it may span blocks past the beginning
962          * or end of the block.
963          */
964         start = s_off;
965         if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
966                 start = s_block->contig_hint_start;
967         } else {
968                 /*
969                  * Scan backwards to find the extent of the free area.
970                  * find_last_bit returns the starting bit, so if the start bit
971                  * is returned, that means there was no last bit and the
972                  * remainder of the chunk is free.
973                  */
974                 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
975                                           start);
976                 start = (start == l_bit) ? 0 : l_bit + 1;
977         }
978
979         end = e_off;
980         if (e_off == e_block->contig_hint_start)
981                 end = e_block->contig_hint_start + e_block->contig_hint;
982         else
983                 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
984                                     PCPU_BITMAP_BLOCK_BITS, end);
985
986         /* update s_block */
987         e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
988         if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
989                 nr_empty_pages++;
990         pcpu_block_update(s_block, start, e_off);
991
992         /* freeing in the same block */
993         if (s_index != e_index) {
994                 /* update e_block */
995                 if (end == PCPU_BITMAP_BLOCK_BITS)
996                         nr_empty_pages++;
997                 pcpu_block_update(e_block, 0, end);
998
999                 /* reset md_blocks in the middle */
1000                 nr_empty_pages += (e_index - s_index - 1);
1001                 for (block = s_block + 1; block < e_block; block++) {
1002                         block->first_free = 0;
1003                         block->scan_hint = 0;
1004                         block->contig_hint_start = 0;
1005                         block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1006                         block->left_free = PCPU_BITMAP_BLOCK_BITS;
1007                         block->right_free = PCPU_BITMAP_BLOCK_BITS;
1008                 }
1009         }
1010
1011         if (nr_empty_pages)
1012                 pcpu_update_empty_pages(chunk, nr_empty_pages);
1013
1014         /*
1015          * Refresh chunk metadata when the free makes a block free or spans
1016          * across blocks.  The contig_hint may be off by up to a page, but if
1017          * the contig_hint is contained in a block, it will be accurate with
1018          * the else condition below.
1019          */
1020         if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1021                 pcpu_chunk_refresh_hint(chunk, true);
1022         else
1023                 pcpu_block_update(&chunk->chunk_md,
1024                                   pcpu_block_off_to_off(s_index, start),
1025                                   end);
1026 }
1027
1028 /**
1029  * pcpu_is_populated - determines if the region is populated
1030  * @chunk: chunk of interest
1031  * @bit_off: chunk offset
1032  * @bits: size of area
1033  * @next_off: return value for the next offset to start searching
1034  *
1035  * For atomic allocations, check if the backing pages are populated.
1036  *
1037  * RETURNS:
1038  * Bool if the backing pages are populated.
1039  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1040  */
1041 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1042                               int *next_off)
1043 {
1044         int page_start, page_end, rs, re;
1045
1046         page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1047         page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1048
1049         rs = page_start;
1050         pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1051         if (rs >= page_end)
1052                 return true;
1053
1054         *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1055         return false;
1056 }
1057
1058 /**
1059  * pcpu_find_block_fit - finds the block index to start searching
1060  * @chunk: chunk of interest
1061  * @alloc_bits: size of request in allocation units
1062  * @align: alignment of area (max PAGE_SIZE bytes)
1063  * @pop_only: use populated regions only
1064  *
1065  * Given a chunk and an allocation spec, find the offset to begin searching
1066  * for a free region.  This iterates over the bitmap metadata blocks to
1067  * find an offset that will be guaranteed to fit the requirements.  It is
1068  * not quite first fit as if the allocation does not fit in the contig hint
1069  * of a block or chunk, it is skipped.  This errs on the side of caution
1070  * to prevent excess iteration.  Poor alignment can cause the allocator to
1071  * skip over blocks and chunks that have valid free areas.
1072  *
1073  * RETURNS:
1074  * The offset in the bitmap to begin searching.
1075  * -1 if no offset is found.
1076  */
1077 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1078                                size_t align, bool pop_only)
1079 {
1080         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1081         int bit_off, bits, next_off;
1082
1083         /*
1084          * Check to see if the allocation can fit in the chunk's contig hint.
1085          * This is an optimization to prevent scanning by assuming if it
1086          * cannot fit in the global hint, there is memory pressure and creating
1087          * a new chunk would happen soon.
1088          */
1089         bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1090                   chunk_md->contig_hint_start;
1091         if (bit_off + alloc_bits > chunk_md->contig_hint)
1092                 return -1;
1093
1094         bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1095         bits = 0;
1096         pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1097                 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1098                                                    &next_off))
1099                         break;
1100
1101                 bit_off = next_off;
1102                 bits = 0;
1103         }
1104
1105         if (bit_off == pcpu_chunk_map_bits(chunk))
1106                 return -1;
1107
1108         return bit_off;
1109 }
1110
1111 /*
1112  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1113  * @map: the address to base the search on
1114  * @size: the bitmap size in bits
1115  * @start: the bitnumber to start searching at
1116  * @nr: the number of zeroed bits we're looking for
1117  * @align_mask: alignment mask for zero area
1118  * @largest_off: offset of the largest area skipped
1119  * @largest_bits: size of the largest area skipped
1120  *
1121  * The @align_mask should be one less than a power of 2.
1122  *
1123  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1124  * the largest area that was skipped.  This is imperfect, but in general is
1125  * good enough.  The largest remembered region is the largest failed region
1126  * seen.  This does not include anything we possibly skipped due to alignment.
1127  * pcpu_block_update_scan() does scan backwards to try and recover what was
1128  * lost to alignment.  While this can cause scanning to miss earlier possible
1129  * free areas, smaller allocations will eventually fill those holes.
1130  */
1131 static unsigned long pcpu_find_zero_area(unsigned long *map,
1132                                          unsigned long size,
1133                                          unsigned long start,
1134                                          unsigned long nr,
1135                                          unsigned long align_mask,
1136                                          unsigned long *largest_off,
1137                                          unsigned long *largest_bits)
1138 {
1139         unsigned long index, end, i, area_off, area_bits;
1140 again:
1141         index = find_next_zero_bit(map, size, start);
1142
1143         /* Align allocation */
1144         index = __ALIGN_MASK(index, align_mask);
1145         area_off = index;
1146
1147         end = index + nr;
1148         if (end > size)
1149                 return end;
1150         i = find_next_bit(map, end, index);
1151         if (i < end) {
1152                 area_bits = i - area_off;
1153                 /* remember largest unused area with best alignment */
1154                 if (area_bits > *largest_bits ||
1155                     (area_bits == *largest_bits && *largest_off &&
1156                      (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1157                         *largest_off = area_off;
1158                         *largest_bits = area_bits;
1159                 }
1160
1161                 start = i + 1;
1162                 goto again;
1163         }
1164         return index;
1165 }
1166
1167 /**
1168  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1169  * @chunk: chunk of interest
1170  * @alloc_bits: size of request in allocation units
1171  * @align: alignment of area (max PAGE_SIZE)
1172  * @start: bit_off to start searching
1173  *
1174  * This function takes in a @start offset to begin searching to fit an
1175  * allocation of @alloc_bits with alignment @align.  It needs to scan
1176  * the allocation map because if it fits within the block's contig hint,
1177  * @start will be block->first_free. This is an attempt to fill the
1178  * allocation prior to breaking the contig hint.  The allocation and
1179  * boundary maps are updated accordingly if it confirms a valid
1180  * free area.
1181  *
1182  * RETURNS:
1183  * Allocated addr offset in @chunk on success.
1184  * -1 if no matching area is found.
1185  */
1186 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1187                            size_t align, int start)
1188 {
1189         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1190         size_t align_mask = (align) ? (align - 1) : 0;
1191         unsigned long area_off = 0, area_bits = 0;
1192         int bit_off, end, oslot;
1193
1194         lockdep_assert_held(&pcpu_lock);
1195
1196         oslot = pcpu_chunk_slot(chunk);
1197
1198         /*
1199          * Search to find a fit.
1200          */
1201         end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1202                     pcpu_chunk_map_bits(chunk));
1203         bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1204                                       align_mask, &area_off, &area_bits);
1205         if (bit_off >= end)
1206                 return -1;
1207
1208         if (area_bits)
1209                 pcpu_block_update_scan(chunk, area_off, area_bits);
1210
1211         /* update alloc map */
1212         bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1213
1214         /* update boundary map */
1215         set_bit(bit_off, chunk->bound_map);
1216         bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1217         set_bit(bit_off + alloc_bits, chunk->bound_map);
1218
1219         chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1220
1221         /* update first free bit */
1222         if (bit_off == chunk_md->first_free)
1223                 chunk_md->first_free = find_next_zero_bit(
1224                                         chunk->alloc_map,
1225                                         pcpu_chunk_map_bits(chunk),
1226                                         bit_off + alloc_bits);
1227
1228         pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1229
1230         pcpu_chunk_relocate(chunk, oslot);
1231
1232         return bit_off * PCPU_MIN_ALLOC_SIZE;
1233 }
1234
1235 /**
1236  * pcpu_free_area - frees the corresponding offset
1237  * @chunk: chunk of interest
1238  * @off: addr offset into chunk
1239  *
1240  * This function determines the size of an allocation to free using
1241  * the boundary bitmap and clears the allocation map.
1242  */
1243 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1244 {
1245         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1246         int bit_off, bits, end, oslot;
1247
1248         lockdep_assert_held(&pcpu_lock);
1249         pcpu_stats_area_dealloc(chunk);
1250
1251         oslot = pcpu_chunk_slot(chunk);
1252
1253         bit_off = off / PCPU_MIN_ALLOC_SIZE;
1254
1255         /* find end index */
1256         end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1257                             bit_off + 1);
1258         bits = end - bit_off;
1259         bitmap_clear(chunk->alloc_map, bit_off, bits);
1260
1261         /* update metadata */
1262         chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1263
1264         /* update first free bit */
1265         chunk_md->first_free = min(chunk_md->first_free, bit_off);
1266
1267         pcpu_block_update_hint_free(chunk, bit_off, bits);
1268
1269         pcpu_chunk_relocate(chunk, oslot);
1270 }
1271
1272 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1273 {
1274         block->scan_hint = 0;
1275         block->contig_hint = nr_bits;
1276         block->left_free = nr_bits;
1277         block->right_free = nr_bits;
1278         block->first_free = 0;
1279         block->nr_bits = nr_bits;
1280 }
1281
1282 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1283 {
1284         struct pcpu_block_md *md_block;
1285
1286         /* init the chunk's block */
1287         pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1288
1289         for (md_block = chunk->md_blocks;
1290              md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1291              md_block++)
1292                 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1293 }
1294
1295 /**
1296  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1297  * @tmp_addr: the start of the region served
1298  * @map_size: size of the region served
1299  *
1300  * This is responsible for creating the chunks that serve the first chunk.  The
1301  * base_addr is page aligned down of @tmp_addr while the region end is page
1302  * aligned up.  Offsets are kept track of to determine the region served. All
1303  * this is done to appease the bitmap allocator in avoiding partial blocks.
1304  *
1305  * RETURNS:
1306  * Chunk serving the region at @tmp_addr of @map_size.
1307  */
1308 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1309                                                          int map_size)
1310 {
1311         struct pcpu_chunk *chunk;
1312         unsigned long aligned_addr, lcm_align;
1313         int start_offset, offset_bits, region_size, region_bits;
1314         size_t alloc_size;
1315
1316         /* region calculations */
1317         aligned_addr = tmp_addr & PAGE_MASK;
1318
1319         start_offset = tmp_addr - aligned_addr;
1320
1321         /*
1322          * Align the end of the region with the LCM of PAGE_SIZE and
1323          * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1324          * the other.
1325          */
1326         lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1327         region_size = ALIGN(start_offset + map_size, lcm_align);
1328
1329         /* allocate chunk */
1330         alloc_size = sizeof(struct pcpu_chunk) +
1331                 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1332         chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1333         if (!chunk)
1334                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1335                       alloc_size);
1336
1337         INIT_LIST_HEAD(&chunk->list);
1338
1339         chunk->base_addr = (void *)aligned_addr;
1340         chunk->start_offset = start_offset;
1341         chunk->end_offset = region_size - chunk->start_offset - map_size;
1342
1343         chunk->nr_pages = region_size >> PAGE_SHIFT;
1344         region_bits = pcpu_chunk_map_bits(chunk);
1345
1346         alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1347         chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1348         if (!chunk->alloc_map)
1349                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1350                       alloc_size);
1351
1352         alloc_size =
1353                 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1354         chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1355         if (!chunk->bound_map)
1356                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1357                       alloc_size);
1358
1359         alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1360         chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1361         if (!chunk->md_blocks)
1362                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1363                       alloc_size);
1364
1365         pcpu_init_md_blocks(chunk);
1366
1367         /* manage populated page bitmap */
1368         chunk->immutable = true;
1369         bitmap_fill(chunk->populated, chunk->nr_pages);
1370         chunk->nr_populated = chunk->nr_pages;
1371         chunk->nr_empty_pop_pages = chunk->nr_pages;
1372
1373         chunk->free_bytes = map_size;
1374
1375         if (chunk->start_offset) {
1376                 /* hide the beginning of the bitmap */
1377                 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1378                 bitmap_set(chunk->alloc_map, 0, offset_bits);
1379                 set_bit(0, chunk->bound_map);
1380                 set_bit(offset_bits, chunk->bound_map);
1381
1382                 chunk->chunk_md.first_free = offset_bits;
1383
1384                 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1385         }
1386
1387         if (chunk->end_offset) {
1388                 /* hide the end of the bitmap */
1389                 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1390                 bitmap_set(chunk->alloc_map,
1391                            pcpu_chunk_map_bits(chunk) - offset_bits,
1392                            offset_bits);
1393                 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1394                         chunk->bound_map);
1395                 set_bit(region_bits, chunk->bound_map);
1396
1397                 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1398                                              - offset_bits, offset_bits);
1399         }
1400
1401         return chunk;
1402 }
1403
1404 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1405 {
1406         struct pcpu_chunk *chunk;
1407         int region_bits;
1408
1409         chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1410         if (!chunk)
1411                 return NULL;
1412
1413         INIT_LIST_HEAD(&chunk->list);
1414         chunk->nr_pages = pcpu_unit_pages;
1415         region_bits = pcpu_chunk_map_bits(chunk);
1416
1417         chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1418                                            sizeof(chunk->alloc_map[0]), gfp);
1419         if (!chunk->alloc_map)
1420                 goto alloc_map_fail;
1421
1422         chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1423                                            sizeof(chunk->bound_map[0]), gfp);
1424         if (!chunk->bound_map)
1425                 goto bound_map_fail;
1426
1427         chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1428                                            sizeof(chunk->md_blocks[0]), gfp);
1429         if (!chunk->md_blocks)
1430                 goto md_blocks_fail;
1431
1432         pcpu_init_md_blocks(chunk);
1433
1434         /* init metadata */
1435         chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1436
1437         return chunk;
1438
1439 md_blocks_fail:
1440         pcpu_mem_free(chunk->bound_map);
1441 bound_map_fail:
1442         pcpu_mem_free(chunk->alloc_map);
1443 alloc_map_fail:
1444         pcpu_mem_free(chunk);
1445
1446         return NULL;
1447 }
1448
1449 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1450 {
1451         if (!chunk)
1452                 return;
1453         pcpu_mem_free(chunk->md_blocks);
1454         pcpu_mem_free(chunk->bound_map);
1455         pcpu_mem_free(chunk->alloc_map);
1456         pcpu_mem_free(chunk);
1457 }
1458
1459 /**
1460  * pcpu_chunk_populated - post-population bookkeeping
1461  * @chunk: pcpu_chunk which got populated
1462  * @page_start: the start page
1463  * @page_end: the end page
1464  *
1465  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1466  * the bookkeeping information accordingly.  Must be called after each
1467  * successful population.
1468  *
1469  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1470  * is to serve an allocation in that area.
1471  */
1472 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1473                                  int page_end)
1474 {
1475         int nr = page_end - page_start;
1476
1477         lockdep_assert_held(&pcpu_lock);
1478
1479         bitmap_set(chunk->populated, page_start, nr);
1480         chunk->nr_populated += nr;
1481         pcpu_nr_populated += nr;
1482
1483         pcpu_update_empty_pages(chunk, nr);
1484 }
1485
1486 /**
1487  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1488  * @chunk: pcpu_chunk which got depopulated
1489  * @page_start: the start page
1490  * @page_end: the end page
1491  *
1492  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1493  * Update the bookkeeping information accordingly.  Must be called after
1494  * each successful depopulation.
1495  */
1496 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1497                                    int page_start, int page_end)
1498 {
1499         int nr = page_end - page_start;
1500
1501         lockdep_assert_held(&pcpu_lock);
1502
1503         bitmap_clear(chunk->populated, page_start, nr);
1504         chunk->nr_populated -= nr;
1505         pcpu_nr_populated -= nr;
1506
1507         pcpu_update_empty_pages(chunk, -nr);
1508 }
1509
1510 /*
1511  * Chunk management implementation.
1512  *
1513  * To allow different implementations, chunk alloc/free and
1514  * [de]population are implemented in a separate file which is pulled
1515  * into this file and compiled together.  The following functions
1516  * should be implemented.
1517  *
1518  * pcpu_populate_chunk          - populate the specified range of a chunk
1519  * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
1520  * pcpu_create_chunk            - create a new chunk
1521  * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
1522  * pcpu_addr_to_page            - translate address to physical address
1523  * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
1524  */
1525 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1526                                int page_start, int page_end, gfp_t gfp);
1527 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1528                                   int page_start, int page_end);
1529 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1530 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1531 static struct page *pcpu_addr_to_page(void *addr);
1532 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1533
1534 #ifdef CONFIG_NEED_PER_CPU_KM
1535 #include "percpu-km.c"
1536 #else
1537 #include "percpu-vm.c"
1538 #endif
1539
1540 /**
1541  * pcpu_chunk_addr_search - determine chunk containing specified address
1542  * @addr: address for which the chunk needs to be determined.
1543  *
1544  * This is an internal function that handles all but static allocations.
1545  * Static percpu address values should never be passed into the allocator.
1546  *
1547  * RETURNS:
1548  * The address of the found chunk.
1549  */
1550 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1551 {
1552         /* is it in the dynamic region (first chunk)? */
1553         if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1554                 return pcpu_first_chunk;
1555
1556         /* is it in the reserved region? */
1557         if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1558                 return pcpu_reserved_chunk;
1559
1560         /*
1561          * The address is relative to unit0 which might be unused and
1562          * thus unmapped.  Offset the address to the unit space of the
1563          * current processor before looking it up in the vmalloc
1564          * space.  Note that any possible cpu id can be used here, so
1565          * there's no need to worry about preemption or cpu hotplug.
1566          */
1567         addr += pcpu_unit_offsets[raw_smp_processor_id()];
1568         return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1569 }
1570
1571 /**
1572  * pcpu_alloc - the percpu allocator
1573  * @size: size of area to allocate in bytes
1574  * @align: alignment of area (max PAGE_SIZE)
1575  * @reserved: allocate from the reserved chunk if available
1576  * @gfp: allocation flags
1577  *
1578  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1579  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1580  * then no warning will be triggered on invalid or failed allocation
1581  * requests.
1582  *
1583  * RETURNS:
1584  * Percpu pointer to the allocated area on success, NULL on failure.
1585  */
1586 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1587                                  gfp_t gfp)
1588 {
1589         /* whitelisted flags that can be passed to the backing allocators */
1590         gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1591         bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1592         bool do_warn = !(gfp & __GFP_NOWARN);
1593         static int warn_limit = 10;
1594         struct pcpu_chunk *chunk, *next;
1595         const char *err;
1596         int slot, off, cpu, ret;
1597         unsigned long flags;
1598         void __percpu *ptr;
1599         size_t bits, bit_align;
1600
1601         /*
1602          * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1603          * therefore alignment must be a minimum of that many bytes.
1604          * An allocation may have internal fragmentation from rounding up
1605          * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1606          */
1607         if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1608                 align = PCPU_MIN_ALLOC_SIZE;
1609
1610         size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1611         bits = size >> PCPU_MIN_ALLOC_SHIFT;
1612         bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1613
1614         if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1615                      !is_power_of_2(align))) {
1616                 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1617                      size, align);
1618                 return NULL;
1619         }
1620
1621         if (!is_atomic) {
1622                 /*
1623                  * pcpu_balance_workfn() allocates memory under this mutex,
1624                  * and it may wait for memory reclaim. Allow current task
1625                  * to become OOM victim, in case of memory pressure.
1626                  */
1627                 if (gfp & __GFP_NOFAIL)
1628                         mutex_lock(&pcpu_alloc_mutex);
1629                 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1630                         return NULL;
1631         }
1632
1633         spin_lock_irqsave(&pcpu_lock, flags);
1634
1635         /* serve reserved allocations from the reserved chunk if available */
1636         if (reserved && pcpu_reserved_chunk) {
1637                 chunk = pcpu_reserved_chunk;
1638
1639                 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1640                 if (off < 0) {
1641                         err = "alloc from reserved chunk failed";
1642                         goto fail_unlock;
1643                 }
1644
1645                 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1646                 if (off >= 0)
1647                         goto area_found;
1648
1649                 err = "alloc from reserved chunk failed";
1650                 goto fail_unlock;
1651         }
1652
1653 restart:
1654         /* search through normal chunks */
1655         for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1656                 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1657                         off = pcpu_find_block_fit(chunk, bits, bit_align,
1658                                                   is_atomic);
1659                         if (off < 0) {
1660                                 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1661                                         pcpu_chunk_move(chunk, 0);
1662                                 continue;
1663                         }
1664
1665                         off = pcpu_alloc_area(chunk, bits, bit_align, off);
1666                         if (off >= 0)
1667                                 goto area_found;
1668
1669                 }
1670         }
1671
1672         spin_unlock_irqrestore(&pcpu_lock, flags);
1673
1674         /*
1675          * No space left.  Create a new chunk.  We don't want multiple
1676          * tasks to create chunks simultaneously.  Serialize and create iff
1677          * there's still no empty chunk after grabbing the mutex.
1678          */
1679         if (is_atomic) {
1680                 err = "atomic alloc failed, no space left";
1681                 goto fail;
1682         }
1683
1684         if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1685                 chunk = pcpu_create_chunk(pcpu_gfp);
1686                 if (!chunk) {
1687                         err = "failed to allocate new chunk";
1688                         goto fail;
1689                 }
1690
1691                 spin_lock_irqsave(&pcpu_lock, flags);
1692                 pcpu_chunk_relocate(chunk, -1);
1693         } else {
1694                 spin_lock_irqsave(&pcpu_lock, flags);
1695         }
1696
1697         goto restart;
1698
1699 area_found:
1700         pcpu_stats_area_alloc(chunk, size);
1701         spin_unlock_irqrestore(&pcpu_lock, flags);
1702
1703         /* populate if not all pages are already there */
1704         if (!is_atomic) {
1705                 int page_start, page_end, rs, re;
1706
1707                 page_start = PFN_DOWN(off);
1708                 page_end = PFN_UP(off + size);
1709
1710                 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1711                                            page_start, page_end) {
1712                         WARN_ON(chunk->immutable);
1713
1714                         ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1715
1716                         spin_lock_irqsave(&pcpu_lock, flags);
1717                         if (ret) {
1718                                 pcpu_free_area(chunk, off);
1719                                 err = "failed to populate";
1720                                 goto fail_unlock;
1721                         }
1722                         pcpu_chunk_populated(chunk, rs, re);
1723                         spin_unlock_irqrestore(&pcpu_lock, flags);
1724                 }
1725
1726                 mutex_unlock(&pcpu_alloc_mutex);
1727         }
1728
1729         if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1730                 pcpu_schedule_balance_work();
1731
1732         /* clear the areas and return address relative to base address */
1733         for_each_possible_cpu(cpu)
1734                 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1735
1736         ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1737         kmemleak_alloc_percpu(ptr, size, gfp);
1738
1739         trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1740                         chunk->base_addr, off, ptr);
1741
1742         return ptr;
1743
1744 fail_unlock:
1745         spin_unlock_irqrestore(&pcpu_lock, flags);
1746 fail:
1747         trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1748
1749         if (!is_atomic && do_warn && warn_limit) {
1750                 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1751                         size, align, is_atomic, err);
1752                 dump_stack();
1753                 if (!--warn_limit)
1754                         pr_info("limit reached, disable warning\n");
1755         }
1756         if (is_atomic) {
1757                 /* see the flag handling in pcpu_blance_workfn() */
1758                 pcpu_atomic_alloc_failed = true;
1759                 pcpu_schedule_balance_work();
1760         } else {
1761                 mutex_unlock(&pcpu_alloc_mutex);
1762         }
1763         return NULL;
1764 }
1765
1766 /**
1767  * __alloc_percpu_gfp - allocate dynamic percpu area
1768  * @size: size of area to allocate in bytes
1769  * @align: alignment of area (max PAGE_SIZE)
1770  * @gfp: allocation flags
1771  *
1772  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1773  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1774  * be called from any context but is a lot more likely to fail. If @gfp
1775  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1776  * allocation requests.
1777  *
1778  * RETURNS:
1779  * Percpu pointer to the allocated area on success, NULL on failure.
1780  */
1781 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1782 {
1783         return pcpu_alloc(size, align, false, gfp);
1784 }
1785 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1786
1787 /**
1788  * __alloc_percpu - allocate dynamic percpu area
1789  * @size: size of area to allocate in bytes
1790  * @align: alignment of area (max PAGE_SIZE)
1791  *
1792  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1793  */
1794 void __percpu *__alloc_percpu(size_t size, size_t align)
1795 {
1796         return pcpu_alloc(size, align, false, GFP_KERNEL);
1797 }
1798 EXPORT_SYMBOL_GPL(__alloc_percpu);
1799
1800 /**
1801  * __alloc_reserved_percpu - allocate reserved percpu area
1802  * @size: size of area to allocate in bytes
1803  * @align: alignment of area (max PAGE_SIZE)
1804  *
1805  * Allocate zero-filled percpu area of @size bytes aligned at @align
1806  * from reserved percpu area if arch has set it up; otherwise,
1807  * allocation is served from the same dynamic area.  Might sleep.
1808  * Might trigger writeouts.
1809  *
1810  * CONTEXT:
1811  * Does GFP_KERNEL allocation.
1812  *
1813  * RETURNS:
1814  * Percpu pointer to the allocated area on success, NULL on failure.
1815  */
1816 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1817 {
1818         return pcpu_alloc(size, align, true, GFP_KERNEL);
1819 }
1820
1821 /**
1822  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1823  * @work: unused
1824  *
1825  * Reclaim all fully free chunks except for the first one.  This is also
1826  * responsible for maintaining the pool of empty populated pages.  However,
1827  * it is possible that this is called when physical memory is scarce causing
1828  * OOM killer to be triggered.  We should avoid doing so until an actual
1829  * allocation causes the failure as it is possible that requests can be
1830  * serviced from already backed regions.
1831  */
1832 static void pcpu_balance_workfn(struct work_struct *work)
1833 {
1834         /* gfp flags passed to underlying allocators */
1835         const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1836         LIST_HEAD(to_free);
1837         struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1838         struct pcpu_chunk *chunk, *next;
1839         int slot, nr_to_pop, ret;
1840
1841         /*
1842          * There's no reason to keep around multiple unused chunks and VM
1843          * areas can be scarce.  Destroy all free chunks except for one.
1844          */
1845         mutex_lock(&pcpu_alloc_mutex);
1846         spin_lock_irq(&pcpu_lock);
1847
1848         list_for_each_entry_safe(chunk, next, free_head, list) {
1849                 WARN_ON(chunk->immutable);
1850
1851                 /* spare the first one */
1852                 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1853                         continue;
1854
1855                 list_move(&chunk->list, &to_free);
1856         }
1857
1858         spin_unlock_irq(&pcpu_lock);
1859
1860         list_for_each_entry_safe(chunk, next, &to_free, list) {
1861                 int rs, re;
1862
1863                 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1864                                          chunk->nr_pages) {
1865                         pcpu_depopulate_chunk(chunk, rs, re);
1866                         spin_lock_irq(&pcpu_lock);
1867                         pcpu_chunk_depopulated(chunk, rs, re);
1868                         spin_unlock_irq(&pcpu_lock);
1869                 }
1870                 pcpu_destroy_chunk(chunk);
1871                 cond_resched();
1872         }
1873
1874         /*
1875          * Ensure there are certain number of free populated pages for
1876          * atomic allocs.  Fill up from the most packed so that atomic
1877          * allocs don't increase fragmentation.  If atomic allocation
1878          * failed previously, always populate the maximum amount.  This
1879          * should prevent atomic allocs larger than PAGE_SIZE from keeping
1880          * failing indefinitely; however, large atomic allocs are not
1881          * something we support properly and can be highly unreliable and
1882          * inefficient.
1883          */
1884 retry_pop:
1885         if (pcpu_atomic_alloc_failed) {
1886                 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1887                 /* best effort anyway, don't worry about synchronization */
1888                 pcpu_atomic_alloc_failed = false;
1889         } else {
1890                 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1891                                   pcpu_nr_empty_pop_pages,
1892                                   0, PCPU_EMPTY_POP_PAGES_HIGH);
1893         }
1894
1895         for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1896                 int nr_unpop = 0, rs, re;
1897
1898                 if (!nr_to_pop)
1899                         break;
1900
1901                 spin_lock_irq(&pcpu_lock);
1902                 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1903                         nr_unpop = chunk->nr_pages - chunk->nr_populated;
1904                         if (nr_unpop)
1905                                 break;
1906                 }
1907                 spin_unlock_irq(&pcpu_lock);
1908
1909                 if (!nr_unpop)
1910                         continue;
1911
1912                 /* @chunk can't go away while pcpu_alloc_mutex is held */
1913                 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1914                                            chunk->nr_pages) {
1915                         int nr = min(re - rs, nr_to_pop);
1916
1917                         ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1918                         if (!ret) {
1919                                 nr_to_pop -= nr;
1920                                 spin_lock_irq(&pcpu_lock);
1921                                 pcpu_chunk_populated(chunk, rs, rs + nr);
1922                                 spin_unlock_irq(&pcpu_lock);
1923                         } else {
1924                                 nr_to_pop = 0;
1925                         }
1926
1927                         if (!nr_to_pop)
1928                                 break;
1929                 }
1930         }
1931
1932         if (nr_to_pop) {
1933                 /* ran out of chunks to populate, create a new one and retry */
1934                 chunk = pcpu_create_chunk(gfp);
1935                 if (chunk) {
1936                         spin_lock_irq(&pcpu_lock);
1937                         pcpu_chunk_relocate(chunk, -1);
1938                         spin_unlock_irq(&pcpu_lock);
1939                         goto retry_pop;
1940                 }
1941         }
1942
1943         mutex_unlock(&pcpu_alloc_mutex);
1944 }
1945
1946 /**
1947  * free_percpu - free percpu area
1948  * @ptr: pointer to area to free
1949  *
1950  * Free percpu area @ptr.
1951  *
1952  * CONTEXT:
1953  * Can be called from atomic context.
1954  */
1955 void free_percpu(void __percpu *ptr)
1956 {
1957         void *addr;
1958         struct pcpu_chunk *chunk;
1959         unsigned long flags;
1960         int off;
1961         bool need_balance = false;
1962
1963         if (!ptr)
1964                 return;
1965
1966         kmemleak_free_percpu(ptr);
1967
1968         addr = __pcpu_ptr_to_addr(ptr);
1969
1970         spin_lock_irqsave(&pcpu_lock, flags);
1971
1972         chunk = pcpu_chunk_addr_search(addr);
1973         off = addr - chunk->base_addr;
1974
1975         pcpu_free_area(chunk, off);
1976
1977         /* if there are more than one fully free chunks, wake up grim reaper */
1978         if (chunk->free_bytes == pcpu_unit_size) {
1979                 struct pcpu_chunk *pos;
1980
1981                 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1982                         if (pos != chunk) {
1983                                 need_balance = true;
1984                                 break;
1985                         }
1986         }
1987
1988         trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1989
1990         spin_unlock_irqrestore(&pcpu_lock, flags);
1991
1992         if (need_balance)
1993                 pcpu_schedule_balance_work();
1994 }
1995 EXPORT_SYMBOL_GPL(free_percpu);
1996
1997 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1998 {
1999 #ifdef CONFIG_SMP
2000         const size_t static_size = __per_cpu_end - __per_cpu_start;
2001         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2002         unsigned int cpu;
2003
2004         for_each_possible_cpu(cpu) {
2005                 void *start = per_cpu_ptr(base, cpu);
2006                 void *va = (void *)addr;
2007
2008                 if (va >= start && va < start + static_size) {
2009                         if (can_addr) {
2010                                 *can_addr = (unsigned long) (va - start);
2011                                 *can_addr += (unsigned long)
2012                                         per_cpu_ptr(base, get_boot_cpu_id());
2013                         }
2014                         return true;
2015                 }
2016         }
2017 #endif
2018         /* on UP, can't distinguish from other static vars, always false */
2019         return false;
2020 }
2021
2022 /**
2023  * is_kernel_percpu_address - test whether address is from static percpu area
2024  * @addr: address to test
2025  *
2026  * Test whether @addr belongs to in-kernel static percpu area.  Module
2027  * static percpu areas are not considered.  For those, use
2028  * is_module_percpu_address().
2029  *
2030  * RETURNS:
2031  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2032  */
2033 bool is_kernel_percpu_address(unsigned long addr)
2034 {
2035         return __is_kernel_percpu_address(addr, NULL);
2036 }
2037
2038 /**
2039  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2040  * @addr: the address to be converted to physical address
2041  *
2042  * Given @addr which is dereferenceable address obtained via one of
2043  * percpu access macros, this function translates it into its physical
2044  * address.  The caller is responsible for ensuring @addr stays valid
2045  * until this function finishes.
2046  *
2047  * percpu allocator has special setup for the first chunk, which currently
2048  * supports either embedding in linear address space or vmalloc mapping,
2049  * and, from the second one, the backing allocator (currently either vm or
2050  * km) provides translation.
2051  *
2052  * The addr can be translated simply without checking if it falls into the
2053  * first chunk. But the current code reflects better how percpu allocator
2054  * actually works, and the verification can discover both bugs in percpu
2055  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2056  * code.
2057  *
2058  * RETURNS:
2059  * The physical address for @addr.
2060  */
2061 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2062 {
2063         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2064         bool in_first_chunk = false;
2065         unsigned long first_low, first_high;
2066         unsigned int cpu;
2067
2068         /*
2069          * The following test on unit_low/high isn't strictly
2070          * necessary but will speed up lookups of addresses which
2071          * aren't in the first chunk.
2072          *
2073          * The address check is against full chunk sizes.  pcpu_base_addr
2074          * points to the beginning of the first chunk including the
2075          * static region.  Assumes good intent as the first chunk may
2076          * not be full (ie. < pcpu_unit_pages in size).
2077          */
2078         first_low = (unsigned long)pcpu_base_addr +
2079                     pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2080         first_high = (unsigned long)pcpu_base_addr +
2081                      pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2082         if ((unsigned long)addr >= first_low &&
2083             (unsigned long)addr < first_high) {
2084                 for_each_possible_cpu(cpu) {
2085                         void *start = per_cpu_ptr(base, cpu);
2086
2087                         if (addr >= start && addr < start + pcpu_unit_size) {
2088                                 in_first_chunk = true;
2089                                 break;
2090                         }
2091                 }
2092         }
2093
2094         if (in_first_chunk) {
2095                 if (!is_vmalloc_addr(addr))
2096                         return __pa(addr);
2097                 else
2098                         return page_to_phys(vmalloc_to_page(addr)) +
2099                                offset_in_page(addr);
2100         } else
2101                 return page_to_phys(pcpu_addr_to_page(addr)) +
2102                        offset_in_page(addr);
2103 }
2104
2105 /**
2106  * pcpu_alloc_alloc_info - allocate percpu allocation info
2107  * @nr_groups: the number of groups
2108  * @nr_units: the number of units
2109  *
2110  * Allocate ai which is large enough for @nr_groups groups containing
2111  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2112  * cpu_map array which is long enough for @nr_units and filled with
2113  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2114  * pointer of other groups.
2115  *
2116  * RETURNS:
2117  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2118  * failure.
2119  */
2120 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2121                                                       int nr_units)
2122 {
2123         struct pcpu_alloc_info *ai;
2124         size_t base_size, ai_size;
2125         void *ptr;
2126         int unit;
2127
2128         base_size = ALIGN(struct_size(ai, groups, nr_groups),
2129                           __alignof__(ai->groups[0].cpu_map[0]));
2130         ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2131
2132         ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2133         if (!ptr)
2134                 return NULL;
2135         ai = ptr;
2136         ptr += base_size;
2137
2138         ai->groups[0].cpu_map = ptr;
2139
2140         for (unit = 0; unit < nr_units; unit++)
2141                 ai->groups[0].cpu_map[unit] = NR_CPUS;
2142
2143         ai->nr_groups = nr_groups;
2144         ai->__ai_size = PFN_ALIGN(ai_size);
2145
2146         return ai;
2147 }
2148
2149 /**
2150  * pcpu_free_alloc_info - free percpu allocation info
2151  * @ai: pcpu_alloc_info to free
2152  *
2153  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2154  */
2155 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2156 {
2157         memblock_free_early(__pa(ai), ai->__ai_size);
2158 }
2159
2160 /**
2161  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2162  * @lvl: loglevel
2163  * @ai: allocation info to dump
2164  *
2165  * Print out information about @ai using loglevel @lvl.
2166  */
2167 static void pcpu_dump_alloc_info(const char *lvl,
2168                                  const struct pcpu_alloc_info *ai)
2169 {
2170         int group_width = 1, cpu_width = 1, width;
2171         char empty_str[] = "--------";
2172         int alloc = 0, alloc_end = 0;
2173         int group, v;
2174         int upa, apl;   /* units per alloc, allocs per line */
2175
2176         v = ai->nr_groups;
2177         while (v /= 10)
2178                 group_width++;
2179
2180         v = num_possible_cpus();
2181         while (v /= 10)
2182                 cpu_width++;
2183         empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2184
2185         upa = ai->alloc_size / ai->unit_size;
2186         width = upa * (cpu_width + 1) + group_width + 3;
2187         apl = rounddown_pow_of_two(max(60 / width, 1));
2188
2189         printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2190                lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2191                ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2192
2193         for (group = 0; group < ai->nr_groups; group++) {
2194                 const struct pcpu_group_info *gi = &ai->groups[group];
2195                 int unit = 0, unit_end = 0;
2196
2197                 BUG_ON(gi->nr_units % upa);
2198                 for (alloc_end += gi->nr_units / upa;
2199                      alloc < alloc_end; alloc++) {
2200                         if (!(alloc % apl)) {
2201                                 pr_cont("\n");
2202                                 printk("%spcpu-alloc: ", lvl);
2203                         }
2204                         pr_cont("[%0*d] ", group_width, group);
2205
2206                         for (unit_end += upa; unit < unit_end; unit++)
2207                                 if (gi->cpu_map[unit] != NR_CPUS)
2208                                         pr_cont("%0*d ",
2209                                                 cpu_width, gi->cpu_map[unit]);
2210                                 else
2211                                         pr_cont("%s ", empty_str);
2212                 }
2213         }
2214         pr_cont("\n");
2215 }
2216
2217 /**
2218  * pcpu_setup_first_chunk - initialize the first percpu chunk
2219  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2220  * @base_addr: mapped address
2221  *
2222  * Initialize the first percpu chunk which contains the kernel static
2223  * percpu area.  This function is to be called from arch percpu area
2224  * setup path.
2225  *
2226  * @ai contains all information necessary to initialize the first
2227  * chunk and prime the dynamic percpu allocator.
2228  *
2229  * @ai->static_size is the size of static percpu area.
2230  *
2231  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2232  * reserve after the static area in the first chunk.  This reserves
2233  * the first chunk such that it's available only through reserved
2234  * percpu allocation.  This is primarily used to serve module percpu
2235  * static areas on architectures where the addressing model has
2236  * limited offset range for symbol relocations to guarantee module
2237  * percpu symbols fall inside the relocatable range.
2238  *
2239  * @ai->dyn_size determines the number of bytes available for dynamic
2240  * allocation in the first chunk.  The area between @ai->static_size +
2241  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2242  *
2243  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2244  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2245  * @ai->dyn_size.
2246  *
2247  * @ai->atom_size is the allocation atom size and used as alignment
2248  * for vm areas.
2249  *
2250  * @ai->alloc_size is the allocation size and always multiple of
2251  * @ai->atom_size.  This is larger than @ai->atom_size if
2252  * @ai->unit_size is larger than @ai->atom_size.
2253  *
2254  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2255  * percpu areas.  Units which should be colocated are put into the
2256  * same group.  Dynamic VM areas will be allocated according to these
2257  * groupings.  If @ai->nr_groups is zero, a single group containing
2258  * all units is assumed.
2259  *
2260  * The caller should have mapped the first chunk at @base_addr and
2261  * copied static data to each unit.
2262  *
2263  * The first chunk will always contain a static and a dynamic region.
2264  * However, the static region is not managed by any chunk.  If the first
2265  * chunk also contains a reserved region, it is served by two chunks -
2266  * one for the reserved region and one for the dynamic region.  They
2267  * share the same vm, but use offset regions in the area allocation map.
2268  * The chunk serving the dynamic region is circulated in the chunk slots
2269  * and available for dynamic allocation like any other chunk.
2270  */
2271 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2272                                    void *base_addr)
2273 {
2274         size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2275         size_t static_size, dyn_size;
2276         struct pcpu_chunk *chunk;
2277         unsigned long *group_offsets;
2278         size_t *group_sizes;
2279         unsigned long *unit_off;
2280         unsigned int cpu;
2281         int *unit_map;
2282         int group, unit, i;
2283         int map_size;
2284         unsigned long tmp_addr;
2285         size_t alloc_size;
2286
2287 #define PCPU_SETUP_BUG_ON(cond) do {                                    \
2288         if (unlikely(cond)) {                                           \
2289                 pr_emerg("failed to initialize, %s\n", #cond);          \
2290                 pr_emerg("cpu_possible_mask=%*pb\n",                    \
2291                          cpumask_pr_args(cpu_possible_mask));           \
2292                 pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
2293                 BUG();                                                  \
2294         }                                                               \
2295 } while (0)
2296
2297         /* sanity checks */
2298         PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2299 #ifdef CONFIG_SMP
2300         PCPU_SETUP_BUG_ON(!ai->static_size);
2301         PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2302 #endif
2303         PCPU_SETUP_BUG_ON(!base_addr);
2304         PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2305         PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2306         PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2307         PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2308         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2309         PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2310         PCPU_SETUP_BUG_ON(!ai->dyn_size);
2311         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2312         PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2313                             IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2314         PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2315
2316         /* process group information and build config tables accordingly */
2317         alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2318         group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2319         if (!group_offsets)
2320                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2321                       alloc_size);
2322
2323         alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2324         group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2325         if (!group_sizes)
2326                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2327                       alloc_size);
2328
2329         alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2330         unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2331         if (!unit_map)
2332                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2333                       alloc_size);
2334
2335         alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2336         unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2337         if (!unit_off)
2338                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2339                       alloc_size);
2340
2341         for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2342                 unit_map[cpu] = UINT_MAX;
2343
2344         pcpu_low_unit_cpu = NR_CPUS;
2345         pcpu_high_unit_cpu = NR_CPUS;
2346
2347         for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2348                 const struct pcpu_group_info *gi = &ai->groups[group];
2349
2350                 group_offsets[group] = gi->base_offset;
2351                 group_sizes[group] = gi->nr_units * ai->unit_size;
2352
2353                 for (i = 0; i < gi->nr_units; i++) {
2354                         cpu = gi->cpu_map[i];
2355                         if (cpu == NR_CPUS)
2356                                 continue;
2357
2358                         PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2359                         PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2360                         PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2361
2362                         unit_map[cpu] = unit + i;
2363                         unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2364
2365                         /* determine low/high unit_cpu */
2366                         if (pcpu_low_unit_cpu == NR_CPUS ||
2367                             unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2368                                 pcpu_low_unit_cpu = cpu;
2369                         if (pcpu_high_unit_cpu == NR_CPUS ||
2370                             unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2371                                 pcpu_high_unit_cpu = cpu;
2372                 }
2373         }
2374         pcpu_nr_units = unit;
2375
2376         for_each_possible_cpu(cpu)
2377                 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2378
2379         /* we're done parsing the input, undefine BUG macro and dump config */
2380 #undef PCPU_SETUP_BUG_ON
2381         pcpu_dump_alloc_info(KERN_DEBUG, ai);
2382
2383         pcpu_nr_groups = ai->nr_groups;
2384         pcpu_group_offsets = group_offsets;
2385         pcpu_group_sizes = group_sizes;
2386         pcpu_unit_map = unit_map;
2387         pcpu_unit_offsets = unit_off;
2388
2389         /* determine basic parameters */
2390         pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2391         pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2392         pcpu_atom_size = ai->atom_size;
2393         pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2394                 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2395
2396         pcpu_stats_save_ai(ai);
2397
2398         /*
2399          * Allocate chunk slots.  The additional last slot is for
2400          * empty chunks.
2401          */
2402         pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2403         pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2404                                    SMP_CACHE_BYTES);
2405         if (!pcpu_slot)
2406                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2407                       pcpu_nr_slots * sizeof(pcpu_slot[0]));
2408         for (i = 0; i < pcpu_nr_slots; i++)
2409                 INIT_LIST_HEAD(&pcpu_slot[i]);
2410
2411         /*
2412          * The end of the static region needs to be aligned with the
2413          * minimum allocation size as this offsets the reserved and
2414          * dynamic region.  The first chunk ends page aligned by
2415          * expanding the dynamic region, therefore the dynamic region
2416          * can be shrunk to compensate while still staying above the
2417          * configured sizes.
2418          */
2419         static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2420         dyn_size = ai->dyn_size - (static_size - ai->static_size);
2421
2422         /*
2423          * Initialize first chunk.
2424          * If the reserved_size is non-zero, this initializes the reserved
2425          * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2426          * and the dynamic region is initialized here.  The first chunk,
2427          * pcpu_first_chunk, will always point to the chunk that serves
2428          * the dynamic region.
2429          */
2430         tmp_addr = (unsigned long)base_addr + static_size;
2431         map_size = ai->reserved_size ?: dyn_size;
2432         chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2433
2434         /* init dynamic chunk if necessary */
2435         if (ai->reserved_size) {
2436                 pcpu_reserved_chunk = chunk;
2437
2438                 tmp_addr = (unsigned long)base_addr + static_size +
2439                            ai->reserved_size;
2440                 map_size = dyn_size;
2441                 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2442         }
2443
2444         /* link the first chunk in */
2445         pcpu_first_chunk = chunk;
2446         pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2447         pcpu_chunk_relocate(pcpu_first_chunk, -1);
2448
2449         /* include all regions of the first chunk */
2450         pcpu_nr_populated += PFN_DOWN(size_sum);
2451
2452         pcpu_stats_chunk_alloc();
2453         trace_percpu_create_chunk(base_addr);
2454
2455         /* we're done */
2456         pcpu_base_addr = base_addr;
2457 }
2458
2459 #ifdef CONFIG_SMP
2460
2461 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2462         [PCPU_FC_AUTO]  = "auto",
2463         [PCPU_FC_EMBED] = "embed",
2464         [PCPU_FC_PAGE]  = "page",
2465 };
2466
2467 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2468
2469 static int __init percpu_alloc_setup(char *str)
2470 {
2471         if (!str)
2472                 return -EINVAL;
2473
2474         if (0)
2475                 /* nada */;
2476 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2477         else if (!strcmp(str, "embed"))
2478                 pcpu_chosen_fc = PCPU_FC_EMBED;
2479 #endif
2480 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2481         else if (!strcmp(str, "page"))
2482                 pcpu_chosen_fc = PCPU_FC_PAGE;
2483 #endif
2484         else
2485                 pr_warn("unknown allocator %s specified\n", str);
2486
2487         return 0;
2488 }
2489 early_param("percpu_alloc", percpu_alloc_setup);
2490
2491 /*
2492  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2493  * Build it if needed by the arch config or the generic setup is going
2494  * to be used.
2495  */
2496 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2497         !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2498 #define BUILD_EMBED_FIRST_CHUNK
2499 #endif
2500
2501 /* build pcpu_page_first_chunk() iff needed by the arch config */
2502 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2503 #define BUILD_PAGE_FIRST_CHUNK
2504 #endif
2505
2506 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2507 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2508 /**
2509  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2510  * @reserved_size: the size of reserved percpu area in bytes
2511  * @dyn_size: minimum free size for dynamic allocation in bytes
2512  * @atom_size: allocation atom size
2513  * @cpu_distance_fn: callback to determine distance between cpus, optional
2514  *
2515  * This function determines grouping of units, their mappings to cpus
2516  * and other parameters considering needed percpu size, allocation
2517  * atom size and distances between CPUs.
2518  *
2519  * Groups are always multiples of atom size and CPUs which are of
2520  * LOCAL_DISTANCE both ways are grouped together and share space for
2521  * units in the same group.  The returned configuration is guaranteed
2522  * to have CPUs on different nodes on different groups and >=75% usage
2523  * of allocated virtual address space.
2524  *
2525  * RETURNS:
2526  * On success, pointer to the new allocation_info is returned.  On
2527  * failure, ERR_PTR value is returned.
2528  */
2529 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2530                                 size_t reserved_size, size_t dyn_size,
2531                                 size_t atom_size,
2532                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2533 {
2534         static int group_map[NR_CPUS] __initdata;
2535         static int group_cnt[NR_CPUS] __initdata;
2536         const size_t static_size = __per_cpu_end - __per_cpu_start;
2537         int nr_groups = 1, nr_units = 0;
2538         size_t size_sum, min_unit_size, alloc_size;
2539         int upa, max_upa, uninitialized_var(best_upa);  /* units_per_alloc */
2540         int last_allocs, group, unit;
2541         unsigned int cpu, tcpu;
2542         struct pcpu_alloc_info *ai;
2543         unsigned int *cpu_map;
2544
2545         /* this function may be called multiple times */
2546         memset(group_map, 0, sizeof(group_map));
2547         memset(group_cnt, 0, sizeof(group_cnt));
2548
2549         /* calculate size_sum and ensure dyn_size is enough for early alloc */
2550         size_sum = PFN_ALIGN(static_size + reserved_size +
2551                             max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2552         dyn_size = size_sum - static_size - reserved_size;
2553
2554         /*
2555          * Determine min_unit_size, alloc_size and max_upa such that
2556          * alloc_size is multiple of atom_size and is the smallest
2557          * which can accommodate 4k aligned segments which are equal to
2558          * or larger than min_unit_size.
2559          */
2560         min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2561
2562         /* determine the maximum # of units that can fit in an allocation */
2563         alloc_size = roundup(min_unit_size, atom_size);
2564         upa = alloc_size / min_unit_size;
2565         while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2566                 upa--;
2567         max_upa = upa;
2568
2569         /* group cpus according to their proximity */
2570         for_each_possible_cpu(cpu) {
2571                 group = 0;
2572         next_group:
2573                 for_each_possible_cpu(tcpu) {
2574                         if (cpu == tcpu)
2575                                 break;
2576                         if (group_map[tcpu] == group && cpu_distance_fn &&
2577                             (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2578                              cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2579                                 group++;
2580                                 nr_groups = max(nr_groups, group + 1);
2581                                 goto next_group;
2582                         }
2583                 }
2584                 group_map[cpu] = group;
2585                 group_cnt[group]++;
2586         }
2587
2588         /*
2589          * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2590          * Expand the unit_size until we use >= 75% of the units allocated.
2591          * Related to atom_size, which could be much larger than the unit_size.
2592          */
2593         last_allocs = INT_MAX;
2594         for (upa = max_upa; upa; upa--) {
2595                 int allocs = 0, wasted = 0;
2596
2597                 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2598                         continue;
2599
2600                 for (group = 0; group < nr_groups; group++) {
2601                         int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2602                         allocs += this_allocs;
2603                         wasted += this_allocs * upa - group_cnt[group];
2604                 }
2605
2606                 /*
2607                  * Don't accept if wastage is over 1/3.  The
2608                  * greater-than comparison ensures upa==1 always
2609                  * passes the following check.
2610                  */
2611                 if (wasted > num_possible_cpus() / 3)
2612                         continue;
2613
2614                 /* and then don't consume more memory */
2615                 if (allocs > last_allocs)
2616                         break;
2617                 last_allocs = allocs;
2618                 best_upa = upa;
2619         }
2620         upa = best_upa;
2621
2622         /* allocate and fill alloc_info */
2623         for (group = 0; group < nr_groups; group++)
2624                 nr_units += roundup(group_cnt[group], upa);
2625
2626         ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2627         if (!ai)
2628                 return ERR_PTR(-ENOMEM);
2629         cpu_map = ai->groups[0].cpu_map;
2630
2631         for (group = 0; group < nr_groups; group++) {
2632                 ai->groups[group].cpu_map = cpu_map;
2633                 cpu_map += roundup(group_cnt[group], upa);
2634         }
2635
2636         ai->static_size = static_size;
2637         ai->reserved_size = reserved_size;
2638         ai->dyn_size = dyn_size;
2639         ai->unit_size = alloc_size / upa;
2640         ai->atom_size = atom_size;
2641         ai->alloc_size = alloc_size;
2642
2643         for (group = 0, unit = 0; group < nr_groups; group++) {
2644                 struct pcpu_group_info *gi = &ai->groups[group];
2645
2646                 /*
2647                  * Initialize base_offset as if all groups are located
2648                  * back-to-back.  The caller should update this to
2649                  * reflect actual allocation.
2650                  */
2651                 gi->base_offset = unit * ai->unit_size;
2652
2653                 for_each_possible_cpu(cpu)
2654                         if (group_map[cpu] == group)
2655                                 gi->cpu_map[gi->nr_units++] = cpu;
2656                 gi->nr_units = roundup(gi->nr_units, upa);
2657                 unit += gi->nr_units;
2658         }
2659         BUG_ON(unit != nr_units);
2660
2661         return ai;
2662 }
2663 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2664
2665 #if defined(BUILD_EMBED_FIRST_CHUNK)
2666 /**
2667  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2668  * @reserved_size: the size of reserved percpu area in bytes
2669  * @dyn_size: minimum free size for dynamic allocation in bytes
2670  * @atom_size: allocation atom size
2671  * @cpu_distance_fn: callback to determine distance between cpus, optional
2672  * @alloc_fn: function to allocate percpu page
2673  * @free_fn: function to free percpu page
2674  *
2675  * This is a helper to ease setting up embedded first percpu chunk and
2676  * can be called where pcpu_setup_first_chunk() is expected.
2677  *
2678  * If this function is used to setup the first chunk, it is allocated
2679  * by calling @alloc_fn and used as-is without being mapped into
2680  * vmalloc area.  Allocations are always whole multiples of @atom_size
2681  * aligned to @atom_size.
2682  *
2683  * This enables the first chunk to piggy back on the linear physical
2684  * mapping which often uses larger page size.  Please note that this
2685  * can result in very sparse cpu->unit mapping on NUMA machines thus
2686  * requiring large vmalloc address space.  Don't use this allocator if
2687  * vmalloc space is not orders of magnitude larger than distances
2688  * between node memory addresses (ie. 32bit NUMA machines).
2689  *
2690  * @dyn_size specifies the minimum dynamic area size.
2691  *
2692  * If the needed size is smaller than the minimum or specified unit
2693  * size, the leftover is returned using @free_fn.
2694  *
2695  * RETURNS:
2696  * 0 on success, -errno on failure.
2697  */
2698 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2699                                   size_t atom_size,
2700                                   pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2701                                   pcpu_fc_alloc_fn_t alloc_fn,
2702                                   pcpu_fc_free_fn_t free_fn)
2703 {
2704         void *base = (void *)ULONG_MAX;
2705         void **areas = NULL;
2706         struct pcpu_alloc_info *ai;
2707         size_t size_sum, areas_size;
2708         unsigned long max_distance;
2709         int group, i, highest_group, rc = 0;
2710
2711         ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2712                                    cpu_distance_fn);
2713         if (IS_ERR(ai))
2714                 return PTR_ERR(ai);
2715
2716         size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2717         areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2718
2719         areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2720         if (!areas) {
2721                 rc = -ENOMEM;
2722                 goto out_free;
2723         }
2724
2725         /* allocate, copy and determine base address & max_distance */
2726         highest_group = 0;
2727         for (group = 0; group < ai->nr_groups; group++) {
2728                 struct pcpu_group_info *gi = &ai->groups[group];
2729                 unsigned int cpu = NR_CPUS;
2730                 void *ptr;
2731
2732                 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2733                         cpu = gi->cpu_map[i];
2734                 BUG_ON(cpu == NR_CPUS);
2735
2736                 /* allocate space for the whole group */
2737                 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2738                 if (!ptr) {
2739                         rc = -ENOMEM;
2740                         goto out_free_areas;
2741                 }
2742                 /* kmemleak tracks the percpu allocations separately */
2743                 kmemleak_free(ptr);
2744                 areas[group] = ptr;
2745
2746                 base = min(ptr, base);
2747                 if (ptr > areas[highest_group])
2748                         highest_group = group;
2749         }
2750         max_distance = areas[highest_group] - base;
2751         max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2752
2753         /* warn if maximum distance is further than 75% of vmalloc space */
2754         if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2755                 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2756                                 max_distance, VMALLOC_TOTAL);
2757 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2758                 /* and fail if we have fallback */
2759                 rc = -EINVAL;
2760                 goto out_free_areas;
2761 #endif
2762         }
2763
2764         /*
2765          * Copy data and free unused parts.  This should happen after all
2766          * allocations are complete; otherwise, we may end up with
2767          * overlapping groups.
2768          */
2769         for (group = 0; group < ai->nr_groups; group++) {
2770                 struct pcpu_group_info *gi = &ai->groups[group];
2771                 void *ptr = areas[group];
2772
2773                 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2774                         if (gi->cpu_map[i] == NR_CPUS) {
2775                                 /* unused unit, free whole */
2776                                 free_fn(ptr, ai->unit_size);
2777                                 continue;
2778                         }
2779                         /* copy and return the unused part */
2780                         memcpy(ptr, __per_cpu_load, ai->static_size);
2781                         free_fn(ptr + size_sum, ai->unit_size - size_sum);
2782                 }
2783         }
2784
2785         /* base address is now known, determine group base offsets */
2786         for (group = 0; group < ai->nr_groups; group++) {
2787                 ai->groups[group].base_offset = areas[group] - base;
2788         }
2789
2790         pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2791                 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2792                 ai->dyn_size, ai->unit_size);
2793
2794         pcpu_setup_first_chunk(ai, base);
2795         goto out_free;
2796
2797 out_free_areas:
2798         for (group = 0; group < ai->nr_groups; group++)
2799                 if (areas[group])
2800                         free_fn(areas[group],
2801                                 ai->groups[group].nr_units * ai->unit_size);
2802 out_free:
2803         pcpu_free_alloc_info(ai);
2804         if (areas)
2805                 memblock_free_early(__pa(areas), areas_size);
2806         return rc;
2807 }
2808 #endif /* BUILD_EMBED_FIRST_CHUNK */
2809
2810 #ifdef BUILD_PAGE_FIRST_CHUNK
2811 /**
2812  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2813  * @reserved_size: the size of reserved percpu area in bytes
2814  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2815  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2816  * @populate_pte_fn: function to populate pte
2817  *
2818  * This is a helper to ease setting up page-remapped first percpu
2819  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2820  *
2821  * This is the basic allocator.  Static percpu area is allocated
2822  * page-by-page into vmalloc area.
2823  *
2824  * RETURNS:
2825  * 0 on success, -errno on failure.
2826  */
2827 int __init pcpu_page_first_chunk(size_t reserved_size,
2828                                  pcpu_fc_alloc_fn_t alloc_fn,
2829                                  pcpu_fc_free_fn_t free_fn,
2830                                  pcpu_fc_populate_pte_fn_t populate_pte_fn)
2831 {
2832         static struct vm_struct vm;
2833         struct pcpu_alloc_info *ai;
2834         char psize_str[16];
2835         int unit_pages;
2836         size_t pages_size;
2837         struct page **pages;
2838         int unit, i, j, rc = 0;
2839         int upa;
2840         int nr_g0_units;
2841
2842         snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2843
2844         ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2845         if (IS_ERR(ai))
2846                 return PTR_ERR(ai);
2847         BUG_ON(ai->nr_groups != 1);
2848         upa = ai->alloc_size/ai->unit_size;
2849         nr_g0_units = roundup(num_possible_cpus(), upa);
2850         if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2851                 pcpu_free_alloc_info(ai);
2852                 return -EINVAL;
2853         }
2854
2855         unit_pages = ai->unit_size >> PAGE_SHIFT;
2856
2857         /* unaligned allocations can't be freed, round up to page size */
2858         pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2859                                sizeof(pages[0]));
2860         pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2861         if (!pages)
2862                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2863                       pages_size);
2864
2865         /* allocate pages */
2866         j = 0;
2867         for (unit = 0; unit < num_possible_cpus(); unit++) {
2868                 unsigned int cpu = ai->groups[0].cpu_map[unit];
2869                 for (i = 0; i < unit_pages; i++) {
2870                         void *ptr;
2871
2872                         ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2873                         if (!ptr) {
2874                                 pr_warn("failed to allocate %s page for cpu%u\n",
2875                                                 psize_str, cpu);
2876                                 goto enomem;
2877                         }
2878                         /* kmemleak tracks the percpu allocations separately */
2879                         kmemleak_free(ptr);
2880                         pages[j++] = virt_to_page(ptr);
2881                 }
2882         }
2883
2884         /* allocate vm area, map the pages and copy static data */
2885         vm.flags = VM_ALLOC;
2886         vm.size = num_possible_cpus() * ai->unit_size;
2887         vm_area_register_early(&vm, PAGE_SIZE);
2888
2889         for (unit = 0; unit < num_possible_cpus(); unit++) {
2890                 unsigned long unit_addr =
2891                         (unsigned long)vm.addr + unit * ai->unit_size;
2892
2893                 for (i = 0; i < unit_pages; i++)
2894                         populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2895
2896                 /* pte already populated, the following shouldn't fail */
2897                 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2898                                       unit_pages);
2899                 if (rc < 0)
2900                         panic("failed to map percpu area, err=%d\n", rc);
2901
2902                 /*
2903                  * FIXME: Archs with virtual cache should flush local
2904                  * cache for the linear mapping here - something
2905                  * equivalent to flush_cache_vmap() on the local cpu.
2906                  * flush_cache_vmap() can't be used as most supporting
2907                  * data structures are not set up yet.
2908                  */
2909
2910                 /* copy static data */
2911                 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2912         }
2913
2914         /* we're ready, commit */
2915         pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2916                 unit_pages, psize_str, ai->static_size,
2917                 ai->reserved_size, ai->dyn_size);
2918
2919         pcpu_setup_first_chunk(ai, vm.addr);
2920         goto out_free_ar;
2921
2922 enomem:
2923         while (--j >= 0)
2924                 free_fn(page_address(pages[j]), PAGE_SIZE);
2925         rc = -ENOMEM;
2926 out_free_ar:
2927         memblock_free_early(__pa(pages), pages_size);
2928         pcpu_free_alloc_info(ai);
2929         return rc;
2930 }
2931 #endif /* BUILD_PAGE_FIRST_CHUNK */
2932
2933 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2934 /*
2935  * Generic SMP percpu area setup.
2936  *
2937  * The embedding helper is used because its behavior closely resembles
2938  * the original non-dynamic generic percpu area setup.  This is
2939  * important because many archs have addressing restrictions and might
2940  * fail if the percpu area is located far away from the previous
2941  * location.  As an added bonus, in non-NUMA cases, embedding is
2942  * generally a good idea TLB-wise because percpu area can piggy back
2943  * on the physical linear memory mapping which uses large page
2944  * mappings on applicable archs.
2945  */
2946 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2947 EXPORT_SYMBOL(__per_cpu_offset);
2948
2949 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2950                                        size_t align)
2951 {
2952         return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2953 }
2954
2955 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2956 {
2957         memblock_free_early(__pa(ptr), size);
2958 }
2959
2960 void __init setup_per_cpu_areas(void)
2961 {
2962         unsigned long delta;
2963         unsigned int cpu;
2964         int rc;
2965
2966         /*
2967          * Always reserve area for module percpu variables.  That's
2968          * what the legacy allocator did.
2969          */
2970         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2971                                     PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2972                                     pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2973         if (rc < 0)
2974                 panic("Failed to initialize percpu areas.");
2975
2976         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2977         for_each_possible_cpu(cpu)
2978                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2979 }
2980 #endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2981
2982 #else   /* CONFIG_SMP */
2983
2984 /*
2985  * UP percpu area setup.
2986  *
2987  * UP always uses km-based percpu allocator with identity mapping.
2988  * Static percpu variables are indistinguishable from the usual static
2989  * variables and don't require any special preparation.
2990  */
2991 void __init setup_per_cpu_areas(void)
2992 {
2993         const size_t unit_size =
2994                 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2995                                          PERCPU_DYNAMIC_RESERVE));
2996         struct pcpu_alloc_info *ai;
2997         void *fc;
2998
2999         ai = pcpu_alloc_alloc_info(1, 1);
3000         fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3001         if (!ai || !fc)
3002                 panic("Failed to allocate memory for percpu areas.");
3003         /* kmemleak tracks the percpu allocations separately */
3004         kmemleak_free(fc);
3005
3006         ai->dyn_size = unit_size;
3007         ai->unit_size = unit_size;
3008         ai->atom_size = unit_size;
3009         ai->alloc_size = unit_size;
3010         ai->groups[0].nr_units = 1;
3011         ai->groups[0].cpu_map[0] = 0;
3012
3013         pcpu_setup_first_chunk(ai, fc);
3014         pcpu_free_alloc_info(ai);
3015 }
3016
3017 #endif  /* CONFIG_SMP */
3018
3019 /*
3020  * pcpu_nr_pages - calculate total number of populated backing pages
3021  *
3022  * This reflects the number of pages populated to back chunks.  Metadata is
3023  * excluded in the number exposed in meminfo as the number of backing pages
3024  * scales with the number of cpus and can quickly outweigh the memory used for
3025  * metadata.  It also keeps this calculation nice and simple.
3026  *
3027  * RETURNS:
3028  * Total number of populated backing pages in use by the allocator.
3029  */
3030 unsigned long pcpu_nr_pages(void)
3031 {
3032         return pcpu_nr_populated * pcpu_nr_units;
3033 }
3034
3035 /*
3036  * Percpu allocator is initialized early during boot when neither slab or
3037  * workqueue is available.  Plug async management until everything is up
3038  * and running.
3039  */
3040 static int __init percpu_enable_async(void)
3041 {
3042         pcpu_async_enabled = true;
3043         return 0;
3044 }
3045 subsys_initcall(percpu_enable_async);