1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/percpu.c - percpu memory allocator
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
32 * <Static | [Reserved] | Dynamic>
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
59 * To use this allocator, arch code should do the following:
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
99 #include "percpu-internal.h"
102 * The slots are sorted by the size of the biggest continuous free area.
103 * 1-31 bytes share the same slot.
105 #define PCPU_SLOT_BASE_SHIFT 5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD 3
109 #define PCPU_EMPTY_POP_PAGES_LOW 2
110 #define PCPU_EMPTY_POP_PAGES_HIGH 4
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr) \
116 (void __percpu *)((unsigned long)(addr) - \
117 (unsigned long)pcpu_base_addr + \
118 (unsigned long)__per_cpu_start)
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr) \
122 (void __force *)((unsigned long)(ptr) + \
123 (unsigned long)pcpu_base_addr - \
124 (unsigned long)__per_cpu_start)
126 #else /* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
130 #endif /* CONFIG_SMP */
132 static int pcpu_unit_pages __ro_after_init;
133 static int pcpu_unit_size __ro_after_init;
134 static int pcpu_nr_units __ro_after_init;
135 static int pcpu_atom_size __ro_after_init;
136 int pcpu_nr_slots __ro_after_init;
137 static int pcpu_free_slot __ro_after_init;
138 int pcpu_sidelined_slot __ro_after_init;
139 int pcpu_to_depopulate_slot __ro_after_init;
140 static size_t pcpu_chunk_struct_size __ro_after_init;
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init;
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init;
149 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init;
154 static const unsigned long *pcpu_group_offsets __ro_after_init;
155 static const size_t *pcpu_group_sizes __ro_after_init;
158 * The first chunk which always exists. Note that unlike other
159 * chunks, this one can be allocated and mapped in several different
160 * ways and thus often doesn't live in the vmalloc area.
162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
165 * Optional reserved chunk. This chunk reserves part of the first
166 * chunk and serves it for reserved allocations. When the reserved
167 * region doesn't exist, the following variable is NULL.
169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
171 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
177 * The number of empty populated pages, protected by pcpu_lock.
178 * The reserved chunk doesn't contribute to the count.
180 int pcpu_nr_empty_pop_pages;
183 * The number of populated pages in use by the allocator, protected by
184 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186 * and increments/decrements this count by 1).
188 static unsigned long pcpu_nr_populated;
191 * Balance work is used to populate or destroy chunks asynchronously. We
192 * try to keep the number of populated free pages between
193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
196 static void pcpu_balance_workfn(struct work_struct *work);
197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
198 static bool pcpu_async_enabled __read_mostly;
199 static bool pcpu_atomic_alloc_failed;
201 static void pcpu_schedule_balance_work(void)
203 if (pcpu_async_enabled)
204 schedule_work(&pcpu_balance_work);
208 * pcpu_addr_in_chunk - check if the address is served from this chunk
209 * @chunk: chunk of interest
210 * @addr: percpu address
213 * True if the address is served from this chunk.
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
217 void *start_addr, *end_addr;
222 start_addr = chunk->base_addr + chunk->start_offset;
223 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
226 return addr >= start_addr && addr < end_addr;
229 static int __pcpu_size_to_slot(int size)
231 int highbit = fls(size); /* size is in bytes */
232 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
235 static int pcpu_size_to_slot(int size)
237 if (size == pcpu_unit_size)
238 return pcpu_free_slot;
239 return __pcpu_size_to_slot(size);
242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
244 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
246 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
247 chunk_md->contig_hint == 0)
250 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
256 page->index = (unsigned long)pcpu;
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
262 return (struct pcpu_chunk *)page->index;
265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
267 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
272 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
276 unsigned int cpu, int page_idx)
278 return (unsigned long)chunk->base_addr +
279 pcpu_unit_page_offset(cpu, page_idx);
283 * The following are helper functions to help access bitmaps and convert
284 * between bitmap offsets to address offsets.
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288 return chunk->alloc_map +
289 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
292 static unsigned long pcpu_off_to_block_index(int off)
294 return off / PCPU_BITMAP_BLOCK_BITS;
297 static unsigned long pcpu_off_to_block_off(int off)
299 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
302 static unsigned long pcpu_block_off_to_off(int index, int off)
304 return index * PCPU_BITMAP_BLOCK_BITS + off;
308 * pcpu_check_block_hint - check against the contig hint
309 * @block: block of interest
310 * @bits: size of allocation
311 * @align: alignment of area (max PAGE_SIZE)
313 * Check to see if the allocation can fit in the block's contig hint.
314 * Note, a chunk uses the same hints as a block so this can also check against
315 * the chunk's contig hint.
317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
320 int bit_off = ALIGN(block->contig_hint_start, align) -
321 block->contig_hint_start;
323 return bit_off + bits <= block->contig_hint;
327 * pcpu_next_hint - determine which hint to use
328 * @block: block of interest
329 * @alloc_bits: size of allocation
331 * This determines if we should scan based on the scan_hint or first_free.
332 * In general, we want to scan from first_free to fulfill allocations by
333 * first fit. However, if we know a scan_hint at position scan_hint_start
334 * cannot fulfill an allocation, we can begin scanning from there knowing
335 * the contig_hint will be our fallback.
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
340 * The three conditions below determine if we can skip past the
341 * scan_hint. First, does the scan hint exist. Second, is the
342 * contig_hint after the scan_hint (possibly not true iff
343 * contig_hint == scan_hint). Third, is the allocation request
344 * larger than the scan_hint.
346 if (block->scan_hint &&
347 block->contig_hint_start > block->scan_hint_start &&
348 alloc_bits > block->scan_hint)
349 return block->scan_hint_start + block->scan_hint;
351 return block->first_free;
355 * pcpu_next_md_free_region - finds the next hint free area
356 * @chunk: chunk of interest
357 * @bit_off: chunk offset
358 * @bits: size of free area
360 * Helper function for pcpu_for_each_md_free_region. It checks
361 * block->contig_hint and performs aggregation across blocks to find the
362 * next hint. It modifies bit_off and bits in-place to be consumed in the
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
368 int i = pcpu_off_to_block_index(*bit_off);
369 int block_off = pcpu_off_to_block_off(*bit_off);
370 struct pcpu_block_md *block;
373 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
375 /* handles contig area across blocks */
377 *bits += block->left_free;
378 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
384 * This checks three things. First is there a contig_hint to
385 * check. Second, have we checked this hint before by
386 * comparing the block_off. Third, is this the same as the
387 * right contig hint. In the last case, it spills over into
388 * the next block and should be handled by the contig area
389 * across blocks code.
391 *bits = block->contig_hint;
392 if (*bits && block->contig_hint_start >= block_off &&
393 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 *bit_off = pcpu_block_off_to_off(i,
395 block->contig_hint_start);
398 /* reset to satisfy the second predicate above */
401 *bits = block->right_free;
402 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
407 * pcpu_next_fit_region - finds fit areas for a given allocation request
408 * @chunk: chunk of interest
409 * @alloc_bits: size of allocation
410 * @align: alignment of area (max PAGE_SIZE)
411 * @bit_off: chunk offset
412 * @bits: size of free area
414 * Finds the next free region that is viable for use with a given size and
415 * alignment. This only returns if there is a valid area to be used for this
416 * allocation. block->first_free is returned if the allocation request fits
417 * within the block to see if the request can be fulfilled prior to the contig
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 int align, int *bit_off, int *bits)
423 int i = pcpu_off_to_block_index(*bit_off);
424 int block_off = pcpu_off_to_block_off(*bit_off);
425 struct pcpu_block_md *block;
428 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
430 /* handles contig area across blocks */
432 *bits += block->left_free;
433 if (*bits >= alloc_bits)
435 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
439 /* check block->contig_hint */
440 *bits = ALIGN(block->contig_hint_start, align) -
441 block->contig_hint_start;
443 * This uses the block offset to determine if this has been
444 * checked in the prior iteration.
446 if (block->contig_hint &&
447 block->contig_hint_start >= block_off &&
448 block->contig_hint >= *bits + alloc_bits) {
449 int start = pcpu_next_hint(block, alloc_bits);
451 *bits += alloc_bits + block->contig_hint_start -
453 *bit_off = pcpu_block_off_to_off(i, start);
456 /* reset to satisfy the second predicate above */
459 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
461 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 *bit_off = pcpu_block_off_to_off(i, *bit_off);
463 if (*bits >= alloc_bits)
467 /* no valid offsets were found - fail condition */
468 *bit_off = pcpu_chunk_map_bits(chunk);
472 * Metadata free area iterators. These perform aggregation of free areas
473 * based on the metadata blocks and return the offset @bit_off and size in
474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
475 * a fit is found for the allocation request.
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
479 (bit_off) < pcpu_chunk_map_bits((chunk)); \
480 (bit_off) += (bits) + 1, \
481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
486 (bit_off) < pcpu_chunk_map_bits((chunk)); \
487 (bit_off) += (bits), \
488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
492 * pcpu_mem_zalloc - allocate memory
493 * @size: bytes to allocate
494 * @gfp: allocation flags
496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498 * This is to facilitate passing through whitelisted flags. The
499 * returned memory is always zeroed.
502 * Pointer to the allocated area on success, NULL on failure.
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
506 if (WARN_ON_ONCE(!slab_is_available()))
509 if (size <= PAGE_SIZE)
510 return kzalloc(size, gfp);
512 return __vmalloc(size, gfp | __GFP_ZERO);
516 * pcpu_mem_free - free memory
517 * @ptr: memory to free
519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
521 static void pcpu_mem_free(void *ptr)
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
529 if (chunk != pcpu_reserved_chunk) {
531 list_move(&chunk->list, &pcpu_chunk_lists[slot]);
533 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
539 __pcpu_chunk_move(chunk, slot, true);
543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544 * @chunk: chunk of interest
545 * @oslot: the previous slot it was on
547 * This function is called after an allocation or free changed @chunk.
548 * New slot according to the changed state is determined and @chunk is
549 * moved to the slot. Note that the reserved chunk is never put on
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
557 int nslot = pcpu_chunk_slot(chunk);
559 /* leave isolated chunks in-place */
564 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
569 lockdep_assert_held(&pcpu_lock);
571 if (!chunk->isolated) {
572 chunk->isolated = true;
573 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
575 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
580 lockdep_assert_held(&pcpu_lock);
582 if (chunk->isolated) {
583 chunk->isolated = false;
584 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
585 pcpu_chunk_relocate(chunk, -1);
590 * pcpu_update_empty_pages - update empty page counters
591 * @chunk: chunk of interest
592 * @nr: nr of empty pages
594 * This is used to keep track of the empty pages now based on the premise
595 * a md_block covers a page. The hint update functions recognize if a block
596 * is made full or broken to calculate deltas for keeping track of free pages.
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
600 chunk->nr_empty_pop_pages += nr;
601 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
602 pcpu_nr_empty_pop_pages += nr;
606 * pcpu_region_overlap - determines if two regions overlap
607 * @a: start of first region, inclusive
608 * @b: end of first region, exclusive
609 * @x: start of second region, inclusive
610 * @y: end of second region, exclusive
612 * This is used to determine if the hint region [a, b) overlaps with the
613 * allocated region [x, y).
615 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
617 return (a < y) && (x < b);
621 * pcpu_block_update - updates a block given a free area
622 * @block: block of interest
623 * @start: start offset in block
624 * @end: end offset in block
626 * Updates a block given a known free area. The region [start, end) is
627 * expected to be the entirety of the free area within a block. Chooses
628 * the best starting offset if the contig hints are equal.
630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
632 int contig = end - start;
634 block->first_free = min(block->first_free, start);
636 block->left_free = contig;
638 if (end == block->nr_bits)
639 block->right_free = contig;
641 if (contig > block->contig_hint) {
642 /* promote the old contig_hint to be the new scan_hint */
643 if (start > block->contig_hint_start) {
644 if (block->contig_hint > block->scan_hint) {
645 block->scan_hint_start =
646 block->contig_hint_start;
647 block->scan_hint = block->contig_hint;
648 } else if (start < block->scan_hint_start) {
650 * The old contig_hint == scan_hint. But, the
651 * new contig is larger so hold the invariant
652 * scan_hint_start < contig_hint_start.
654 block->scan_hint = 0;
657 block->scan_hint = 0;
659 block->contig_hint_start = start;
660 block->contig_hint = contig;
661 } else if (contig == block->contig_hint) {
662 if (block->contig_hint_start &&
664 __ffs(start) > __ffs(block->contig_hint_start))) {
665 /* start has a better alignment so use it */
666 block->contig_hint_start = start;
667 if (start < block->scan_hint_start &&
668 block->contig_hint > block->scan_hint)
669 block->scan_hint = 0;
670 } else if (start > block->scan_hint_start ||
671 block->contig_hint > block->scan_hint) {
673 * Knowing contig == contig_hint, update the scan_hint
674 * if it is farther than or larger than the current
677 block->scan_hint_start = start;
678 block->scan_hint = contig;
682 * The region is smaller than the contig_hint. So only update
683 * the scan_hint if it is larger than or equal and farther than
684 * the current scan_hint.
686 if ((start < block->contig_hint_start &&
687 (contig > block->scan_hint ||
688 (contig == block->scan_hint &&
689 start > block->scan_hint_start)))) {
690 block->scan_hint_start = start;
691 block->scan_hint = contig;
697 * pcpu_block_update_scan - update a block given a free area from a scan
698 * @chunk: chunk of interest
699 * @bit_off: chunk offset
700 * @bits: size of free area
702 * Finding the final allocation spot first goes through pcpu_find_block_fit()
703 * to find a block that can hold the allocation and then pcpu_alloc_area()
704 * where a scan is used. When allocations require specific alignments,
705 * we can inadvertently create holes which will not be seen in the alloc
708 * This takes a given free area hole and updates a block as it may change the
709 * scan_hint. We need to scan backwards to ensure we don't miss free bits
712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
715 int s_off = pcpu_off_to_block_off(bit_off);
716 int e_off = s_off + bits;
718 struct pcpu_block_md *block;
720 if (e_off > PCPU_BITMAP_BLOCK_BITS)
723 s_index = pcpu_off_to_block_index(bit_off);
724 block = chunk->md_blocks + s_index;
726 /* scan backwards in case of alignment skipping free bits */
727 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
728 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
730 pcpu_block_update(block, s_off, e_off);
734 * pcpu_chunk_refresh_hint - updates metadata about a chunk
735 * @chunk: chunk of interest
736 * @full_scan: if we should scan from the beginning
738 * Iterates over the metadata blocks to find the largest contig area.
739 * A full scan can be avoided on the allocation path as this is triggered
740 * if we broke the contig_hint. In doing so, the scan_hint will be before
741 * the contig_hint or after if the scan_hint == contig_hint. This cannot
742 * be prevented on freeing as we want to find the largest area possibly
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
747 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
750 /* promote scan_hint to contig_hint */
751 if (!full_scan && chunk_md->scan_hint) {
752 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
753 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
754 chunk_md->contig_hint = chunk_md->scan_hint;
755 chunk_md->scan_hint = 0;
757 bit_off = chunk_md->first_free;
758 chunk_md->contig_hint = 0;
762 pcpu_for_each_md_free_region(chunk, bit_off, bits)
763 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
767 * pcpu_block_refresh_hint
768 * @chunk: chunk of interest
769 * @index: index of the metadata block
771 * Scans over the block beginning at first_free and updates the block
772 * metadata accordingly.
774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
776 struct pcpu_block_md *block = chunk->md_blocks + index;
777 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
778 unsigned int start, end; /* region start, region end */
780 /* promote scan_hint to contig_hint */
781 if (block->scan_hint) {
782 start = block->scan_hint_start + block->scan_hint;
783 block->contig_hint_start = block->scan_hint_start;
784 block->contig_hint = block->scan_hint;
785 block->scan_hint = 0;
787 start = block->first_free;
788 block->contig_hint = 0;
791 block->right_free = 0;
793 /* iterate over free areas and update the contig hints */
794 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
795 pcpu_block_update(block, start, end);
799 * pcpu_block_update_hint_alloc - update hint on allocation path
800 * @chunk: chunk of interest
801 * @bit_off: chunk offset
802 * @bits: size of request
804 * Updates metadata for the allocation path. The metadata only has to be
805 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
806 * scans are required if the block's contig hint is broken.
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
811 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
812 int nr_empty_pages = 0;
813 struct pcpu_block_md *s_block, *e_block, *block;
814 int s_index, e_index; /* block indexes of the freed allocation */
815 int s_off, e_off; /* block offsets of the freed allocation */
818 * Calculate per block offsets.
819 * The calculation uses an inclusive range, but the resulting offsets
820 * are [start, end). e_index always points to the last block in the
823 s_index = pcpu_off_to_block_index(bit_off);
824 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
825 s_off = pcpu_off_to_block_off(bit_off);
826 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
828 s_block = chunk->md_blocks + s_index;
829 e_block = chunk->md_blocks + e_index;
834 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
838 * block->first_free must be updated if the allocation takes its place.
839 * If the allocation breaks the contig_hint, a scan is required to
842 if (s_off == s_block->first_free)
843 s_block->first_free = find_next_zero_bit(
844 pcpu_index_alloc_map(chunk, s_index),
845 PCPU_BITMAP_BLOCK_BITS,
848 if (pcpu_region_overlap(s_block->scan_hint_start,
849 s_block->scan_hint_start + s_block->scan_hint,
852 s_block->scan_hint = 0;
854 if (pcpu_region_overlap(s_block->contig_hint_start,
855 s_block->contig_hint_start +
856 s_block->contig_hint,
859 /* block contig hint is broken - scan to fix it */
861 s_block->left_free = 0;
862 pcpu_block_refresh_hint(chunk, s_index);
864 /* update left and right contig manually */
865 s_block->left_free = min(s_block->left_free, s_off);
866 if (s_index == e_index)
867 s_block->right_free = min_t(int, s_block->right_free,
868 PCPU_BITMAP_BLOCK_BITS - e_off);
870 s_block->right_free = 0;
876 if (s_index != e_index) {
877 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
881 * When the allocation is across blocks, the end is along
882 * the left part of the e_block.
884 e_block->first_free = find_next_zero_bit(
885 pcpu_index_alloc_map(chunk, e_index),
886 PCPU_BITMAP_BLOCK_BITS, e_off);
888 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
889 /* reset the block */
892 if (e_off > e_block->scan_hint_start)
893 e_block->scan_hint = 0;
895 e_block->left_free = 0;
896 if (e_off > e_block->contig_hint_start) {
897 /* contig hint is broken - scan to fix it */
898 pcpu_block_refresh_hint(chunk, e_index);
900 e_block->right_free =
901 min_t(int, e_block->right_free,
902 PCPU_BITMAP_BLOCK_BITS - e_off);
906 /* update in-between md_blocks */
907 nr_empty_pages += (e_index - s_index - 1);
908 for (block = s_block + 1; block < e_block; block++) {
909 block->scan_hint = 0;
910 block->contig_hint = 0;
911 block->left_free = 0;
912 block->right_free = 0;
917 * If the allocation is not atomic, some blocks may not be
918 * populated with pages, while we account it here. The number
919 * of pages will be added back with pcpu_chunk_populated()
920 * when populating pages.
923 pcpu_update_empty_pages(chunk, -nr_empty_pages);
925 if (pcpu_region_overlap(chunk_md->scan_hint_start,
926 chunk_md->scan_hint_start +
930 chunk_md->scan_hint = 0;
933 * The only time a full chunk scan is required is if the chunk
934 * contig hint is broken. Otherwise, it means a smaller space
935 * was used and therefore the chunk contig hint is still correct.
937 if (pcpu_region_overlap(chunk_md->contig_hint_start,
938 chunk_md->contig_hint_start +
939 chunk_md->contig_hint,
942 pcpu_chunk_refresh_hint(chunk, false);
946 * pcpu_block_update_hint_free - updates the block hints on the free path
947 * @chunk: chunk of interest
948 * @bit_off: chunk offset
949 * @bits: size of request
951 * Updates metadata for the allocation path. This avoids a blind block
952 * refresh by making use of the block contig hints. If this fails, it scans
953 * forward and backward to determine the extent of the free area. This is
954 * capped at the boundary of blocks.
956 * A chunk update is triggered if a page becomes free, a block becomes free,
957 * or the free spans across blocks. This tradeoff is to minimize iterating
958 * over the block metadata to update chunk_md->contig_hint.
959 * chunk_md->contig_hint may be off by up to a page, but it will never be more
960 * than the available space. If the contig hint is contained in one block, it
963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
966 int nr_empty_pages = 0;
967 struct pcpu_block_md *s_block, *e_block, *block;
968 int s_index, e_index; /* block indexes of the freed allocation */
969 int s_off, e_off; /* block offsets of the freed allocation */
970 int start, end; /* start and end of the whole free area */
973 * Calculate per block offsets.
974 * The calculation uses an inclusive range, but the resulting offsets
975 * are [start, end). e_index always points to the last block in the
978 s_index = pcpu_off_to_block_index(bit_off);
979 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
980 s_off = pcpu_off_to_block_off(bit_off);
981 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
983 s_block = chunk->md_blocks + s_index;
984 e_block = chunk->md_blocks + e_index;
987 * Check if the freed area aligns with the block->contig_hint.
988 * If it does, then the scan to find the beginning/end of the
989 * larger free area can be avoided.
991 * start and end refer to beginning and end of the free area
992 * within each their respective blocks. This is not necessarily
993 * the entire free area as it may span blocks past the beginning
994 * or end of the block.
997 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
998 start = s_block->contig_hint_start;
1001 * Scan backwards to find the extent of the free area.
1002 * find_last_bit returns the starting bit, so if the start bit
1003 * is returned, that means there was no last bit and the
1004 * remainder of the chunk is free.
1006 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1008 start = (start == l_bit) ? 0 : l_bit + 1;
1012 if (e_off == e_block->contig_hint_start)
1013 end = e_block->contig_hint_start + e_block->contig_hint;
1015 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016 PCPU_BITMAP_BLOCK_BITS, end);
1018 /* update s_block */
1019 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1022 pcpu_block_update(s_block, start, e_off);
1024 /* freeing in the same block */
1025 if (s_index != e_index) {
1026 /* update e_block */
1027 if (end == PCPU_BITMAP_BLOCK_BITS)
1029 pcpu_block_update(e_block, 0, end);
1031 /* reset md_blocks in the middle */
1032 nr_empty_pages += (e_index - s_index - 1);
1033 for (block = s_block + 1; block < e_block; block++) {
1034 block->first_free = 0;
1035 block->scan_hint = 0;
1036 block->contig_hint_start = 0;
1037 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1044 pcpu_update_empty_pages(chunk, nr_empty_pages);
1047 * Refresh chunk metadata when the free makes a block free or spans
1048 * across blocks. The contig_hint may be off by up to a page, but if
1049 * the contig_hint is contained in a block, it will be accurate with
1050 * the else condition below.
1052 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053 pcpu_chunk_refresh_hint(chunk, true);
1055 pcpu_block_update(&chunk->chunk_md,
1056 pcpu_block_off_to_off(s_index, start),
1061 * pcpu_is_populated - determines if the region is populated
1062 * @chunk: chunk of interest
1063 * @bit_off: chunk offset
1064 * @bits: size of area
1065 * @next_off: return value for the next offset to start searching
1067 * For atomic allocations, check if the backing pages are populated.
1070 * Bool if the backing pages are populated.
1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1076 unsigned int start, end;
1078 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1081 start = find_next_zero_bit(chunk->populated, end, start);
1085 end = find_next_bit(chunk->populated, end, start + 1);
1087 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1092 * pcpu_find_block_fit - finds the block index to start searching
1093 * @chunk: chunk of interest
1094 * @alloc_bits: size of request in allocation units
1095 * @align: alignment of area (max PAGE_SIZE bytes)
1096 * @pop_only: use populated regions only
1098 * Given a chunk and an allocation spec, find the offset to begin searching
1099 * for a free region. This iterates over the bitmap metadata blocks to
1100 * find an offset that will be guaranteed to fit the requirements. It is
1101 * not quite first fit as if the allocation does not fit in the contig hint
1102 * of a block or chunk, it is skipped. This errs on the side of caution
1103 * to prevent excess iteration. Poor alignment can cause the allocator to
1104 * skip over blocks and chunks that have valid free areas.
1107 * The offset in the bitmap to begin searching.
1108 * -1 if no offset is found.
1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111 size_t align, bool pop_only)
1113 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114 int bit_off, bits, next_off;
1117 * This is an optimization to prevent scanning by assuming if the
1118 * allocation cannot fit in the global hint, there is memory pressure
1119 * and creating a new chunk would happen soon.
1121 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1124 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1126 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1135 if (bit_off == pcpu_chunk_map_bits(chunk))
1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143 * @map: the address to base the search on
1144 * @size: the bitmap size in bits
1145 * @start: the bitnumber to start searching at
1146 * @nr: the number of zeroed bits we're looking for
1147 * @align_mask: alignment mask for zero area
1148 * @largest_off: offset of the largest area skipped
1149 * @largest_bits: size of the largest area skipped
1151 * The @align_mask should be one less than a power of 2.
1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154 * the largest area that was skipped. This is imperfect, but in general is
1155 * good enough. The largest remembered region is the largest failed region
1156 * seen. This does not include anything we possibly skipped due to alignment.
1157 * pcpu_block_update_scan() does scan backwards to try and recover what was
1158 * lost to alignment. While this can cause scanning to miss earlier possible
1159 * free areas, smaller allocations will eventually fill those holes.
1161 static unsigned long pcpu_find_zero_area(unsigned long *map,
1163 unsigned long start,
1165 unsigned long align_mask,
1166 unsigned long *largest_off,
1167 unsigned long *largest_bits)
1169 unsigned long index, end, i, area_off, area_bits;
1171 index = find_next_zero_bit(map, size, start);
1173 /* Align allocation */
1174 index = __ALIGN_MASK(index, align_mask);
1180 i = find_next_bit(map, end, index);
1182 area_bits = i - area_off;
1183 /* remember largest unused area with best alignment */
1184 if (area_bits > *largest_bits ||
1185 (area_bits == *largest_bits && *largest_off &&
1186 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187 *largest_off = area_off;
1188 *largest_bits = area_bits;
1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199 * @chunk: chunk of interest
1200 * @alloc_bits: size of request in allocation units
1201 * @align: alignment of area (max PAGE_SIZE)
1202 * @start: bit_off to start searching
1204 * This function takes in a @start offset to begin searching to fit an
1205 * allocation of @alloc_bits with alignment @align. It needs to scan
1206 * the allocation map because if it fits within the block's contig hint,
1207 * @start will be block->first_free. This is an attempt to fill the
1208 * allocation prior to breaking the contig hint. The allocation and
1209 * boundary maps are updated accordingly if it confirms a valid
1213 * Allocated addr offset in @chunk on success.
1214 * -1 if no matching area is found.
1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217 size_t align, int start)
1219 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220 size_t align_mask = (align) ? (align - 1) : 0;
1221 unsigned long area_off = 0, area_bits = 0;
1222 int bit_off, end, oslot;
1224 lockdep_assert_held(&pcpu_lock);
1226 oslot = pcpu_chunk_slot(chunk);
1229 * Search to find a fit.
1231 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232 pcpu_chunk_map_bits(chunk));
1233 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234 align_mask, &area_off, &area_bits);
1239 pcpu_block_update_scan(chunk, area_off, area_bits);
1241 /* update alloc map */
1242 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1244 /* update boundary map */
1245 set_bit(bit_off, chunk->bound_map);
1246 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247 set_bit(bit_off + alloc_bits, chunk->bound_map);
1249 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1251 /* update first free bit */
1252 if (bit_off == chunk_md->first_free)
1253 chunk_md->first_free = find_next_zero_bit(
1255 pcpu_chunk_map_bits(chunk),
1256 bit_off + alloc_bits);
1258 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1260 pcpu_chunk_relocate(chunk, oslot);
1262 return bit_off * PCPU_MIN_ALLOC_SIZE;
1266 * pcpu_free_area - frees the corresponding offset
1267 * @chunk: chunk of interest
1268 * @off: addr offset into chunk
1270 * This function determines the size of an allocation to free using
1271 * the boundary bitmap and clears the allocation map.
1274 * Number of freed bytes.
1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1278 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279 int bit_off, bits, end, oslot, freed;
1281 lockdep_assert_held(&pcpu_lock);
1282 pcpu_stats_area_dealloc(chunk);
1284 oslot = pcpu_chunk_slot(chunk);
1286 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1288 /* find end index */
1289 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1291 bits = end - bit_off;
1292 bitmap_clear(chunk->alloc_map, bit_off, bits);
1294 freed = bits * PCPU_MIN_ALLOC_SIZE;
1296 /* update metadata */
1297 chunk->free_bytes += freed;
1299 /* update first free bit */
1300 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1302 pcpu_block_update_hint_free(chunk, bit_off, bits);
1304 pcpu_chunk_relocate(chunk, oslot);
1309 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1311 block->scan_hint = 0;
1312 block->contig_hint = nr_bits;
1313 block->left_free = nr_bits;
1314 block->right_free = nr_bits;
1315 block->first_free = 0;
1316 block->nr_bits = nr_bits;
1319 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1321 struct pcpu_block_md *md_block;
1323 /* init the chunk's block */
1324 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1326 for (md_block = chunk->md_blocks;
1327 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1329 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334 * @tmp_addr: the start of the region served
1335 * @map_size: size of the region served
1337 * This is responsible for creating the chunks that serve the first chunk. The
1338 * base_addr is page aligned down of @tmp_addr while the region end is page
1339 * aligned up. Offsets are kept track of to determine the region served. All
1340 * this is done to appease the bitmap allocator in avoiding partial blocks.
1343 * Chunk serving the region at @tmp_addr of @map_size.
1345 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1348 struct pcpu_chunk *chunk;
1349 unsigned long aligned_addr;
1350 int start_offset, offset_bits, region_size, region_bits;
1353 /* region calculations */
1354 aligned_addr = tmp_addr & PAGE_MASK;
1356 start_offset = tmp_addr - aligned_addr;
1357 region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1359 /* allocate chunk */
1360 alloc_size = struct_size(chunk, populated,
1361 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1362 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1364 panic("%s: Failed to allocate %zu bytes\n", __func__,
1367 INIT_LIST_HEAD(&chunk->list);
1369 chunk->base_addr = (void *)aligned_addr;
1370 chunk->start_offset = start_offset;
1371 chunk->end_offset = region_size - chunk->start_offset - map_size;
1373 chunk->nr_pages = region_size >> PAGE_SHIFT;
1374 region_bits = pcpu_chunk_map_bits(chunk);
1376 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1377 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1378 if (!chunk->alloc_map)
1379 panic("%s: Failed to allocate %zu bytes\n", __func__,
1383 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1385 if (!chunk->bound_map)
1386 panic("%s: Failed to allocate %zu bytes\n", __func__,
1389 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1390 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1391 if (!chunk->md_blocks)
1392 panic("%s: Failed to allocate %zu bytes\n", __func__,
1395 #ifdef CONFIG_MEMCG_KMEM
1396 /* first chunk is free to use */
1397 chunk->obj_cgroups = NULL;
1399 pcpu_init_md_blocks(chunk);
1401 /* manage populated page bitmap */
1402 chunk->immutable = true;
1403 bitmap_fill(chunk->populated, chunk->nr_pages);
1404 chunk->nr_populated = chunk->nr_pages;
1405 chunk->nr_empty_pop_pages = chunk->nr_pages;
1407 chunk->free_bytes = map_size;
1409 if (chunk->start_offset) {
1410 /* hide the beginning of the bitmap */
1411 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1412 bitmap_set(chunk->alloc_map, 0, offset_bits);
1413 set_bit(0, chunk->bound_map);
1414 set_bit(offset_bits, chunk->bound_map);
1416 chunk->chunk_md.first_free = offset_bits;
1418 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1421 if (chunk->end_offset) {
1422 /* hide the end of the bitmap */
1423 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1424 bitmap_set(chunk->alloc_map,
1425 pcpu_chunk_map_bits(chunk) - offset_bits,
1427 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1429 set_bit(region_bits, chunk->bound_map);
1431 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1432 - offset_bits, offset_bits);
1438 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1440 struct pcpu_chunk *chunk;
1443 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1447 INIT_LIST_HEAD(&chunk->list);
1448 chunk->nr_pages = pcpu_unit_pages;
1449 region_bits = pcpu_chunk_map_bits(chunk);
1451 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1452 sizeof(chunk->alloc_map[0]), gfp);
1453 if (!chunk->alloc_map)
1454 goto alloc_map_fail;
1456 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1457 sizeof(chunk->bound_map[0]), gfp);
1458 if (!chunk->bound_map)
1459 goto bound_map_fail;
1461 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1462 sizeof(chunk->md_blocks[0]), gfp);
1463 if (!chunk->md_blocks)
1464 goto md_blocks_fail;
1466 #ifdef CONFIG_MEMCG_KMEM
1467 if (!mem_cgroup_kmem_disabled()) {
1468 chunk->obj_cgroups =
1469 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1470 sizeof(struct obj_cgroup *), gfp);
1471 if (!chunk->obj_cgroups)
1476 pcpu_init_md_blocks(chunk);
1479 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1483 #ifdef CONFIG_MEMCG_KMEM
1485 pcpu_mem_free(chunk->md_blocks);
1488 pcpu_mem_free(chunk->bound_map);
1490 pcpu_mem_free(chunk->alloc_map);
1492 pcpu_mem_free(chunk);
1497 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1501 #ifdef CONFIG_MEMCG_KMEM
1502 pcpu_mem_free(chunk->obj_cgroups);
1504 pcpu_mem_free(chunk->md_blocks);
1505 pcpu_mem_free(chunk->bound_map);
1506 pcpu_mem_free(chunk->alloc_map);
1507 pcpu_mem_free(chunk);
1511 * pcpu_chunk_populated - post-population bookkeeping
1512 * @chunk: pcpu_chunk which got populated
1513 * @page_start: the start page
1514 * @page_end: the end page
1516 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1517 * the bookkeeping information accordingly. Must be called after each
1518 * successful population.
1520 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1523 int nr = page_end - page_start;
1525 lockdep_assert_held(&pcpu_lock);
1527 bitmap_set(chunk->populated, page_start, nr);
1528 chunk->nr_populated += nr;
1529 pcpu_nr_populated += nr;
1531 pcpu_update_empty_pages(chunk, nr);
1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536 * @chunk: pcpu_chunk which got depopulated
1537 * @page_start: the start page
1538 * @page_end: the end page
1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541 * Update the bookkeeping information accordingly. Must be called after
1542 * each successful depopulation.
1544 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1545 int page_start, int page_end)
1547 int nr = page_end - page_start;
1549 lockdep_assert_held(&pcpu_lock);
1551 bitmap_clear(chunk->populated, page_start, nr);
1552 chunk->nr_populated -= nr;
1553 pcpu_nr_populated -= nr;
1555 pcpu_update_empty_pages(chunk, -nr);
1559 * Chunk management implementation.
1561 * To allow different implementations, chunk alloc/free and
1562 * [de]population are implemented in a separate file which is pulled
1563 * into this file and compiled together. The following functions
1564 * should be implemented.
1566 * pcpu_populate_chunk - populate the specified range of a chunk
1567 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1568 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
1569 * pcpu_create_chunk - create a new chunk
1570 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1571 * pcpu_addr_to_page - translate address to physical address
1572 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1574 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1575 int page_start, int page_end, gfp_t gfp);
1576 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1577 int page_start, int page_end);
1578 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1579 int page_start, int page_end);
1580 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1581 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1582 static struct page *pcpu_addr_to_page(void *addr);
1583 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1585 #ifdef CONFIG_NEED_PER_CPU_KM
1586 #include "percpu-km.c"
1588 #include "percpu-vm.c"
1592 * pcpu_chunk_addr_search - determine chunk containing specified address
1593 * @addr: address for which the chunk needs to be determined.
1595 * This is an internal function that handles all but static allocations.
1596 * Static percpu address values should never be passed into the allocator.
1599 * The address of the found chunk.
1601 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1603 /* is it in the dynamic region (first chunk)? */
1604 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1605 return pcpu_first_chunk;
1607 /* is it in the reserved region? */
1608 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1609 return pcpu_reserved_chunk;
1612 * The address is relative to unit0 which might be unused and
1613 * thus unmapped. Offset the address to the unit space of the
1614 * current processor before looking it up in the vmalloc
1615 * space. Note that any possible cpu id can be used here, so
1616 * there's no need to worry about preemption or cpu hotplug.
1618 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1619 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1622 #ifdef CONFIG_MEMCG_KMEM
1623 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1624 struct obj_cgroup **objcgp)
1626 struct obj_cgroup *objcg;
1628 if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1631 objcg = get_obj_cgroup_from_current();
1635 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
1636 obj_cgroup_put(objcg);
1644 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1645 struct pcpu_chunk *chunk, int off,
1651 if (likely(chunk && chunk->obj_cgroups)) {
1652 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1655 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1656 pcpu_obj_full_size(size));
1659 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1660 obj_cgroup_put(objcg);
1664 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1666 struct obj_cgroup *objcg;
1668 if (unlikely(!chunk->obj_cgroups))
1671 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1674 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1676 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1679 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1680 -pcpu_obj_full_size(size));
1683 obj_cgroup_put(objcg);
1686 #else /* CONFIG_MEMCG_KMEM */
1688 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1693 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1694 struct pcpu_chunk *chunk, int off,
1699 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1702 #endif /* CONFIG_MEMCG_KMEM */
1705 * pcpu_alloc - the percpu allocator
1706 * @size: size of area to allocate in bytes
1707 * @align: alignment of area (max PAGE_SIZE)
1708 * @reserved: allocate from the reserved chunk if available
1709 * @gfp: allocation flags
1711 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1712 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1713 * then no warning will be triggered on invalid or failed allocation
1717 * Percpu pointer to the allocated area on success, NULL on failure.
1719 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1725 struct obj_cgroup *objcg = NULL;
1726 static int warn_limit = 10;
1727 struct pcpu_chunk *chunk, *next;
1729 int slot, off, cpu, ret;
1730 unsigned long flags;
1732 size_t bits, bit_align;
1734 gfp = current_gfp_context(gfp);
1735 /* whitelisted flags that can be passed to the backing allocators */
1736 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1737 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1738 do_warn = !(gfp & __GFP_NOWARN);
1741 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1742 * therefore alignment must be a minimum of that many bytes.
1743 * An allocation may have internal fragmentation from rounding up
1744 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1746 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1747 align = PCPU_MIN_ALLOC_SIZE;
1749 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1750 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1751 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1753 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1754 !is_power_of_2(align))) {
1755 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1760 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1765 * pcpu_balance_workfn() allocates memory under this mutex,
1766 * and it may wait for memory reclaim. Allow current task
1767 * to become OOM victim, in case of memory pressure.
1769 if (gfp & __GFP_NOFAIL) {
1770 mutex_lock(&pcpu_alloc_mutex);
1771 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1772 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1777 spin_lock_irqsave(&pcpu_lock, flags);
1779 /* serve reserved allocations from the reserved chunk if available */
1780 if (reserved && pcpu_reserved_chunk) {
1781 chunk = pcpu_reserved_chunk;
1783 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1785 err = "alloc from reserved chunk failed";
1789 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1793 err = "alloc from reserved chunk failed";
1798 /* search through normal chunks */
1799 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1800 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1802 off = pcpu_find_block_fit(chunk, bits, bit_align,
1805 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1806 pcpu_chunk_move(chunk, 0);
1810 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1812 pcpu_reintegrate_chunk(chunk);
1818 spin_unlock_irqrestore(&pcpu_lock, flags);
1821 err = "atomic alloc failed, no space left";
1825 /* No space left. Create a new chunk. */
1826 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1827 chunk = pcpu_create_chunk(pcpu_gfp);
1829 err = "failed to allocate new chunk";
1833 spin_lock_irqsave(&pcpu_lock, flags);
1834 pcpu_chunk_relocate(chunk, -1);
1836 spin_lock_irqsave(&pcpu_lock, flags);
1842 pcpu_stats_area_alloc(chunk, size);
1843 spin_unlock_irqrestore(&pcpu_lock, flags);
1845 /* populate if not all pages are already there */
1847 unsigned int page_end, rs, re;
1850 page_end = PFN_UP(off + size);
1852 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1853 WARN_ON(chunk->immutable);
1855 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1857 spin_lock_irqsave(&pcpu_lock, flags);
1859 pcpu_free_area(chunk, off);
1860 err = "failed to populate";
1863 pcpu_chunk_populated(chunk, rs, re);
1864 spin_unlock_irqrestore(&pcpu_lock, flags);
1867 mutex_unlock(&pcpu_alloc_mutex);
1870 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1871 pcpu_schedule_balance_work();
1873 /* clear the areas and return address relative to base address */
1874 for_each_possible_cpu(cpu)
1875 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1877 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1878 kmemleak_alloc_percpu(ptr, size, gfp);
1880 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1881 chunk->base_addr, off, ptr,
1882 pcpu_obj_full_size(size), gfp);
1884 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1889 spin_unlock_irqrestore(&pcpu_lock, flags);
1891 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1893 if (!is_atomic && do_warn && warn_limit) {
1894 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1895 size, align, is_atomic, err);
1898 pr_info("limit reached, disable warning\n");
1901 /* see the flag handling in pcpu_balance_workfn() */
1902 pcpu_atomic_alloc_failed = true;
1903 pcpu_schedule_balance_work();
1905 mutex_unlock(&pcpu_alloc_mutex);
1908 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1914 * __alloc_percpu_gfp - allocate dynamic percpu area
1915 * @size: size of area to allocate in bytes
1916 * @align: alignment of area (max PAGE_SIZE)
1917 * @gfp: allocation flags
1919 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1920 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1921 * be called from any context but is a lot more likely to fail. If @gfp
1922 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1923 * allocation requests.
1926 * Percpu pointer to the allocated area on success, NULL on failure.
1928 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1930 return pcpu_alloc(size, align, false, gfp);
1932 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1935 * __alloc_percpu - allocate dynamic percpu area
1936 * @size: size of area to allocate in bytes
1937 * @align: alignment of area (max PAGE_SIZE)
1939 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1941 void __percpu *__alloc_percpu(size_t size, size_t align)
1943 return pcpu_alloc(size, align, false, GFP_KERNEL);
1945 EXPORT_SYMBOL_GPL(__alloc_percpu);
1948 * __alloc_reserved_percpu - allocate reserved percpu area
1949 * @size: size of area to allocate in bytes
1950 * @align: alignment of area (max PAGE_SIZE)
1952 * Allocate zero-filled percpu area of @size bytes aligned at @align
1953 * from reserved percpu area if arch has set it up; otherwise,
1954 * allocation is served from the same dynamic area. Might sleep.
1955 * Might trigger writeouts.
1958 * Does GFP_KERNEL allocation.
1961 * Percpu pointer to the allocated area on success, NULL on failure.
1963 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1965 return pcpu_alloc(size, align, true, GFP_KERNEL);
1969 * pcpu_balance_free - manage the amount of free chunks
1970 * @empty_only: free chunks only if there are no populated pages
1972 * If empty_only is %false, reclaim all fully free chunks regardless of the
1973 * number of populated pages. Otherwise, only reclaim chunks that have no
1977 * pcpu_lock (can be dropped temporarily)
1979 static void pcpu_balance_free(bool empty_only)
1982 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1983 struct pcpu_chunk *chunk, *next;
1985 lockdep_assert_held(&pcpu_lock);
1988 * There's no reason to keep around multiple unused chunks and VM
1989 * areas can be scarce. Destroy all free chunks except for one.
1991 list_for_each_entry_safe(chunk, next, free_head, list) {
1992 WARN_ON(chunk->immutable);
1994 /* spare the first one */
1995 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1998 if (!empty_only || chunk->nr_empty_pop_pages == 0)
1999 list_move(&chunk->list, &to_free);
2002 if (list_empty(&to_free))
2005 spin_unlock_irq(&pcpu_lock);
2006 list_for_each_entry_safe(chunk, next, &to_free, list) {
2007 unsigned int rs, re;
2009 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2010 pcpu_depopulate_chunk(chunk, rs, re);
2011 spin_lock_irq(&pcpu_lock);
2012 pcpu_chunk_depopulated(chunk, rs, re);
2013 spin_unlock_irq(&pcpu_lock);
2015 pcpu_destroy_chunk(chunk);
2018 spin_lock_irq(&pcpu_lock);
2022 * pcpu_balance_populated - manage the amount of populated pages
2024 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2025 * It is possible that this is called when physical memory is scarce causing
2026 * OOM killer to be triggered. We should avoid doing so until an actual
2027 * allocation causes the failure as it is possible that requests can be
2028 * serviced from already backed regions.
2031 * pcpu_lock (can be dropped temporarily)
2033 static void pcpu_balance_populated(void)
2035 /* gfp flags passed to underlying allocators */
2036 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2037 struct pcpu_chunk *chunk;
2038 int slot, nr_to_pop, ret;
2040 lockdep_assert_held(&pcpu_lock);
2043 * Ensure there are certain number of free populated pages for
2044 * atomic allocs. Fill up from the most packed so that atomic
2045 * allocs don't increase fragmentation. If atomic allocation
2046 * failed previously, always populate the maximum amount. This
2047 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2048 * failing indefinitely; however, large atomic allocs are not
2049 * something we support properly and can be highly unreliable and
2053 if (pcpu_atomic_alloc_failed) {
2054 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2055 /* best effort anyway, don't worry about synchronization */
2056 pcpu_atomic_alloc_failed = false;
2058 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2059 pcpu_nr_empty_pop_pages,
2060 0, PCPU_EMPTY_POP_PAGES_HIGH);
2063 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2064 unsigned int nr_unpop = 0, rs, re;
2069 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2070 nr_unpop = chunk->nr_pages - chunk->nr_populated;
2078 /* @chunk can't go away while pcpu_alloc_mutex is held */
2079 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2080 int nr = min_t(int, re - rs, nr_to_pop);
2082 spin_unlock_irq(&pcpu_lock);
2083 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2085 spin_lock_irq(&pcpu_lock);
2088 pcpu_chunk_populated(chunk, rs, rs + nr);
2099 /* ran out of chunks to populate, create a new one and retry */
2100 spin_unlock_irq(&pcpu_lock);
2101 chunk = pcpu_create_chunk(gfp);
2103 spin_lock_irq(&pcpu_lock);
2105 pcpu_chunk_relocate(chunk, -1);
2112 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2114 * Scan over chunks in the depopulate list and try to release unused populated
2115 * pages back to the system. Depopulated chunks are sidelined to prevent
2116 * repopulating these pages unless required. Fully free chunks are reintegrated
2117 * and freed accordingly (1 is kept around). If we drop below the empty
2118 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2119 * Each chunk is scanned in the reverse order to keep populated pages close to
2120 * the beginning of the chunk.
2123 * pcpu_lock (can be dropped temporarily)
2126 static void pcpu_reclaim_populated(void)
2128 struct pcpu_chunk *chunk;
2129 struct pcpu_block_md *block;
2130 int freed_page_start, freed_page_end;
2134 lockdep_assert_held(&pcpu_lock);
2137 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2138 * longer discoverable to allocations whom may populate pages. The only
2139 * other accessor is the free path which only returns area back to the
2140 * allocator not touching the populated bitmap.
2142 while ((chunk = list_first_entry_or_null(
2143 &pcpu_chunk_lists[pcpu_to_depopulate_slot],
2144 struct pcpu_chunk, list))) {
2145 WARN_ON(chunk->immutable);
2148 * Scan chunk's pages in the reverse order to keep populated
2149 * pages close to the beginning of the chunk.
2151 freed_page_start = chunk->nr_pages;
2153 reintegrate = false;
2154 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2155 /* no more work to do */
2156 if (chunk->nr_empty_pop_pages == 0)
2159 /* reintegrate chunk to prevent atomic alloc failures */
2160 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2166 * If the page is empty and populated, start or
2167 * extend the (i, end) range. If i == 0, decrease
2168 * i and perform the depopulation to cover the last
2169 * (first) page in the chunk.
2171 block = chunk->md_blocks + i;
2172 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2173 test_bit(i, chunk->populated)) {
2181 /* depopulate if there is an active range */
2185 spin_unlock_irq(&pcpu_lock);
2186 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2188 spin_lock_irq(&pcpu_lock);
2190 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2191 freed_page_start = min(freed_page_start, i + 1);
2192 freed_page_end = max(freed_page_end, end + 1);
2194 /* reset the range and continue */
2198 /* batch tlb flush per chunk to amortize cost */
2199 if (freed_page_start < freed_page_end) {
2200 spin_unlock_irq(&pcpu_lock);
2201 pcpu_post_unmap_tlb_flush(chunk,
2205 spin_lock_irq(&pcpu_lock);
2208 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2209 pcpu_reintegrate_chunk(chunk);
2211 list_move_tail(&chunk->list,
2212 &pcpu_chunk_lists[pcpu_sidelined_slot]);
2217 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2220 * For each chunk type, manage the number of fully free chunks and the number of
2221 * populated pages. An important thing to consider is when pages are freed and
2222 * how they contribute to the global counts.
2224 static void pcpu_balance_workfn(struct work_struct *work)
2227 * pcpu_balance_free() is called twice because the first time we may
2228 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2229 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2230 * to move fully free chunks to the active list to be freed if
2233 mutex_lock(&pcpu_alloc_mutex);
2234 spin_lock_irq(&pcpu_lock);
2236 pcpu_balance_free(false);
2237 pcpu_reclaim_populated();
2238 pcpu_balance_populated();
2239 pcpu_balance_free(true);
2241 spin_unlock_irq(&pcpu_lock);
2242 mutex_unlock(&pcpu_alloc_mutex);
2246 * free_percpu - free percpu area
2247 * @ptr: pointer to area to free
2249 * Free percpu area @ptr.
2252 * Can be called from atomic context.
2254 void free_percpu(void __percpu *ptr)
2257 struct pcpu_chunk *chunk;
2258 unsigned long flags;
2260 bool need_balance = false;
2265 kmemleak_free_percpu(ptr);
2267 addr = __pcpu_ptr_to_addr(ptr);
2269 spin_lock_irqsave(&pcpu_lock, flags);
2271 chunk = pcpu_chunk_addr_search(addr);
2272 off = addr - chunk->base_addr;
2274 size = pcpu_free_area(chunk, off);
2276 pcpu_memcg_free_hook(chunk, off, size);
2279 * If there are more than one fully free chunks, wake up grim reaper.
2280 * If the chunk is isolated, it may be in the process of being
2281 * reclaimed. Let reclaim manage cleaning up of that chunk.
2283 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2284 struct pcpu_chunk *pos;
2286 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2288 need_balance = true;
2291 } else if (pcpu_should_reclaim_chunk(chunk)) {
2292 pcpu_isolate_chunk(chunk);
2293 need_balance = true;
2296 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2298 spin_unlock_irqrestore(&pcpu_lock, flags);
2301 pcpu_schedule_balance_work();
2303 EXPORT_SYMBOL_GPL(free_percpu);
2305 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2308 const size_t static_size = __per_cpu_end - __per_cpu_start;
2309 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2312 for_each_possible_cpu(cpu) {
2313 void *start = per_cpu_ptr(base, cpu);
2314 void *va = (void *)addr;
2316 if (va >= start && va < start + static_size) {
2318 *can_addr = (unsigned long) (va - start);
2319 *can_addr += (unsigned long)
2320 per_cpu_ptr(base, get_boot_cpu_id());
2326 /* on UP, can't distinguish from other static vars, always false */
2331 * is_kernel_percpu_address - test whether address is from static percpu area
2332 * @addr: address to test
2334 * Test whether @addr belongs to in-kernel static percpu area. Module
2335 * static percpu areas are not considered. For those, use
2336 * is_module_percpu_address().
2339 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2341 bool is_kernel_percpu_address(unsigned long addr)
2343 return __is_kernel_percpu_address(addr, NULL);
2347 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2348 * @addr: the address to be converted to physical address
2350 * Given @addr which is dereferenceable address obtained via one of
2351 * percpu access macros, this function translates it into its physical
2352 * address. The caller is responsible for ensuring @addr stays valid
2353 * until this function finishes.
2355 * percpu allocator has special setup for the first chunk, which currently
2356 * supports either embedding in linear address space or vmalloc mapping,
2357 * and, from the second one, the backing allocator (currently either vm or
2358 * km) provides translation.
2360 * The addr can be translated simply without checking if it falls into the
2361 * first chunk. But the current code reflects better how percpu allocator
2362 * actually works, and the verification can discover both bugs in percpu
2363 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2367 * The physical address for @addr.
2369 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2371 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2372 bool in_first_chunk = false;
2373 unsigned long first_low, first_high;
2377 * The following test on unit_low/high isn't strictly
2378 * necessary but will speed up lookups of addresses which
2379 * aren't in the first chunk.
2381 * The address check is against full chunk sizes. pcpu_base_addr
2382 * points to the beginning of the first chunk including the
2383 * static region. Assumes good intent as the first chunk may
2384 * not be full (ie. < pcpu_unit_pages in size).
2386 first_low = (unsigned long)pcpu_base_addr +
2387 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2388 first_high = (unsigned long)pcpu_base_addr +
2389 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2390 if ((unsigned long)addr >= first_low &&
2391 (unsigned long)addr < first_high) {
2392 for_each_possible_cpu(cpu) {
2393 void *start = per_cpu_ptr(base, cpu);
2395 if (addr >= start && addr < start + pcpu_unit_size) {
2396 in_first_chunk = true;
2402 if (in_first_chunk) {
2403 if (!is_vmalloc_addr(addr))
2406 return page_to_phys(vmalloc_to_page(addr)) +
2407 offset_in_page(addr);
2409 return page_to_phys(pcpu_addr_to_page(addr)) +
2410 offset_in_page(addr);
2414 * pcpu_alloc_alloc_info - allocate percpu allocation info
2415 * @nr_groups: the number of groups
2416 * @nr_units: the number of units
2418 * Allocate ai which is large enough for @nr_groups groups containing
2419 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2420 * cpu_map array which is long enough for @nr_units and filled with
2421 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2422 * pointer of other groups.
2425 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2428 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2431 struct pcpu_alloc_info *ai;
2432 size_t base_size, ai_size;
2436 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2437 __alignof__(ai->groups[0].cpu_map[0]));
2438 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2440 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2446 ai->groups[0].cpu_map = ptr;
2448 for (unit = 0; unit < nr_units; unit++)
2449 ai->groups[0].cpu_map[unit] = NR_CPUS;
2451 ai->nr_groups = nr_groups;
2452 ai->__ai_size = PFN_ALIGN(ai_size);
2458 * pcpu_free_alloc_info - free percpu allocation info
2459 * @ai: pcpu_alloc_info to free
2461 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2463 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2465 memblock_free(ai, ai->__ai_size);
2469 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2471 * @ai: allocation info to dump
2473 * Print out information about @ai using loglevel @lvl.
2475 static void pcpu_dump_alloc_info(const char *lvl,
2476 const struct pcpu_alloc_info *ai)
2478 int group_width = 1, cpu_width = 1, width;
2479 char empty_str[] = "--------";
2480 int alloc = 0, alloc_end = 0;
2482 int upa, apl; /* units per alloc, allocs per line */
2488 v = num_possible_cpus();
2491 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2493 upa = ai->alloc_size / ai->unit_size;
2494 width = upa * (cpu_width + 1) + group_width + 3;
2495 apl = rounddown_pow_of_two(max(60 / width, 1));
2497 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2498 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2499 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2501 for (group = 0; group < ai->nr_groups; group++) {
2502 const struct pcpu_group_info *gi = &ai->groups[group];
2503 int unit = 0, unit_end = 0;
2505 BUG_ON(gi->nr_units % upa);
2506 for (alloc_end += gi->nr_units / upa;
2507 alloc < alloc_end; alloc++) {
2508 if (!(alloc % apl)) {
2510 printk("%spcpu-alloc: ", lvl);
2512 pr_cont("[%0*d] ", group_width, group);
2514 for (unit_end += upa; unit < unit_end; unit++)
2515 if (gi->cpu_map[unit] != NR_CPUS)
2517 cpu_width, gi->cpu_map[unit]);
2519 pr_cont("%s ", empty_str);
2526 * pcpu_setup_first_chunk - initialize the first percpu chunk
2527 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2528 * @base_addr: mapped address
2530 * Initialize the first percpu chunk which contains the kernel static
2531 * percpu area. This function is to be called from arch percpu area
2534 * @ai contains all information necessary to initialize the first
2535 * chunk and prime the dynamic percpu allocator.
2537 * @ai->static_size is the size of static percpu area.
2539 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2540 * reserve after the static area in the first chunk. This reserves
2541 * the first chunk such that it's available only through reserved
2542 * percpu allocation. This is primarily used to serve module percpu
2543 * static areas on architectures where the addressing model has
2544 * limited offset range for symbol relocations to guarantee module
2545 * percpu symbols fall inside the relocatable range.
2547 * @ai->dyn_size determines the number of bytes available for dynamic
2548 * allocation in the first chunk. The area between @ai->static_size +
2549 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2551 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2552 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2555 * @ai->atom_size is the allocation atom size and used as alignment
2558 * @ai->alloc_size is the allocation size and always multiple of
2559 * @ai->atom_size. This is larger than @ai->atom_size if
2560 * @ai->unit_size is larger than @ai->atom_size.
2562 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2563 * percpu areas. Units which should be colocated are put into the
2564 * same group. Dynamic VM areas will be allocated according to these
2565 * groupings. If @ai->nr_groups is zero, a single group containing
2566 * all units is assumed.
2568 * The caller should have mapped the first chunk at @base_addr and
2569 * copied static data to each unit.
2571 * The first chunk will always contain a static and a dynamic region.
2572 * However, the static region is not managed by any chunk. If the first
2573 * chunk also contains a reserved region, it is served by two chunks -
2574 * one for the reserved region and one for the dynamic region. They
2575 * share the same vm, but use offset regions in the area allocation map.
2576 * The chunk serving the dynamic region is circulated in the chunk slots
2577 * and available for dynamic allocation like any other chunk.
2579 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2582 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2583 size_t static_size, dyn_size;
2584 struct pcpu_chunk *chunk;
2585 unsigned long *group_offsets;
2586 size_t *group_sizes;
2587 unsigned long *unit_off;
2592 unsigned long tmp_addr;
2595 #define PCPU_SETUP_BUG_ON(cond) do { \
2596 if (unlikely(cond)) { \
2597 pr_emerg("failed to initialize, %s\n", #cond); \
2598 pr_emerg("cpu_possible_mask=%*pb\n", \
2599 cpumask_pr_args(cpu_possible_mask)); \
2600 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2606 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2608 PCPU_SETUP_BUG_ON(!ai->static_size);
2609 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2611 PCPU_SETUP_BUG_ON(!base_addr);
2612 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2613 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2614 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2615 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2616 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2617 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2618 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2619 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2620 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2621 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2622 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2624 /* process group information and build config tables accordingly */
2625 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2626 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2628 panic("%s: Failed to allocate %zu bytes\n", __func__,
2631 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2632 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2634 panic("%s: Failed to allocate %zu bytes\n", __func__,
2637 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2638 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2640 panic("%s: Failed to allocate %zu bytes\n", __func__,
2643 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2644 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2646 panic("%s: Failed to allocate %zu bytes\n", __func__,
2649 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2650 unit_map[cpu] = UINT_MAX;
2652 pcpu_low_unit_cpu = NR_CPUS;
2653 pcpu_high_unit_cpu = NR_CPUS;
2655 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2656 const struct pcpu_group_info *gi = &ai->groups[group];
2658 group_offsets[group] = gi->base_offset;
2659 group_sizes[group] = gi->nr_units * ai->unit_size;
2661 for (i = 0; i < gi->nr_units; i++) {
2662 cpu = gi->cpu_map[i];
2666 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2667 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2668 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2670 unit_map[cpu] = unit + i;
2671 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2673 /* determine low/high unit_cpu */
2674 if (pcpu_low_unit_cpu == NR_CPUS ||
2675 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2676 pcpu_low_unit_cpu = cpu;
2677 if (pcpu_high_unit_cpu == NR_CPUS ||
2678 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2679 pcpu_high_unit_cpu = cpu;
2682 pcpu_nr_units = unit;
2684 for_each_possible_cpu(cpu)
2685 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2687 /* we're done parsing the input, undefine BUG macro and dump config */
2688 #undef PCPU_SETUP_BUG_ON
2689 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2691 pcpu_nr_groups = ai->nr_groups;
2692 pcpu_group_offsets = group_offsets;
2693 pcpu_group_sizes = group_sizes;
2694 pcpu_unit_map = unit_map;
2695 pcpu_unit_offsets = unit_off;
2697 /* determine basic parameters */
2698 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2699 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2700 pcpu_atom_size = ai->atom_size;
2701 pcpu_chunk_struct_size = struct_size(chunk, populated,
2702 BITS_TO_LONGS(pcpu_unit_pages));
2704 pcpu_stats_save_ai(ai);
2707 * Allocate chunk slots. The slots after the active slots are:
2708 * sidelined_slot - isolated, depopulated chunks
2709 * free_slot - fully free chunks
2710 * to_depopulate_slot - isolated, chunks to depopulate
2712 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2713 pcpu_free_slot = pcpu_sidelined_slot + 1;
2714 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2715 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2716 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2717 sizeof(pcpu_chunk_lists[0]),
2719 if (!pcpu_chunk_lists)
2720 panic("%s: Failed to allocate %zu bytes\n", __func__,
2721 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2723 for (i = 0; i < pcpu_nr_slots; i++)
2724 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2727 * The end of the static region needs to be aligned with the
2728 * minimum allocation size as this offsets the reserved and
2729 * dynamic region. The first chunk ends page aligned by
2730 * expanding the dynamic region, therefore the dynamic region
2731 * can be shrunk to compensate while still staying above the
2734 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2735 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2738 * Initialize first chunk.
2739 * If the reserved_size is non-zero, this initializes the reserved
2740 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2741 * and the dynamic region is initialized here. The first chunk,
2742 * pcpu_first_chunk, will always point to the chunk that serves
2743 * the dynamic region.
2745 tmp_addr = (unsigned long)base_addr + static_size;
2746 map_size = ai->reserved_size ?: dyn_size;
2747 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2749 /* init dynamic chunk if necessary */
2750 if (ai->reserved_size) {
2751 pcpu_reserved_chunk = chunk;
2753 tmp_addr = (unsigned long)base_addr + static_size +
2755 map_size = dyn_size;
2756 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2759 /* link the first chunk in */
2760 pcpu_first_chunk = chunk;
2761 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2762 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2764 /* include all regions of the first chunk */
2765 pcpu_nr_populated += PFN_DOWN(size_sum);
2767 pcpu_stats_chunk_alloc();
2768 trace_percpu_create_chunk(base_addr);
2771 pcpu_base_addr = base_addr;
2776 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2777 [PCPU_FC_AUTO] = "auto",
2778 [PCPU_FC_EMBED] = "embed",
2779 [PCPU_FC_PAGE] = "page",
2782 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2784 static int __init percpu_alloc_setup(char *str)
2791 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2792 else if (!strcmp(str, "embed"))
2793 pcpu_chosen_fc = PCPU_FC_EMBED;
2795 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2796 else if (!strcmp(str, "page"))
2797 pcpu_chosen_fc = PCPU_FC_PAGE;
2800 pr_warn("unknown allocator %s specified\n", str);
2804 early_param("percpu_alloc", percpu_alloc_setup);
2807 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2808 * Build it if needed by the arch config or the generic setup is going
2811 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2812 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2813 #define BUILD_EMBED_FIRST_CHUNK
2816 /* build pcpu_page_first_chunk() iff needed by the arch config */
2817 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2818 #define BUILD_PAGE_FIRST_CHUNK
2821 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2822 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2824 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2825 * @reserved_size: the size of reserved percpu area in bytes
2826 * @dyn_size: minimum free size for dynamic allocation in bytes
2827 * @atom_size: allocation atom size
2828 * @cpu_distance_fn: callback to determine distance between cpus, optional
2830 * This function determines grouping of units, their mappings to cpus
2831 * and other parameters considering needed percpu size, allocation
2832 * atom size and distances between CPUs.
2834 * Groups are always multiples of atom size and CPUs which are of
2835 * LOCAL_DISTANCE both ways are grouped together and share space for
2836 * units in the same group. The returned configuration is guaranteed
2837 * to have CPUs on different nodes on different groups and >=75% usage
2838 * of allocated virtual address space.
2841 * On success, pointer to the new allocation_info is returned. On
2842 * failure, ERR_PTR value is returned.
2844 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2845 size_t reserved_size, size_t dyn_size,
2847 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2849 static int group_map[NR_CPUS] __initdata;
2850 static int group_cnt[NR_CPUS] __initdata;
2851 static struct cpumask mask __initdata;
2852 const size_t static_size = __per_cpu_end - __per_cpu_start;
2853 int nr_groups = 1, nr_units = 0;
2854 size_t size_sum, min_unit_size, alloc_size;
2855 int upa, max_upa, best_upa; /* units_per_alloc */
2856 int last_allocs, group, unit;
2857 unsigned int cpu, tcpu;
2858 struct pcpu_alloc_info *ai;
2859 unsigned int *cpu_map;
2861 /* this function may be called multiple times */
2862 memset(group_map, 0, sizeof(group_map));
2863 memset(group_cnt, 0, sizeof(group_cnt));
2864 cpumask_clear(&mask);
2866 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2867 size_sum = PFN_ALIGN(static_size + reserved_size +
2868 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2869 dyn_size = size_sum - static_size - reserved_size;
2872 * Determine min_unit_size, alloc_size and max_upa such that
2873 * alloc_size is multiple of atom_size and is the smallest
2874 * which can accommodate 4k aligned segments which are equal to
2875 * or larger than min_unit_size.
2877 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2879 /* determine the maximum # of units that can fit in an allocation */
2880 alloc_size = roundup(min_unit_size, atom_size);
2881 upa = alloc_size / min_unit_size;
2882 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2886 cpumask_copy(&mask, cpu_possible_mask);
2888 /* group cpus according to their proximity */
2889 for (group = 0; !cpumask_empty(&mask); group++) {
2890 /* pop the group's first cpu */
2891 cpu = cpumask_first(&mask);
2892 group_map[cpu] = group;
2894 cpumask_clear_cpu(cpu, &mask);
2896 for_each_cpu(tcpu, &mask) {
2897 if (!cpu_distance_fn ||
2898 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2899 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2900 group_map[tcpu] = group;
2902 cpumask_clear_cpu(tcpu, &mask);
2909 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2910 * Expand the unit_size until we use >= 75% of the units allocated.
2911 * Related to atom_size, which could be much larger than the unit_size.
2913 last_allocs = INT_MAX;
2915 for (upa = max_upa; upa; upa--) {
2916 int allocs = 0, wasted = 0;
2918 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2921 for (group = 0; group < nr_groups; group++) {
2922 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2923 allocs += this_allocs;
2924 wasted += this_allocs * upa - group_cnt[group];
2928 * Don't accept if wastage is over 1/3. The
2929 * greater-than comparison ensures upa==1 always
2930 * passes the following check.
2932 if (wasted > num_possible_cpus() / 3)
2935 /* and then don't consume more memory */
2936 if (allocs > last_allocs)
2938 last_allocs = allocs;
2944 /* allocate and fill alloc_info */
2945 for (group = 0; group < nr_groups; group++)
2946 nr_units += roundup(group_cnt[group], upa);
2948 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2950 return ERR_PTR(-ENOMEM);
2951 cpu_map = ai->groups[0].cpu_map;
2953 for (group = 0; group < nr_groups; group++) {
2954 ai->groups[group].cpu_map = cpu_map;
2955 cpu_map += roundup(group_cnt[group], upa);
2958 ai->static_size = static_size;
2959 ai->reserved_size = reserved_size;
2960 ai->dyn_size = dyn_size;
2961 ai->unit_size = alloc_size / upa;
2962 ai->atom_size = atom_size;
2963 ai->alloc_size = alloc_size;
2965 for (group = 0, unit = 0; group < nr_groups; group++) {
2966 struct pcpu_group_info *gi = &ai->groups[group];
2969 * Initialize base_offset as if all groups are located
2970 * back-to-back. The caller should update this to
2971 * reflect actual allocation.
2973 gi->base_offset = unit * ai->unit_size;
2975 for_each_possible_cpu(cpu)
2976 if (group_map[cpu] == group)
2977 gi->cpu_map[gi->nr_units++] = cpu;
2978 gi->nr_units = roundup(gi->nr_units, upa);
2979 unit += gi->nr_units;
2981 BUG_ON(unit != nr_units);
2986 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2987 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2989 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2991 int node = NUMA_NO_NODE;
2995 node = cpu_to_nd_fn(cpu);
2997 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
2998 ptr = memblock_alloc_from(size, align, goal);
2999 pr_info("cpu %d has no node %d or node-local memory\n",
3001 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
3002 cpu, size, (u64)__pa(ptr));
3004 ptr = memblock_alloc_try_nid(size, align, goal,
3005 MEMBLOCK_ALLOC_ACCESSIBLE,
3008 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
3009 cpu, size, node, (u64)__pa(ptr));
3013 return memblock_alloc_from(size, align, goal);
3017 static void __init pcpu_fc_free(void *ptr, size_t size)
3019 memblock_free(ptr, size);
3021 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3023 #if defined(BUILD_EMBED_FIRST_CHUNK)
3025 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3026 * @reserved_size: the size of reserved percpu area in bytes
3027 * @dyn_size: minimum free size for dynamic allocation in bytes
3028 * @atom_size: allocation atom size
3029 * @cpu_distance_fn: callback to determine distance between cpus, optional
3030 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3032 * This is a helper to ease setting up embedded first percpu chunk and
3033 * can be called where pcpu_setup_first_chunk() is expected.
3035 * If this function is used to setup the first chunk, it is allocated
3036 * by calling pcpu_fc_alloc and used as-is without being mapped into
3037 * vmalloc area. Allocations are always whole multiples of @atom_size
3038 * aligned to @atom_size.
3040 * This enables the first chunk to piggy back on the linear physical
3041 * mapping which often uses larger page size. Please note that this
3042 * can result in very sparse cpu->unit mapping on NUMA machines thus
3043 * requiring large vmalloc address space. Don't use this allocator if
3044 * vmalloc space is not orders of magnitude larger than distances
3045 * between node memory addresses (ie. 32bit NUMA machines).
3047 * @dyn_size specifies the minimum dynamic area size.
3049 * If the needed size is smaller than the minimum or specified unit
3050 * size, the leftover is returned using pcpu_fc_free.
3053 * 0 on success, -errno on failure.
3055 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3057 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3058 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3060 void *base = (void *)ULONG_MAX;
3061 void **areas = NULL;
3062 struct pcpu_alloc_info *ai;
3063 size_t size_sum, areas_size;
3064 unsigned long max_distance;
3065 int group, i, highest_group, rc = 0;
3067 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3072 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3073 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3075 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3081 /* allocate, copy and determine base address & max_distance */
3083 for (group = 0; group < ai->nr_groups; group++) {
3084 struct pcpu_group_info *gi = &ai->groups[group];
3085 unsigned int cpu = NR_CPUS;
3088 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3089 cpu = gi->cpu_map[i];
3090 BUG_ON(cpu == NR_CPUS);
3092 /* allocate space for the whole group */
3093 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3096 goto out_free_areas;
3098 /* kmemleak tracks the percpu allocations separately */
3099 kmemleak_ignore_phys(__pa(ptr));
3102 base = min(ptr, base);
3103 if (ptr > areas[highest_group])
3104 highest_group = group;
3106 max_distance = areas[highest_group] - base;
3107 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3109 /* warn if maximum distance is further than 75% of vmalloc space */
3110 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3111 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3112 max_distance, VMALLOC_TOTAL);
3113 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3114 /* and fail if we have fallback */
3116 goto out_free_areas;
3121 * Copy data and free unused parts. This should happen after all
3122 * allocations are complete; otherwise, we may end up with
3123 * overlapping groups.
3125 for (group = 0; group < ai->nr_groups; group++) {
3126 struct pcpu_group_info *gi = &ai->groups[group];
3127 void *ptr = areas[group];
3129 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3130 if (gi->cpu_map[i] == NR_CPUS) {
3131 /* unused unit, free whole */
3132 pcpu_fc_free(ptr, ai->unit_size);
3135 /* copy and return the unused part */
3136 memcpy(ptr, __per_cpu_load, ai->static_size);
3137 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3141 /* base address is now known, determine group base offsets */
3142 for (group = 0; group < ai->nr_groups; group++) {
3143 ai->groups[group].base_offset = areas[group] - base;
3146 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3147 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3148 ai->dyn_size, ai->unit_size);
3150 pcpu_setup_first_chunk(ai, base);
3154 for (group = 0; group < ai->nr_groups; group++)
3156 pcpu_fc_free(areas[group],
3157 ai->groups[group].nr_units * ai->unit_size);
3159 pcpu_free_alloc_info(ai);
3161 memblock_free(areas, areas_size);
3164 #endif /* BUILD_EMBED_FIRST_CHUNK */
3166 #ifdef BUILD_PAGE_FIRST_CHUNK
3167 #include <asm/pgalloc.h>
3169 #ifndef P4D_TABLE_SIZE
3170 #define P4D_TABLE_SIZE PAGE_SIZE
3173 #ifndef PUD_TABLE_SIZE
3174 #define PUD_TABLE_SIZE PAGE_SIZE
3177 #ifndef PMD_TABLE_SIZE
3178 #define PMD_TABLE_SIZE PAGE_SIZE
3181 #ifndef PTE_TABLE_SIZE
3182 #define PTE_TABLE_SIZE PAGE_SIZE
3184 void __init __weak pcpu_populate_pte(unsigned long addr)
3186 pgd_t *pgd = pgd_offset_k(addr);
3191 if (pgd_none(*pgd)) {
3194 new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3197 pgd_populate(&init_mm, pgd, new);
3200 p4d = p4d_offset(pgd, addr);
3201 if (p4d_none(*p4d)) {
3204 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3207 p4d_populate(&init_mm, p4d, new);
3210 pud = pud_offset(p4d, addr);
3211 if (pud_none(*pud)) {
3214 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3217 pud_populate(&init_mm, pud, new);
3220 pmd = pmd_offset(pud, addr);
3221 if (!pmd_present(*pmd)) {
3224 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3227 pmd_populate_kernel(&init_mm, pmd, new);
3233 panic("%s: Failed to allocate memory\n", __func__);
3237 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3238 * @reserved_size: the size of reserved percpu area in bytes
3239 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3241 * This is a helper to ease setting up page-remapped first percpu
3242 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3244 * This is the basic allocator. Static percpu area is allocated
3245 * page-by-page into vmalloc area.
3248 * 0 on success, -errno on failure.
3250 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3252 static struct vm_struct vm;
3253 struct pcpu_alloc_info *ai;
3257 struct page **pages;
3258 int unit, i, j, rc = 0;
3262 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3264 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3267 BUG_ON(ai->nr_groups != 1);
3268 upa = ai->alloc_size/ai->unit_size;
3269 nr_g0_units = roundup(num_possible_cpus(), upa);
3270 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3271 pcpu_free_alloc_info(ai);
3275 unit_pages = ai->unit_size >> PAGE_SHIFT;
3277 /* unaligned allocations can't be freed, round up to page size */
3278 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3280 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3282 panic("%s: Failed to allocate %zu bytes\n", __func__,
3285 /* allocate pages */
3287 for (unit = 0; unit < num_possible_cpus(); unit++) {
3288 unsigned int cpu = ai->groups[0].cpu_map[unit];
3289 for (i = 0; i < unit_pages; i++) {
3292 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3294 pr_warn("failed to allocate %s page for cpu%u\n",
3298 /* kmemleak tracks the percpu allocations separately */
3299 kmemleak_ignore_phys(__pa(ptr));
3300 pages[j++] = virt_to_page(ptr);
3304 /* allocate vm area, map the pages and copy static data */
3305 vm.flags = VM_ALLOC;
3306 vm.size = num_possible_cpus() * ai->unit_size;
3307 vm_area_register_early(&vm, PAGE_SIZE);
3309 for (unit = 0; unit < num_possible_cpus(); unit++) {
3310 unsigned long unit_addr =
3311 (unsigned long)vm.addr + unit * ai->unit_size;
3313 for (i = 0; i < unit_pages; i++)
3314 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3316 /* pte already populated, the following shouldn't fail */
3317 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3320 panic("failed to map percpu area, err=%d\n", rc);
3323 * FIXME: Archs with virtual cache should flush local
3324 * cache for the linear mapping here - something
3325 * equivalent to flush_cache_vmap() on the local cpu.
3326 * flush_cache_vmap() can't be used as most supporting
3327 * data structures are not set up yet.
3330 /* copy static data */
3331 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3334 /* we're ready, commit */
3335 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3336 unit_pages, psize_str, ai->static_size,
3337 ai->reserved_size, ai->dyn_size);
3339 pcpu_setup_first_chunk(ai, vm.addr);
3344 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3347 memblock_free(pages, pages_size);
3348 pcpu_free_alloc_info(ai);
3351 #endif /* BUILD_PAGE_FIRST_CHUNK */
3353 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3355 * Generic SMP percpu area setup.
3357 * The embedding helper is used because its behavior closely resembles
3358 * the original non-dynamic generic percpu area setup. This is
3359 * important because many archs have addressing restrictions and might
3360 * fail if the percpu area is located far away from the previous
3361 * location. As an added bonus, in non-NUMA cases, embedding is
3362 * generally a good idea TLB-wise because percpu area can piggy back
3363 * on the physical linear memory mapping which uses large page
3364 * mappings on applicable archs.
3366 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3367 EXPORT_SYMBOL(__per_cpu_offset);
3369 void __init setup_per_cpu_areas(void)
3371 unsigned long delta;
3376 * Always reserve area for module percpu variables. That's
3377 * what the legacy allocator did.
3379 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3380 PAGE_SIZE, NULL, NULL);
3382 panic("Failed to initialize percpu areas.");
3384 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3385 for_each_possible_cpu(cpu)
3386 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3388 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3390 #else /* CONFIG_SMP */
3393 * UP percpu area setup.
3395 * UP always uses km-based percpu allocator with identity mapping.
3396 * Static percpu variables are indistinguishable from the usual static
3397 * variables and don't require any special preparation.
3399 void __init setup_per_cpu_areas(void)
3401 const size_t unit_size =
3402 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3403 PERCPU_DYNAMIC_RESERVE));
3404 struct pcpu_alloc_info *ai;
3407 ai = pcpu_alloc_alloc_info(1, 1);
3408 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3410 panic("Failed to allocate memory for percpu areas.");
3411 /* kmemleak tracks the percpu allocations separately */
3412 kmemleak_ignore_phys(__pa(fc));
3414 ai->dyn_size = unit_size;
3415 ai->unit_size = unit_size;
3416 ai->atom_size = unit_size;
3417 ai->alloc_size = unit_size;
3418 ai->groups[0].nr_units = 1;
3419 ai->groups[0].cpu_map[0] = 0;
3421 pcpu_setup_first_chunk(ai, fc);
3422 pcpu_free_alloc_info(ai);
3425 #endif /* CONFIG_SMP */
3428 * pcpu_nr_pages - calculate total number of populated backing pages
3430 * This reflects the number of pages populated to back chunks. Metadata is
3431 * excluded in the number exposed in meminfo as the number of backing pages
3432 * scales with the number of cpus and can quickly outweigh the memory used for
3433 * metadata. It also keeps this calculation nice and simple.
3436 * Total number of populated backing pages in use by the allocator.
3438 unsigned long pcpu_nr_pages(void)
3440 return pcpu_nr_populated * pcpu_nr_units;
3444 * Percpu allocator is initialized early during boot when neither slab or
3445 * workqueue is available. Plug async management until everything is up
3448 static int __init percpu_enable_async(void)
3450 pcpu_async_enabled = true;
3453 subsys_initcall(percpu_enable_async);