Merge tag 'jfs-5.14' of git://github.com/kleikamp/linux-shaggy
[platform/kernel/linux-rpi.git] / mm / percpu-vm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu-vm.c - vmalloc area based chunk allocation
4  *
5  * Copyright (C) 2010           SUSE Linux Products GmbH
6  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
7  *
8  * Chunks are mapped into vmalloc areas and populated page by page.
9  * This is the default chunk allocator.
10  */
11 #include "internal.h"
12
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14                                     unsigned int cpu, int page_idx)
15 {
16         /* must not be used on pre-mapped chunk */
17         WARN_ON(chunk->immutable);
18
19         return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21
22 /**
23  * pcpu_get_pages - get temp pages array
24  *
25  * Returns pointer to array of pointers to struct page which can be indexed
26  * with pcpu_page_idx().  Note that there is only one array and accesses
27  * should be serialized by pcpu_alloc_mutex.
28  *
29  * RETURNS:
30  * Pointer to temp pages array on success.
31  */
32 static struct page **pcpu_get_pages(void)
33 {
34         static struct page **pages;
35         size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
36
37         lockdep_assert_held(&pcpu_alloc_mutex);
38
39         if (!pages)
40                 pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
41         return pages;
42 }
43
44 /**
45  * pcpu_free_pages - free pages which were allocated for @chunk
46  * @chunk: chunk pages were allocated for
47  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
48  * @page_start: page index of the first page to be freed
49  * @page_end: page index of the last page to be freed + 1
50  *
51  * Free pages [@page_start and @page_end) in @pages for all units.
52  * The pages were allocated for @chunk.
53  */
54 static void pcpu_free_pages(struct pcpu_chunk *chunk,
55                             struct page **pages, int page_start, int page_end)
56 {
57         unsigned int cpu;
58         int i;
59
60         for_each_possible_cpu(cpu) {
61                 for (i = page_start; i < page_end; i++) {
62                         struct page *page = pages[pcpu_page_idx(cpu, i)];
63
64                         if (page)
65                                 __free_page(page);
66                 }
67         }
68 }
69
70 /**
71  * pcpu_alloc_pages - allocates pages for @chunk
72  * @chunk: target chunk
73  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
74  * @page_start: page index of the first page to be allocated
75  * @page_end: page index of the last page to be allocated + 1
76  * @gfp: allocation flags passed to the underlying allocator
77  *
78  * Allocate pages [@page_start,@page_end) into @pages for all units.
79  * The allocation is for @chunk.  Percpu core doesn't care about the
80  * content of @pages and will pass it verbatim to pcpu_map_pages().
81  */
82 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
83                             struct page **pages, int page_start, int page_end,
84                             gfp_t gfp)
85 {
86         unsigned int cpu, tcpu;
87         int i;
88
89         gfp |= __GFP_HIGHMEM;
90
91         for_each_possible_cpu(cpu) {
92                 for (i = page_start; i < page_end; i++) {
93                         struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
94
95                         *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
96                         if (!*pagep)
97                                 goto err;
98                 }
99         }
100         return 0;
101
102 err:
103         while (--i >= page_start)
104                 __free_page(pages[pcpu_page_idx(cpu, i)]);
105
106         for_each_possible_cpu(tcpu) {
107                 if (tcpu == cpu)
108                         break;
109                 for (i = page_start; i < page_end; i++)
110                         __free_page(pages[pcpu_page_idx(tcpu, i)]);
111         }
112         return -ENOMEM;
113 }
114
115 /**
116  * pcpu_pre_unmap_flush - flush cache prior to unmapping
117  * @chunk: chunk the regions to be flushed belongs to
118  * @page_start: page index of the first page to be flushed
119  * @page_end: page index of the last page to be flushed + 1
120  *
121  * Pages in [@page_start,@page_end) of @chunk are about to be
122  * unmapped.  Flush cache.  As each flushing trial can be very
123  * expensive, issue flush on the whole region at once rather than
124  * doing it for each cpu.  This could be an overkill but is more
125  * scalable.
126  */
127 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
128                                  int page_start, int page_end)
129 {
130         flush_cache_vunmap(
131                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
132                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
133 }
134
135 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
136 {
137         vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT));
138 }
139
140 /**
141  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
142  * @chunk: chunk of interest
143  * @pages: pages array which can be used to pass information to free
144  * @page_start: page index of the first page to unmap
145  * @page_end: page index of the last page to unmap + 1
146  *
147  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
148  * Corresponding elements in @pages were cleared by the caller and can
149  * be used to carry information to pcpu_free_pages() which will be
150  * called after all unmaps are finished.  The caller should call
151  * proper pre/post flush functions.
152  */
153 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
154                              struct page **pages, int page_start, int page_end)
155 {
156         unsigned int cpu;
157         int i;
158
159         for_each_possible_cpu(cpu) {
160                 for (i = page_start; i < page_end; i++) {
161                         struct page *page;
162
163                         page = pcpu_chunk_page(chunk, cpu, i);
164                         WARN_ON(!page);
165                         pages[pcpu_page_idx(cpu, i)] = page;
166                 }
167                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
168                                    page_end - page_start);
169         }
170 }
171
172 /**
173  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
174  * @chunk: pcpu_chunk the regions to be flushed belong to
175  * @page_start: page index of the first page to be flushed
176  * @page_end: page index of the last page to be flushed + 1
177  *
178  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
179  * TLB for the regions.  This can be skipped if the area is to be
180  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
181  *
182  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
183  * for the whole region.
184  */
185 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
186                                       int page_start, int page_end)
187 {
188         flush_tlb_kernel_range(
189                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
190                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
191 }
192
193 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
194                             int nr_pages)
195 {
196         return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT),
197                                         PAGE_KERNEL, pages, PAGE_SHIFT);
198 }
199
200 /**
201  * pcpu_map_pages - map pages into a pcpu_chunk
202  * @chunk: chunk of interest
203  * @pages: pages array containing pages to be mapped
204  * @page_start: page index of the first page to map
205  * @page_end: page index of the last page to map + 1
206  *
207  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
208  * caller is responsible for calling pcpu_post_map_flush() after all
209  * mappings are complete.
210  *
211  * This function is responsible for setting up whatever is necessary for
212  * reverse lookup (addr -> chunk).
213  */
214 static int pcpu_map_pages(struct pcpu_chunk *chunk,
215                           struct page **pages, int page_start, int page_end)
216 {
217         unsigned int cpu, tcpu;
218         int i, err;
219
220         for_each_possible_cpu(cpu) {
221                 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
222                                        &pages[pcpu_page_idx(cpu, page_start)],
223                                        page_end - page_start);
224                 if (err < 0)
225                         goto err;
226
227                 for (i = page_start; i < page_end; i++)
228                         pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
229                                             chunk);
230         }
231         return 0;
232 err:
233         for_each_possible_cpu(tcpu) {
234                 if (tcpu == cpu)
235                         break;
236                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
237                                    page_end - page_start);
238         }
239         pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
240         return err;
241 }
242
243 /**
244  * pcpu_post_map_flush - flush cache after mapping
245  * @chunk: pcpu_chunk the regions to be flushed belong to
246  * @page_start: page index of the first page to be flushed
247  * @page_end: page index of the last page to be flushed + 1
248  *
249  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
250  * cache.
251  *
252  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
253  * for the whole region.
254  */
255 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
256                                 int page_start, int page_end)
257 {
258         flush_cache_vmap(
259                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
260                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
261 }
262
263 /**
264  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
265  * @chunk: chunk of interest
266  * @page_start: the start page
267  * @page_end: the end page
268  * @gfp: allocation flags passed to the underlying memory allocator
269  *
270  * For each cpu, populate and map pages [@page_start,@page_end) into
271  * @chunk.
272  *
273  * CONTEXT:
274  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
275  */
276 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
277                                int page_start, int page_end, gfp_t gfp)
278 {
279         struct page **pages;
280
281         pages = pcpu_get_pages();
282         if (!pages)
283                 return -ENOMEM;
284
285         if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
286                 return -ENOMEM;
287
288         if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
289                 pcpu_free_pages(chunk, pages, page_start, page_end);
290                 return -ENOMEM;
291         }
292         pcpu_post_map_flush(chunk, page_start, page_end);
293
294         return 0;
295 }
296
297 /**
298  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
299  * @chunk: chunk to depopulate
300  * @page_start: the start page
301  * @page_end: the end page
302  *
303  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
304  * from @chunk.
305  *
306  * CONTEXT:
307  * pcpu_alloc_mutex.
308  */
309 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
310                                   int page_start, int page_end)
311 {
312         struct page **pages;
313
314         /*
315          * If control reaches here, there must have been at least one
316          * successful population attempt so the temp pages array must
317          * be available now.
318          */
319         pages = pcpu_get_pages();
320         BUG_ON(!pages);
321
322         /* unmap and free */
323         pcpu_pre_unmap_flush(chunk, page_start, page_end);
324
325         pcpu_unmap_pages(chunk, pages, page_start, page_end);
326
327         /* no need to flush tlb, vmalloc will handle it lazily */
328
329         pcpu_free_pages(chunk, pages, page_start, page_end);
330 }
331
332 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
333 {
334         struct pcpu_chunk *chunk;
335         struct vm_struct **vms;
336
337         chunk = pcpu_alloc_chunk(gfp);
338         if (!chunk)
339                 return NULL;
340
341         vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
342                                 pcpu_nr_groups, pcpu_atom_size);
343         if (!vms) {
344                 pcpu_free_chunk(chunk);
345                 return NULL;
346         }
347
348         chunk->data = vms;
349         chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
350
351         pcpu_stats_chunk_alloc();
352         trace_percpu_create_chunk(chunk->base_addr);
353
354         return chunk;
355 }
356
357 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
358 {
359         if (!chunk)
360                 return;
361
362         pcpu_stats_chunk_dealloc();
363         trace_percpu_destroy_chunk(chunk->base_addr);
364
365         if (chunk->data)
366                 pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
367         pcpu_free_chunk(chunk);
368 }
369
370 static struct page *pcpu_addr_to_page(void *addr)
371 {
372         return vmalloc_to_page(addr);
373 }
374
375 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
376 {
377         /* no extra restriction */
378         return 0;
379 }
380
381 /**
382  * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim
383  * @chunk: chunk of interest
384  *
385  * This is the entry point for percpu reclaim.  If a chunk qualifies, it is then
386  * isolated and managed in separate lists at the back of pcpu_slot: sidelined
387  * and to_depopulate respectively.  The to_depopulate list holds chunks slated
388  * for depopulation.  They no longer contribute to pcpu_nr_empty_pop_pages once
389  * they are on this list.  Once depopulated, they are moved onto the sidelined
390  * list which enables them to be pulled back in for allocation if no other chunk
391  * can suffice the allocation.
392  */
393 static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk)
394 {
395         /* do not reclaim either the first chunk or reserved chunk */
396         if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk)
397                 return false;
398
399         /*
400          * If it is isolated, it may be on the sidelined list so move it back to
401          * the to_depopulate list.  If we hit at least 1/4 pages empty pages AND
402          * there is no system-wide shortage of empty pages aside from this
403          * chunk, move it to the to_depopulate list.
404          */
405         return ((chunk->isolated && chunk->nr_empty_pop_pages) ||
406                 (pcpu_nr_empty_pop_pages >
407                  (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) &&
408                  chunk->nr_empty_pop_pages >= chunk->nr_pages / 4));
409 }