2 #include <linux/highmem.h>
3 #include <linux/sched.h>
4 #include <linux/hugetlb.h>
6 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
12 pte = pte_offset_map(pmd, addr);
14 err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
27 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
34 pmd = pmd_offset(pud, addr);
37 next = pmd_addr_end(addr, end);
40 err = walk->pte_hole(addr, next, walk);
46 * This implies that each ->pmd_entry() handler
47 * needs to know about pmd_trans_huge() pmds
50 err = walk->pmd_entry(pmd, addr, next, walk);
55 * Check this here so we only break down trans_huge
56 * pages when we _need_ to
61 split_huge_page_pmd_mm(walk->mm, addr, pmd);
62 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
64 err = walk_pte_range(pmd, addr, next, walk);
67 } while (pmd++, addr = next, addr != end);
72 static int walk_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end,
79 pud = pud_offset(pgd, addr);
81 next = pud_addr_end(addr, end);
82 if (pud_none_or_clear_bad(pud)) {
84 err = walk->pte_hole(addr, next, walk);
90 err = walk->pud_entry(pud, addr, next, walk);
91 if (!err && (walk->pmd_entry || walk->pte_entry))
92 err = walk_pmd_range(pud, addr, next, walk);
95 } while (pud++, addr = next, addr != end);
100 #ifdef CONFIG_HUGETLB_PAGE
101 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
104 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
105 return boundary < end ? boundary : end;
108 static int walk_hugetlb_range(struct vm_area_struct *vma,
109 unsigned long addr, unsigned long end,
110 struct mm_walk *walk)
112 struct hstate *h = hstate_vma(vma);
114 unsigned long hmask = huge_page_mask(h);
119 next = hugetlb_entry_end(h, addr, end);
120 pte = huge_pte_offset(walk->mm, addr & hmask);
121 if (pte && walk->hugetlb_entry)
122 err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
125 } while (addr = next, addr != end);
130 static struct vm_area_struct* hugetlb_vma(unsigned long addr, struct mm_walk *walk)
132 struct vm_area_struct *vma;
134 /* We don't need vma lookup at all. */
135 if (!walk->hugetlb_entry)
138 VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
139 vma = find_vma(walk->mm, addr);
140 if (vma && vma->vm_start <= addr && is_vm_hugetlb_page(vma))
146 #else /* CONFIG_HUGETLB_PAGE */
147 static struct vm_area_struct* hugetlb_vma(unsigned long addr, struct mm_walk *walk)
152 static int walk_hugetlb_range(struct vm_area_struct *vma,
153 unsigned long addr, unsigned long end,
154 struct mm_walk *walk)
159 #endif /* CONFIG_HUGETLB_PAGE */
164 * walk_page_range - walk a memory map's page tables with a callback
165 * @addr: starting address
166 * @end: ending address
167 * @walk: set of callbacks to invoke for each level of the tree
169 * Recursively walk the page table for the memory area in a VMA,
170 * calling supplied callbacks. Callbacks are called in-order (first
171 * PGD, first PUD, first PMD, first PTE, second PTE... second PMD,
172 * etc.). If lower-level callbacks are omitted, walking depth is reduced.
174 * Each callback receives an entry pointer and the start and end of the
175 * associated range, and a copy of the original mm_walk for access to
176 * the ->private or ->mm fields.
178 * Usually no locks are taken, but splitting transparent huge page may
179 * take page table lock. And the bottom level iterator will map PTE
180 * directories from highmem if necessary.
182 * If any callback returns a non-zero value, the walk is aborted and
183 * the return value is propagated back to the caller. Otherwise 0 is returned.
185 * walk->mm->mmap_sem must be held for at least read if walk->hugetlb_entry
188 int walk_page_range(unsigned long addr, unsigned long end,
189 struct mm_walk *walk)
201 pgd = pgd_offset(walk->mm, addr);
203 struct vm_area_struct *vma;
205 next = pgd_addr_end(addr, end);
208 * handle hugetlb vma individually because pagetable walk for
209 * the hugetlb page is dependent on the architecture and
210 * we can't handled it in the same manner as non-huge pages.
212 vma = hugetlb_vma(addr, walk);
214 if (vma->vm_end < next)
217 * Hugepage is very tightly coupled with vma, so
218 * walk through hugetlb entries within a given vma.
220 err = walk_hugetlb_range(vma, addr, next, walk);
223 pgd = pgd_offset(walk->mm, next);
227 if (pgd_none_or_clear_bad(pgd)) {
229 err = walk->pte_hole(addr, next, walk);
236 err = walk->pgd_entry(pgd, addr, next, walk);
238 (walk->pud_entry || walk->pmd_entry || walk->pte_entry))
239 err = walk_pud_range(pgd, addr, next, walk);
243 } while (addr = next, addr != end);