1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95,
8 * Asynchronous swapping added 30.12.95. Stephen Tweedie
9 * Removed race in async swapping. 14.4.1996. Bruno Haible
10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
29 void end_swap_bio_write(struct bio *bio)
31 struct page *page = bio_first_page_all(bio);
36 * We failed to write the page out to swap-space.
37 * Re-dirty the page in order to avoid it being reclaimed.
38 * Also print a dire warning that things will go BAD (tm)
41 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
44 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 (unsigned long long)bio->bi_iter.bi_sector);
47 ClearPageReclaim(page);
49 end_page_writeback(page);
53 static void swap_slot_free_notify(struct page *page)
55 struct swap_info_struct *sis;
60 * There is no guarantee that the page is in swap cache - the software
61 * suspend code (at least) uses end_swap_bio_read() against a non-
62 * swapcache page. So we must check PG_swapcache before proceeding with
65 if (unlikely(!PageSwapCache(page)))
68 sis = page_swap_info(page);
69 if (data_race(!(sis->flags & SWP_BLKDEV)))
73 * The swap subsystem performs lazy swap slot freeing,
74 * expecting that the page will be swapped out again.
75 * So we can avoid an unnecessary write if the page
77 * This is good for real swap storage because we can
78 * reduce unnecessary I/O and enhance wear-leveling
79 * if an SSD is used as the as swap device.
80 * But if in-memory swap device (eg zram) is used,
81 * this causes a duplicated copy between uncompressed
82 * data in VM-owned memory and compressed data in
83 * zram-owned memory. So let's free zram-owned memory
84 * and make the VM-owned decompressed page *dirty*,
85 * so the page should be swapped out somewhere again if
86 * we again wish to reclaim it.
88 disk = sis->bdev->bd_disk;
89 entry.val = page_private(page);
90 if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
93 offset = swp_offset(entry);
96 disk->fops->swap_slot_free_notify(sis->bdev,
101 static void end_swap_bio_read(struct bio *bio)
103 struct page *page = bio_first_page_all(bio);
104 struct task_struct *waiter = bio->bi_private;
106 if (bio->bi_status) {
108 ClearPageUptodate(page);
109 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
110 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
111 (unsigned long long)bio->bi_iter.bi_sector);
115 SetPageUptodate(page);
116 swap_slot_free_notify(page);
119 WRITE_ONCE(bio->bi_private, NULL);
122 blk_wake_io_task(waiter);
123 put_task_struct(waiter);
127 int generic_swapfile_activate(struct swap_info_struct *sis,
128 struct file *swap_file,
131 struct address_space *mapping = swap_file->f_mapping;
132 struct inode *inode = mapping->host;
133 unsigned blocks_per_page;
134 unsigned long page_no;
136 sector_t probe_block;
138 sector_t lowest_block = -1;
139 sector_t highest_block = 0;
143 blkbits = inode->i_blkbits;
144 blocks_per_page = PAGE_SIZE >> blkbits;
147 * Map all the blocks into the extent tree. This code doesn't try
152 last_block = i_size_read(inode) >> blkbits;
153 while ((probe_block + blocks_per_page) <= last_block &&
154 page_no < sis->max) {
155 unsigned block_in_page;
156 sector_t first_block;
160 first_block = probe_block;
161 ret = bmap(inode, &first_block);
162 if (ret || !first_block)
166 * It must be PAGE_SIZE aligned on-disk
168 if (first_block & (blocks_per_page - 1)) {
173 for (block_in_page = 1; block_in_page < blocks_per_page;
177 block = probe_block + block_in_page;
178 ret = bmap(inode, &block);
182 if (block != first_block + block_in_page) {
189 first_block >>= (PAGE_SHIFT - blkbits);
190 if (page_no) { /* exclude the header page */
191 if (first_block < lowest_block)
192 lowest_block = first_block;
193 if (first_block > highest_block)
194 highest_block = first_block;
198 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
200 ret = add_swap_extent(sis, page_no, 1, first_block);
205 probe_block += blocks_per_page;
210 *span = 1 + highest_block - lowest_block;
212 page_no = 1; /* force Empty message */
214 sis->pages = page_no - 1;
215 sis->highest_bit = page_no - 1;
219 pr_err("swapon: swapfile has holes\n");
225 * We may have stale swap cache pages in memory: notice
226 * them here and get rid of the unnecessary final write.
228 int swap_writepage(struct page *page, struct writeback_control *wbc)
232 if (try_to_free_swap(page)) {
237 * Arch code may have to preserve more data than just the page
238 * contents, e.g. memory tags.
240 ret = arch_prepare_to_swap(page);
242 set_page_dirty(page);
246 if (frontswap_store(page) == 0) {
247 set_page_writeback(page);
249 end_page_writeback(page);
252 ret = __swap_writepage(page, wbc, end_swap_bio_write);
257 static inline void count_swpout_vm_event(struct page *page)
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 if (unlikely(PageTransHuge(page)))
261 count_vm_event(THP_SWPOUT);
263 count_vm_events(PSWPOUT, thp_nr_pages(page));
266 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
267 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
269 struct cgroup_subsys_state *css;
270 struct mem_cgroup *memcg;
272 memcg = page_memcg(page);
277 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
278 bio_associate_blkg_from_css(bio, css);
282 #define bio_associate_blkg_from_page(bio, page) do { } while (0)
283 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
285 int __swap_writepage(struct page *page, struct writeback_control *wbc,
286 bio_end_io_t end_write_func)
290 struct swap_info_struct *sis = page_swap_info(page);
292 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
293 if (data_race(sis->flags & SWP_FS_OPS)) {
295 struct file *swap_file = sis->swap_file;
296 struct address_space *mapping = swap_file->f_mapping;
297 struct bio_vec bv = {
302 struct iov_iter from;
304 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
305 init_sync_kiocb(&kiocb, swap_file);
306 kiocb.ki_pos = page_file_offset(page);
308 set_page_writeback(page);
310 ret = mapping->a_ops->direct_IO(&kiocb, &from);
311 if (ret == PAGE_SIZE) {
312 count_vm_event(PSWPOUT);
316 * In the case of swap-over-nfs, this can be a
317 * temporary failure if the system has limited
318 * memory for allocating transmit buffers.
319 * Mark the page dirty and avoid
320 * folio_rotate_reclaimable but rate-limit the
321 * messages but do not flag PageError like
322 * the normal direct-to-bio case as it could
325 set_page_dirty(page);
326 ClearPageReclaim(page);
327 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
328 page_file_offset(page));
330 end_page_writeback(page);
334 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
336 count_swpout_vm_event(page);
340 bio = bio_alloc(GFP_NOIO, 1);
341 bio_set_dev(bio, sis->bdev);
342 bio->bi_iter.bi_sector = swap_page_sector(page);
343 bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
344 bio->bi_end_io = end_write_func;
345 bio_add_page(bio, page, thp_size(page), 0);
347 bio_associate_blkg_from_page(bio, page);
348 count_swpout_vm_event(page);
349 set_page_writeback(page);
356 int swap_readpage(struct page *page, bool synchronous)
360 struct swap_info_struct *sis = page_swap_info(page);
361 unsigned long pflags;
363 VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
364 VM_BUG_ON_PAGE(!PageLocked(page), page);
365 VM_BUG_ON_PAGE(PageUptodate(page), page);
368 * Count submission time as memory stall. When the device is congested,
369 * or the submitting cgroup IO-throttled, submission can be a
370 * significant part of overall IO time.
372 psi_memstall_enter(&pflags);
374 if (frontswap_load(page) == 0) {
375 SetPageUptodate(page);
380 if (data_race(sis->flags & SWP_FS_OPS)) {
381 struct file *swap_file = sis->swap_file;
382 struct address_space *mapping = swap_file->f_mapping;
384 ret = mapping->a_ops->readpage(swap_file, page);
386 count_vm_event(PSWPIN);
390 if (sis->flags & SWP_SYNCHRONOUS_IO) {
391 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
393 if (trylock_page(page)) {
394 swap_slot_free_notify(page);
398 count_vm_event(PSWPIN);
404 bio = bio_alloc(GFP_KERNEL, 1);
405 bio_set_dev(bio, sis->bdev);
406 bio->bi_opf = REQ_OP_READ;
407 bio->bi_iter.bi_sector = swap_page_sector(page);
408 bio->bi_end_io = end_swap_bio_read;
409 bio_add_page(bio, page, thp_size(page), 0);
411 * Keep this task valid during swap readpage because the oom killer may
412 * attempt to access it in the page fault retry time check.
415 bio->bi_opf |= REQ_POLLED;
416 get_task_struct(current);
417 bio->bi_private = current;
419 count_vm_event(PSWPIN);
422 while (synchronous) {
423 set_current_state(TASK_UNINTERRUPTIBLE);
424 if (!READ_ONCE(bio->bi_private))
427 if (!bio_poll(bio, NULL, 0))
430 __set_current_state(TASK_RUNNING);
434 psi_memstall_leave(&pflags);
438 int swap_set_page_dirty(struct page *page)
440 struct swap_info_struct *sis = page_swap_info(page);
442 if (data_race(sis->flags & SWP_FS_OPS)) {
443 struct address_space *mapping = sis->swap_file->f_mapping;
445 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
446 return mapping->a_ops->set_page_dirty(page);
448 return __set_page_dirty_no_writeback(page);