Merge tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux
[platform/kernel/linux-starfive.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/psi.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <linux/delayacct.h>
28 #include "swap.h"
29
30 static void __end_swap_bio_write(struct bio *bio)
31 {
32         struct page *page = bio_first_page_all(bio);
33
34         if (bio->bi_status) {
35                 SetPageError(page);
36                 /*
37                  * We failed to write the page out to swap-space.
38                  * Re-dirty the page in order to avoid it being reclaimed.
39                  * Also print a dire warning that things will go BAD (tm)
40                  * very quickly.
41                  *
42                  * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
43                  */
44                 set_page_dirty(page);
45                 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
46                                      MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
47                                      (unsigned long long)bio->bi_iter.bi_sector);
48                 ClearPageReclaim(page);
49         }
50         end_page_writeback(page);
51 }
52
53 static void end_swap_bio_write(struct bio *bio)
54 {
55         __end_swap_bio_write(bio);
56         bio_put(bio);
57 }
58
59 static void __end_swap_bio_read(struct bio *bio)
60 {
61         struct page *page = bio_first_page_all(bio);
62
63         if (bio->bi_status) {
64                 SetPageError(page);
65                 ClearPageUptodate(page);
66                 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
67                                      MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
68                                      (unsigned long long)bio->bi_iter.bi_sector);
69         } else {
70                 SetPageUptodate(page);
71         }
72         unlock_page(page);
73 }
74
75 static void end_swap_bio_read(struct bio *bio)
76 {
77         __end_swap_bio_read(bio);
78         bio_put(bio);
79 }
80
81 int generic_swapfile_activate(struct swap_info_struct *sis,
82                                 struct file *swap_file,
83                                 sector_t *span)
84 {
85         struct address_space *mapping = swap_file->f_mapping;
86         struct inode *inode = mapping->host;
87         unsigned blocks_per_page;
88         unsigned long page_no;
89         unsigned blkbits;
90         sector_t probe_block;
91         sector_t last_block;
92         sector_t lowest_block = -1;
93         sector_t highest_block = 0;
94         int nr_extents = 0;
95         int ret;
96
97         blkbits = inode->i_blkbits;
98         blocks_per_page = PAGE_SIZE >> blkbits;
99
100         /*
101          * Map all the blocks into the extent tree.  This code doesn't try
102          * to be very smart.
103          */
104         probe_block = 0;
105         page_no = 0;
106         last_block = i_size_read(inode) >> blkbits;
107         while ((probe_block + blocks_per_page) <= last_block &&
108                         page_no < sis->max) {
109                 unsigned block_in_page;
110                 sector_t first_block;
111
112                 cond_resched();
113
114                 first_block = probe_block;
115                 ret = bmap(inode, &first_block);
116                 if (ret || !first_block)
117                         goto bad_bmap;
118
119                 /*
120                  * It must be PAGE_SIZE aligned on-disk
121                  */
122                 if (first_block & (blocks_per_page - 1)) {
123                         probe_block++;
124                         goto reprobe;
125                 }
126
127                 for (block_in_page = 1; block_in_page < blocks_per_page;
128                                         block_in_page++) {
129                         sector_t block;
130
131                         block = probe_block + block_in_page;
132                         ret = bmap(inode, &block);
133                         if (ret || !block)
134                                 goto bad_bmap;
135
136                         if (block != first_block + block_in_page) {
137                                 /* Discontiguity */
138                                 probe_block++;
139                                 goto reprobe;
140                         }
141                 }
142
143                 first_block >>= (PAGE_SHIFT - blkbits);
144                 if (page_no) {  /* exclude the header page */
145                         if (first_block < lowest_block)
146                                 lowest_block = first_block;
147                         if (first_block > highest_block)
148                                 highest_block = first_block;
149                 }
150
151                 /*
152                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
153                  */
154                 ret = add_swap_extent(sis, page_no, 1, first_block);
155                 if (ret < 0)
156                         goto out;
157                 nr_extents += ret;
158                 page_no++;
159                 probe_block += blocks_per_page;
160 reprobe:
161                 continue;
162         }
163         ret = nr_extents;
164         *span = 1 + highest_block - lowest_block;
165         if (page_no == 0)
166                 page_no = 1;    /* force Empty message */
167         sis->max = page_no;
168         sis->pages = page_no - 1;
169         sis->highest_bit = page_no - 1;
170 out:
171         return ret;
172 bad_bmap:
173         pr_err("swapon: swapfile has holes\n");
174         ret = -EINVAL;
175         goto out;
176 }
177
178 /*
179  * We may have stale swap cache pages in memory: notice
180  * them here and get rid of the unnecessary final write.
181  */
182 int swap_writepage(struct page *page, struct writeback_control *wbc)
183 {
184         struct folio *folio = page_folio(page);
185         int ret;
186
187         if (folio_free_swap(folio)) {
188                 folio_unlock(folio);
189                 return 0;
190         }
191         /*
192          * Arch code may have to preserve more data than just the page
193          * contents, e.g. memory tags.
194          */
195         ret = arch_prepare_to_swap(&folio->page);
196         if (ret) {
197                 folio_mark_dirty(folio);
198                 folio_unlock(folio);
199                 return ret;
200         }
201         if (frontswap_store(&folio->page) == 0) {
202                 folio_start_writeback(folio);
203                 folio_unlock(folio);
204                 folio_end_writeback(folio);
205                 return 0;
206         }
207         __swap_writepage(&folio->page, wbc);
208         return 0;
209 }
210
211 static inline void count_swpout_vm_event(struct page *page)
212 {
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
214         if (unlikely(PageTransHuge(page)))
215                 count_vm_event(THP_SWPOUT);
216 #endif
217         count_vm_events(PSWPOUT, thp_nr_pages(page));
218 }
219
220 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
221 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
222 {
223         struct cgroup_subsys_state *css;
224         struct mem_cgroup *memcg;
225
226         memcg = page_memcg(page);
227         if (!memcg)
228                 return;
229
230         rcu_read_lock();
231         css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
232         bio_associate_blkg_from_css(bio, css);
233         rcu_read_unlock();
234 }
235 #else
236 #define bio_associate_blkg_from_page(bio, page)         do { } while (0)
237 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
238
239 struct swap_iocb {
240         struct kiocb            iocb;
241         struct bio_vec          bvec[SWAP_CLUSTER_MAX];
242         int                     pages;
243         int                     len;
244 };
245 static mempool_t *sio_pool;
246
247 int sio_pool_init(void)
248 {
249         if (!sio_pool) {
250                 mempool_t *pool = mempool_create_kmalloc_pool(
251                         SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
252                 if (cmpxchg(&sio_pool, NULL, pool))
253                         mempool_destroy(pool);
254         }
255         if (!sio_pool)
256                 return -ENOMEM;
257         return 0;
258 }
259
260 static void sio_write_complete(struct kiocb *iocb, long ret)
261 {
262         struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
263         struct page *page = sio->bvec[0].bv_page;
264         int p;
265
266         if (ret != sio->len) {
267                 /*
268                  * In the case of swap-over-nfs, this can be a
269                  * temporary failure if the system has limited
270                  * memory for allocating transmit buffers.
271                  * Mark the page dirty and avoid
272                  * folio_rotate_reclaimable but rate-limit the
273                  * messages but do not flag PageError like
274                  * the normal direct-to-bio case as it could
275                  * be temporary.
276                  */
277                 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
278                                    ret, page_file_offset(page));
279                 for (p = 0; p < sio->pages; p++) {
280                         page = sio->bvec[p].bv_page;
281                         set_page_dirty(page);
282                         ClearPageReclaim(page);
283                 }
284         } else {
285                 for (p = 0; p < sio->pages; p++)
286                         count_swpout_vm_event(sio->bvec[p].bv_page);
287         }
288
289         for (p = 0; p < sio->pages; p++)
290                 end_page_writeback(sio->bvec[p].bv_page);
291
292         mempool_free(sio, sio_pool);
293 }
294
295 static void swap_writepage_fs(struct page *page, struct writeback_control *wbc)
296 {
297         struct swap_iocb *sio = NULL;
298         struct swap_info_struct *sis = page_swap_info(page);
299         struct file *swap_file = sis->swap_file;
300         loff_t pos = page_file_offset(page);
301
302         set_page_writeback(page);
303         unlock_page(page);
304         if (wbc->swap_plug)
305                 sio = *wbc->swap_plug;
306         if (sio) {
307                 if (sio->iocb.ki_filp != swap_file ||
308                     sio->iocb.ki_pos + sio->len != pos) {
309                         swap_write_unplug(sio);
310                         sio = NULL;
311                 }
312         }
313         if (!sio) {
314                 sio = mempool_alloc(sio_pool, GFP_NOIO);
315                 init_sync_kiocb(&sio->iocb, swap_file);
316                 sio->iocb.ki_complete = sio_write_complete;
317                 sio->iocb.ki_pos = pos;
318                 sio->pages = 0;
319                 sio->len = 0;
320         }
321         bvec_set_page(&sio->bvec[sio->pages], page, thp_size(page), 0);
322         sio->len += thp_size(page);
323         sio->pages += 1;
324         if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
325                 swap_write_unplug(sio);
326                 sio = NULL;
327         }
328         if (wbc->swap_plug)
329                 *wbc->swap_plug = sio;
330 }
331
332 static void swap_writepage_bdev_sync(struct page *page,
333                 struct writeback_control *wbc, struct swap_info_struct *sis)
334 {
335         struct bio_vec bv;
336         struct bio bio;
337
338         bio_init(&bio, sis->bdev, &bv, 1,
339                  REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
340         bio.bi_iter.bi_sector = swap_page_sector(page);
341         __bio_add_page(&bio, page, thp_size(page), 0);
342
343         bio_associate_blkg_from_page(&bio, page);
344         count_swpout_vm_event(page);
345
346         set_page_writeback(page);
347         unlock_page(page);
348
349         submit_bio_wait(&bio);
350         __end_swap_bio_write(&bio);
351 }
352
353 static void swap_writepage_bdev_async(struct page *page,
354                 struct writeback_control *wbc, struct swap_info_struct *sis)
355 {
356         struct bio *bio;
357
358         bio = bio_alloc(sis->bdev, 1,
359                         REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
360                         GFP_NOIO);
361         bio->bi_iter.bi_sector = swap_page_sector(page);
362         bio->bi_end_io = end_swap_bio_write;
363         __bio_add_page(bio, page, thp_size(page), 0);
364
365         bio_associate_blkg_from_page(bio, page);
366         count_swpout_vm_event(page);
367         set_page_writeback(page);
368         unlock_page(page);
369         submit_bio(bio);
370 }
371
372 void __swap_writepage(struct page *page, struct writeback_control *wbc)
373 {
374         struct swap_info_struct *sis = page_swap_info(page);
375
376         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
377         /*
378          * ->flags can be updated non-atomicially (scan_swap_map_slots),
379          * but that will never affect SWP_FS_OPS, so the data_race
380          * is safe.
381          */
382         if (data_race(sis->flags & SWP_FS_OPS))
383                 swap_writepage_fs(page, wbc);
384         else if (sis->flags & SWP_SYNCHRONOUS_IO)
385                 swap_writepage_bdev_sync(page, wbc, sis);
386         else
387                 swap_writepage_bdev_async(page, wbc, sis);
388 }
389
390 void swap_write_unplug(struct swap_iocb *sio)
391 {
392         struct iov_iter from;
393         struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
394         int ret;
395
396         iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
397         ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
398         if (ret != -EIOCBQUEUED)
399                 sio_write_complete(&sio->iocb, ret);
400 }
401
402 static void sio_read_complete(struct kiocb *iocb, long ret)
403 {
404         struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
405         int p;
406
407         if (ret == sio->len) {
408                 for (p = 0; p < sio->pages; p++) {
409                         struct page *page = sio->bvec[p].bv_page;
410
411                         SetPageUptodate(page);
412                         unlock_page(page);
413                 }
414                 count_vm_events(PSWPIN, sio->pages);
415         } else {
416                 for (p = 0; p < sio->pages; p++) {
417                         struct page *page = sio->bvec[p].bv_page;
418
419                         SetPageError(page);
420                         ClearPageUptodate(page);
421                         unlock_page(page);
422                 }
423                 pr_alert_ratelimited("Read-error on swap-device\n");
424         }
425         mempool_free(sio, sio_pool);
426 }
427
428 static void swap_readpage_fs(struct page *page,
429                              struct swap_iocb **plug)
430 {
431         struct swap_info_struct *sis = page_swap_info(page);
432         struct swap_iocb *sio = NULL;
433         loff_t pos = page_file_offset(page);
434
435         if (plug)
436                 sio = *plug;
437         if (sio) {
438                 if (sio->iocb.ki_filp != sis->swap_file ||
439                     sio->iocb.ki_pos + sio->len != pos) {
440                         swap_read_unplug(sio);
441                         sio = NULL;
442                 }
443         }
444         if (!sio) {
445                 sio = mempool_alloc(sio_pool, GFP_KERNEL);
446                 init_sync_kiocb(&sio->iocb, sis->swap_file);
447                 sio->iocb.ki_pos = pos;
448                 sio->iocb.ki_complete = sio_read_complete;
449                 sio->pages = 0;
450                 sio->len = 0;
451         }
452         bvec_set_page(&sio->bvec[sio->pages], page, thp_size(page), 0);
453         sio->len += thp_size(page);
454         sio->pages += 1;
455         if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
456                 swap_read_unplug(sio);
457                 sio = NULL;
458         }
459         if (plug)
460                 *plug = sio;
461 }
462
463 static void swap_readpage_bdev_sync(struct page *page,
464                 struct swap_info_struct *sis)
465 {
466         struct bio_vec bv;
467         struct bio bio;
468
469         bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
470         bio.bi_iter.bi_sector = swap_page_sector(page);
471         __bio_add_page(&bio, page, thp_size(page), 0);
472         /*
473          * Keep this task valid during swap readpage because the oom killer may
474          * attempt to access it in the page fault retry time check.
475          */
476         get_task_struct(current);
477         count_vm_event(PSWPIN);
478         submit_bio_wait(&bio);
479         __end_swap_bio_read(&bio);
480         put_task_struct(current);
481 }
482
483 static void swap_readpage_bdev_async(struct page *page,
484                 struct swap_info_struct *sis)
485 {
486         struct bio *bio;
487
488         bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
489         bio->bi_iter.bi_sector = swap_page_sector(page);
490         bio->bi_end_io = end_swap_bio_read;
491         __bio_add_page(bio, page, thp_size(page), 0);
492         count_vm_event(PSWPIN);
493         submit_bio(bio);
494 }
495
496 void swap_readpage(struct page *page, bool synchronous, struct swap_iocb **plug)
497 {
498         struct swap_info_struct *sis = page_swap_info(page);
499         bool workingset = PageWorkingset(page);
500         unsigned long pflags;
501         bool in_thrashing;
502
503         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
504         VM_BUG_ON_PAGE(!PageLocked(page), page);
505         VM_BUG_ON_PAGE(PageUptodate(page), page);
506
507         /*
508          * Count submission time as memory stall and delay. When the device
509          * is congested, or the submitting cgroup IO-throttled, submission
510          * can be a significant part of overall IO time.
511          */
512         if (workingset) {
513                 delayacct_thrashing_start(&in_thrashing);
514                 psi_memstall_enter(&pflags);
515         }
516         delayacct_swapin_start();
517
518         if (frontswap_load(page) == 0) {
519                 SetPageUptodate(page);
520                 unlock_page(page);
521         } else if (data_race(sis->flags & SWP_FS_OPS)) {
522                 swap_readpage_fs(page, plug);
523         } else if (synchronous || (sis->flags & SWP_SYNCHRONOUS_IO)) {
524                 swap_readpage_bdev_sync(page, sis);
525         } else {
526                 swap_readpage_bdev_async(page, sis);
527         }
528
529         if (workingset) {
530                 delayacct_thrashing_end(&in_thrashing);
531                 psi_memstall_leave(&pflags);
532         }
533         delayacct_swapin_end();
534 }
535
536 void __swap_read_unplug(struct swap_iocb *sio)
537 {
538         struct iov_iter from;
539         struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
540         int ret;
541
542         iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
543         ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
544         if (ret != -EIOCBQUEUED)
545                 sio_read_complete(&sio->iocb, ret);
546 }