drivers/base/memory: pass a block_id to init_memory_block()
[platform/kernel/linux-rpi.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30                                 struct page *page, bio_end_io_t end_io)
31 {
32         int i, nr = hpage_nr_pages(page);
33         struct bio *bio;
34
35         bio = bio_alloc(gfp_flags, nr);
36         if (bio) {
37                 struct block_device *bdev;
38
39                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40                 bio_set_dev(bio, bdev);
41                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42                 bio->bi_end_io = end_io;
43
44                 for (i = 0; i < nr; i++)
45                         bio_add_page(bio, page + i, PAGE_SIZE, 0);
46                 VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
47         }
48         return bio;
49 }
50
51 void end_swap_bio_write(struct bio *bio)
52 {
53         struct page *page = bio_first_page_all(bio);
54
55         if (bio->bi_status) {
56                 SetPageError(page);
57                 /*
58                  * We failed to write the page out to swap-space.
59                  * Re-dirty the page in order to avoid it being reclaimed.
60                  * Also print a dire warning that things will go BAD (tm)
61                  * very quickly.
62                  *
63                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
64                  */
65                 set_page_dirty(page);
66                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
67                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
68                          (unsigned long long)bio->bi_iter.bi_sector);
69                 ClearPageReclaim(page);
70         }
71         end_page_writeback(page);
72         bio_put(bio);
73 }
74
75 static void swap_slot_free_notify(struct page *page)
76 {
77         struct swap_info_struct *sis;
78         struct gendisk *disk;
79         swp_entry_t entry;
80
81         /*
82          * There is no guarantee that the page is in swap cache - the software
83          * suspend code (at least) uses end_swap_bio_read() against a non-
84          * swapcache page.  So we must check PG_swapcache before proceeding with
85          * this optimization.
86          */
87         if (unlikely(!PageSwapCache(page)))
88                 return;
89
90         sis = page_swap_info(page);
91         if (!(sis->flags & SWP_BLKDEV))
92                 return;
93
94         /*
95          * The swap subsystem performs lazy swap slot freeing,
96          * expecting that the page will be swapped out again.
97          * So we can avoid an unnecessary write if the page
98          * isn't redirtied.
99          * This is good for real swap storage because we can
100          * reduce unnecessary I/O and enhance wear-leveling
101          * if an SSD is used as the as swap device.
102          * But if in-memory swap device (eg zram) is used,
103          * this causes a duplicated copy between uncompressed
104          * data in VM-owned memory and compressed data in
105          * zram-owned memory.  So let's free zram-owned memory
106          * and make the VM-owned decompressed page *dirty*,
107          * so the page should be swapped out somewhere again if
108          * we again wish to reclaim it.
109          */
110         disk = sis->bdev->bd_disk;
111         entry.val = page_private(page);
112         if (disk->fops->swap_slot_free_notify &&
113                         __swap_count(sis, entry) == 1) {
114                 unsigned long offset;
115
116                 offset = swp_offset(entry);
117
118                 SetPageDirty(page);
119                 disk->fops->swap_slot_free_notify(sis->bdev,
120                                 offset);
121         }
122 }
123
124 static void end_swap_bio_read(struct bio *bio)
125 {
126         struct page *page = bio_first_page_all(bio);
127         struct task_struct *waiter = bio->bi_private;
128
129         if (bio->bi_status) {
130                 SetPageError(page);
131                 ClearPageUptodate(page);
132                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
133                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
134                          (unsigned long long)bio->bi_iter.bi_sector);
135                 goto out;
136         }
137
138         SetPageUptodate(page);
139         swap_slot_free_notify(page);
140 out:
141         unlock_page(page);
142         WRITE_ONCE(bio->bi_private, NULL);
143         bio_put(bio);
144         wake_up_process(waiter);
145         put_task_struct(waiter);
146 }
147
148 int generic_swapfile_activate(struct swap_info_struct *sis,
149                                 struct file *swap_file,
150                                 sector_t *span)
151 {
152         struct address_space *mapping = swap_file->f_mapping;
153         struct inode *inode = mapping->host;
154         unsigned blocks_per_page;
155         unsigned long page_no;
156         unsigned blkbits;
157         sector_t probe_block;
158         sector_t last_block;
159         sector_t lowest_block = -1;
160         sector_t highest_block = 0;
161         int nr_extents = 0;
162         int ret;
163
164         blkbits = inode->i_blkbits;
165         blocks_per_page = PAGE_SIZE >> blkbits;
166
167         /*
168          * Map all the blocks into the extent list.  This code doesn't try
169          * to be very smart.
170          */
171         probe_block = 0;
172         page_no = 0;
173         last_block = i_size_read(inode) >> blkbits;
174         while ((probe_block + blocks_per_page) <= last_block &&
175                         page_no < sis->max) {
176                 unsigned block_in_page;
177                 sector_t first_block;
178
179                 cond_resched();
180
181                 first_block = bmap(inode, probe_block);
182                 if (first_block == 0)
183                         goto bad_bmap;
184
185                 /*
186                  * It must be PAGE_SIZE aligned on-disk
187                  */
188                 if (first_block & (blocks_per_page - 1)) {
189                         probe_block++;
190                         goto reprobe;
191                 }
192
193                 for (block_in_page = 1; block_in_page < blocks_per_page;
194                                         block_in_page++) {
195                         sector_t block;
196
197                         block = bmap(inode, probe_block + block_in_page);
198                         if (block == 0)
199                                 goto bad_bmap;
200                         if (block != first_block + block_in_page) {
201                                 /* Discontiguity */
202                                 probe_block++;
203                                 goto reprobe;
204                         }
205                 }
206
207                 first_block >>= (PAGE_SHIFT - blkbits);
208                 if (page_no) {  /* exclude the header page */
209                         if (first_block < lowest_block)
210                                 lowest_block = first_block;
211                         if (first_block > highest_block)
212                                 highest_block = first_block;
213                 }
214
215                 /*
216                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
217                  */
218                 ret = add_swap_extent(sis, page_no, 1, first_block);
219                 if (ret < 0)
220                         goto out;
221                 nr_extents += ret;
222                 page_no++;
223                 probe_block += blocks_per_page;
224 reprobe:
225                 continue;
226         }
227         ret = nr_extents;
228         *span = 1 + highest_block - lowest_block;
229         if (page_no == 0)
230                 page_no = 1;    /* force Empty message */
231         sis->max = page_no;
232         sis->pages = page_no - 1;
233         sis->highest_bit = page_no - 1;
234 out:
235         return ret;
236 bad_bmap:
237         pr_err("swapon: swapfile has holes\n");
238         ret = -EINVAL;
239         goto out;
240 }
241
242 /*
243  * We may have stale swap cache pages in memory: notice
244  * them here and get rid of the unnecessary final write.
245  */
246 int swap_writepage(struct page *page, struct writeback_control *wbc)
247 {
248         int ret = 0;
249
250         if (try_to_free_swap(page)) {
251                 unlock_page(page);
252                 goto out;
253         }
254         if (frontswap_store(page) == 0) {
255                 set_page_writeback(page);
256                 unlock_page(page);
257                 end_page_writeback(page);
258                 goto out;
259         }
260         ret = __swap_writepage(page, wbc, end_swap_bio_write);
261 out:
262         return ret;
263 }
264
265 static sector_t swap_page_sector(struct page *page)
266 {
267         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
268 }
269
270 static inline void count_swpout_vm_event(struct page *page)
271 {
272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
273         if (unlikely(PageTransHuge(page)))
274                 count_vm_event(THP_SWPOUT);
275 #endif
276         count_vm_events(PSWPOUT, hpage_nr_pages(page));
277 }
278
279 int __swap_writepage(struct page *page, struct writeback_control *wbc,
280                 bio_end_io_t end_write_func)
281 {
282         struct bio *bio;
283         int ret;
284         struct swap_info_struct *sis = page_swap_info(page);
285
286         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
287         if (sis->flags & SWP_FILE) {
288                 struct kiocb kiocb;
289                 struct file *swap_file = sis->swap_file;
290                 struct address_space *mapping = swap_file->f_mapping;
291                 struct bio_vec bv = {
292                         .bv_page = page,
293                         .bv_len  = PAGE_SIZE,
294                         .bv_offset = 0
295                 };
296                 struct iov_iter from;
297
298                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
299                 init_sync_kiocb(&kiocb, swap_file);
300                 kiocb.ki_pos = page_file_offset(page);
301
302                 set_page_writeback(page);
303                 unlock_page(page);
304                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
305                 if (ret == PAGE_SIZE) {
306                         count_vm_event(PSWPOUT);
307                         ret = 0;
308                 } else {
309                         /*
310                          * In the case of swap-over-nfs, this can be a
311                          * temporary failure if the system has limited
312                          * memory for allocating transmit buffers.
313                          * Mark the page dirty and avoid
314                          * rotate_reclaimable_page but rate-limit the
315                          * messages but do not flag PageError like
316                          * the normal direct-to-bio case as it could
317                          * be temporary.
318                          */
319                         set_page_dirty(page);
320                         ClearPageReclaim(page);
321                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
322                                            page_file_offset(page));
323                 }
324                 end_page_writeback(page);
325                 return ret;
326         }
327
328         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
329         if (!ret) {
330                 count_swpout_vm_event(page);
331                 return 0;
332         }
333
334         ret = 0;
335         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
336         if (bio == NULL) {
337                 set_page_dirty(page);
338                 unlock_page(page);
339                 ret = -ENOMEM;
340                 goto out;
341         }
342         bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
343         bio_associate_blkcg_from_page(bio, page);
344         count_swpout_vm_event(page);
345         set_page_writeback(page);
346         unlock_page(page);
347         submit_bio(bio);
348 out:
349         return ret;
350 }
351
352 int swap_readpage(struct page *page, bool synchronous)
353 {
354         struct bio *bio;
355         int ret = 0;
356         struct swap_info_struct *sis = page_swap_info(page);
357         blk_qc_t qc;
358         struct gendisk *disk;
359
360         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
361         VM_BUG_ON_PAGE(!PageLocked(page), page);
362         VM_BUG_ON_PAGE(PageUptodate(page), page);
363         if (frontswap_load(page) == 0) {
364                 SetPageUptodate(page);
365                 unlock_page(page);
366                 goto out;
367         }
368
369         if (sis->flags & SWP_FILE) {
370                 struct file *swap_file = sis->swap_file;
371                 struct address_space *mapping = swap_file->f_mapping;
372
373                 ret = mapping->a_ops->readpage(swap_file, page);
374                 if (!ret)
375                         count_vm_event(PSWPIN);
376                 return ret;
377         }
378
379         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
380         if (!ret) {
381                 if (trylock_page(page)) {
382                         swap_slot_free_notify(page);
383                         unlock_page(page);
384                 }
385
386                 count_vm_event(PSWPIN);
387                 return 0;
388         }
389
390         ret = 0;
391         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
392         if (bio == NULL) {
393                 unlock_page(page);
394                 ret = -ENOMEM;
395                 goto out;
396         }
397         disk = bio->bi_disk;
398         /*
399          * Keep this task valid during swap readpage because the oom killer may
400          * attempt to access it in the page fault retry time check.
401          */
402         get_task_struct(current);
403         bio->bi_private = current;
404         bio_set_op_attrs(bio, REQ_OP_READ, 0);
405         count_vm_event(PSWPIN);
406         bio_get(bio);
407         qc = submit_bio(bio);
408         while (synchronous) {
409                 set_current_state(TASK_UNINTERRUPTIBLE);
410                 if (!READ_ONCE(bio->bi_private))
411                         break;
412
413                 if (!blk_poll(disk->queue, qc))
414                         break;
415         }
416         __set_current_state(TASK_RUNNING);
417         bio_put(bio);
418
419 out:
420         return ret;
421 }
422
423 int swap_set_page_dirty(struct page *page)
424 {
425         struct swap_info_struct *sis = page_swap_info(page);
426
427         if (sis->flags & SWP_FILE) {
428                 struct address_space *mapping = sis->swap_file->f_mapping;
429
430                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
431                 return mapping->a_ops->set_page_dirty(page);
432         } else {
433                 return __set_page_dirty_no_writeback(page);
434         }
435 }