2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
11 * struct page extension
13 * This is the feature to manage memory for extended data per page.
15 * Until now, we must modify struct page itself to store extra data per page.
16 * This requires rebuilding the kernel and it is really time consuming process.
17 * And, sometimes, rebuild is impossible due to third party module dependency.
18 * At last, enlarging struct page could cause un-wanted system behaviour change.
20 * This feature is intended to overcome above mentioned problems. This feature
21 * allocates memory for extended data per page in certain place rather than
22 * the struct page itself. This memory can be accessed by the accessor
23 * functions provided by this code. During the boot process, it checks whether
24 * allocation of huge chunk of memory is needed or not. If not, it avoids
25 * allocating memory at all. With this advantage, we can include this feature
26 * into the kernel in default and can avoid rebuild and solve related problems.
28 * To help these things to work well, there are two callbacks for clients. One
29 * is the need callback which is mandatory if user wants to avoid useless
30 * memory allocation at boot-time. The other is optional, init callback, which
31 * is used to do proper initialization after memory is allocated.
33 * The need callback is used to decide whether extended memory allocation is
34 * needed or not. Sometimes users want to deactivate some features in this
35 * boot and extra memory would be unneccessary. In this case, to avoid
36 * allocating huge chunk of memory, each clients represent their need of
37 * extra memory through the need callback. If one of the need callbacks
38 * returns true, it means that someone needs extra memory so that
39 * page extension core should allocates memory for page extension. If
40 * none of need callbacks return true, memory isn't needed at all in this boot
41 * and page extension core can skip to allocate memory. As result,
42 * none of memory is wasted.
44 * The init callback is used to do proper initialization after page extension
45 * is completely initialized. In sparse memory system, extra memory is
46 * allocated some time later than memmap is allocated. In other words, lifetime
47 * of memory for page extension isn't same with memmap for struct page.
48 * Therefore, clients can't store extra data until page extension is
49 * initialized, even if pages are allocated and used freely. This could
50 * cause inadequate state of extra data per page, so, to prevent it, client
51 * can utilize this callback to initialize the state of it correctly.
54 static struct page_ext_operations *page_ext_ops[] = {
56 #ifdef CONFIG_PAGE_POISONING
59 #ifdef CONFIG_PAGE_OWNER
64 static unsigned long total_usage;
66 static bool __init invoke_need_callbacks(void)
69 int entries = ARRAY_SIZE(page_ext_ops);
71 for (i = 0; i < entries; i++) {
72 if (page_ext_ops[i]->need && page_ext_ops[i]->need())
79 static void __init invoke_init_callbacks(void)
82 int entries = ARRAY_SIZE(page_ext_ops);
84 for (i = 0; i < entries; i++) {
85 if (page_ext_ops[i]->init)
86 page_ext_ops[i]->init();
90 #if !defined(CONFIG_SPARSEMEM)
93 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
95 pgdat->node_page_ext = NULL;
98 struct page_ext *lookup_page_ext(struct page *page)
100 unsigned long pfn = page_to_pfn(page);
101 unsigned long offset;
102 struct page_ext *base;
104 base = NODE_DATA(page_to_nid(page))->node_page_ext;
105 #ifdef CONFIG_DEBUG_VM
107 * The sanity checks the page allocator does upon freeing a
108 * page can reach here before the page_ext arrays are
109 * allocated when feeding a range of pages to the allocator
110 * for the first time during bootup or memory hotplug.
115 offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
117 return base + offset;
120 static int __init alloc_node_page_ext(int nid)
122 struct page_ext *base;
123 unsigned long table_size;
124 unsigned long nr_pages;
126 nr_pages = NODE_DATA(nid)->node_spanned_pages;
131 * Need extra space if node range is not aligned with
132 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
133 * checks buddy's status, range could be out of exact node range.
135 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
136 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
137 nr_pages += MAX_ORDER_NR_PAGES;
139 table_size = sizeof(struct page_ext) * nr_pages;
141 base = memblock_virt_alloc_try_nid_nopanic(
142 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
143 BOOTMEM_ALLOC_ACCESSIBLE, nid);
146 NODE_DATA(nid)->node_page_ext = base;
147 total_usage += table_size;
151 void __init page_ext_init_flatmem(void)
156 if (!invoke_need_callbacks())
159 for_each_online_node(nid) {
160 fail = alloc_node_page_ext(nid);
164 pr_info("allocated %ld bytes of page_ext\n", total_usage);
165 invoke_init_callbacks();
169 pr_crit("allocation of page_ext failed.\n");
170 panic("Out of memory");
173 #else /* CONFIG_FLAT_NODE_MEM_MAP */
175 struct page_ext *lookup_page_ext(struct page *page)
177 unsigned long pfn = page_to_pfn(page);
178 struct mem_section *section = __pfn_to_section(pfn);
179 #ifdef CONFIG_DEBUG_VM
181 * The sanity checks the page allocator does upon freeing a
182 * page can reach here before the page_ext arrays are
183 * allocated when feeding a range of pages to the allocator
184 * for the first time during bootup or memory hotplug.
186 if (!section->page_ext)
189 return section->page_ext + pfn;
192 static void *__meminit alloc_page_ext(size_t size, int nid)
194 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
197 addr = alloc_pages_exact_nid(nid, size, flags);
199 kmemleak_alloc(addr, size, 1, flags);
203 if (node_state(nid, N_HIGH_MEMORY))
204 addr = vzalloc_node(size, nid);
206 addr = vzalloc(size);
211 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
213 struct mem_section *section;
214 struct page_ext *base;
215 unsigned long table_size;
217 section = __pfn_to_section(pfn);
219 if (section->page_ext)
222 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
223 base = alloc_page_ext(table_size, nid);
226 * The value stored in section->page_ext is (base - pfn)
227 * and it does not point to the memory block allocated above,
228 * causing kmemleak false positives.
230 kmemleak_not_leak(base);
233 pr_err("page ext allocation failure\n");
238 * The passed "pfn" may not be aligned to SECTION. For the calculation
239 * we need to apply a mask.
241 pfn &= PAGE_SECTION_MASK;
242 section->page_ext = base - pfn;
243 total_usage += table_size;
246 #ifdef CONFIG_MEMORY_HOTPLUG
247 static void free_page_ext(void *addr)
249 if (is_vmalloc_addr(addr)) {
252 struct page *page = virt_to_page(addr);
255 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
257 BUG_ON(PageReserved(page));
258 free_pages_exact(addr, table_size);
262 static void __free_page_ext(unsigned long pfn)
264 struct mem_section *ms;
265 struct page_ext *base;
267 ms = __pfn_to_section(pfn);
268 if (!ms || !ms->page_ext)
270 base = ms->page_ext + pfn;
275 static int __meminit online_page_ext(unsigned long start_pfn,
276 unsigned long nr_pages,
279 unsigned long start, end, pfn;
282 start = SECTION_ALIGN_DOWN(start_pfn);
283 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
287 * In this case, "nid" already exists and contains valid memory.
288 * "start_pfn" passed to us is a pfn which is an arg for
289 * online__pages(), and start_pfn should exist.
291 nid = pfn_to_nid(start_pfn);
292 VM_BUG_ON(!node_state(nid, N_ONLINE));
295 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
296 if (!pfn_present(pfn))
298 fail = init_section_page_ext(pfn, nid);
304 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
305 __free_page_ext(pfn);
310 static int __meminit offline_page_ext(unsigned long start_pfn,
311 unsigned long nr_pages, int nid)
313 unsigned long start, end, pfn;
315 start = SECTION_ALIGN_DOWN(start_pfn);
316 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
318 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
319 __free_page_ext(pfn);
324 static int __meminit page_ext_callback(struct notifier_block *self,
325 unsigned long action, void *arg)
327 struct memory_notify *mn = arg;
331 case MEM_GOING_ONLINE:
332 ret = online_page_ext(mn->start_pfn,
333 mn->nr_pages, mn->status_change_nid);
336 offline_page_ext(mn->start_pfn,
337 mn->nr_pages, mn->status_change_nid);
339 case MEM_CANCEL_ONLINE:
340 offline_page_ext(mn->start_pfn,
341 mn->nr_pages, mn->status_change_nid);
343 case MEM_GOING_OFFLINE:
346 case MEM_CANCEL_OFFLINE:
350 return notifier_from_errno(ret);
355 void __init page_ext_init(void)
360 if (!invoke_need_callbacks())
363 for_each_node_state(nid, N_MEMORY) {
364 unsigned long start_pfn, end_pfn;
366 start_pfn = node_start_pfn(nid);
367 end_pfn = node_end_pfn(nid);
369 * start_pfn and end_pfn may not be aligned to SECTION and the
370 * page->flags of out of node pages are not initialized. So we
371 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
373 for (pfn = start_pfn; pfn < end_pfn;
374 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
379 * Nodes's pfns can be overlapping.
380 * We know some arch can have a nodes layout such as
381 * -------------pfn-------------->
382 * N0 | N1 | N2 | N0 | N1 | N2|....
384 if (pfn_to_nid(pfn) != nid)
386 if (init_section_page_ext(pfn, nid))
390 hotplug_memory_notifier(page_ext_callback, 0);
391 pr_info("allocated %ld bytes of page_ext\n", total_usage);
392 invoke_init_callbacks();
396 panic("Out of memory");
399 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)