2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 * Array of node states.
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
102 [N_CPU] = { { [0] = 1UL } },
105 EXPORT_SYMBOL(node_states);
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
118 unsigned long dirty_balance_reserve __read_mostly;
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 #ifdef CONFIG_PM_SLEEP
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
133 static gfp_t saved_gfp_mask;
135 void pm_restore_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
144 void pm_restrict_gfp_mask(void)
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
152 bool pm_suspended_storage(void)
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 #endif /* CONFIG_PM_SLEEP */
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
164 static void __free_pages_ok(struct page *page, unsigned int order);
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
181 #ifdef CONFIG_ZONE_DMA32
184 #ifdef CONFIG_HIGHMEM
190 EXPORT_SYMBOL(totalram_pages);
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
196 #ifdef CONFIG_ZONE_DMA32
200 #ifdef CONFIG_HIGHMEM
206 int min_free_kbytes = 1024;
207 int user_min_free_kbytes;
209 static unsigned long __meminitdata nr_kernel_pages;
210 static unsigned long __meminitdata nr_all_pages;
211 static unsigned long __meminitdata dma_reserve;
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __initdata required_kernelcore;
217 static unsigned long __initdata required_movablecore;
218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 EXPORT_SYMBOL(movable_zone);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226 int nr_node_ids __read_mostly = MAX_NUMNODES;
227 int nr_online_nodes __read_mostly = 1;
228 EXPORT_SYMBOL(nr_node_ids);
229 EXPORT_SYMBOL(nr_online_nodes);
232 int page_group_by_mobility_disabled __read_mostly;
234 void set_pageblock_migratetype(struct page *page, int migratetype)
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
244 bool oom_killer_disabled __read_mostly;
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 unsigned long pfn = page_to_pfn(page);
252 unsigned long sp, start_pfn;
255 seq = zone_span_seqbegin(zone);
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
258 if (!zone_spans_pfn(zone, pfn))
260 } while (zone_span_seqretry(zone, seq));
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
269 static int page_is_consistent(struct zone *zone, struct page *page)
271 if (!pfn_valid_within(page_to_pfn(page)))
273 if (zone != page_zone(page))
279 * Temporary debugging check for pages not lying within a given zone.
281 static int bad_range(struct zone *zone, struct page *page)
283 if (page_outside_zone_boundaries(zone, page))
285 if (!page_is_consistent(zone, page))
291 static inline int bad_range(struct zone *zone, struct page *page)
297 static void bad_page(struct page *page)
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
305 page_mapcount_reset(page); /* remove PageBuddy */
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
320 "BUG: Bad page state: %lu messages suppressed\n",
327 resume = jiffies + 60 * HZ;
329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
330 current->comm, page_to_pfn(page));
336 /* Leave bad fields for debug, except PageBuddy could make trouble */
337 page_mapcount_reset(page); /* remove PageBuddy */
338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 * Higher-order pages are called "compound pages". They are structured thusly:
344 * The first PAGE_SIZE page is called the "head page".
346 * The remaining PAGE_SIZE pages are called "tail pages".
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
356 static void free_compound_page(struct page *page)
358 __free_pages_ok(page, compound_order(page));
361 void prep_compound_page(struct page *page, unsigned long order)
364 int nr_pages = 1 << order;
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
372 set_page_count(p, 0);
373 p->first_page = page;
377 /* update __split_huge_page_refcount if you change this function */
378 static int destroy_compound_page(struct page *page, unsigned long order)
381 int nr_pages = 1 << order;
384 if (unlikely(compound_order(page) != order)) {
389 __ClearPageHead(page);
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
404 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
417 #ifdef CONFIG_DEBUG_PAGEALLOC
418 unsigned int _debug_guardpage_minorder;
420 static int __init debug_guardpage_minorder_setup(char *buf)
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434 static inline void set_page_guard_flag(struct page *page)
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
439 static inline void clear_page_guard_flag(struct page *page)
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444 static inline void set_page_guard_flag(struct page *page) { }
445 static inline void clear_page_guard_flag(struct page *page) { }
448 static inline void set_page_order(struct page *page, int order)
450 set_page_private(page, order);
451 __SetPageBuddy(page);
454 static inline void rmv_page_order(struct page *page)
456 __ClearPageBuddy(page);
457 set_page_private(page, 0);
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
467 * For example, if the starting buddy (buddy2) is #8 its order
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 static inline unsigned long
478 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 return page_idx ^ (1 << order);
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
486 * (a) the buddy is not in a hole &&
487 * (b) the buddy is in the buddy system &&
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
494 * For recording page's order, we use page_private(page).
496 static inline int page_is_buddy(struct page *page, struct page *buddy,
499 if (!pfn_valid_within(page_to_pfn(buddy)))
502 if (page_zone_id(page) != page_zone_id(buddy))
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
510 if (PageBuddy(buddy) && page_order(buddy) == order) {
511 VM_BUG_ON(page_count(buddy) != 0);
518 * Freeing function for a buddy system allocator.
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
531 * order is recorded in page_private(page) field.
532 * So when we are allocating or freeing one, we can derive the state of the
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
535 * If a block is freed, and its buddy is also free, then this
536 * triggers coalescing into a block of larger size.
541 static inline void __free_one_page(struct page *page,
542 struct zone *zone, unsigned int order,
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
550 VM_BUG_ON(!zone_is_initialized(zone));
552 if (unlikely(PageCompound(page)))
553 if (unlikely(destroy_compound_page(page, order)))
556 VM_BUG_ON(migratetype == -1);
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
560 VM_BUG_ON(page_idx & ((1 << order) - 1));
561 VM_BUG_ON(bad_range(zone, page));
563 while (order < MAX_ORDER-1) {
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
566 if (!page_is_buddy(page, buddy, order))
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
575 __mod_zone_freepage_state(zone, 1 << order,
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
582 combined_idx = buddy_idx & page_idx;
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
587 set_page_order(page, order);
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
598 struct page *higher_page, *higher_buddy;
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
602 higher_buddy = higher_page + (buddy_idx - combined_idx);
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
612 zone->free_area[order].nr_free++;
615 static inline int free_pages_check(struct page *page)
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
619 (atomic_read(&page->_count) != 0) |
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
625 page_nid_reset_last(page);
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 * Frees a number of pages from the PCP lists
633 * Assumes all pages on list are in same zone, and of same order.
634 * count is the number of pages to free.
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
642 static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
649 spin_lock(&zone->lock);
650 zone->all_unreclaimable = 0;
651 zone->pages_scanned = 0;
655 struct list_head *list;
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
666 if (++migratetype == MIGRATE_PCPTYPES)
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
676 int mt; /* migratetype of the to-be-freed page */
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
681 mt = get_freepage_migratetype(page);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
685 if (likely(!is_migrate_isolate_page(page))) {
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
690 } while (--to_free && --batch_free && !list_empty(list));
692 spin_unlock(&zone->lock);
695 static void free_one_page(struct zone *zone, struct page *page, int order,
698 spin_lock(&zone->lock);
699 zone->all_unreclaimable = 0;
700 zone->pages_scanned = 0;
702 __free_one_page(page, zone, order, migratetype);
703 if (unlikely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705 spin_unlock(&zone->lock);
708 static bool free_pages_prepare(struct page *page, unsigned int order)
713 trace_mm_page_free(page, order);
714 kmemcheck_free_shadow(page, order);
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
723 if (!PageHighMem(page)) {
724 debug_check_no_locks_freed(page_address(page),
726 debug_check_no_obj_freed(page_address(page),
729 arch_free_page(page, order);
730 kernel_map_pages(page, 1 << order, 0);
735 static void __free_pages_ok(struct page *page, unsigned int order)
740 if (!free_pages_prepare(page, order))
743 local_irq_save(flags);
744 __count_vm_events(PGFREE, 1 << order);
745 migratetype = get_pageblock_migratetype(page);
746 set_freepage_migratetype(page, migratetype);
747 free_one_page(page_zone(page), page, order, migratetype);
748 local_irq_restore(flags);
751 void __init __free_pages_bootmem(struct page *page, unsigned int order)
753 unsigned int nr_pages = 1 << order;
757 for (loop = 0; loop < nr_pages; loop++) {
758 struct page *p = &page[loop];
760 if (loop + 1 < nr_pages)
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
766 page_zone(page)->managed_pages += 1 << order;
767 set_page_refcounted(page);
768 __free_pages(page, order);
772 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
773 void __init init_cma_reserved_pageblock(struct page *page)
775 unsigned i = pageblock_nr_pages;
776 struct page *p = page;
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
783 set_page_refcounted(page);
784 set_pageblock_migratetype(page, MIGRATE_CMA);
785 __free_pages(page, pageblock_order);
786 adjust_managed_page_count(page, pageblock_nr_pages);
791 * The order of subdivision here is critical for the IO subsystem.
792 * Please do not alter this order without good reasons and regression
793 * testing. Specifically, as large blocks of memory are subdivided,
794 * the order in which smaller blocks are delivered depends on the order
795 * they're subdivided in this function. This is the primary factor
796 * influencing the order in which pages are delivered to the IO
797 * subsystem according to empirical testing, and this is also justified
798 * by considering the behavior of a buddy system containing a single
799 * large block of memory acted on by a series of small allocations.
800 * This behavior is a critical factor in sglist merging's success.
804 static inline void expand(struct zone *zone, struct page *page,
805 int low, int high, struct free_area *area,
808 unsigned long size = 1 << high;
814 VM_BUG_ON(bad_range(zone, &page[size]));
816 #ifdef CONFIG_DEBUG_PAGEALLOC
817 if (high < debug_guardpage_minorder()) {
819 * Mark as guard pages (or page), that will allow to
820 * merge back to allocator when buddy will be freed.
821 * Corresponding page table entries will not be touched,
822 * pages will stay not present in virtual address space
824 INIT_LIST_HEAD(&page[size].lru);
825 set_page_guard_flag(&page[size]);
826 set_page_private(&page[size], high);
827 /* Guard pages are not available for any usage */
828 __mod_zone_freepage_state(zone, -(1 << high),
833 list_add(&page[size].lru, &area->free_list[migratetype]);
835 set_page_order(&page[size], high);
840 * This page is about to be returned from the page allocator
842 static inline int check_new_page(struct page *page)
844 if (unlikely(page_mapcount(page) |
845 (page->mapping != NULL) |
846 (atomic_read(&page->_count) != 0) |
847 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
848 (mem_cgroup_bad_page_check(page)))) {
855 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
859 for (i = 0; i < (1 << order); i++) {
860 struct page *p = page + i;
861 if (unlikely(check_new_page(p)))
865 set_page_private(page, 0);
866 set_page_refcounted(page);
868 arch_alloc_page(page, order);
869 kernel_map_pages(page, 1 << order, 1);
871 if (gfp_flags & __GFP_ZERO)
872 prep_zero_page(page, order, gfp_flags);
874 if (order && (gfp_flags & __GFP_COMP))
875 prep_compound_page(page, order);
881 * Go through the free lists for the given migratetype and remove
882 * the smallest available page from the freelists
885 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 unsigned int current_order;
889 struct free_area *area;
892 /* Find a page of the appropriate size in the preferred list */
893 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
894 area = &(zone->free_area[current_order]);
895 if (list_empty(&area->free_list[migratetype]))
898 page = list_entry(area->free_list[migratetype].next,
900 list_del(&page->lru);
901 rmv_page_order(page);
903 expand(zone, page, order, current_order, area, migratetype);
912 * This array describes the order lists are fallen back to when
913 * the free lists for the desirable migrate type are depleted
915 static int fallbacks[MIGRATE_TYPES][4] = {
916 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
925 #ifdef CONFIG_MEMORY_ISOLATION
926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
931 * Move the free pages in a range to the free lists of the requested type.
932 * Note that start_page and end_pages are not aligned on a pageblock
933 * boundary. If alignment is required, use move_freepages_block()
935 int move_freepages(struct zone *zone,
936 struct page *start_page, struct page *end_page,
943 #ifndef CONFIG_HOLES_IN_ZONE
945 * page_zone is not safe to call in this context when
946 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
947 * anyway as we check zone boundaries in move_freepages_block().
948 * Remove at a later date when no bug reports exist related to
949 * grouping pages by mobility
951 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 for (page = start_page; page <= end_page;) {
955 /* Make sure we are not inadvertently changing nodes */
956 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958 if (!pfn_valid_within(page_to_pfn(page))) {
963 if (!PageBuddy(page)) {
968 order = page_order(page);
969 list_move(&page->lru,
970 &zone->free_area[order].free_list[migratetype]);
971 set_freepage_migratetype(page, migratetype);
973 pages_moved += 1 << order;
979 int move_freepages_block(struct zone *zone, struct page *page,
982 unsigned long start_pfn, end_pfn;
983 struct page *start_page, *end_page;
985 start_pfn = page_to_pfn(page);
986 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
987 start_page = pfn_to_page(start_pfn);
988 end_page = start_page + pageblock_nr_pages - 1;
989 end_pfn = start_pfn + pageblock_nr_pages - 1;
991 /* Do not cross zone boundaries */
992 if (!zone_spans_pfn(zone, start_pfn))
994 if (!zone_spans_pfn(zone, end_pfn))
997 return move_freepages(zone, start_page, end_page, migratetype);
1000 static void change_pageblock_range(struct page *pageblock_page,
1001 int start_order, int migratetype)
1003 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005 while (nr_pageblocks--) {
1006 set_pageblock_migratetype(pageblock_page, migratetype);
1007 pageblock_page += pageblock_nr_pages;
1012 * If breaking a large block of pages, move all free pages to the preferred
1013 * allocation list. If falling back for a reclaimable kernel allocation, be
1014 * more aggressive about taking ownership of free pages.
1016 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1017 * nor move CMA pages to different free lists. We don't want unmovable pages
1018 * to be allocated from MIGRATE_CMA areas.
1020 * Returns the new migratetype of the pageblock (or the same old migratetype
1021 * if it was unchanged).
1023 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1024 int start_type, int fallback_type)
1026 int current_order = page_order(page);
1028 if (is_migrate_cma(fallback_type))
1029 return fallback_type;
1031 /* Take ownership for orders >= pageblock_order */
1032 if (current_order >= pageblock_order) {
1033 change_pageblock_range(page, current_order, start_type);
1037 if (current_order >= pageblock_order / 2 ||
1038 start_type == MIGRATE_RECLAIMABLE ||
1039 page_group_by_mobility_disabled) {
1042 pages = move_freepages_block(zone, page, start_type);
1044 /* Claim the whole block if over half of it is free */
1045 if (pages >= (1 << (pageblock_order-1)) ||
1046 page_group_by_mobility_disabled) {
1048 set_pageblock_migratetype(page, start_type);
1054 return fallback_type;
1057 /* Remove an element from the buddy allocator from the fallback list */
1058 static inline struct page *
1059 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1061 struct free_area *area;
1064 int migratetype, new_type, i;
1066 /* Find the largest possible block of pages in the other list */
1067 for (current_order = MAX_ORDER-1; current_order >= order;
1070 migratetype = fallbacks[start_migratetype][i];
1072 /* MIGRATE_RESERVE handled later if necessary */
1073 if (migratetype == MIGRATE_RESERVE)
1076 area = &(zone->free_area[current_order]);
1077 if (list_empty(&area->free_list[migratetype]))
1080 page = list_entry(area->free_list[migratetype].next,
1084 new_type = try_to_steal_freepages(zone, page,
1088 /* Remove the page from the freelists */
1089 list_del(&page->lru);
1090 rmv_page_order(page);
1093 * Borrow the excess buddy pages as well, irrespective
1094 * of whether we stole freepages, or took ownership of
1095 * the pageblock or not.
1097 * Exception: When borrowing from MIGRATE_CMA, release
1098 * the excess buddy pages to CMA itself.
1100 expand(zone, page, order, current_order, area,
1101 is_migrate_cma(migratetype)
1102 ? migratetype : start_migratetype);
1104 trace_mm_page_alloc_extfrag(page, order, current_order,
1105 start_migratetype, new_type);
1115 * Do the hard work of removing an element from the buddy allocator.
1116 * Call me with the zone->lock already held.
1118 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1124 page = __rmqueue_smallest(zone, order, migratetype);
1126 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1127 page = __rmqueue_fallback(zone, order, migratetype);
1130 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1131 * is used because __rmqueue_smallest is an inline function
1132 * and we want just one call site
1135 migratetype = MIGRATE_RESERVE;
1140 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1145 * Obtain a specified number of elements from the buddy allocator, all under
1146 * a single hold of the lock, for efficiency. Add them to the supplied list.
1147 * Returns the number of new pages which were placed at *list.
1149 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1150 unsigned long count, struct list_head *list,
1151 int migratetype, int cold)
1153 int mt = migratetype, i;
1155 spin_lock(&zone->lock);
1156 for (i = 0; i < count; ++i) {
1157 struct page *page = __rmqueue(zone, order, migratetype);
1158 if (unlikely(page == NULL))
1162 * Split buddy pages returned by expand() are received here
1163 * in physical page order. The page is added to the callers and
1164 * list and the list head then moves forward. From the callers
1165 * perspective, the linked list is ordered by page number in
1166 * some conditions. This is useful for IO devices that can
1167 * merge IO requests if the physical pages are ordered
1170 if (likely(cold == 0))
1171 list_add(&page->lru, list);
1173 list_add_tail(&page->lru, list);
1174 if (IS_ENABLED(CONFIG_CMA)) {
1175 mt = get_pageblock_migratetype(page);
1176 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1179 set_freepage_migratetype(page, mt);
1181 if (is_migrate_cma(mt))
1182 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1185 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1186 spin_unlock(&zone->lock);
1192 * Called from the vmstat counter updater to drain pagesets of this
1193 * currently executing processor on remote nodes after they have
1196 * Note that this function must be called with the thread pinned to
1197 * a single processor.
1199 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1201 unsigned long flags;
1203 unsigned long batch;
1205 local_irq_save(flags);
1206 batch = ACCESS_ONCE(pcp->batch);
1207 if (pcp->count >= batch)
1210 to_drain = pcp->count;
1212 free_pcppages_bulk(zone, to_drain, pcp);
1213 pcp->count -= to_drain;
1215 local_irq_restore(flags);
1220 * Drain pages of the indicated processor.
1222 * The processor must either be the current processor and the
1223 * thread pinned to the current processor or a processor that
1226 static void drain_pages(unsigned int cpu)
1228 unsigned long flags;
1231 for_each_populated_zone(zone) {
1232 struct per_cpu_pageset *pset;
1233 struct per_cpu_pages *pcp;
1235 local_irq_save(flags);
1236 pset = per_cpu_ptr(zone->pageset, cpu);
1240 free_pcppages_bulk(zone, pcp->count, pcp);
1243 local_irq_restore(flags);
1248 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1250 void drain_local_pages(void *arg)
1252 drain_pages(smp_processor_id());
1256 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1258 * Note that this code is protected against sending an IPI to an offline
1259 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1260 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1261 * nothing keeps CPUs from showing up after we populated the cpumask and
1262 * before the call to on_each_cpu_mask().
1264 void drain_all_pages(void)
1267 struct per_cpu_pageset *pcp;
1271 * Allocate in the BSS so we wont require allocation in
1272 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1274 static cpumask_t cpus_with_pcps;
1277 * We don't care about racing with CPU hotplug event
1278 * as offline notification will cause the notified
1279 * cpu to drain that CPU pcps and on_each_cpu_mask
1280 * disables preemption as part of its processing
1282 for_each_online_cpu(cpu) {
1283 bool has_pcps = false;
1284 for_each_populated_zone(zone) {
1285 pcp = per_cpu_ptr(zone->pageset, cpu);
1286 if (pcp->pcp.count) {
1292 cpumask_set_cpu(cpu, &cpus_with_pcps);
1294 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1296 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1299 #ifdef CONFIG_HIBERNATION
1301 void mark_free_pages(struct zone *zone)
1303 unsigned long pfn, max_zone_pfn;
1304 unsigned long flags;
1306 struct list_head *curr;
1308 if (!zone->spanned_pages)
1311 spin_lock_irqsave(&zone->lock, flags);
1313 max_zone_pfn = zone_end_pfn(zone);
1314 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315 if (pfn_valid(pfn)) {
1316 struct page *page = pfn_to_page(pfn);
1318 if (!swsusp_page_is_forbidden(page))
1319 swsusp_unset_page_free(page);
1322 for_each_migratetype_order(order, t) {
1323 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1326 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1327 for (i = 0; i < (1UL << order); i++)
1328 swsusp_set_page_free(pfn_to_page(pfn + i));
1331 spin_unlock_irqrestore(&zone->lock, flags);
1333 #endif /* CONFIG_PM */
1336 * Free a 0-order page
1337 * cold == 1 ? free a cold page : free a hot page
1339 void free_hot_cold_page(struct page *page, int cold)
1341 struct zone *zone = page_zone(page);
1342 struct per_cpu_pages *pcp;
1343 unsigned long flags;
1346 if (!free_pages_prepare(page, 0))
1349 migratetype = get_pageblock_migratetype(page);
1350 set_freepage_migratetype(page, migratetype);
1351 local_irq_save(flags);
1352 __count_vm_event(PGFREE);
1355 * We only track unmovable, reclaimable and movable on pcp lists.
1356 * Free ISOLATE pages back to the allocator because they are being
1357 * offlined but treat RESERVE as movable pages so we can get those
1358 * areas back if necessary. Otherwise, we may have to free
1359 * excessively into the page allocator
1361 if (migratetype >= MIGRATE_PCPTYPES) {
1362 if (unlikely(is_migrate_isolate(migratetype))) {
1363 free_one_page(zone, page, 0, migratetype);
1366 migratetype = MIGRATE_MOVABLE;
1369 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1371 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1373 list_add(&page->lru, &pcp->lists[migratetype]);
1375 if (pcp->count >= pcp->high) {
1376 unsigned long batch = ACCESS_ONCE(pcp->batch);
1377 free_pcppages_bulk(zone, batch, pcp);
1378 pcp->count -= batch;
1382 local_irq_restore(flags);
1386 * Free a list of 0-order pages
1388 void free_hot_cold_page_list(struct list_head *list, int cold)
1390 struct page *page, *next;
1392 list_for_each_entry_safe(page, next, list, lru) {
1393 trace_mm_page_free_batched(page, cold);
1394 free_hot_cold_page(page, cold);
1399 * split_page takes a non-compound higher-order page, and splits it into
1400 * n (1<<order) sub-pages: page[0..n]
1401 * Each sub-page must be freed individually.
1403 * Note: this is probably too low level an operation for use in drivers.
1404 * Please consult with lkml before using this in your driver.
1406 void split_page(struct page *page, unsigned int order)
1410 VM_BUG_ON(PageCompound(page));
1411 VM_BUG_ON(!page_count(page));
1413 #ifdef CONFIG_KMEMCHECK
1415 * Split shadow pages too, because free(page[0]) would
1416 * otherwise free the whole shadow.
1418 if (kmemcheck_page_is_tracked(page))
1419 split_page(virt_to_page(page[0].shadow), order);
1422 for (i = 1; i < (1 << order); i++)
1423 set_page_refcounted(page + i);
1425 EXPORT_SYMBOL_GPL(split_page);
1427 static int __isolate_free_page(struct page *page, unsigned int order)
1429 unsigned long watermark;
1433 BUG_ON(!PageBuddy(page));
1435 zone = page_zone(page);
1436 mt = get_pageblock_migratetype(page);
1438 if (!is_migrate_isolate(mt)) {
1439 /* Obey watermarks as if the page was being allocated */
1440 watermark = low_wmark_pages(zone) + (1 << order);
1441 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1444 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1447 /* Remove page from free list */
1448 list_del(&page->lru);
1449 zone->free_area[order].nr_free--;
1450 rmv_page_order(page);
1452 /* Set the pageblock if the isolated page is at least a pageblock */
1453 if (order >= pageblock_order - 1) {
1454 struct page *endpage = page + (1 << order) - 1;
1455 for (; page < endpage; page += pageblock_nr_pages) {
1456 int mt = get_pageblock_migratetype(page);
1457 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1458 set_pageblock_migratetype(page,
1463 return 1UL << order;
1467 * Similar to split_page except the page is already free. As this is only
1468 * being used for migration, the migratetype of the block also changes.
1469 * As this is called with interrupts disabled, the caller is responsible
1470 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1473 * Note: this is probably too low level an operation for use in drivers.
1474 * Please consult with lkml before using this in your driver.
1476 int split_free_page(struct page *page)
1481 order = page_order(page);
1483 nr_pages = __isolate_free_page(page, order);
1487 /* Split into individual pages */
1488 set_page_refcounted(page);
1489 split_page(page, order);
1494 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1495 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1499 struct page *buffered_rmqueue(struct zone *preferred_zone,
1500 struct zone *zone, int order, gfp_t gfp_flags,
1503 unsigned long flags;
1505 int cold = !!(gfp_flags & __GFP_COLD);
1508 if (likely(order == 0)) {
1509 struct per_cpu_pages *pcp;
1510 struct list_head *list;
1512 local_irq_save(flags);
1513 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1514 list = &pcp->lists[migratetype];
1515 if (list_empty(list)) {
1516 pcp->count += rmqueue_bulk(zone, 0,
1519 if (unlikely(list_empty(list)))
1524 page = list_entry(list->prev, struct page, lru);
1526 page = list_entry(list->next, struct page, lru);
1528 list_del(&page->lru);
1531 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1533 * __GFP_NOFAIL is not to be used in new code.
1535 * All __GFP_NOFAIL callers should be fixed so that they
1536 * properly detect and handle allocation failures.
1538 * We most definitely don't want callers attempting to
1539 * allocate greater than order-1 page units with
1542 WARN_ON_ONCE(order > 1);
1544 spin_lock_irqsave(&zone->lock, flags);
1545 page = __rmqueue(zone, order, migratetype);
1546 spin_unlock(&zone->lock);
1549 __mod_zone_freepage_state(zone, -(1 << order),
1550 get_pageblock_migratetype(page));
1553 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1554 zone_statistics(preferred_zone, zone, gfp_flags);
1555 local_irq_restore(flags);
1557 VM_BUG_ON(bad_range(zone, page));
1558 if (prep_new_page(page, order, gfp_flags))
1563 local_irq_restore(flags);
1567 #ifdef CONFIG_FAIL_PAGE_ALLOC
1570 struct fault_attr attr;
1572 u32 ignore_gfp_highmem;
1573 u32 ignore_gfp_wait;
1575 } fail_page_alloc = {
1576 .attr = FAULT_ATTR_INITIALIZER,
1577 .ignore_gfp_wait = 1,
1578 .ignore_gfp_highmem = 1,
1582 static int __init setup_fail_page_alloc(char *str)
1584 return setup_fault_attr(&fail_page_alloc.attr, str);
1586 __setup("fail_page_alloc=", setup_fail_page_alloc);
1588 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1590 if (order < fail_page_alloc.min_order)
1592 if (gfp_mask & __GFP_NOFAIL)
1594 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1596 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1599 return should_fail(&fail_page_alloc.attr, 1 << order);
1602 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1604 static int __init fail_page_alloc_debugfs(void)
1606 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1609 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1610 &fail_page_alloc.attr);
1612 return PTR_ERR(dir);
1614 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1615 &fail_page_alloc.ignore_gfp_wait))
1617 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1618 &fail_page_alloc.ignore_gfp_highmem))
1620 if (!debugfs_create_u32("min-order", mode, dir,
1621 &fail_page_alloc.min_order))
1626 debugfs_remove_recursive(dir);
1631 late_initcall(fail_page_alloc_debugfs);
1633 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1635 #else /* CONFIG_FAIL_PAGE_ALLOC */
1637 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1642 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1645 * Return true if free pages are above 'mark'. This takes into account the order
1646 * of the allocation.
1648 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags, long free_pages)
1651 /* free_pages my go negative - that's OK */
1653 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1657 free_pages -= (1 << order) - 1;
1658 if (alloc_flags & ALLOC_HIGH)
1660 if (alloc_flags & ALLOC_HARDER)
1663 /* If allocation can't use CMA areas don't use free CMA pages */
1664 if (!(alloc_flags & ALLOC_CMA))
1665 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1668 if (free_pages - free_cma <= min + lowmem_reserve)
1670 for (o = 0; o < order; o++) {
1671 /* At the next order, this order's pages become unavailable */
1672 free_pages -= z->free_area[o].nr_free << o;
1674 /* Require fewer higher order pages to be free */
1677 if (free_pages <= min)
1683 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1684 int classzone_idx, int alloc_flags)
1686 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1687 zone_page_state(z, NR_FREE_PAGES));
1690 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1691 int classzone_idx, int alloc_flags)
1693 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1695 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1696 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1698 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1704 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1705 * skip over zones that are not allowed by the cpuset, or that have
1706 * been recently (in last second) found to be nearly full. See further
1707 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1708 * that have to skip over a lot of full or unallowed zones.
1710 * If the zonelist cache is present in the passed in zonelist, then
1711 * returns a pointer to the allowed node mask (either the current
1712 * tasks mems_allowed, or node_states[N_MEMORY].)
1714 * If the zonelist cache is not available for this zonelist, does
1715 * nothing and returns NULL.
1717 * If the fullzones BITMAP in the zonelist cache is stale (more than
1718 * a second since last zap'd) then we zap it out (clear its bits.)
1720 * We hold off even calling zlc_setup, until after we've checked the
1721 * first zone in the zonelist, on the theory that most allocations will
1722 * be satisfied from that first zone, so best to examine that zone as
1723 * quickly as we can.
1725 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1727 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1728 nodemask_t *allowednodes; /* zonelist_cache approximation */
1730 zlc = zonelist->zlcache_ptr;
1734 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1735 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1736 zlc->last_full_zap = jiffies;
1739 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1740 &cpuset_current_mems_allowed :
1741 &node_states[N_MEMORY];
1742 return allowednodes;
1746 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1747 * if it is worth looking at further for free memory:
1748 * 1) Check that the zone isn't thought to be full (doesn't have its
1749 * bit set in the zonelist_cache fullzones BITMAP).
1750 * 2) Check that the zones node (obtained from the zonelist_cache
1751 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1752 * Return true (non-zero) if zone is worth looking at further, or
1753 * else return false (zero) if it is not.
1755 * This check -ignores- the distinction between various watermarks,
1756 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1757 * found to be full for any variation of these watermarks, it will
1758 * be considered full for up to one second by all requests, unless
1759 * we are so low on memory on all allowed nodes that we are forced
1760 * into the second scan of the zonelist.
1762 * In the second scan we ignore this zonelist cache and exactly
1763 * apply the watermarks to all zones, even it is slower to do so.
1764 * We are low on memory in the second scan, and should leave no stone
1765 * unturned looking for a free page.
1767 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1768 nodemask_t *allowednodes)
1770 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1771 int i; /* index of *z in zonelist zones */
1772 int n; /* node that zone *z is on */
1774 zlc = zonelist->zlcache_ptr;
1778 i = z - zonelist->_zonerefs;
1781 /* This zone is worth trying if it is allowed but not full */
1782 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1786 * Given 'z' scanning a zonelist, set the corresponding bit in
1787 * zlc->fullzones, so that subsequent attempts to allocate a page
1788 * from that zone don't waste time re-examining it.
1790 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793 int i; /* index of *z in zonelist zones */
1795 zlc = zonelist->zlcache_ptr;
1799 i = z - zonelist->_zonerefs;
1801 set_bit(i, zlc->fullzones);
1805 * clear all zones full, called after direct reclaim makes progress so that
1806 * a zone that was recently full is not skipped over for up to a second
1808 static void zlc_clear_zones_full(struct zonelist *zonelist)
1810 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1812 zlc = zonelist->zlcache_ptr;
1816 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1821 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1824 static void __paginginit init_zone_allows_reclaim(int nid)
1828 for_each_online_node(i)
1829 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1830 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1832 zone_reclaim_mode = 1;
1835 #else /* CONFIG_NUMA */
1837 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1842 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1843 nodemask_t *allowednodes)
1848 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1861 static inline void init_zone_allows_reclaim(int nid)
1864 #endif /* CONFIG_NUMA */
1867 * get_page_from_freelist goes through the zonelist trying to allocate
1870 static struct page *
1871 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1872 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1873 struct zone *preferred_zone, int migratetype)
1876 struct page *page = NULL;
1879 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1880 int zlc_active = 0; /* set if using zonelist_cache */
1881 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1883 classzone_idx = zone_idx(preferred_zone);
1886 * Scan zonelist, looking for a zone with enough free.
1887 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1889 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1890 high_zoneidx, nodemask) {
1891 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1892 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1894 if ((alloc_flags & ALLOC_CPUSET) &&
1895 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1898 * When allocating a page cache page for writing, we
1899 * want to get it from a zone that is within its dirty
1900 * limit, such that no single zone holds more than its
1901 * proportional share of globally allowed dirty pages.
1902 * The dirty limits take into account the zone's
1903 * lowmem reserves and high watermark so that kswapd
1904 * should be able to balance it without having to
1905 * write pages from its LRU list.
1907 * This may look like it could increase pressure on
1908 * lower zones by failing allocations in higher zones
1909 * before they are full. But the pages that do spill
1910 * over are limited as the lower zones are protected
1911 * by this very same mechanism. It should not become
1912 * a practical burden to them.
1914 * XXX: For now, allow allocations to potentially
1915 * exceed the per-zone dirty limit in the slowpath
1916 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1917 * which is important when on a NUMA setup the allowed
1918 * zones are together not big enough to reach the
1919 * global limit. The proper fix for these situations
1920 * will require awareness of zones in the
1921 * dirty-throttling and the flusher threads.
1923 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1924 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1925 goto this_zone_full;
1927 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1928 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1932 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1933 if (zone_watermark_ok(zone, order, mark,
1934 classzone_idx, alloc_flags))
1937 if (IS_ENABLED(CONFIG_NUMA) &&
1938 !did_zlc_setup && nr_online_nodes > 1) {
1940 * we do zlc_setup if there are multiple nodes
1941 * and before considering the first zone allowed
1944 allowednodes = zlc_setup(zonelist, alloc_flags);
1949 if (zone_reclaim_mode == 0 ||
1950 !zone_allows_reclaim(preferred_zone, zone))
1951 goto this_zone_full;
1954 * As we may have just activated ZLC, check if the first
1955 * eligible zone has failed zone_reclaim recently.
1957 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1958 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1961 ret = zone_reclaim(zone, gfp_mask, order);
1963 case ZONE_RECLAIM_NOSCAN:
1966 case ZONE_RECLAIM_FULL:
1967 /* scanned but unreclaimable */
1970 /* did we reclaim enough */
1971 if (zone_watermark_ok(zone, order, mark,
1972 classzone_idx, alloc_flags))
1976 * Failed to reclaim enough to meet watermark.
1977 * Only mark the zone full if checking the min
1978 * watermark or if we failed to reclaim just
1979 * 1<<order pages or else the page allocator
1980 * fastpath will prematurely mark zones full
1981 * when the watermark is between the low and
1984 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1985 ret == ZONE_RECLAIM_SOME)
1986 goto this_zone_full;
1993 page = buffered_rmqueue(preferred_zone, zone, order,
1994 gfp_mask, migratetype);
1998 if (IS_ENABLED(CONFIG_NUMA))
1999 zlc_mark_zone_full(zonelist, z);
2002 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2003 /* Disable zlc cache for second zonelist scan */
2010 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2011 * necessary to allocate the page. The expectation is
2012 * that the caller is taking steps that will free more
2013 * memory. The caller should avoid the page being used
2014 * for !PFMEMALLOC purposes.
2016 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2022 * Large machines with many possible nodes should not always dump per-node
2023 * meminfo in irq context.
2025 static inline bool should_suppress_show_mem(void)
2030 ret = in_interrupt();
2035 static DEFINE_RATELIMIT_STATE(nopage_rs,
2036 DEFAULT_RATELIMIT_INTERVAL,
2037 DEFAULT_RATELIMIT_BURST);
2039 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2041 unsigned int filter = SHOW_MEM_FILTER_NODES;
2043 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2044 debug_guardpage_minorder() > 0)
2048 * Walking all memory to count page types is very expensive and should
2049 * be inhibited in non-blockable contexts.
2051 if (!(gfp_mask & __GFP_WAIT))
2052 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2055 * This documents exceptions given to allocations in certain
2056 * contexts that are allowed to allocate outside current's set
2059 if (!(gfp_mask & __GFP_NOMEMALLOC))
2060 if (test_thread_flag(TIF_MEMDIE) ||
2061 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2062 filter &= ~SHOW_MEM_FILTER_NODES;
2063 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2064 filter &= ~SHOW_MEM_FILTER_NODES;
2067 struct va_format vaf;
2070 va_start(args, fmt);
2075 pr_warn("%pV", &vaf);
2080 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2081 current->comm, order, gfp_mask);
2084 if (!should_suppress_show_mem())
2089 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2090 unsigned long did_some_progress,
2091 unsigned long pages_reclaimed)
2093 /* Do not loop if specifically requested */
2094 if (gfp_mask & __GFP_NORETRY)
2097 /* Always retry if specifically requested */
2098 if (gfp_mask & __GFP_NOFAIL)
2102 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2103 * making forward progress without invoking OOM. Suspend also disables
2104 * storage devices so kswapd will not help. Bail if we are suspending.
2106 if (!did_some_progress && pm_suspended_storage())
2110 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2111 * means __GFP_NOFAIL, but that may not be true in other
2114 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2118 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2119 * specified, then we retry until we no longer reclaim any pages
2120 * (above), or we've reclaimed an order of pages at least as
2121 * large as the allocation's order. In both cases, if the
2122 * allocation still fails, we stop retrying.
2124 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2130 static inline struct page *
2131 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2132 struct zonelist *zonelist, enum zone_type high_zoneidx,
2133 nodemask_t *nodemask, struct zone *preferred_zone,
2138 /* Acquire the OOM killer lock for the zones in zonelist */
2139 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2140 schedule_timeout_uninterruptible(1);
2145 * Go through the zonelist yet one more time, keep very high watermark
2146 * here, this is only to catch a parallel oom killing, we must fail if
2147 * we're still under heavy pressure.
2149 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2150 order, zonelist, high_zoneidx,
2151 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2152 preferred_zone, migratetype);
2156 if (!(gfp_mask & __GFP_NOFAIL)) {
2157 /* The OOM killer will not help higher order allocs */
2158 if (order > PAGE_ALLOC_COSTLY_ORDER)
2160 /* The OOM killer does not needlessly kill tasks for lowmem */
2161 if (high_zoneidx < ZONE_NORMAL)
2164 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2165 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2166 * The caller should handle page allocation failure by itself if
2167 * it specifies __GFP_THISNODE.
2168 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2170 if (gfp_mask & __GFP_THISNODE)
2173 /* Exhausted what can be done so it's blamo time */
2174 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2177 clear_zonelist_oom(zonelist, gfp_mask);
2181 #ifdef CONFIG_COMPACTION
2182 /* Try memory compaction for high-order allocations before reclaim */
2183 static struct page *
2184 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2185 struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2187 int migratetype, bool sync_migration,
2188 bool *contended_compaction, bool *deferred_compaction,
2189 unsigned long *did_some_progress)
2194 if (compaction_deferred(preferred_zone, order)) {
2195 *deferred_compaction = true;
2199 current->flags |= PF_MEMALLOC;
2200 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2201 nodemask, sync_migration,
2202 contended_compaction);
2203 current->flags &= ~PF_MEMALLOC;
2205 if (*did_some_progress != COMPACT_SKIPPED) {
2208 /* Page migration frees to the PCP lists but we want merging */
2209 drain_pages(get_cpu());
2212 page = get_page_from_freelist(gfp_mask, nodemask,
2213 order, zonelist, high_zoneidx,
2214 alloc_flags & ~ALLOC_NO_WATERMARKS,
2215 preferred_zone, migratetype);
2217 preferred_zone->compact_blockskip_flush = false;
2218 preferred_zone->compact_considered = 0;
2219 preferred_zone->compact_defer_shift = 0;
2220 if (order >= preferred_zone->compact_order_failed)
2221 preferred_zone->compact_order_failed = order + 1;
2222 count_vm_event(COMPACTSUCCESS);
2227 * It's bad if compaction run occurs and fails.
2228 * The most likely reason is that pages exist,
2229 * but not enough to satisfy watermarks.
2231 count_vm_event(COMPACTFAIL);
2234 * As async compaction considers a subset of pageblocks, only
2235 * defer if the failure was a sync compaction failure.
2238 defer_compaction(preferred_zone, order);
2246 static inline struct page *
2247 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2248 struct zonelist *zonelist, enum zone_type high_zoneidx,
2249 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2250 int migratetype, bool sync_migration,
2251 bool *contended_compaction, bool *deferred_compaction,
2252 unsigned long *did_some_progress)
2256 #endif /* CONFIG_COMPACTION */
2258 /* Perform direct synchronous page reclaim */
2260 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2261 nodemask_t *nodemask)
2263 struct reclaim_state reclaim_state;
2268 /* We now go into synchronous reclaim */
2269 cpuset_memory_pressure_bump();
2270 current->flags |= PF_MEMALLOC;
2271 lockdep_set_current_reclaim_state(gfp_mask);
2272 reclaim_state.reclaimed_slab = 0;
2273 current->reclaim_state = &reclaim_state;
2275 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2277 current->reclaim_state = NULL;
2278 lockdep_clear_current_reclaim_state();
2279 current->flags &= ~PF_MEMALLOC;
2286 /* The really slow allocator path where we enter direct reclaim */
2287 static inline struct page *
2288 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2289 struct zonelist *zonelist, enum zone_type high_zoneidx,
2290 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2291 int migratetype, unsigned long *did_some_progress)
2293 struct page *page = NULL;
2294 bool drained = false;
2296 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2298 if (unlikely(!(*did_some_progress)))
2301 /* After successful reclaim, reconsider all zones for allocation */
2302 if (IS_ENABLED(CONFIG_NUMA))
2303 zlc_clear_zones_full(zonelist);
2306 page = get_page_from_freelist(gfp_mask, nodemask, order,
2307 zonelist, high_zoneidx,
2308 alloc_flags & ~ALLOC_NO_WATERMARKS,
2309 preferred_zone, migratetype);
2312 * If an allocation failed after direct reclaim, it could be because
2313 * pages are pinned on the per-cpu lists. Drain them and try again
2315 if (!page && !drained) {
2325 * This is called in the allocator slow-path if the allocation request is of
2326 * sufficient urgency to ignore watermarks and take other desperate measures
2328 static inline struct page *
2329 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2330 struct zonelist *zonelist, enum zone_type high_zoneidx,
2331 nodemask_t *nodemask, struct zone *preferred_zone,
2337 page = get_page_from_freelist(gfp_mask, nodemask, order,
2338 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2339 preferred_zone, migratetype);
2341 if (!page && gfp_mask & __GFP_NOFAIL)
2342 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2343 } while (!page && (gfp_mask & __GFP_NOFAIL));
2349 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2350 enum zone_type high_zoneidx,
2351 enum zone_type classzone_idx)
2356 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2357 wakeup_kswapd(zone, order, classzone_idx);
2361 gfp_to_alloc_flags(gfp_t gfp_mask)
2363 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2364 const gfp_t wait = gfp_mask & __GFP_WAIT;
2366 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2367 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2370 * The caller may dip into page reserves a bit more if the caller
2371 * cannot run direct reclaim, or if the caller has realtime scheduling
2372 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2373 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2375 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2379 * Not worth trying to allocate harder for
2380 * __GFP_NOMEMALLOC even if it can't schedule.
2382 if (!(gfp_mask & __GFP_NOMEMALLOC))
2383 alloc_flags |= ALLOC_HARDER;
2385 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2386 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2388 alloc_flags &= ~ALLOC_CPUSET;
2389 } else if (unlikely(rt_task(current)) && !in_interrupt())
2390 alloc_flags |= ALLOC_HARDER;
2392 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2393 if (gfp_mask & __GFP_MEMALLOC)
2394 alloc_flags |= ALLOC_NO_WATERMARKS;
2395 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2396 alloc_flags |= ALLOC_NO_WATERMARKS;
2397 else if (!in_interrupt() &&
2398 ((current->flags & PF_MEMALLOC) ||
2399 unlikely(test_thread_flag(TIF_MEMDIE))))
2400 alloc_flags |= ALLOC_NO_WATERMARKS;
2403 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2404 alloc_flags |= ALLOC_CMA;
2409 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2411 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2414 static inline struct page *
2415 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2416 struct zonelist *zonelist, enum zone_type high_zoneidx,
2417 nodemask_t *nodemask, struct zone *preferred_zone,
2420 const gfp_t wait = gfp_mask & __GFP_WAIT;
2421 struct page *page = NULL;
2423 unsigned long pages_reclaimed = 0;
2424 unsigned long did_some_progress;
2425 bool sync_migration = false;
2426 bool deferred_compaction = false;
2427 bool contended_compaction = false;
2430 * In the slowpath, we sanity check order to avoid ever trying to
2431 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2432 * be using allocators in order of preference for an area that is
2435 if (order >= MAX_ORDER) {
2436 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2441 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2442 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2443 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2444 * using a larger set of nodes after it has established that the
2445 * allowed per node queues are empty and that nodes are
2448 if (IS_ENABLED(CONFIG_NUMA) &&
2449 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2453 if (!(gfp_mask & __GFP_NO_KSWAPD))
2454 wake_all_kswapd(order, zonelist, high_zoneidx,
2455 zone_idx(preferred_zone));
2458 * OK, we're below the kswapd watermark and have kicked background
2459 * reclaim. Now things get more complex, so set up alloc_flags according
2460 * to how we want to proceed.
2462 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2465 * Find the true preferred zone if the allocation is unconstrained by
2468 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2469 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2473 /* This is the last chance, in general, before the goto nopage. */
2474 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2475 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2476 preferred_zone, migratetype);
2480 /* Allocate without watermarks if the context allows */
2481 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2483 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2484 * the allocation is high priority and these type of
2485 * allocations are system rather than user orientated
2487 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2489 page = __alloc_pages_high_priority(gfp_mask, order,
2490 zonelist, high_zoneidx, nodemask,
2491 preferred_zone, migratetype);
2497 /* Atomic allocations - we can't balance anything */
2501 /* Avoid recursion of direct reclaim */
2502 if (current->flags & PF_MEMALLOC)
2505 /* Avoid allocations with no watermarks from looping endlessly */
2506 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2510 * Try direct compaction. The first pass is asynchronous. Subsequent
2511 * attempts after direct reclaim are synchronous
2513 page = __alloc_pages_direct_compact(gfp_mask, order,
2514 zonelist, high_zoneidx,
2516 alloc_flags, preferred_zone,
2517 migratetype, sync_migration,
2518 &contended_compaction,
2519 &deferred_compaction,
2520 &did_some_progress);
2523 sync_migration = true;
2526 * If compaction is deferred for high-order allocations, it is because
2527 * sync compaction recently failed. In this is the case and the caller
2528 * requested a movable allocation that does not heavily disrupt the
2529 * system then fail the allocation instead of entering direct reclaim.
2531 if ((deferred_compaction || contended_compaction) &&
2532 (gfp_mask & __GFP_NO_KSWAPD))
2535 /* Try direct reclaim and then allocating */
2536 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2537 zonelist, high_zoneidx,
2539 alloc_flags, preferred_zone,
2540 migratetype, &did_some_progress);
2545 * If we failed to make any progress reclaiming, then we are
2546 * running out of options and have to consider going OOM
2548 if (!did_some_progress) {
2549 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2550 if (oom_killer_disabled)
2552 /* Coredumps can quickly deplete all memory reserves */
2553 if ((current->flags & PF_DUMPCORE) &&
2554 !(gfp_mask & __GFP_NOFAIL))
2556 page = __alloc_pages_may_oom(gfp_mask, order,
2557 zonelist, high_zoneidx,
2558 nodemask, preferred_zone,
2563 if (!(gfp_mask & __GFP_NOFAIL)) {
2565 * The oom killer is not called for high-order
2566 * allocations that may fail, so if no progress
2567 * is being made, there are no other options and
2568 * retrying is unlikely to help.
2570 if (order > PAGE_ALLOC_COSTLY_ORDER)
2573 * The oom killer is not called for lowmem
2574 * allocations to prevent needlessly killing
2577 if (high_zoneidx < ZONE_NORMAL)
2585 /* Check if we should retry the allocation */
2586 pages_reclaimed += did_some_progress;
2587 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2589 /* Wait for some write requests to complete then retry */
2590 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2594 * High-order allocations do not necessarily loop after
2595 * direct reclaim and reclaim/compaction depends on compaction
2596 * being called after reclaim so call directly if necessary
2598 page = __alloc_pages_direct_compact(gfp_mask, order,
2599 zonelist, high_zoneidx,
2601 alloc_flags, preferred_zone,
2602 migratetype, sync_migration,
2603 &contended_compaction,
2604 &deferred_compaction,
2605 &did_some_progress);
2611 warn_alloc_failed(gfp_mask, order, NULL);
2614 if (kmemcheck_enabled)
2615 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2621 * This is the 'heart' of the zoned buddy allocator.
2624 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2625 struct zonelist *zonelist, nodemask_t *nodemask)
2627 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2628 struct zone *preferred_zone;
2629 struct page *page = NULL;
2630 int migratetype = allocflags_to_migratetype(gfp_mask);
2631 unsigned int cpuset_mems_cookie;
2632 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2633 struct mem_cgroup *memcg = NULL;
2635 gfp_mask &= gfp_allowed_mask;
2637 lockdep_trace_alloc(gfp_mask);
2639 might_sleep_if(gfp_mask & __GFP_WAIT);
2641 if (should_fail_alloc_page(gfp_mask, order))
2645 * Check the zones suitable for the gfp_mask contain at least one
2646 * valid zone. It's possible to have an empty zonelist as a result
2647 * of GFP_THISNODE and a memoryless node
2649 if (unlikely(!zonelist->_zonerefs->zone))
2653 * Will only have any effect when __GFP_KMEMCG is set. This is
2654 * verified in the (always inline) callee
2656 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2660 cpuset_mems_cookie = get_mems_allowed();
2662 /* The preferred zone is used for statistics later */
2663 first_zones_zonelist(zonelist, high_zoneidx,
2664 nodemask ? : &cpuset_current_mems_allowed,
2666 if (!preferred_zone)
2670 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2671 alloc_flags |= ALLOC_CMA;
2673 /* First allocation attempt */
2674 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2675 zonelist, high_zoneidx, alloc_flags,
2676 preferred_zone, migratetype);
2677 if (unlikely(!page)) {
2679 * Runtime PM, block IO and its error handling path
2680 * can deadlock because I/O on the device might not
2683 gfp_mask = memalloc_noio_flags(gfp_mask);
2684 page = __alloc_pages_slowpath(gfp_mask, order,
2685 zonelist, high_zoneidx, nodemask,
2686 preferred_zone, migratetype);
2689 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2693 * When updating a task's mems_allowed, it is possible to race with
2694 * parallel threads in such a way that an allocation can fail while
2695 * the mask is being updated. If a page allocation is about to fail,
2696 * check if the cpuset changed during allocation and if so, retry.
2698 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2701 memcg_kmem_commit_charge(page, memcg, order);
2705 EXPORT_SYMBOL(__alloc_pages_nodemask);
2708 * Common helper functions.
2710 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2715 * __get_free_pages() returns a 32-bit address, which cannot represent
2718 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2720 page = alloc_pages(gfp_mask, order);
2723 return (unsigned long) page_address(page);
2725 EXPORT_SYMBOL(__get_free_pages);
2727 unsigned long get_zeroed_page(gfp_t gfp_mask)
2729 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2731 EXPORT_SYMBOL(get_zeroed_page);
2733 void __free_pages(struct page *page, unsigned int order)
2735 if (put_page_testzero(page)) {
2737 free_hot_cold_page(page, 0);
2739 __free_pages_ok(page, order);
2743 EXPORT_SYMBOL(__free_pages);
2745 void free_pages(unsigned long addr, unsigned int order)
2748 VM_BUG_ON(!virt_addr_valid((void *)addr));
2749 __free_pages(virt_to_page((void *)addr), order);
2753 EXPORT_SYMBOL(free_pages);
2756 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2757 * pages allocated with __GFP_KMEMCG.
2759 * Those pages are accounted to a particular memcg, embedded in the
2760 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2761 * for that information only to find out that it is NULL for users who have no
2762 * interest in that whatsoever, we provide these functions.
2764 * The caller knows better which flags it relies on.
2766 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2768 memcg_kmem_uncharge_pages(page, order);
2769 __free_pages(page, order);
2772 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2775 VM_BUG_ON(!virt_addr_valid((void *)addr));
2776 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2780 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2783 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2784 unsigned long used = addr + PAGE_ALIGN(size);
2786 split_page(virt_to_page((void *)addr), order);
2787 while (used < alloc_end) {
2792 return (void *)addr;
2796 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2797 * @size: the number of bytes to allocate
2798 * @gfp_mask: GFP flags for the allocation
2800 * This function is similar to alloc_pages(), except that it allocates the
2801 * minimum number of pages to satisfy the request. alloc_pages() can only
2802 * allocate memory in power-of-two pages.
2804 * This function is also limited by MAX_ORDER.
2806 * Memory allocated by this function must be released by free_pages_exact().
2808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2810 unsigned int order = get_order(size);
2813 addr = __get_free_pages(gfp_mask, order);
2814 return make_alloc_exact(addr, order, size);
2816 EXPORT_SYMBOL(alloc_pages_exact);
2819 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2821 * @nid: the preferred node ID where memory should be allocated
2822 * @size: the number of bytes to allocate
2823 * @gfp_mask: GFP flags for the allocation
2825 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2827 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2830 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2832 unsigned order = get_order(size);
2833 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2836 return make_alloc_exact((unsigned long)page_address(p), order, size);
2838 EXPORT_SYMBOL(alloc_pages_exact_nid);
2841 * free_pages_exact - release memory allocated via alloc_pages_exact()
2842 * @virt: the value returned by alloc_pages_exact.
2843 * @size: size of allocation, same value as passed to alloc_pages_exact().
2845 * Release the memory allocated by a previous call to alloc_pages_exact.
2847 void free_pages_exact(void *virt, size_t size)
2849 unsigned long addr = (unsigned long)virt;
2850 unsigned long end = addr + PAGE_ALIGN(size);
2852 while (addr < end) {
2857 EXPORT_SYMBOL(free_pages_exact);
2860 * nr_free_zone_pages - count number of pages beyond high watermark
2861 * @offset: The zone index of the highest zone
2863 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2864 * high watermark within all zones at or below a given zone index. For each
2865 * zone, the number of pages is calculated as:
2866 * managed_pages - high_pages
2868 static unsigned long nr_free_zone_pages(int offset)
2873 /* Just pick one node, since fallback list is circular */
2874 unsigned long sum = 0;
2876 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2878 for_each_zone_zonelist(zone, z, zonelist, offset) {
2879 unsigned long size = zone->managed_pages;
2880 unsigned long high = high_wmark_pages(zone);
2889 * nr_free_buffer_pages - count number of pages beyond high watermark
2891 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2892 * watermark within ZONE_DMA and ZONE_NORMAL.
2894 unsigned long nr_free_buffer_pages(void)
2896 return nr_free_zone_pages(gfp_zone(GFP_USER));
2898 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2901 * nr_free_pagecache_pages - count number of pages beyond high watermark
2903 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2904 * high watermark within all zones.
2906 unsigned long nr_free_pagecache_pages(void)
2908 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2911 static inline void show_node(struct zone *zone)
2913 if (IS_ENABLED(CONFIG_NUMA))
2914 printk("Node %d ", zone_to_nid(zone));
2917 void si_meminfo(struct sysinfo *val)
2919 val->totalram = totalram_pages;
2921 val->freeram = global_page_state(NR_FREE_PAGES);
2922 val->bufferram = nr_blockdev_pages();
2923 val->totalhigh = totalhigh_pages;
2924 val->freehigh = nr_free_highpages();
2925 val->mem_unit = PAGE_SIZE;
2928 EXPORT_SYMBOL(si_meminfo);
2931 void si_meminfo_node(struct sysinfo *val, int nid)
2933 int zone_type; /* needs to be signed */
2934 unsigned long managed_pages = 0;
2935 pg_data_t *pgdat = NODE_DATA(nid);
2937 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2938 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2939 val->totalram = managed_pages;
2940 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2941 #ifdef CONFIG_HIGHMEM
2942 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2943 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2949 val->mem_unit = PAGE_SIZE;
2954 * Determine whether the node should be displayed or not, depending on whether
2955 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2957 bool skip_free_areas_node(unsigned int flags, int nid)
2960 unsigned int cpuset_mems_cookie;
2962 if (!(flags & SHOW_MEM_FILTER_NODES))
2966 cpuset_mems_cookie = get_mems_allowed();
2967 ret = !node_isset(nid, cpuset_current_mems_allowed);
2968 } while (!put_mems_allowed(cpuset_mems_cookie));
2973 #define K(x) ((x) << (PAGE_SHIFT-10))
2975 static void show_migration_types(unsigned char type)
2977 static const char types[MIGRATE_TYPES] = {
2978 [MIGRATE_UNMOVABLE] = 'U',
2979 [MIGRATE_RECLAIMABLE] = 'E',
2980 [MIGRATE_MOVABLE] = 'M',
2981 [MIGRATE_RESERVE] = 'R',
2983 [MIGRATE_CMA] = 'C',
2985 #ifdef CONFIG_MEMORY_ISOLATION
2986 [MIGRATE_ISOLATE] = 'I',
2989 char tmp[MIGRATE_TYPES + 1];
2993 for (i = 0; i < MIGRATE_TYPES; i++) {
2994 if (type & (1 << i))
2999 printk("(%s) ", tmp);
3003 * Show free area list (used inside shift_scroll-lock stuff)
3004 * We also calculate the percentage fragmentation. We do this by counting the
3005 * memory on each free list with the exception of the first item on the list.
3006 * Suppresses nodes that are not allowed by current's cpuset if
3007 * SHOW_MEM_FILTER_NODES is passed.
3009 void show_free_areas(unsigned int filter)
3014 for_each_populated_zone(zone) {
3015 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3018 printk("%s per-cpu:\n", zone->name);
3020 for_each_online_cpu(cpu) {
3021 struct per_cpu_pageset *pageset;
3023 pageset = per_cpu_ptr(zone->pageset, cpu);
3025 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3026 cpu, pageset->pcp.high,
3027 pageset->pcp.batch, pageset->pcp.count);
3031 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3032 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3034 " dirty:%lu writeback:%lu unstable:%lu\n"
3035 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3036 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3038 global_page_state(NR_ACTIVE_ANON),
3039 global_page_state(NR_INACTIVE_ANON),
3040 global_page_state(NR_ISOLATED_ANON),
3041 global_page_state(NR_ACTIVE_FILE),
3042 global_page_state(NR_INACTIVE_FILE),
3043 global_page_state(NR_ISOLATED_FILE),
3044 global_page_state(NR_UNEVICTABLE),
3045 global_page_state(NR_FILE_DIRTY),
3046 global_page_state(NR_WRITEBACK),
3047 global_page_state(NR_UNSTABLE_NFS),
3048 global_page_state(NR_FREE_PAGES),
3049 global_page_state(NR_SLAB_RECLAIMABLE),
3050 global_page_state(NR_SLAB_UNRECLAIMABLE),
3051 global_page_state(NR_FILE_MAPPED),
3052 global_page_state(NR_SHMEM),
3053 global_page_state(NR_PAGETABLE),
3054 global_page_state(NR_BOUNCE),
3055 global_page_state(NR_FREE_CMA_PAGES));
3057 for_each_populated_zone(zone) {
3060 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3068 " active_anon:%lukB"
3069 " inactive_anon:%lukB"
3070 " active_file:%lukB"
3071 " inactive_file:%lukB"
3072 " unevictable:%lukB"
3073 " isolated(anon):%lukB"
3074 " isolated(file):%lukB"
3082 " slab_reclaimable:%lukB"
3083 " slab_unreclaimable:%lukB"
3084 " kernel_stack:%lukB"
3089 " writeback_tmp:%lukB"
3090 " pages_scanned:%lu"
3091 " all_unreclaimable? %s"
3094 K(zone_page_state(zone, NR_FREE_PAGES)),
3095 K(min_wmark_pages(zone)),
3096 K(low_wmark_pages(zone)),
3097 K(high_wmark_pages(zone)),
3098 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3099 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3100 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3101 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3102 K(zone_page_state(zone, NR_UNEVICTABLE)),
3103 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3104 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3105 K(zone->present_pages),
3106 K(zone->managed_pages),
3107 K(zone_page_state(zone, NR_MLOCK)),
3108 K(zone_page_state(zone, NR_FILE_DIRTY)),
3109 K(zone_page_state(zone, NR_WRITEBACK)),
3110 K(zone_page_state(zone, NR_FILE_MAPPED)),
3111 K(zone_page_state(zone, NR_SHMEM)),
3112 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3113 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3114 zone_page_state(zone, NR_KERNEL_STACK) *
3116 K(zone_page_state(zone, NR_PAGETABLE)),
3117 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3118 K(zone_page_state(zone, NR_BOUNCE)),
3119 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3120 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3121 zone->pages_scanned,
3122 (zone->all_unreclaimable ? "yes" : "no")
3124 printk("lowmem_reserve[]:");
3125 for (i = 0; i < MAX_NR_ZONES; i++)
3126 printk(" %lu", zone->lowmem_reserve[i]);
3130 for_each_populated_zone(zone) {
3131 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3132 unsigned char types[MAX_ORDER];
3134 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3137 printk("%s: ", zone->name);
3139 spin_lock_irqsave(&zone->lock, flags);
3140 for (order = 0; order < MAX_ORDER; order++) {
3141 struct free_area *area = &zone->free_area[order];
3144 nr[order] = area->nr_free;
3145 total += nr[order] << order;
3148 for (type = 0; type < MIGRATE_TYPES; type++) {
3149 if (!list_empty(&area->free_list[type]))
3150 types[order] |= 1 << type;
3153 spin_unlock_irqrestore(&zone->lock, flags);
3154 for (order = 0; order < MAX_ORDER; order++) {
3155 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3157 show_migration_types(types[order]);
3159 printk("= %lukB\n", K(total));
3162 hugetlb_show_meminfo();
3164 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3166 show_swap_cache_info();
3169 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3171 zoneref->zone = zone;
3172 zoneref->zone_idx = zone_idx(zone);
3176 * Builds allocation fallback zone lists.
3178 * Add all populated zones of a node to the zonelist.
3180 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3184 enum zone_type zone_type = MAX_NR_ZONES;
3188 zone = pgdat->node_zones + zone_type;
3189 if (populated_zone(zone)) {
3190 zoneref_set_zone(zone,
3191 &zonelist->_zonerefs[nr_zones++]);
3192 check_highest_zone(zone_type);
3194 } while (zone_type);
3202 * 0 = automatic detection of better ordering.
3203 * 1 = order by ([node] distance, -zonetype)
3204 * 2 = order by (-zonetype, [node] distance)
3206 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3207 * the same zonelist. So only NUMA can configure this param.
3209 #define ZONELIST_ORDER_DEFAULT 0
3210 #define ZONELIST_ORDER_NODE 1
3211 #define ZONELIST_ORDER_ZONE 2
3213 /* zonelist order in the kernel.
3214 * set_zonelist_order() will set this to NODE or ZONE.
3216 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3217 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3221 /* The value user specified ....changed by config */
3222 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3223 /* string for sysctl */
3224 #define NUMA_ZONELIST_ORDER_LEN 16
3225 char numa_zonelist_order[16] = "default";
3228 * interface for configure zonelist ordering.
3229 * command line option "numa_zonelist_order"
3230 * = "[dD]efault - default, automatic configuration.
3231 * = "[nN]ode - order by node locality, then by zone within node
3232 * = "[zZ]one - order by zone, then by locality within zone
3235 static int __parse_numa_zonelist_order(char *s)
3237 if (*s == 'd' || *s == 'D') {
3238 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3239 } else if (*s == 'n' || *s == 'N') {
3240 user_zonelist_order = ZONELIST_ORDER_NODE;
3241 } else if (*s == 'z' || *s == 'Z') {
3242 user_zonelist_order = ZONELIST_ORDER_ZONE;
3245 "Ignoring invalid numa_zonelist_order value: "
3252 static __init int setup_numa_zonelist_order(char *s)
3259 ret = __parse_numa_zonelist_order(s);
3261 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3265 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3268 * sysctl handler for numa_zonelist_order
3270 int numa_zonelist_order_handler(ctl_table *table, int write,
3271 void __user *buffer, size_t *length,
3274 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3276 static DEFINE_MUTEX(zl_order_mutex);
3278 mutex_lock(&zl_order_mutex);
3280 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3284 strcpy(saved_string, (char *)table->data);
3286 ret = proc_dostring(table, write, buffer, length, ppos);
3290 int oldval = user_zonelist_order;
3292 ret = __parse_numa_zonelist_order((char *)table->data);
3295 * bogus value. restore saved string
3297 strncpy((char *)table->data, saved_string,
3298 NUMA_ZONELIST_ORDER_LEN);
3299 user_zonelist_order = oldval;
3300 } else if (oldval != user_zonelist_order) {
3301 mutex_lock(&zonelists_mutex);
3302 build_all_zonelists(NULL, NULL);
3303 mutex_unlock(&zonelists_mutex);
3307 mutex_unlock(&zl_order_mutex);
3312 #define MAX_NODE_LOAD (nr_online_nodes)
3313 static int node_load[MAX_NUMNODES];
3316 * find_next_best_node - find the next node that should appear in a given node's fallback list
3317 * @node: node whose fallback list we're appending
3318 * @used_node_mask: nodemask_t of already used nodes
3320 * We use a number of factors to determine which is the next node that should
3321 * appear on a given node's fallback list. The node should not have appeared
3322 * already in @node's fallback list, and it should be the next closest node
3323 * according to the distance array (which contains arbitrary distance values
3324 * from each node to each node in the system), and should also prefer nodes
3325 * with no CPUs, since presumably they'll have very little allocation pressure
3326 * on them otherwise.
3327 * It returns -1 if no node is found.
3329 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3332 int min_val = INT_MAX;
3333 int best_node = NUMA_NO_NODE;
3334 const struct cpumask *tmp = cpumask_of_node(0);
3336 /* Use the local node if we haven't already */
3337 if (!node_isset(node, *used_node_mask)) {
3338 node_set(node, *used_node_mask);
3342 for_each_node_state(n, N_MEMORY) {
3344 /* Don't want a node to appear more than once */
3345 if (node_isset(n, *used_node_mask))
3348 /* Use the distance array to find the distance */
3349 val = node_distance(node, n);
3351 /* Penalize nodes under us ("prefer the next node") */
3354 /* Give preference to headless and unused nodes */
3355 tmp = cpumask_of_node(n);
3356 if (!cpumask_empty(tmp))
3357 val += PENALTY_FOR_NODE_WITH_CPUS;
3359 /* Slight preference for less loaded node */
3360 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3361 val += node_load[n];
3363 if (val < min_val) {
3370 node_set(best_node, *used_node_mask);
3377 * Build zonelists ordered by node and zones within node.
3378 * This results in maximum locality--normal zone overflows into local
3379 * DMA zone, if any--but risks exhausting DMA zone.
3381 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3384 struct zonelist *zonelist;
3386 zonelist = &pgdat->node_zonelists[0];
3387 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3389 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3390 zonelist->_zonerefs[j].zone = NULL;
3391 zonelist->_zonerefs[j].zone_idx = 0;
3395 * Build gfp_thisnode zonelists
3397 static void build_thisnode_zonelists(pg_data_t *pgdat)
3400 struct zonelist *zonelist;
3402 zonelist = &pgdat->node_zonelists[1];
3403 j = build_zonelists_node(pgdat, zonelist, 0);
3404 zonelist->_zonerefs[j].zone = NULL;
3405 zonelist->_zonerefs[j].zone_idx = 0;
3409 * Build zonelists ordered by zone and nodes within zones.
3410 * This results in conserving DMA zone[s] until all Normal memory is
3411 * exhausted, but results in overflowing to remote node while memory
3412 * may still exist in local DMA zone.
3414 static int node_order[MAX_NUMNODES];
3416 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3419 int zone_type; /* needs to be signed */
3421 struct zonelist *zonelist;
3423 zonelist = &pgdat->node_zonelists[0];
3425 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3426 for (j = 0; j < nr_nodes; j++) {
3427 node = node_order[j];
3428 z = &NODE_DATA(node)->node_zones[zone_type];
3429 if (populated_zone(z)) {
3431 &zonelist->_zonerefs[pos++]);
3432 check_highest_zone(zone_type);
3436 zonelist->_zonerefs[pos].zone = NULL;
3437 zonelist->_zonerefs[pos].zone_idx = 0;
3440 static int default_zonelist_order(void)
3443 unsigned long low_kmem_size, total_size;
3447 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3448 * If they are really small and used heavily, the system can fall
3449 * into OOM very easily.
3450 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3452 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3455 for_each_online_node(nid) {
3456 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3457 z = &NODE_DATA(nid)->node_zones[zone_type];
3458 if (populated_zone(z)) {
3459 if (zone_type < ZONE_NORMAL)
3460 low_kmem_size += z->managed_pages;
3461 total_size += z->managed_pages;
3462 } else if (zone_type == ZONE_NORMAL) {
3464 * If any node has only lowmem, then node order
3465 * is preferred to allow kernel allocations
3466 * locally; otherwise, they can easily infringe
3467 * on other nodes when there is an abundance of
3468 * lowmem available to allocate from.
3470 return ZONELIST_ORDER_NODE;
3474 if (!low_kmem_size || /* there are no DMA area. */
3475 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3476 return ZONELIST_ORDER_NODE;
3478 * look into each node's config.
3479 * If there is a node whose DMA/DMA32 memory is very big area on
3480 * local memory, NODE_ORDER may be suitable.
3482 average_size = total_size /
3483 (nodes_weight(node_states[N_MEMORY]) + 1);
3484 for_each_online_node(nid) {
3487 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3488 z = &NODE_DATA(nid)->node_zones[zone_type];
3489 if (populated_zone(z)) {
3490 if (zone_type < ZONE_NORMAL)
3491 low_kmem_size += z->present_pages;
3492 total_size += z->present_pages;
3495 if (low_kmem_size &&
3496 total_size > average_size && /* ignore small node */
3497 low_kmem_size > total_size * 70/100)
3498 return ZONELIST_ORDER_NODE;
3500 return ZONELIST_ORDER_ZONE;
3503 static void set_zonelist_order(void)
3505 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3506 current_zonelist_order = default_zonelist_order();
3508 current_zonelist_order = user_zonelist_order;
3511 static void build_zonelists(pg_data_t *pgdat)
3515 nodemask_t used_mask;
3516 int local_node, prev_node;
3517 struct zonelist *zonelist;
3518 int order = current_zonelist_order;
3520 /* initialize zonelists */
3521 for (i = 0; i < MAX_ZONELISTS; i++) {
3522 zonelist = pgdat->node_zonelists + i;
3523 zonelist->_zonerefs[0].zone = NULL;
3524 zonelist->_zonerefs[0].zone_idx = 0;
3527 /* NUMA-aware ordering of nodes */
3528 local_node = pgdat->node_id;
3529 load = nr_online_nodes;
3530 prev_node = local_node;
3531 nodes_clear(used_mask);
3533 memset(node_order, 0, sizeof(node_order));
3536 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3538 * We don't want to pressure a particular node.
3539 * So adding penalty to the first node in same
3540 * distance group to make it round-robin.
3542 if (node_distance(local_node, node) !=
3543 node_distance(local_node, prev_node))
3544 node_load[node] = load;
3548 if (order == ZONELIST_ORDER_NODE)
3549 build_zonelists_in_node_order(pgdat, node);
3551 node_order[j++] = node; /* remember order */
3554 if (order == ZONELIST_ORDER_ZONE) {
3555 /* calculate node order -- i.e., DMA last! */
3556 build_zonelists_in_zone_order(pgdat, j);
3559 build_thisnode_zonelists(pgdat);
3562 /* Construct the zonelist performance cache - see further mmzone.h */
3563 static void build_zonelist_cache(pg_data_t *pgdat)
3565 struct zonelist *zonelist;
3566 struct zonelist_cache *zlc;
3569 zonelist = &pgdat->node_zonelists[0];
3570 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3571 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3572 for (z = zonelist->_zonerefs; z->zone; z++)
3573 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3576 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3578 * Return node id of node used for "local" allocations.
3579 * I.e., first node id of first zone in arg node's generic zonelist.
3580 * Used for initializing percpu 'numa_mem', which is used primarily
3581 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3583 int local_memory_node(int node)
3587 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3588 gfp_zone(GFP_KERNEL),
3595 #else /* CONFIG_NUMA */
3597 static void set_zonelist_order(void)
3599 current_zonelist_order = ZONELIST_ORDER_ZONE;
3602 static void build_zonelists(pg_data_t *pgdat)
3604 int node, local_node;
3606 struct zonelist *zonelist;
3608 local_node = pgdat->node_id;
3610 zonelist = &pgdat->node_zonelists[0];
3611 j = build_zonelists_node(pgdat, zonelist, 0);
3614 * Now we build the zonelist so that it contains the zones
3615 * of all the other nodes.
3616 * We don't want to pressure a particular node, so when
3617 * building the zones for node N, we make sure that the
3618 * zones coming right after the local ones are those from
3619 * node N+1 (modulo N)
3621 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3622 if (!node_online(node))
3624 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3626 for (node = 0; node < local_node; node++) {
3627 if (!node_online(node))
3629 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3632 zonelist->_zonerefs[j].zone = NULL;
3633 zonelist->_zonerefs[j].zone_idx = 0;
3636 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3637 static void build_zonelist_cache(pg_data_t *pgdat)
3639 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3642 #endif /* CONFIG_NUMA */
3645 * Boot pageset table. One per cpu which is going to be used for all
3646 * zones and all nodes. The parameters will be set in such a way
3647 * that an item put on a list will immediately be handed over to
3648 * the buddy list. This is safe since pageset manipulation is done
3649 * with interrupts disabled.
3651 * The boot_pagesets must be kept even after bootup is complete for
3652 * unused processors and/or zones. They do play a role for bootstrapping
3653 * hotplugged processors.
3655 * zoneinfo_show() and maybe other functions do
3656 * not check if the processor is online before following the pageset pointer.
3657 * Other parts of the kernel may not check if the zone is available.
3659 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3660 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3661 static void setup_zone_pageset(struct zone *zone);
3664 * Global mutex to protect against size modification of zonelists
3665 * as well as to serialize pageset setup for the new populated zone.
3667 DEFINE_MUTEX(zonelists_mutex);
3669 /* return values int ....just for stop_machine() */
3670 static int __build_all_zonelists(void *data)
3674 pg_data_t *self = data;
3677 memset(node_load, 0, sizeof(node_load));
3680 if (self && !node_online(self->node_id)) {
3681 build_zonelists(self);
3682 build_zonelist_cache(self);
3685 for_each_online_node(nid) {
3686 pg_data_t *pgdat = NODE_DATA(nid);
3688 build_zonelists(pgdat);
3689 build_zonelist_cache(pgdat);
3693 * Initialize the boot_pagesets that are going to be used
3694 * for bootstrapping processors. The real pagesets for
3695 * each zone will be allocated later when the per cpu
3696 * allocator is available.
3698 * boot_pagesets are used also for bootstrapping offline
3699 * cpus if the system is already booted because the pagesets
3700 * are needed to initialize allocators on a specific cpu too.
3701 * F.e. the percpu allocator needs the page allocator which
3702 * needs the percpu allocator in order to allocate its pagesets
3703 * (a chicken-egg dilemma).
3705 for_each_possible_cpu(cpu) {
3706 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3708 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3710 * We now know the "local memory node" for each node--
3711 * i.e., the node of the first zone in the generic zonelist.
3712 * Set up numa_mem percpu variable for on-line cpus. During
3713 * boot, only the boot cpu should be on-line; we'll init the
3714 * secondary cpus' numa_mem as they come on-line. During
3715 * node/memory hotplug, we'll fixup all on-line cpus.
3717 if (cpu_online(cpu))
3718 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3726 * Called with zonelists_mutex held always
3727 * unless system_state == SYSTEM_BOOTING.
3729 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3731 set_zonelist_order();
3733 if (system_state == SYSTEM_BOOTING) {
3734 __build_all_zonelists(NULL);
3735 mminit_verify_zonelist();
3736 cpuset_init_current_mems_allowed();
3738 #ifdef CONFIG_MEMORY_HOTPLUG
3740 setup_zone_pageset(zone);
3742 /* we have to stop all cpus to guarantee there is no user
3744 stop_machine(__build_all_zonelists, pgdat, NULL);
3745 /* cpuset refresh routine should be here */
3747 vm_total_pages = nr_free_pagecache_pages();
3749 * Disable grouping by mobility if the number of pages in the
3750 * system is too low to allow the mechanism to work. It would be
3751 * more accurate, but expensive to check per-zone. This check is
3752 * made on memory-hotadd so a system can start with mobility
3753 * disabled and enable it later
3755 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3756 page_group_by_mobility_disabled = 1;
3758 page_group_by_mobility_disabled = 0;
3760 printk("Built %i zonelists in %s order, mobility grouping %s. "
3761 "Total pages: %ld\n",
3763 zonelist_order_name[current_zonelist_order],
3764 page_group_by_mobility_disabled ? "off" : "on",
3767 printk("Policy zone: %s\n", zone_names[policy_zone]);
3772 * Helper functions to size the waitqueue hash table.
3773 * Essentially these want to choose hash table sizes sufficiently
3774 * large so that collisions trying to wait on pages are rare.
3775 * But in fact, the number of active page waitqueues on typical
3776 * systems is ridiculously low, less than 200. So this is even
3777 * conservative, even though it seems large.
3779 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3780 * waitqueues, i.e. the size of the waitq table given the number of pages.
3782 #define PAGES_PER_WAITQUEUE 256
3784 #ifndef CONFIG_MEMORY_HOTPLUG
3785 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3787 unsigned long size = 1;
3789 pages /= PAGES_PER_WAITQUEUE;
3791 while (size < pages)
3795 * Once we have dozens or even hundreds of threads sleeping
3796 * on IO we've got bigger problems than wait queue collision.
3797 * Limit the size of the wait table to a reasonable size.
3799 size = min(size, 4096UL);
3801 return max(size, 4UL);
3805 * A zone's size might be changed by hot-add, so it is not possible to determine
3806 * a suitable size for its wait_table. So we use the maximum size now.
3808 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3810 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3811 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3812 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3814 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3815 * or more by the traditional way. (See above). It equals:
3817 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3818 * ia64(16K page size) : = ( 8G + 4M)byte.
3819 * powerpc (64K page size) : = (32G +16M)byte.
3821 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3828 * This is an integer logarithm so that shifts can be used later
3829 * to extract the more random high bits from the multiplicative
3830 * hash function before the remainder is taken.
3832 static inline unsigned long wait_table_bits(unsigned long size)
3837 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3840 * Check if a pageblock contains reserved pages
3842 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3846 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3847 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3854 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3855 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3856 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3857 * higher will lead to a bigger reserve which will get freed as contiguous
3858 * blocks as reclaim kicks in
3860 static void setup_zone_migrate_reserve(struct zone *zone)
3862 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3864 unsigned long block_migratetype;
3868 * Get the start pfn, end pfn and the number of blocks to reserve
3869 * We have to be careful to be aligned to pageblock_nr_pages to
3870 * make sure that we always check pfn_valid for the first page in
3873 start_pfn = zone->zone_start_pfn;
3874 end_pfn = zone_end_pfn(zone);
3875 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3876 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3880 * Reserve blocks are generally in place to help high-order atomic
3881 * allocations that are short-lived. A min_free_kbytes value that
3882 * would result in more than 2 reserve blocks for atomic allocations
3883 * is assumed to be in place to help anti-fragmentation for the
3884 * future allocation of hugepages at runtime.
3886 reserve = min(2, reserve);
3888 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3889 if (!pfn_valid(pfn))
3891 page = pfn_to_page(pfn);
3893 /* Watch out for overlapping nodes */
3894 if (page_to_nid(page) != zone_to_nid(zone))
3897 block_migratetype = get_pageblock_migratetype(page);
3899 /* Only test what is necessary when the reserves are not met */
3902 * Blocks with reserved pages will never free, skip
3905 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3906 if (pageblock_is_reserved(pfn, block_end_pfn))
3909 /* If this block is reserved, account for it */
3910 if (block_migratetype == MIGRATE_RESERVE) {
3915 /* Suitable for reserving if this block is movable */
3916 if (block_migratetype == MIGRATE_MOVABLE) {
3917 set_pageblock_migratetype(page,
3919 move_freepages_block(zone, page,
3927 * If the reserve is met and this is a previous reserved block,
3930 if (block_migratetype == MIGRATE_RESERVE) {
3931 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3932 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3938 * Initially all pages are reserved - free ones are freed
3939 * up by free_all_bootmem() once the early boot process is
3940 * done. Non-atomic initialization, single-pass.
3942 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3943 unsigned long start_pfn, enum memmap_context context)
3946 unsigned long end_pfn = start_pfn + size;
3950 if (highest_memmap_pfn < end_pfn - 1)
3951 highest_memmap_pfn = end_pfn - 1;
3953 z = &NODE_DATA(nid)->node_zones[zone];
3954 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3956 * There can be holes in boot-time mem_map[]s
3957 * handed to this function. They do not
3958 * exist on hotplugged memory.
3960 if (context == MEMMAP_EARLY) {
3961 if (!early_pfn_valid(pfn))
3963 if (!early_pfn_in_nid(pfn, nid))
3966 page = pfn_to_page(pfn);
3967 set_page_links(page, zone, nid, pfn);
3968 mminit_verify_page_links(page, zone, nid, pfn);
3969 init_page_count(page);
3970 page_mapcount_reset(page);
3971 page_nid_reset_last(page);
3972 SetPageReserved(page);
3974 * Mark the block movable so that blocks are reserved for
3975 * movable at startup. This will force kernel allocations
3976 * to reserve their blocks rather than leaking throughout
3977 * the address space during boot when many long-lived
3978 * kernel allocations are made. Later some blocks near
3979 * the start are marked MIGRATE_RESERVE by
3980 * setup_zone_migrate_reserve()
3982 * bitmap is created for zone's valid pfn range. but memmap
3983 * can be created for invalid pages (for alignment)
3984 * check here not to call set_pageblock_migratetype() against
3987 if ((z->zone_start_pfn <= pfn)
3988 && (pfn < zone_end_pfn(z))
3989 && !(pfn & (pageblock_nr_pages - 1)))
3990 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3992 INIT_LIST_HEAD(&page->lru);
3993 #ifdef WANT_PAGE_VIRTUAL
3994 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3995 if (!is_highmem_idx(zone))
3996 set_page_address(page, __va(pfn << PAGE_SHIFT));
4001 static void __meminit zone_init_free_lists(struct zone *zone)
4004 for_each_migratetype_order(order, t) {
4005 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4006 zone->free_area[order].nr_free = 0;
4010 #ifndef __HAVE_ARCH_MEMMAP_INIT
4011 #define memmap_init(size, nid, zone, start_pfn) \
4012 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4015 static int __meminit zone_batchsize(struct zone *zone)
4021 * The per-cpu-pages pools are set to around 1000th of the
4022 * size of the zone. But no more than 1/2 of a meg.
4024 * OK, so we don't know how big the cache is. So guess.
4026 batch = zone->managed_pages / 1024;
4027 if (batch * PAGE_SIZE > 512 * 1024)
4028 batch = (512 * 1024) / PAGE_SIZE;
4029 batch /= 4; /* We effectively *= 4 below */
4034 * Clamp the batch to a 2^n - 1 value. Having a power
4035 * of 2 value was found to be more likely to have
4036 * suboptimal cache aliasing properties in some cases.
4038 * For example if 2 tasks are alternately allocating
4039 * batches of pages, one task can end up with a lot
4040 * of pages of one half of the possible page colors
4041 * and the other with pages of the other colors.
4043 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4048 /* The deferral and batching of frees should be suppressed under NOMMU
4051 * The problem is that NOMMU needs to be able to allocate large chunks
4052 * of contiguous memory as there's no hardware page translation to
4053 * assemble apparent contiguous memory from discontiguous pages.
4055 * Queueing large contiguous runs of pages for batching, however,
4056 * causes the pages to actually be freed in smaller chunks. As there
4057 * can be a significant delay between the individual batches being
4058 * recycled, this leads to the once large chunks of space being
4059 * fragmented and becoming unavailable for high-order allocations.
4066 * pcp->high and pcp->batch values are related and dependent on one another:
4067 * ->batch must never be higher then ->high.
4068 * The following function updates them in a safe manner without read side
4071 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4072 * those fields changing asynchronously (acording the the above rule).
4074 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4075 * outside of boot time (or some other assurance that no concurrent updaters
4078 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4079 unsigned long batch)
4081 /* start with a fail safe value for batch */
4085 /* Update high, then batch, in order */
4092 /* a companion to pageset_set_high() */
4093 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4095 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4098 static void pageset_init(struct per_cpu_pageset *p)
4100 struct per_cpu_pages *pcp;
4103 memset(p, 0, sizeof(*p));
4107 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4108 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4111 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4114 pageset_set_batch(p, batch);
4118 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4119 * to the value high for the pageset p.
4121 static void pageset_set_high(struct per_cpu_pageset *p,
4124 unsigned long batch = max(1UL, high / 4);
4125 if ((high / 4) > (PAGE_SHIFT * 8))
4126 batch = PAGE_SHIFT * 8;
4128 pageset_update(&p->pcp, high, batch);
4131 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4132 struct per_cpu_pageset *pcp)
4134 if (percpu_pagelist_fraction)
4135 pageset_set_high(pcp,
4136 (zone->managed_pages /
4137 percpu_pagelist_fraction));
4139 pageset_set_batch(pcp, zone_batchsize(zone));
4142 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4144 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4147 pageset_set_high_and_batch(zone, pcp);
4150 static void __meminit setup_zone_pageset(struct zone *zone)
4153 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4154 for_each_possible_cpu(cpu)
4155 zone_pageset_init(zone, cpu);
4159 * Allocate per cpu pagesets and initialize them.
4160 * Before this call only boot pagesets were available.
4162 void __init setup_per_cpu_pageset(void)
4166 for_each_populated_zone(zone)
4167 setup_zone_pageset(zone);
4170 static noinline __init_refok
4171 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4174 struct pglist_data *pgdat = zone->zone_pgdat;
4178 * The per-page waitqueue mechanism uses hashed waitqueues
4181 zone->wait_table_hash_nr_entries =
4182 wait_table_hash_nr_entries(zone_size_pages);
4183 zone->wait_table_bits =
4184 wait_table_bits(zone->wait_table_hash_nr_entries);
4185 alloc_size = zone->wait_table_hash_nr_entries
4186 * sizeof(wait_queue_head_t);
4188 if (!slab_is_available()) {
4189 zone->wait_table = (wait_queue_head_t *)
4190 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4193 * This case means that a zone whose size was 0 gets new memory
4194 * via memory hot-add.
4195 * But it may be the case that a new node was hot-added. In
4196 * this case vmalloc() will not be able to use this new node's
4197 * memory - this wait_table must be initialized to use this new
4198 * node itself as well.
4199 * To use this new node's memory, further consideration will be
4202 zone->wait_table = vmalloc(alloc_size);
4204 if (!zone->wait_table)
4207 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4208 init_waitqueue_head(zone->wait_table + i);
4213 static __meminit void zone_pcp_init(struct zone *zone)
4216 * per cpu subsystem is not up at this point. The following code
4217 * relies on the ability of the linker to provide the
4218 * offset of a (static) per cpu variable into the per cpu area.
4220 zone->pageset = &boot_pageset;
4222 if (zone->present_pages)
4223 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4224 zone->name, zone->present_pages,
4225 zone_batchsize(zone));
4228 int __meminit init_currently_empty_zone(struct zone *zone,
4229 unsigned long zone_start_pfn,
4231 enum memmap_context context)
4233 struct pglist_data *pgdat = zone->zone_pgdat;
4235 ret = zone_wait_table_init(zone, size);
4238 pgdat->nr_zones = zone_idx(zone) + 1;
4240 zone->zone_start_pfn = zone_start_pfn;
4242 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4243 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4245 (unsigned long)zone_idx(zone),
4246 zone_start_pfn, (zone_start_pfn + size));
4248 zone_init_free_lists(zone);
4253 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4254 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4256 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4257 * Architectures may implement their own version but if add_active_range()
4258 * was used and there are no special requirements, this is a convenient
4261 int __meminit __early_pfn_to_nid(unsigned long pfn)
4263 unsigned long start_pfn, end_pfn;
4266 * NOTE: The following SMP-unsafe globals are only used early in boot
4267 * when the kernel is running single-threaded.
4269 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4270 static int __meminitdata last_nid;
4272 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4275 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4276 if (start_pfn <= pfn && pfn < end_pfn) {
4277 last_start_pfn = start_pfn;
4278 last_end_pfn = end_pfn;
4282 /* This is a memory hole */
4285 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4287 int __meminit early_pfn_to_nid(unsigned long pfn)
4291 nid = __early_pfn_to_nid(pfn);
4294 /* just returns 0 */
4298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4299 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4303 nid = __early_pfn_to_nid(pfn);
4304 if (nid >= 0 && nid != node)
4311 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4312 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4313 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4315 * If an architecture guarantees that all ranges registered with
4316 * add_active_ranges() contain no holes and may be freed, this
4317 * this function may be used instead of calling free_bootmem() manually.
4319 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4321 unsigned long start_pfn, end_pfn;
4324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4325 start_pfn = min(start_pfn, max_low_pfn);
4326 end_pfn = min(end_pfn, max_low_pfn);
4328 if (start_pfn < end_pfn)
4329 free_bootmem_node(NODE_DATA(this_nid),
4330 PFN_PHYS(start_pfn),
4331 (end_pfn - start_pfn) << PAGE_SHIFT);
4336 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4337 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4339 * If an architecture guarantees that all ranges registered with
4340 * add_active_ranges() contain no holes and may be freed, this
4341 * function may be used instead of calling memory_present() manually.
4343 void __init sparse_memory_present_with_active_regions(int nid)
4345 unsigned long start_pfn, end_pfn;
4348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4349 memory_present(this_nid, start_pfn, end_pfn);
4353 * get_pfn_range_for_nid - Return the start and end page frames for a node
4354 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4355 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4356 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4358 * It returns the start and end page frame of a node based on information
4359 * provided by an arch calling add_active_range(). If called for a node
4360 * with no available memory, a warning is printed and the start and end
4363 void __meminit get_pfn_range_for_nid(unsigned int nid,
4364 unsigned long *start_pfn, unsigned long *end_pfn)
4366 unsigned long this_start_pfn, this_end_pfn;
4372 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4373 *start_pfn = min(*start_pfn, this_start_pfn);
4374 *end_pfn = max(*end_pfn, this_end_pfn);
4377 if (*start_pfn == -1UL)
4382 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4383 * assumption is made that zones within a node are ordered in monotonic
4384 * increasing memory addresses so that the "highest" populated zone is used
4386 static void __init find_usable_zone_for_movable(void)
4389 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4390 if (zone_index == ZONE_MOVABLE)
4393 if (arch_zone_highest_possible_pfn[zone_index] >
4394 arch_zone_lowest_possible_pfn[zone_index])
4398 VM_BUG_ON(zone_index == -1);
4399 movable_zone = zone_index;
4403 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4404 * because it is sized independent of architecture. Unlike the other zones,
4405 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4406 * in each node depending on the size of each node and how evenly kernelcore
4407 * is distributed. This helper function adjusts the zone ranges
4408 * provided by the architecture for a given node by using the end of the
4409 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4410 * zones within a node are in order of monotonic increases memory addresses
4412 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4413 unsigned long zone_type,
4414 unsigned long node_start_pfn,
4415 unsigned long node_end_pfn,
4416 unsigned long *zone_start_pfn,
4417 unsigned long *zone_end_pfn)
4419 /* Only adjust if ZONE_MOVABLE is on this node */
4420 if (zone_movable_pfn[nid]) {
4421 /* Size ZONE_MOVABLE */
4422 if (zone_type == ZONE_MOVABLE) {
4423 *zone_start_pfn = zone_movable_pfn[nid];
4424 *zone_end_pfn = min(node_end_pfn,
4425 arch_zone_highest_possible_pfn[movable_zone]);
4427 /* Adjust for ZONE_MOVABLE starting within this range */
4428 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4429 *zone_end_pfn > zone_movable_pfn[nid]) {
4430 *zone_end_pfn = zone_movable_pfn[nid];
4432 /* Check if this whole range is within ZONE_MOVABLE */
4433 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4434 *zone_start_pfn = *zone_end_pfn;
4439 * Return the number of pages a zone spans in a node, including holes
4440 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4442 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4443 unsigned long zone_type,
4444 unsigned long node_start_pfn,
4445 unsigned long node_end_pfn,
4446 unsigned long *ignored)
4448 unsigned long zone_start_pfn, zone_end_pfn;
4450 /* Get the start and end of the zone */
4451 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4452 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4453 adjust_zone_range_for_zone_movable(nid, zone_type,
4454 node_start_pfn, node_end_pfn,
4455 &zone_start_pfn, &zone_end_pfn);
4457 /* Check that this node has pages within the zone's required range */
4458 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4461 /* Move the zone boundaries inside the node if necessary */
4462 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4463 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4465 /* Return the spanned pages */
4466 return zone_end_pfn - zone_start_pfn;
4470 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4471 * then all holes in the requested range will be accounted for.
4473 unsigned long __meminit __absent_pages_in_range(int nid,
4474 unsigned long range_start_pfn,
4475 unsigned long range_end_pfn)
4477 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4478 unsigned long start_pfn, end_pfn;
4481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4482 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4483 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4484 nr_absent -= end_pfn - start_pfn;
4490 * absent_pages_in_range - Return number of page frames in holes within a range
4491 * @start_pfn: The start PFN to start searching for holes
4492 * @end_pfn: The end PFN to stop searching for holes
4494 * It returns the number of pages frames in memory holes within a range.
4496 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4497 unsigned long end_pfn)
4499 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4502 /* Return the number of page frames in holes in a zone on a node */
4503 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4504 unsigned long zone_type,
4505 unsigned long node_start_pfn,
4506 unsigned long node_end_pfn,
4507 unsigned long *ignored)
4509 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4510 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4511 unsigned long zone_start_pfn, zone_end_pfn;
4513 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4514 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4516 adjust_zone_range_for_zone_movable(nid, zone_type,
4517 node_start_pfn, node_end_pfn,
4518 &zone_start_pfn, &zone_end_pfn);
4519 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4522 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4523 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4524 unsigned long zone_type,
4525 unsigned long node_start_pfn,
4526 unsigned long node_end_pfn,
4527 unsigned long *zones_size)
4529 return zones_size[zone_type];
4532 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4533 unsigned long zone_type,
4534 unsigned long node_start_pfn,
4535 unsigned long node_end_pfn,
4536 unsigned long *zholes_size)
4541 return zholes_size[zone_type];
4544 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4546 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4547 unsigned long node_start_pfn,
4548 unsigned long node_end_pfn,
4549 unsigned long *zones_size,
4550 unsigned long *zholes_size)
4552 unsigned long realtotalpages, totalpages = 0;
4555 for (i = 0; i < MAX_NR_ZONES; i++)
4556 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4560 pgdat->node_spanned_pages = totalpages;
4562 realtotalpages = totalpages;
4563 for (i = 0; i < MAX_NR_ZONES; i++)
4565 zone_absent_pages_in_node(pgdat->node_id, i,
4566 node_start_pfn, node_end_pfn,
4568 pgdat->node_present_pages = realtotalpages;
4569 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4573 #ifndef CONFIG_SPARSEMEM
4575 * Calculate the size of the zone->blockflags rounded to an unsigned long
4576 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4577 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4578 * round what is now in bits to nearest long in bits, then return it in
4581 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4583 unsigned long usemapsize;
4585 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4586 usemapsize = roundup(zonesize, pageblock_nr_pages);
4587 usemapsize = usemapsize >> pageblock_order;
4588 usemapsize *= NR_PAGEBLOCK_BITS;
4589 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4591 return usemapsize / 8;
4594 static void __init setup_usemap(struct pglist_data *pgdat,
4596 unsigned long zone_start_pfn,
4597 unsigned long zonesize)
4599 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4600 zone->pageblock_flags = NULL;
4602 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4606 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4607 unsigned long zone_start_pfn, unsigned long zonesize) {}
4608 #endif /* CONFIG_SPARSEMEM */
4610 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4612 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4613 void __paginginit set_pageblock_order(void)
4617 /* Check that pageblock_nr_pages has not already been setup */
4618 if (pageblock_order)
4621 if (HPAGE_SHIFT > PAGE_SHIFT)
4622 order = HUGETLB_PAGE_ORDER;
4624 order = MAX_ORDER - 1;
4627 * Assume the largest contiguous order of interest is a huge page.
4628 * This value may be variable depending on boot parameters on IA64 and
4631 pageblock_order = order;
4633 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4636 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4637 * is unused as pageblock_order is set at compile-time. See
4638 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4641 void __paginginit set_pageblock_order(void)
4645 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4647 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4648 unsigned long present_pages)
4650 unsigned long pages = spanned_pages;
4653 * Provide a more accurate estimation if there are holes within
4654 * the zone and SPARSEMEM is in use. If there are holes within the
4655 * zone, each populated memory region may cost us one or two extra
4656 * memmap pages due to alignment because memmap pages for each
4657 * populated regions may not naturally algined on page boundary.
4658 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4660 if (spanned_pages > present_pages + (present_pages >> 4) &&
4661 IS_ENABLED(CONFIG_SPARSEMEM))
4662 pages = present_pages;
4664 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4668 * Set up the zone data structures:
4669 * - mark all pages reserved
4670 * - mark all memory queues empty
4671 * - clear the memory bitmaps
4673 * NOTE: pgdat should get zeroed by caller.
4675 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4676 unsigned long node_start_pfn, unsigned long node_end_pfn,
4677 unsigned long *zones_size, unsigned long *zholes_size)
4680 int nid = pgdat->node_id;
4681 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4684 pgdat_resize_init(pgdat);
4685 #ifdef CONFIG_NUMA_BALANCING
4686 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4687 pgdat->numabalancing_migrate_nr_pages = 0;
4688 pgdat->numabalancing_migrate_next_window = jiffies;
4690 init_waitqueue_head(&pgdat->kswapd_wait);
4691 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4692 pgdat_page_cgroup_init(pgdat);
4694 for (j = 0; j < MAX_NR_ZONES; j++) {
4695 struct zone *zone = pgdat->node_zones + j;
4696 unsigned long size, realsize, freesize, memmap_pages;
4698 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4699 node_end_pfn, zones_size);
4700 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4706 * Adjust freesize so that it accounts for how much memory
4707 * is used by this zone for memmap. This affects the watermark
4708 * and per-cpu initialisations
4710 memmap_pages = calc_memmap_size(size, realsize);
4711 if (freesize >= memmap_pages) {
4712 freesize -= memmap_pages;
4715 " %s zone: %lu pages used for memmap\n",
4716 zone_names[j], memmap_pages);
4719 " %s zone: %lu pages exceeds freesize %lu\n",
4720 zone_names[j], memmap_pages, freesize);
4722 /* Account for reserved pages */
4723 if (j == 0 && freesize > dma_reserve) {
4724 freesize -= dma_reserve;
4725 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4726 zone_names[0], dma_reserve);
4729 if (!is_highmem_idx(j))
4730 nr_kernel_pages += freesize;
4731 /* Charge for highmem memmap if there are enough kernel pages */
4732 else if (nr_kernel_pages > memmap_pages * 2)
4733 nr_kernel_pages -= memmap_pages;
4734 nr_all_pages += freesize;
4736 zone->spanned_pages = size;
4737 zone->present_pages = realsize;
4739 * Set an approximate value for lowmem here, it will be adjusted
4740 * when the bootmem allocator frees pages into the buddy system.
4741 * And all highmem pages will be managed by the buddy system.
4743 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4746 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4748 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4750 zone->name = zone_names[j];
4751 spin_lock_init(&zone->lock);
4752 spin_lock_init(&zone->lru_lock);
4753 zone_seqlock_init(zone);
4754 zone->zone_pgdat = pgdat;
4756 zone_pcp_init(zone);
4757 lruvec_init(&zone->lruvec);
4761 set_pageblock_order();
4762 setup_usemap(pgdat, zone, zone_start_pfn, size);
4763 ret = init_currently_empty_zone(zone, zone_start_pfn,
4764 size, MEMMAP_EARLY);
4766 memmap_init(size, nid, j, zone_start_pfn);
4767 zone_start_pfn += size;
4771 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4773 /* Skip empty nodes */
4774 if (!pgdat->node_spanned_pages)
4777 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4778 /* ia64 gets its own node_mem_map, before this, without bootmem */
4779 if (!pgdat->node_mem_map) {
4780 unsigned long size, start, end;
4784 * The zone's endpoints aren't required to be MAX_ORDER
4785 * aligned but the node_mem_map endpoints must be in order
4786 * for the buddy allocator to function correctly.
4788 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4789 end = pgdat_end_pfn(pgdat);
4790 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4791 size = (end - start) * sizeof(struct page);
4792 map = alloc_remap(pgdat->node_id, size);
4794 map = alloc_bootmem_node_nopanic(pgdat, size);
4795 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4797 #ifndef CONFIG_NEED_MULTIPLE_NODES
4799 * With no DISCONTIG, the global mem_map is just set as node 0's
4801 if (pgdat == NODE_DATA(0)) {
4802 mem_map = NODE_DATA(0)->node_mem_map;
4803 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4804 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4805 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4806 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4809 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4812 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4813 unsigned long node_start_pfn, unsigned long *zholes_size)
4815 pg_data_t *pgdat = NODE_DATA(nid);
4816 unsigned long start_pfn = 0;
4817 unsigned long end_pfn = 0;
4819 /* pg_data_t should be reset to zero when it's allocated */
4820 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4822 pgdat->node_id = nid;
4823 pgdat->node_start_pfn = node_start_pfn;
4824 init_zone_allows_reclaim(nid);
4825 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4826 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4828 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4829 zones_size, zholes_size);
4831 alloc_node_mem_map(pgdat);
4832 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4833 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4834 nid, (unsigned long)pgdat,
4835 (unsigned long)pgdat->node_mem_map);
4838 free_area_init_core(pgdat, start_pfn, end_pfn,
4839 zones_size, zholes_size);
4842 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4844 #if MAX_NUMNODES > 1
4846 * Figure out the number of possible node ids.
4848 void __init setup_nr_node_ids(void)
4851 unsigned int highest = 0;
4853 for_each_node_mask(node, node_possible_map)
4855 nr_node_ids = highest + 1;
4860 * node_map_pfn_alignment - determine the maximum internode alignment
4862 * This function should be called after node map is populated and sorted.
4863 * It calculates the maximum power of two alignment which can distinguish
4866 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4867 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4868 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4869 * shifted, 1GiB is enough and this function will indicate so.
4871 * This is used to test whether pfn -> nid mapping of the chosen memory
4872 * model has fine enough granularity to avoid incorrect mapping for the
4873 * populated node map.
4875 * Returns the determined alignment in pfn's. 0 if there is no alignment
4876 * requirement (single node).
4878 unsigned long __init node_map_pfn_alignment(void)
4880 unsigned long accl_mask = 0, last_end = 0;
4881 unsigned long start, end, mask;
4885 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4886 if (!start || last_nid < 0 || last_nid == nid) {
4893 * Start with a mask granular enough to pin-point to the
4894 * start pfn and tick off bits one-by-one until it becomes
4895 * too coarse to separate the current node from the last.
4897 mask = ~((1 << __ffs(start)) - 1);
4898 while (mask && last_end <= (start & (mask << 1)))
4901 /* accumulate all internode masks */
4905 /* convert mask to number of pages */
4906 return ~accl_mask + 1;
4909 /* Find the lowest pfn for a node */
4910 static unsigned long __init find_min_pfn_for_node(int nid)
4912 unsigned long min_pfn = ULONG_MAX;
4913 unsigned long start_pfn;
4916 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4917 min_pfn = min(min_pfn, start_pfn);
4919 if (min_pfn == ULONG_MAX) {
4921 "Could not find start_pfn for node %d\n", nid);
4929 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4931 * It returns the minimum PFN based on information provided via
4932 * add_active_range().
4934 unsigned long __init find_min_pfn_with_active_regions(void)
4936 return find_min_pfn_for_node(MAX_NUMNODES);
4940 * early_calculate_totalpages()
4941 * Sum pages in active regions for movable zone.
4942 * Populate N_MEMORY for calculating usable_nodes.
4944 static unsigned long __init early_calculate_totalpages(void)
4946 unsigned long totalpages = 0;
4947 unsigned long start_pfn, end_pfn;
4950 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4951 unsigned long pages = end_pfn - start_pfn;
4953 totalpages += pages;
4955 node_set_state(nid, N_MEMORY);
4961 * Find the PFN the Movable zone begins in each node. Kernel memory
4962 * is spread evenly between nodes as long as the nodes have enough
4963 * memory. When they don't, some nodes will have more kernelcore than
4966 static void __init find_zone_movable_pfns_for_nodes(void)
4969 unsigned long usable_startpfn;
4970 unsigned long kernelcore_node, kernelcore_remaining;
4971 /* save the state before borrow the nodemask */
4972 nodemask_t saved_node_state = node_states[N_MEMORY];
4973 unsigned long totalpages = early_calculate_totalpages();
4974 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4977 * If movablecore was specified, calculate what size of
4978 * kernelcore that corresponds so that memory usable for
4979 * any allocation type is evenly spread. If both kernelcore
4980 * and movablecore are specified, then the value of kernelcore
4981 * will be used for required_kernelcore if it's greater than
4982 * what movablecore would have allowed.
4984 if (required_movablecore) {
4985 unsigned long corepages;
4988 * Round-up so that ZONE_MOVABLE is at least as large as what
4989 * was requested by the user
4991 required_movablecore =
4992 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4993 corepages = totalpages - required_movablecore;
4995 required_kernelcore = max(required_kernelcore, corepages);
4998 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4999 if (!required_kernelcore)
5002 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5003 find_usable_zone_for_movable();
5004 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5007 /* Spread kernelcore memory as evenly as possible throughout nodes */
5008 kernelcore_node = required_kernelcore / usable_nodes;
5009 for_each_node_state(nid, N_MEMORY) {
5010 unsigned long start_pfn, end_pfn;
5013 * Recalculate kernelcore_node if the division per node
5014 * now exceeds what is necessary to satisfy the requested
5015 * amount of memory for the kernel
5017 if (required_kernelcore < kernelcore_node)
5018 kernelcore_node = required_kernelcore / usable_nodes;
5021 * As the map is walked, we track how much memory is usable
5022 * by the kernel using kernelcore_remaining. When it is
5023 * 0, the rest of the node is usable by ZONE_MOVABLE
5025 kernelcore_remaining = kernelcore_node;
5027 /* Go through each range of PFNs within this node */
5028 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5029 unsigned long size_pages;
5031 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5032 if (start_pfn >= end_pfn)
5035 /* Account for what is only usable for kernelcore */
5036 if (start_pfn < usable_startpfn) {
5037 unsigned long kernel_pages;
5038 kernel_pages = min(end_pfn, usable_startpfn)
5041 kernelcore_remaining -= min(kernel_pages,
5042 kernelcore_remaining);
5043 required_kernelcore -= min(kernel_pages,
5044 required_kernelcore);
5046 /* Continue if range is now fully accounted */
5047 if (end_pfn <= usable_startpfn) {
5050 * Push zone_movable_pfn to the end so
5051 * that if we have to rebalance
5052 * kernelcore across nodes, we will
5053 * not double account here
5055 zone_movable_pfn[nid] = end_pfn;
5058 start_pfn = usable_startpfn;
5062 * The usable PFN range for ZONE_MOVABLE is from
5063 * start_pfn->end_pfn. Calculate size_pages as the
5064 * number of pages used as kernelcore
5066 size_pages = end_pfn - start_pfn;
5067 if (size_pages > kernelcore_remaining)
5068 size_pages = kernelcore_remaining;
5069 zone_movable_pfn[nid] = start_pfn + size_pages;
5072 * Some kernelcore has been met, update counts and
5073 * break if the kernelcore for this node has been
5076 required_kernelcore -= min(required_kernelcore,
5078 kernelcore_remaining -= size_pages;
5079 if (!kernelcore_remaining)
5085 * If there is still required_kernelcore, we do another pass with one
5086 * less node in the count. This will push zone_movable_pfn[nid] further
5087 * along on the nodes that still have memory until kernelcore is
5091 if (usable_nodes && required_kernelcore > usable_nodes)
5094 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5095 for (nid = 0; nid < MAX_NUMNODES; nid++)
5096 zone_movable_pfn[nid] =
5097 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5100 /* restore the node_state */
5101 node_states[N_MEMORY] = saved_node_state;
5104 /* Any regular or high memory on that node ? */
5105 static void check_for_memory(pg_data_t *pgdat, int nid)
5107 enum zone_type zone_type;
5109 if (N_MEMORY == N_NORMAL_MEMORY)
5112 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5113 struct zone *zone = &pgdat->node_zones[zone_type];
5114 if (zone->present_pages) {
5115 node_set_state(nid, N_HIGH_MEMORY);
5116 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5117 zone_type <= ZONE_NORMAL)
5118 node_set_state(nid, N_NORMAL_MEMORY);
5125 * free_area_init_nodes - Initialise all pg_data_t and zone data
5126 * @max_zone_pfn: an array of max PFNs for each zone
5128 * This will call free_area_init_node() for each active node in the system.
5129 * Using the page ranges provided by add_active_range(), the size of each
5130 * zone in each node and their holes is calculated. If the maximum PFN
5131 * between two adjacent zones match, it is assumed that the zone is empty.
5132 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5133 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5134 * starts where the previous one ended. For example, ZONE_DMA32 starts
5135 * at arch_max_dma_pfn.
5137 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5139 unsigned long start_pfn, end_pfn;
5142 /* Record where the zone boundaries are */
5143 memset(arch_zone_lowest_possible_pfn, 0,
5144 sizeof(arch_zone_lowest_possible_pfn));
5145 memset(arch_zone_highest_possible_pfn, 0,
5146 sizeof(arch_zone_highest_possible_pfn));
5147 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5148 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5149 for (i = 1; i < MAX_NR_ZONES; i++) {
5150 if (i == ZONE_MOVABLE)
5152 arch_zone_lowest_possible_pfn[i] =
5153 arch_zone_highest_possible_pfn[i-1];
5154 arch_zone_highest_possible_pfn[i] =
5155 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5157 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5158 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5160 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5161 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5162 find_zone_movable_pfns_for_nodes();
5164 /* Print out the zone ranges */
5165 printk("Zone ranges:\n");
5166 for (i = 0; i < MAX_NR_ZONES; i++) {
5167 if (i == ZONE_MOVABLE)
5169 printk(KERN_CONT " %-8s ", zone_names[i]);
5170 if (arch_zone_lowest_possible_pfn[i] ==
5171 arch_zone_highest_possible_pfn[i])
5172 printk(KERN_CONT "empty\n");
5174 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5175 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5176 (arch_zone_highest_possible_pfn[i]
5177 << PAGE_SHIFT) - 1);
5180 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5181 printk("Movable zone start for each node\n");
5182 for (i = 0; i < MAX_NUMNODES; i++) {
5183 if (zone_movable_pfn[i])
5184 printk(" Node %d: %#010lx\n", i,
5185 zone_movable_pfn[i] << PAGE_SHIFT);
5188 /* Print out the early node map */
5189 printk("Early memory node ranges\n");
5190 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5191 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5192 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5194 /* Initialise every node */
5195 mminit_verify_pageflags_layout();
5196 setup_nr_node_ids();
5197 for_each_online_node(nid) {
5198 pg_data_t *pgdat = NODE_DATA(nid);
5199 free_area_init_node(nid, NULL,
5200 find_min_pfn_for_node(nid), NULL);
5202 /* Any memory on that node */
5203 if (pgdat->node_present_pages)
5204 node_set_state(nid, N_MEMORY);
5205 check_for_memory(pgdat, nid);
5209 static int __init cmdline_parse_core(char *p, unsigned long *core)
5211 unsigned long long coremem;
5215 coremem = memparse(p, &p);
5216 *core = coremem >> PAGE_SHIFT;
5218 /* Paranoid check that UL is enough for the coremem value */
5219 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5225 * kernelcore=size sets the amount of memory for use for allocations that
5226 * cannot be reclaimed or migrated.
5228 static int __init cmdline_parse_kernelcore(char *p)
5230 return cmdline_parse_core(p, &required_kernelcore);
5234 * movablecore=size sets the amount of memory for use for allocations that
5235 * can be reclaimed or migrated.
5237 static int __init cmdline_parse_movablecore(char *p)
5239 return cmdline_parse_core(p, &required_movablecore);
5242 early_param("kernelcore", cmdline_parse_kernelcore);
5243 early_param("movablecore", cmdline_parse_movablecore);
5245 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5247 void adjust_managed_page_count(struct page *page, long count)
5249 spin_lock(&managed_page_count_lock);
5250 page_zone(page)->managed_pages += count;
5251 totalram_pages += count;
5252 #ifdef CONFIG_HIGHMEM
5253 if (PageHighMem(page))
5254 totalhigh_pages += count;
5256 spin_unlock(&managed_page_count_lock);
5258 EXPORT_SYMBOL(adjust_managed_page_count);
5260 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5263 unsigned long pages = 0;
5265 start = (void *)PAGE_ALIGN((unsigned long)start);
5266 end = (void *)((unsigned long)end & PAGE_MASK);
5267 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5268 if ((unsigned int)poison <= 0xFF)
5269 memset(pos, poison, PAGE_SIZE);
5270 free_reserved_page(virt_to_page(pos));
5274 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5275 s, pages << (PAGE_SHIFT - 10), start, end);
5279 EXPORT_SYMBOL(free_reserved_area);
5281 #ifdef CONFIG_HIGHMEM
5282 void free_highmem_page(struct page *page)
5284 __free_reserved_page(page);
5286 page_zone(page)->managed_pages++;
5292 void __init mem_init_print_info(const char *str)
5294 unsigned long physpages, codesize, datasize, rosize, bss_size;
5295 unsigned long init_code_size, init_data_size;
5297 physpages = get_num_physpages();
5298 codesize = _etext - _stext;
5299 datasize = _edata - _sdata;
5300 rosize = __end_rodata - __start_rodata;
5301 bss_size = __bss_stop - __bss_start;
5302 init_data_size = __init_end - __init_begin;
5303 init_code_size = _einittext - _sinittext;
5306 * Detect special cases and adjust section sizes accordingly:
5307 * 1) .init.* may be embedded into .data sections
5308 * 2) .init.text.* may be out of [__init_begin, __init_end],
5309 * please refer to arch/tile/kernel/vmlinux.lds.S.
5310 * 3) .rodata.* may be embedded into .text or .data sections.
5312 #define adj_init_size(start, end, size, pos, adj) \
5314 if (start <= pos && pos < end && size > adj) \
5318 adj_init_size(__init_begin, __init_end, init_data_size,
5319 _sinittext, init_code_size);
5320 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5321 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5322 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5323 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5325 #undef adj_init_size
5327 printk("Memory: %luK/%luK available "
5328 "(%luK kernel code, %luK rwdata, %luK rodata, "
5329 "%luK init, %luK bss, %luK reserved"
5330 #ifdef CONFIG_HIGHMEM
5334 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5335 codesize >> 10, datasize >> 10, rosize >> 10,
5336 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5337 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5338 #ifdef CONFIG_HIGHMEM
5339 totalhigh_pages << (PAGE_SHIFT-10),
5341 str ? ", " : "", str ? str : "");
5345 * set_dma_reserve - set the specified number of pages reserved in the first zone
5346 * @new_dma_reserve: The number of pages to mark reserved
5348 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5349 * In the DMA zone, a significant percentage may be consumed by kernel image
5350 * and other unfreeable allocations which can skew the watermarks badly. This
5351 * function may optionally be used to account for unfreeable pages in the
5352 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5353 * smaller per-cpu batchsize.
5355 void __init set_dma_reserve(unsigned long new_dma_reserve)
5357 dma_reserve = new_dma_reserve;
5360 void __init free_area_init(unsigned long *zones_size)
5362 free_area_init_node(0, zones_size,
5363 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5366 static int page_alloc_cpu_notify(struct notifier_block *self,
5367 unsigned long action, void *hcpu)
5369 int cpu = (unsigned long)hcpu;
5371 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5372 lru_add_drain_cpu(cpu);
5376 * Spill the event counters of the dead processor
5377 * into the current processors event counters.
5378 * This artificially elevates the count of the current
5381 vm_events_fold_cpu(cpu);
5384 * Zero the differential counters of the dead processor
5385 * so that the vm statistics are consistent.
5387 * This is only okay since the processor is dead and cannot
5388 * race with what we are doing.
5390 refresh_cpu_vm_stats(cpu);
5395 void __init page_alloc_init(void)
5397 hotcpu_notifier(page_alloc_cpu_notify, 0);
5401 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5402 * or min_free_kbytes changes.
5404 static void calculate_totalreserve_pages(void)
5406 struct pglist_data *pgdat;
5407 unsigned long reserve_pages = 0;
5408 enum zone_type i, j;
5410 for_each_online_pgdat(pgdat) {
5411 for (i = 0; i < MAX_NR_ZONES; i++) {
5412 struct zone *zone = pgdat->node_zones + i;
5413 unsigned long max = 0;
5415 /* Find valid and maximum lowmem_reserve in the zone */
5416 for (j = i; j < MAX_NR_ZONES; j++) {
5417 if (zone->lowmem_reserve[j] > max)
5418 max = zone->lowmem_reserve[j];
5421 /* we treat the high watermark as reserved pages. */
5422 max += high_wmark_pages(zone);
5424 if (max > zone->managed_pages)
5425 max = zone->managed_pages;
5426 reserve_pages += max;
5428 * Lowmem reserves are not available to
5429 * GFP_HIGHUSER page cache allocations and
5430 * kswapd tries to balance zones to their high
5431 * watermark. As a result, neither should be
5432 * regarded as dirtyable memory, to prevent a
5433 * situation where reclaim has to clean pages
5434 * in order to balance the zones.
5436 zone->dirty_balance_reserve = max;
5439 dirty_balance_reserve = reserve_pages;
5440 totalreserve_pages = reserve_pages;
5444 * setup_per_zone_lowmem_reserve - called whenever
5445 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5446 * has a correct pages reserved value, so an adequate number of
5447 * pages are left in the zone after a successful __alloc_pages().
5449 static void setup_per_zone_lowmem_reserve(void)
5451 struct pglist_data *pgdat;
5452 enum zone_type j, idx;
5454 for_each_online_pgdat(pgdat) {
5455 for (j = 0; j < MAX_NR_ZONES; j++) {
5456 struct zone *zone = pgdat->node_zones + j;
5457 unsigned long managed_pages = zone->managed_pages;
5459 zone->lowmem_reserve[j] = 0;
5463 struct zone *lower_zone;
5467 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5468 sysctl_lowmem_reserve_ratio[idx] = 1;
5470 lower_zone = pgdat->node_zones + idx;
5471 lower_zone->lowmem_reserve[j] = managed_pages /
5472 sysctl_lowmem_reserve_ratio[idx];
5473 managed_pages += lower_zone->managed_pages;
5478 /* update totalreserve_pages */
5479 calculate_totalreserve_pages();
5482 static void __setup_per_zone_wmarks(void)
5484 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5485 unsigned long lowmem_pages = 0;
5487 unsigned long flags;
5489 /* Calculate total number of !ZONE_HIGHMEM pages */
5490 for_each_zone(zone) {
5491 if (!is_highmem(zone))
5492 lowmem_pages += zone->managed_pages;
5495 for_each_zone(zone) {
5498 spin_lock_irqsave(&zone->lock, flags);
5499 tmp = (u64)pages_min * zone->managed_pages;
5500 do_div(tmp, lowmem_pages);
5501 if (is_highmem(zone)) {
5503 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5504 * need highmem pages, so cap pages_min to a small
5507 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5508 * deltas controls asynch page reclaim, and so should
5509 * not be capped for highmem.
5511 unsigned long min_pages;
5513 min_pages = zone->managed_pages / 1024;
5514 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5515 zone->watermark[WMARK_MIN] = min_pages;
5518 * If it's a lowmem zone, reserve a number of pages
5519 * proportionate to the zone's size.
5521 zone->watermark[WMARK_MIN] = tmp;
5524 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5525 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5527 setup_zone_migrate_reserve(zone);
5528 spin_unlock_irqrestore(&zone->lock, flags);
5531 /* update totalreserve_pages */
5532 calculate_totalreserve_pages();
5536 * setup_per_zone_wmarks - called when min_free_kbytes changes
5537 * or when memory is hot-{added|removed}
5539 * Ensures that the watermark[min,low,high] values for each zone are set
5540 * correctly with respect to min_free_kbytes.
5542 void setup_per_zone_wmarks(void)
5544 mutex_lock(&zonelists_mutex);
5545 __setup_per_zone_wmarks();
5546 mutex_unlock(&zonelists_mutex);
5550 * The inactive anon list should be small enough that the VM never has to
5551 * do too much work, but large enough that each inactive page has a chance
5552 * to be referenced again before it is swapped out.
5554 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5555 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5556 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5557 * the anonymous pages are kept on the inactive list.
5560 * memory ratio inactive anon
5561 * -------------------------------------
5570 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5572 unsigned int gb, ratio;
5574 /* Zone size in gigabytes */
5575 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5577 ratio = int_sqrt(10 * gb);
5581 zone->inactive_ratio = ratio;
5584 static void __meminit setup_per_zone_inactive_ratio(void)
5589 calculate_zone_inactive_ratio(zone);
5593 * Initialise min_free_kbytes.
5595 * For small machines we want it small (128k min). For large machines
5596 * we want it large (64MB max). But it is not linear, because network
5597 * bandwidth does not increase linearly with machine size. We use
5599 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5600 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5616 int __meminit init_per_zone_wmark_min(void)
5618 unsigned long lowmem_kbytes;
5619 int new_min_free_kbytes;
5621 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5622 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5624 if (new_min_free_kbytes > user_min_free_kbytes) {
5625 min_free_kbytes = new_min_free_kbytes;
5626 if (min_free_kbytes < 128)
5627 min_free_kbytes = 128;
5628 if (min_free_kbytes > 65536)
5629 min_free_kbytes = 65536;
5631 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5632 new_min_free_kbytes, user_min_free_kbytes);
5634 setup_per_zone_wmarks();
5635 refresh_zone_stat_thresholds();
5636 setup_per_zone_lowmem_reserve();
5637 setup_per_zone_inactive_ratio();
5640 module_init(init_per_zone_wmark_min)
5643 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5644 * that we can call two helper functions whenever min_free_kbytes
5647 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5648 void __user *buffer, size_t *length, loff_t *ppos)
5650 proc_dointvec(table, write, buffer, length, ppos);
5652 user_min_free_kbytes = min_free_kbytes;
5653 setup_per_zone_wmarks();
5659 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5660 void __user *buffer, size_t *length, loff_t *ppos)
5665 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5670 zone->min_unmapped_pages = (zone->managed_pages *
5671 sysctl_min_unmapped_ratio) / 100;
5675 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5676 void __user *buffer, size_t *length, loff_t *ppos)
5681 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5686 zone->min_slab_pages = (zone->managed_pages *
5687 sysctl_min_slab_ratio) / 100;
5693 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5694 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5695 * whenever sysctl_lowmem_reserve_ratio changes.
5697 * The reserve ratio obviously has absolutely no relation with the
5698 * minimum watermarks. The lowmem reserve ratio can only make sense
5699 * if in function of the boot time zone sizes.
5701 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5702 void __user *buffer, size_t *length, loff_t *ppos)
5704 proc_dointvec_minmax(table, write, buffer, length, ppos);
5705 setup_per_zone_lowmem_reserve();
5710 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5711 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5712 * pagelist can have before it gets flushed back to buddy allocator.
5714 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5715 void __user *buffer, size_t *length, loff_t *ppos)
5721 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5722 if (!write || (ret < 0))
5725 mutex_lock(&pcp_batch_high_lock);
5726 for_each_populated_zone(zone) {
5728 high = zone->managed_pages / percpu_pagelist_fraction;
5729 for_each_possible_cpu(cpu)
5730 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5733 mutex_unlock(&pcp_batch_high_lock);
5737 int hashdist = HASHDIST_DEFAULT;
5740 static int __init set_hashdist(char *str)
5744 hashdist = simple_strtoul(str, &str, 0);
5747 __setup("hashdist=", set_hashdist);
5751 * allocate a large system hash table from bootmem
5752 * - it is assumed that the hash table must contain an exact power-of-2
5753 * quantity of entries
5754 * - limit is the number of hash buckets, not the total allocation size
5756 void *__init alloc_large_system_hash(const char *tablename,
5757 unsigned long bucketsize,
5758 unsigned long numentries,
5761 unsigned int *_hash_shift,
5762 unsigned int *_hash_mask,
5763 unsigned long low_limit,
5764 unsigned long high_limit)
5766 unsigned long long max = high_limit;
5767 unsigned long log2qty, size;
5770 /* allow the kernel cmdline to have a say */
5772 /* round applicable memory size up to nearest megabyte */
5773 numentries = nr_kernel_pages;
5775 /* It isn't necessary when PAGE_SIZE >= 1MB */
5776 if (PAGE_SHIFT < 20)
5777 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5779 /* limit to 1 bucket per 2^scale bytes of low memory */
5780 if (scale > PAGE_SHIFT)
5781 numentries >>= (scale - PAGE_SHIFT);
5783 numentries <<= (PAGE_SHIFT - scale);
5785 /* Make sure we've got at least a 0-order allocation.. */
5786 if (unlikely(flags & HASH_SMALL)) {
5787 /* Makes no sense without HASH_EARLY */
5788 WARN_ON(!(flags & HASH_EARLY));
5789 if (!(numentries >> *_hash_shift)) {
5790 numentries = 1UL << *_hash_shift;
5791 BUG_ON(!numentries);
5793 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5794 numentries = PAGE_SIZE / bucketsize;
5796 numentries = roundup_pow_of_two(numentries);
5798 /* limit allocation size to 1/16 total memory by default */
5800 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5801 do_div(max, bucketsize);
5803 max = min(max, 0x80000000ULL);
5805 if (numentries < low_limit)
5806 numentries = low_limit;
5807 if (numentries > max)
5810 log2qty = ilog2(numentries);
5813 size = bucketsize << log2qty;
5814 if (flags & HASH_EARLY)
5815 table = alloc_bootmem_nopanic(size);
5817 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5820 * If bucketsize is not a power-of-two, we may free
5821 * some pages at the end of hash table which
5822 * alloc_pages_exact() automatically does
5824 if (get_order(size) < MAX_ORDER) {
5825 table = alloc_pages_exact(size, GFP_ATOMIC);
5826 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5829 } while (!table && size > PAGE_SIZE && --log2qty);
5832 panic("Failed to allocate %s hash table\n", tablename);
5834 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5837 ilog2(size) - PAGE_SHIFT,
5841 *_hash_shift = log2qty;
5843 *_hash_mask = (1 << log2qty) - 1;
5848 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5849 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5852 #ifdef CONFIG_SPARSEMEM
5853 return __pfn_to_section(pfn)->pageblock_flags;
5855 return zone->pageblock_flags;
5856 #endif /* CONFIG_SPARSEMEM */
5859 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5861 #ifdef CONFIG_SPARSEMEM
5862 pfn &= (PAGES_PER_SECTION-1);
5863 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5865 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5866 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5867 #endif /* CONFIG_SPARSEMEM */
5871 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5872 * @page: The page within the block of interest
5873 * @start_bitidx: The first bit of interest to retrieve
5874 * @end_bitidx: The last bit of interest
5875 * returns pageblock_bits flags
5877 unsigned long get_pageblock_flags_group(struct page *page,
5878 int start_bitidx, int end_bitidx)
5881 unsigned long *bitmap;
5882 unsigned long pfn, bitidx;
5883 unsigned long flags = 0;
5884 unsigned long value = 1;
5886 zone = page_zone(page);
5887 pfn = page_to_pfn(page);
5888 bitmap = get_pageblock_bitmap(zone, pfn);
5889 bitidx = pfn_to_bitidx(zone, pfn);
5891 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5892 if (test_bit(bitidx + start_bitidx, bitmap))
5899 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5900 * @page: The page within the block of interest
5901 * @start_bitidx: The first bit of interest
5902 * @end_bitidx: The last bit of interest
5903 * @flags: The flags to set
5905 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5906 int start_bitidx, int end_bitidx)
5909 unsigned long *bitmap;
5910 unsigned long pfn, bitidx;
5911 unsigned long value = 1;
5913 zone = page_zone(page);
5914 pfn = page_to_pfn(page);
5915 bitmap = get_pageblock_bitmap(zone, pfn);
5916 bitidx = pfn_to_bitidx(zone, pfn);
5917 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5919 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5921 __set_bit(bitidx + start_bitidx, bitmap);
5923 __clear_bit(bitidx + start_bitidx, bitmap);
5927 * This function checks whether pageblock includes unmovable pages or not.
5928 * If @count is not zero, it is okay to include less @count unmovable pages
5930 * PageLRU check without isolation or lru_lock could race so that
5931 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5932 * expect this function should be exact.
5934 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5935 bool skip_hwpoisoned_pages)
5937 unsigned long pfn, iter, found;
5941 * For avoiding noise data, lru_add_drain_all() should be called
5942 * If ZONE_MOVABLE, the zone never contains unmovable pages
5944 if (zone_idx(zone) == ZONE_MOVABLE)
5946 mt = get_pageblock_migratetype(page);
5947 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5950 pfn = page_to_pfn(page);
5951 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5952 unsigned long check = pfn + iter;
5954 if (!pfn_valid_within(check))
5957 page = pfn_to_page(check);
5959 * We can't use page_count without pin a page
5960 * because another CPU can free compound page.
5961 * This check already skips compound tails of THP
5962 * because their page->_count is zero at all time.
5964 if (!atomic_read(&page->_count)) {
5965 if (PageBuddy(page))
5966 iter += (1 << page_order(page)) - 1;
5971 * The HWPoisoned page may be not in buddy system, and
5972 * page_count() is not 0.
5974 if (skip_hwpoisoned_pages && PageHWPoison(page))
5980 * If there are RECLAIMABLE pages, we need to check it.
5981 * But now, memory offline itself doesn't call shrink_slab()
5982 * and it still to be fixed.
5985 * If the page is not RAM, page_count()should be 0.
5986 * we don't need more check. This is an _used_ not-movable page.
5988 * The problematic thing here is PG_reserved pages. PG_reserved
5989 * is set to both of a memory hole page and a _used_ kernel
5998 bool is_pageblock_removable_nolock(struct page *page)
6004 * We have to be careful here because we are iterating over memory
6005 * sections which are not zone aware so we might end up outside of
6006 * the zone but still within the section.
6007 * We have to take care about the node as well. If the node is offline
6008 * its NODE_DATA will be NULL - see page_zone.
6010 if (!node_online(page_to_nid(page)))
6013 zone = page_zone(page);
6014 pfn = page_to_pfn(page);
6015 if (!zone_spans_pfn(zone, pfn))
6018 return !has_unmovable_pages(zone, page, 0, true);
6023 static unsigned long pfn_max_align_down(unsigned long pfn)
6025 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6026 pageblock_nr_pages) - 1);
6029 static unsigned long pfn_max_align_up(unsigned long pfn)
6031 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6032 pageblock_nr_pages));
6035 /* [start, end) must belong to a single zone. */
6036 static int __alloc_contig_migrate_range(struct compact_control *cc,
6037 unsigned long start, unsigned long end)
6039 /* This function is based on compact_zone() from compaction.c. */
6040 unsigned long nr_reclaimed;
6041 unsigned long pfn = start;
6042 unsigned int tries = 0;
6047 while (pfn < end || !list_empty(&cc->migratepages)) {
6048 if (fatal_signal_pending(current)) {
6053 if (list_empty(&cc->migratepages)) {
6054 cc->nr_migratepages = 0;
6055 pfn = isolate_migratepages_range(cc->zone, cc,
6062 } else if (++tries == 5) {
6063 ret = ret < 0 ? ret : -EBUSY;
6067 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6069 cc->nr_migratepages -= nr_reclaimed;
6071 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6072 0, MIGRATE_SYNC, MR_CMA);
6075 putback_movable_pages(&cc->migratepages);
6082 * alloc_contig_range() -- tries to allocate given range of pages
6083 * @start: start PFN to allocate
6084 * @end: one-past-the-last PFN to allocate
6085 * @migratetype: migratetype of the underlaying pageblocks (either
6086 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6087 * in range must have the same migratetype and it must
6088 * be either of the two.
6090 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6091 * aligned, however it's the caller's responsibility to guarantee that
6092 * we are the only thread that changes migrate type of pageblocks the
6095 * The PFN range must belong to a single zone.
6097 * Returns zero on success or negative error code. On success all
6098 * pages which PFN is in [start, end) are allocated for the caller and
6099 * need to be freed with free_contig_range().
6101 int alloc_contig_range(unsigned long start, unsigned long end,
6102 unsigned migratetype)
6104 unsigned long outer_start, outer_end;
6107 struct compact_control cc = {
6108 .nr_migratepages = 0,
6110 .zone = page_zone(pfn_to_page(start)),
6112 .ignore_skip_hint = true,
6114 INIT_LIST_HEAD(&cc.migratepages);
6117 * What we do here is we mark all pageblocks in range as
6118 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6119 * have different sizes, and due to the way page allocator
6120 * work, we align the range to biggest of the two pages so
6121 * that page allocator won't try to merge buddies from
6122 * different pageblocks and change MIGRATE_ISOLATE to some
6123 * other migration type.
6125 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6126 * migrate the pages from an unaligned range (ie. pages that
6127 * we are interested in). This will put all the pages in
6128 * range back to page allocator as MIGRATE_ISOLATE.
6130 * When this is done, we take the pages in range from page
6131 * allocator removing them from the buddy system. This way
6132 * page allocator will never consider using them.
6134 * This lets us mark the pageblocks back as
6135 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6136 * aligned range but not in the unaligned, original range are
6137 * put back to page allocator so that buddy can use them.
6140 ret = start_isolate_page_range(pfn_max_align_down(start),
6141 pfn_max_align_up(end), migratetype,
6146 ret = __alloc_contig_migrate_range(&cc, start, end);
6151 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6152 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6153 * more, all pages in [start, end) are free in page allocator.
6154 * What we are going to do is to allocate all pages from
6155 * [start, end) (that is remove them from page allocator).
6157 * The only problem is that pages at the beginning and at the
6158 * end of interesting range may be not aligned with pages that
6159 * page allocator holds, ie. they can be part of higher order
6160 * pages. Because of this, we reserve the bigger range and
6161 * once this is done free the pages we are not interested in.
6163 * We don't have to hold zone->lock here because the pages are
6164 * isolated thus they won't get removed from buddy.
6167 lru_add_drain_all();
6171 outer_start = start;
6172 while (!PageBuddy(pfn_to_page(outer_start))) {
6173 if (++order >= MAX_ORDER) {
6177 outer_start &= ~0UL << order;
6180 /* Make sure the range is really isolated. */
6181 if (test_pages_isolated(outer_start, end, false)) {
6182 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6189 /* Grab isolated pages from freelists. */
6190 outer_end = isolate_freepages_range(&cc, outer_start, end);
6196 /* Free head and tail (if any) */
6197 if (start != outer_start)
6198 free_contig_range(outer_start, start - outer_start);
6199 if (end != outer_end)
6200 free_contig_range(end, outer_end - end);
6203 undo_isolate_page_range(pfn_max_align_down(start),
6204 pfn_max_align_up(end), migratetype);
6208 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6210 unsigned int count = 0;
6212 for (; nr_pages--; pfn++) {
6213 struct page *page = pfn_to_page(pfn);
6215 count += page_count(page) != 1;
6218 WARN(count != 0, "%d pages are still in use!\n", count);
6222 #ifdef CONFIG_MEMORY_HOTPLUG
6224 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6225 * page high values need to be recalulated.
6227 void __meminit zone_pcp_update(struct zone *zone)
6230 mutex_lock(&pcp_batch_high_lock);
6231 for_each_possible_cpu(cpu)
6232 pageset_set_high_and_batch(zone,
6233 per_cpu_ptr(zone->pageset, cpu));
6234 mutex_unlock(&pcp_batch_high_lock);
6238 void zone_pcp_reset(struct zone *zone)
6240 unsigned long flags;
6242 struct per_cpu_pageset *pset;
6244 /* avoid races with drain_pages() */
6245 local_irq_save(flags);
6246 if (zone->pageset != &boot_pageset) {
6247 for_each_online_cpu(cpu) {
6248 pset = per_cpu_ptr(zone->pageset, cpu);
6249 drain_zonestat(zone, pset);
6251 free_percpu(zone->pageset);
6252 zone->pageset = &boot_pageset;
6254 local_irq_restore(flags);
6257 #ifdef CONFIG_MEMORY_HOTREMOVE
6259 * All pages in the range must be isolated before calling this.
6262 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6268 unsigned long flags;
6269 /* find the first valid pfn */
6270 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6275 zone = page_zone(pfn_to_page(pfn));
6276 spin_lock_irqsave(&zone->lock, flags);
6278 while (pfn < end_pfn) {
6279 if (!pfn_valid(pfn)) {
6283 page = pfn_to_page(pfn);
6285 * The HWPoisoned page may be not in buddy system, and
6286 * page_count() is not 0.
6288 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6290 SetPageReserved(page);
6294 BUG_ON(page_count(page));
6295 BUG_ON(!PageBuddy(page));
6296 order = page_order(page);
6297 #ifdef CONFIG_DEBUG_VM
6298 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6299 pfn, 1 << order, end_pfn);
6301 list_del(&page->lru);
6302 rmv_page_order(page);
6303 zone->free_area[order].nr_free--;
6304 #ifdef CONFIG_HIGHMEM
6305 if (PageHighMem(page))
6306 totalhigh_pages -= 1 << order;
6308 for (i = 0; i < (1 << order); i++)
6309 SetPageReserved((page+i));
6310 pfn += (1 << order);
6312 spin_unlock_irqrestore(&zone->lock, flags);
6316 #ifdef CONFIG_MEMORY_FAILURE
6317 bool is_free_buddy_page(struct page *page)
6319 struct zone *zone = page_zone(page);
6320 unsigned long pfn = page_to_pfn(page);
6321 unsigned long flags;
6324 spin_lock_irqsave(&zone->lock, flags);
6325 for (order = 0; order < MAX_ORDER; order++) {
6326 struct page *page_head = page - (pfn & ((1 << order) - 1));
6328 if (PageBuddy(page_head) && page_order(page_head) >= order)
6331 spin_unlock_irqrestore(&zone->lock, flags);
6333 return order < MAX_ORDER;
6337 static const struct trace_print_flags pageflag_names[] = {
6338 {1UL << PG_locked, "locked" },
6339 {1UL << PG_error, "error" },
6340 {1UL << PG_referenced, "referenced" },
6341 {1UL << PG_uptodate, "uptodate" },
6342 {1UL << PG_dirty, "dirty" },
6343 {1UL << PG_lru, "lru" },
6344 {1UL << PG_active, "active" },
6345 {1UL << PG_slab, "slab" },
6346 {1UL << PG_owner_priv_1, "owner_priv_1" },
6347 {1UL << PG_arch_1, "arch_1" },
6348 {1UL << PG_reserved, "reserved" },
6349 {1UL << PG_private, "private" },
6350 {1UL << PG_private_2, "private_2" },
6351 {1UL << PG_writeback, "writeback" },
6352 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6353 {1UL << PG_head, "head" },
6354 {1UL << PG_tail, "tail" },
6356 {1UL << PG_compound, "compound" },
6358 {1UL << PG_swapcache, "swapcache" },
6359 {1UL << PG_mappedtodisk, "mappedtodisk" },
6360 {1UL << PG_reclaim, "reclaim" },
6361 {1UL << PG_swapbacked, "swapbacked" },
6362 {1UL << PG_unevictable, "unevictable" },
6364 {1UL << PG_mlocked, "mlocked" },
6366 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6367 {1UL << PG_uncached, "uncached" },
6369 #ifdef CONFIG_MEMORY_FAILURE
6370 {1UL << PG_hwpoison, "hwpoison" },
6372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6373 {1UL << PG_compound_lock, "compound_lock" },
6377 static void dump_page_flags(unsigned long flags)
6379 const char *delim = "";
6383 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6385 printk(KERN_ALERT "page flags: %#lx(", flags);
6387 /* remove zone id */
6388 flags &= (1UL << NR_PAGEFLAGS) - 1;
6390 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6392 mask = pageflag_names[i].mask;
6393 if ((flags & mask) != mask)
6397 printk("%s%s", delim, pageflag_names[i].name);
6401 /* check for left over flags */
6403 printk("%s%#lx", delim, flags);
6408 void dump_page(struct page *page)
6411 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6412 page, atomic_read(&page->_count), page_mapcount(page),
6413 page->mapping, page->index);
6414 dump_page_flags(page->flags);
6415 mem_cgroup_print_bad_page(page);