1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 #define pcp_trylock_prepare(flags) do { } while (0)
135 #define pcp_trylock_finish(flag) do { } while (0)
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags) local_irq_save(flags)
140 #define pcp_trylock_finish(flags) local_irq_restore(flags)
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin() preempt_disable()
153 #define pcpu_task_unpin() preempt_enable()
155 #define pcpu_task_pin() migrate_disable()
156 #define pcpu_task_unpin() migrate_enable()
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
163 #define pcpu_spin_lock(type, member, ptr) \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
193 #define pcpu_spin_unlock(member, ptr) \
195 spin_unlock(&ptr->member); \
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
201 spin_unlock_irqrestore(&ptr->member, flags); \
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 #define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 #define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 #define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
218 #define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
238 static DEFINE_MUTEX(pcpu_drain_mutex);
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
246 * Array of node states.
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
256 [N_MEMORY] = { { [0] = 1UL } },
257 [N_CPU] = { { [0] = 1UL } },
260 EXPORT_SYMBOL(node_states);
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
275 static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 early_param("init_on_alloc", early_init_on_alloc);
284 static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
288 return kstrtobool(buf, &_init_on_free_enabled_early);
290 early_param("init_on_free", early_init_on_free);
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
300 static inline int get_pcppage_migratetype(struct page *page)
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 page->index = migratetype;
310 #ifdef CONFIG_PM_SLEEP
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
321 static gfp_t saved_gfp_mask;
323 void pm_restore_gfp_mask(void)
325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
332 void pm_restrict_gfp_mask(void)
334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
340 bool pm_suspended_storage(void)
342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
346 #endif /* CONFIG_PM_SLEEP */
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
352 static void __free_pages_ok(struct page *page, unsigned int order,
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
370 #ifdef CONFIG_ZONE_DMA32
374 #ifdef CONFIG_HIGHMEM
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
384 #ifdef CONFIG_ZONE_DMA32
388 #ifdef CONFIG_HIGHMEM
392 #ifdef CONFIG_ZONE_DEVICE
397 const char * const migratetype_names[MIGRATE_TYPES] = {
405 #ifdef CONFIG_MEMORY_ISOLATION
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 [HUGETLB_PAGE_DTOR] = free_huge_page,
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 EXPORT_SYMBOL(movable_zone);
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
450 int page_group_by_mobility_disabled __read_mostly;
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 static inline bool deferred_pages_enabled(void)
462 return static_branch_unlikely(&deferred_pages);
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 int nid = early_pfn_to_nid(pfn);
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
477 * Returns true when the remaining initialisation should be deferred until
478 * later in the boot cycle when it can be parallelised.
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 static unsigned long prev_end_pfn, nr_initialised;
485 if (early_page_ext_enabled())
488 * prev_end_pfn static that contains the end of previous zone
489 * No need to protect because called very early in boot before smp_init.
491 if (prev_end_pfn != end_pfn) {
492 prev_end_pfn = end_pfn;
496 /* Always populate low zones for address-constrained allocations */
497 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
500 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
503 * We start only with one section of pages, more pages are added as
504 * needed until the rest of deferred pages are initialized.
507 if ((nr_initialised > PAGES_PER_SECTION) &&
508 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
509 NODE_DATA(nid)->first_deferred_pfn = pfn;
515 static inline bool deferred_pages_enabled(void)
520 static inline bool early_page_uninitialised(unsigned long pfn)
525 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
531 /* Return a pointer to the bitmap storing bits affecting a block of pages */
532 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
535 #ifdef CONFIG_SPARSEMEM
536 return section_to_usemap(__pfn_to_section(pfn));
538 return page_zone(page)->pageblock_flags;
539 #endif /* CONFIG_SPARSEMEM */
542 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 #ifdef CONFIG_SPARSEMEM
545 pfn &= (PAGES_PER_SECTION-1);
547 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
548 #endif /* CONFIG_SPARSEMEM */
549 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
552 static __always_inline
553 unsigned long __get_pfnblock_flags_mask(const struct page *page,
557 unsigned long *bitmap;
558 unsigned long bitidx, word_bitidx;
561 bitmap = get_pageblock_bitmap(page, pfn);
562 bitidx = pfn_to_bitidx(page, pfn);
563 word_bitidx = bitidx / BITS_PER_LONG;
564 bitidx &= (BITS_PER_LONG-1);
566 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
567 * a consistent read of the memory array, so that results, even though
568 * racy, are not corrupted.
570 word = READ_ONCE(bitmap[word_bitidx]);
571 return (word >> bitidx) & mask;
575 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
576 * @page: The page within the block of interest
577 * @pfn: The target page frame number
578 * @mask: mask of bits that the caller is interested in
580 * Return: pageblock_bits flags
582 unsigned long get_pfnblock_flags_mask(const struct page *page,
583 unsigned long pfn, unsigned long mask)
585 return __get_pfnblock_flags_mask(page, pfn, mask);
588 static __always_inline int get_pfnblock_migratetype(const struct page *page,
591 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
595 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
596 * @page: The page within the block of interest
597 * @flags: The flags to set
598 * @pfn: The target page frame number
599 * @mask: mask of bits that the caller is interested in
601 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
605 unsigned long *bitmap;
606 unsigned long bitidx, word_bitidx;
609 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
610 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 bitmap = get_pageblock_bitmap(page, pfn);
613 bitidx = pfn_to_bitidx(page, pfn);
614 word_bitidx = bitidx / BITS_PER_LONG;
615 bitidx &= (BITS_PER_LONG-1);
617 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
622 word = READ_ONCE(bitmap[word_bitidx]);
624 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
627 void set_pageblock_migratetype(struct page *page, int migratetype)
629 if (unlikely(page_group_by_mobility_disabled &&
630 migratetype < MIGRATE_PCPTYPES))
631 migratetype = MIGRATE_UNMOVABLE;
633 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
634 page_to_pfn(page), MIGRATETYPE_MASK);
637 #ifdef CONFIG_DEBUG_VM
638 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
642 unsigned long pfn = page_to_pfn(page);
643 unsigned long sp, start_pfn;
646 seq = zone_span_seqbegin(zone);
647 start_pfn = zone->zone_start_pfn;
648 sp = zone->spanned_pages;
649 if (!zone_spans_pfn(zone, pfn))
651 } while (zone_span_seqretry(zone, seq));
654 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
655 pfn, zone_to_nid(zone), zone->name,
656 start_pfn, start_pfn + sp);
661 static int page_is_consistent(struct zone *zone, struct page *page)
663 if (zone != page_zone(page))
669 * Temporary debugging check for pages not lying within a given zone.
671 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 if (page_outside_zone_boundaries(zone, page))
675 if (!page_is_consistent(zone, page))
681 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
687 static void bad_page(struct page *page, const char *reason)
689 static unsigned long resume;
690 static unsigned long nr_shown;
691 static unsigned long nr_unshown;
694 * Allow a burst of 60 reports, then keep quiet for that minute;
695 * or allow a steady drip of one report per second.
697 if (nr_shown == 60) {
698 if (time_before(jiffies, resume)) {
704 "BUG: Bad page state: %lu messages suppressed\n",
711 resume = jiffies + 60 * HZ;
713 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
714 current->comm, page_to_pfn(page));
715 dump_page(page, reason);
720 /* Leave bad fields for debug, except PageBuddy could make trouble */
721 page_mapcount_reset(page); /* remove PageBuddy */
722 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
725 static inline unsigned int order_to_pindex(int migratetype, int order)
729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 if (order > PAGE_ALLOC_COSTLY_ORDER) {
731 VM_BUG_ON(order != pageblock_order);
732 return NR_LOWORDER_PCP_LISTS;
735 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
738 return (MIGRATE_PCPTYPES * base) + migratetype;
741 static inline int pindex_to_order(unsigned int pindex)
743 int order = pindex / MIGRATE_PCPTYPES;
745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
746 if (pindex == NR_LOWORDER_PCP_LISTS)
747 order = pageblock_order;
749 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
755 static inline bool pcp_allowed_order(unsigned int order)
757 if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 if (order == pageblock_order)
766 static inline void free_the_page(struct page *page, unsigned int order)
768 if (pcp_allowed_order(order)) /* Via pcp? */
769 free_unref_page(page, order);
771 __free_pages_ok(page, order, FPI_NONE);
775 * Higher-order pages are called "compound pages". They are structured thusly:
777 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
780 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782 * The first tail page's ->compound_dtor holds the offset in array of compound
783 * page destructors. See compound_page_dtors.
785 * The first tail page's ->compound_order holds the order of allocation.
786 * This usage means that zero-order pages may not be compound.
789 void free_compound_page(struct page *page)
791 mem_cgroup_uncharge(page_folio(page));
792 free_the_page(page, compound_order(page));
795 static void prep_compound_head(struct page *page, unsigned int order)
797 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
798 set_compound_order(page, order);
799 atomic_set(compound_mapcount_ptr(page), -1);
800 atomic_set(compound_pincount_ptr(page), 0);
803 static void prep_compound_tail(struct page *head, int tail_idx)
805 struct page *p = head + tail_idx;
807 p->mapping = TAIL_MAPPING;
808 set_compound_head(p, head);
811 void prep_compound_page(struct page *page, unsigned int order)
814 int nr_pages = 1 << order;
817 for (i = 1; i < nr_pages; i++)
818 prep_compound_tail(page, i);
820 prep_compound_head(page, order);
823 void destroy_large_folio(struct folio *folio)
825 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
828 compound_page_dtors[dtor](&folio->page);
831 #ifdef CONFIG_DEBUG_PAGEALLOC
832 unsigned int _debug_guardpage_minorder;
834 bool _debug_pagealloc_enabled_early __read_mostly
835 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
837 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
838 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 static int __init early_debug_pagealloc(char *buf)
844 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 early_param("debug_pagealloc", early_debug_pagealloc);
848 static int __init debug_guardpage_minorder_setup(char *buf)
852 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
853 pr_err("Bad debug_guardpage_minorder value\n");
856 _debug_guardpage_minorder = res;
857 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
860 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 static inline bool set_page_guard(struct zone *zone, struct page *page,
863 unsigned int order, int migratetype)
865 if (!debug_guardpage_enabled())
868 if (order >= debug_guardpage_minorder())
871 __SetPageGuard(page);
872 INIT_LIST_HEAD(&page->buddy_list);
873 set_page_private(page, order);
874 /* Guard pages are not available for any usage */
875 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
880 static inline void clear_page_guard(struct zone *zone, struct page *page,
881 unsigned int order, int migratetype)
883 if (!debug_guardpage_enabled())
886 __ClearPageGuard(page);
888 set_page_private(page, 0);
889 if (!is_migrate_isolate(migratetype))
890 __mod_zone_freepage_state(zone, (1 << order), migratetype);
893 static inline bool set_page_guard(struct zone *zone, struct page *page,
894 unsigned int order, int migratetype) { return false; }
895 static inline void clear_page_guard(struct zone *zone, struct page *page,
896 unsigned int order, int migratetype) {}
900 * Enable static keys related to various memory debugging and hardening options.
901 * Some override others, and depend on early params that are evaluated in the
902 * order of appearance. So we need to first gather the full picture of what was
903 * enabled, and then make decisions.
905 void init_mem_debugging_and_hardening(void)
907 bool page_poisoning_requested = false;
909 #ifdef CONFIG_PAGE_POISONING
911 * Page poisoning is debug page alloc for some arches. If
912 * either of those options are enabled, enable poisoning.
914 if (page_poisoning_enabled() ||
915 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
916 debug_pagealloc_enabled())) {
917 static_branch_enable(&_page_poisoning_enabled);
918 page_poisoning_requested = true;
922 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
923 page_poisoning_requested) {
924 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
925 "will take precedence over init_on_alloc and init_on_free\n");
926 _init_on_alloc_enabled_early = false;
927 _init_on_free_enabled_early = false;
930 if (_init_on_alloc_enabled_early)
931 static_branch_enable(&init_on_alloc);
933 static_branch_disable(&init_on_alloc);
935 if (_init_on_free_enabled_early)
936 static_branch_enable(&init_on_free);
938 static_branch_disable(&init_on_free);
940 #ifdef CONFIG_DEBUG_PAGEALLOC
941 if (!debug_pagealloc_enabled())
944 static_branch_enable(&_debug_pagealloc_enabled);
946 if (!debug_guardpage_minorder())
949 static_branch_enable(&_debug_guardpage_enabled);
953 static inline void set_buddy_order(struct page *page, unsigned int order)
955 set_page_private(page, order);
956 __SetPageBuddy(page);
959 #ifdef CONFIG_COMPACTION
960 static inline struct capture_control *task_capc(struct zone *zone)
962 struct capture_control *capc = current->capture_control;
964 return unlikely(capc) &&
965 !(current->flags & PF_KTHREAD) &&
967 capc->cc->zone == zone ? capc : NULL;
971 compaction_capture(struct capture_control *capc, struct page *page,
972 int order, int migratetype)
974 if (!capc || order != capc->cc->order)
977 /* Do not accidentally pollute CMA or isolated regions*/
978 if (is_migrate_cma(migratetype) ||
979 is_migrate_isolate(migratetype))
983 * Do not let lower order allocations pollute a movable pageblock.
984 * This might let an unmovable request use a reclaimable pageblock
985 * and vice-versa but no more than normal fallback logic which can
986 * have trouble finding a high-order free page.
988 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
996 static inline struct capture_control *task_capc(struct zone *zone)
1002 compaction_capture(struct capture_control *capc, struct page *page,
1003 int order, int migratetype)
1007 #endif /* CONFIG_COMPACTION */
1009 /* Used for pages not on another list */
1010 static inline void add_to_free_list(struct page *page, struct zone *zone,
1011 unsigned int order, int migratetype)
1013 struct free_area *area = &zone->free_area[order];
1015 list_add(&page->buddy_list, &area->free_list[migratetype]);
1019 /* Used for pages not on another list */
1020 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1021 unsigned int order, int migratetype)
1023 struct free_area *area = &zone->free_area[order];
1025 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1030 * Used for pages which are on another list. Move the pages to the tail
1031 * of the list - so the moved pages won't immediately be considered for
1032 * allocation again (e.g., optimization for memory onlining).
1034 static inline void move_to_free_list(struct page *page, struct zone *zone,
1035 unsigned int order, int migratetype)
1037 struct free_area *area = &zone->free_area[order];
1039 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1042 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1045 /* clear reported state and update reported page count */
1046 if (page_reported(page))
1047 __ClearPageReported(page);
1049 list_del(&page->buddy_list);
1050 __ClearPageBuddy(page);
1051 set_page_private(page, 0);
1052 zone->free_area[order].nr_free--;
1056 * If this is not the largest possible page, check if the buddy
1057 * of the next-highest order is free. If it is, it's possible
1058 * that pages are being freed that will coalesce soon. In case,
1059 * that is happening, add the free page to the tail of the list
1060 * so it's less likely to be used soon and more likely to be merged
1061 * as a higher order page
1064 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1065 struct page *page, unsigned int order)
1067 unsigned long higher_page_pfn;
1068 struct page *higher_page;
1070 if (order >= MAX_ORDER - 2)
1073 higher_page_pfn = buddy_pfn & pfn;
1074 higher_page = page + (higher_page_pfn - pfn);
1076 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1081 * Freeing function for a buddy system allocator.
1083 * The concept of a buddy system is to maintain direct-mapped table
1084 * (containing bit values) for memory blocks of various "orders".
1085 * The bottom level table contains the map for the smallest allocatable
1086 * units of memory (here, pages), and each level above it describes
1087 * pairs of units from the levels below, hence, "buddies".
1088 * At a high level, all that happens here is marking the table entry
1089 * at the bottom level available, and propagating the changes upward
1090 * as necessary, plus some accounting needed to play nicely with other
1091 * parts of the VM system.
1092 * At each level, we keep a list of pages, which are heads of continuous
1093 * free pages of length of (1 << order) and marked with PageBuddy.
1094 * Page's order is recorded in page_private(page) field.
1095 * So when we are allocating or freeing one, we can derive the state of the
1096 * other. That is, if we allocate a small block, and both were
1097 * free, the remainder of the region must be split into blocks.
1098 * If a block is freed, and its buddy is also free, then this
1099 * triggers coalescing into a block of larger size.
1104 static inline void __free_one_page(struct page *page,
1106 struct zone *zone, unsigned int order,
1107 int migratetype, fpi_t fpi_flags)
1109 struct capture_control *capc = task_capc(zone);
1110 unsigned long buddy_pfn;
1111 unsigned long combined_pfn;
1115 VM_BUG_ON(!zone_is_initialized(zone));
1116 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1118 VM_BUG_ON(migratetype == -1);
1119 if (likely(!is_migrate_isolate(migratetype)))
1120 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1122 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1123 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1125 while (order < MAX_ORDER - 1) {
1126 if (compaction_capture(capc, page, order, migratetype)) {
1127 __mod_zone_freepage_state(zone, -(1 << order),
1132 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1136 if (unlikely(order >= pageblock_order)) {
1138 * We want to prevent merge between freepages on pageblock
1139 * without fallbacks and normal pageblock. Without this,
1140 * pageblock isolation could cause incorrect freepage or CMA
1141 * accounting or HIGHATOMIC accounting.
1143 int buddy_mt = get_pageblock_migratetype(buddy);
1145 if (migratetype != buddy_mt
1146 && (!migratetype_is_mergeable(migratetype) ||
1147 !migratetype_is_mergeable(buddy_mt)))
1152 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1153 * merge with it and move up one order.
1155 if (page_is_guard(buddy))
1156 clear_page_guard(zone, buddy, order, migratetype);
1158 del_page_from_free_list(buddy, zone, order);
1159 combined_pfn = buddy_pfn & pfn;
1160 page = page + (combined_pfn - pfn);
1166 set_buddy_order(page, order);
1168 if (fpi_flags & FPI_TO_TAIL)
1170 else if (is_shuffle_order(order))
1171 to_tail = shuffle_pick_tail();
1173 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1176 add_to_free_list_tail(page, zone, order, migratetype);
1178 add_to_free_list(page, zone, order, migratetype);
1180 /* Notify page reporting subsystem of freed page */
1181 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1182 page_reporting_notify_free(order);
1186 * split_free_page() -- split a free page at split_pfn_offset
1187 * @free_page: the original free page
1188 * @order: the order of the page
1189 * @split_pfn_offset: split offset within the page
1191 * Return -ENOENT if the free page is changed, otherwise 0
1193 * It is used when the free page crosses two pageblocks with different migratetypes
1194 * at split_pfn_offset within the page. The split free page will be put into
1195 * separate migratetype lists afterwards. Otherwise, the function achieves
1198 int split_free_page(struct page *free_page,
1199 unsigned int order, unsigned long split_pfn_offset)
1201 struct zone *zone = page_zone(free_page);
1202 unsigned long free_page_pfn = page_to_pfn(free_page);
1204 unsigned long flags;
1205 int free_page_order;
1209 if (split_pfn_offset == 0)
1212 spin_lock_irqsave(&zone->lock, flags);
1214 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1219 mt = get_pageblock_migratetype(free_page);
1220 if (likely(!is_migrate_isolate(mt)))
1221 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1223 del_page_from_free_list(free_page, zone, order);
1224 for (pfn = free_page_pfn;
1225 pfn < free_page_pfn + (1UL << order);) {
1226 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1228 free_page_order = min_t(unsigned int,
1229 pfn ? __ffs(pfn) : order,
1230 __fls(split_pfn_offset));
1231 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1233 pfn += 1UL << free_page_order;
1234 split_pfn_offset -= (1UL << free_page_order);
1235 /* we have done the first part, now switch to second part */
1236 if (split_pfn_offset == 0)
1237 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1240 spin_unlock_irqrestore(&zone->lock, flags);
1244 * A bad page could be due to a number of fields. Instead of multiple branches,
1245 * try and check multiple fields with one check. The caller must do a detailed
1246 * check if necessary.
1248 static inline bool page_expected_state(struct page *page,
1249 unsigned long check_flags)
1251 if (unlikely(atomic_read(&page->_mapcount) != -1))
1254 if (unlikely((unsigned long)page->mapping |
1255 page_ref_count(page) |
1259 (page->flags & check_flags)))
1265 static const char *page_bad_reason(struct page *page, unsigned long flags)
1267 const char *bad_reason = NULL;
1269 if (unlikely(atomic_read(&page->_mapcount) != -1))
1270 bad_reason = "nonzero mapcount";
1271 if (unlikely(page->mapping != NULL))
1272 bad_reason = "non-NULL mapping";
1273 if (unlikely(page_ref_count(page) != 0))
1274 bad_reason = "nonzero _refcount";
1275 if (unlikely(page->flags & flags)) {
1276 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1277 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1279 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1282 if (unlikely(page->memcg_data))
1283 bad_reason = "page still charged to cgroup";
1288 static void check_free_page_bad(struct page *page)
1291 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1294 static inline int check_free_page(struct page *page)
1296 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1299 /* Something has gone sideways, find it */
1300 check_free_page_bad(page);
1304 static int free_tail_pages_check(struct page *head_page, struct page *page)
1309 * We rely page->lru.next never has bit 0 set, unless the page
1310 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1312 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1314 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1318 switch (page - head_page) {
1320 /* the first tail page: ->mapping may be compound_mapcount() */
1321 if (unlikely(compound_mapcount(page))) {
1322 bad_page(page, "nonzero compound_mapcount");
1328 * the second tail page: ->mapping is
1329 * deferred_list.next -- ignore value.
1333 if (page->mapping != TAIL_MAPPING) {
1334 bad_page(page, "corrupted mapping in tail page");
1339 if (unlikely(!PageTail(page))) {
1340 bad_page(page, "PageTail not set");
1343 if (unlikely(compound_head(page) != head_page)) {
1344 bad_page(page, "compound_head not consistent");
1349 page->mapping = NULL;
1350 clear_compound_head(page);
1355 * Skip KASAN memory poisoning when either:
1357 * 1. Deferred memory initialization has not yet completed,
1358 * see the explanation below.
1359 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1360 * see the comment next to it.
1361 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1362 * see the comment next to it.
1364 * Poisoning pages during deferred memory init will greatly lengthen the
1365 * process and cause problem in large memory systems as the deferred pages
1366 * initialization is done with interrupt disabled.
1368 * Assuming that there will be no reference to those newly initialized
1369 * pages before they are ever allocated, this should have no effect on
1370 * KASAN memory tracking as the poison will be properly inserted at page
1371 * allocation time. The only corner case is when pages are allocated by
1372 * on-demand allocation and then freed again before the deferred pages
1373 * initialization is done, but this is not likely to happen.
1375 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377 return deferred_pages_enabled() ||
1378 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1379 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1380 PageSkipKASanPoison(page);
1383 static void kernel_init_pages(struct page *page, int numpages)
1387 /* s390's use of memset() could override KASAN redzones. */
1388 kasan_disable_current();
1389 for (i = 0; i < numpages; i++)
1390 clear_highpage_kasan_tagged(page + i);
1391 kasan_enable_current();
1394 static __always_inline bool free_pages_prepare(struct page *page,
1395 unsigned int order, bool check_free, fpi_t fpi_flags)
1398 bool init = want_init_on_free();
1400 VM_BUG_ON_PAGE(PageTail(page), page);
1402 trace_mm_page_free(page, order);
1404 if (unlikely(PageHWPoison(page)) && !order) {
1406 * Do not let hwpoison pages hit pcplists/buddy
1407 * Untie memcg state and reset page's owner
1409 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1410 __memcg_kmem_uncharge_page(page, order);
1411 reset_page_owner(page, order);
1412 page_table_check_free(page, order);
1417 * Check tail pages before head page information is cleared to
1418 * avoid checking PageCompound for order-0 pages.
1420 if (unlikely(order)) {
1421 bool compound = PageCompound(page);
1424 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1427 ClearPageDoubleMap(page);
1428 ClearPageHasHWPoisoned(page);
1430 for (i = 1; i < (1 << order); i++) {
1432 bad += free_tail_pages_check(page, page + i);
1433 if (unlikely(check_free_page(page + i))) {
1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 if (PageMappingFlags(page))
1441 page->mapping = NULL;
1442 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1443 __memcg_kmem_uncharge_page(page, order);
1445 bad += check_free_page(page);
1449 page_cpupid_reset_last(page);
1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 reset_page_owner(page, order);
1452 page_table_check_free(page, order);
1454 if (!PageHighMem(page)) {
1455 debug_check_no_locks_freed(page_address(page),
1456 PAGE_SIZE << order);
1457 debug_check_no_obj_freed(page_address(page),
1458 PAGE_SIZE << order);
1461 kernel_poison_pages(page, 1 << order);
1464 * As memory initialization might be integrated into KASAN,
1465 * KASAN poisoning and memory initialization code must be
1466 * kept together to avoid discrepancies in behavior.
1468 * With hardware tag-based KASAN, memory tags must be set before the
1469 * page becomes unavailable via debug_pagealloc or arch_free_page.
1471 if (!should_skip_kasan_poison(page, fpi_flags)) {
1472 kasan_poison_pages(page, order, init);
1474 /* Memory is already initialized if KASAN did it internally. */
1475 if (kasan_has_integrated_init())
1479 kernel_init_pages(page, 1 << order);
1482 * arch_free_page() can make the page's contents inaccessible. s390
1483 * does this. So nothing which can access the page's contents should
1484 * happen after this.
1486 arch_free_page(page, order);
1488 debug_pagealloc_unmap_pages(page, 1 << order);
1493 #ifdef CONFIG_DEBUG_VM
1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497 * moved from pcp lists to free lists.
1499 static bool free_pcp_prepare(struct page *page, unsigned int order)
1501 return free_pages_prepare(page, order, true, FPI_NONE);
1504 static bool bulkfree_pcp_prepare(struct page *page)
1506 if (debug_pagealloc_enabled_static())
1507 return check_free_page(page);
1513 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1514 * moving from pcp lists to free list in order to reduce overhead. With
1515 * debug_pagealloc enabled, they are checked also immediately when being freed
1518 static bool free_pcp_prepare(struct page *page, unsigned int order)
1520 if (debug_pagealloc_enabled_static())
1521 return free_pages_prepare(page, order, true, FPI_NONE);
1523 return free_pages_prepare(page, order, false, FPI_NONE);
1526 static bool bulkfree_pcp_prepare(struct page *page)
1528 return check_free_page(page);
1530 #endif /* CONFIG_DEBUG_VM */
1533 * Frees a number of pages from the PCP lists
1534 * Assumes all pages on list are in same zone.
1535 * count is the number of pages to free.
1537 static void free_pcppages_bulk(struct zone *zone, int count,
1538 struct per_cpu_pages *pcp,
1542 int max_pindex = NR_PCP_LISTS - 1;
1544 bool isolated_pageblocks;
1548 * Ensure proper count is passed which otherwise would stuck in the
1549 * below while (list_empty(list)) loop.
1551 count = min(pcp->count, count);
1553 /* Ensure requested pindex is drained first. */
1554 pindex = pindex - 1;
1556 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1557 spin_lock(&zone->lock);
1558 isolated_pageblocks = has_isolate_pageblock(zone);
1561 struct list_head *list;
1564 /* Remove pages from lists in a round-robin fashion. */
1566 if (++pindex > max_pindex)
1567 pindex = min_pindex;
1568 list = &pcp->lists[pindex];
1569 if (!list_empty(list))
1572 if (pindex == max_pindex)
1574 if (pindex == min_pindex)
1578 order = pindex_to_order(pindex);
1579 nr_pages = 1 << order;
1580 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1584 page = list_last_entry(list, struct page, pcp_list);
1585 mt = get_pcppage_migratetype(page);
1587 /* must delete to avoid corrupting pcp list */
1588 list_del(&page->pcp_list);
1590 pcp->count -= nr_pages;
1592 if (bulkfree_pcp_prepare(page))
1595 /* MIGRATE_ISOLATE page should not go to pcplists */
1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 /* Pageblock could have been isolated meanwhile */
1598 if (unlikely(isolated_pageblocks))
1599 mt = get_pageblock_migratetype(page);
1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 trace_mm_page_pcpu_drain(page, order, mt);
1603 } while (count > 0 && !list_empty(list));
1606 spin_unlock(&zone->lock);
1609 static void free_one_page(struct zone *zone,
1610 struct page *page, unsigned long pfn,
1612 int migratetype, fpi_t fpi_flags)
1614 unsigned long flags;
1616 spin_lock_irqsave(&zone->lock, flags);
1617 if (unlikely(has_isolate_pageblock(zone) ||
1618 is_migrate_isolate(migratetype))) {
1619 migratetype = get_pfnblock_migratetype(page, pfn);
1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1622 spin_unlock_irqrestore(&zone->lock, flags);
1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1626 unsigned long zone, int nid)
1628 mm_zero_struct_page(page);
1629 set_page_links(page, zone, nid, pfn);
1630 init_page_count(page);
1631 page_mapcount_reset(page);
1632 page_cpupid_reset_last(page);
1633 page_kasan_tag_reset(page);
1635 INIT_LIST_HEAD(&page->lru);
1636 #ifdef WANT_PAGE_VIRTUAL
1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 if (!is_highmem_idx(zone))
1639 set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1644 static void __meminit init_reserved_page(unsigned long pfn)
1649 if (!early_page_uninitialised(pfn))
1652 nid = early_pfn_to_nid(pfn);
1653 pgdat = NODE_DATA(nid);
1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 struct zone *zone = &pgdat->node_zones[zid];
1658 if (zone_spans_pfn(zone, pfn))
1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1664 static inline void init_reserved_page(unsigned long pfn)
1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670 * Initialised pages do not have PageReserved set. This function is
1671 * called for each range allocated by the bootmem allocator and
1672 * marks the pages PageReserved. The remaining valid pages are later
1673 * sent to the buddy page allocator.
1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1677 unsigned long start_pfn = PFN_DOWN(start);
1678 unsigned long end_pfn = PFN_UP(end);
1680 for (; start_pfn < end_pfn; start_pfn++) {
1681 if (pfn_valid(start_pfn)) {
1682 struct page *page = pfn_to_page(start_pfn);
1684 init_reserved_page(start_pfn);
1686 /* Avoid false-positive PageTail() */
1687 INIT_LIST_HEAD(&page->lru);
1690 * no need for atomic set_bit because the struct
1691 * page is not visible yet so nobody should
1694 __SetPageReserved(page);
1699 static void __free_pages_ok(struct page *page, unsigned int order,
1702 unsigned long flags;
1704 unsigned long pfn = page_to_pfn(page);
1705 struct zone *zone = page_zone(page);
1707 if (!free_pages_prepare(page, order, true, fpi_flags))
1710 migratetype = get_pfnblock_migratetype(page, pfn);
1712 spin_lock_irqsave(&zone->lock, flags);
1713 if (unlikely(has_isolate_pageblock(zone) ||
1714 is_migrate_isolate(migratetype))) {
1715 migratetype = get_pfnblock_migratetype(page, pfn);
1717 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718 spin_unlock_irqrestore(&zone->lock, flags);
1720 __count_vm_events(PGFREE, 1 << order);
1723 void __free_pages_core(struct page *page, unsigned int order)
1725 unsigned int nr_pages = 1 << order;
1726 struct page *p = page;
1730 * When initializing the memmap, __init_single_page() sets the refcount
1731 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732 * refcount of all involved pages to 0.
1735 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1737 __ClearPageReserved(p);
1738 set_page_count(p, 0);
1740 __ClearPageReserved(p);
1741 set_page_count(p, 0);
1743 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1746 * Bypass PCP and place fresh pages right to the tail, primarily
1747 * relevant for memory onlining.
1749 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1755 * During memory init memblocks map pfns to nids. The search is expensive and
1756 * this caches recent lookups. The implementation of __early_pfn_to_nid
1757 * treats start/end as pfns.
1759 struct mminit_pfnnid_cache {
1760 unsigned long last_start;
1761 unsigned long last_end;
1765 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1768 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1770 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1771 struct mminit_pfnnid_cache *state)
1773 unsigned long start_pfn, end_pfn;
1776 if (state->last_start <= pfn && pfn < state->last_end)
1777 return state->last_nid;
1779 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780 if (nid != NUMA_NO_NODE) {
1781 state->last_start = start_pfn;
1782 state->last_end = end_pfn;
1783 state->last_nid = nid;
1789 int __meminit early_pfn_to_nid(unsigned long pfn)
1791 static DEFINE_SPINLOCK(early_pfn_lock);
1794 spin_lock(&early_pfn_lock);
1795 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1797 nid = first_online_node;
1798 spin_unlock(&early_pfn_lock);
1802 #endif /* CONFIG_NUMA */
1804 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1807 if (early_page_uninitialised(pfn))
1809 __free_pages_core(page, order);
1813 * Check that the whole (or subset of) a pageblock given by the interval of
1814 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1815 * with the migration of free compaction scanner.
1817 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1819 * It's possible on some configurations to have a setup like node0 node1 node0
1820 * i.e. it's possible that all pages within a zones range of pages do not
1821 * belong to a single zone. We assume that a border between node0 and node1
1822 * can occur within a single pageblock, but not a node0 node1 node0
1823 * interleaving within a single pageblock. It is therefore sufficient to check
1824 * the first and last page of a pageblock and avoid checking each individual
1825 * page in a pageblock.
1827 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1828 unsigned long end_pfn, struct zone *zone)
1830 struct page *start_page;
1831 struct page *end_page;
1833 /* end_pfn is one past the range we are checking */
1836 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1839 start_page = pfn_to_online_page(start_pfn);
1843 if (page_zone(start_page) != zone)
1846 end_page = pfn_to_page(end_pfn);
1848 /* This gives a shorter code than deriving page_zone(end_page) */
1849 if (page_zone_id(start_page) != page_zone_id(end_page))
1855 void set_zone_contiguous(struct zone *zone)
1857 unsigned long block_start_pfn = zone->zone_start_pfn;
1858 unsigned long block_end_pfn;
1860 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1861 for (; block_start_pfn < zone_end_pfn(zone);
1862 block_start_pfn = block_end_pfn,
1863 block_end_pfn += pageblock_nr_pages) {
1865 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1867 if (!__pageblock_pfn_to_page(block_start_pfn,
1868 block_end_pfn, zone))
1873 /* We confirm that there is no hole */
1874 zone->contiguous = true;
1877 void clear_zone_contiguous(struct zone *zone)
1879 zone->contiguous = false;
1882 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1883 static void __init deferred_free_range(unsigned long pfn,
1884 unsigned long nr_pages)
1892 page = pfn_to_page(pfn);
1894 /* Free a large naturally-aligned chunk if possible */
1895 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1896 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1897 __free_pages_core(page, pageblock_order);
1901 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1902 if (pageblock_aligned(pfn))
1903 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1904 __free_pages_core(page, 0);
1908 /* Completion tracking for deferred_init_memmap() threads */
1909 static atomic_t pgdat_init_n_undone __initdata;
1910 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1912 static inline void __init pgdat_init_report_one_done(void)
1914 if (atomic_dec_and_test(&pgdat_init_n_undone))
1915 complete(&pgdat_init_all_done_comp);
1919 * Returns true if page needs to be initialized or freed to buddy allocator.
1921 * First we check if pfn is valid on architectures where it is possible to have
1922 * holes within pageblock_nr_pages. On systems where it is not possible, this
1923 * function is optimized out.
1925 * Then, we check if a current large page is valid by only checking the validity
1928 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1930 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1936 * Free pages to buddy allocator. Try to free aligned pages in
1937 * pageblock_nr_pages sizes.
1939 static void __init deferred_free_pages(unsigned long pfn,
1940 unsigned long end_pfn)
1942 unsigned long nr_free = 0;
1944 for (; pfn < end_pfn; pfn++) {
1945 if (!deferred_pfn_valid(pfn)) {
1946 deferred_free_range(pfn - nr_free, nr_free);
1948 } else if (pageblock_aligned(pfn)) {
1949 deferred_free_range(pfn - nr_free, nr_free);
1955 /* Free the last block of pages to allocator */
1956 deferred_free_range(pfn - nr_free, nr_free);
1960 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1961 * by performing it only once every pageblock_nr_pages.
1962 * Return number of pages initialized.
1964 static unsigned long __init deferred_init_pages(struct zone *zone,
1966 unsigned long end_pfn)
1968 int nid = zone_to_nid(zone);
1969 unsigned long nr_pages = 0;
1970 int zid = zone_idx(zone);
1971 struct page *page = NULL;
1973 for (; pfn < end_pfn; pfn++) {
1974 if (!deferred_pfn_valid(pfn)) {
1977 } else if (!page || pageblock_aligned(pfn)) {
1978 page = pfn_to_page(pfn);
1982 __init_single_page(page, pfn, zid, nid);
1989 * This function is meant to pre-load the iterator for the zone init.
1990 * Specifically it walks through the ranges until we are caught up to the
1991 * first_init_pfn value and exits there. If we never encounter the value we
1992 * return false indicating there are no valid ranges left.
1995 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1996 unsigned long *spfn, unsigned long *epfn,
1997 unsigned long first_init_pfn)
2002 * Start out by walking through the ranges in this zone that have
2003 * already been initialized. We don't need to do anything with them
2004 * so we just need to flush them out of the system.
2006 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2007 if (*epfn <= first_init_pfn)
2009 if (*spfn < first_init_pfn)
2010 *spfn = first_init_pfn;
2019 * Initialize and free pages. We do it in two loops: first we initialize
2020 * struct page, then free to buddy allocator, because while we are
2021 * freeing pages we can access pages that are ahead (computing buddy
2022 * page in __free_one_page()).
2024 * In order to try and keep some memory in the cache we have the loop
2025 * broken along max page order boundaries. This way we will not cause
2026 * any issues with the buddy page computation.
2028 static unsigned long __init
2029 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2030 unsigned long *end_pfn)
2032 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2033 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2034 unsigned long nr_pages = 0;
2037 /* First we loop through and initialize the page values */
2038 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2041 if (mo_pfn <= *start_pfn)
2044 t = min(mo_pfn, *end_pfn);
2045 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2047 if (mo_pfn < *end_pfn) {
2048 *start_pfn = mo_pfn;
2053 /* Reset values and now loop through freeing pages as needed */
2056 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2062 t = min(mo_pfn, epfn);
2063 deferred_free_pages(spfn, t);
2073 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2076 unsigned long spfn, epfn;
2077 struct zone *zone = arg;
2080 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2083 * Initialize and free pages in MAX_ORDER sized increments so that we
2084 * can avoid introducing any issues with the buddy allocator.
2086 while (spfn < end_pfn) {
2087 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2092 /* An arch may override for more concurrency. */
2094 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2099 /* Initialise remaining memory on a node */
2100 static int __init deferred_init_memmap(void *data)
2102 pg_data_t *pgdat = data;
2103 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2104 unsigned long spfn = 0, epfn = 0;
2105 unsigned long first_init_pfn, flags;
2106 unsigned long start = jiffies;
2108 int zid, max_threads;
2111 /* Bind memory initialisation thread to a local node if possible */
2112 if (!cpumask_empty(cpumask))
2113 set_cpus_allowed_ptr(current, cpumask);
2115 pgdat_resize_lock(pgdat, &flags);
2116 first_init_pfn = pgdat->first_deferred_pfn;
2117 if (first_init_pfn == ULONG_MAX) {
2118 pgdat_resize_unlock(pgdat, &flags);
2119 pgdat_init_report_one_done();
2123 /* Sanity check boundaries */
2124 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2125 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2126 pgdat->first_deferred_pfn = ULONG_MAX;
2129 * Once we unlock here, the zone cannot be grown anymore, thus if an
2130 * interrupt thread must allocate this early in boot, zone must be
2131 * pre-grown prior to start of deferred page initialization.
2133 pgdat_resize_unlock(pgdat, &flags);
2135 /* Only the highest zone is deferred so find it */
2136 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2137 zone = pgdat->node_zones + zid;
2138 if (first_init_pfn < zone_end_pfn(zone))
2142 /* If the zone is empty somebody else may have cleared out the zone */
2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2147 max_threads = deferred_page_init_max_threads(cpumask);
2149 while (spfn < epfn) {
2150 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2151 struct padata_mt_job job = {
2152 .thread_fn = deferred_init_memmap_chunk,
2155 .size = epfn_align - spfn,
2156 .align = PAGES_PER_SECTION,
2157 .min_chunk = PAGES_PER_SECTION,
2158 .max_threads = max_threads,
2161 padata_do_multithreaded(&job);
2162 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2166 /* Sanity check that the next zone really is unpopulated */
2167 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2169 pr_info("node %d deferred pages initialised in %ums\n",
2170 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2172 pgdat_init_report_one_done();
2177 * If this zone has deferred pages, try to grow it by initializing enough
2178 * deferred pages to satisfy the allocation specified by order, rounded up to
2179 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2180 * of SECTION_SIZE bytes by initializing struct pages in increments of
2181 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2183 * Return true when zone was grown, otherwise return false. We return true even
2184 * when we grow less than requested, to let the caller decide if there are
2185 * enough pages to satisfy the allocation.
2187 * Note: We use noinline because this function is needed only during boot, and
2188 * it is called from a __ref function _deferred_grow_zone. This way we are
2189 * making sure that it is not inlined into permanent text section.
2191 static noinline bool __init
2192 deferred_grow_zone(struct zone *zone, unsigned int order)
2194 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2195 pg_data_t *pgdat = zone->zone_pgdat;
2196 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2197 unsigned long spfn, epfn, flags;
2198 unsigned long nr_pages = 0;
2201 /* Only the last zone may have deferred pages */
2202 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2205 pgdat_resize_lock(pgdat, &flags);
2208 * If someone grew this zone while we were waiting for spinlock, return
2209 * true, as there might be enough pages already.
2211 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2212 pgdat_resize_unlock(pgdat, &flags);
2216 /* If the zone is empty somebody else may have cleared out the zone */
2217 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2218 first_deferred_pfn)) {
2219 pgdat->first_deferred_pfn = ULONG_MAX;
2220 pgdat_resize_unlock(pgdat, &flags);
2221 /* Retry only once. */
2222 return first_deferred_pfn != ULONG_MAX;
2226 * Initialize and free pages in MAX_ORDER sized increments so
2227 * that we can avoid introducing any issues with the buddy
2230 while (spfn < epfn) {
2231 /* update our first deferred PFN for this section */
2232 first_deferred_pfn = spfn;
2234 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2235 touch_nmi_watchdog();
2237 /* We should only stop along section boundaries */
2238 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2241 /* If our quota has been met we can stop here */
2242 if (nr_pages >= nr_pages_needed)
2246 pgdat->first_deferred_pfn = spfn;
2247 pgdat_resize_unlock(pgdat, &flags);
2249 return nr_pages > 0;
2253 * deferred_grow_zone() is __init, but it is called from
2254 * get_page_from_freelist() during early boot until deferred_pages permanently
2255 * disables this call. This is why we have refdata wrapper to avoid warning,
2256 * and to ensure that the function body gets unloaded.
2259 _deferred_grow_zone(struct zone *zone, unsigned int order)
2261 return deferred_grow_zone(zone, order);
2264 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2266 void __init page_alloc_init_late(void)
2271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2273 /* There will be num_node_state(N_MEMORY) threads */
2274 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2275 for_each_node_state(nid, N_MEMORY) {
2276 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2279 /* Block until all are initialised */
2280 wait_for_completion(&pgdat_init_all_done_comp);
2283 * We initialized the rest of the deferred pages. Permanently disable
2284 * on-demand struct page initialization.
2286 static_branch_disable(&deferred_pages);
2288 /* Reinit limits that are based on free pages after the kernel is up */
2289 files_maxfiles_init();
2294 /* Discard memblock private memory */
2297 for_each_node_state(nid, N_MEMORY)
2298 shuffle_free_memory(NODE_DATA(nid));
2300 for_each_populated_zone(zone)
2301 set_zone_contiguous(zone);
2305 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2306 void __init init_cma_reserved_pageblock(struct page *page)
2308 unsigned i = pageblock_nr_pages;
2309 struct page *p = page;
2312 __ClearPageReserved(p);
2313 set_page_count(p, 0);
2316 set_pageblock_migratetype(page, MIGRATE_CMA);
2317 set_page_refcounted(page);
2318 __free_pages(page, pageblock_order);
2320 adjust_managed_page_count(page, pageblock_nr_pages);
2321 page_zone(page)->cma_pages += pageblock_nr_pages;
2326 * The order of subdivision here is critical for the IO subsystem.
2327 * Please do not alter this order without good reasons and regression
2328 * testing. Specifically, as large blocks of memory are subdivided,
2329 * the order in which smaller blocks are delivered depends on the order
2330 * they're subdivided in this function. This is the primary factor
2331 * influencing the order in which pages are delivered to the IO
2332 * subsystem according to empirical testing, and this is also justified
2333 * by considering the behavior of a buddy system containing a single
2334 * large block of memory acted on by a series of small allocations.
2335 * This behavior is a critical factor in sglist merging's success.
2339 static inline void expand(struct zone *zone, struct page *page,
2340 int low, int high, int migratetype)
2342 unsigned long size = 1 << high;
2344 while (high > low) {
2347 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2350 * Mark as guard pages (or page), that will allow to
2351 * merge back to allocator when buddy will be freed.
2352 * Corresponding page table entries will not be touched,
2353 * pages will stay not present in virtual address space
2355 if (set_page_guard(zone, &page[size], high, migratetype))
2358 add_to_free_list(&page[size], zone, high, migratetype);
2359 set_buddy_order(&page[size], high);
2363 static void check_new_page_bad(struct page *page)
2365 if (unlikely(page->flags & __PG_HWPOISON)) {
2366 /* Don't complain about hwpoisoned pages */
2367 page_mapcount_reset(page); /* remove PageBuddy */
2372 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2376 * This page is about to be returned from the page allocator
2378 static inline int check_new_page(struct page *page)
2380 if (likely(page_expected_state(page,
2381 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2384 check_new_page_bad(page);
2388 static bool check_new_pages(struct page *page, unsigned int order)
2391 for (i = 0; i < (1 << order); i++) {
2392 struct page *p = page + i;
2394 if (unlikely(check_new_page(p)))
2401 #ifdef CONFIG_DEBUG_VM
2403 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2404 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2405 * also checked when pcp lists are refilled from the free lists.
2407 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2409 if (debug_pagealloc_enabled_static())
2410 return check_new_pages(page, order);
2415 static inline bool check_new_pcp(struct page *page, unsigned int order)
2417 return check_new_pages(page, order);
2421 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2422 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2423 * enabled, they are also checked when being allocated from the pcp lists.
2425 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2427 return check_new_pages(page, order);
2429 static inline bool check_new_pcp(struct page *page, unsigned int order)
2431 if (debug_pagealloc_enabled_static())
2432 return check_new_pages(page, order);
2436 #endif /* CONFIG_DEBUG_VM */
2438 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2440 /* Don't skip if a software KASAN mode is enabled. */
2441 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2442 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2445 /* Skip, if hardware tag-based KASAN is not enabled. */
2446 if (!kasan_hw_tags_enabled())
2450 * With hardware tag-based KASAN enabled, skip if this has been
2451 * requested via __GFP_SKIP_KASAN_UNPOISON.
2453 return flags & __GFP_SKIP_KASAN_UNPOISON;
2456 static inline bool should_skip_init(gfp_t flags)
2458 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2459 if (!kasan_hw_tags_enabled())
2462 /* For hardware tag-based KASAN, skip if requested. */
2463 return (flags & __GFP_SKIP_ZERO);
2466 inline void post_alloc_hook(struct page *page, unsigned int order,
2469 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2470 !should_skip_init(gfp_flags);
2471 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2474 set_page_private(page, 0);
2475 set_page_refcounted(page);
2477 arch_alloc_page(page, order);
2478 debug_pagealloc_map_pages(page, 1 << order);
2481 * Page unpoisoning must happen before memory initialization.
2482 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2483 * allocations and the page unpoisoning code will complain.
2485 kernel_unpoison_pages(page, 1 << order);
2488 * As memory initialization might be integrated into KASAN,
2489 * KASAN unpoisoning and memory initializion code must be
2490 * kept together to avoid discrepancies in behavior.
2494 * If memory tags should be zeroed (which happens only when memory
2495 * should be initialized as well).
2498 /* Initialize both memory and tags. */
2499 for (i = 0; i != 1 << order; ++i)
2500 tag_clear_highpage(page + i);
2502 /* Note that memory is already initialized by the loop above. */
2505 if (!should_skip_kasan_unpoison(gfp_flags)) {
2506 /* Unpoison shadow memory or set memory tags. */
2507 kasan_unpoison_pages(page, order, init);
2509 /* Note that memory is already initialized by KASAN. */
2510 if (kasan_has_integrated_init())
2513 /* Ensure page_address() dereferencing does not fault. */
2514 for (i = 0; i != 1 << order; ++i)
2515 page_kasan_tag_reset(page + i);
2517 /* If memory is still not initialized, do it now. */
2519 kernel_init_pages(page, 1 << order);
2520 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2521 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2522 SetPageSkipKASanPoison(page);
2524 set_page_owner(page, order, gfp_flags);
2525 page_table_check_alloc(page, order);
2528 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2529 unsigned int alloc_flags)
2531 post_alloc_hook(page, order, gfp_flags);
2533 if (order && (gfp_flags & __GFP_COMP))
2534 prep_compound_page(page, order);
2537 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2538 * allocate the page. The expectation is that the caller is taking
2539 * steps that will free more memory. The caller should avoid the page
2540 * being used for !PFMEMALLOC purposes.
2542 if (alloc_flags & ALLOC_NO_WATERMARKS)
2543 set_page_pfmemalloc(page);
2545 clear_page_pfmemalloc(page);
2549 * Go through the free lists for the given migratetype and remove
2550 * the smallest available page from the freelists
2552 static __always_inline
2553 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2556 unsigned int current_order;
2557 struct free_area *area;
2560 /* Find a page of the appropriate size in the preferred list */
2561 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2562 area = &(zone->free_area[current_order]);
2563 page = get_page_from_free_area(area, migratetype);
2566 del_page_from_free_list(page, zone, current_order);
2567 expand(zone, page, order, current_order, migratetype);
2568 set_pcppage_migratetype(page, migratetype);
2569 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2570 pcp_allowed_order(order) &&
2571 migratetype < MIGRATE_PCPTYPES);
2580 * This array describes the order lists are fallen back to when
2581 * the free lists for the desirable migrate type are depleted
2583 * The other migratetypes do not have fallbacks.
2585 static int fallbacks[MIGRATE_TYPES][3] = {
2586 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2587 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2588 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2592 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2595 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2598 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2599 unsigned int order) { return NULL; }
2603 * Move the free pages in a range to the freelist tail of the requested type.
2604 * Note that start_page and end_pages are not aligned on a pageblock
2605 * boundary. If alignment is required, use move_freepages_block()
2607 static int move_freepages(struct zone *zone,
2608 unsigned long start_pfn, unsigned long end_pfn,
2609 int migratetype, int *num_movable)
2614 int pages_moved = 0;
2616 for (pfn = start_pfn; pfn <= end_pfn;) {
2617 page = pfn_to_page(pfn);
2618 if (!PageBuddy(page)) {
2620 * We assume that pages that could be isolated for
2621 * migration are movable. But we don't actually try
2622 * isolating, as that would be expensive.
2625 (PageLRU(page) || __PageMovable(page)))
2631 /* Make sure we are not inadvertently changing nodes */
2632 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2633 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2635 order = buddy_order(page);
2636 move_to_free_list(page, zone, order, migratetype);
2638 pages_moved += 1 << order;
2644 int move_freepages_block(struct zone *zone, struct page *page,
2645 int migratetype, int *num_movable)
2647 unsigned long start_pfn, end_pfn, pfn;
2652 pfn = page_to_pfn(page);
2653 start_pfn = pageblock_start_pfn(pfn);
2654 end_pfn = pageblock_end_pfn(pfn) - 1;
2656 /* Do not cross zone boundaries */
2657 if (!zone_spans_pfn(zone, start_pfn))
2659 if (!zone_spans_pfn(zone, end_pfn))
2662 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2666 static void change_pageblock_range(struct page *pageblock_page,
2667 int start_order, int migratetype)
2669 int nr_pageblocks = 1 << (start_order - pageblock_order);
2671 while (nr_pageblocks--) {
2672 set_pageblock_migratetype(pageblock_page, migratetype);
2673 pageblock_page += pageblock_nr_pages;
2678 * When we are falling back to another migratetype during allocation, try to
2679 * steal extra free pages from the same pageblocks to satisfy further
2680 * allocations, instead of polluting multiple pageblocks.
2682 * If we are stealing a relatively large buddy page, it is likely there will
2683 * be more free pages in the pageblock, so try to steal them all. For
2684 * reclaimable and unmovable allocations, we steal regardless of page size,
2685 * as fragmentation caused by those allocations polluting movable pageblocks
2686 * is worse than movable allocations stealing from unmovable and reclaimable
2689 static bool can_steal_fallback(unsigned int order, int start_mt)
2692 * Leaving this order check is intended, although there is
2693 * relaxed order check in next check. The reason is that
2694 * we can actually steal whole pageblock if this condition met,
2695 * but, below check doesn't guarantee it and that is just heuristic
2696 * so could be changed anytime.
2698 if (order >= pageblock_order)
2701 if (order >= pageblock_order / 2 ||
2702 start_mt == MIGRATE_RECLAIMABLE ||
2703 start_mt == MIGRATE_UNMOVABLE ||
2704 page_group_by_mobility_disabled)
2710 static inline bool boost_watermark(struct zone *zone)
2712 unsigned long max_boost;
2714 if (!watermark_boost_factor)
2717 * Don't bother in zones that are unlikely to produce results.
2718 * On small machines, including kdump capture kernels running
2719 * in a small area, boosting the watermark can cause an out of
2720 * memory situation immediately.
2722 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2725 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2726 watermark_boost_factor, 10000);
2729 * high watermark may be uninitialised if fragmentation occurs
2730 * very early in boot so do not boost. We do not fall
2731 * through and boost by pageblock_nr_pages as failing
2732 * allocations that early means that reclaim is not going
2733 * to help and it may even be impossible to reclaim the
2734 * boosted watermark resulting in a hang.
2739 max_boost = max(pageblock_nr_pages, max_boost);
2741 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2748 * This function implements actual steal behaviour. If order is large enough,
2749 * we can steal whole pageblock. If not, we first move freepages in this
2750 * pageblock to our migratetype and determine how many already-allocated pages
2751 * are there in the pageblock with a compatible migratetype. If at least half
2752 * of pages are free or compatible, we can change migratetype of the pageblock
2753 * itself, so pages freed in the future will be put on the correct free list.
2755 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2756 unsigned int alloc_flags, int start_type, bool whole_block)
2758 unsigned int current_order = buddy_order(page);
2759 int free_pages, movable_pages, alike_pages;
2762 old_block_type = get_pageblock_migratetype(page);
2765 * This can happen due to races and we want to prevent broken
2766 * highatomic accounting.
2768 if (is_migrate_highatomic(old_block_type))
2771 /* Take ownership for orders >= pageblock_order */
2772 if (current_order >= pageblock_order) {
2773 change_pageblock_range(page, current_order, start_type);
2778 * Boost watermarks to increase reclaim pressure to reduce the
2779 * likelihood of future fallbacks. Wake kswapd now as the node
2780 * may be balanced overall and kswapd will not wake naturally.
2782 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2783 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2785 /* We are not allowed to try stealing from the whole block */
2789 free_pages = move_freepages_block(zone, page, start_type,
2792 * Determine how many pages are compatible with our allocation.
2793 * For movable allocation, it's the number of movable pages which
2794 * we just obtained. For other types it's a bit more tricky.
2796 if (start_type == MIGRATE_MOVABLE) {
2797 alike_pages = movable_pages;
2800 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2801 * to MOVABLE pageblock, consider all non-movable pages as
2802 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2803 * vice versa, be conservative since we can't distinguish the
2804 * exact migratetype of non-movable pages.
2806 if (old_block_type == MIGRATE_MOVABLE)
2807 alike_pages = pageblock_nr_pages
2808 - (free_pages + movable_pages);
2813 /* moving whole block can fail due to zone boundary conditions */
2818 * If a sufficient number of pages in the block are either free or of
2819 * comparable migratability as our allocation, claim the whole block.
2821 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2822 page_group_by_mobility_disabled)
2823 set_pageblock_migratetype(page, start_type);
2828 move_to_free_list(page, zone, current_order, start_type);
2832 * Check whether there is a suitable fallback freepage with requested order.
2833 * If only_stealable is true, this function returns fallback_mt only if
2834 * we can steal other freepages all together. This would help to reduce
2835 * fragmentation due to mixed migratetype pages in one pageblock.
2837 int find_suitable_fallback(struct free_area *area, unsigned int order,
2838 int migratetype, bool only_stealable, bool *can_steal)
2843 if (area->nr_free == 0)
2848 fallback_mt = fallbacks[migratetype][i];
2849 if (fallback_mt == MIGRATE_TYPES)
2852 if (free_area_empty(area, fallback_mt))
2855 if (can_steal_fallback(order, migratetype))
2858 if (!only_stealable)
2869 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2870 * there are no empty page blocks that contain a page with a suitable order
2872 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2873 unsigned int alloc_order)
2876 unsigned long max_managed, flags;
2879 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2880 * Check is race-prone but harmless.
2882 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2883 if (zone->nr_reserved_highatomic >= max_managed)
2886 spin_lock_irqsave(&zone->lock, flags);
2888 /* Recheck the nr_reserved_highatomic limit under the lock */
2889 if (zone->nr_reserved_highatomic >= max_managed)
2893 mt = get_pageblock_migratetype(page);
2894 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2895 if (migratetype_is_mergeable(mt)) {
2896 zone->nr_reserved_highatomic += pageblock_nr_pages;
2897 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2898 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2902 spin_unlock_irqrestore(&zone->lock, flags);
2906 * Used when an allocation is about to fail under memory pressure. This
2907 * potentially hurts the reliability of high-order allocations when under
2908 * intense memory pressure but failed atomic allocations should be easier
2909 * to recover from than an OOM.
2911 * If @force is true, try to unreserve a pageblock even though highatomic
2912 * pageblock is exhausted.
2914 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2917 struct zonelist *zonelist = ac->zonelist;
2918 unsigned long flags;
2925 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2928 * Preserve at least one pageblock unless memory pressure
2931 if (!force && zone->nr_reserved_highatomic <=
2935 spin_lock_irqsave(&zone->lock, flags);
2936 for (order = 0; order < MAX_ORDER; order++) {
2937 struct free_area *area = &(zone->free_area[order]);
2939 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2944 * In page freeing path, migratetype change is racy so
2945 * we can counter several free pages in a pageblock
2946 * in this loop although we changed the pageblock type
2947 * from highatomic to ac->migratetype. So we should
2948 * adjust the count once.
2950 if (is_migrate_highatomic_page(page)) {
2952 * It should never happen but changes to
2953 * locking could inadvertently allow a per-cpu
2954 * drain to add pages to MIGRATE_HIGHATOMIC
2955 * while unreserving so be safe and watch for
2958 zone->nr_reserved_highatomic -= min(
2960 zone->nr_reserved_highatomic);
2964 * Convert to ac->migratetype and avoid the normal
2965 * pageblock stealing heuristics. Minimally, the caller
2966 * is doing the work and needs the pages. More
2967 * importantly, if the block was always converted to
2968 * MIGRATE_UNMOVABLE or another type then the number
2969 * of pageblocks that cannot be completely freed
2972 set_pageblock_migratetype(page, ac->migratetype);
2973 ret = move_freepages_block(zone, page, ac->migratetype,
2976 spin_unlock_irqrestore(&zone->lock, flags);
2980 spin_unlock_irqrestore(&zone->lock, flags);
2987 * Try finding a free buddy page on the fallback list and put it on the free
2988 * list of requested migratetype, possibly along with other pages from the same
2989 * block, depending on fragmentation avoidance heuristics. Returns true if
2990 * fallback was found so that __rmqueue_smallest() can grab it.
2992 * The use of signed ints for order and current_order is a deliberate
2993 * deviation from the rest of this file, to make the for loop
2994 * condition simpler.
2996 static __always_inline bool
2997 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2998 unsigned int alloc_flags)
3000 struct free_area *area;
3002 int min_order = order;
3008 * Do not steal pages from freelists belonging to other pageblocks
3009 * i.e. orders < pageblock_order. If there are no local zones free,
3010 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3012 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3013 min_order = pageblock_order;
3016 * Find the largest available free page in the other list. This roughly
3017 * approximates finding the pageblock with the most free pages, which
3018 * would be too costly to do exactly.
3020 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3022 area = &(zone->free_area[current_order]);
3023 fallback_mt = find_suitable_fallback(area, current_order,
3024 start_migratetype, false, &can_steal);
3025 if (fallback_mt == -1)
3029 * We cannot steal all free pages from the pageblock and the
3030 * requested migratetype is movable. In that case it's better to
3031 * steal and split the smallest available page instead of the
3032 * largest available page, because even if the next movable
3033 * allocation falls back into a different pageblock than this
3034 * one, it won't cause permanent fragmentation.
3036 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3037 && current_order > order)
3046 for (current_order = order; current_order < MAX_ORDER;
3048 area = &(zone->free_area[current_order]);
3049 fallback_mt = find_suitable_fallback(area, current_order,
3050 start_migratetype, false, &can_steal);
3051 if (fallback_mt != -1)
3056 * This should not happen - we already found a suitable fallback
3057 * when looking for the largest page.
3059 VM_BUG_ON(current_order == MAX_ORDER);
3062 page = get_page_from_free_area(area, fallback_mt);
3064 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3067 trace_mm_page_alloc_extfrag(page, order, current_order,
3068 start_migratetype, fallback_mt);
3075 * Do the hard work of removing an element from the buddy allocator.
3076 * Call me with the zone->lock already held.
3078 static __always_inline struct page *
3079 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3080 unsigned int alloc_flags)
3084 if (IS_ENABLED(CONFIG_CMA)) {
3086 * Balance movable allocations between regular and CMA areas by
3087 * allocating from CMA when over half of the zone's free memory
3088 * is in the CMA area.
3090 if (alloc_flags & ALLOC_CMA &&
3091 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3092 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3093 page = __rmqueue_cma_fallback(zone, order);
3099 page = __rmqueue_smallest(zone, order, migratetype);
3100 if (unlikely(!page)) {
3101 if (alloc_flags & ALLOC_CMA)
3102 page = __rmqueue_cma_fallback(zone, order);
3104 if (!page && __rmqueue_fallback(zone, order, migratetype,
3112 * Obtain a specified number of elements from the buddy allocator, all under
3113 * a single hold of the lock, for efficiency. Add them to the supplied list.
3114 * Returns the number of new pages which were placed at *list.
3116 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3117 unsigned long count, struct list_head *list,
3118 int migratetype, unsigned int alloc_flags)
3120 int i, allocated = 0;
3122 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3123 spin_lock(&zone->lock);
3124 for (i = 0; i < count; ++i) {
3125 struct page *page = __rmqueue(zone, order, migratetype,
3127 if (unlikely(page == NULL))
3130 if (unlikely(check_pcp_refill(page, order)))
3134 * Split buddy pages returned by expand() are received here in
3135 * physical page order. The page is added to the tail of
3136 * caller's list. From the callers perspective, the linked list
3137 * is ordered by page number under some conditions. This is
3138 * useful for IO devices that can forward direction from the
3139 * head, thus also in the physical page order. This is useful
3140 * for IO devices that can merge IO requests if the physical
3141 * pages are ordered properly.
3143 list_add_tail(&page->pcp_list, list);
3145 if (is_migrate_cma(get_pcppage_migratetype(page)))
3146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3151 * i pages were removed from the buddy list even if some leak due
3152 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3153 * on i. Do not confuse with 'allocated' which is the number of
3154 * pages added to the pcp list.
3156 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3157 spin_unlock(&zone->lock);
3163 * Called from the vmstat counter updater to drain pagesets of this
3164 * currently executing processor on remote nodes after they have
3167 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3169 int to_drain, batch;
3171 batch = READ_ONCE(pcp->batch);
3172 to_drain = min(pcp->count, batch);
3174 unsigned long flags;
3177 * free_pcppages_bulk expects IRQs disabled for zone->lock
3178 * so even though pcp->lock is not intended to be IRQ-safe,
3179 * it's needed in this context.
3181 spin_lock_irqsave(&pcp->lock, flags);
3182 free_pcppages_bulk(zone, to_drain, pcp, 0);
3183 spin_unlock_irqrestore(&pcp->lock, flags);
3189 * Drain pcplists of the indicated processor and zone.
3191 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3193 struct per_cpu_pages *pcp;
3195 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3197 unsigned long flags;
3199 /* See drain_zone_pages on why this is disabling IRQs */
3200 spin_lock_irqsave(&pcp->lock, flags);
3201 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3202 spin_unlock_irqrestore(&pcp->lock, flags);
3207 * Drain pcplists of all zones on the indicated processor.
3209 static void drain_pages(unsigned int cpu)
3213 for_each_populated_zone(zone) {
3214 drain_pages_zone(cpu, zone);
3219 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3221 void drain_local_pages(struct zone *zone)
3223 int cpu = smp_processor_id();
3226 drain_pages_zone(cpu, zone);
3232 * The implementation of drain_all_pages(), exposing an extra parameter to
3233 * drain on all cpus.
3235 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3236 * not empty. The check for non-emptiness can however race with a free to
3237 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3238 * that need the guarantee that every CPU has drained can disable the
3239 * optimizing racy check.
3241 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3246 * Allocate in the BSS so we won't require allocation in
3247 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3249 static cpumask_t cpus_with_pcps;
3252 * Do not drain if one is already in progress unless it's specific to
3253 * a zone. Such callers are primarily CMA and memory hotplug and need
3254 * the drain to be complete when the call returns.
3256 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3259 mutex_lock(&pcpu_drain_mutex);
3263 * We don't care about racing with CPU hotplug event
3264 * as offline notification will cause the notified
3265 * cpu to drain that CPU pcps and on_each_cpu_mask
3266 * disables preemption as part of its processing
3268 for_each_online_cpu(cpu) {
3269 struct per_cpu_pages *pcp;
3271 bool has_pcps = false;
3273 if (force_all_cpus) {
3275 * The pcp.count check is racy, some callers need a
3276 * guarantee that no cpu is missed.
3280 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3284 for_each_populated_zone(z) {
3285 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 cpumask_set_cpu(cpu, &cpus_with_pcps);
3296 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3299 for_each_cpu(cpu, &cpus_with_pcps) {
3301 drain_pages_zone(cpu, zone);
3306 mutex_unlock(&pcpu_drain_mutex);
3310 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3312 * When zone parameter is non-NULL, spill just the single zone's pages.
3314 void drain_all_pages(struct zone *zone)
3316 __drain_all_pages(zone, false);
3319 #ifdef CONFIG_HIBERNATION
3322 * Touch the watchdog for every WD_PAGE_COUNT pages.
3324 #define WD_PAGE_COUNT (128*1024)
3326 void mark_free_pages(struct zone *zone)
3328 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3329 unsigned long flags;
3330 unsigned int order, t;
3333 if (zone_is_empty(zone))
3336 spin_lock_irqsave(&zone->lock, flags);
3338 max_zone_pfn = zone_end_pfn(zone);
3339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3340 if (pfn_valid(pfn)) {
3341 page = pfn_to_page(pfn);
3343 if (!--page_count) {
3344 touch_nmi_watchdog();
3345 page_count = WD_PAGE_COUNT;
3348 if (page_zone(page) != zone)
3351 if (!swsusp_page_is_forbidden(page))
3352 swsusp_unset_page_free(page);
3355 for_each_migratetype_order(order, t) {
3356 list_for_each_entry(page,
3357 &zone->free_area[order].free_list[t], buddy_list) {
3360 pfn = page_to_pfn(page);
3361 for (i = 0; i < (1UL << order); i++) {
3362 if (!--page_count) {
3363 touch_nmi_watchdog();
3364 page_count = WD_PAGE_COUNT;
3366 swsusp_set_page_free(pfn_to_page(pfn + i));
3370 spin_unlock_irqrestore(&zone->lock, flags);
3372 #endif /* CONFIG_PM */
3374 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3379 if (!free_pcp_prepare(page, order))
3382 migratetype = get_pfnblock_migratetype(page, pfn);
3383 set_pcppage_migratetype(page, migratetype);
3387 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3390 int min_nr_free, max_nr_free;
3392 /* Free everything if batch freeing high-order pages. */
3393 if (unlikely(free_high))
3396 /* Check for PCP disabled or boot pageset */
3397 if (unlikely(high < batch))
3400 /* Leave at least pcp->batch pages on the list */
3401 min_nr_free = batch;
3402 max_nr_free = high - batch;
3405 * Double the number of pages freed each time there is subsequent
3406 * freeing of pages without any allocation.
3408 batch <<= pcp->free_factor;
3409 if (batch < max_nr_free)
3411 batch = clamp(batch, min_nr_free, max_nr_free);
3416 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3419 int high = READ_ONCE(pcp->high);
3421 if (unlikely(!high || free_high))
3424 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3428 * If reclaim is active, limit the number of pages that can be
3429 * stored on pcp lists
3431 return min(READ_ONCE(pcp->batch) << 2, high);
3434 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3435 struct page *page, int migratetype,
3442 __count_vm_event(PGFREE);
3443 pindex = order_to_pindex(migratetype, order);
3444 list_add(&page->pcp_list, &pcp->lists[pindex]);
3445 pcp->count += 1 << order;
3448 * As high-order pages other than THP's stored on PCP can contribute
3449 * to fragmentation, limit the number stored when PCP is heavily
3450 * freeing without allocation. The remainder after bulk freeing
3451 * stops will be drained from vmstat refresh context.
3453 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3455 high = nr_pcp_high(pcp, zone, free_high);
3456 if (pcp->count >= high) {
3457 int batch = READ_ONCE(pcp->batch);
3459 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3466 void free_unref_page(struct page *page, unsigned int order)
3468 unsigned long flags;
3469 unsigned long __maybe_unused UP_flags;
3470 struct per_cpu_pages *pcp;
3472 unsigned long pfn = page_to_pfn(page);
3475 if (!free_unref_page_prepare(page, pfn, order))
3479 * We only track unmovable, reclaimable and movable on pcp lists.
3480 * Place ISOLATE pages on the isolated list because they are being
3481 * offlined but treat HIGHATOMIC as movable pages so we can get those
3482 * areas back if necessary. Otherwise, we may have to free
3483 * excessively into the page allocator
3485 migratetype = get_pcppage_migratetype(page);
3486 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3487 if (unlikely(is_migrate_isolate(migratetype))) {
3488 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3491 migratetype = MIGRATE_MOVABLE;
3494 zone = page_zone(page);
3495 pcp_trylock_prepare(UP_flags);
3496 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3498 free_unref_page_commit(zone, pcp, page, migratetype, order);
3499 pcp_spin_unlock_irqrestore(pcp, flags);
3501 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3503 pcp_trylock_finish(UP_flags);
3507 * Free a list of 0-order pages
3509 void free_unref_page_list(struct list_head *list)
3511 struct page *page, *next;
3512 struct per_cpu_pages *pcp = NULL;
3513 struct zone *locked_zone = NULL;
3514 unsigned long flags;
3515 int batch_count = 0;
3518 /* Prepare pages for freeing */
3519 list_for_each_entry_safe(page, next, list, lru) {
3520 unsigned long pfn = page_to_pfn(page);
3521 if (!free_unref_page_prepare(page, pfn, 0)) {
3522 list_del(&page->lru);
3527 * Free isolated pages directly to the allocator, see
3528 * comment in free_unref_page.
3530 migratetype = get_pcppage_migratetype(page);
3531 if (unlikely(is_migrate_isolate(migratetype))) {
3532 list_del(&page->lru);
3533 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3538 list_for_each_entry_safe(page, next, list, lru) {
3539 struct zone *zone = page_zone(page);
3541 /* Different zone, different pcp lock. */
3542 if (zone != locked_zone) {
3544 pcp_spin_unlock_irqrestore(pcp, flags);
3547 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3551 * Non-isolated types over MIGRATE_PCPTYPES get added
3552 * to the MIGRATE_MOVABLE pcp list.
3554 migratetype = get_pcppage_migratetype(page);
3555 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3556 migratetype = MIGRATE_MOVABLE;
3558 trace_mm_page_free_batched(page);
3559 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3562 * Guard against excessive IRQ disabled times when we get
3563 * a large list of pages to free.
3565 if (++batch_count == SWAP_CLUSTER_MAX) {
3566 pcp_spin_unlock_irqrestore(pcp, flags);
3568 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3573 pcp_spin_unlock_irqrestore(pcp, flags);
3577 * split_page takes a non-compound higher-order page, and splits it into
3578 * n (1<<order) sub-pages: page[0..n]
3579 * Each sub-page must be freed individually.
3581 * Note: this is probably too low level an operation for use in drivers.
3582 * Please consult with lkml before using this in your driver.
3584 void split_page(struct page *page, unsigned int order)
3588 VM_BUG_ON_PAGE(PageCompound(page), page);
3589 VM_BUG_ON_PAGE(!page_count(page), page);
3591 for (i = 1; i < (1 << order); i++)
3592 set_page_refcounted(page + i);
3593 split_page_owner(page, 1 << order);
3594 split_page_memcg(page, 1 << order);
3596 EXPORT_SYMBOL_GPL(split_page);
3598 int __isolate_free_page(struct page *page, unsigned int order)
3600 struct zone *zone = page_zone(page);
3601 int mt = get_pageblock_migratetype(page);
3603 if (!is_migrate_isolate(mt)) {
3604 unsigned long watermark;
3606 * Obey watermarks as if the page was being allocated. We can
3607 * emulate a high-order watermark check with a raised order-0
3608 * watermark, because we already know our high-order page
3611 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3612 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3615 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3618 del_page_from_free_list(page, zone, order);
3621 * Set the pageblock if the isolated page is at least half of a
3624 if (order >= pageblock_order - 1) {
3625 struct page *endpage = page + (1 << order) - 1;
3626 for (; page < endpage; page += pageblock_nr_pages) {
3627 int mt = get_pageblock_migratetype(page);
3629 * Only change normal pageblocks (i.e., they can merge
3632 if (migratetype_is_mergeable(mt))
3633 set_pageblock_migratetype(page,
3638 return 1UL << order;
3642 * __putback_isolated_page - Return a now-isolated page back where we got it
3643 * @page: Page that was isolated
3644 * @order: Order of the isolated page
3645 * @mt: The page's pageblock's migratetype
3647 * This function is meant to return a page pulled from the free lists via
3648 * __isolate_free_page back to the free lists they were pulled from.
3650 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3652 struct zone *zone = page_zone(page);
3654 /* zone lock should be held when this function is called */
3655 lockdep_assert_held(&zone->lock);
3657 /* Return isolated page to tail of freelist. */
3658 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3659 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3663 * Update NUMA hit/miss statistics
3665 * Must be called with interrupts disabled.
3667 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3671 enum numa_stat_item local_stat = NUMA_LOCAL;
3673 /* skip numa counters update if numa stats is disabled */
3674 if (!static_branch_likely(&vm_numa_stat_key))
3677 if (zone_to_nid(z) != numa_node_id())
3678 local_stat = NUMA_OTHER;
3680 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3681 __count_numa_events(z, NUMA_HIT, nr_account);
3683 __count_numa_events(z, NUMA_MISS, nr_account);
3684 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3686 __count_numa_events(z, local_stat, nr_account);
3690 static __always_inline
3691 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3692 unsigned int order, unsigned int alloc_flags,
3696 unsigned long flags;
3700 spin_lock_irqsave(&zone->lock, flags);
3702 * order-0 request can reach here when the pcplist is skipped
3703 * due to non-CMA allocation context. HIGHATOMIC area is
3704 * reserved for high-order atomic allocation, so order-0
3705 * request should skip it.
3707 if (order > 0 && alloc_flags & ALLOC_HARDER)
3708 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3710 page = __rmqueue(zone, order, migratetype, alloc_flags);
3712 spin_unlock_irqrestore(&zone->lock, flags);
3716 __mod_zone_freepage_state(zone, -(1 << order),
3717 get_pcppage_migratetype(page));
3718 spin_unlock_irqrestore(&zone->lock, flags);
3719 } while (check_new_pages(page, order));
3721 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3722 zone_statistics(preferred_zone, zone, 1);
3727 /* Remove page from the per-cpu list, caller must protect the list */
3729 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3731 unsigned int alloc_flags,
3732 struct per_cpu_pages *pcp,
3733 struct list_head *list)
3738 if (list_empty(list)) {
3739 int batch = READ_ONCE(pcp->batch);
3743 * Scale batch relative to order if batch implies
3744 * free pages can be stored on the PCP. Batch can
3745 * be 1 for small zones or for boot pagesets which
3746 * should never store free pages as the pages may
3747 * belong to arbitrary zones.
3750 batch = max(batch >> order, 2);
3751 alloced = rmqueue_bulk(zone, order,
3753 migratetype, alloc_flags);
3755 pcp->count += alloced << order;
3756 if (unlikely(list_empty(list)))
3760 page = list_first_entry(list, struct page, pcp_list);
3761 list_del(&page->pcp_list);
3762 pcp->count -= 1 << order;
3763 } while (check_new_pcp(page, order));
3768 /* Lock and remove page from the per-cpu list */
3769 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3770 struct zone *zone, unsigned int order,
3771 int migratetype, unsigned int alloc_flags)
3773 struct per_cpu_pages *pcp;
3774 struct list_head *list;
3776 unsigned long flags;
3777 unsigned long __maybe_unused UP_flags;
3780 * spin_trylock may fail due to a parallel drain. In the future, the
3781 * trylock will also protect against IRQ reentrancy.
3783 pcp_trylock_prepare(UP_flags);
3784 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3786 pcp_trylock_finish(UP_flags);
3791 * On allocation, reduce the number of pages that are batch freed.
3792 * See nr_pcp_free() where free_factor is increased for subsequent
3795 pcp->free_factor >>= 1;
3796 list = &pcp->lists[order_to_pindex(migratetype, order)];
3797 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3798 pcp_spin_unlock_irqrestore(pcp, flags);
3799 pcp_trylock_finish(UP_flags);
3801 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3802 zone_statistics(preferred_zone, zone, 1);
3808 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3811 struct page *rmqueue(struct zone *preferred_zone,
3812 struct zone *zone, unsigned int order,
3813 gfp_t gfp_flags, unsigned int alloc_flags,
3819 * We most definitely don't want callers attempting to
3820 * allocate greater than order-1 page units with __GFP_NOFAIL.
3822 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3824 if (likely(pcp_allowed_order(order))) {
3826 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3827 * we need to skip it when CMA area isn't allowed.
3829 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3830 migratetype != MIGRATE_MOVABLE) {
3831 page = rmqueue_pcplist(preferred_zone, zone, order,
3832 migratetype, alloc_flags);
3838 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3842 /* Separate test+clear to avoid unnecessary atomics */
3843 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3844 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3845 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3848 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3852 #ifdef CONFIG_FAIL_PAGE_ALLOC
3855 struct fault_attr attr;
3857 bool ignore_gfp_highmem;
3858 bool ignore_gfp_reclaim;
3860 } fail_page_alloc = {
3861 .attr = FAULT_ATTR_INITIALIZER,
3862 .ignore_gfp_reclaim = true,
3863 .ignore_gfp_highmem = true,
3867 static int __init setup_fail_page_alloc(char *str)
3869 return setup_fault_attr(&fail_page_alloc.attr, str);
3871 __setup("fail_page_alloc=", setup_fail_page_alloc);
3873 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3875 if (order < fail_page_alloc.min_order)
3877 if (gfp_mask & __GFP_NOFAIL)
3879 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3881 if (fail_page_alloc.ignore_gfp_reclaim &&
3882 (gfp_mask & __GFP_DIRECT_RECLAIM))
3885 if (gfp_mask & __GFP_NOWARN)
3886 fail_page_alloc.attr.no_warn = true;
3888 return should_fail(&fail_page_alloc.attr, 1 << order);
3891 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3893 static int __init fail_page_alloc_debugfs(void)
3895 umode_t mode = S_IFREG | 0600;
3898 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3899 &fail_page_alloc.attr);
3901 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3902 &fail_page_alloc.ignore_gfp_reclaim);
3903 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3904 &fail_page_alloc.ignore_gfp_highmem);
3905 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3910 late_initcall(fail_page_alloc_debugfs);
3912 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3914 #else /* CONFIG_FAIL_PAGE_ALLOC */
3916 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3921 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3923 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3925 return __should_fail_alloc_page(gfp_mask, order);
3927 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3929 static inline long __zone_watermark_unusable_free(struct zone *z,
3930 unsigned int order, unsigned int alloc_flags)
3932 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3933 long unusable_free = (1 << order) - 1;
3936 * If the caller does not have rights to ALLOC_HARDER then subtract
3937 * the high-atomic reserves. This will over-estimate the size of the
3938 * atomic reserve but it avoids a search.
3940 if (likely(!alloc_harder))
3941 unusable_free += z->nr_reserved_highatomic;
3944 /* If allocation can't use CMA areas don't use free CMA pages */
3945 if (!(alloc_flags & ALLOC_CMA))
3946 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3949 return unusable_free;
3953 * Return true if free base pages are above 'mark'. For high-order checks it
3954 * will return true of the order-0 watermark is reached and there is at least
3955 * one free page of a suitable size. Checking now avoids taking the zone lock
3956 * to check in the allocation paths if no pages are free.
3958 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3959 int highest_zoneidx, unsigned int alloc_flags,
3964 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3966 /* free_pages may go negative - that's OK */
3967 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3969 if (alloc_flags & ALLOC_HIGH)
3972 if (unlikely(alloc_harder)) {
3974 * OOM victims can try even harder than normal ALLOC_HARDER
3975 * users on the grounds that it's definitely going to be in
3976 * the exit path shortly and free memory. Any allocation it
3977 * makes during the free path will be small and short-lived.
3979 if (alloc_flags & ALLOC_OOM)
3986 * Check watermarks for an order-0 allocation request. If these
3987 * are not met, then a high-order request also cannot go ahead
3988 * even if a suitable page happened to be free.
3990 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3993 /* If this is an order-0 request then the watermark is fine */
3997 /* For a high-order request, check at least one suitable page is free */
3998 for (o = order; o < MAX_ORDER; o++) {
3999 struct free_area *area = &z->free_area[o];
4005 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4006 if (!free_area_empty(area, mt))
4011 if ((alloc_flags & ALLOC_CMA) &&
4012 !free_area_empty(area, MIGRATE_CMA)) {
4016 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4022 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4023 int highest_zoneidx, unsigned int alloc_flags)
4025 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4026 zone_page_state(z, NR_FREE_PAGES));
4029 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4030 unsigned long mark, int highest_zoneidx,
4031 unsigned int alloc_flags, gfp_t gfp_mask)
4035 free_pages = zone_page_state(z, NR_FREE_PAGES);
4038 * Fast check for order-0 only. If this fails then the reserves
4039 * need to be calculated.
4045 usable_free = free_pages;
4046 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4048 /* reserved may over estimate high-atomic reserves. */
4049 usable_free -= min(usable_free, reserved);
4050 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4054 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4058 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4059 * when checking the min watermark. The min watermark is the
4060 * point where boosting is ignored so that kswapd is woken up
4061 * when below the low watermark.
4063 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4064 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4065 mark = z->_watermark[WMARK_MIN];
4066 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4067 alloc_flags, free_pages);
4073 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4074 unsigned long mark, int highest_zoneidx)
4076 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4078 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4079 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4081 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4086 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4088 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4090 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4091 node_reclaim_distance;
4093 #else /* CONFIG_NUMA */
4094 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4098 #endif /* CONFIG_NUMA */
4101 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4102 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4103 * premature use of a lower zone may cause lowmem pressure problems that
4104 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4105 * probably too small. It only makes sense to spread allocations to avoid
4106 * fragmentation between the Normal and DMA32 zones.
4108 static inline unsigned int
4109 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4111 unsigned int alloc_flags;
4114 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4117 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4119 #ifdef CONFIG_ZONE_DMA32
4123 if (zone_idx(zone) != ZONE_NORMAL)
4127 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4128 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4129 * on UMA that if Normal is populated then so is DMA32.
4131 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4132 if (nr_online_nodes > 1 && !populated_zone(--zone))
4135 alloc_flags |= ALLOC_NOFRAGMENT;
4136 #endif /* CONFIG_ZONE_DMA32 */
4140 /* Must be called after current_gfp_context() which can change gfp_mask */
4141 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4142 unsigned int alloc_flags)
4145 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4146 alloc_flags |= ALLOC_CMA;
4152 * get_page_from_freelist goes through the zonelist trying to allocate
4155 static struct page *
4156 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4157 const struct alloc_context *ac)
4161 struct pglist_data *last_pgdat = NULL;
4162 bool last_pgdat_dirty_ok = false;
4167 * Scan zonelist, looking for a zone with enough free.
4168 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4170 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4171 z = ac->preferred_zoneref;
4172 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4177 if (cpusets_enabled() &&
4178 (alloc_flags & ALLOC_CPUSET) &&
4179 !__cpuset_zone_allowed(zone, gfp_mask))
4182 * When allocating a page cache page for writing, we
4183 * want to get it from a node that is within its dirty
4184 * limit, such that no single node holds more than its
4185 * proportional share of globally allowed dirty pages.
4186 * The dirty limits take into account the node's
4187 * lowmem reserves and high watermark so that kswapd
4188 * should be able to balance it without having to
4189 * write pages from its LRU list.
4191 * XXX: For now, allow allocations to potentially
4192 * exceed the per-node dirty limit in the slowpath
4193 * (spread_dirty_pages unset) before going into reclaim,
4194 * which is important when on a NUMA setup the allowed
4195 * nodes are together not big enough to reach the
4196 * global limit. The proper fix for these situations
4197 * will require awareness of nodes in the
4198 * dirty-throttling and the flusher threads.
4200 if (ac->spread_dirty_pages) {
4201 if (last_pgdat != zone->zone_pgdat) {
4202 last_pgdat = zone->zone_pgdat;
4203 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4206 if (!last_pgdat_dirty_ok)
4210 if (no_fallback && nr_online_nodes > 1 &&
4211 zone != ac->preferred_zoneref->zone) {
4215 * If moving to a remote node, retry but allow
4216 * fragmenting fallbacks. Locality is more important
4217 * than fragmentation avoidance.
4219 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4220 if (zone_to_nid(zone) != local_nid) {
4221 alloc_flags &= ~ALLOC_NOFRAGMENT;
4226 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4227 if (!zone_watermark_fast(zone, order, mark,
4228 ac->highest_zoneidx, alloc_flags,
4232 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4234 * Watermark failed for this zone, but see if we can
4235 * grow this zone if it contains deferred pages.
4237 if (static_branch_unlikely(&deferred_pages)) {
4238 if (_deferred_grow_zone(zone, order))
4242 /* Checked here to keep the fast path fast */
4243 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4244 if (alloc_flags & ALLOC_NO_WATERMARKS)
4247 if (!node_reclaim_enabled() ||
4248 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4251 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4253 case NODE_RECLAIM_NOSCAN:
4256 case NODE_RECLAIM_FULL:
4257 /* scanned but unreclaimable */
4260 /* did we reclaim enough */
4261 if (zone_watermark_ok(zone, order, mark,
4262 ac->highest_zoneidx, alloc_flags))
4270 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4271 gfp_mask, alloc_flags, ac->migratetype);
4273 prep_new_page(page, order, gfp_mask, alloc_flags);
4276 * If this is a high-order atomic allocation then check
4277 * if the pageblock should be reserved for the future
4279 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4280 reserve_highatomic_pageblock(page, zone, order);
4284 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4285 /* Try again if zone has deferred pages */
4286 if (static_branch_unlikely(&deferred_pages)) {
4287 if (_deferred_grow_zone(zone, order))
4295 * It's possible on a UMA machine to get through all zones that are
4296 * fragmented. If avoiding fragmentation, reset and try again.
4299 alloc_flags &= ~ALLOC_NOFRAGMENT;
4306 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4308 unsigned int filter = SHOW_MEM_FILTER_NODES;
4311 * This documents exceptions given to allocations in certain
4312 * contexts that are allowed to allocate outside current's set
4315 if (!(gfp_mask & __GFP_NOMEMALLOC))
4316 if (tsk_is_oom_victim(current) ||
4317 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4318 filter &= ~SHOW_MEM_FILTER_NODES;
4319 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4320 filter &= ~SHOW_MEM_FILTER_NODES;
4322 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4325 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4327 struct va_format vaf;
4329 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4331 if ((gfp_mask & __GFP_NOWARN) ||
4332 !__ratelimit(&nopage_rs) ||
4333 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4336 va_start(args, fmt);
4339 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4340 current->comm, &vaf, gfp_mask, &gfp_mask,
4341 nodemask_pr_args(nodemask));
4344 cpuset_print_current_mems_allowed();
4347 warn_alloc_show_mem(gfp_mask, nodemask);
4350 static inline struct page *
4351 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4352 unsigned int alloc_flags,
4353 const struct alloc_context *ac)
4357 page = get_page_from_freelist(gfp_mask, order,
4358 alloc_flags|ALLOC_CPUSET, ac);
4360 * fallback to ignore cpuset restriction if our nodes
4364 page = get_page_from_freelist(gfp_mask, order,
4370 static inline struct page *
4371 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4372 const struct alloc_context *ac, unsigned long *did_some_progress)
4374 struct oom_control oc = {
4375 .zonelist = ac->zonelist,
4376 .nodemask = ac->nodemask,
4378 .gfp_mask = gfp_mask,
4383 *did_some_progress = 0;
4386 * Acquire the oom lock. If that fails, somebody else is
4387 * making progress for us.
4389 if (!mutex_trylock(&oom_lock)) {
4390 *did_some_progress = 1;
4391 schedule_timeout_uninterruptible(1);
4396 * Go through the zonelist yet one more time, keep very high watermark
4397 * here, this is only to catch a parallel oom killing, we must fail if
4398 * we're still under heavy pressure. But make sure that this reclaim
4399 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4400 * allocation which will never fail due to oom_lock already held.
4402 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4403 ~__GFP_DIRECT_RECLAIM, order,
4404 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4408 /* Coredumps can quickly deplete all memory reserves */
4409 if (current->flags & PF_DUMPCORE)
4411 /* The OOM killer will not help higher order allocs */
4412 if (order > PAGE_ALLOC_COSTLY_ORDER)
4415 * We have already exhausted all our reclaim opportunities without any
4416 * success so it is time to admit defeat. We will skip the OOM killer
4417 * because it is very likely that the caller has a more reasonable
4418 * fallback than shooting a random task.
4420 * The OOM killer may not free memory on a specific node.
4422 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4424 /* The OOM killer does not needlessly kill tasks for lowmem */
4425 if (ac->highest_zoneidx < ZONE_NORMAL)
4427 if (pm_suspended_storage())
4430 * XXX: GFP_NOFS allocations should rather fail than rely on
4431 * other request to make a forward progress.
4432 * We are in an unfortunate situation where out_of_memory cannot
4433 * do much for this context but let's try it to at least get
4434 * access to memory reserved if the current task is killed (see
4435 * out_of_memory). Once filesystems are ready to handle allocation
4436 * failures more gracefully we should just bail out here.
4439 /* Exhausted what can be done so it's blame time */
4440 if (out_of_memory(&oc) ||
4441 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4442 *did_some_progress = 1;
4445 * Help non-failing allocations by giving them access to memory
4448 if (gfp_mask & __GFP_NOFAIL)
4449 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4450 ALLOC_NO_WATERMARKS, ac);
4453 mutex_unlock(&oom_lock);
4458 * Maximum number of compaction retries with a progress before OOM
4459 * killer is consider as the only way to move forward.
4461 #define MAX_COMPACT_RETRIES 16
4463 #ifdef CONFIG_COMPACTION
4464 /* Try memory compaction for high-order allocations before reclaim */
4465 static struct page *
4466 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4467 unsigned int alloc_flags, const struct alloc_context *ac,
4468 enum compact_priority prio, enum compact_result *compact_result)
4470 struct page *page = NULL;
4471 unsigned long pflags;
4472 unsigned int noreclaim_flag;
4477 psi_memstall_enter(&pflags);
4478 delayacct_compact_start();
4479 noreclaim_flag = memalloc_noreclaim_save();
4481 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4484 memalloc_noreclaim_restore(noreclaim_flag);
4485 psi_memstall_leave(&pflags);
4486 delayacct_compact_end();
4488 if (*compact_result == COMPACT_SKIPPED)
4491 * At least in one zone compaction wasn't deferred or skipped, so let's
4492 * count a compaction stall
4494 count_vm_event(COMPACTSTALL);
4496 /* Prep a captured page if available */
4498 prep_new_page(page, order, gfp_mask, alloc_flags);
4500 /* Try get a page from the freelist if available */
4502 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4505 struct zone *zone = page_zone(page);
4507 zone->compact_blockskip_flush = false;
4508 compaction_defer_reset(zone, order, true);
4509 count_vm_event(COMPACTSUCCESS);
4514 * It's bad if compaction run occurs and fails. The most likely reason
4515 * is that pages exist, but not enough to satisfy watermarks.
4517 count_vm_event(COMPACTFAIL);
4525 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4526 enum compact_result compact_result,
4527 enum compact_priority *compact_priority,
4528 int *compaction_retries)
4530 int max_retries = MAX_COMPACT_RETRIES;
4533 int retries = *compaction_retries;
4534 enum compact_priority priority = *compact_priority;
4539 if (fatal_signal_pending(current))
4542 if (compaction_made_progress(compact_result))
4543 (*compaction_retries)++;
4546 * compaction considers all the zone as desperately out of memory
4547 * so it doesn't really make much sense to retry except when the
4548 * failure could be caused by insufficient priority
4550 if (compaction_failed(compact_result))
4551 goto check_priority;
4554 * compaction was skipped because there are not enough order-0 pages
4555 * to work with, so we retry only if it looks like reclaim can help.
4557 if (compaction_needs_reclaim(compact_result)) {
4558 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4563 * make sure the compaction wasn't deferred or didn't bail out early
4564 * due to locks contention before we declare that we should give up.
4565 * But the next retry should use a higher priority if allowed, so
4566 * we don't just keep bailing out endlessly.
4568 if (compaction_withdrawn(compact_result)) {
4569 goto check_priority;
4573 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4574 * costly ones because they are de facto nofail and invoke OOM
4575 * killer to move on while costly can fail and users are ready
4576 * to cope with that. 1/4 retries is rather arbitrary but we
4577 * would need much more detailed feedback from compaction to
4578 * make a better decision.
4580 if (order > PAGE_ALLOC_COSTLY_ORDER)
4582 if (*compaction_retries <= max_retries) {
4588 * Make sure there are attempts at the highest priority if we exhausted
4589 * all retries or failed at the lower priorities.
4592 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4593 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4595 if (*compact_priority > min_priority) {
4596 (*compact_priority)--;
4597 *compaction_retries = 0;
4601 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4605 static inline struct page *
4606 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4607 unsigned int alloc_flags, const struct alloc_context *ac,
4608 enum compact_priority prio, enum compact_result *compact_result)
4610 *compact_result = COMPACT_SKIPPED;
4615 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4616 enum compact_result compact_result,
4617 enum compact_priority *compact_priority,
4618 int *compaction_retries)
4623 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4627 * There are setups with compaction disabled which would prefer to loop
4628 * inside the allocator rather than hit the oom killer prematurely.
4629 * Let's give them a good hope and keep retrying while the order-0
4630 * watermarks are OK.
4632 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4633 ac->highest_zoneidx, ac->nodemask) {
4634 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4635 ac->highest_zoneidx, alloc_flags))
4640 #endif /* CONFIG_COMPACTION */
4642 #ifdef CONFIG_LOCKDEP
4643 static struct lockdep_map __fs_reclaim_map =
4644 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4646 static bool __need_reclaim(gfp_t gfp_mask)
4648 /* no reclaim without waiting on it */
4649 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4652 /* this guy won't enter reclaim */
4653 if (current->flags & PF_MEMALLOC)
4656 if (gfp_mask & __GFP_NOLOCKDEP)
4662 void __fs_reclaim_acquire(unsigned long ip)
4664 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4667 void __fs_reclaim_release(unsigned long ip)
4669 lock_release(&__fs_reclaim_map, ip);
4672 void fs_reclaim_acquire(gfp_t gfp_mask)
4674 gfp_mask = current_gfp_context(gfp_mask);
4676 if (__need_reclaim(gfp_mask)) {
4677 if (gfp_mask & __GFP_FS)
4678 __fs_reclaim_acquire(_RET_IP_);
4680 #ifdef CONFIG_MMU_NOTIFIER
4681 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4682 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4687 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4689 void fs_reclaim_release(gfp_t gfp_mask)
4691 gfp_mask = current_gfp_context(gfp_mask);
4693 if (__need_reclaim(gfp_mask)) {
4694 if (gfp_mask & __GFP_FS)
4695 __fs_reclaim_release(_RET_IP_);
4698 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4702 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4703 * have been rebuilt so allocation retries. Reader side does not lock and
4704 * retries the allocation if zonelist changes. Writer side is protected by the
4705 * embedded spin_lock.
4707 static DEFINE_SEQLOCK(zonelist_update_seq);
4709 static unsigned int zonelist_iter_begin(void)
4711 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4712 return read_seqbegin(&zonelist_update_seq);
4717 static unsigned int check_retry_zonelist(unsigned int seq)
4719 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4720 return read_seqretry(&zonelist_update_seq, seq);
4725 /* Perform direct synchronous page reclaim */
4726 static unsigned long
4727 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4728 const struct alloc_context *ac)
4730 unsigned int noreclaim_flag;
4731 unsigned long progress;
4735 /* We now go into synchronous reclaim */
4736 cpuset_memory_pressure_bump();
4737 fs_reclaim_acquire(gfp_mask);
4738 noreclaim_flag = memalloc_noreclaim_save();
4740 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4743 memalloc_noreclaim_restore(noreclaim_flag);
4744 fs_reclaim_release(gfp_mask);
4751 /* The really slow allocator path where we enter direct reclaim */
4752 static inline struct page *
4753 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4754 unsigned int alloc_flags, const struct alloc_context *ac,
4755 unsigned long *did_some_progress)
4757 struct page *page = NULL;
4758 unsigned long pflags;
4759 bool drained = false;
4761 psi_memstall_enter(&pflags);
4762 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4763 if (unlikely(!(*did_some_progress)))
4767 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4770 * If an allocation failed after direct reclaim, it could be because
4771 * pages are pinned on the per-cpu lists or in high alloc reserves.
4772 * Shrink them and try again
4774 if (!page && !drained) {
4775 unreserve_highatomic_pageblock(ac, false);
4776 drain_all_pages(NULL);
4781 psi_memstall_leave(&pflags);
4786 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4787 const struct alloc_context *ac)
4791 pg_data_t *last_pgdat = NULL;
4792 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4794 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4796 if (!managed_zone(zone))
4798 if (last_pgdat != zone->zone_pgdat) {
4799 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4800 last_pgdat = zone->zone_pgdat;
4805 static inline unsigned int
4806 gfp_to_alloc_flags(gfp_t gfp_mask)
4808 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4811 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4812 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4813 * to save two branches.
4815 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4816 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4819 * The caller may dip into page reserves a bit more if the caller
4820 * cannot run direct reclaim, or if the caller has realtime scheduling
4821 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4822 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4824 alloc_flags |= (__force int)
4825 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4827 if (gfp_mask & __GFP_ATOMIC) {
4829 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4830 * if it can't schedule.
4832 if (!(gfp_mask & __GFP_NOMEMALLOC))
4833 alloc_flags |= ALLOC_HARDER;
4835 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4836 * comment for __cpuset_node_allowed().
4838 alloc_flags &= ~ALLOC_CPUSET;
4839 } else if (unlikely(rt_task(current)) && in_task())
4840 alloc_flags |= ALLOC_HARDER;
4842 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4847 static bool oom_reserves_allowed(struct task_struct *tsk)
4849 if (!tsk_is_oom_victim(tsk))
4853 * !MMU doesn't have oom reaper so give access to memory reserves
4854 * only to the thread with TIF_MEMDIE set
4856 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4863 * Distinguish requests which really need access to full memory
4864 * reserves from oom victims which can live with a portion of it
4866 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4868 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4870 if (gfp_mask & __GFP_MEMALLOC)
4871 return ALLOC_NO_WATERMARKS;
4872 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4873 return ALLOC_NO_WATERMARKS;
4874 if (!in_interrupt()) {
4875 if (current->flags & PF_MEMALLOC)
4876 return ALLOC_NO_WATERMARKS;
4877 else if (oom_reserves_allowed(current))
4884 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4886 return !!__gfp_pfmemalloc_flags(gfp_mask);
4890 * Checks whether it makes sense to retry the reclaim to make a forward progress
4891 * for the given allocation request.
4893 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4894 * without success, or when we couldn't even meet the watermark if we
4895 * reclaimed all remaining pages on the LRU lists.
4897 * Returns true if a retry is viable or false to enter the oom path.
4900 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4901 struct alloc_context *ac, int alloc_flags,
4902 bool did_some_progress, int *no_progress_loops)
4909 * Costly allocations might have made a progress but this doesn't mean
4910 * their order will become available due to high fragmentation so
4911 * always increment the no progress counter for them
4913 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4914 *no_progress_loops = 0;
4916 (*no_progress_loops)++;
4919 * Make sure we converge to OOM if we cannot make any progress
4920 * several times in the row.
4922 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4923 /* Before OOM, exhaust highatomic_reserve */
4924 return unreserve_highatomic_pageblock(ac, true);
4928 * Keep reclaiming pages while there is a chance this will lead
4929 * somewhere. If none of the target zones can satisfy our allocation
4930 * request even if all reclaimable pages are considered then we are
4931 * screwed and have to go OOM.
4933 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4934 ac->highest_zoneidx, ac->nodemask) {
4935 unsigned long available;
4936 unsigned long reclaimable;
4937 unsigned long min_wmark = min_wmark_pages(zone);
4940 available = reclaimable = zone_reclaimable_pages(zone);
4941 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4944 * Would the allocation succeed if we reclaimed all
4945 * reclaimable pages?
4947 wmark = __zone_watermark_ok(zone, order, min_wmark,
4948 ac->highest_zoneidx, alloc_flags, available);
4949 trace_reclaim_retry_zone(z, order, reclaimable,
4950 available, min_wmark, *no_progress_loops, wmark);
4958 * Memory allocation/reclaim might be called from a WQ context and the
4959 * current implementation of the WQ concurrency control doesn't
4960 * recognize that a particular WQ is congested if the worker thread is
4961 * looping without ever sleeping. Therefore we have to do a short sleep
4962 * here rather than calling cond_resched().
4964 if (current->flags & PF_WQ_WORKER)
4965 schedule_timeout_uninterruptible(1);
4972 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4975 * It's possible that cpuset's mems_allowed and the nodemask from
4976 * mempolicy don't intersect. This should be normally dealt with by
4977 * policy_nodemask(), but it's possible to race with cpuset update in
4978 * such a way the check therein was true, and then it became false
4979 * before we got our cpuset_mems_cookie here.
4980 * This assumes that for all allocations, ac->nodemask can come only
4981 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4982 * when it does not intersect with the cpuset restrictions) or the
4983 * caller can deal with a violated nodemask.
4985 if (cpusets_enabled() && ac->nodemask &&
4986 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4987 ac->nodemask = NULL;
4992 * When updating a task's mems_allowed or mempolicy nodemask, it is
4993 * possible to race with parallel threads in such a way that our
4994 * allocation can fail while the mask is being updated. If we are about
4995 * to fail, check if the cpuset changed during allocation and if so,
4998 if (read_mems_allowed_retry(cpuset_mems_cookie))
5004 static inline struct page *
5005 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5006 struct alloc_context *ac)
5008 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5009 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5010 struct page *page = NULL;
5011 unsigned int alloc_flags;
5012 unsigned long did_some_progress;
5013 enum compact_priority compact_priority;
5014 enum compact_result compact_result;
5015 int compaction_retries;
5016 int no_progress_loops;
5017 unsigned int cpuset_mems_cookie;
5018 unsigned int zonelist_iter_cookie;
5022 * We also sanity check to catch abuse of atomic reserves being used by
5023 * callers that are not in atomic context.
5025 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5026 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5027 gfp_mask &= ~__GFP_ATOMIC;
5030 compaction_retries = 0;
5031 no_progress_loops = 0;
5032 compact_priority = DEF_COMPACT_PRIORITY;
5033 cpuset_mems_cookie = read_mems_allowed_begin();
5034 zonelist_iter_cookie = zonelist_iter_begin();
5037 * The fast path uses conservative alloc_flags to succeed only until
5038 * kswapd needs to be woken up, and to avoid the cost of setting up
5039 * alloc_flags precisely. So we do that now.
5041 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5044 * We need to recalculate the starting point for the zonelist iterator
5045 * because we might have used different nodemask in the fast path, or
5046 * there was a cpuset modification and we are retrying - otherwise we
5047 * could end up iterating over non-eligible zones endlessly.
5049 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5050 ac->highest_zoneidx, ac->nodemask);
5051 if (!ac->preferred_zoneref->zone)
5055 * Check for insane configurations where the cpuset doesn't contain
5056 * any suitable zone to satisfy the request - e.g. non-movable
5057 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5059 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5060 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5061 ac->highest_zoneidx,
5062 &cpuset_current_mems_allowed);
5067 if (alloc_flags & ALLOC_KSWAPD)
5068 wake_all_kswapds(order, gfp_mask, ac);
5071 * The adjusted alloc_flags might result in immediate success, so try
5074 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5079 * For costly allocations, try direct compaction first, as it's likely
5080 * that we have enough base pages and don't need to reclaim. For non-
5081 * movable high-order allocations, do that as well, as compaction will
5082 * try prevent permanent fragmentation by migrating from blocks of the
5084 * Don't try this for allocations that are allowed to ignore
5085 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5087 if (can_direct_reclaim &&
5089 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5090 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5091 page = __alloc_pages_direct_compact(gfp_mask, order,
5093 INIT_COMPACT_PRIORITY,
5099 * Checks for costly allocations with __GFP_NORETRY, which
5100 * includes some THP page fault allocations
5102 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5104 * If allocating entire pageblock(s) and compaction
5105 * failed because all zones are below low watermarks
5106 * or is prohibited because it recently failed at this
5107 * order, fail immediately unless the allocator has
5108 * requested compaction and reclaim retry.
5111 * - potentially very expensive because zones are far
5112 * below their low watermarks or this is part of very
5113 * bursty high order allocations,
5114 * - not guaranteed to help because isolate_freepages()
5115 * may not iterate over freed pages as part of its
5117 * - unlikely to make entire pageblocks free on its
5120 if (compact_result == COMPACT_SKIPPED ||
5121 compact_result == COMPACT_DEFERRED)
5125 * Looks like reclaim/compaction is worth trying, but
5126 * sync compaction could be very expensive, so keep
5127 * using async compaction.
5129 compact_priority = INIT_COMPACT_PRIORITY;
5134 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5135 if (alloc_flags & ALLOC_KSWAPD)
5136 wake_all_kswapds(order, gfp_mask, ac);
5138 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5140 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5143 * Reset the nodemask and zonelist iterators if memory policies can be
5144 * ignored. These allocations are high priority and system rather than
5147 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5148 ac->nodemask = NULL;
5149 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5150 ac->highest_zoneidx, ac->nodemask);
5153 /* Attempt with potentially adjusted zonelist and alloc_flags */
5154 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5158 /* Caller is not willing to reclaim, we can't balance anything */
5159 if (!can_direct_reclaim)
5162 /* Avoid recursion of direct reclaim */
5163 if (current->flags & PF_MEMALLOC)
5166 /* Try direct reclaim and then allocating */
5167 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5168 &did_some_progress);
5172 /* Try direct compaction and then allocating */
5173 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5174 compact_priority, &compact_result);
5178 /* Do not loop if specifically requested */
5179 if (gfp_mask & __GFP_NORETRY)
5183 * Do not retry costly high order allocations unless they are
5184 * __GFP_RETRY_MAYFAIL
5186 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5189 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5190 did_some_progress > 0, &no_progress_loops))
5194 * It doesn't make any sense to retry for the compaction if the order-0
5195 * reclaim is not able to make any progress because the current
5196 * implementation of the compaction depends on the sufficient amount
5197 * of free memory (see __compaction_suitable)
5199 if (did_some_progress > 0 &&
5200 should_compact_retry(ac, order, alloc_flags,
5201 compact_result, &compact_priority,
5202 &compaction_retries))
5207 * Deal with possible cpuset update races or zonelist updates to avoid
5208 * a unnecessary OOM kill.
5210 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5211 check_retry_zonelist(zonelist_iter_cookie))
5214 /* Reclaim has failed us, start killing things */
5215 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5219 /* Avoid allocations with no watermarks from looping endlessly */
5220 if (tsk_is_oom_victim(current) &&
5221 (alloc_flags & ALLOC_OOM ||
5222 (gfp_mask & __GFP_NOMEMALLOC)))
5225 /* Retry as long as the OOM killer is making progress */
5226 if (did_some_progress) {
5227 no_progress_loops = 0;
5233 * Deal with possible cpuset update races or zonelist updates to avoid
5234 * a unnecessary OOM kill.
5236 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5237 check_retry_zonelist(zonelist_iter_cookie))
5241 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5244 if (gfp_mask & __GFP_NOFAIL) {
5246 * All existing users of the __GFP_NOFAIL are blockable, so warn
5247 * of any new users that actually require GFP_NOWAIT
5249 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5253 * PF_MEMALLOC request from this context is rather bizarre
5254 * because we cannot reclaim anything and only can loop waiting
5255 * for somebody to do a work for us
5257 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5260 * non failing costly orders are a hard requirement which we
5261 * are not prepared for much so let's warn about these users
5262 * so that we can identify them and convert them to something
5265 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5268 * Help non-failing allocations by giving them access to memory
5269 * reserves but do not use ALLOC_NO_WATERMARKS because this
5270 * could deplete whole memory reserves which would just make
5271 * the situation worse
5273 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5281 warn_alloc(gfp_mask, ac->nodemask,
5282 "page allocation failure: order:%u", order);
5287 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5288 int preferred_nid, nodemask_t *nodemask,
5289 struct alloc_context *ac, gfp_t *alloc_gfp,
5290 unsigned int *alloc_flags)
5292 ac->highest_zoneidx = gfp_zone(gfp_mask);
5293 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5294 ac->nodemask = nodemask;
5295 ac->migratetype = gfp_migratetype(gfp_mask);
5297 if (cpusets_enabled()) {
5298 *alloc_gfp |= __GFP_HARDWALL;
5300 * When we are in the interrupt context, it is irrelevant
5301 * to the current task context. It means that any node ok.
5303 if (in_task() && !ac->nodemask)
5304 ac->nodemask = &cpuset_current_mems_allowed;
5306 *alloc_flags |= ALLOC_CPUSET;
5309 might_alloc(gfp_mask);
5311 if (should_fail_alloc_page(gfp_mask, order))
5314 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5316 /* Dirty zone balancing only done in the fast path */
5317 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5320 * The preferred zone is used for statistics but crucially it is
5321 * also used as the starting point for the zonelist iterator. It
5322 * may get reset for allocations that ignore memory policies.
5324 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5325 ac->highest_zoneidx, ac->nodemask);
5331 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5332 * @gfp: GFP flags for the allocation
5333 * @preferred_nid: The preferred NUMA node ID to allocate from
5334 * @nodemask: Set of nodes to allocate from, may be NULL
5335 * @nr_pages: The number of pages desired on the list or array
5336 * @page_list: Optional list to store the allocated pages
5337 * @page_array: Optional array to store the pages
5339 * This is a batched version of the page allocator that attempts to
5340 * allocate nr_pages quickly. Pages are added to page_list if page_list
5341 * is not NULL, otherwise it is assumed that the page_array is valid.
5343 * For lists, nr_pages is the number of pages that should be allocated.
5345 * For arrays, only NULL elements are populated with pages and nr_pages
5346 * is the maximum number of pages that will be stored in the array.
5348 * Returns the number of pages on the list or array.
5350 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5351 nodemask_t *nodemask, int nr_pages,
5352 struct list_head *page_list,
5353 struct page **page_array)
5356 unsigned long flags;
5357 unsigned long __maybe_unused UP_flags;
5360 struct per_cpu_pages *pcp;
5361 struct list_head *pcp_list;
5362 struct alloc_context ac;
5364 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5365 int nr_populated = 0, nr_account = 0;
5368 * Skip populated array elements to determine if any pages need
5369 * to be allocated before disabling IRQs.
5371 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5374 /* No pages requested? */
5375 if (unlikely(nr_pages <= 0))
5378 /* Already populated array? */
5379 if (unlikely(page_array && nr_pages - nr_populated == 0))
5382 /* Bulk allocator does not support memcg accounting. */
5383 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5386 /* Use the single page allocator for one page. */
5387 if (nr_pages - nr_populated == 1)
5390 #ifdef CONFIG_PAGE_OWNER
5392 * PAGE_OWNER may recurse into the allocator to allocate space to
5393 * save the stack with pagesets.lock held. Releasing/reacquiring
5394 * removes much of the performance benefit of bulk allocation so
5395 * force the caller to allocate one page at a time as it'll have
5396 * similar performance to added complexity to the bulk allocator.
5398 if (static_branch_unlikely(&page_owner_inited))
5402 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5403 gfp &= gfp_allowed_mask;
5405 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5409 /* Find an allowed local zone that meets the low watermark. */
5410 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5413 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5414 !__cpuset_zone_allowed(zone, gfp)) {
5418 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5419 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5423 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5424 if (zone_watermark_fast(zone, 0, mark,
5425 zonelist_zone_idx(ac.preferred_zoneref),
5426 alloc_flags, gfp)) {
5432 * If there are no allowed local zones that meets the watermarks then
5433 * try to allocate a single page and reclaim if necessary.
5435 if (unlikely(!zone))
5438 /* Is a parallel drain in progress? */
5439 pcp_trylock_prepare(UP_flags);
5440 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5444 /* Attempt the batch allocation */
5445 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5446 while (nr_populated < nr_pages) {
5448 /* Skip existing pages */
5449 if (page_array && page_array[nr_populated]) {
5454 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5456 if (unlikely(!page)) {
5457 /* Try and allocate at least one page */
5459 pcp_spin_unlock_irqrestore(pcp, flags);
5466 prep_new_page(page, 0, gfp, 0);
5468 list_add(&page->lru, page_list);
5470 page_array[nr_populated] = page;
5474 pcp_spin_unlock_irqrestore(pcp, flags);
5475 pcp_trylock_finish(UP_flags);
5477 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5478 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5481 return nr_populated;
5484 pcp_trylock_finish(UP_flags);
5487 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5490 list_add(&page->lru, page_list);
5492 page_array[nr_populated] = page;
5498 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5501 * This is the 'heart' of the zoned buddy allocator.
5503 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5504 nodemask_t *nodemask)
5507 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5508 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5509 struct alloc_context ac = { };
5512 * There are several places where we assume that the order value is sane
5513 * so bail out early if the request is out of bound.
5515 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5518 gfp &= gfp_allowed_mask;
5520 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5521 * resp. GFP_NOIO which has to be inherited for all allocation requests
5522 * from a particular context which has been marked by
5523 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5524 * movable zones are not used during allocation.
5526 gfp = current_gfp_context(gfp);
5528 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5529 &alloc_gfp, &alloc_flags))
5533 * Forbid the first pass from falling back to types that fragment
5534 * memory until all local zones are considered.
5536 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5538 /* First allocation attempt */
5539 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5544 ac.spread_dirty_pages = false;
5547 * Restore the original nodemask if it was potentially replaced with
5548 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5550 ac.nodemask = nodemask;
5552 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5555 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5556 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5557 __free_pages(page, order);
5561 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5565 EXPORT_SYMBOL(__alloc_pages);
5567 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5568 nodemask_t *nodemask)
5570 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5571 preferred_nid, nodemask);
5573 if (page && order > 1)
5574 prep_transhuge_page(page);
5575 return (struct folio *)page;
5577 EXPORT_SYMBOL(__folio_alloc);
5580 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5581 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5582 * you need to access high mem.
5584 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5588 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5591 return (unsigned long) page_address(page);
5593 EXPORT_SYMBOL(__get_free_pages);
5595 unsigned long get_zeroed_page(gfp_t gfp_mask)
5597 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5599 EXPORT_SYMBOL(get_zeroed_page);
5602 * __free_pages - Free pages allocated with alloc_pages().
5603 * @page: The page pointer returned from alloc_pages().
5604 * @order: The order of the allocation.
5606 * This function can free multi-page allocations that are not compound
5607 * pages. It does not check that the @order passed in matches that of
5608 * the allocation, so it is easy to leak memory. Freeing more memory
5609 * than was allocated will probably emit a warning.
5611 * If the last reference to this page is speculative, it will be released
5612 * by put_page() which only frees the first page of a non-compound
5613 * allocation. To prevent the remaining pages from being leaked, we free
5614 * the subsequent pages here. If you want to use the page's reference
5615 * count to decide when to free the allocation, you should allocate a
5616 * compound page, and use put_page() instead of __free_pages().
5618 * Context: May be called in interrupt context or while holding a normal
5619 * spinlock, but not in NMI context or while holding a raw spinlock.
5621 void __free_pages(struct page *page, unsigned int order)
5623 if (put_page_testzero(page))
5624 free_the_page(page, order);
5625 else if (!PageHead(page))
5627 free_the_page(page + (1 << order), order);
5629 EXPORT_SYMBOL(__free_pages);
5631 void free_pages(unsigned long addr, unsigned int order)
5634 VM_BUG_ON(!virt_addr_valid((void *)addr));
5635 __free_pages(virt_to_page((void *)addr), order);
5639 EXPORT_SYMBOL(free_pages);
5643 * An arbitrary-length arbitrary-offset area of memory which resides
5644 * within a 0 or higher order page. Multiple fragments within that page
5645 * are individually refcounted, in the page's reference counter.
5647 * The page_frag functions below provide a simple allocation framework for
5648 * page fragments. This is used by the network stack and network device
5649 * drivers to provide a backing region of memory for use as either an
5650 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5652 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5655 struct page *page = NULL;
5656 gfp_t gfp = gfp_mask;
5658 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5659 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5661 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5662 PAGE_FRAG_CACHE_MAX_ORDER);
5663 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5665 if (unlikely(!page))
5666 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5668 nc->va = page ? page_address(page) : NULL;
5673 void __page_frag_cache_drain(struct page *page, unsigned int count)
5675 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5677 if (page_ref_sub_and_test(page, count))
5678 free_the_page(page, compound_order(page));
5680 EXPORT_SYMBOL(__page_frag_cache_drain);
5682 void *page_frag_alloc_align(struct page_frag_cache *nc,
5683 unsigned int fragsz, gfp_t gfp_mask,
5684 unsigned int align_mask)
5686 unsigned int size = PAGE_SIZE;
5690 if (unlikely(!nc->va)) {
5692 page = __page_frag_cache_refill(nc, gfp_mask);
5696 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5697 /* if size can vary use size else just use PAGE_SIZE */
5700 /* Even if we own the page, we do not use atomic_set().
5701 * This would break get_page_unless_zero() users.
5703 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5705 /* reset page count bias and offset to start of new frag */
5706 nc->pfmemalloc = page_is_pfmemalloc(page);
5707 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5711 offset = nc->offset - fragsz;
5712 if (unlikely(offset < 0)) {
5713 page = virt_to_page(nc->va);
5715 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5718 if (unlikely(nc->pfmemalloc)) {
5719 free_the_page(page, compound_order(page));
5723 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5724 /* if size can vary use size else just use PAGE_SIZE */
5727 /* OK, page count is 0, we can safely set it */
5728 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5730 /* reset page count bias and offset to start of new frag */
5731 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5732 offset = size - fragsz;
5733 if (unlikely(offset < 0)) {
5735 * The caller is trying to allocate a fragment
5736 * with fragsz > PAGE_SIZE but the cache isn't big
5737 * enough to satisfy the request, this may
5738 * happen in low memory conditions.
5739 * We don't release the cache page because
5740 * it could make memory pressure worse
5741 * so we simply return NULL here.
5748 offset &= align_mask;
5749 nc->offset = offset;
5751 return nc->va + offset;
5753 EXPORT_SYMBOL(page_frag_alloc_align);
5756 * Frees a page fragment allocated out of either a compound or order 0 page.
5758 void page_frag_free(void *addr)
5760 struct page *page = virt_to_head_page(addr);
5762 if (unlikely(put_page_testzero(page)))
5763 free_the_page(page, compound_order(page));
5765 EXPORT_SYMBOL(page_frag_free);
5767 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5771 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5772 unsigned long used = addr + PAGE_ALIGN(size);
5774 split_page(virt_to_page((void *)addr), order);
5775 while (used < alloc_end) {
5780 return (void *)addr;
5784 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5785 * @size: the number of bytes to allocate
5786 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5788 * This function is similar to alloc_pages(), except that it allocates the
5789 * minimum number of pages to satisfy the request. alloc_pages() can only
5790 * allocate memory in power-of-two pages.
5792 * This function is also limited by MAX_ORDER.
5794 * Memory allocated by this function must be released by free_pages_exact().
5796 * Return: pointer to the allocated area or %NULL in case of error.
5798 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5800 unsigned int order = get_order(size);
5803 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5804 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5806 addr = __get_free_pages(gfp_mask, order);
5807 return make_alloc_exact(addr, order, size);
5809 EXPORT_SYMBOL(alloc_pages_exact);
5812 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5814 * @nid: the preferred node ID where memory should be allocated
5815 * @size: the number of bytes to allocate
5816 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5818 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5821 * Return: pointer to the allocated area or %NULL in case of error.
5823 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5825 unsigned int order = get_order(size);
5828 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5829 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5831 p = alloc_pages_node(nid, gfp_mask, order);
5834 return make_alloc_exact((unsigned long)page_address(p), order, size);
5838 * free_pages_exact - release memory allocated via alloc_pages_exact()
5839 * @virt: the value returned by alloc_pages_exact.
5840 * @size: size of allocation, same value as passed to alloc_pages_exact().
5842 * Release the memory allocated by a previous call to alloc_pages_exact.
5844 void free_pages_exact(void *virt, size_t size)
5846 unsigned long addr = (unsigned long)virt;
5847 unsigned long end = addr + PAGE_ALIGN(size);
5849 while (addr < end) {
5854 EXPORT_SYMBOL(free_pages_exact);
5857 * nr_free_zone_pages - count number of pages beyond high watermark
5858 * @offset: The zone index of the highest zone
5860 * nr_free_zone_pages() counts the number of pages which are beyond the
5861 * high watermark within all zones at or below a given zone index. For each
5862 * zone, the number of pages is calculated as:
5864 * nr_free_zone_pages = managed_pages - high_pages
5866 * Return: number of pages beyond high watermark.
5868 static unsigned long nr_free_zone_pages(int offset)
5873 /* Just pick one node, since fallback list is circular */
5874 unsigned long sum = 0;
5876 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5878 for_each_zone_zonelist(zone, z, zonelist, offset) {
5879 unsigned long size = zone_managed_pages(zone);
5880 unsigned long high = high_wmark_pages(zone);
5889 * nr_free_buffer_pages - count number of pages beyond high watermark
5891 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5892 * watermark within ZONE_DMA and ZONE_NORMAL.
5894 * Return: number of pages beyond high watermark within ZONE_DMA and
5897 unsigned long nr_free_buffer_pages(void)
5899 return nr_free_zone_pages(gfp_zone(GFP_USER));
5901 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5903 static inline void show_node(struct zone *zone)
5905 if (IS_ENABLED(CONFIG_NUMA))
5906 printk("Node %d ", zone_to_nid(zone));
5909 long si_mem_available(void)
5912 unsigned long pagecache;
5913 unsigned long wmark_low = 0;
5914 unsigned long pages[NR_LRU_LISTS];
5915 unsigned long reclaimable;
5919 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5920 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5923 wmark_low += low_wmark_pages(zone);
5926 * Estimate the amount of memory available for userspace allocations,
5927 * without causing swapping or OOM.
5929 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5932 * Not all the page cache can be freed, otherwise the system will
5933 * start swapping or thrashing. Assume at least half of the page
5934 * cache, or the low watermark worth of cache, needs to stay.
5936 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5937 pagecache -= min(pagecache / 2, wmark_low);
5938 available += pagecache;
5941 * Part of the reclaimable slab and other kernel memory consists of
5942 * items that are in use, and cannot be freed. Cap this estimate at the
5945 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5946 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5947 available += reclaimable - min(reclaimable / 2, wmark_low);
5953 EXPORT_SYMBOL_GPL(si_mem_available);
5955 void si_meminfo(struct sysinfo *val)
5957 val->totalram = totalram_pages();
5958 val->sharedram = global_node_page_state(NR_SHMEM);
5959 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5960 val->bufferram = nr_blockdev_pages();
5961 val->totalhigh = totalhigh_pages();
5962 val->freehigh = nr_free_highpages();
5963 val->mem_unit = PAGE_SIZE;
5966 EXPORT_SYMBOL(si_meminfo);
5969 void si_meminfo_node(struct sysinfo *val, int nid)
5971 int zone_type; /* needs to be signed */
5972 unsigned long managed_pages = 0;
5973 unsigned long managed_highpages = 0;
5974 unsigned long free_highpages = 0;
5975 pg_data_t *pgdat = NODE_DATA(nid);
5977 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5978 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5979 val->totalram = managed_pages;
5980 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5981 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5982 #ifdef CONFIG_HIGHMEM
5983 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5984 struct zone *zone = &pgdat->node_zones[zone_type];
5986 if (is_highmem(zone)) {
5987 managed_highpages += zone_managed_pages(zone);
5988 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5991 val->totalhigh = managed_highpages;
5992 val->freehigh = free_highpages;
5994 val->totalhigh = managed_highpages;
5995 val->freehigh = free_highpages;
5997 val->mem_unit = PAGE_SIZE;
6002 * Determine whether the node should be displayed or not, depending on whether
6003 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6005 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6007 if (!(flags & SHOW_MEM_FILTER_NODES))
6011 * no node mask - aka implicit memory numa policy. Do not bother with
6012 * the synchronization - read_mems_allowed_begin - because we do not
6013 * have to be precise here.
6016 nodemask = &cpuset_current_mems_allowed;
6018 return !node_isset(nid, *nodemask);
6021 #define K(x) ((x) << (PAGE_SHIFT-10))
6023 static void show_migration_types(unsigned char type)
6025 static const char types[MIGRATE_TYPES] = {
6026 [MIGRATE_UNMOVABLE] = 'U',
6027 [MIGRATE_MOVABLE] = 'M',
6028 [MIGRATE_RECLAIMABLE] = 'E',
6029 [MIGRATE_HIGHATOMIC] = 'H',
6031 [MIGRATE_CMA] = 'C',
6033 #ifdef CONFIG_MEMORY_ISOLATION
6034 [MIGRATE_ISOLATE] = 'I',
6037 char tmp[MIGRATE_TYPES + 1];
6041 for (i = 0; i < MIGRATE_TYPES; i++) {
6042 if (type & (1 << i))
6047 printk(KERN_CONT "(%s) ", tmp);
6050 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6053 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6054 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6060 * Show free area list (used inside shift_scroll-lock stuff)
6061 * We also calculate the percentage fragmentation. We do this by counting the
6062 * memory on each free list with the exception of the first item on the list.
6065 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6068 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6070 unsigned long free_pcp = 0;
6075 for_each_populated_zone(zone) {
6076 if (zone_idx(zone) > max_zone_idx)
6078 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6081 for_each_online_cpu(cpu)
6082 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6085 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6086 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6087 " unevictable:%lu dirty:%lu writeback:%lu\n"
6088 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6089 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6090 " kernel_misc_reclaimable:%lu\n"
6091 " free:%lu free_pcp:%lu free_cma:%lu\n",
6092 global_node_page_state(NR_ACTIVE_ANON),
6093 global_node_page_state(NR_INACTIVE_ANON),
6094 global_node_page_state(NR_ISOLATED_ANON),
6095 global_node_page_state(NR_ACTIVE_FILE),
6096 global_node_page_state(NR_INACTIVE_FILE),
6097 global_node_page_state(NR_ISOLATED_FILE),
6098 global_node_page_state(NR_UNEVICTABLE),
6099 global_node_page_state(NR_FILE_DIRTY),
6100 global_node_page_state(NR_WRITEBACK),
6101 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6102 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6103 global_node_page_state(NR_FILE_MAPPED),
6104 global_node_page_state(NR_SHMEM),
6105 global_node_page_state(NR_PAGETABLE),
6106 global_zone_page_state(NR_BOUNCE),
6107 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6108 global_zone_page_state(NR_FREE_PAGES),
6110 global_zone_page_state(NR_FREE_CMA_PAGES));
6112 for_each_online_pgdat(pgdat) {
6113 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6115 if (!node_has_managed_zones(pgdat, max_zone_idx))
6119 " active_anon:%lukB"
6120 " inactive_anon:%lukB"
6121 " active_file:%lukB"
6122 " inactive_file:%lukB"
6123 " unevictable:%lukB"
6124 " isolated(anon):%lukB"
6125 " isolated(file):%lukB"
6130 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6132 " shmem_pmdmapped: %lukB"
6135 " writeback_tmp:%lukB"
6136 " kernel_stack:%lukB"
6137 #ifdef CONFIG_SHADOW_CALL_STACK
6138 " shadow_call_stack:%lukB"
6141 " all_unreclaimable? %s"
6144 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6145 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6146 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6147 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6148 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6149 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6150 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6151 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6152 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6153 K(node_page_state(pgdat, NR_WRITEBACK)),
6154 K(node_page_state(pgdat, NR_SHMEM)),
6155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6156 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6157 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6158 K(node_page_state(pgdat, NR_ANON_THPS)),
6160 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6161 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6162 #ifdef CONFIG_SHADOW_CALL_STACK
6163 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6165 K(node_page_state(pgdat, NR_PAGETABLE)),
6166 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6170 for_each_populated_zone(zone) {
6173 if (zone_idx(zone) > max_zone_idx)
6175 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6179 for_each_online_cpu(cpu)
6180 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6190 " reserved_highatomic:%luKB"
6191 " active_anon:%lukB"
6192 " inactive_anon:%lukB"
6193 " active_file:%lukB"
6194 " inactive_file:%lukB"
6195 " unevictable:%lukB"
6196 " writepending:%lukB"
6206 K(zone_page_state(zone, NR_FREE_PAGES)),
6207 K(zone->watermark_boost),
6208 K(min_wmark_pages(zone)),
6209 K(low_wmark_pages(zone)),
6210 K(high_wmark_pages(zone)),
6211 K(zone->nr_reserved_highatomic),
6212 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6213 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6214 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6215 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6216 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6217 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6218 K(zone->present_pages),
6219 K(zone_managed_pages(zone)),
6220 K(zone_page_state(zone, NR_MLOCK)),
6221 K(zone_page_state(zone, NR_BOUNCE)),
6223 K(this_cpu_read(zone->per_cpu_pageset->count)),
6224 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6225 printk("lowmem_reserve[]:");
6226 for (i = 0; i < MAX_NR_ZONES; i++)
6227 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6228 printk(KERN_CONT "\n");
6231 for_each_populated_zone(zone) {
6233 unsigned long nr[MAX_ORDER], flags, total = 0;
6234 unsigned char types[MAX_ORDER];
6236 if (zone_idx(zone) > max_zone_idx)
6238 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6241 printk(KERN_CONT "%s: ", zone->name);
6243 spin_lock_irqsave(&zone->lock, flags);
6244 for (order = 0; order < MAX_ORDER; order++) {
6245 struct free_area *area = &zone->free_area[order];
6248 nr[order] = area->nr_free;
6249 total += nr[order] << order;
6252 for (type = 0; type < MIGRATE_TYPES; type++) {
6253 if (!free_area_empty(area, type))
6254 types[order] |= 1 << type;
6257 spin_unlock_irqrestore(&zone->lock, flags);
6258 for (order = 0; order < MAX_ORDER; order++) {
6259 printk(KERN_CONT "%lu*%lukB ",
6260 nr[order], K(1UL) << order);
6262 show_migration_types(types[order]);
6264 printk(KERN_CONT "= %lukB\n", K(total));
6267 for_each_online_node(nid) {
6268 if (show_mem_node_skip(filter, nid, nodemask))
6270 hugetlb_show_meminfo_node(nid);
6273 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6275 show_swap_cache_info();
6278 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6280 zoneref->zone = zone;
6281 zoneref->zone_idx = zone_idx(zone);
6285 * Builds allocation fallback zone lists.
6287 * Add all populated zones of a node to the zonelist.
6289 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6292 enum zone_type zone_type = MAX_NR_ZONES;
6297 zone = pgdat->node_zones + zone_type;
6298 if (populated_zone(zone)) {
6299 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6300 check_highest_zone(zone_type);
6302 } while (zone_type);
6309 static int __parse_numa_zonelist_order(char *s)
6312 * We used to support different zonelists modes but they turned
6313 * out to be just not useful. Let's keep the warning in place
6314 * if somebody still use the cmd line parameter so that we do
6315 * not fail it silently
6317 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6318 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6324 char numa_zonelist_order[] = "Node";
6327 * sysctl handler for numa_zonelist_order
6329 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6330 void *buffer, size_t *length, loff_t *ppos)
6333 return __parse_numa_zonelist_order(buffer);
6334 return proc_dostring(table, write, buffer, length, ppos);
6338 static int node_load[MAX_NUMNODES];
6341 * find_next_best_node - find the next node that should appear in a given node's fallback list
6342 * @node: node whose fallback list we're appending
6343 * @used_node_mask: nodemask_t of already used nodes
6345 * We use a number of factors to determine which is the next node that should
6346 * appear on a given node's fallback list. The node should not have appeared
6347 * already in @node's fallback list, and it should be the next closest node
6348 * according to the distance array (which contains arbitrary distance values
6349 * from each node to each node in the system), and should also prefer nodes
6350 * with no CPUs, since presumably they'll have very little allocation pressure
6351 * on them otherwise.
6353 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6355 int find_next_best_node(int node, nodemask_t *used_node_mask)
6358 int min_val = INT_MAX;
6359 int best_node = NUMA_NO_NODE;
6361 /* Use the local node if we haven't already */
6362 if (!node_isset(node, *used_node_mask)) {
6363 node_set(node, *used_node_mask);
6367 for_each_node_state(n, N_MEMORY) {
6369 /* Don't want a node to appear more than once */
6370 if (node_isset(n, *used_node_mask))
6373 /* Use the distance array to find the distance */
6374 val = node_distance(node, n);
6376 /* Penalize nodes under us ("prefer the next node") */
6379 /* Give preference to headless and unused nodes */
6380 if (!cpumask_empty(cpumask_of_node(n)))
6381 val += PENALTY_FOR_NODE_WITH_CPUS;
6383 /* Slight preference for less loaded node */
6384 val *= MAX_NUMNODES;
6385 val += node_load[n];
6387 if (val < min_val) {
6394 node_set(best_node, *used_node_mask);
6401 * Build zonelists ordered by node and zones within node.
6402 * This results in maximum locality--normal zone overflows into local
6403 * DMA zone, if any--but risks exhausting DMA zone.
6405 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6408 struct zoneref *zonerefs;
6411 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6413 for (i = 0; i < nr_nodes; i++) {
6416 pg_data_t *node = NODE_DATA(node_order[i]);
6418 nr_zones = build_zonerefs_node(node, zonerefs);
6419 zonerefs += nr_zones;
6421 zonerefs->zone = NULL;
6422 zonerefs->zone_idx = 0;
6426 * Build gfp_thisnode zonelists
6428 static void build_thisnode_zonelists(pg_data_t *pgdat)
6430 struct zoneref *zonerefs;
6433 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6434 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6435 zonerefs += nr_zones;
6436 zonerefs->zone = NULL;
6437 zonerefs->zone_idx = 0;
6441 * Build zonelists ordered by zone and nodes within zones.
6442 * This results in conserving DMA zone[s] until all Normal memory is
6443 * exhausted, but results in overflowing to remote node while memory
6444 * may still exist in local DMA zone.
6447 static void build_zonelists(pg_data_t *pgdat)
6449 static int node_order[MAX_NUMNODES];
6450 int node, nr_nodes = 0;
6451 nodemask_t used_mask = NODE_MASK_NONE;
6452 int local_node, prev_node;
6454 /* NUMA-aware ordering of nodes */
6455 local_node = pgdat->node_id;
6456 prev_node = local_node;
6458 memset(node_order, 0, sizeof(node_order));
6459 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6461 * We don't want to pressure a particular node.
6462 * So adding penalty to the first node in same
6463 * distance group to make it round-robin.
6465 if (node_distance(local_node, node) !=
6466 node_distance(local_node, prev_node))
6467 node_load[node] += 1;
6469 node_order[nr_nodes++] = node;
6473 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6474 build_thisnode_zonelists(pgdat);
6475 pr_info("Fallback order for Node %d: ", local_node);
6476 for (node = 0; node < nr_nodes; node++)
6477 pr_cont("%d ", node_order[node]);
6481 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6483 * Return node id of node used for "local" allocations.
6484 * I.e., first node id of first zone in arg node's generic zonelist.
6485 * Used for initializing percpu 'numa_mem', which is used primarily
6486 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6488 int local_memory_node(int node)
6492 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6493 gfp_zone(GFP_KERNEL),
6495 return zone_to_nid(z->zone);
6499 static void setup_min_unmapped_ratio(void);
6500 static void setup_min_slab_ratio(void);
6501 #else /* CONFIG_NUMA */
6503 static void build_zonelists(pg_data_t *pgdat)
6505 int node, local_node;
6506 struct zoneref *zonerefs;
6509 local_node = pgdat->node_id;
6511 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6512 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6513 zonerefs += nr_zones;
6516 * Now we build the zonelist so that it contains the zones
6517 * of all the other nodes.
6518 * We don't want to pressure a particular node, so when
6519 * building the zones for node N, we make sure that the
6520 * zones coming right after the local ones are those from
6521 * node N+1 (modulo N)
6523 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6524 if (!node_online(node))
6526 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6527 zonerefs += nr_zones;
6529 for (node = 0; node < local_node; node++) {
6530 if (!node_online(node))
6532 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6533 zonerefs += nr_zones;
6536 zonerefs->zone = NULL;
6537 zonerefs->zone_idx = 0;
6540 #endif /* CONFIG_NUMA */
6543 * Boot pageset table. One per cpu which is going to be used for all
6544 * zones and all nodes. The parameters will be set in such a way
6545 * that an item put on a list will immediately be handed over to
6546 * the buddy list. This is safe since pageset manipulation is done
6547 * with interrupts disabled.
6549 * The boot_pagesets must be kept even after bootup is complete for
6550 * unused processors and/or zones. They do play a role for bootstrapping
6551 * hotplugged processors.
6553 * zoneinfo_show() and maybe other functions do
6554 * not check if the processor is online before following the pageset pointer.
6555 * Other parts of the kernel may not check if the zone is available.
6557 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6558 /* These effectively disable the pcplists in the boot pageset completely */
6559 #define BOOT_PAGESET_HIGH 0
6560 #define BOOT_PAGESET_BATCH 1
6561 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6562 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6563 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6565 static void __build_all_zonelists(void *data)
6568 int __maybe_unused cpu;
6569 pg_data_t *self = data;
6571 write_seqlock(&zonelist_update_seq);
6574 memset(node_load, 0, sizeof(node_load));
6578 * This node is hotadded and no memory is yet present. So just
6579 * building zonelists is fine - no need to touch other nodes.
6581 if (self && !node_online(self->node_id)) {
6582 build_zonelists(self);
6585 * All possible nodes have pgdat preallocated
6588 for_each_node(nid) {
6589 pg_data_t *pgdat = NODE_DATA(nid);
6591 build_zonelists(pgdat);
6594 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6596 * We now know the "local memory node" for each node--
6597 * i.e., the node of the first zone in the generic zonelist.
6598 * Set up numa_mem percpu variable for on-line cpus. During
6599 * boot, only the boot cpu should be on-line; we'll init the
6600 * secondary cpus' numa_mem as they come on-line. During
6601 * node/memory hotplug, we'll fixup all on-line cpus.
6603 for_each_online_cpu(cpu)
6604 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6608 write_sequnlock(&zonelist_update_seq);
6611 static noinline void __init
6612 build_all_zonelists_init(void)
6616 __build_all_zonelists(NULL);
6619 * Initialize the boot_pagesets that are going to be used
6620 * for bootstrapping processors. The real pagesets for
6621 * each zone will be allocated later when the per cpu
6622 * allocator is available.
6624 * boot_pagesets are used also for bootstrapping offline
6625 * cpus if the system is already booted because the pagesets
6626 * are needed to initialize allocators on a specific cpu too.
6627 * F.e. the percpu allocator needs the page allocator which
6628 * needs the percpu allocator in order to allocate its pagesets
6629 * (a chicken-egg dilemma).
6631 for_each_possible_cpu(cpu)
6632 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6634 mminit_verify_zonelist();
6635 cpuset_init_current_mems_allowed();
6639 * unless system_state == SYSTEM_BOOTING.
6641 * __ref due to call of __init annotated helper build_all_zonelists_init
6642 * [protected by SYSTEM_BOOTING].
6644 void __ref build_all_zonelists(pg_data_t *pgdat)
6646 unsigned long vm_total_pages;
6648 if (system_state == SYSTEM_BOOTING) {
6649 build_all_zonelists_init();
6651 __build_all_zonelists(pgdat);
6652 /* cpuset refresh routine should be here */
6654 /* Get the number of free pages beyond high watermark in all zones. */
6655 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6657 * Disable grouping by mobility if the number of pages in the
6658 * system is too low to allow the mechanism to work. It would be
6659 * more accurate, but expensive to check per-zone. This check is
6660 * made on memory-hotadd so a system can start with mobility
6661 * disabled and enable it later
6663 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6664 page_group_by_mobility_disabled = 1;
6666 page_group_by_mobility_disabled = 0;
6668 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6670 page_group_by_mobility_disabled ? "off" : "on",
6673 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6677 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6678 static bool __meminit
6679 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6681 static struct memblock_region *r;
6683 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6684 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6685 for_each_mem_region(r) {
6686 if (*pfn < memblock_region_memory_end_pfn(r))
6690 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6691 memblock_is_mirror(r)) {
6692 *pfn = memblock_region_memory_end_pfn(r);
6700 * Initially all pages are reserved - free ones are freed
6701 * up by memblock_free_all() once the early boot process is
6702 * done. Non-atomic initialization, single-pass.
6704 * All aligned pageblocks are initialized to the specified migratetype
6705 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6706 * zone stats (e.g., nr_isolate_pageblock) are touched.
6708 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6709 unsigned long start_pfn, unsigned long zone_end_pfn,
6710 enum meminit_context context,
6711 struct vmem_altmap *altmap, int migratetype)
6713 unsigned long pfn, end_pfn = start_pfn + size;
6716 if (highest_memmap_pfn < end_pfn - 1)
6717 highest_memmap_pfn = end_pfn - 1;
6719 #ifdef CONFIG_ZONE_DEVICE
6721 * Honor reservation requested by the driver for this ZONE_DEVICE
6722 * memory. We limit the total number of pages to initialize to just
6723 * those that might contain the memory mapping. We will defer the
6724 * ZONE_DEVICE page initialization until after we have released
6727 if (zone == ZONE_DEVICE) {
6731 if (start_pfn == altmap->base_pfn)
6732 start_pfn += altmap->reserve;
6733 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6737 for (pfn = start_pfn; pfn < end_pfn; ) {
6739 * There can be holes in boot-time mem_map[]s handed to this
6740 * function. They do not exist on hotplugged memory.
6742 if (context == MEMINIT_EARLY) {
6743 if (overlap_memmap_init(zone, &pfn))
6745 if (defer_init(nid, pfn, zone_end_pfn))
6749 page = pfn_to_page(pfn);
6750 __init_single_page(page, pfn, zone, nid);
6751 if (context == MEMINIT_HOTPLUG)
6752 __SetPageReserved(page);
6755 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6756 * such that unmovable allocations won't be scattered all
6757 * over the place during system boot.
6759 if (pageblock_aligned(pfn)) {
6760 set_pageblock_migratetype(page, migratetype);
6767 #ifdef CONFIG_ZONE_DEVICE
6768 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6769 unsigned long zone_idx, int nid,
6770 struct dev_pagemap *pgmap)
6773 __init_single_page(page, pfn, zone_idx, nid);
6776 * Mark page reserved as it will need to wait for onlining
6777 * phase for it to be fully associated with a zone.
6779 * We can use the non-atomic __set_bit operation for setting
6780 * the flag as we are still initializing the pages.
6782 __SetPageReserved(page);
6785 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6786 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6787 * ever freed or placed on a driver-private list.
6789 page->pgmap = pgmap;
6790 page->zone_device_data = NULL;
6793 * Mark the block movable so that blocks are reserved for
6794 * movable at startup. This will force kernel allocations
6795 * to reserve their blocks rather than leaking throughout
6796 * the address space during boot when many long-lived
6797 * kernel allocations are made.
6799 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6800 * because this is done early in section_activate()
6802 if (pageblock_aligned(pfn)) {
6803 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6809 * With compound page geometry and when struct pages are stored in ram most
6810 * tail pages are reused. Consequently, the amount of unique struct pages to
6811 * initialize is a lot smaller that the total amount of struct pages being
6812 * mapped. This is a paired / mild layering violation with explicit knowledge
6813 * of how the sparse_vmemmap internals handle compound pages in the lack
6814 * of an altmap. See vmemmap_populate_compound_pages().
6816 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6817 unsigned long nr_pages)
6819 return is_power_of_2(sizeof(struct page)) &&
6820 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6823 static void __ref memmap_init_compound(struct page *head,
6824 unsigned long head_pfn,
6825 unsigned long zone_idx, int nid,
6826 struct dev_pagemap *pgmap,
6827 unsigned long nr_pages)
6829 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6830 unsigned int order = pgmap->vmemmap_shift;
6832 __SetPageHead(head);
6833 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6834 struct page *page = pfn_to_page(pfn);
6836 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6837 prep_compound_tail(head, pfn - head_pfn);
6838 set_page_count(page, 0);
6841 * The first tail page stores compound_mapcount_ptr() and
6842 * compound_order() and the second tail page stores
6843 * compound_pincount_ptr(). Call prep_compound_head() after
6844 * the first and second tail pages have been initialized to
6845 * not have the data overwritten.
6847 if (pfn == head_pfn + 2)
6848 prep_compound_head(head, order);
6852 void __ref memmap_init_zone_device(struct zone *zone,
6853 unsigned long start_pfn,
6854 unsigned long nr_pages,
6855 struct dev_pagemap *pgmap)
6857 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6858 struct pglist_data *pgdat = zone->zone_pgdat;
6859 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6860 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6861 unsigned long zone_idx = zone_idx(zone);
6862 unsigned long start = jiffies;
6863 int nid = pgdat->node_id;
6865 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6869 * The call to memmap_init should have already taken care
6870 * of the pages reserved for the memmap, so we can just jump to
6871 * the end of that region and start processing the device pages.
6874 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6875 nr_pages = end_pfn - start_pfn;
6878 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6879 struct page *page = pfn_to_page(pfn);
6881 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6883 if (pfns_per_compound == 1)
6886 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6887 compound_nr_pages(altmap, pfns_per_compound));
6890 pr_info("%s initialised %lu pages in %ums\n", __func__,
6891 nr_pages, jiffies_to_msecs(jiffies - start));
6895 static void __meminit zone_init_free_lists(struct zone *zone)
6897 unsigned int order, t;
6898 for_each_migratetype_order(order, t) {
6899 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6900 zone->free_area[order].nr_free = 0;
6905 * Only struct pages that correspond to ranges defined by memblock.memory
6906 * are zeroed and initialized by going through __init_single_page() during
6907 * memmap_init_zone_range().
6909 * But, there could be struct pages that correspond to holes in
6910 * memblock.memory. This can happen because of the following reasons:
6911 * - physical memory bank size is not necessarily the exact multiple of the
6912 * arbitrary section size
6913 * - early reserved memory may not be listed in memblock.memory
6914 * - memory layouts defined with memmap= kernel parameter may not align
6915 * nicely with memmap sections
6917 * Explicitly initialize those struct pages so that:
6918 * - PG_Reserved is set
6919 * - zone and node links point to zone and node that span the page if the
6920 * hole is in the middle of a zone
6921 * - zone and node links point to adjacent zone/node if the hole falls on
6922 * the zone boundary; the pages in such holes will be prepended to the
6923 * zone/node above the hole except for the trailing pages in the last
6924 * section that will be appended to the zone/node below.
6926 static void __init init_unavailable_range(unsigned long spfn,
6933 for (pfn = spfn; pfn < epfn; pfn++) {
6934 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6935 pfn = pageblock_end_pfn(pfn) - 1;
6938 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6939 __SetPageReserved(pfn_to_page(pfn));
6944 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6945 node, zone_names[zone], pgcnt);
6948 static void __init memmap_init_zone_range(struct zone *zone,
6949 unsigned long start_pfn,
6950 unsigned long end_pfn,
6951 unsigned long *hole_pfn)
6953 unsigned long zone_start_pfn = zone->zone_start_pfn;
6954 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6955 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6957 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6958 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6960 if (start_pfn >= end_pfn)
6963 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6964 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6966 if (*hole_pfn < start_pfn)
6967 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6969 *hole_pfn = end_pfn;
6972 static void __init memmap_init(void)
6974 unsigned long start_pfn, end_pfn;
6975 unsigned long hole_pfn = 0;
6976 int i, j, zone_id = 0, nid;
6978 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6979 struct pglist_data *node = NODE_DATA(nid);
6981 for (j = 0; j < MAX_NR_ZONES; j++) {
6982 struct zone *zone = node->node_zones + j;
6984 if (!populated_zone(zone))
6987 memmap_init_zone_range(zone, start_pfn, end_pfn,
6993 #ifdef CONFIG_SPARSEMEM
6995 * Initialize the memory map for hole in the range [memory_end,
6997 * Append the pages in this hole to the highest zone in the last
6999 * The call to init_unavailable_range() is outside the ifdef to
7000 * silence the compiler warining about zone_id set but not used;
7001 * for FLATMEM it is a nop anyway
7003 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7004 if (hole_pfn < end_pfn)
7006 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7009 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7010 phys_addr_t min_addr, int nid, bool exact_nid)
7015 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7016 MEMBLOCK_ALLOC_ACCESSIBLE,
7019 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7020 MEMBLOCK_ALLOC_ACCESSIBLE,
7023 if (ptr && size > 0)
7024 page_init_poison(ptr, size);
7029 static int zone_batchsize(struct zone *zone)
7035 * The number of pages to batch allocate is either ~0.1%
7036 * of the zone or 1MB, whichever is smaller. The batch
7037 * size is striking a balance between allocation latency
7038 * and zone lock contention.
7040 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7041 batch /= 4; /* We effectively *= 4 below */
7046 * Clamp the batch to a 2^n - 1 value. Having a power
7047 * of 2 value was found to be more likely to have
7048 * suboptimal cache aliasing properties in some cases.
7050 * For example if 2 tasks are alternately allocating
7051 * batches of pages, one task can end up with a lot
7052 * of pages of one half of the possible page colors
7053 * and the other with pages of the other colors.
7055 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7060 /* The deferral and batching of frees should be suppressed under NOMMU
7063 * The problem is that NOMMU needs to be able to allocate large chunks
7064 * of contiguous memory as there's no hardware page translation to
7065 * assemble apparent contiguous memory from discontiguous pages.
7067 * Queueing large contiguous runs of pages for batching, however,
7068 * causes the pages to actually be freed in smaller chunks. As there
7069 * can be a significant delay between the individual batches being
7070 * recycled, this leads to the once large chunks of space being
7071 * fragmented and becoming unavailable for high-order allocations.
7077 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7082 unsigned long total_pages;
7084 if (!percpu_pagelist_high_fraction) {
7086 * By default, the high value of the pcp is based on the zone
7087 * low watermark so that if they are full then background
7088 * reclaim will not be started prematurely.
7090 total_pages = low_wmark_pages(zone);
7093 * If percpu_pagelist_high_fraction is configured, the high
7094 * value is based on a fraction of the managed pages in the
7097 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7101 * Split the high value across all online CPUs local to the zone. Note
7102 * that early in boot that CPUs may not be online yet and that during
7103 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7104 * onlined. For memory nodes that have no CPUs, split pcp->high across
7105 * all online CPUs to mitigate the risk that reclaim is triggered
7106 * prematurely due to pages stored on pcp lists.
7108 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7110 nr_split_cpus = num_online_cpus();
7111 high = total_pages / nr_split_cpus;
7114 * Ensure high is at least batch*4. The multiple is based on the
7115 * historical relationship between high and batch.
7117 high = max(high, batch << 2);
7126 * pcp->high and pcp->batch values are related and generally batch is lower
7127 * than high. They are also related to pcp->count such that count is lower
7128 * than high, and as soon as it reaches high, the pcplist is flushed.
7130 * However, guaranteeing these relations at all times would require e.g. write
7131 * barriers here but also careful usage of read barriers at the read side, and
7132 * thus be prone to error and bad for performance. Thus the update only prevents
7133 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7134 * can cope with those fields changing asynchronously, and fully trust only the
7135 * pcp->count field on the local CPU with interrupts disabled.
7137 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7138 * outside of boot time (or some other assurance that no concurrent updaters
7141 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7142 unsigned long batch)
7144 WRITE_ONCE(pcp->batch, batch);
7145 WRITE_ONCE(pcp->high, high);
7148 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7152 memset(pcp, 0, sizeof(*pcp));
7153 memset(pzstats, 0, sizeof(*pzstats));
7155 spin_lock_init(&pcp->lock);
7156 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7157 INIT_LIST_HEAD(&pcp->lists[pindex]);
7160 * Set batch and high values safe for a boot pageset. A true percpu
7161 * pageset's initialization will update them subsequently. Here we don't
7162 * need to be as careful as pageset_update() as nobody can access the
7165 pcp->high = BOOT_PAGESET_HIGH;
7166 pcp->batch = BOOT_PAGESET_BATCH;
7167 pcp->free_factor = 0;
7170 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7171 unsigned long batch)
7173 struct per_cpu_pages *pcp;
7176 for_each_possible_cpu(cpu) {
7177 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7178 pageset_update(pcp, high, batch);
7183 * Calculate and set new high and batch values for all per-cpu pagesets of a
7184 * zone based on the zone's size.
7186 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7188 int new_high, new_batch;
7190 new_batch = max(1, zone_batchsize(zone));
7191 new_high = zone_highsize(zone, new_batch, cpu_online);
7193 if (zone->pageset_high == new_high &&
7194 zone->pageset_batch == new_batch)
7197 zone->pageset_high = new_high;
7198 zone->pageset_batch = new_batch;
7200 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7203 void __meminit setup_zone_pageset(struct zone *zone)
7207 /* Size may be 0 on !SMP && !NUMA */
7208 if (sizeof(struct per_cpu_zonestat) > 0)
7209 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7211 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7212 for_each_possible_cpu(cpu) {
7213 struct per_cpu_pages *pcp;
7214 struct per_cpu_zonestat *pzstats;
7216 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7217 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7218 per_cpu_pages_init(pcp, pzstats);
7221 zone_set_pageset_high_and_batch(zone, 0);
7225 * Allocate per cpu pagesets and initialize them.
7226 * Before this call only boot pagesets were available.
7228 void __init setup_per_cpu_pageset(void)
7230 struct pglist_data *pgdat;
7232 int __maybe_unused cpu;
7234 for_each_populated_zone(zone)
7235 setup_zone_pageset(zone);
7239 * Unpopulated zones continue using the boot pagesets.
7240 * The numa stats for these pagesets need to be reset.
7241 * Otherwise, they will end up skewing the stats of
7242 * the nodes these zones are associated with.
7244 for_each_possible_cpu(cpu) {
7245 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7246 memset(pzstats->vm_numa_event, 0,
7247 sizeof(pzstats->vm_numa_event));
7251 for_each_online_pgdat(pgdat)
7252 pgdat->per_cpu_nodestats =
7253 alloc_percpu(struct per_cpu_nodestat);
7256 static __meminit void zone_pcp_init(struct zone *zone)
7259 * per cpu subsystem is not up at this point. The following code
7260 * relies on the ability of the linker to provide the
7261 * offset of a (static) per cpu variable into the per cpu area.
7263 zone->per_cpu_pageset = &boot_pageset;
7264 zone->per_cpu_zonestats = &boot_zonestats;
7265 zone->pageset_high = BOOT_PAGESET_HIGH;
7266 zone->pageset_batch = BOOT_PAGESET_BATCH;
7268 if (populated_zone(zone))
7269 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7270 zone->present_pages, zone_batchsize(zone));
7273 void __meminit init_currently_empty_zone(struct zone *zone,
7274 unsigned long zone_start_pfn,
7277 struct pglist_data *pgdat = zone->zone_pgdat;
7278 int zone_idx = zone_idx(zone) + 1;
7280 if (zone_idx > pgdat->nr_zones)
7281 pgdat->nr_zones = zone_idx;
7283 zone->zone_start_pfn = zone_start_pfn;
7285 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7286 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7288 (unsigned long)zone_idx(zone),
7289 zone_start_pfn, (zone_start_pfn + size));
7291 zone_init_free_lists(zone);
7292 zone->initialized = 1;
7296 * get_pfn_range_for_nid - Return the start and end page frames for a node
7297 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7298 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7299 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7301 * It returns the start and end page frame of a node based on information
7302 * provided by memblock_set_node(). If called for a node
7303 * with no available memory, a warning is printed and the start and end
7306 void __init get_pfn_range_for_nid(unsigned int nid,
7307 unsigned long *start_pfn, unsigned long *end_pfn)
7309 unsigned long this_start_pfn, this_end_pfn;
7315 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7316 *start_pfn = min(*start_pfn, this_start_pfn);
7317 *end_pfn = max(*end_pfn, this_end_pfn);
7320 if (*start_pfn == -1UL)
7325 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7326 * assumption is made that zones within a node are ordered in monotonic
7327 * increasing memory addresses so that the "highest" populated zone is used
7329 static void __init find_usable_zone_for_movable(void)
7332 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7333 if (zone_index == ZONE_MOVABLE)
7336 if (arch_zone_highest_possible_pfn[zone_index] >
7337 arch_zone_lowest_possible_pfn[zone_index])
7341 VM_BUG_ON(zone_index == -1);
7342 movable_zone = zone_index;
7346 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7347 * because it is sized independent of architecture. Unlike the other zones,
7348 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7349 * in each node depending on the size of each node and how evenly kernelcore
7350 * is distributed. This helper function adjusts the zone ranges
7351 * provided by the architecture for a given node by using the end of the
7352 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7353 * zones within a node are in order of monotonic increases memory addresses
7355 static void __init adjust_zone_range_for_zone_movable(int nid,
7356 unsigned long zone_type,
7357 unsigned long node_start_pfn,
7358 unsigned long node_end_pfn,
7359 unsigned long *zone_start_pfn,
7360 unsigned long *zone_end_pfn)
7362 /* Only adjust if ZONE_MOVABLE is on this node */
7363 if (zone_movable_pfn[nid]) {
7364 /* Size ZONE_MOVABLE */
7365 if (zone_type == ZONE_MOVABLE) {
7366 *zone_start_pfn = zone_movable_pfn[nid];
7367 *zone_end_pfn = min(node_end_pfn,
7368 arch_zone_highest_possible_pfn[movable_zone]);
7370 /* Adjust for ZONE_MOVABLE starting within this range */
7371 } else if (!mirrored_kernelcore &&
7372 *zone_start_pfn < zone_movable_pfn[nid] &&
7373 *zone_end_pfn > zone_movable_pfn[nid]) {
7374 *zone_end_pfn = zone_movable_pfn[nid];
7376 /* Check if this whole range is within ZONE_MOVABLE */
7377 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7378 *zone_start_pfn = *zone_end_pfn;
7383 * Return the number of pages a zone spans in a node, including holes
7384 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7386 static unsigned long __init zone_spanned_pages_in_node(int nid,
7387 unsigned long zone_type,
7388 unsigned long node_start_pfn,
7389 unsigned long node_end_pfn,
7390 unsigned long *zone_start_pfn,
7391 unsigned long *zone_end_pfn)
7393 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7394 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7395 /* When hotadd a new node from cpu_up(), the node should be empty */
7396 if (!node_start_pfn && !node_end_pfn)
7399 /* Get the start and end of the zone */
7400 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7401 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7402 adjust_zone_range_for_zone_movable(nid, zone_type,
7403 node_start_pfn, node_end_pfn,
7404 zone_start_pfn, zone_end_pfn);
7406 /* Check that this node has pages within the zone's required range */
7407 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7410 /* Move the zone boundaries inside the node if necessary */
7411 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7412 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7414 /* Return the spanned pages */
7415 return *zone_end_pfn - *zone_start_pfn;
7419 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7420 * then all holes in the requested range will be accounted for.
7422 unsigned long __init __absent_pages_in_range(int nid,
7423 unsigned long range_start_pfn,
7424 unsigned long range_end_pfn)
7426 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7427 unsigned long start_pfn, end_pfn;
7430 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7431 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7432 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7433 nr_absent -= end_pfn - start_pfn;
7439 * absent_pages_in_range - Return number of page frames in holes within a range
7440 * @start_pfn: The start PFN to start searching for holes
7441 * @end_pfn: The end PFN to stop searching for holes
7443 * Return: the number of pages frames in memory holes within a range.
7445 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7446 unsigned long end_pfn)
7448 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7451 /* Return the number of page frames in holes in a zone on a node */
7452 static unsigned long __init zone_absent_pages_in_node(int nid,
7453 unsigned long zone_type,
7454 unsigned long node_start_pfn,
7455 unsigned long node_end_pfn)
7457 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7458 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7459 unsigned long zone_start_pfn, zone_end_pfn;
7460 unsigned long nr_absent;
7462 /* When hotadd a new node from cpu_up(), the node should be empty */
7463 if (!node_start_pfn && !node_end_pfn)
7466 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7467 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7469 adjust_zone_range_for_zone_movable(nid, zone_type,
7470 node_start_pfn, node_end_pfn,
7471 &zone_start_pfn, &zone_end_pfn);
7472 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7475 * ZONE_MOVABLE handling.
7476 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7479 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7480 unsigned long start_pfn, end_pfn;
7481 struct memblock_region *r;
7483 for_each_mem_region(r) {
7484 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7485 zone_start_pfn, zone_end_pfn);
7486 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7487 zone_start_pfn, zone_end_pfn);
7489 if (zone_type == ZONE_MOVABLE &&
7490 memblock_is_mirror(r))
7491 nr_absent += end_pfn - start_pfn;
7493 if (zone_type == ZONE_NORMAL &&
7494 !memblock_is_mirror(r))
7495 nr_absent += end_pfn - start_pfn;
7502 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7503 unsigned long node_start_pfn,
7504 unsigned long node_end_pfn)
7506 unsigned long realtotalpages = 0, totalpages = 0;
7509 for (i = 0; i < MAX_NR_ZONES; i++) {
7510 struct zone *zone = pgdat->node_zones + i;
7511 unsigned long zone_start_pfn, zone_end_pfn;
7512 unsigned long spanned, absent;
7513 unsigned long size, real_size;
7515 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7520 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7525 real_size = size - absent;
7528 zone->zone_start_pfn = zone_start_pfn;
7530 zone->zone_start_pfn = 0;
7531 zone->spanned_pages = size;
7532 zone->present_pages = real_size;
7533 #if defined(CONFIG_MEMORY_HOTPLUG)
7534 zone->present_early_pages = real_size;
7538 realtotalpages += real_size;
7541 pgdat->node_spanned_pages = totalpages;
7542 pgdat->node_present_pages = realtotalpages;
7543 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7546 #ifndef CONFIG_SPARSEMEM
7548 * Calculate the size of the zone->blockflags rounded to an unsigned long
7549 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7550 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7551 * round what is now in bits to nearest long in bits, then return it in
7554 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7556 unsigned long usemapsize;
7558 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7559 usemapsize = roundup(zonesize, pageblock_nr_pages);
7560 usemapsize = usemapsize >> pageblock_order;
7561 usemapsize *= NR_PAGEBLOCK_BITS;
7562 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7564 return usemapsize / 8;
7567 static void __ref setup_usemap(struct zone *zone)
7569 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7570 zone->spanned_pages);
7571 zone->pageblock_flags = NULL;
7573 zone->pageblock_flags =
7574 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7576 if (!zone->pageblock_flags)
7577 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7578 usemapsize, zone->name, zone_to_nid(zone));
7582 static inline void setup_usemap(struct zone *zone) {}
7583 #endif /* CONFIG_SPARSEMEM */
7585 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7587 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7588 void __init set_pageblock_order(void)
7590 unsigned int order = MAX_ORDER - 1;
7592 /* Check that pageblock_nr_pages has not already been setup */
7593 if (pageblock_order)
7596 /* Don't let pageblocks exceed the maximum allocation granularity. */
7597 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7598 order = HUGETLB_PAGE_ORDER;
7601 * Assume the largest contiguous order of interest is a huge page.
7602 * This value may be variable depending on boot parameters on IA64 and
7605 pageblock_order = order;
7607 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7610 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7611 * is unused as pageblock_order is set at compile-time. See
7612 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7615 void __init set_pageblock_order(void)
7619 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7621 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7622 unsigned long present_pages)
7624 unsigned long pages = spanned_pages;
7627 * Provide a more accurate estimation if there are holes within
7628 * the zone and SPARSEMEM is in use. If there are holes within the
7629 * zone, each populated memory region may cost us one or two extra
7630 * memmap pages due to alignment because memmap pages for each
7631 * populated regions may not be naturally aligned on page boundary.
7632 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7634 if (spanned_pages > present_pages + (present_pages >> 4) &&
7635 IS_ENABLED(CONFIG_SPARSEMEM))
7636 pages = present_pages;
7638 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7642 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7644 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7646 spin_lock_init(&ds_queue->split_queue_lock);
7647 INIT_LIST_HEAD(&ds_queue->split_queue);
7648 ds_queue->split_queue_len = 0;
7651 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7654 #ifdef CONFIG_COMPACTION
7655 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7657 init_waitqueue_head(&pgdat->kcompactd_wait);
7660 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7663 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7667 pgdat_resize_init(pgdat);
7668 pgdat_kswapd_lock_init(pgdat);
7670 pgdat_init_split_queue(pgdat);
7671 pgdat_init_kcompactd(pgdat);
7673 init_waitqueue_head(&pgdat->kswapd_wait);
7674 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7676 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7677 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7679 pgdat_page_ext_init(pgdat);
7680 lruvec_init(&pgdat->__lruvec);
7683 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7684 unsigned long remaining_pages)
7686 atomic_long_set(&zone->managed_pages, remaining_pages);
7687 zone_set_nid(zone, nid);
7688 zone->name = zone_names[idx];
7689 zone->zone_pgdat = NODE_DATA(nid);
7690 spin_lock_init(&zone->lock);
7691 zone_seqlock_init(zone);
7692 zone_pcp_init(zone);
7696 * Set up the zone data structures
7697 * - init pgdat internals
7698 * - init all zones belonging to this node
7700 * NOTE: this function is only called during memory hotplug
7702 #ifdef CONFIG_MEMORY_HOTPLUG
7703 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7705 int nid = pgdat->node_id;
7709 pgdat_init_internals(pgdat);
7711 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7712 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7715 * Reset the nr_zones, order and highest_zoneidx before reuse.
7716 * Note that kswapd will init kswapd_highest_zoneidx properly
7717 * when it starts in the near future.
7719 pgdat->nr_zones = 0;
7720 pgdat->kswapd_order = 0;
7721 pgdat->kswapd_highest_zoneidx = 0;
7722 pgdat->node_start_pfn = 0;
7723 for_each_online_cpu(cpu) {
7724 struct per_cpu_nodestat *p;
7726 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7727 memset(p, 0, sizeof(*p));
7730 for (z = 0; z < MAX_NR_ZONES; z++)
7731 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7736 * Set up the zone data structures:
7737 * - mark all pages reserved
7738 * - mark all memory queues empty
7739 * - clear the memory bitmaps
7741 * NOTE: pgdat should get zeroed by caller.
7742 * NOTE: this function is only called during early init.
7744 static void __init free_area_init_core(struct pglist_data *pgdat)
7747 int nid = pgdat->node_id;
7749 pgdat_init_internals(pgdat);
7750 pgdat->per_cpu_nodestats = &boot_nodestats;
7752 for (j = 0; j < MAX_NR_ZONES; j++) {
7753 struct zone *zone = pgdat->node_zones + j;
7754 unsigned long size, freesize, memmap_pages;
7756 size = zone->spanned_pages;
7757 freesize = zone->present_pages;
7760 * Adjust freesize so that it accounts for how much memory
7761 * is used by this zone for memmap. This affects the watermark
7762 * and per-cpu initialisations
7764 memmap_pages = calc_memmap_size(size, freesize);
7765 if (!is_highmem_idx(j)) {
7766 if (freesize >= memmap_pages) {
7767 freesize -= memmap_pages;
7769 pr_debug(" %s zone: %lu pages used for memmap\n",
7770 zone_names[j], memmap_pages);
7772 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7773 zone_names[j], memmap_pages, freesize);
7776 /* Account for reserved pages */
7777 if (j == 0 && freesize > dma_reserve) {
7778 freesize -= dma_reserve;
7779 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7782 if (!is_highmem_idx(j))
7783 nr_kernel_pages += freesize;
7784 /* Charge for highmem memmap if there are enough kernel pages */
7785 else if (nr_kernel_pages > memmap_pages * 2)
7786 nr_kernel_pages -= memmap_pages;
7787 nr_all_pages += freesize;
7790 * Set an approximate value for lowmem here, it will be adjusted
7791 * when the bootmem allocator frees pages into the buddy system.
7792 * And all highmem pages will be managed by the buddy system.
7794 zone_init_internals(zone, j, nid, freesize);
7799 set_pageblock_order();
7801 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7805 #ifdef CONFIG_FLATMEM
7806 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7808 unsigned long __maybe_unused start = 0;
7809 unsigned long __maybe_unused offset = 0;
7811 /* Skip empty nodes */
7812 if (!pgdat->node_spanned_pages)
7815 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7816 offset = pgdat->node_start_pfn - start;
7817 /* ia64 gets its own node_mem_map, before this, without bootmem */
7818 if (!pgdat->node_mem_map) {
7819 unsigned long size, end;
7823 * The zone's endpoints aren't required to be MAX_ORDER
7824 * aligned but the node_mem_map endpoints must be in order
7825 * for the buddy allocator to function correctly.
7827 end = pgdat_end_pfn(pgdat);
7828 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7829 size = (end - start) * sizeof(struct page);
7830 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7831 pgdat->node_id, false);
7833 panic("Failed to allocate %ld bytes for node %d memory map\n",
7834 size, pgdat->node_id);
7835 pgdat->node_mem_map = map + offset;
7837 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7838 __func__, pgdat->node_id, (unsigned long)pgdat,
7839 (unsigned long)pgdat->node_mem_map);
7842 * With no DISCONTIG, the global mem_map is just set as node 0's
7844 if (pgdat == NODE_DATA(0)) {
7845 mem_map = NODE_DATA(0)->node_mem_map;
7846 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7852 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7853 #endif /* CONFIG_FLATMEM */
7855 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7856 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7858 pgdat->first_deferred_pfn = ULONG_MAX;
7861 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7864 static void __init free_area_init_node(int nid)
7866 pg_data_t *pgdat = NODE_DATA(nid);
7867 unsigned long start_pfn = 0;
7868 unsigned long end_pfn = 0;
7870 /* pg_data_t should be reset to zero when it's allocated */
7871 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7873 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7875 pgdat->node_id = nid;
7876 pgdat->node_start_pfn = start_pfn;
7877 pgdat->per_cpu_nodestats = NULL;
7879 if (start_pfn != end_pfn) {
7880 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7881 (u64)start_pfn << PAGE_SHIFT,
7882 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7884 pr_info("Initmem setup node %d as memoryless\n", nid);
7887 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7889 alloc_node_mem_map(pgdat);
7890 pgdat_set_deferred_range(pgdat);
7892 free_area_init_core(pgdat);
7895 static void __init free_area_init_memoryless_node(int nid)
7897 free_area_init_node(nid);
7900 #if MAX_NUMNODES > 1
7902 * Figure out the number of possible node ids.
7904 void __init setup_nr_node_ids(void)
7906 unsigned int highest;
7908 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7909 nr_node_ids = highest + 1;
7914 * node_map_pfn_alignment - determine the maximum internode alignment
7916 * This function should be called after node map is populated and sorted.
7917 * It calculates the maximum power of two alignment which can distinguish
7920 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7921 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7922 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7923 * shifted, 1GiB is enough and this function will indicate so.
7925 * This is used to test whether pfn -> nid mapping of the chosen memory
7926 * model has fine enough granularity to avoid incorrect mapping for the
7927 * populated node map.
7929 * Return: the determined alignment in pfn's. 0 if there is no alignment
7930 * requirement (single node).
7932 unsigned long __init node_map_pfn_alignment(void)
7934 unsigned long accl_mask = 0, last_end = 0;
7935 unsigned long start, end, mask;
7936 int last_nid = NUMA_NO_NODE;
7939 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7940 if (!start || last_nid < 0 || last_nid == nid) {
7947 * Start with a mask granular enough to pin-point to the
7948 * start pfn and tick off bits one-by-one until it becomes
7949 * too coarse to separate the current node from the last.
7951 mask = ~((1 << __ffs(start)) - 1);
7952 while (mask && last_end <= (start & (mask << 1)))
7955 /* accumulate all internode masks */
7959 /* convert mask to number of pages */
7960 return ~accl_mask + 1;
7964 * early_calculate_totalpages()
7965 * Sum pages in active regions for movable zone.
7966 * Populate N_MEMORY for calculating usable_nodes.
7968 static unsigned long __init early_calculate_totalpages(void)
7970 unsigned long totalpages = 0;
7971 unsigned long start_pfn, end_pfn;
7974 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7975 unsigned long pages = end_pfn - start_pfn;
7977 totalpages += pages;
7979 node_set_state(nid, N_MEMORY);
7985 * Find the PFN the Movable zone begins in each node. Kernel memory
7986 * is spread evenly between nodes as long as the nodes have enough
7987 * memory. When they don't, some nodes will have more kernelcore than
7990 static void __init find_zone_movable_pfns_for_nodes(void)
7993 unsigned long usable_startpfn;
7994 unsigned long kernelcore_node, kernelcore_remaining;
7995 /* save the state before borrow the nodemask */
7996 nodemask_t saved_node_state = node_states[N_MEMORY];
7997 unsigned long totalpages = early_calculate_totalpages();
7998 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7999 struct memblock_region *r;
8001 /* Need to find movable_zone earlier when movable_node is specified. */
8002 find_usable_zone_for_movable();
8005 * If movable_node is specified, ignore kernelcore and movablecore
8008 if (movable_node_is_enabled()) {
8009 for_each_mem_region(r) {
8010 if (!memblock_is_hotpluggable(r))
8013 nid = memblock_get_region_node(r);
8015 usable_startpfn = PFN_DOWN(r->base);
8016 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8017 min(usable_startpfn, zone_movable_pfn[nid]) :
8025 * If kernelcore=mirror is specified, ignore movablecore option
8027 if (mirrored_kernelcore) {
8028 bool mem_below_4gb_not_mirrored = false;
8030 for_each_mem_region(r) {
8031 if (memblock_is_mirror(r))
8034 nid = memblock_get_region_node(r);
8036 usable_startpfn = memblock_region_memory_base_pfn(r);
8038 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8039 mem_below_4gb_not_mirrored = true;
8043 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8044 min(usable_startpfn, zone_movable_pfn[nid]) :
8048 if (mem_below_4gb_not_mirrored)
8049 pr_warn("This configuration results in unmirrored kernel memory.\n");
8055 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8056 * amount of necessary memory.
8058 if (required_kernelcore_percent)
8059 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8061 if (required_movablecore_percent)
8062 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8066 * If movablecore= was specified, calculate what size of
8067 * kernelcore that corresponds so that memory usable for
8068 * any allocation type is evenly spread. If both kernelcore
8069 * and movablecore are specified, then the value of kernelcore
8070 * will be used for required_kernelcore if it's greater than
8071 * what movablecore would have allowed.
8073 if (required_movablecore) {
8074 unsigned long corepages;
8077 * Round-up so that ZONE_MOVABLE is at least as large as what
8078 * was requested by the user
8080 required_movablecore =
8081 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8082 required_movablecore = min(totalpages, required_movablecore);
8083 corepages = totalpages - required_movablecore;
8085 required_kernelcore = max(required_kernelcore, corepages);
8089 * If kernelcore was not specified or kernelcore size is larger
8090 * than totalpages, there is no ZONE_MOVABLE.
8092 if (!required_kernelcore || required_kernelcore >= totalpages)
8095 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8096 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8099 /* Spread kernelcore memory as evenly as possible throughout nodes */
8100 kernelcore_node = required_kernelcore / usable_nodes;
8101 for_each_node_state(nid, N_MEMORY) {
8102 unsigned long start_pfn, end_pfn;
8105 * Recalculate kernelcore_node if the division per node
8106 * now exceeds what is necessary to satisfy the requested
8107 * amount of memory for the kernel
8109 if (required_kernelcore < kernelcore_node)
8110 kernelcore_node = required_kernelcore / usable_nodes;
8113 * As the map is walked, we track how much memory is usable
8114 * by the kernel using kernelcore_remaining. When it is
8115 * 0, the rest of the node is usable by ZONE_MOVABLE
8117 kernelcore_remaining = kernelcore_node;
8119 /* Go through each range of PFNs within this node */
8120 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8121 unsigned long size_pages;
8123 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8124 if (start_pfn >= end_pfn)
8127 /* Account for what is only usable for kernelcore */
8128 if (start_pfn < usable_startpfn) {
8129 unsigned long kernel_pages;
8130 kernel_pages = min(end_pfn, usable_startpfn)
8133 kernelcore_remaining -= min(kernel_pages,
8134 kernelcore_remaining);
8135 required_kernelcore -= min(kernel_pages,
8136 required_kernelcore);
8138 /* Continue if range is now fully accounted */
8139 if (end_pfn <= usable_startpfn) {
8142 * Push zone_movable_pfn to the end so
8143 * that if we have to rebalance
8144 * kernelcore across nodes, we will
8145 * not double account here
8147 zone_movable_pfn[nid] = end_pfn;
8150 start_pfn = usable_startpfn;
8154 * The usable PFN range for ZONE_MOVABLE is from
8155 * start_pfn->end_pfn. Calculate size_pages as the
8156 * number of pages used as kernelcore
8158 size_pages = end_pfn - start_pfn;
8159 if (size_pages > kernelcore_remaining)
8160 size_pages = kernelcore_remaining;
8161 zone_movable_pfn[nid] = start_pfn + size_pages;
8164 * Some kernelcore has been met, update counts and
8165 * break if the kernelcore for this node has been
8168 required_kernelcore -= min(required_kernelcore,
8170 kernelcore_remaining -= size_pages;
8171 if (!kernelcore_remaining)
8177 * If there is still required_kernelcore, we do another pass with one
8178 * less node in the count. This will push zone_movable_pfn[nid] further
8179 * along on the nodes that still have memory until kernelcore is
8183 if (usable_nodes && required_kernelcore > usable_nodes)
8187 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8188 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8189 unsigned long start_pfn, end_pfn;
8191 zone_movable_pfn[nid] =
8192 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8194 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8195 if (zone_movable_pfn[nid] >= end_pfn)
8196 zone_movable_pfn[nid] = 0;
8200 /* restore the node_state */
8201 node_states[N_MEMORY] = saved_node_state;
8204 /* Any regular or high memory on that node ? */
8205 static void check_for_memory(pg_data_t *pgdat, int nid)
8207 enum zone_type zone_type;
8209 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8210 struct zone *zone = &pgdat->node_zones[zone_type];
8211 if (populated_zone(zone)) {
8212 if (IS_ENABLED(CONFIG_HIGHMEM))
8213 node_set_state(nid, N_HIGH_MEMORY);
8214 if (zone_type <= ZONE_NORMAL)
8215 node_set_state(nid, N_NORMAL_MEMORY);
8222 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8223 * such cases we allow max_zone_pfn sorted in the descending order
8225 bool __weak arch_has_descending_max_zone_pfns(void)
8231 * free_area_init - Initialise all pg_data_t and zone data
8232 * @max_zone_pfn: an array of max PFNs for each zone
8234 * This will call free_area_init_node() for each active node in the system.
8235 * Using the page ranges provided by memblock_set_node(), the size of each
8236 * zone in each node and their holes is calculated. If the maximum PFN
8237 * between two adjacent zones match, it is assumed that the zone is empty.
8238 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8239 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8240 * starts where the previous one ended. For example, ZONE_DMA32 starts
8241 * at arch_max_dma_pfn.
8243 void __init free_area_init(unsigned long *max_zone_pfn)
8245 unsigned long start_pfn, end_pfn;
8249 /* Record where the zone boundaries are */
8250 memset(arch_zone_lowest_possible_pfn, 0,
8251 sizeof(arch_zone_lowest_possible_pfn));
8252 memset(arch_zone_highest_possible_pfn, 0,
8253 sizeof(arch_zone_highest_possible_pfn));
8255 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8256 descending = arch_has_descending_max_zone_pfns();
8258 for (i = 0; i < MAX_NR_ZONES; i++) {
8260 zone = MAX_NR_ZONES - i - 1;
8264 if (zone == ZONE_MOVABLE)
8267 end_pfn = max(max_zone_pfn[zone], start_pfn);
8268 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8269 arch_zone_highest_possible_pfn[zone] = end_pfn;
8271 start_pfn = end_pfn;
8274 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8275 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8276 find_zone_movable_pfns_for_nodes();
8278 /* Print out the zone ranges */
8279 pr_info("Zone ranges:\n");
8280 for (i = 0; i < MAX_NR_ZONES; i++) {
8281 if (i == ZONE_MOVABLE)
8283 pr_info(" %-8s ", zone_names[i]);
8284 if (arch_zone_lowest_possible_pfn[i] ==
8285 arch_zone_highest_possible_pfn[i])
8288 pr_cont("[mem %#018Lx-%#018Lx]\n",
8289 (u64)arch_zone_lowest_possible_pfn[i]
8291 ((u64)arch_zone_highest_possible_pfn[i]
8292 << PAGE_SHIFT) - 1);
8295 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8296 pr_info("Movable zone start for each node\n");
8297 for (i = 0; i < MAX_NUMNODES; i++) {
8298 if (zone_movable_pfn[i])
8299 pr_info(" Node %d: %#018Lx\n", i,
8300 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8304 * Print out the early node map, and initialize the
8305 * subsection-map relative to active online memory ranges to
8306 * enable future "sub-section" extensions of the memory map.
8308 pr_info("Early memory node ranges\n");
8309 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8310 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8311 (u64)start_pfn << PAGE_SHIFT,
8312 ((u64)end_pfn << PAGE_SHIFT) - 1);
8313 subsection_map_init(start_pfn, end_pfn - start_pfn);
8316 /* Initialise every node */
8317 mminit_verify_pageflags_layout();
8318 setup_nr_node_ids();
8319 for_each_node(nid) {
8322 if (!node_online(nid)) {
8323 pr_info("Initializing node %d as memoryless\n", nid);
8325 /* Allocator not initialized yet */
8326 pgdat = arch_alloc_nodedata(nid);
8328 pr_err("Cannot allocate %zuB for node %d.\n",
8329 sizeof(*pgdat), nid);
8332 arch_refresh_nodedata(nid, pgdat);
8333 free_area_init_memoryless_node(nid);
8336 * We do not want to confuse userspace by sysfs
8337 * files/directories for node without any memory
8338 * attached to it, so this node is not marked as
8339 * N_MEMORY and not marked online so that no sysfs
8340 * hierarchy will be created via register_one_node for
8341 * it. The pgdat will get fully initialized by
8342 * hotadd_init_pgdat() when memory is hotplugged into
8348 pgdat = NODE_DATA(nid);
8349 free_area_init_node(nid);
8351 /* Any memory on that node */
8352 if (pgdat->node_present_pages)
8353 node_set_state(nid, N_MEMORY);
8354 check_for_memory(pgdat, nid);
8360 static int __init cmdline_parse_core(char *p, unsigned long *core,
8361 unsigned long *percent)
8363 unsigned long long coremem;
8369 /* Value may be a percentage of total memory, otherwise bytes */
8370 coremem = simple_strtoull(p, &endptr, 0);
8371 if (*endptr == '%') {
8372 /* Paranoid check for percent values greater than 100 */
8373 WARN_ON(coremem > 100);
8377 coremem = memparse(p, &p);
8378 /* Paranoid check that UL is enough for the coremem value */
8379 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8381 *core = coremem >> PAGE_SHIFT;
8388 * kernelcore=size sets the amount of memory for use for allocations that
8389 * cannot be reclaimed or migrated.
8391 static int __init cmdline_parse_kernelcore(char *p)
8393 /* parse kernelcore=mirror */
8394 if (parse_option_str(p, "mirror")) {
8395 mirrored_kernelcore = true;
8399 return cmdline_parse_core(p, &required_kernelcore,
8400 &required_kernelcore_percent);
8404 * movablecore=size sets the amount of memory for use for allocations that
8405 * can be reclaimed or migrated.
8407 static int __init cmdline_parse_movablecore(char *p)
8409 return cmdline_parse_core(p, &required_movablecore,
8410 &required_movablecore_percent);
8413 early_param("kernelcore", cmdline_parse_kernelcore);
8414 early_param("movablecore", cmdline_parse_movablecore);
8416 void adjust_managed_page_count(struct page *page, long count)
8418 atomic_long_add(count, &page_zone(page)->managed_pages);
8419 totalram_pages_add(count);
8420 #ifdef CONFIG_HIGHMEM
8421 if (PageHighMem(page))
8422 totalhigh_pages_add(count);
8425 EXPORT_SYMBOL(adjust_managed_page_count);
8427 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8430 unsigned long pages = 0;
8432 start = (void *)PAGE_ALIGN((unsigned long)start);
8433 end = (void *)((unsigned long)end & PAGE_MASK);
8434 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8435 struct page *page = virt_to_page(pos);
8436 void *direct_map_addr;
8439 * 'direct_map_addr' might be different from 'pos'
8440 * because some architectures' virt_to_page()
8441 * work with aliases. Getting the direct map
8442 * address ensures that we get a _writeable_
8443 * alias for the memset().
8445 direct_map_addr = page_address(page);
8447 * Perform a kasan-unchecked memset() since this memory
8448 * has not been initialized.
8450 direct_map_addr = kasan_reset_tag(direct_map_addr);
8451 if ((unsigned int)poison <= 0xFF)
8452 memset(direct_map_addr, poison, PAGE_SIZE);
8454 free_reserved_page(page);
8458 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8463 void __init mem_init_print_info(void)
8465 unsigned long physpages, codesize, datasize, rosize, bss_size;
8466 unsigned long init_code_size, init_data_size;
8468 physpages = get_num_physpages();
8469 codesize = _etext - _stext;
8470 datasize = _edata - _sdata;
8471 rosize = __end_rodata - __start_rodata;
8472 bss_size = __bss_stop - __bss_start;
8473 init_data_size = __init_end - __init_begin;
8474 init_code_size = _einittext - _sinittext;
8477 * Detect special cases and adjust section sizes accordingly:
8478 * 1) .init.* may be embedded into .data sections
8479 * 2) .init.text.* may be out of [__init_begin, __init_end],
8480 * please refer to arch/tile/kernel/vmlinux.lds.S.
8481 * 3) .rodata.* may be embedded into .text or .data sections.
8483 #define adj_init_size(start, end, size, pos, adj) \
8485 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8489 adj_init_size(__init_begin, __init_end, init_data_size,
8490 _sinittext, init_code_size);
8491 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8492 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8493 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8494 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8496 #undef adj_init_size
8498 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8499 #ifdef CONFIG_HIGHMEM
8503 K(nr_free_pages()), K(physpages),
8504 codesize >> 10, datasize >> 10, rosize >> 10,
8505 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8506 K(physpages - totalram_pages() - totalcma_pages),
8508 #ifdef CONFIG_HIGHMEM
8509 , K(totalhigh_pages())
8515 * set_dma_reserve - set the specified number of pages reserved in the first zone
8516 * @new_dma_reserve: The number of pages to mark reserved
8518 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8519 * In the DMA zone, a significant percentage may be consumed by kernel image
8520 * and other unfreeable allocations which can skew the watermarks badly. This
8521 * function may optionally be used to account for unfreeable pages in the
8522 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8523 * smaller per-cpu batchsize.
8525 void __init set_dma_reserve(unsigned long new_dma_reserve)
8527 dma_reserve = new_dma_reserve;
8530 static int page_alloc_cpu_dead(unsigned int cpu)
8534 lru_add_drain_cpu(cpu);
8535 mlock_page_drain_remote(cpu);
8539 * Spill the event counters of the dead processor
8540 * into the current processors event counters.
8541 * This artificially elevates the count of the current
8544 vm_events_fold_cpu(cpu);
8547 * Zero the differential counters of the dead processor
8548 * so that the vm statistics are consistent.
8550 * This is only okay since the processor is dead and cannot
8551 * race with what we are doing.
8553 cpu_vm_stats_fold(cpu);
8555 for_each_populated_zone(zone)
8556 zone_pcp_update(zone, 0);
8561 static int page_alloc_cpu_online(unsigned int cpu)
8565 for_each_populated_zone(zone)
8566 zone_pcp_update(zone, 1);
8571 int hashdist = HASHDIST_DEFAULT;
8573 static int __init set_hashdist(char *str)
8577 hashdist = simple_strtoul(str, &str, 0);
8580 __setup("hashdist=", set_hashdist);
8583 void __init page_alloc_init(void)
8588 if (num_node_state(N_MEMORY) == 1)
8592 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8593 "mm/page_alloc:pcp",
8594 page_alloc_cpu_online,
8595 page_alloc_cpu_dead);
8600 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8601 * or min_free_kbytes changes.
8603 static void calculate_totalreserve_pages(void)
8605 struct pglist_data *pgdat;
8606 unsigned long reserve_pages = 0;
8607 enum zone_type i, j;
8609 for_each_online_pgdat(pgdat) {
8611 pgdat->totalreserve_pages = 0;
8613 for (i = 0; i < MAX_NR_ZONES; i++) {
8614 struct zone *zone = pgdat->node_zones + i;
8616 unsigned long managed_pages = zone_managed_pages(zone);
8618 /* Find valid and maximum lowmem_reserve in the zone */
8619 for (j = i; j < MAX_NR_ZONES; j++) {
8620 if (zone->lowmem_reserve[j] > max)
8621 max = zone->lowmem_reserve[j];
8624 /* we treat the high watermark as reserved pages. */
8625 max += high_wmark_pages(zone);
8627 if (max > managed_pages)
8628 max = managed_pages;
8630 pgdat->totalreserve_pages += max;
8632 reserve_pages += max;
8635 totalreserve_pages = reserve_pages;
8639 * setup_per_zone_lowmem_reserve - called whenever
8640 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8641 * has a correct pages reserved value, so an adequate number of
8642 * pages are left in the zone after a successful __alloc_pages().
8644 static void setup_per_zone_lowmem_reserve(void)
8646 struct pglist_data *pgdat;
8647 enum zone_type i, j;
8649 for_each_online_pgdat(pgdat) {
8650 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8651 struct zone *zone = &pgdat->node_zones[i];
8652 int ratio = sysctl_lowmem_reserve_ratio[i];
8653 bool clear = !ratio || !zone_managed_pages(zone);
8654 unsigned long managed_pages = 0;
8656 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8657 struct zone *upper_zone = &pgdat->node_zones[j];
8659 managed_pages += zone_managed_pages(upper_zone);
8662 zone->lowmem_reserve[j] = 0;
8664 zone->lowmem_reserve[j] = managed_pages / ratio;
8669 /* update totalreserve_pages */
8670 calculate_totalreserve_pages();
8673 static void __setup_per_zone_wmarks(void)
8675 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8676 unsigned long lowmem_pages = 0;
8678 unsigned long flags;
8680 /* Calculate total number of !ZONE_HIGHMEM pages */
8681 for_each_zone(zone) {
8682 if (!is_highmem(zone))
8683 lowmem_pages += zone_managed_pages(zone);
8686 for_each_zone(zone) {
8689 spin_lock_irqsave(&zone->lock, flags);
8690 tmp = (u64)pages_min * zone_managed_pages(zone);
8691 do_div(tmp, lowmem_pages);
8692 if (is_highmem(zone)) {
8694 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8695 * need highmem pages, so cap pages_min to a small
8698 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8699 * deltas control async page reclaim, and so should
8700 * not be capped for highmem.
8702 unsigned long min_pages;
8704 min_pages = zone_managed_pages(zone) / 1024;
8705 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8706 zone->_watermark[WMARK_MIN] = min_pages;
8709 * If it's a lowmem zone, reserve a number of pages
8710 * proportionate to the zone's size.
8712 zone->_watermark[WMARK_MIN] = tmp;
8716 * Set the kswapd watermarks distance according to the
8717 * scale factor in proportion to available memory, but
8718 * ensure a minimum size on small systems.
8720 tmp = max_t(u64, tmp >> 2,
8721 mult_frac(zone_managed_pages(zone),
8722 watermark_scale_factor, 10000));
8724 zone->watermark_boost = 0;
8725 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8726 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8727 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8729 spin_unlock_irqrestore(&zone->lock, flags);
8732 /* update totalreserve_pages */
8733 calculate_totalreserve_pages();
8737 * setup_per_zone_wmarks - called when min_free_kbytes changes
8738 * or when memory is hot-{added|removed}
8740 * Ensures that the watermark[min,low,high] values for each zone are set
8741 * correctly with respect to min_free_kbytes.
8743 void setup_per_zone_wmarks(void)
8746 static DEFINE_SPINLOCK(lock);
8749 __setup_per_zone_wmarks();
8753 * The watermark size have changed so update the pcpu batch
8754 * and high limits or the limits may be inappropriate.
8757 zone_pcp_update(zone, 0);
8761 * Initialise min_free_kbytes.
8763 * For small machines we want it small (128k min). For large machines
8764 * we want it large (256MB max). But it is not linear, because network
8765 * bandwidth does not increase linearly with machine size. We use
8767 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8768 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8784 void calculate_min_free_kbytes(void)
8786 unsigned long lowmem_kbytes;
8787 int new_min_free_kbytes;
8789 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8790 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8792 if (new_min_free_kbytes > user_min_free_kbytes)
8793 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8795 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8796 new_min_free_kbytes, user_min_free_kbytes);
8800 int __meminit init_per_zone_wmark_min(void)
8802 calculate_min_free_kbytes();
8803 setup_per_zone_wmarks();
8804 refresh_zone_stat_thresholds();
8805 setup_per_zone_lowmem_reserve();
8808 setup_min_unmapped_ratio();
8809 setup_min_slab_ratio();
8812 khugepaged_min_free_kbytes_update();
8816 postcore_initcall(init_per_zone_wmark_min)
8819 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8820 * that we can call two helper functions whenever min_free_kbytes
8823 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8824 void *buffer, size_t *length, loff_t *ppos)
8828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8833 user_min_free_kbytes = min_free_kbytes;
8834 setup_per_zone_wmarks();
8839 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8840 void *buffer, size_t *length, loff_t *ppos)
8844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8849 setup_per_zone_wmarks();
8855 static void setup_min_unmapped_ratio(void)
8860 for_each_online_pgdat(pgdat)
8861 pgdat->min_unmapped_pages = 0;
8864 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8865 sysctl_min_unmapped_ratio) / 100;
8869 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8870 void *buffer, size_t *length, loff_t *ppos)
8874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8878 setup_min_unmapped_ratio();
8883 static void setup_min_slab_ratio(void)
8888 for_each_online_pgdat(pgdat)
8889 pgdat->min_slab_pages = 0;
8892 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8893 sysctl_min_slab_ratio) / 100;
8896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8897 void *buffer, size_t *length, loff_t *ppos)
8901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8905 setup_min_slab_ratio();
8912 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8913 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8914 * whenever sysctl_lowmem_reserve_ratio changes.
8916 * The reserve ratio obviously has absolutely no relation with the
8917 * minimum watermarks. The lowmem reserve ratio can only make sense
8918 * if in function of the boot time zone sizes.
8920 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8921 void *buffer, size_t *length, loff_t *ppos)
8925 proc_dointvec_minmax(table, write, buffer, length, ppos);
8927 for (i = 0; i < MAX_NR_ZONES; i++) {
8928 if (sysctl_lowmem_reserve_ratio[i] < 1)
8929 sysctl_lowmem_reserve_ratio[i] = 0;
8932 setup_per_zone_lowmem_reserve();
8937 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8938 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8939 * pagelist can have before it gets flushed back to buddy allocator.
8941 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8942 int write, void *buffer, size_t *length, loff_t *ppos)
8945 int old_percpu_pagelist_high_fraction;
8948 mutex_lock(&pcp_batch_high_lock);
8949 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8951 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8952 if (!write || ret < 0)
8955 /* Sanity checking to avoid pcp imbalance */
8956 if (percpu_pagelist_high_fraction &&
8957 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8958 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8964 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8967 for_each_populated_zone(zone)
8968 zone_set_pageset_high_and_batch(zone, 0);
8970 mutex_unlock(&pcp_batch_high_lock);
8974 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8976 * Returns the number of pages that arch has reserved but
8977 * is not known to alloc_large_system_hash().
8979 static unsigned long __init arch_reserved_kernel_pages(void)
8986 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8987 * machines. As memory size is increased the scale is also increased but at
8988 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8989 * quadruples the scale is increased by one, which means the size of hash table
8990 * only doubles, instead of quadrupling as well.
8991 * Because 32-bit systems cannot have large physical memory, where this scaling
8992 * makes sense, it is disabled on such platforms.
8994 #if __BITS_PER_LONG > 32
8995 #define ADAPT_SCALE_BASE (64ul << 30)
8996 #define ADAPT_SCALE_SHIFT 2
8997 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9001 * allocate a large system hash table from bootmem
9002 * - it is assumed that the hash table must contain an exact power-of-2
9003 * quantity of entries
9004 * - limit is the number of hash buckets, not the total allocation size
9006 void *__init alloc_large_system_hash(const char *tablename,
9007 unsigned long bucketsize,
9008 unsigned long numentries,
9011 unsigned int *_hash_shift,
9012 unsigned int *_hash_mask,
9013 unsigned long low_limit,
9014 unsigned long high_limit)
9016 unsigned long long max = high_limit;
9017 unsigned long log2qty, size;
9023 /* allow the kernel cmdline to have a say */
9025 /* round applicable memory size up to nearest megabyte */
9026 numentries = nr_kernel_pages;
9027 numentries -= arch_reserved_kernel_pages();
9029 /* It isn't necessary when PAGE_SIZE >= 1MB */
9030 if (PAGE_SHIFT < 20)
9031 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9033 #if __BITS_PER_LONG > 32
9035 unsigned long adapt;
9037 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9038 adapt <<= ADAPT_SCALE_SHIFT)
9043 /* limit to 1 bucket per 2^scale bytes of low memory */
9044 if (scale > PAGE_SHIFT)
9045 numentries >>= (scale - PAGE_SHIFT);
9047 numentries <<= (PAGE_SHIFT - scale);
9049 /* Make sure we've got at least a 0-order allocation.. */
9050 if (unlikely(flags & HASH_SMALL)) {
9051 /* Makes no sense without HASH_EARLY */
9052 WARN_ON(!(flags & HASH_EARLY));
9053 if (!(numentries >> *_hash_shift)) {
9054 numentries = 1UL << *_hash_shift;
9055 BUG_ON(!numentries);
9057 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9058 numentries = PAGE_SIZE / bucketsize;
9060 numentries = roundup_pow_of_two(numentries);
9062 /* limit allocation size to 1/16 total memory by default */
9064 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9065 do_div(max, bucketsize);
9067 max = min(max, 0x80000000ULL);
9069 if (numentries < low_limit)
9070 numentries = low_limit;
9071 if (numentries > max)
9074 log2qty = ilog2(numentries);
9076 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9079 size = bucketsize << log2qty;
9080 if (flags & HASH_EARLY) {
9081 if (flags & HASH_ZERO)
9082 table = memblock_alloc(size, SMP_CACHE_BYTES);
9084 table = memblock_alloc_raw(size,
9086 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9087 table = vmalloc_huge(size, gfp_flags);
9090 huge = is_vm_area_hugepages(table);
9093 * If bucketsize is not a power-of-two, we may free
9094 * some pages at the end of hash table which
9095 * alloc_pages_exact() automatically does
9097 table = alloc_pages_exact(size, gfp_flags);
9098 kmemleak_alloc(table, size, 1, gfp_flags);
9100 } while (!table && size > PAGE_SIZE && --log2qty);
9103 panic("Failed to allocate %s hash table\n", tablename);
9105 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9106 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9107 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9110 *_hash_shift = log2qty;
9112 *_hash_mask = (1 << log2qty) - 1;
9117 #ifdef CONFIG_CONTIG_ALLOC
9118 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9119 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9120 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9121 static void alloc_contig_dump_pages(struct list_head *page_list)
9123 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9125 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9129 list_for_each_entry(page, page_list, lru)
9130 dump_page(page, "migration failure");
9134 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9139 /* [start, end) must belong to a single zone. */
9140 int __alloc_contig_migrate_range(struct compact_control *cc,
9141 unsigned long start, unsigned long end)
9143 /* This function is based on compact_zone() from compaction.c. */
9144 unsigned int nr_reclaimed;
9145 unsigned long pfn = start;
9146 unsigned int tries = 0;
9148 struct migration_target_control mtc = {
9149 .nid = zone_to_nid(cc->zone),
9150 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9153 lru_cache_disable();
9155 while (pfn < end || !list_empty(&cc->migratepages)) {
9156 if (fatal_signal_pending(current)) {
9161 if (list_empty(&cc->migratepages)) {
9162 cc->nr_migratepages = 0;
9163 ret = isolate_migratepages_range(cc, pfn, end);
9164 if (ret && ret != -EAGAIN)
9166 pfn = cc->migrate_pfn;
9168 } else if (++tries == 5) {
9173 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9175 cc->nr_migratepages -= nr_reclaimed;
9177 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9178 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9181 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9182 * to retry again over this error, so do the same here.
9190 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9191 alloc_contig_dump_pages(&cc->migratepages);
9192 putback_movable_pages(&cc->migratepages);
9199 * alloc_contig_range() -- tries to allocate given range of pages
9200 * @start: start PFN to allocate
9201 * @end: one-past-the-last PFN to allocate
9202 * @migratetype: migratetype of the underlying pageblocks (either
9203 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9204 * in range must have the same migratetype and it must
9205 * be either of the two.
9206 * @gfp_mask: GFP mask to use during compaction
9208 * The PFN range does not have to be pageblock aligned. The PFN range must
9209 * belong to a single zone.
9211 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9212 * pageblocks in the range. Once isolated, the pageblocks should not
9213 * be modified by others.
9215 * Return: zero on success or negative error code. On success all
9216 * pages which PFN is in [start, end) are allocated for the caller and
9217 * need to be freed with free_contig_range().
9219 int alloc_contig_range(unsigned long start, unsigned long end,
9220 unsigned migratetype, gfp_t gfp_mask)
9222 unsigned long outer_start, outer_end;
9226 struct compact_control cc = {
9227 .nr_migratepages = 0,
9229 .zone = page_zone(pfn_to_page(start)),
9230 .mode = MIGRATE_SYNC,
9231 .ignore_skip_hint = true,
9232 .no_set_skip_hint = true,
9233 .gfp_mask = current_gfp_context(gfp_mask),
9234 .alloc_contig = true,
9236 INIT_LIST_HEAD(&cc.migratepages);
9239 * What we do here is we mark all pageblocks in range as
9240 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9241 * have different sizes, and due to the way page allocator
9242 * work, start_isolate_page_range() has special handlings for this.
9244 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9245 * migrate the pages from an unaligned range (ie. pages that
9246 * we are interested in). This will put all the pages in
9247 * range back to page allocator as MIGRATE_ISOLATE.
9249 * When this is done, we take the pages in range from page
9250 * allocator removing them from the buddy system. This way
9251 * page allocator will never consider using them.
9253 * This lets us mark the pageblocks back as
9254 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9255 * aligned range but not in the unaligned, original range are
9256 * put back to page allocator so that buddy can use them.
9259 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9263 drain_all_pages(cc.zone);
9266 * In case of -EBUSY, we'd like to know which page causes problem.
9267 * So, just fall through. test_pages_isolated() has a tracepoint
9268 * which will report the busy page.
9270 * It is possible that busy pages could become available before
9271 * the call to test_pages_isolated, and the range will actually be
9272 * allocated. So, if we fall through be sure to clear ret so that
9273 * -EBUSY is not accidentally used or returned to caller.
9275 ret = __alloc_contig_migrate_range(&cc, start, end);
9276 if (ret && ret != -EBUSY)
9281 * Pages from [start, end) are within a pageblock_nr_pages
9282 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9283 * more, all pages in [start, end) are free in page allocator.
9284 * What we are going to do is to allocate all pages from
9285 * [start, end) (that is remove them from page allocator).
9287 * The only problem is that pages at the beginning and at the
9288 * end of interesting range may be not aligned with pages that
9289 * page allocator holds, ie. they can be part of higher order
9290 * pages. Because of this, we reserve the bigger range and
9291 * once this is done free the pages we are not interested in.
9293 * We don't have to hold zone->lock here because the pages are
9294 * isolated thus they won't get removed from buddy.
9298 outer_start = start;
9299 while (!PageBuddy(pfn_to_page(outer_start))) {
9300 if (++order >= MAX_ORDER) {
9301 outer_start = start;
9304 outer_start &= ~0UL << order;
9307 if (outer_start != start) {
9308 order = buddy_order(pfn_to_page(outer_start));
9311 * outer_start page could be small order buddy page and
9312 * it doesn't include start page. Adjust outer_start
9313 * in this case to report failed page properly
9314 * on tracepoint in test_pages_isolated()
9316 if (outer_start + (1UL << order) <= start)
9317 outer_start = start;
9320 /* Make sure the range is really isolated. */
9321 if (test_pages_isolated(outer_start, end, 0)) {
9326 /* Grab isolated pages from freelists. */
9327 outer_end = isolate_freepages_range(&cc, outer_start, end);
9333 /* Free head and tail (if any) */
9334 if (start != outer_start)
9335 free_contig_range(outer_start, start - outer_start);
9336 if (end != outer_end)
9337 free_contig_range(end, outer_end - end);
9340 undo_isolate_page_range(start, end, migratetype);
9343 EXPORT_SYMBOL(alloc_contig_range);
9345 static int __alloc_contig_pages(unsigned long start_pfn,
9346 unsigned long nr_pages, gfp_t gfp_mask)
9348 unsigned long end_pfn = start_pfn + nr_pages;
9350 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9354 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9355 unsigned long nr_pages)
9357 unsigned long i, end_pfn = start_pfn + nr_pages;
9360 for (i = start_pfn; i < end_pfn; i++) {
9361 page = pfn_to_online_page(i);
9365 if (page_zone(page) != z)
9368 if (PageReserved(page))
9374 static bool zone_spans_last_pfn(const struct zone *zone,
9375 unsigned long start_pfn, unsigned long nr_pages)
9377 unsigned long last_pfn = start_pfn + nr_pages - 1;
9379 return zone_spans_pfn(zone, last_pfn);
9383 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9384 * @nr_pages: Number of contiguous pages to allocate
9385 * @gfp_mask: GFP mask to limit search and used during compaction
9387 * @nodemask: Mask for other possible nodes
9389 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9390 * on an applicable zonelist to find a contiguous pfn range which can then be
9391 * tried for allocation with alloc_contig_range(). This routine is intended
9392 * for allocation requests which can not be fulfilled with the buddy allocator.
9394 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9395 * power of two, then allocated range is also guaranteed to be aligned to same
9396 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9398 * Allocated pages can be freed with free_contig_range() or by manually calling
9399 * __free_page() on each allocated page.
9401 * Return: pointer to contiguous pages on success, or NULL if not successful.
9403 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9404 int nid, nodemask_t *nodemask)
9406 unsigned long ret, pfn, flags;
9407 struct zonelist *zonelist;
9411 zonelist = node_zonelist(nid, gfp_mask);
9412 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9413 gfp_zone(gfp_mask), nodemask) {
9414 spin_lock_irqsave(&zone->lock, flags);
9416 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9417 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9418 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9420 * We release the zone lock here because
9421 * alloc_contig_range() will also lock the zone
9422 * at some point. If there's an allocation
9423 * spinning on this lock, it may win the race
9424 * and cause alloc_contig_range() to fail...
9426 spin_unlock_irqrestore(&zone->lock, flags);
9427 ret = __alloc_contig_pages(pfn, nr_pages,
9430 return pfn_to_page(pfn);
9431 spin_lock_irqsave(&zone->lock, flags);
9435 spin_unlock_irqrestore(&zone->lock, flags);
9439 #endif /* CONFIG_CONTIG_ALLOC */
9441 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9443 unsigned long count = 0;
9445 for (; nr_pages--; pfn++) {
9446 struct page *page = pfn_to_page(pfn);
9448 count += page_count(page) != 1;
9451 WARN(count != 0, "%lu pages are still in use!\n", count);
9453 EXPORT_SYMBOL(free_contig_range);
9456 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9457 * page high values need to be recalculated.
9459 void zone_pcp_update(struct zone *zone, int cpu_online)
9461 mutex_lock(&pcp_batch_high_lock);
9462 zone_set_pageset_high_and_batch(zone, cpu_online);
9463 mutex_unlock(&pcp_batch_high_lock);
9467 * Effectively disable pcplists for the zone by setting the high limit to 0
9468 * and draining all cpus. A concurrent page freeing on another CPU that's about
9469 * to put the page on pcplist will either finish before the drain and the page
9470 * will be drained, or observe the new high limit and skip the pcplist.
9472 * Must be paired with a call to zone_pcp_enable().
9474 void zone_pcp_disable(struct zone *zone)
9476 mutex_lock(&pcp_batch_high_lock);
9477 __zone_set_pageset_high_and_batch(zone, 0, 1);
9478 __drain_all_pages(zone, true);
9481 void zone_pcp_enable(struct zone *zone)
9483 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9484 mutex_unlock(&pcp_batch_high_lock);
9487 void zone_pcp_reset(struct zone *zone)
9490 struct per_cpu_zonestat *pzstats;
9492 if (zone->per_cpu_pageset != &boot_pageset) {
9493 for_each_online_cpu(cpu) {
9494 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9495 drain_zonestat(zone, pzstats);
9497 free_percpu(zone->per_cpu_pageset);
9498 free_percpu(zone->per_cpu_zonestats);
9499 zone->per_cpu_pageset = &boot_pageset;
9500 zone->per_cpu_zonestats = &boot_zonestats;
9504 #ifdef CONFIG_MEMORY_HOTREMOVE
9506 * All pages in the range must be in a single zone, must not contain holes,
9507 * must span full sections, and must be isolated before calling this function.
9509 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9511 unsigned long pfn = start_pfn;
9515 unsigned long flags;
9517 offline_mem_sections(pfn, end_pfn);
9518 zone = page_zone(pfn_to_page(pfn));
9519 spin_lock_irqsave(&zone->lock, flags);
9520 while (pfn < end_pfn) {
9521 page = pfn_to_page(pfn);
9523 * The HWPoisoned page may be not in buddy system, and
9524 * page_count() is not 0.
9526 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9531 * At this point all remaining PageOffline() pages have a
9532 * reference count of 0 and can simply be skipped.
9534 if (PageOffline(page)) {
9535 BUG_ON(page_count(page));
9536 BUG_ON(PageBuddy(page));
9541 BUG_ON(page_count(page));
9542 BUG_ON(!PageBuddy(page));
9543 order = buddy_order(page);
9544 del_page_from_free_list(page, zone, order);
9545 pfn += (1 << order);
9547 spin_unlock_irqrestore(&zone->lock, flags);
9552 * This function returns a stable result only if called under zone lock.
9554 bool is_free_buddy_page(struct page *page)
9556 unsigned long pfn = page_to_pfn(page);
9559 for (order = 0; order < MAX_ORDER; order++) {
9560 struct page *page_head = page - (pfn & ((1 << order) - 1));
9562 if (PageBuddy(page_head) &&
9563 buddy_order_unsafe(page_head) >= order)
9567 return order < MAX_ORDER;
9569 EXPORT_SYMBOL(is_free_buddy_page);
9571 #ifdef CONFIG_MEMORY_FAILURE
9573 * Break down a higher-order page in sub-pages, and keep our target out of
9576 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9577 struct page *target, int low, int high,
9580 unsigned long size = 1 << high;
9581 struct page *current_buddy, *next_page;
9583 while (high > low) {
9587 if (target >= &page[size]) {
9588 next_page = page + size;
9589 current_buddy = page;
9592 current_buddy = page + size;
9595 if (set_page_guard(zone, current_buddy, high, migratetype))
9598 if (current_buddy != target) {
9599 add_to_free_list(current_buddy, zone, high, migratetype);
9600 set_buddy_order(current_buddy, high);
9607 * Take a page that will be marked as poisoned off the buddy allocator.
9609 bool take_page_off_buddy(struct page *page)
9611 struct zone *zone = page_zone(page);
9612 unsigned long pfn = page_to_pfn(page);
9613 unsigned long flags;
9617 spin_lock_irqsave(&zone->lock, flags);
9618 for (order = 0; order < MAX_ORDER; order++) {
9619 struct page *page_head = page - (pfn & ((1 << order) - 1));
9620 int page_order = buddy_order(page_head);
9622 if (PageBuddy(page_head) && page_order >= order) {
9623 unsigned long pfn_head = page_to_pfn(page_head);
9624 int migratetype = get_pfnblock_migratetype(page_head,
9627 del_page_from_free_list(page_head, zone, page_order);
9628 break_down_buddy_pages(zone, page_head, page, 0,
9629 page_order, migratetype);
9630 SetPageHWPoisonTakenOff(page);
9631 if (!is_migrate_isolate(migratetype))
9632 __mod_zone_freepage_state(zone, -1, migratetype);
9636 if (page_count(page_head) > 0)
9639 spin_unlock_irqrestore(&zone->lock, flags);
9644 * Cancel takeoff done by take_page_off_buddy().
9646 bool put_page_back_buddy(struct page *page)
9648 struct zone *zone = page_zone(page);
9649 unsigned long pfn = page_to_pfn(page);
9650 unsigned long flags;
9651 int migratetype = get_pfnblock_migratetype(page, pfn);
9654 spin_lock_irqsave(&zone->lock, flags);
9655 if (put_page_testzero(page)) {
9656 ClearPageHWPoisonTakenOff(page);
9657 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9658 if (TestClearPageHWPoison(page)) {
9662 spin_unlock_irqrestore(&zone->lock, flags);
9668 #ifdef CONFIG_ZONE_DMA
9669 bool has_managed_dma(void)
9671 struct pglist_data *pgdat;
9673 for_each_online_pgdat(pgdat) {
9674 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9676 if (managed_zone(zone))
9681 #endif /* CONFIG_ZONE_DMA */