2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
105 * Array of node states.
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
121 EXPORT_SYMBOL(node_states);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page *page)
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 page->index = migratetype;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
192 static void __free_pages_ok(struct page *page, unsigned int order);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
209 #ifdef CONFIG_ZONE_DMA32
212 #ifdef CONFIG_HIGHMEM
218 EXPORT_SYMBOL(totalram_pages);
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
224 #ifdef CONFIG_ZONE_DMA32
228 #ifdef CONFIG_HIGHMEM
232 #ifdef CONFIG_ZONE_DEVICE
237 char * const migratetype_names[MIGRATE_TYPES] = {
245 #ifdef CONFIG_MEMORY_ISOLATION
250 compound_page_dtor * const compound_page_dtors[] = {
253 #ifdef CONFIG_HUGETLB_PAGE
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
289 int page_group_by_mobility_disabled __read_mostly;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 pgdat->first_deferred_pfn = ULONG_MAX;
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 int nid = early_pfn_to_nid(pfn);
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
316 unsigned long max_initialise;
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
342 static inline bool early_page_uninitialised(unsigned long pfn)
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 unsigned long end_bitidx,
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 unsigned long end_bitidx,
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
447 word = READ_ONCE(bitmap[word_bitidx]);
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
456 void set_pageblock_migratetype(struct page *page, int migratetype)
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
480 } while (zone_span_seqretry(zone, seq));
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
490 static int page_is_consistent(struct zone *zone, struct page *page)
492 if (!pfn_valid_within(page_to_pfn(page)))
494 if (zone != page_zone(page))
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone *zone, struct page *page)
504 if (page_outside_zone_boundaries(zone, page))
506 if (!page_is_consistent(zone, page))
512 static inline int bad_range(struct zone *zone, struct page *page)
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
536 "BUG: Bad page state: %lu messages suppressed\n",
543 resume = jiffies + 60 * HZ;
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 * Higher-order pages are called "compound pages". They are structured thusly:
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
577 void free_compound_page(struct page *page)
579 __free_pages_ok(page, compound_order(page));
582 void prep_compound_page(struct page *page, unsigned int order)
585 int nr_pages = 1 << order;
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
596 atomic_set(compound_mapcount_ptr(page), -1);
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
606 static int __init early_debug_pagealloc(char *buf)
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 early_param("debug_pagealloc", early_debug_pagealloc);
614 static bool need_debug_guardpage(void)
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
620 if (!debug_guardpage_minorder())
626 static void init_debug_guardpage(void)
628 if (!debug_pagealloc_enabled())
631 if (!debug_guardpage_minorder())
634 _debug_guardpage_enabled = true;
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
642 static int __init debug_guardpage_minorder_setup(char *buf)
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
659 struct page_ext *page_ext;
661 if (!debug_guardpage_enabled())
664 if (order >= debug_guardpage_minorder())
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
684 struct page_ext *page_ext;
686 if (!debug_guardpage_enabled())
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
707 static inline void set_page_order(struct page *page, unsigned int order)
709 set_page_private(page, order);
710 __SetPageBuddy(page);
713 static inline void rmv_page_order(struct page *page)
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
732 * For recording page's order, we use page_private(page).
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
752 if (page_zone_id(page) != page_zone_id(buddy))
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
763 * Freeing function for a buddy system allocator.
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
787 static inline void __free_one_page(struct page *page,
789 struct zone *zone, unsigned int order,
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
795 unsigned int max_order;
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
814 if (!pfn_valid_within(buddy_pfn))
816 if (!page_is_buddy(page, buddy, order))
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
840 * We don't want to hit this code for the more frequent
843 if (unlikely(has_isolate_pageblock(zone))) {
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
856 goto continue_merging;
860 set_page_order(page, order);
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 zone->free_area[order].nr_free++;
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
903 (unsigned long)page->mem_cgroup |
905 (page->flags & check_flags)))
911 static void free_pages_check_bad(struct page *page)
913 const char *bad_reason;
914 unsigned long bad_flags;
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
933 bad_page(page, bad_reason, bad_flags);
936 static inline int free_pages_check(struct page *page)
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
960 switch (page - head_page) {
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
991 page->mapping = NULL;
992 clear_compound_head(page);
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1033 bad += free_pages_check(page);
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1058 return free_pages_prepare(page, 0, true);
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1066 static bool free_pcp_prepare(struct page *page)
1068 return free_pages_prepare(page, 0, false);
1071 static bool bulkfree_pcp_prepare(struct page *page)
1073 return free_pages_check(page);
1075 #endif /* CONFIG_DEBUG_VM */
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1091 int migratetype = 0;
1093 bool isolated_pageblocks;
1095 spin_lock(&zone->lock);
1096 isolated_pageblocks = has_isolate_pageblock(zone);
1100 struct list_head *list;
1103 * Remove pages from lists in a round-robin fashion. A
1104 * batch_free count is maintained that is incremented when an
1105 * empty list is encountered. This is so more pages are freed
1106 * off fuller lists instead of spinning excessively around empty
1111 if (++migratetype == MIGRATE_PCPTYPES)
1113 list = &pcp->lists[migratetype];
1114 } while (list_empty(list));
1116 /* This is the only non-empty list. Free them all. */
1117 if (batch_free == MIGRATE_PCPTYPES)
1121 int mt; /* migratetype of the to-be-freed page */
1123 page = list_last_entry(list, struct page, lru);
1124 /* must delete as __free_one_page list manipulates */
1125 list_del(&page->lru);
1127 mt = get_pcppage_migratetype(page);
1128 /* MIGRATE_ISOLATE page should not go to pcplists */
1129 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1130 /* Pageblock could have been isolated meanwhile */
1131 if (unlikely(isolated_pageblocks))
1132 mt = get_pageblock_migratetype(page);
1134 if (bulkfree_pcp_prepare(page))
1137 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1138 trace_mm_page_pcpu_drain(page, 0, mt);
1139 } while (--count && --batch_free && !list_empty(list));
1141 spin_unlock(&zone->lock);
1144 static void free_one_page(struct zone *zone,
1145 struct page *page, unsigned long pfn,
1149 spin_lock(&zone->lock);
1150 if (unlikely(has_isolate_pageblock(zone) ||
1151 is_migrate_isolate(migratetype))) {
1152 migratetype = get_pfnblock_migratetype(page, pfn);
1154 __free_one_page(page, pfn, zone, order, migratetype);
1155 spin_unlock(&zone->lock);
1158 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1159 unsigned long zone, int nid)
1161 set_page_links(page, zone, nid, pfn);
1162 init_page_count(page);
1163 page_mapcount_reset(page);
1164 page_cpupid_reset_last(page);
1166 INIT_LIST_HEAD(&page->lru);
1167 #ifdef WANT_PAGE_VIRTUAL
1168 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1169 if (!is_highmem_idx(zone))
1170 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1177 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1180 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1181 static void init_reserved_page(unsigned long pfn)
1186 if (!early_page_uninitialised(pfn))
1189 nid = early_pfn_to_nid(pfn);
1190 pgdat = NODE_DATA(nid);
1192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1193 struct zone *zone = &pgdat->node_zones[zid];
1195 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1198 __init_single_pfn(pfn, zid, nid);
1201 static inline void init_reserved_page(unsigned long pfn)
1204 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1207 * Initialised pages do not have PageReserved set. This function is
1208 * called for each range allocated by the bootmem allocator and
1209 * marks the pages PageReserved. The remaining valid pages are later
1210 * sent to the buddy page allocator.
1212 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 unsigned long start_pfn = PFN_DOWN(start);
1215 unsigned long end_pfn = PFN_UP(end);
1217 for (; start_pfn < end_pfn; start_pfn++) {
1218 if (pfn_valid(start_pfn)) {
1219 struct page *page = pfn_to_page(start_pfn);
1221 init_reserved_page(start_pfn);
1223 /* Avoid false-positive PageTail() */
1224 INIT_LIST_HEAD(&page->lru);
1226 SetPageReserved(page);
1231 static void __free_pages_ok(struct page *page, unsigned int order)
1233 unsigned long flags;
1235 unsigned long pfn = page_to_pfn(page);
1237 if (!free_pages_prepare(page, order, true))
1240 migratetype = get_pfnblock_migratetype(page, pfn);
1241 local_irq_save(flags);
1242 __count_vm_events(PGFREE, 1 << order);
1243 free_one_page(page_zone(page), page, pfn, order, migratetype);
1244 local_irq_restore(flags);
1247 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 unsigned int nr_pages = 1 << order;
1250 struct page *p = page;
1254 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 __ClearPageReserved(p);
1257 set_page_count(p, 0);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1262 page_zone(page)->managed_pages += nr_pages;
1263 set_page_refcounted(page);
1264 __free_pages(page, order);
1267 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1268 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 static DEFINE_SPINLOCK(early_pfn_lock);
1277 spin_lock(&early_pfn_lock);
1278 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 nid = first_online_node;
1281 spin_unlock(&early_pfn_lock);
1287 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1288 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1289 struct mminit_pfnnid_cache *state)
1293 nid = __early_pfn_to_nid(pfn, state);
1294 if (nid >= 0 && nid != node)
1299 /* Only safe to use early in boot when initialisation is single-threaded */
1300 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1307 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1319 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1322 if (early_page_uninitialised(pfn))
1324 return __free_pages_boot_core(page, order);
1328 * Check that the whole (or subset of) a pageblock given by the interval of
1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330 * with the migration of free compaction scanner. The scanners then need to
1331 * use only pfn_valid_within() check for arches that allow holes within
1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 * It's possible on some configurations to have a setup like node0 node1 node0
1337 * i.e. it's possible that all pages within a zones range of pages do not
1338 * belong to a single zone. We assume that a border between node0 and node1
1339 * can occur within a single pageblock, but not a node0 node1 node0
1340 * interleaving within a single pageblock. It is therefore sufficient to check
1341 * the first and last page of a pageblock and avoid checking each individual
1342 * page in a pageblock.
1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 unsigned long end_pfn, struct zone *zone)
1347 struct page *start_page;
1348 struct page *end_page;
1350 /* end_pfn is one past the range we are checking */
1353 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1356 start_page = pfn_to_page(start_pfn);
1358 if (page_zone(start_page) != zone)
1361 end_page = pfn_to_page(end_pfn);
1363 /* This gives a shorter code than deriving page_zone(end_page) */
1364 if (page_zone_id(start_page) != page_zone_id(end_page))
1370 void set_zone_contiguous(struct zone *zone)
1372 unsigned long block_start_pfn = zone->zone_start_pfn;
1373 unsigned long block_end_pfn;
1375 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1376 for (; block_start_pfn < zone_end_pfn(zone);
1377 block_start_pfn = block_end_pfn,
1378 block_end_pfn += pageblock_nr_pages) {
1380 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382 if (!__pageblock_pfn_to_page(block_start_pfn,
1383 block_end_pfn, zone))
1387 /* We confirm that there is no hole */
1388 zone->contiguous = true;
1391 void clear_zone_contiguous(struct zone *zone)
1393 zone->contiguous = false;
1396 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1397 static void __init deferred_free_range(struct page *page,
1398 unsigned long pfn, int nr_pages)
1405 /* Free a large naturally-aligned chunk if possible */
1406 if (nr_pages == pageblock_nr_pages &&
1407 (pfn & (pageblock_nr_pages - 1)) == 0) {
1408 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1409 __free_pages_boot_core(page, pageblock_order);
1413 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1414 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1415 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1416 __free_pages_boot_core(page, 0);
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 static inline void __init pgdat_init_report_one_done(void)
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1484 * Ensure pfn_valid is checked every
1485 * pageblock_nr_pages for memory holes
1487 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1509 page = pfn_to_page(pfn);
1514 VM_BUG_ON(page_zone(page) != zone);
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1526 /* Where possible, batch up pages for a single free */
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1536 /* Free the last block of pages to allocator */
1537 nr_pages += nr_to_free;
1538 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540 first_init_pfn = max(end_pfn, first_init_pfn);
1543 /* Sanity check that the next zone really is unpopulated */
1544 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1547 jiffies_to_msecs(jiffies - start));
1549 pgdat_init_report_one_done();
1552 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 void __init page_alloc_init_late(void)
1558 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1561 /* There will be num_node_state(N_MEMORY) threads */
1562 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1563 for_each_node_state(nid, N_MEMORY) {
1564 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1567 /* Block until all are initialised */
1568 wait_for_completion(&pgdat_init_all_done_comp);
1570 /* Reinit limits that are based on free pages after the kernel is up */
1571 files_maxfiles_init();
1574 for_each_populated_zone(zone)
1575 set_zone_contiguous(zone);
1579 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1580 void __init init_cma_reserved_pageblock(struct page *page)
1582 unsigned i = pageblock_nr_pages;
1583 struct page *p = page;
1586 __ClearPageReserved(p);
1587 set_page_count(p, 0);
1590 set_pageblock_migratetype(page, MIGRATE_CMA);
1592 if (pageblock_order >= MAX_ORDER) {
1593 i = pageblock_nr_pages;
1596 set_page_refcounted(p);
1597 __free_pages(p, MAX_ORDER - 1);
1598 p += MAX_ORDER_NR_PAGES;
1599 } while (i -= MAX_ORDER_NR_PAGES);
1601 set_page_refcounted(page);
1602 __free_pages(page, pageblock_order);
1605 adjust_managed_page_count(page, pageblock_nr_pages);
1610 * The order of subdivision here is critical for the IO subsystem.
1611 * Please do not alter this order without good reasons and regression
1612 * testing. Specifically, as large blocks of memory are subdivided,
1613 * the order in which smaller blocks are delivered depends on the order
1614 * they're subdivided in this function. This is the primary factor
1615 * influencing the order in which pages are delivered to the IO
1616 * subsystem according to empirical testing, and this is also justified
1617 * by considering the behavior of a buddy system containing a single
1618 * large block of memory acted on by a series of small allocations.
1619 * This behavior is a critical factor in sglist merging's success.
1623 static inline void expand(struct zone *zone, struct page *page,
1624 int low, int high, struct free_area *area,
1627 unsigned long size = 1 << high;
1629 while (high > low) {
1633 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1641 if (set_page_guard(zone, &page[size], high, migratetype))
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 set_page_order(&page[size], high);
1650 static void check_new_page_bad(struct page *page)
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
1659 if (unlikely(page_ref_count(page) != 0))
1660 bad_reason = "nonzero _count";
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 /* Don't complain about hwpoisoned pages */
1665 page_mapcount_reset(page); /* remove PageBuddy */
1668 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1669 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1670 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1673 if (unlikely(page->mem_cgroup))
1674 bad_reason = "page still charged to cgroup";
1676 bad_page(page, bad_reason, bad_flags);
1680 * This page is about to be returned from the page allocator
1682 static inline int check_new_page(struct page *page)
1684 if (likely(page_expected_state(page,
1685 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1688 check_new_page_bad(page);
1692 static inline bool free_pages_prezeroed(bool poisoned)
1694 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1695 page_poisoning_enabled() && poisoned;
1698 #ifdef CONFIG_DEBUG_VM
1699 static bool check_pcp_refill(struct page *page)
1704 static bool check_new_pcp(struct page *page)
1706 return check_new_page(page);
1709 static bool check_pcp_refill(struct page *page)
1711 return check_new_page(page);
1713 static bool check_new_pcp(struct page *page)
1717 #endif /* CONFIG_DEBUG_VM */
1719 static bool check_new_pages(struct page *page, unsigned int order)
1722 for (i = 0; i < (1 << order); i++) {
1723 struct page *p = page + i;
1725 if (unlikely(check_new_page(p)))
1732 inline void post_alloc_hook(struct page *page, unsigned int order,
1735 set_page_private(page, 0);
1736 set_page_refcounted(page);
1738 arch_alloc_page(page, order);
1739 kernel_map_pages(page, 1 << order, 1);
1740 kernel_poison_pages(page, 1 << order, 1);
1741 kasan_alloc_pages(page, order);
1742 set_page_owner(page, order, gfp_flags);
1745 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1746 unsigned int alloc_flags)
1749 bool poisoned = true;
1751 for (i = 0; i < (1 << order); i++) {
1752 struct page *p = page + i;
1754 poisoned &= page_is_poisoned(p);
1757 post_alloc_hook(page, order, gfp_flags);
1759 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1760 for (i = 0; i < (1 << order); i++)
1761 clear_highpage(page + i);
1763 if (order && (gfp_flags & __GFP_COMP))
1764 prep_compound_page(page, order);
1767 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1768 * allocate the page. The expectation is that the caller is taking
1769 * steps that will free more memory. The caller should avoid the page
1770 * being used for !PFMEMALLOC purposes.
1772 if (alloc_flags & ALLOC_NO_WATERMARKS)
1773 set_page_pfmemalloc(page);
1775 clear_page_pfmemalloc(page);
1779 * Go through the free lists for the given migratetype and remove
1780 * the smallest available page from the freelists
1783 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1786 unsigned int current_order;
1787 struct free_area *area;
1790 /* Find a page of the appropriate size in the preferred list */
1791 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1792 area = &(zone->free_area[current_order]);
1793 page = list_first_entry_or_null(&area->free_list[migratetype],
1797 list_del(&page->lru);
1798 rmv_page_order(page);
1800 expand(zone, page, order, current_order, area, migratetype);
1801 set_pcppage_migratetype(page, migratetype);
1810 * This array describes the order lists are fallen back to when
1811 * the free lists for the desirable migrate type are depleted
1813 static int fallbacks[MIGRATE_TYPES][4] = {
1814 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1815 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1818 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1820 #ifdef CONFIG_MEMORY_ISOLATION
1821 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1826 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1829 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1832 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order) { return NULL; }
1837 * Move the free pages in a range to the free lists of the requested type.
1838 * Note that start_page and end_pages are not aligned on a pageblock
1839 * boundary. If alignment is required, use move_freepages_block()
1841 int move_freepages(struct zone *zone,
1842 struct page *start_page, struct page *end_page,
1847 int pages_moved = 0;
1849 #ifndef CONFIG_HOLES_IN_ZONE
1851 * page_zone is not safe to call in this context when
1852 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1853 * anyway as we check zone boundaries in move_freepages_block().
1854 * Remove at a later date when no bug reports exist related to
1855 * grouping pages by mobility
1857 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1860 for (page = start_page; page <= end_page;) {
1861 if (!pfn_valid_within(page_to_pfn(page))) {
1866 /* Make sure we are not inadvertently changing nodes */
1867 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869 if (!PageBuddy(page)) {
1874 order = page_order(page);
1875 list_move(&page->lru,
1876 &zone->free_area[order].free_list[migratetype]);
1878 pages_moved += 1 << order;
1884 int move_freepages_block(struct zone *zone, struct page *page,
1887 unsigned long start_pfn, end_pfn;
1888 struct page *start_page, *end_page;
1890 start_pfn = page_to_pfn(page);
1891 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1892 start_page = pfn_to_page(start_pfn);
1893 end_page = start_page + pageblock_nr_pages - 1;
1894 end_pfn = start_pfn + pageblock_nr_pages - 1;
1896 /* Do not cross zone boundaries */
1897 if (!zone_spans_pfn(zone, start_pfn))
1899 if (!zone_spans_pfn(zone, end_pfn))
1902 return move_freepages(zone, start_page, end_page, migratetype);
1905 static void change_pageblock_range(struct page *pageblock_page,
1906 int start_order, int migratetype)
1908 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910 while (nr_pageblocks--) {
1911 set_pageblock_migratetype(pageblock_page, migratetype);
1912 pageblock_page += pageblock_nr_pages;
1917 * When we are falling back to another migratetype during allocation, try to
1918 * steal extra free pages from the same pageblocks to satisfy further
1919 * allocations, instead of polluting multiple pageblocks.
1921 * If we are stealing a relatively large buddy page, it is likely there will
1922 * be more free pages in the pageblock, so try to steal them all. For
1923 * reclaimable and unmovable allocations, we steal regardless of page size,
1924 * as fragmentation caused by those allocations polluting movable pageblocks
1925 * is worse than movable allocations stealing from unmovable and reclaimable
1928 static bool can_steal_fallback(unsigned int order, int start_mt)
1931 * Leaving this order check is intended, although there is
1932 * relaxed order check in next check. The reason is that
1933 * we can actually steal whole pageblock if this condition met,
1934 * but, below check doesn't guarantee it and that is just heuristic
1935 * so could be changed anytime.
1937 if (order >= pageblock_order)
1940 if (order >= pageblock_order / 2 ||
1941 start_mt == MIGRATE_RECLAIMABLE ||
1942 start_mt == MIGRATE_UNMOVABLE ||
1943 page_group_by_mobility_disabled)
1950 * This function implements actual steal behaviour. If order is large enough,
1951 * we can steal whole pageblock. If not, we first move freepages in this
1952 * pageblock and check whether half of pages are moved or not. If half of
1953 * pages are moved, we can change migratetype of pageblock and permanently
1954 * use it's pages as requested migratetype in the future.
1956 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1959 unsigned int current_order = page_order(page);
1962 /* Take ownership for orders >= pageblock_order */
1963 if (current_order >= pageblock_order) {
1964 change_pageblock_range(page, current_order, start_type);
1968 pages = move_freepages_block(zone, page, start_type);
1970 /* Claim the whole block if over half of it is free */
1971 if (pages >= (1 << (pageblock_order-1)) ||
1972 page_group_by_mobility_disabled)
1973 set_pageblock_migratetype(page, start_type);
1977 * Check whether there is a suitable fallback freepage with requested order.
1978 * If only_stealable is true, this function returns fallback_mt only if
1979 * we can steal other freepages all together. This would help to reduce
1980 * fragmentation due to mixed migratetype pages in one pageblock.
1982 int find_suitable_fallback(struct free_area *area, unsigned int order,
1983 int migratetype, bool only_stealable, bool *can_steal)
1988 if (area->nr_free == 0)
1993 fallback_mt = fallbacks[migratetype][i];
1994 if (fallback_mt == MIGRATE_TYPES)
1997 if (list_empty(&area->free_list[fallback_mt]))
2000 if (can_steal_fallback(order, migratetype))
2003 if (!only_stealable)
2014 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2015 * there are no empty page blocks that contain a page with a suitable order
2017 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2018 unsigned int alloc_order)
2021 unsigned long max_managed, flags;
2024 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2025 * Check is race-prone but harmless.
2027 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2028 if (zone->nr_reserved_highatomic >= max_managed)
2031 spin_lock_irqsave(&zone->lock, flags);
2033 /* Recheck the nr_reserved_highatomic limit under the lock */
2034 if (zone->nr_reserved_highatomic >= max_managed)
2038 mt = get_pageblock_migratetype(page);
2039 if (mt != MIGRATE_HIGHATOMIC &&
2040 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2041 zone->nr_reserved_highatomic += pageblock_nr_pages;
2042 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2043 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2047 spin_unlock_irqrestore(&zone->lock, flags);
2051 * Used when an allocation is about to fail under memory pressure. This
2052 * potentially hurts the reliability of high-order allocations when under
2053 * intense memory pressure but failed atomic allocations should be easier
2054 * to recover from than an OOM.
2056 * If @force is true, try to unreserve a pageblock even though highatomic
2057 * pageblock is exhausted.
2059 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2062 struct zonelist *zonelist = ac->zonelist;
2063 unsigned long flags;
2070 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2073 * Preserve at least one pageblock unless memory pressure
2076 if (!force && zone->nr_reserved_highatomic <=
2080 spin_lock_irqsave(&zone->lock, flags);
2081 for (order = 0; order < MAX_ORDER; order++) {
2082 struct free_area *area = &(zone->free_area[order]);
2084 page = list_first_entry_or_null(
2085 &area->free_list[MIGRATE_HIGHATOMIC],
2091 * In page freeing path, migratetype change is racy so
2092 * we can counter several free pages in a pageblock
2093 * in this loop althoug we changed the pageblock type
2094 * from highatomic to ac->migratetype. So we should
2095 * adjust the count once.
2097 if (get_pageblock_migratetype(page) ==
2098 MIGRATE_HIGHATOMIC) {
2100 * It should never happen but changes to
2101 * locking could inadvertently allow a per-cpu
2102 * drain to add pages to MIGRATE_HIGHATOMIC
2103 * while unreserving so be safe and watch for
2106 zone->nr_reserved_highatomic -= min(
2108 zone->nr_reserved_highatomic);
2112 * Convert to ac->migratetype and avoid the normal
2113 * pageblock stealing heuristics. Minimally, the caller
2114 * is doing the work and needs the pages. More
2115 * importantly, if the block was always converted to
2116 * MIGRATE_UNMOVABLE or another type then the number
2117 * of pageblocks that cannot be completely freed
2120 set_pageblock_migratetype(page, ac->migratetype);
2121 ret = move_freepages_block(zone, page, ac->migratetype);
2123 spin_unlock_irqrestore(&zone->lock, flags);
2127 spin_unlock_irqrestore(&zone->lock, flags);
2133 /* Remove an element from the buddy allocator from the fallback list */
2134 static inline struct page *
2135 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2137 struct free_area *area;
2138 unsigned int current_order;
2143 /* Find the largest possible block of pages in the other list */
2144 for (current_order = MAX_ORDER-1;
2145 current_order >= order && current_order <= MAX_ORDER-1;
2147 area = &(zone->free_area[current_order]);
2148 fallback_mt = find_suitable_fallback(area, current_order,
2149 start_migratetype, false, &can_steal);
2150 if (fallback_mt == -1)
2153 page = list_first_entry(&area->free_list[fallback_mt],
2156 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2157 steal_suitable_fallback(zone, page, start_migratetype);
2159 /* Remove the page from the freelists */
2161 list_del(&page->lru);
2162 rmv_page_order(page);
2164 expand(zone, page, order, current_order, area,
2167 * The pcppage_migratetype may differ from pageblock's
2168 * migratetype depending on the decisions in
2169 * find_suitable_fallback(). This is OK as long as it does not
2170 * differ for MIGRATE_CMA pageblocks. Those can be used as
2171 * fallback only via special __rmqueue_cma_fallback() function
2173 set_pcppage_migratetype(page, start_migratetype);
2175 trace_mm_page_alloc_extfrag(page, order, current_order,
2176 start_migratetype, fallback_mt);
2185 * Do the hard work of removing an element from the buddy allocator.
2186 * Call me with the zone->lock already held.
2188 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2193 page = __rmqueue_smallest(zone, order, migratetype);
2194 if (unlikely(!page)) {
2195 if (migratetype == MIGRATE_MOVABLE)
2196 page = __rmqueue_cma_fallback(zone, order);
2199 page = __rmqueue_fallback(zone, order, migratetype);
2202 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2207 * Obtain a specified number of elements from the buddy allocator, all under
2208 * a single hold of the lock, for efficiency. Add them to the supplied list.
2209 * Returns the number of new pages which were placed at *list.
2211 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2212 unsigned long count, struct list_head *list,
2213 int migratetype, bool cold)
2217 spin_lock(&zone->lock);
2218 for (i = 0; i < count; ++i) {
2219 struct page *page = __rmqueue(zone, order, migratetype);
2220 if (unlikely(page == NULL))
2223 if (unlikely(check_pcp_refill(page)))
2227 * Split buddy pages returned by expand() are received here
2228 * in physical page order. The page is added to the callers and
2229 * list and the list head then moves forward. From the callers
2230 * perspective, the linked list is ordered by page number in
2231 * some conditions. This is useful for IO devices that can
2232 * merge IO requests if the physical pages are ordered
2236 list_add(&page->lru, list);
2238 list_add_tail(&page->lru, list);
2241 if (is_migrate_cma(get_pcppage_migratetype(page)))
2242 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2247 * i pages were removed from the buddy list even if some leak due
2248 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2249 * on i. Do not confuse with 'alloced' which is the number of
2250 * pages added to the pcp list.
2252 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2253 spin_unlock(&zone->lock);
2259 * Called from the vmstat counter updater to drain pagesets of this
2260 * currently executing processor on remote nodes after they have
2263 * Note that this function must be called with the thread pinned to
2264 * a single processor.
2266 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2268 unsigned long flags;
2269 int to_drain, batch;
2271 local_irq_save(flags);
2272 batch = READ_ONCE(pcp->batch);
2273 to_drain = min(pcp->count, batch);
2275 free_pcppages_bulk(zone, to_drain, pcp);
2276 pcp->count -= to_drain;
2278 local_irq_restore(flags);
2283 * Drain pcplists of the indicated processor and zone.
2285 * The processor must either be the current processor and the
2286 * thread pinned to the current processor or a processor that
2289 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2291 unsigned long flags;
2292 struct per_cpu_pageset *pset;
2293 struct per_cpu_pages *pcp;
2295 local_irq_save(flags);
2296 pset = per_cpu_ptr(zone->pageset, cpu);
2300 free_pcppages_bulk(zone, pcp->count, pcp);
2303 local_irq_restore(flags);
2307 * Drain pcplists of all zones on the indicated processor.
2309 * The processor must either be the current processor and the
2310 * thread pinned to the current processor or a processor that
2313 static void drain_pages(unsigned int cpu)
2317 for_each_populated_zone(zone) {
2318 drain_pages_zone(cpu, zone);
2323 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2325 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2326 * the single zone's pages.
2328 void drain_local_pages(struct zone *zone)
2330 int cpu = smp_processor_id();
2333 drain_pages_zone(cpu, zone);
2338 static void drain_local_pages_wq(struct work_struct *work)
2341 * drain_all_pages doesn't use proper cpu hotplug protection so
2342 * we can race with cpu offline when the WQ can move this from
2343 * a cpu pinned worker to an unbound one. We can operate on a different
2344 * cpu which is allright but we also have to make sure to not move to
2348 drain_local_pages(NULL);
2353 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2355 * When zone parameter is non-NULL, spill just the single zone's pages.
2357 * Note that this can be extremely slow as the draining happens in a workqueue.
2359 void drain_all_pages(struct zone *zone)
2364 * Allocate in the BSS so we wont require allocation in
2365 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2367 static cpumask_t cpus_with_pcps;
2370 * Make sure nobody triggers this path before mm_percpu_wq is fully
2373 if (WARN_ON_ONCE(!mm_percpu_wq))
2376 /* Workqueues cannot recurse */
2377 if (current->flags & PF_WQ_WORKER)
2381 * Do not drain if one is already in progress unless it's specific to
2382 * a zone. Such callers are primarily CMA and memory hotplug and need
2383 * the drain to be complete when the call returns.
2385 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2388 mutex_lock(&pcpu_drain_mutex);
2392 * We don't care about racing with CPU hotplug event
2393 * as offline notification will cause the notified
2394 * cpu to drain that CPU pcps and on_each_cpu_mask
2395 * disables preemption as part of its processing
2397 for_each_online_cpu(cpu) {
2398 struct per_cpu_pageset *pcp;
2400 bool has_pcps = false;
2403 pcp = per_cpu_ptr(zone->pageset, cpu);
2407 for_each_populated_zone(z) {
2408 pcp = per_cpu_ptr(z->pageset, cpu);
2409 if (pcp->pcp.count) {
2417 cpumask_set_cpu(cpu, &cpus_with_pcps);
2419 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2422 for_each_cpu(cpu, &cpus_with_pcps) {
2423 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2424 INIT_WORK(work, drain_local_pages_wq);
2425 queue_work_on(cpu, mm_percpu_wq, work);
2427 for_each_cpu(cpu, &cpus_with_pcps)
2428 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2430 mutex_unlock(&pcpu_drain_mutex);
2433 #ifdef CONFIG_HIBERNATION
2435 void mark_free_pages(struct zone *zone)
2437 unsigned long pfn, max_zone_pfn;
2438 unsigned long flags;
2439 unsigned int order, t;
2442 if (zone_is_empty(zone))
2445 spin_lock_irqsave(&zone->lock, flags);
2447 max_zone_pfn = zone_end_pfn(zone);
2448 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2449 if (pfn_valid(pfn)) {
2450 page = pfn_to_page(pfn);
2452 if (page_zone(page) != zone)
2455 if (!swsusp_page_is_forbidden(page))
2456 swsusp_unset_page_free(page);
2459 for_each_migratetype_order(order, t) {
2460 list_for_each_entry(page,
2461 &zone->free_area[order].free_list[t], lru) {
2464 pfn = page_to_pfn(page);
2465 for (i = 0; i < (1UL << order); i++)
2466 swsusp_set_page_free(pfn_to_page(pfn + i));
2469 spin_unlock_irqrestore(&zone->lock, flags);
2471 #endif /* CONFIG_PM */
2474 * Free a 0-order page
2475 * cold == true ? free a cold page : free a hot page
2477 void free_hot_cold_page(struct page *page, bool cold)
2479 struct zone *zone = page_zone(page);
2480 struct per_cpu_pages *pcp;
2481 unsigned long flags;
2482 unsigned long pfn = page_to_pfn(page);
2485 if (!free_pcp_prepare(page))
2488 migratetype = get_pfnblock_migratetype(page, pfn);
2489 set_pcppage_migratetype(page, migratetype);
2490 local_irq_save(flags);
2491 __count_vm_event(PGFREE);
2494 * We only track unmovable, reclaimable and movable on pcp lists.
2495 * Free ISOLATE pages back to the allocator because they are being
2496 * offlined but treat RESERVE as movable pages so we can get those
2497 * areas back if necessary. Otherwise, we may have to free
2498 * excessively into the page allocator
2500 if (migratetype >= MIGRATE_PCPTYPES) {
2501 if (unlikely(is_migrate_isolate(migratetype))) {
2502 free_one_page(zone, page, pfn, 0, migratetype);
2505 migratetype = MIGRATE_MOVABLE;
2508 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2510 list_add(&page->lru, &pcp->lists[migratetype]);
2512 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2514 if (pcp->count >= pcp->high) {
2515 unsigned long batch = READ_ONCE(pcp->batch);
2516 free_pcppages_bulk(zone, batch, pcp);
2517 pcp->count -= batch;
2521 local_irq_restore(flags);
2525 * Free a list of 0-order pages
2527 void free_hot_cold_page_list(struct list_head *list, bool cold)
2529 struct page *page, *next;
2531 list_for_each_entry_safe(page, next, list, lru) {
2532 trace_mm_page_free_batched(page, cold);
2533 free_hot_cold_page(page, cold);
2538 * split_page takes a non-compound higher-order page, and splits it into
2539 * n (1<<order) sub-pages: page[0..n]
2540 * Each sub-page must be freed individually.
2542 * Note: this is probably too low level an operation for use in drivers.
2543 * Please consult with lkml before using this in your driver.
2545 void split_page(struct page *page, unsigned int order)
2549 VM_BUG_ON_PAGE(PageCompound(page), page);
2550 VM_BUG_ON_PAGE(!page_count(page), page);
2552 #ifdef CONFIG_KMEMCHECK
2554 * Split shadow pages too, because free(page[0]) would
2555 * otherwise free the whole shadow.
2557 if (kmemcheck_page_is_tracked(page))
2558 split_page(virt_to_page(page[0].shadow), order);
2561 for (i = 1; i < (1 << order); i++)
2562 set_page_refcounted(page + i);
2563 split_page_owner(page, order);
2565 EXPORT_SYMBOL_GPL(split_page);
2567 int __isolate_free_page(struct page *page, unsigned int order)
2569 unsigned long watermark;
2573 BUG_ON(!PageBuddy(page));
2575 zone = page_zone(page);
2576 mt = get_pageblock_migratetype(page);
2578 if (!is_migrate_isolate(mt)) {
2580 * Obey watermarks as if the page was being allocated. We can
2581 * emulate a high-order watermark check with a raised order-0
2582 * watermark, because we already know our high-order page
2585 watermark = min_wmark_pages(zone) + (1UL << order);
2586 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2589 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2592 /* Remove page from free list */
2593 list_del(&page->lru);
2594 zone->free_area[order].nr_free--;
2595 rmv_page_order(page);
2598 * Set the pageblock if the isolated page is at least half of a
2601 if (order >= pageblock_order - 1) {
2602 struct page *endpage = page + (1 << order) - 1;
2603 for (; page < endpage; page += pageblock_nr_pages) {
2604 int mt = get_pageblock_migratetype(page);
2605 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2606 && mt != MIGRATE_HIGHATOMIC)
2607 set_pageblock_migratetype(page,
2613 return 1UL << order;
2617 * Update NUMA hit/miss statistics
2619 * Must be called with interrupts disabled.
2621 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2624 enum zone_stat_item local_stat = NUMA_LOCAL;
2626 if (z->node != numa_node_id())
2627 local_stat = NUMA_OTHER;
2629 if (z->node == preferred_zone->node)
2630 __inc_zone_state(z, NUMA_HIT);
2632 __inc_zone_state(z, NUMA_MISS);
2633 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2635 __inc_zone_state(z, local_stat);
2639 /* Remove page from the per-cpu list, caller must protect the list */
2640 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2641 bool cold, struct per_cpu_pages *pcp,
2642 struct list_head *list)
2647 if (list_empty(list)) {
2648 pcp->count += rmqueue_bulk(zone, 0,
2651 if (unlikely(list_empty(list)))
2656 page = list_last_entry(list, struct page, lru);
2658 page = list_first_entry(list, struct page, lru);
2660 list_del(&page->lru);
2662 } while (check_new_pcp(page));
2667 /* Lock and remove page from the per-cpu list */
2668 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2669 struct zone *zone, unsigned int order,
2670 gfp_t gfp_flags, int migratetype)
2672 struct per_cpu_pages *pcp;
2673 struct list_head *list;
2674 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2676 unsigned long flags;
2678 local_irq_save(flags);
2679 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2680 list = &pcp->lists[migratetype];
2681 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2683 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2684 zone_statistics(preferred_zone, zone);
2686 local_irq_restore(flags);
2691 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2694 struct page *rmqueue(struct zone *preferred_zone,
2695 struct zone *zone, unsigned int order,
2696 gfp_t gfp_flags, unsigned int alloc_flags,
2699 unsigned long flags;
2702 if (likely(order == 0)) {
2703 page = rmqueue_pcplist(preferred_zone, zone, order,
2704 gfp_flags, migratetype);
2709 * We most definitely don't want callers attempting to
2710 * allocate greater than order-1 page units with __GFP_NOFAIL.
2712 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2713 spin_lock_irqsave(&zone->lock, flags);
2717 if (alloc_flags & ALLOC_HARDER) {
2718 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2720 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2723 page = __rmqueue(zone, order, migratetype);
2724 } while (page && check_new_pages(page, order));
2725 spin_unlock(&zone->lock);
2728 __mod_zone_freepage_state(zone, -(1 << order),
2729 get_pcppage_migratetype(page));
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2733 local_irq_restore(flags);
2736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2740 local_irq_restore(flags);
2744 #ifdef CONFIG_FAIL_PAGE_ALLOC
2747 struct fault_attr attr;
2749 bool ignore_gfp_highmem;
2750 bool ignore_gfp_reclaim;
2752 } fail_page_alloc = {
2753 .attr = FAULT_ATTR_INITIALIZER,
2754 .ignore_gfp_reclaim = true,
2755 .ignore_gfp_highmem = true,
2759 static int __init setup_fail_page_alloc(char *str)
2761 return setup_fault_attr(&fail_page_alloc.attr, str);
2763 __setup("fail_page_alloc=", setup_fail_page_alloc);
2765 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2767 if (order < fail_page_alloc.min_order)
2769 if (gfp_mask & __GFP_NOFAIL)
2771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2773 if (fail_page_alloc.ignore_gfp_reclaim &&
2774 (gfp_mask & __GFP_DIRECT_RECLAIM))
2777 return should_fail(&fail_page_alloc.attr, 1 << order);
2780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2782 static int __init fail_page_alloc_debugfs(void)
2784 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2788 &fail_page_alloc.attr);
2790 return PTR_ERR(dir);
2792 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2793 &fail_page_alloc.ignore_gfp_reclaim))
2795 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2796 &fail_page_alloc.ignore_gfp_highmem))
2798 if (!debugfs_create_u32("min-order", mode, dir,
2799 &fail_page_alloc.min_order))
2804 debugfs_remove_recursive(dir);
2809 late_initcall(fail_page_alloc_debugfs);
2811 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2813 #else /* CONFIG_FAIL_PAGE_ALLOC */
2815 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2820 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2823 * Return true if free base pages are above 'mark'. For high-order checks it
2824 * will return true of the order-0 watermark is reached and there is at least
2825 * one free page of a suitable size. Checking now avoids taking the zone lock
2826 * to check in the allocation paths if no pages are free.
2828 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2829 int classzone_idx, unsigned int alloc_flags,
2834 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2836 /* free_pages may go negative - that's OK */
2837 free_pages -= (1 << order) - 1;
2839 if (alloc_flags & ALLOC_HIGH)
2843 * If the caller does not have rights to ALLOC_HARDER then subtract
2844 * the high-atomic reserves. This will over-estimate the size of the
2845 * atomic reserve but it avoids a search.
2847 if (likely(!alloc_harder))
2848 free_pages -= z->nr_reserved_highatomic;
2853 /* If allocation can't use CMA areas don't use free CMA pages */
2854 if (!(alloc_flags & ALLOC_CMA))
2855 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2859 * Check watermarks for an order-0 allocation request. If these
2860 * are not met, then a high-order request also cannot go ahead
2861 * even if a suitable page happened to be free.
2863 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2866 /* If this is an order-0 request then the watermark is fine */
2870 /* For a high-order request, check at least one suitable page is free */
2871 for (o = order; o < MAX_ORDER; o++) {
2872 struct free_area *area = &z->free_area[o];
2881 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2882 if (!list_empty(&area->free_list[mt]))
2887 if ((alloc_flags & ALLOC_CMA) &&
2888 !list_empty(&area->free_list[MIGRATE_CMA])) {
2896 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2897 int classzone_idx, unsigned int alloc_flags)
2899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2900 zone_page_state(z, NR_FREE_PAGES));
2903 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2904 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2906 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2910 /* If allocation can't use CMA areas don't use free CMA pages */
2911 if (!(alloc_flags & ALLOC_CMA))
2912 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2916 * Fast check for order-0 only. If this fails then the reserves
2917 * need to be calculated. There is a corner case where the check
2918 * passes but only the high-order atomic reserve are free. If
2919 * the caller is !atomic then it'll uselessly search the free
2920 * list. That corner case is then slower but it is harmless.
2922 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2925 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2929 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2930 unsigned long mark, int classzone_idx)
2932 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2934 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2935 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2937 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2942 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2944 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2947 #else /* CONFIG_NUMA */
2948 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2952 #endif /* CONFIG_NUMA */
2955 * get_page_from_freelist goes through the zonelist trying to allocate
2958 static struct page *
2959 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2960 const struct alloc_context *ac)
2962 struct zoneref *z = ac->preferred_zoneref;
2964 struct pglist_data *last_pgdat_dirty_limit = NULL;
2967 * Scan zonelist, looking for a zone with enough free.
2968 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2970 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2975 if (cpusets_enabled() &&
2976 (alloc_flags & ALLOC_CPUSET) &&
2977 !__cpuset_zone_allowed(zone, gfp_mask))
2980 * When allocating a page cache page for writing, we
2981 * want to get it from a node that is within its dirty
2982 * limit, such that no single node holds more than its
2983 * proportional share of globally allowed dirty pages.
2984 * The dirty limits take into account the node's
2985 * lowmem reserves and high watermark so that kswapd
2986 * should be able to balance it without having to
2987 * write pages from its LRU list.
2989 * XXX: For now, allow allocations to potentially
2990 * exceed the per-node dirty limit in the slowpath
2991 * (spread_dirty_pages unset) before going into reclaim,
2992 * which is important when on a NUMA setup the allowed
2993 * nodes are together not big enough to reach the
2994 * global limit. The proper fix for these situations
2995 * will require awareness of nodes in the
2996 * dirty-throttling and the flusher threads.
2998 if (ac->spread_dirty_pages) {
2999 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3002 if (!node_dirty_ok(zone->zone_pgdat)) {
3003 last_pgdat_dirty_limit = zone->zone_pgdat;
3008 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3009 if (!zone_watermark_fast(zone, order, mark,
3010 ac_classzone_idx(ac), alloc_flags)) {
3013 /* Checked here to keep the fast path fast */
3014 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3015 if (alloc_flags & ALLOC_NO_WATERMARKS)
3018 if (node_reclaim_mode == 0 ||
3019 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3022 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3024 case NODE_RECLAIM_NOSCAN:
3027 case NODE_RECLAIM_FULL:
3028 /* scanned but unreclaimable */
3031 /* did we reclaim enough */
3032 if (zone_watermark_ok(zone, order, mark,
3033 ac_classzone_idx(ac), alloc_flags))
3041 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3042 gfp_mask, alloc_flags, ac->migratetype);
3044 prep_new_page(page, order, gfp_mask, alloc_flags);
3047 * If this is a high-order atomic allocation then check
3048 * if the pageblock should be reserved for the future
3050 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3051 reserve_highatomic_pageblock(page, zone, order);
3061 * Large machines with many possible nodes should not always dump per-node
3062 * meminfo in irq context.
3064 static inline bool should_suppress_show_mem(void)
3069 ret = in_interrupt();
3074 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3076 unsigned int filter = SHOW_MEM_FILTER_NODES;
3077 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3079 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3083 * This documents exceptions given to allocations in certain
3084 * contexts that are allowed to allocate outside current's set
3087 if (!(gfp_mask & __GFP_NOMEMALLOC))
3088 if (test_thread_flag(TIF_MEMDIE) ||
3089 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3090 filter &= ~SHOW_MEM_FILTER_NODES;
3091 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3092 filter &= ~SHOW_MEM_FILTER_NODES;
3094 show_mem(filter, nodemask);
3097 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3099 struct va_format vaf;
3101 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3102 DEFAULT_RATELIMIT_BURST);
3104 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3105 debug_guardpage_minorder() > 0)
3108 pr_warn("%s: ", current->comm);
3110 va_start(args, fmt);
3113 pr_cont("%pV", &vaf);
3116 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3118 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3120 pr_cont("(null)\n");
3122 cpuset_print_current_mems_allowed();
3125 warn_alloc_show_mem(gfp_mask, nodemask);
3128 static inline struct page *
3129 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3130 unsigned int alloc_flags,
3131 const struct alloc_context *ac)
3135 page = get_page_from_freelist(gfp_mask, order,
3136 alloc_flags|ALLOC_CPUSET, ac);
3138 * fallback to ignore cpuset restriction if our nodes
3142 page = get_page_from_freelist(gfp_mask, order,
3148 static inline struct page *
3149 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3150 const struct alloc_context *ac, unsigned long *did_some_progress)
3152 struct oom_control oc = {
3153 .zonelist = ac->zonelist,
3154 .nodemask = ac->nodemask,
3156 .gfp_mask = gfp_mask,
3161 *did_some_progress = 0;
3164 * Acquire the oom lock. If that fails, somebody else is
3165 * making progress for us.
3167 if (!mutex_trylock(&oom_lock)) {
3168 *did_some_progress = 1;
3169 schedule_timeout_uninterruptible(1);
3174 * Go through the zonelist yet one more time, keep very high watermark
3175 * here, this is only to catch a parallel oom killing, we must fail if
3176 * we're still under heavy pressure.
3178 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3179 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3183 /* Coredumps can quickly deplete all memory reserves */
3184 if (current->flags & PF_DUMPCORE)
3186 /* The OOM killer will not help higher order allocs */
3187 if (order > PAGE_ALLOC_COSTLY_ORDER)
3189 /* The OOM killer does not needlessly kill tasks for lowmem */
3190 if (ac->high_zoneidx < ZONE_NORMAL)
3192 if (pm_suspended_storage())
3195 * XXX: GFP_NOFS allocations should rather fail than rely on
3196 * other request to make a forward progress.
3197 * We are in an unfortunate situation where out_of_memory cannot
3198 * do much for this context but let's try it to at least get
3199 * access to memory reserved if the current task is killed (see
3200 * out_of_memory). Once filesystems are ready to handle allocation
3201 * failures more gracefully we should just bail out here.
3204 /* The OOM killer may not free memory on a specific node */
3205 if (gfp_mask & __GFP_THISNODE)
3208 /* Exhausted what can be done so it's blamo time */
3209 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3210 *did_some_progress = 1;
3213 * Help non-failing allocations by giving them access to memory
3216 if (gfp_mask & __GFP_NOFAIL)
3217 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3218 ALLOC_NO_WATERMARKS, ac);
3221 mutex_unlock(&oom_lock);
3226 * Maximum number of compaction retries wit a progress before OOM
3227 * killer is consider as the only way to move forward.
3229 #define MAX_COMPACT_RETRIES 16
3231 #ifdef CONFIG_COMPACTION
3232 /* Try memory compaction for high-order allocations before reclaim */
3233 static struct page *
3234 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3235 unsigned int alloc_flags, const struct alloc_context *ac,
3236 enum compact_priority prio, enum compact_result *compact_result)
3243 current->flags |= PF_MEMALLOC;
3244 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3246 current->flags &= ~PF_MEMALLOC;
3248 if (*compact_result <= COMPACT_INACTIVE)
3252 * At least in one zone compaction wasn't deferred or skipped, so let's
3253 * count a compaction stall
3255 count_vm_event(COMPACTSTALL);
3257 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3260 struct zone *zone = page_zone(page);
3262 zone->compact_blockskip_flush = false;
3263 compaction_defer_reset(zone, order, true);
3264 count_vm_event(COMPACTSUCCESS);
3269 * It's bad if compaction run occurs and fails. The most likely reason
3270 * is that pages exist, but not enough to satisfy watermarks.
3272 count_vm_event(COMPACTFAIL);
3280 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3281 enum compact_result compact_result,
3282 enum compact_priority *compact_priority,
3283 int *compaction_retries)
3285 int max_retries = MAX_COMPACT_RETRIES;
3288 int retries = *compaction_retries;
3289 enum compact_priority priority = *compact_priority;
3294 if (compaction_made_progress(compact_result))
3295 (*compaction_retries)++;
3298 * compaction considers all the zone as desperately out of memory
3299 * so it doesn't really make much sense to retry except when the
3300 * failure could be caused by insufficient priority
3302 if (compaction_failed(compact_result))
3303 goto check_priority;
3306 * make sure the compaction wasn't deferred or didn't bail out early
3307 * due to locks contention before we declare that we should give up.
3308 * But do not retry if the given zonelist is not suitable for
3311 if (compaction_withdrawn(compact_result)) {
3312 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3317 * !costly requests are much more important than __GFP_REPEAT
3318 * costly ones because they are de facto nofail and invoke OOM
3319 * killer to move on while costly can fail and users are ready
3320 * to cope with that. 1/4 retries is rather arbitrary but we
3321 * would need much more detailed feedback from compaction to
3322 * make a better decision.
3324 if (order > PAGE_ALLOC_COSTLY_ORDER)
3326 if (*compaction_retries <= max_retries) {
3332 * Make sure there are attempts at the highest priority if we exhausted
3333 * all retries or failed at the lower priorities.
3336 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3337 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3339 if (*compact_priority > min_priority) {
3340 (*compact_priority)--;
3341 *compaction_retries = 0;
3345 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3349 static inline struct page *
3350 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3351 unsigned int alloc_flags, const struct alloc_context *ac,
3352 enum compact_priority prio, enum compact_result *compact_result)
3354 *compact_result = COMPACT_SKIPPED;
3359 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3360 enum compact_result compact_result,
3361 enum compact_priority *compact_priority,
3362 int *compaction_retries)
3367 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3371 * There are setups with compaction disabled which would prefer to loop
3372 * inside the allocator rather than hit the oom killer prematurely.
3373 * Let's give them a good hope and keep retrying while the order-0
3374 * watermarks are OK.
3376 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3378 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3379 ac_classzone_idx(ac), alloc_flags))
3384 #endif /* CONFIG_COMPACTION */
3386 /* Perform direct synchronous page reclaim */
3388 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3389 const struct alloc_context *ac)
3391 struct reclaim_state reclaim_state;
3396 /* We now go into synchronous reclaim */
3397 cpuset_memory_pressure_bump();
3398 current->flags |= PF_MEMALLOC;
3399 lockdep_set_current_reclaim_state(gfp_mask);
3400 reclaim_state.reclaimed_slab = 0;
3401 current->reclaim_state = &reclaim_state;
3403 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3406 current->reclaim_state = NULL;
3407 lockdep_clear_current_reclaim_state();
3408 current->flags &= ~PF_MEMALLOC;
3415 /* The really slow allocator path where we enter direct reclaim */
3416 static inline struct page *
3417 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3418 unsigned int alloc_flags, const struct alloc_context *ac,
3419 unsigned long *did_some_progress)
3421 struct page *page = NULL;
3422 bool drained = false;
3424 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3425 if (unlikely(!(*did_some_progress)))
3429 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3432 * If an allocation failed after direct reclaim, it could be because
3433 * pages are pinned on the per-cpu lists or in high alloc reserves.
3434 * Shrink them them and try again
3436 if (!page && !drained) {
3437 unreserve_highatomic_pageblock(ac, false);
3438 drain_all_pages(NULL);
3446 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3450 pg_data_t *last_pgdat = NULL;
3452 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3453 ac->high_zoneidx, ac->nodemask) {
3454 if (last_pgdat != zone->zone_pgdat)
3455 wakeup_kswapd(zone, order, ac->high_zoneidx);
3456 last_pgdat = zone->zone_pgdat;
3460 static inline unsigned int
3461 gfp_to_alloc_flags(gfp_t gfp_mask)
3463 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3465 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3466 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3469 * The caller may dip into page reserves a bit more if the caller
3470 * cannot run direct reclaim, or if the caller has realtime scheduling
3471 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3472 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3474 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3476 if (gfp_mask & __GFP_ATOMIC) {
3478 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3479 * if it can't schedule.
3481 if (!(gfp_mask & __GFP_NOMEMALLOC))
3482 alloc_flags |= ALLOC_HARDER;
3484 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3485 * comment for __cpuset_node_allowed().
3487 alloc_flags &= ~ALLOC_CPUSET;
3488 } else if (unlikely(rt_task(current)) && !in_interrupt())
3489 alloc_flags |= ALLOC_HARDER;
3492 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3493 alloc_flags |= ALLOC_CMA;
3498 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3500 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3503 if (gfp_mask & __GFP_MEMALLOC)
3505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3507 if (!in_interrupt() &&
3508 ((current->flags & PF_MEMALLOC) ||
3509 unlikely(test_thread_flag(TIF_MEMDIE))))
3516 * Checks whether it makes sense to retry the reclaim to make a forward progress
3517 * for the given allocation request.
3518 * The reclaim feedback represented by did_some_progress (any progress during
3519 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3520 * any progress in a row) is considered as well as the reclaimable pages on the
3521 * applicable zone list (with a backoff mechanism which is a function of
3522 * no_progress_loops).
3524 * Returns true if a retry is viable or false to enter the oom path.
3527 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3528 struct alloc_context *ac, int alloc_flags,
3529 bool did_some_progress, int *no_progress_loops)
3535 * Costly allocations might have made a progress but this doesn't mean
3536 * their order will become available due to high fragmentation so
3537 * always increment the no progress counter for them
3539 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3540 *no_progress_loops = 0;
3542 (*no_progress_loops)++;
3545 * Make sure we converge to OOM if we cannot make any progress
3546 * several times in the row.
3548 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3549 /* Before OOM, exhaust highatomic_reserve */
3550 return unreserve_highatomic_pageblock(ac, true);
3554 * Keep reclaiming pages while there is a chance this will lead
3555 * somewhere. If none of the target zones can satisfy our allocation
3556 * request even if all reclaimable pages are considered then we are
3557 * screwed and have to go OOM.
3559 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3561 unsigned long available;
3562 unsigned long reclaimable;
3563 unsigned long min_wmark = min_wmark_pages(zone);
3566 available = reclaimable = zone_reclaimable_pages(zone);
3567 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3568 MAX_RECLAIM_RETRIES);
3569 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3572 * Would the allocation succeed if we reclaimed the whole
3575 wmark = __zone_watermark_ok(zone, order, min_wmark,
3576 ac_classzone_idx(ac), alloc_flags, available);
3577 trace_reclaim_retry_zone(z, order, reclaimable,
3578 available, min_wmark, *no_progress_loops, wmark);
3581 * If we didn't make any progress and have a lot of
3582 * dirty + writeback pages then we should wait for
3583 * an IO to complete to slow down the reclaim and
3584 * prevent from pre mature OOM
3586 if (!did_some_progress) {
3587 unsigned long write_pending;
3589 write_pending = zone_page_state_snapshot(zone,
3590 NR_ZONE_WRITE_PENDING);
3592 if (2 * write_pending > reclaimable) {
3593 congestion_wait(BLK_RW_ASYNC, HZ/10);
3599 * Memory allocation/reclaim might be called from a WQ
3600 * context and the current implementation of the WQ
3601 * concurrency control doesn't recognize that
3602 * a particular WQ is congested if the worker thread is
3603 * looping without ever sleeping. Therefore we have to
3604 * do a short sleep here rather than calling
3607 if (current->flags & PF_WQ_WORKER)
3608 schedule_timeout_uninterruptible(1);
3619 static inline struct page *
3620 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3621 struct alloc_context *ac)
3623 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3624 struct page *page = NULL;
3625 unsigned int alloc_flags;
3626 unsigned long did_some_progress;
3627 enum compact_priority compact_priority;
3628 enum compact_result compact_result;
3629 int compaction_retries;
3630 int no_progress_loops;
3631 unsigned long alloc_start = jiffies;
3632 unsigned int stall_timeout = 10 * HZ;
3633 unsigned int cpuset_mems_cookie;
3636 * In the slowpath, we sanity check order to avoid ever trying to
3637 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3638 * be using allocators in order of preference for an area that is
3641 if (order >= MAX_ORDER) {
3642 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3647 * We also sanity check to catch abuse of atomic reserves being used by
3648 * callers that are not in atomic context.
3650 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3651 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3652 gfp_mask &= ~__GFP_ATOMIC;
3655 compaction_retries = 0;
3656 no_progress_loops = 0;
3657 compact_priority = DEF_COMPACT_PRIORITY;
3658 cpuset_mems_cookie = read_mems_allowed_begin();
3661 * The fast path uses conservative alloc_flags to succeed only until
3662 * kswapd needs to be woken up, and to avoid the cost of setting up
3663 * alloc_flags precisely. So we do that now.
3665 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3668 * We need to recalculate the starting point for the zonelist iterator
3669 * because we might have used different nodemask in the fast path, or
3670 * there was a cpuset modification and we are retrying - otherwise we
3671 * could end up iterating over non-eligible zones endlessly.
3673 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3674 ac->high_zoneidx, ac->nodemask);
3675 if (!ac->preferred_zoneref->zone)
3678 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3679 wake_all_kswapds(order, ac);
3682 * The adjusted alloc_flags might result in immediate success, so try
3685 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3690 * For costly allocations, try direct compaction first, as it's likely
3691 * that we have enough base pages and don't need to reclaim. Don't try
3692 * that for allocations that are allowed to ignore watermarks, as the
3693 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3695 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3696 !gfp_pfmemalloc_allowed(gfp_mask)) {
3697 page = __alloc_pages_direct_compact(gfp_mask, order,
3699 INIT_COMPACT_PRIORITY,
3705 * Checks for costly allocations with __GFP_NORETRY, which
3706 * includes THP page fault allocations
3708 if (gfp_mask & __GFP_NORETRY) {
3710 * If compaction is deferred for high-order allocations,
3711 * it is because sync compaction recently failed. If
3712 * this is the case and the caller requested a THP
3713 * allocation, we do not want to heavily disrupt the
3714 * system, so we fail the allocation instead of entering
3717 if (compact_result == COMPACT_DEFERRED)
3721 * Looks like reclaim/compaction is worth trying, but
3722 * sync compaction could be very expensive, so keep
3723 * using async compaction.
3725 compact_priority = INIT_COMPACT_PRIORITY;
3730 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3731 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3732 wake_all_kswapds(order, ac);
3734 if (gfp_pfmemalloc_allowed(gfp_mask))
3735 alloc_flags = ALLOC_NO_WATERMARKS;
3738 * Reset the zonelist iterators if memory policies can be ignored.
3739 * These allocations are high priority and system rather than user
3742 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3743 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3744 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3745 ac->high_zoneidx, ac->nodemask);
3748 /* Attempt with potentially adjusted zonelist and alloc_flags */
3749 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3753 /* Caller is not willing to reclaim, we can't balance anything */
3754 if (!can_direct_reclaim)
3757 /* Make sure we know about allocations which stall for too long */
3758 if (time_after(jiffies, alloc_start + stall_timeout)) {
3759 warn_alloc(gfp_mask, ac->nodemask,
3760 "page allocation stalls for %ums, order:%u",
3761 jiffies_to_msecs(jiffies-alloc_start), order);
3762 stall_timeout += 10 * HZ;
3765 /* Avoid recursion of direct reclaim */
3766 if (current->flags & PF_MEMALLOC)
3769 /* Try direct reclaim and then allocating */
3770 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3771 &did_some_progress);
3775 /* Try direct compaction and then allocating */
3776 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3777 compact_priority, &compact_result);
3781 /* Do not loop if specifically requested */
3782 if (gfp_mask & __GFP_NORETRY)
3786 * Do not retry costly high order allocations unless they are
3789 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3792 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3793 did_some_progress > 0, &no_progress_loops))
3797 * It doesn't make any sense to retry for the compaction if the order-0
3798 * reclaim is not able to make any progress because the current
3799 * implementation of the compaction depends on the sufficient amount
3800 * of free memory (see __compaction_suitable)
3802 if (did_some_progress > 0 &&
3803 should_compact_retry(ac, order, alloc_flags,
3804 compact_result, &compact_priority,
3805 &compaction_retries))
3809 * It's possible we raced with cpuset update so the OOM would be
3810 * premature (see below the nopage: label for full explanation).
3812 if (read_mems_allowed_retry(cpuset_mems_cookie))
3815 /* Reclaim has failed us, start killing things */
3816 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3820 /* Avoid allocations with no watermarks from looping endlessly */
3821 if (test_thread_flag(TIF_MEMDIE))
3824 /* Retry as long as the OOM killer is making progress */
3825 if (did_some_progress) {
3826 no_progress_loops = 0;
3832 * When updating a task's mems_allowed or mempolicy nodemask, it is
3833 * possible to race with parallel threads in such a way that our
3834 * allocation can fail while the mask is being updated. If we are about
3835 * to fail, check if the cpuset changed during allocation and if so,
3838 if (read_mems_allowed_retry(cpuset_mems_cookie))
3842 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3845 if (gfp_mask & __GFP_NOFAIL) {
3847 * All existing users of the __GFP_NOFAIL are blockable, so warn
3848 * of any new users that actually require GFP_NOWAIT
3850 if (WARN_ON_ONCE(!can_direct_reclaim))
3854 * PF_MEMALLOC request from this context is rather bizarre
3855 * because we cannot reclaim anything and only can loop waiting
3856 * for somebody to do a work for us
3858 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3861 * non failing costly orders are a hard requirement which we
3862 * are not prepared for much so let's warn about these users
3863 * so that we can identify them and convert them to something
3866 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3869 * Help non-failing allocations by giving them access to memory
3870 * reserves but do not use ALLOC_NO_WATERMARKS because this
3871 * could deplete whole memory reserves which would just make
3872 * the situation worse
3874 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3882 warn_alloc(gfp_mask, ac->nodemask,
3883 "page allocation failure: order:%u", order);
3888 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3889 struct zonelist *zonelist, nodemask_t *nodemask,
3890 struct alloc_context *ac, gfp_t *alloc_mask,
3891 unsigned int *alloc_flags)
3893 ac->high_zoneidx = gfp_zone(gfp_mask);
3894 ac->zonelist = zonelist;
3895 ac->nodemask = nodemask;
3896 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3898 if (cpusets_enabled()) {
3899 *alloc_mask |= __GFP_HARDWALL;
3901 ac->nodemask = &cpuset_current_mems_allowed;
3903 *alloc_flags |= ALLOC_CPUSET;
3906 lockdep_trace_alloc(gfp_mask);
3908 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3910 if (should_fail_alloc_page(gfp_mask, order))
3913 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3914 *alloc_flags |= ALLOC_CMA;
3919 /* Determine whether to spread dirty pages and what the first usable zone */
3920 static inline void finalise_ac(gfp_t gfp_mask,
3921 unsigned int order, struct alloc_context *ac)
3923 /* Dirty zone balancing only done in the fast path */
3924 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3927 * The preferred zone is used for statistics but crucially it is
3928 * also used as the starting point for the zonelist iterator. It
3929 * may get reset for allocations that ignore memory policies.
3931 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3932 ac->high_zoneidx, ac->nodemask);
3936 * This is the 'heart' of the zoned buddy allocator.
3939 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3940 struct zonelist *zonelist, nodemask_t *nodemask)
3943 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3944 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3945 struct alloc_context ac = { };
3947 gfp_mask &= gfp_allowed_mask;
3948 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3951 finalise_ac(gfp_mask, order, &ac);
3953 /* First allocation attempt */
3954 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3959 * Runtime PM, block IO and its error handling path can deadlock
3960 * because I/O on the device might not complete.
3962 alloc_mask = memalloc_noio_flags(gfp_mask);
3963 ac.spread_dirty_pages = false;
3966 * Restore the original nodemask if it was potentially replaced with
3967 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3969 if (unlikely(ac.nodemask != nodemask))
3970 ac.nodemask = nodemask;
3972 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3975 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3976 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3977 __free_pages(page, order);
3981 if (kmemcheck_enabled && page)
3982 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3984 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3988 EXPORT_SYMBOL(__alloc_pages_nodemask);
3991 * Common helper functions.
3993 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3998 * __get_free_pages() returns a 32-bit address, which cannot represent
4001 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4003 page = alloc_pages(gfp_mask, order);
4006 return (unsigned long) page_address(page);
4008 EXPORT_SYMBOL(__get_free_pages);
4010 unsigned long get_zeroed_page(gfp_t gfp_mask)
4012 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4014 EXPORT_SYMBOL(get_zeroed_page);
4016 void __free_pages(struct page *page, unsigned int order)
4018 if (put_page_testzero(page)) {
4020 free_hot_cold_page(page, false);
4022 __free_pages_ok(page, order);
4026 EXPORT_SYMBOL(__free_pages);
4028 void free_pages(unsigned long addr, unsigned int order)
4031 VM_BUG_ON(!virt_addr_valid((void *)addr));
4032 __free_pages(virt_to_page((void *)addr), order);
4036 EXPORT_SYMBOL(free_pages);
4040 * An arbitrary-length arbitrary-offset area of memory which resides
4041 * within a 0 or higher order page. Multiple fragments within that page
4042 * are individually refcounted, in the page's reference counter.
4044 * The page_frag functions below provide a simple allocation framework for
4045 * page fragments. This is used by the network stack and network device
4046 * drivers to provide a backing region of memory for use as either an
4047 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4049 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4052 struct page *page = NULL;
4053 gfp_t gfp = gfp_mask;
4055 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4056 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4058 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4059 PAGE_FRAG_CACHE_MAX_ORDER);
4060 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4062 if (unlikely(!page))
4063 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4065 nc->va = page ? page_address(page) : NULL;
4070 void __page_frag_cache_drain(struct page *page, unsigned int count)
4072 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4074 if (page_ref_sub_and_test(page, count)) {
4075 unsigned int order = compound_order(page);
4078 free_hot_cold_page(page, false);
4080 __free_pages_ok(page, order);
4083 EXPORT_SYMBOL(__page_frag_cache_drain);
4085 void *page_frag_alloc(struct page_frag_cache *nc,
4086 unsigned int fragsz, gfp_t gfp_mask)
4088 unsigned int size = PAGE_SIZE;
4092 if (unlikely(!nc->va)) {
4094 page = __page_frag_cache_refill(nc, gfp_mask);
4098 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4099 /* if size can vary use size else just use PAGE_SIZE */
4102 /* Even if we own the page, we do not use atomic_set().
4103 * This would break get_page_unless_zero() users.
4105 page_ref_add(page, size - 1);
4107 /* reset page count bias and offset to start of new frag */
4108 nc->pfmemalloc = page_is_pfmemalloc(page);
4109 nc->pagecnt_bias = size;
4113 offset = nc->offset - fragsz;
4114 if (unlikely(offset < 0)) {
4115 page = virt_to_page(nc->va);
4117 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4120 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4121 /* if size can vary use size else just use PAGE_SIZE */
4124 /* OK, page count is 0, we can safely set it */
4125 set_page_count(page, size);
4127 /* reset page count bias and offset to start of new frag */
4128 nc->pagecnt_bias = size;
4129 offset = size - fragsz;
4133 nc->offset = offset;
4135 return nc->va + offset;
4137 EXPORT_SYMBOL(page_frag_alloc);
4140 * Frees a page fragment allocated out of either a compound or order 0 page.
4142 void page_frag_free(void *addr)
4144 struct page *page = virt_to_head_page(addr);
4146 if (unlikely(put_page_testzero(page)))
4147 __free_pages_ok(page, compound_order(page));
4149 EXPORT_SYMBOL(page_frag_free);
4151 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4155 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4156 unsigned long used = addr + PAGE_ALIGN(size);
4158 split_page(virt_to_page((void *)addr), order);
4159 while (used < alloc_end) {
4164 return (void *)addr;
4168 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4169 * @size: the number of bytes to allocate
4170 * @gfp_mask: GFP flags for the allocation
4172 * This function is similar to alloc_pages(), except that it allocates the
4173 * minimum number of pages to satisfy the request. alloc_pages() can only
4174 * allocate memory in power-of-two pages.
4176 * This function is also limited by MAX_ORDER.
4178 * Memory allocated by this function must be released by free_pages_exact().
4180 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4182 unsigned int order = get_order(size);
4185 addr = __get_free_pages(gfp_mask, order);
4186 return make_alloc_exact(addr, order, size);
4188 EXPORT_SYMBOL(alloc_pages_exact);
4191 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4193 * @nid: the preferred node ID where memory should be allocated
4194 * @size: the number of bytes to allocate
4195 * @gfp_mask: GFP flags for the allocation
4197 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4200 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4202 unsigned int order = get_order(size);
4203 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4206 return make_alloc_exact((unsigned long)page_address(p), order, size);
4210 * free_pages_exact - release memory allocated via alloc_pages_exact()
4211 * @virt: the value returned by alloc_pages_exact.
4212 * @size: size of allocation, same value as passed to alloc_pages_exact().
4214 * Release the memory allocated by a previous call to alloc_pages_exact.
4216 void free_pages_exact(void *virt, size_t size)
4218 unsigned long addr = (unsigned long)virt;
4219 unsigned long end = addr + PAGE_ALIGN(size);
4221 while (addr < end) {
4226 EXPORT_SYMBOL(free_pages_exact);
4229 * nr_free_zone_pages - count number of pages beyond high watermark
4230 * @offset: The zone index of the highest zone
4232 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4233 * high watermark within all zones at or below a given zone index. For each
4234 * zone, the number of pages is calculated as:
4236 * nr_free_zone_pages = managed_pages - high_pages
4238 static unsigned long nr_free_zone_pages(int offset)
4243 /* Just pick one node, since fallback list is circular */
4244 unsigned long sum = 0;
4246 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4248 for_each_zone_zonelist(zone, z, zonelist, offset) {
4249 unsigned long size = zone->managed_pages;
4250 unsigned long high = high_wmark_pages(zone);
4259 * nr_free_buffer_pages - count number of pages beyond high watermark
4261 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4262 * watermark within ZONE_DMA and ZONE_NORMAL.
4264 unsigned long nr_free_buffer_pages(void)
4266 return nr_free_zone_pages(gfp_zone(GFP_USER));
4268 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4271 * nr_free_pagecache_pages - count number of pages beyond high watermark
4273 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4274 * high watermark within all zones.
4276 unsigned long nr_free_pagecache_pages(void)
4278 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4281 static inline void show_node(struct zone *zone)
4283 if (IS_ENABLED(CONFIG_NUMA))
4284 printk("Node %d ", zone_to_nid(zone));
4287 long si_mem_available(void)
4290 unsigned long pagecache;
4291 unsigned long wmark_low = 0;
4292 unsigned long pages[NR_LRU_LISTS];
4296 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4297 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4300 wmark_low += zone->watermark[WMARK_LOW];
4303 * Estimate the amount of memory available for userspace allocations,
4304 * without causing swapping.
4306 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4309 * Not all the page cache can be freed, otherwise the system will
4310 * start swapping. Assume at least half of the page cache, or the
4311 * low watermark worth of cache, needs to stay.
4313 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4314 pagecache -= min(pagecache / 2, wmark_low);
4315 available += pagecache;
4318 * Part of the reclaimable slab consists of items that are in use,
4319 * and cannot be freed. Cap this estimate at the low watermark.
4321 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4322 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4328 EXPORT_SYMBOL_GPL(si_mem_available);
4330 void si_meminfo(struct sysinfo *val)
4332 val->totalram = totalram_pages;
4333 val->sharedram = global_node_page_state(NR_SHMEM);
4334 val->freeram = global_page_state(NR_FREE_PAGES);
4335 val->bufferram = nr_blockdev_pages();
4336 val->totalhigh = totalhigh_pages;
4337 val->freehigh = nr_free_highpages();
4338 val->mem_unit = PAGE_SIZE;
4341 EXPORT_SYMBOL(si_meminfo);
4344 void si_meminfo_node(struct sysinfo *val, int nid)
4346 int zone_type; /* needs to be signed */
4347 unsigned long managed_pages = 0;
4348 unsigned long managed_highpages = 0;
4349 unsigned long free_highpages = 0;
4350 pg_data_t *pgdat = NODE_DATA(nid);
4352 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4353 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4354 val->totalram = managed_pages;
4355 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4356 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4357 #ifdef CONFIG_HIGHMEM
4358 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4359 struct zone *zone = &pgdat->node_zones[zone_type];
4361 if (is_highmem(zone)) {
4362 managed_highpages += zone->managed_pages;
4363 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4366 val->totalhigh = managed_highpages;
4367 val->freehigh = free_highpages;
4369 val->totalhigh = managed_highpages;
4370 val->freehigh = free_highpages;
4372 val->mem_unit = PAGE_SIZE;
4377 * Determine whether the node should be displayed or not, depending on whether
4378 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4380 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4382 if (!(flags & SHOW_MEM_FILTER_NODES))
4386 * no node mask - aka implicit memory numa policy. Do not bother with
4387 * the synchronization - read_mems_allowed_begin - because we do not
4388 * have to be precise here.
4391 nodemask = &cpuset_current_mems_allowed;
4393 return !node_isset(nid, *nodemask);
4396 #define K(x) ((x) << (PAGE_SHIFT-10))
4398 static void show_migration_types(unsigned char type)
4400 static const char types[MIGRATE_TYPES] = {
4401 [MIGRATE_UNMOVABLE] = 'U',
4402 [MIGRATE_MOVABLE] = 'M',
4403 [MIGRATE_RECLAIMABLE] = 'E',
4404 [MIGRATE_HIGHATOMIC] = 'H',
4406 [MIGRATE_CMA] = 'C',
4408 #ifdef CONFIG_MEMORY_ISOLATION
4409 [MIGRATE_ISOLATE] = 'I',
4412 char tmp[MIGRATE_TYPES + 1];
4416 for (i = 0; i < MIGRATE_TYPES; i++) {
4417 if (type & (1 << i))
4422 printk(KERN_CONT "(%s) ", tmp);
4426 * Show free area list (used inside shift_scroll-lock stuff)
4427 * We also calculate the percentage fragmentation. We do this by counting the
4428 * memory on each free list with the exception of the first item on the list.
4431 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4434 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4436 unsigned long free_pcp = 0;
4441 for_each_populated_zone(zone) {
4442 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4445 for_each_online_cpu(cpu)
4446 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4449 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4450 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4451 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4452 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4453 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4454 " free:%lu free_pcp:%lu free_cma:%lu\n",
4455 global_node_page_state(NR_ACTIVE_ANON),
4456 global_node_page_state(NR_INACTIVE_ANON),
4457 global_node_page_state(NR_ISOLATED_ANON),
4458 global_node_page_state(NR_ACTIVE_FILE),
4459 global_node_page_state(NR_INACTIVE_FILE),
4460 global_node_page_state(NR_ISOLATED_FILE),
4461 global_node_page_state(NR_UNEVICTABLE),
4462 global_node_page_state(NR_FILE_DIRTY),
4463 global_node_page_state(NR_WRITEBACK),
4464 global_node_page_state(NR_UNSTABLE_NFS),
4465 global_page_state(NR_SLAB_RECLAIMABLE),
4466 global_page_state(NR_SLAB_UNRECLAIMABLE),
4467 global_node_page_state(NR_FILE_MAPPED),
4468 global_node_page_state(NR_SHMEM),
4469 global_page_state(NR_PAGETABLE),
4470 global_page_state(NR_BOUNCE),
4471 global_page_state(NR_FREE_PAGES),
4473 global_page_state(NR_FREE_CMA_PAGES));
4475 for_each_online_pgdat(pgdat) {
4476 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4480 " active_anon:%lukB"
4481 " inactive_anon:%lukB"
4482 " active_file:%lukB"
4483 " inactive_file:%lukB"
4484 " unevictable:%lukB"
4485 " isolated(anon):%lukB"
4486 " isolated(file):%lukB"
4491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4493 " shmem_pmdmapped: %lukB"
4496 " writeback_tmp:%lukB"
4498 " all_unreclaimable? %s"
4501 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4502 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4503 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4504 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4505 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4506 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4507 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4508 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4509 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4510 K(node_page_state(pgdat, NR_WRITEBACK)),
4511 K(node_page_state(pgdat, NR_SHMEM)),
4512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4513 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4514 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4516 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4518 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4519 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4520 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4524 for_each_populated_zone(zone) {
4527 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4531 for_each_online_cpu(cpu)
4532 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4541 " active_anon:%lukB"
4542 " inactive_anon:%lukB"
4543 " active_file:%lukB"
4544 " inactive_file:%lukB"
4545 " unevictable:%lukB"
4546 " writepending:%lukB"
4550 " slab_reclaimable:%lukB"
4551 " slab_unreclaimable:%lukB"
4552 " kernel_stack:%lukB"
4560 K(zone_page_state(zone, NR_FREE_PAGES)),
4561 K(min_wmark_pages(zone)),
4562 K(low_wmark_pages(zone)),
4563 K(high_wmark_pages(zone)),
4564 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4565 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4566 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4567 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4568 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4569 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4570 K(zone->present_pages),
4571 K(zone->managed_pages),
4572 K(zone_page_state(zone, NR_MLOCK)),
4573 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4574 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4575 zone_page_state(zone, NR_KERNEL_STACK_KB),
4576 K(zone_page_state(zone, NR_PAGETABLE)),
4577 K(zone_page_state(zone, NR_BOUNCE)),
4579 K(this_cpu_read(zone->pageset->pcp.count)),
4580 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4581 printk("lowmem_reserve[]:");
4582 for (i = 0; i < MAX_NR_ZONES; i++)
4583 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4584 printk(KERN_CONT "\n");
4587 for_each_populated_zone(zone) {
4589 unsigned long nr[MAX_ORDER], flags, total = 0;
4590 unsigned char types[MAX_ORDER];
4592 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4595 printk(KERN_CONT "%s: ", zone->name);
4597 spin_lock_irqsave(&zone->lock, flags);
4598 for (order = 0; order < MAX_ORDER; order++) {
4599 struct free_area *area = &zone->free_area[order];
4602 nr[order] = area->nr_free;
4603 total += nr[order] << order;
4606 for (type = 0; type < MIGRATE_TYPES; type++) {
4607 if (!list_empty(&area->free_list[type]))
4608 types[order] |= 1 << type;
4611 spin_unlock_irqrestore(&zone->lock, flags);
4612 for (order = 0; order < MAX_ORDER; order++) {
4613 printk(KERN_CONT "%lu*%lukB ",
4614 nr[order], K(1UL) << order);
4616 show_migration_types(types[order]);
4618 printk(KERN_CONT "= %lukB\n", K(total));
4621 hugetlb_show_meminfo();
4623 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4625 show_swap_cache_info();
4628 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4630 zoneref->zone = zone;
4631 zoneref->zone_idx = zone_idx(zone);
4635 * Builds allocation fallback zone lists.
4637 * Add all populated zones of a node to the zonelist.
4639 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4643 enum zone_type zone_type = MAX_NR_ZONES;
4647 zone = pgdat->node_zones + zone_type;
4648 if (managed_zone(zone)) {
4649 zoneref_set_zone(zone,
4650 &zonelist->_zonerefs[nr_zones++]);
4651 check_highest_zone(zone_type);
4653 } while (zone_type);
4661 * 0 = automatic detection of better ordering.
4662 * 1 = order by ([node] distance, -zonetype)
4663 * 2 = order by (-zonetype, [node] distance)
4665 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4666 * the same zonelist. So only NUMA can configure this param.
4668 #define ZONELIST_ORDER_DEFAULT 0
4669 #define ZONELIST_ORDER_NODE 1
4670 #define ZONELIST_ORDER_ZONE 2
4672 /* zonelist order in the kernel.
4673 * set_zonelist_order() will set this to NODE or ZONE.
4675 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4676 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4680 /* The value user specified ....changed by config */
4681 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4682 /* string for sysctl */
4683 #define NUMA_ZONELIST_ORDER_LEN 16
4684 char numa_zonelist_order[16] = "default";
4687 * interface for configure zonelist ordering.
4688 * command line option "numa_zonelist_order"
4689 * = "[dD]efault - default, automatic configuration.
4690 * = "[nN]ode - order by node locality, then by zone within node
4691 * = "[zZ]one - order by zone, then by locality within zone
4694 static int __parse_numa_zonelist_order(char *s)
4696 if (*s == 'd' || *s == 'D') {
4697 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4698 } else if (*s == 'n' || *s == 'N') {
4699 user_zonelist_order = ZONELIST_ORDER_NODE;
4700 } else if (*s == 'z' || *s == 'Z') {
4701 user_zonelist_order = ZONELIST_ORDER_ZONE;
4703 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4709 static __init int setup_numa_zonelist_order(char *s)
4716 ret = __parse_numa_zonelist_order(s);
4718 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4722 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4725 * sysctl handler for numa_zonelist_order
4727 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4728 void __user *buffer, size_t *length,
4731 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4733 static DEFINE_MUTEX(zl_order_mutex);
4735 mutex_lock(&zl_order_mutex);
4737 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4741 strcpy(saved_string, (char *)table->data);
4743 ret = proc_dostring(table, write, buffer, length, ppos);
4747 int oldval = user_zonelist_order;
4749 ret = __parse_numa_zonelist_order((char *)table->data);
4752 * bogus value. restore saved string
4754 strncpy((char *)table->data, saved_string,
4755 NUMA_ZONELIST_ORDER_LEN);
4756 user_zonelist_order = oldval;
4757 } else if (oldval != user_zonelist_order) {
4758 mutex_lock(&zonelists_mutex);
4759 build_all_zonelists(NULL, NULL);
4760 mutex_unlock(&zonelists_mutex);
4764 mutex_unlock(&zl_order_mutex);
4769 #define MAX_NODE_LOAD (nr_online_nodes)
4770 static int node_load[MAX_NUMNODES];
4773 * find_next_best_node - find the next node that should appear in a given node's fallback list
4774 * @node: node whose fallback list we're appending
4775 * @used_node_mask: nodemask_t of already used nodes
4777 * We use a number of factors to determine which is the next node that should
4778 * appear on a given node's fallback list. The node should not have appeared
4779 * already in @node's fallback list, and it should be the next closest node
4780 * according to the distance array (which contains arbitrary distance values
4781 * from each node to each node in the system), and should also prefer nodes
4782 * with no CPUs, since presumably they'll have very little allocation pressure
4783 * on them otherwise.
4784 * It returns -1 if no node is found.
4786 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4789 int min_val = INT_MAX;
4790 int best_node = NUMA_NO_NODE;
4791 const struct cpumask *tmp = cpumask_of_node(0);
4793 /* Use the local node if we haven't already */
4794 if (!node_isset(node, *used_node_mask)) {
4795 node_set(node, *used_node_mask);
4799 for_each_node_state(n, N_MEMORY) {
4801 /* Don't want a node to appear more than once */
4802 if (node_isset(n, *used_node_mask))
4805 /* Use the distance array to find the distance */
4806 val = node_distance(node, n);
4808 /* Penalize nodes under us ("prefer the next node") */
4811 /* Give preference to headless and unused nodes */
4812 tmp = cpumask_of_node(n);
4813 if (!cpumask_empty(tmp))
4814 val += PENALTY_FOR_NODE_WITH_CPUS;
4816 /* Slight preference for less loaded node */
4817 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4818 val += node_load[n];
4820 if (val < min_val) {
4827 node_set(best_node, *used_node_mask);
4834 * Build zonelists ordered by node and zones within node.
4835 * This results in maximum locality--normal zone overflows into local
4836 * DMA zone, if any--but risks exhausting DMA zone.
4838 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4841 struct zonelist *zonelist;
4843 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4844 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4846 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4847 zonelist->_zonerefs[j].zone = NULL;
4848 zonelist->_zonerefs[j].zone_idx = 0;
4852 * Build gfp_thisnode zonelists
4854 static void build_thisnode_zonelists(pg_data_t *pgdat)
4857 struct zonelist *zonelist;
4859 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4860 j = build_zonelists_node(pgdat, zonelist, 0);
4861 zonelist->_zonerefs[j].zone = NULL;
4862 zonelist->_zonerefs[j].zone_idx = 0;
4866 * Build zonelists ordered by zone and nodes within zones.
4867 * This results in conserving DMA zone[s] until all Normal memory is
4868 * exhausted, but results in overflowing to remote node while memory
4869 * may still exist in local DMA zone.
4871 static int node_order[MAX_NUMNODES];
4873 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4876 int zone_type; /* needs to be signed */
4878 struct zonelist *zonelist;
4880 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4882 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4883 for (j = 0; j < nr_nodes; j++) {
4884 node = node_order[j];
4885 z = &NODE_DATA(node)->node_zones[zone_type];
4886 if (managed_zone(z)) {
4888 &zonelist->_zonerefs[pos++]);
4889 check_highest_zone(zone_type);
4893 zonelist->_zonerefs[pos].zone = NULL;
4894 zonelist->_zonerefs[pos].zone_idx = 0;
4897 #if defined(CONFIG_64BIT)
4899 * Devices that require DMA32/DMA are relatively rare and do not justify a
4900 * penalty to every machine in case the specialised case applies. Default
4901 * to Node-ordering on 64-bit NUMA machines
4903 static int default_zonelist_order(void)
4905 return ZONELIST_ORDER_NODE;
4909 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4910 * by the kernel. If processes running on node 0 deplete the low memory zone
4911 * then reclaim will occur more frequency increasing stalls and potentially
4912 * be easier to OOM if a large percentage of the zone is under writeback or
4913 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4914 * Hence, default to zone ordering on 32-bit.
4916 static int default_zonelist_order(void)
4918 return ZONELIST_ORDER_ZONE;
4920 #endif /* CONFIG_64BIT */
4922 static void set_zonelist_order(void)
4924 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4925 current_zonelist_order = default_zonelist_order();
4927 current_zonelist_order = user_zonelist_order;
4930 static void build_zonelists(pg_data_t *pgdat)
4933 nodemask_t used_mask;
4934 int local_node, prev_node;
4935 struct zonelist *zonelist;
4936 unsigned int order = current_zonelist_order;
4938 /* initialize zonelists */
4939 for (i = 0; i < MAX_ZONELISTS; i++) {
4940 zonelist = pgdat->node_zonelists + i;
4941 zonelist->_zonerefs[0].zone = NULL;
4942 zonelist->_zonerefs[0].zone_idx = 0;
4945 /* NUMA-aware ordering of nodes */
4946 local_node = pgdat->node_id;
4947 load = nr_online_nodes;
4948 prev_node = local_node;
4949 nodes_clear(used_mask);
4951 memset(node_order, 0, sizeof(node_order));
4954 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4956 * We don't want to pressure a particular node.
4957 * So adding penalty to the first node in same
4958 * distance group to make it round-robin.
4960 if (node_distance(local_node, node) !=
4961 node_distance(local_node, prev_node))
4962 node_load[node] = load;
4966 if (order == ZONELIST_ORDER_NODE)
4967 build_zonelists_in_node_order(pgdat, node);
4969 node_order[i++] = node; /* remember order */
4972 if (order == ZONELIST_ORDER_ZONE) {
4973 /* calculate node order -- i.e., DMA last! */
4974 build_zonelists_in_zone_order(pgdat, i);
4977 build_thisnode_zonelists(pgdat);
4980 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4982 * Return node id of node used for "local" allocations.
4983 * I.e., first node id of first zone in arg node's generic zonelist.
4984 * Used for initializing percpu 'numa_mem', which is used primarily
4985 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4987 int local_memory_node(int node)
4991 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4992 gfp_zone(GFP_KERNEL),
4994 return z->zone->node;
4998 static void setup_min_unmapped_ratio(void);
4999 static void setup_min_slab_ratio(void);
5000 #else /* CONFIG_NUMA */
5002 static void set_zonelist_order(void)
5004 current_zonelist_order = ZONELIST_ORDER_ZONE;
5007 static void build_zonelists(pg_data_t *pgdat)
5009 int node, local_node;
5011 struct zonelist *zonelist;
5013 local_node = pgdat->node_id;
5015 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5016 j = build_zonelists_node(pgdat, zonelist, 0);
5019 * Now we build the zonelist so that it contains the zones
5020 * of all the other nodes.
5021 * We don't want to pressure a particular node, so when
5022 * building the zones for node N, we make sure that the
5023 * zones coming right after the local ones are those from
5024 * node N+1 (modulo N)
5026 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5027 if (!node_online(node))
5029 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5031 for (node = 0; node < local_node; node++) {
5032 if (!node_online(node))
5034 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5037 zonelist->_zonerefs[j].zone = NULL;
5038 zonelist->_zonerefs[j].zone_idx = 0;
5041 #endif /* CONFIG_NUMA */
5044 * Boot pageset table. One per cpu which is going to be used for all
5045 * zones and all nodes. The parameters will be set in such a way
5046 * that an item put on a list will immediately be handed over to
5047 * the buddy list. This is safe since pageset manipulation is done
5048 * with interrupts disabled.
5050 * The boot_pagesets must be kept even after bootup is complete for
5051 * unused processors and/or zones. They do play a role for bootstrapping
5052 * hotplugged processors.
5054 * zoneinfo_show() and maybe other functions do
5055 * not check if the processor is online before following the pageset pointer.
5056 * Other parts of the kernel may not check if the zone is available.
5058 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5059 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5060 static void setup_zone_pageset(struct zone *zone);
5063 * Global mutex to protect against size modification of zonelists
5064 * as well as to serialize pageset setup for the new populated zone.
5066 DEFINE_MUTEX(zonelists_mutex);
5068 /* return values int ....just for stop_machine() */
5069 static int __build_all_zonelists(void *data)
5073 pg_data_t *self = data;
5076 memset(node_load, 0, sizeof(node_load));
5079 if (self && !node_online(self->node_id)) {
5080 build_zonelists(self);
5083 for_each_online_node(nid) {
5084 pg_data_t *pgdat = NODE_DATA(nid);
5086 build_zonelists(pgdat);
5090 * Initialize the boot_pagesets that are going to be used
5091 * for bootstrapping processors. The real pagesets for
5092 * each zone will be allocated later when the per cpu
5093 * allocator is available.
5095 * boot_pagesets are used also for bootstrapping offline
5096 * cpus if the system is already booted because the pagesets
5097 * are needed to initialize allocators on a specific cpu too.
5098 * F.e. the percpu allocator needs the page allocator which
5099 * needs the percpu allocator in order to allocate its pagesets
5100 * (a chicken-egg dilemma).
5102 for_each_possible_cpu(cpu) {
5103 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5105 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5107 * We now know the "local memory node" for each node--
5108 * i.e., the node of the first zone in the generic zonelist.
5109 * Set up numa_mem percpu variable for on-line cpus. During
5110 * boot, only the boot cpu should be on-line; we'll init the
5111 * secondary cpus' numa_mem as they come on-line. During
5112 * node/memory hotplug, we'll fixup all on-line cpus.
5114 if (cpu_online(cpu))
5115 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5122 static noinline void __init
5123 build_all_zonelists_init(void)
5125 __build_all_zonelists(NULL);
5126 mminit_verify_zonelist();
5127 cpuset_init_current_mems_allowed();
5131 * Called with zonelists_mutex held always
5132 * unless system_state == SYSTEM_BOOTING.
5134 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5135 * [we're only called with non-NULL zone through __meminit paths] and
5136 * (2) call of __init annotated helper build_all_zonelists_init
5137 * [protected by SYSTEM_BOOTING].
5139 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5141 set_zonelist_order();
5143 if (system_state == SYSTEM_BOOTING) {
5144 build_all_zonelists_init();
5146 #ifdef CONFIG_MEMORY_HOTPLUG
5148 setup_zone_pageset(zone);
5150 /* we have to stop all cpus to guarantee there is no user
5152 stop_machine(__build_all_zonelists, pgdat, NULL);
5153 /* cpuset refresh routine should be here */
5155 vm_total_pages = nr_free_pagecache_pages();
5157 * Disable grouping by mobility if the number of pages in the
5158 * system is too low to allow the mechanism to work. It would be
5159 * more accurate, but expensive to check per-zone. This check is
5160 * made on memory-hotadd so a system can start with mobility
5161 * disabled and enable it later
5163 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5164 page_group_by_mobility_disabled = 1;
5166 page_group_by_mobility_disabled = 0;
5168 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5170 zonelist_order_name[current_zonelist_order],
5171 page_group_by_mobility_disabled ? "off" : "on",
5174 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5179 * Initially all pages are reserved - free ones are freed
5180 * up by free_all_bootmem() once the early boot process is
5181 * done. Non-atomic initialization, single-pass.
5183 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5184 unsigned long start_pfn, enum memmap_context context)
5186 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5187 unsigned long end_pfn = start_pfn + size;
5188 pg_data_t *pgdat = NODE_DATA(nid);
5190 unsigned long nr_initialised = 0;
5191 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5192 struct memblock_region *r = NULL, *tmp;
5195 if (highest_memmap_pfn < end_pfn - 1)
5196 highest_memmap_pfn = end_pfn - 1;
5199 * Honor reservation requested by the driver for this ZONE_DEVICE
5202 if (altmap && start_pfn == altmap->base_pfn)
5203 start_pfn += altmap->reserve;
5205 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5207 * There can be holes in boot-time mem_map[]s handed to this
5208 * function. They do not exist on hotplugged memory.
5210 if (context != MEMMAP_EARLY)
5213 if (!early_pfn_valid(pfn)) {
5214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5216 * Skip to the pfn preceding the next valid one (or
5217 * end_pfn), such that we hit a valid pfn (or end_pfn)
5218 * on our next iteration of the loop.
5220 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5224 if (!early_pfn_in_nid(pfn, nid))
5226 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5231 * Check given memblock attribute by firmware which can affect
5232 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5233 * mirrored, it's an overlapped memmap init. skip it.
5235 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5236 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5237 for_each_memblock(memory, tmp)
5238 if (pfn < memblock_region_memory_end_pfn(tmp))
5242 if (pfn >= memblock_region_memory_base_pfn(r) &&
5243 memblock_is_mirror(r)) {
5244 /* already initialized as NORMAL */
5245 pfn = memblock_region_memory_end_pfn(r);
5253 * Mark the block movable so that blocks are reserved for
5254 * movable at startup. This will force kernel allocations
5255 * to reserve their blocks rather than leaking throughout
5256 * the address space during boot when many long-lived
5257 * kernel allocations are made.
5259 * bitmap is created for zone's valid pfn range. but memmap
5260 * can be created for invalid pages (for alignment)
5261 * check here not to call set_pageblock_migratetype() against
5264 if (!(pfn & (pageblock_nr_pages - 1))) {
5265 struct page *page = pfn_to_page(pfn);
5267 __init_single_page(page, pfn, zone, nid);
5268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5270 __init_single_pfn(pfn, zone, nid);
5275 static void __meminit zone_init_free_lists(struct zone *zone)
5277 unsigned int order, t;
5278 for_each_migratetype_order(order, t) {
5279 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5280 zone->free_area[order].nr_free = 0;
5284 #ifndef __HAVE_ARCH_MEMMAP_INIT
5285 #define memmap_init(size, nid, zone, start_pfn) \
5286 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5289 static int zone_batchsize(struct zone *zone)
5295 * The per-cpu-pages pools are set to around 1000th of the
5296 * size of the zone. But no more than 1/2 of a meg.
5298 * OK, so we don't know how big the cache is. So guess.
5300 batch = zone->managed_pages / 1024;
5301 if (batch * PAGE_SIZE > 512 * 1024)
5302 batch = (512 * 1024) / PAGE_SIZE;
5303 batch /= 4; /* We effectively *= 4 below */
5308 * Clamp the batch to a 2^n - 1 value. Having a power
5309 * of 2 value was found to be more likely to have
5310 * suboptimal cache aliasing properties in some cases.
5312 * For example if 2 tasks are alternately allocating
5313 * batches of pages, one task can end up with a lot
5314 * of pages of one half of the possible page colors
5315 * and the other with pages of the other colors.
5317 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5322 /* The deferral and batching of frees should be suppressed under NOMMU
5325 * The problem is that NOMMU needs to be able to allocate large chunks
5326 * of contiguous memory as there's no hardware page translation to
5327 * assemble apparent contiguous memory from discontiguous pages.
5329 * Queueing large contiguous runs of pages for batching, however,
5330 * causes the pages to actually be freed in smaller chunks. As there
5331 * can be a significant delay between the individual batches being
5332 * recycled, this leads to the once large chunks of space being
5333 * fragmented and becoming unavailable for high-order allocations.
5340 * pcp->high and pcp->batch values are related and dependent on one another:
5341 * ->batch must never be higher then ->high.
5342 * The following function updates them in a safe manner without read side
5345 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5346 * those fields changing asynchronously (acording the the above rule).
5348 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5349 * outside of boot time (or some other assurance that no concurrent updaters
5352 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5353 unsigned long batch)
5355 /* start with a fail safe value for batch */
5359 /* Update high, then batch, in order */
5366 /* a companion to pageset_set_high() */
5367 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5369 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5372 static void pageset_init(struct per_cpu_pageset *p)
5374 struct per_cpu_pages *pcp;
5377 memset(p, 0, sizeof(*p));
5381 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5382 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5385 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5388 pageset_set_batch(p, batch);
5392 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5393 * to the value high for the pageset p.
5395 static void pageset_set_high(struct per_cpu_pageset *p,
5398 unsigned long batch = max(1UL, high / 4);
5399 if ((high / 4) > (PAGE_SHIFT * 8))
5400 batch = PAGE_SHIFT * 8;
5402 pageset_update(&p->pcp, high, batch);
5405 static void pageset_set_high_and_batch(struct zone *zone,
5406 struct per_cpu_pageset *pcp)
5408 if (percpu_pagelist_fraction)
5409 pageset_set_high(pcp,
5410 (zone->managed_pages /
5411 percpu_pagelist_fraction));
5413 pageset_set_batch(pcp, zone_batchsize(zone));
5416 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5418 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5421 pageset_set_high_and_batch(zone, pcp);
5424 static void __meminit setup_zone_pageset(struct zone *zone)
5427 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5428 for_each_possible_cpu(cpu)
5429 zone_pageset_init(zone, cpu);
5433 * Allocate per cpu pagesets and initialize them.
5434 * Before this call only boot pagesets were available.
5436 void __init setup_per_cpu_pageset(void)
5438 struct pglist_data *pgdat;
5441 for_each_populated_zone(zone)
5442 setup_zone_pageset(zone);
5444 for_each_online_pgdat(pgdat)
5445 pgdat->per_cpu_nodestats =
5446 alloc_percpu(struct per_cpu_nodestat);
5449 static __meminit void zone_pcp_init(struct zone *zone)
5452 * per cpu subsystem is not up at this point. The following code
5453 * relies on the ability of the linker to provide the
5454 * offset of a (static) per cpu variable into the per cpu area.
5456 zone->pageset = &boot_pageset;
5458 if (populated_zone(zone))
5459 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5460 zone->name, zone->present_pages,
5461 zone_batchsize(zone));
5464 int __meminit init_currently_empty_zone(struct zone *zone,
5465 unsigned long zone_start_pfn,
5468 struct pglist_data *pgdat = zone->zone_pgdat;
5470 pgdat->nr_zones = zone_idx(zone) + 1;
5472 zone->zone_start_pfn = zone_start_pfn;
5474 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5475 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5477 (unsigned long)zone_idx(zone),
5478 zone_start_pfn, (zone_start_pfn + size));
5480 zone_init_free_lists(zone);
5481 zone->initialized = 1;
5486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5487 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5490 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5492 int __meminit __early_pfn_to_nid(unsigned long pfn,
5493 struct mminit_pfnnid_cache *state)
5495 unsigned long start_pfn, end_pfn;
5498 if (state->last_start <= pfn && pfn < state->last_end)
5499 return state->last_nid;
5501 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5503 state->last_start = start_pfn;
5504 state->last_end = end_pfn;
5505 state->last_nid = nid;
5510 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5513 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5514 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5515 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5517 * If an architecture guarantees that all ranges registered contain no holes
5518 * and may be freed, this this function may be used instead of calling
5519 * memblock_free_early_nid() manually.
5521 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5523 unsigned long start_pfn, end_pfn;
5526 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5527 start_pfn = min(start_pfn, max_low_pfn);
5528 end_pfn = min(end_pfn, max_low_pfn);
5530 if (start_pfn < end_pfn)
5531 memblock_free_early_nid(PFN_PHYS(start_pfn),
5532 (end_pfn - start_pfn) << PAGE_SHIFT,
5538 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5539 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5541 * If an architecture guarantees that all ranges registered contain no holes and may
5542 * be freed, this function may be used instead of calling memory_present() manually.
5544 void __init sparse_memory_present_with_active_regions(int nid)
5546 unsigned long start_pfn, end_pfn;
5549 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5550 memory_present(this_nid, start_pfn, end_pfn);
5554 * get_pfn_range_for_nid - Return the start and end page frames for a node
5555 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5556 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5557 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5559 * It returns the start and end page frame of a node based on information
5560 * provided by memblock_set_node(). If called for a node
5561 * with no available memory, a warning is printed and the start and end
5564 void __meminit get_pfn_range_for_nid(unsigned int nid,
5565 unsigned long *start_pfn, unsigned long *end_pfn)
5567 unsigned long this_start_pfn, this_end_pfn;
5573 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5574 *start_pfn = min(*start_pfn, this_start_pfn);
5575 *end_pfn = max(*end_pfn, this_end_pfn);
5578 if (*start_pfn == -1UL)
5583 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5584 * assumption is made that zones within a node are ordered in monotonic
5585 * increasing memory addresses so that the "highest" populated zone is used
5587 static void __init find_usable_zone_for_movable(void)
5590 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5591 if (zone_index == ZONE_MOVABLE)
5594 if (arch_zone_highest_possible_pfn[zone_index] >
5595 arch_zone_lowest_possible_pfn[zone_index])
5599 VM_BUG_ON(zone_index == -1);
5600 movable_zone = zone_index;
5604 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5605 * because it is sized independent of architecture. Unlike the other zones,
5606 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5607 * in each node depending on the size of each node and how evenly kernelcore
5608 * is distributed. This helper function adjusts the zone ranges
5609 * provided by the architecture for a given node by using the end of the
5610 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5611 * zones within a node are in order of monotonic increases memory addresses
5613 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5614 unsigned long zone_type,
5615 unsigned long node_start_pfn,
5616 unsigned long node_end_pfn,
5617 unsigned long *zone_start_pfn,
5618 unsigned long *zone_end_pfn)
5620 /* Only adjust if ZONE_MOVABLE is on this node */
5621 if (zone_movable_pfn[nid]) {
5622 /* Size ZONE_MOVABLE */
5623 if (zone_type == ZONE_MOVABLE) {
5624 *zone_start_pfn = zone_movable_pfn[nid];
5625 *zone_end_pfn = min(node_end_pfn,
5626 arch_zone_highest_possible_pfn[movable_zone]);
5628 /* Adjust for ZONE_MOVABLE starting within this range */
5629 } else if (!mirrored_kernelcore &&
5630 *zone_start_pfn < zone_movable_pfn[nid] &&
5631 *zone_end_pfn > zone_movable_pfn[nid]) {
5632 *zone_end_pfn = zone_movable_pfn[nid];
5634 /* Check if this whole range is within ZONE_MOVABLE */
5635 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5636 *zone_start_pfn = *zone_end_pfn;
5641 * Return the number of pages a zone spans in a node, including holes
5642 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5644 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5645 unsigned long zone_type,
5646 unsigned long node_start_pfn,
5647 unsigned long node_end_pfn,
5648 unsigned long *zone_start_pfn,
5649 unsigned long *zone_end_pfn,
5650 unsigned long *ignored)
5652 /* When hotadd a new node from cpu_up(), the node should be empty */
5653 if (!node_start_pfn && !node_end_pfn)
5656 /* Get the start and end of the zone */
5657 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5658 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5659 adjust_zone_range_for_zone_movable(nid, zone_type,
5660 node_start_pfn, node_end_pfn,
5661 zone_start_pfn, zone_end_pfn);
5663 /* Check that this node has pages within the zone's required range */
5664 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5667 /* Move the zone boundaries inside the node if necessary */
5668 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5669 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5671 /* Return the spanned pages */
5672 return *zone_end_pfn - *zone_start_pfn;
5676 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5677 * then all holes in the requested range will be accounted for.
5679 unsigned long __meminit __absent_pages_in_range(int nid,
5680 unsigned long range_start_pfn,
5681 unsigned long range_end_pfn)
5683 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5684 unsigned long start_pfn, end_pfn;
5687 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5688 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5689 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5690 nr_absent -= end_pfn - start_pfn;
5696 * absent_pages_in_range - Return number of page frames in holes within a range
5697 * @start_pfn: The start PFN to start searching for holes
5698 * @end_pfn: The end PFN to stop searching for holes
5700 * It returns the number of pages frames in memory holes within a range.
5702 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5703 unsigned long end_pfn)
5705 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5708 /* Return the number of page frames in holes in a zone on a node */
5709 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5710 unsigned long zone_type,
5711 unsigned long node_start_pfn,
5712 unsigned long node_end_pfn,
5713 unsigned long *ignored)
5715 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5716 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5717 unsigned long zone_start_pfn, zone_end_pfn;
5718 unsigned long nr_absent;
5720 /* When hotadd a new node from cpu_up(), the node should be empty */
5721 if (!node_start_pfn && !node_end_pfn)
5724 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5725 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5727 adjust_zone_range_for_zone_movable(nid, zone_type,
5728 node_start_pfn, node_end_pfn,
5729 &zone_start_pfn, &zone_end_pfn);
5730 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5733 * ZONE_MOVABLE handling.
5734 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5737 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5738 unsigned long start_pfn, end_pfn;
5739 struct memblock_region *r;
5741 for_each_memblock(memory, r) {
5742 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5743 zone_start_pfn, zone_end_pfn);
5744 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5745 zone_start_pfn, zone_end_pfn);
5747 if (zone_type == ZONE_MOVABLE &&
5748 memblock_is_mirror(r))
5749 nr_absent += end_pfn - start_pfn;
5751 if (zone_type == ZONE_NORMAL &&
5752 !memblock_is_mirror(r))
5753 nr_absent += end_pfn - start_pfn;
5760 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5761 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5762 unsigned long zone_type,
5763 unsigned long node_start_pfn,
5764 unsigned long node_end_pfn,
5765 unsigned long *zone_start_pfn,
5766 unsigned long *zone_end_pfn,
5767 unsigned long *zones_size)
5771 *zone_start_pfn = node_start_pfn;
5772 for (zone = 0; zone < zone_type; zone++)
5773 *zone_start_pfn += zones_size[zone];
5775 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5777 return zones_size[zone_type];
5780 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5781 unsigned long zone_type,
5782 unsigned long node_start_pfn,
5783 unsigned long node_end_pfn,
5784 unsigned long *zholes_size)
5789 return zholes_size[zone_type];
5792 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5794 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5795 unsigned long node_start_pfn,
5796 unsigned long node_end_pfn,
5797 unsigned long *zones_size,
5798 unsigned long *zholes_size)
5800 unsigned long realtotalpages = 0, totalpages = 0;
5803 for (i = 0; i < MAX_NR_ZONES; i++) {
5804 struct zone *zone = pgdat->node_zones + i;
5805 unsigned long zone_start_pfn, zone_end_pfn;
5806 unsigned long size, real_size;
5808 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5814 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5815 node_start_pfn, node_end_pfn,
5818 zone->zone_start_pfn = zone_start_pfn;
5820 zone->zone_start_pfn = 0;
5821 zone->spanned_pages = size;
5822 zone->present_pages = real_size;
5825 realtotalpages += real_size;
5828 pgdat->node_spanned_pages = totalpages;
5829 pgdat->node_present_pages = realtotalpages;
5830 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5834 #ifndef CONFIG_SPARSEMEM
5836 * Calculate the size of the zone->blockflags rounded to an unsigned long
5837 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5838 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5839 * round what is now in bits to nearest long in bits, then return it in
5842 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5844 unsigned long usemapsize;
5846 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5847 usemapsize = roundup(zonesize, pageblock_nr_pages);
5848 usemapsize = usemapsize >> pageblock_order;
5849 usemapsize *= NR_PAGEBLOCK_BITS;
5850 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5852 return usemapsize / 8;
5855 static void __init setup_usemap(struct pglist_data *pgdat,
5857 unsigned long zone_start_pfn,
5858 unsigned long zonesize)
5860 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5861 zone->pageblock_flags = NULL;
5863 zone->pageblock_flags =
5864 memblock_virt_alloc_node_nopanic(usemapsize,
5868 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5869 unsigned long zone_start_pfn, unsigned long zonesize) {}
5870 #endif /* CONFIG_SPARSEMEM */
5872 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5874 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5875 void __paginginit set_pageblock_order(void)
5879 /* Check that pageblock_nr_pages has not already been setup */
5880 if (pageblock_order)
5883 if (HPAGE_SHIFT > PAGE_SHIFT)
5884 order = HUGETLB_PAGE_ORDER;
5886 order = MAX_ORDER - 1;
5889 * Assume the largest contiguous order of interest is a huge page.
5890 * This value may be variable depending on boot parameters on IA64 and
5893 pageblock_order = order;
5895 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5898 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5899 * is unused as pageblock_order is set at compile-time. See
5900 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5903 void __paginginit set_pageblock_order(void)
5907 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5909 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5910 unsigned long present_pages)
5912 unsigned long pages = spanned_pages;
5915 * Provide a more accurate estimation if there are holes within
5916 * the zone and SPARSEMEM is in use. If there are holes within the
5917 * zone, each populated memory region may cost us one or two extra
5918 * memmap pages due to alignment because memmap pages for each
5919 * populated regions may not be naturally aligned on page boundary.
5920 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5922 if (spanned_pages > present_pages + (present_pages >> 4) &&
5923 IS_ENABLED(CONFIG_SPARSEMEM))
5924 pages = present_pages;
5926 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5930 * Set up the zone data structures:
5931 * - mark all pages reserved
5932 * - mark all memory queues empty
5933 * - clear the memory bitmaps
5935 * NOTE: pgdat should get zeroed by caller.
5937 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5940 int nid = pgdat->node_id;
5943 pgdat_resize_init(pgdat);
5944 #ifdef CONFIG_NUMA_BALANCING
5945 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5946 pgdat->numabalancing_migrate_nr_pages = 0;
5947 pgdat->numabalancing_migrate_next_window = jiffies;
5949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5950 spin_lock_init(&pgdat->split_queue_lock);
5951 INIT_LIST_HEAD(&pgdat->split_queue);
5952 pgdat->split_queue_len = 0;
5954 init_waitqueue_head(&pgdat->kswapd_wait);
5955 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5956 #ifdef CONFIG_COMPACTION
5957 init_waitqueue_head(&pgdat->kcompactd_wait);
5959 pgdat_page_ext_init(pgdat);
5960 spin_lock_init(&pgdat->lru_lock);
5961 lruvec_init(node_lruvec(pgdat));
5963 for (j = 0; j < MAX_NR_ZONES; j++) {
5964 struct zone *zone = pgdat->node_zones + j;
5965 unsigned long size, realsize, freesize, memmap_pages;
5966 unsigned long zone_start_pfn = zone->zone_start_pfn;
5968 size = zone->spanned_pages;
5969 realsize = freesize = zone->present_pages;
5972 * Adjust freesize so that it accounts for how much memory
5973 * is used by this zone for memmap. This affects the watermark
5974 * and per-cpu initialisations
5976 memmap_pages = calc_memmap_size(size, realsize);
5977 if (!is_highmem_idx(j)) {
5978 if (freesize >= memmap_pages) {
5979 freesize -= memmap_pages;
5982 " %s zone: %lu pages used for memmap\n",
5983 zone_names[j], memmap_pages);
5985 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5986 zone_names[j], memmap_pages, freesize);
5989 /* Account for reserved pages */
5990 if (j == 0 && freesize > dma_reserve) {
5991 freesize -= dma_reserve;
5992 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5993 zone_names[0], dma_reserve);
5996 if (!is_highmem_idx(j))
5997 nr_kernel_pages += freesize;
5998 /* Charge for highmem memmap if there are enough kernel pages */
5999 else if (nr_kernel_pages > memmap_pages * 2)
6000 nr_kernel_pages -= memmap_pages;
6001 nr_all_pages += freesize;
6004 * Set an approximate value for lowmem here, it will be adjusted
6005 * when the bootmem allocator frees pages into the buddy system.
6006 * And all highmem pages will be managed by the buddy system.
6008 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6012 zone->name = zone_names[j];
6013 zone->zone_pgdat = pgdat;
6014 spin_lock_init(&zone->lock);
6015 zone_seqlock_init(zone);
6016 zone_pcp_init(zone);
6021 set_pageblock_order();
6022 setup_usemap(pgdat, zone, zone_start_pfn, size);
6023 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6025 memmap_init(size, nid, j, zone_start_pfn);
6029 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6031 unsigned long __maybe_unused start = 0;
6032 unsigned long __maybe_unused offset = 0;
6034 /* Skip empty nodes */
6035 if (!pgdat->node_spanned_pages)
6038 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6039 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6040 offset = pgdat->node_start_pfn - start;
6041 /* ia64 gets its own node_mem_map, before this, without bootmem */
6042 if (!pgdat->node_mem_map) {
6043 unsigned long size, end;
6047 * The zone's endpoints aren't required to be MAX_ORDER
6048 * aligned but the node_mem_map endpoints must be in order
6049 * for the buddy allocator to function correctly.
6051 end = pgdat_end_pfn(pgdat);
6052 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6053 size = (end - start) * sizeof(struct page);
6054 map = alloc_remap(pgdat->node_id, size);
6056 map = memblock_virt_alloc_node_nopanic(size,
6058 pgdat->node_mem_map = map + offset;
6060 #ifndef CONFIG_NEED_MULTIPLE_NODES
6062 * With no DISCONTIG, the global mem_map is just set as node 0's
6064 if (pgdat == NODE_DATA(0)) {
6065 mem_map = NODE_DATA(0)->node_mem_map;
6066 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6067 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6069 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6072 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6075 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6076 unsigned long node_start_pfn, unsigned long *zholes_size)
6078 pg_data_t *pgdat = NODE_DATA(nid);
6079 unsigned long start_pfn = 0;
6080 unsigned long end_pfn = 0;
6082 /* pg_data_t should be reset to zero when it's allocated */
6083 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6085 reset_deferred_meminit(pgdat);
6086 pgdat->node_id = nid;
6087 pgdat->node_start_pfn = node_start_pfn;
6088 pgdat->per_cpu_nodestats = NULL;
6089 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6090 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6091 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6092 (u64)start_pfn << PAGE_SHIFT,
6093 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6095 start_pfn = node_start_pfn;
6097 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6098 zones_size, zholes_size);
6100 alloc_node_mem_map(pgdat);
6101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6103 nid, (unsigned long)pgdat,
6104 (unsigned long)pgdat->node_mem_map);
6107 free_area_init_core(pgdat);
6110 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6112 #if MAX_NUMNODES > 1
6114 * Figure out the number of possible node ids.
6116 void __init setup_nr_node_ids(void)
6118 unsigned int highest;
6120 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6121 nr_node_ids = highest + 1;
6126 * node_map_pfn_alignment - determine the maximum internode alignment
6128 * This function should be called after node map is populated and sorted.
6129 * It calculates the maximum power of two alignment which can distinguish
6132 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6133 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6134 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6135 * shifted, 1GiB is enough and this function will indicate so.
6137 * This is used to test whether pfn -> nid mapping of the chosen memory
6138 * model has fine enough granularity to avoid incorrect mapping for the
6139 * populated node map.
6141 * Returns the determined alignment in pfn's. 0 if there is no alignment
6142 * requirement (single node).
6144 unsigned long __init node_map_pfn_alignment(void)
6146 unsigned long accl_mask = 0, last_end = 0;
6147 unsigned long start, end, mask;
6151 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6152 if (!start || last_nid < 0 || last_nid == nid) {
6159 * Start with a mask granular enough to pin-point to the
6160 * start pfn and tick off bits one-by-one until it becomes
6161 * too coarse to separate the current node from the last.
6163 mask = ~((1 << __ffs(start)) - 1);
6164 while (mask && last_end <= (start & (mask << 1)))
6167 /* accumulate all internode masks */
6171 /* convert mask to number of pages */
6172 return ~accl_mask + 1;
6175 /* Find the lowest pfn for a node */
6176 static unsigned long __init find_min_pfn_for_node(int nid)
6178 unsigned long min_pfn = ULONG_MAX;
6179 unsigned long start_pfn;
6182 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6183 min_pfn = min(min_pfn, start_pfn);
6185 if (min_pfn == ULONG_MAX) {
6186 pr_warn("Could not find start_pfn for node %d\n", nid);
6194 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6196 * It returns the minimum PFN based on information provided via
6197 * memblock_set_node().
6199 unsigned long __init find_min_pfn_with_active_regions(void)
6201 return find_min_pfn_for_node(MAX_NUMNODES);
6205 * early_calculate_totalpages()
6206 * Sum pages in active regions for movable zone.
6207 * Populate N_MEMORY for calculating usable_nodes.
6209 static unsigned long __init early_calculate_totalpages(void)
6211 unsigned long totalpages = 0;
6212 unsigned long start_pfn, end_pfn;
6215 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6216 unsigned long pages = end_pfn - start_pfn;
6218 totalpages += pages;
6220 node_set_state(nid, N_MEMORY);
6226 * Find the PFN the Movable zone begins in each node. Kernel memory
6227 * is spread evenly between nodes as long as the nodes have enough
6228 * memory. When they don't, some nodes will have more kernelcore than
6231 static void __init find_zone_movable_pfns_for_nodes(void)
6234 unsigned long usable_startpfn;
6235 unsigned long kernelcore_node, kernelcore_remaining;
6236 /* save the state before borrow the nodemask */
6237 nodemask_t saved_node_state = node_states[N_MEMORY];
6238 unsigned long totalpages = early_calculate_totalpages();
6239 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6240 struct memblock_region *r;
6242 /* Need to find movable_zone earlier when movable_node is specified. */
6243 find_usable_zone_for_movable();
6246 * If movable_node is specified, ignore kernelcore and movablecore
6249 if (movable_node_is_enabled()) {
6250 for_each_memblock(memory, r) {
6251 if (!memblock_is_hotpluggable(r))
6256 usable_startpfn = PFN_DOWN(r->base);
6257 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6258 min(usable_startpfn, zone_movable_pfn[nid]) :
6266 * If kernelcore=mirror is specified, ignore movablecore option
6268 if (mirrored_kernelcore) {
6269 bool mem_below_4gb_not_mirrored = false;
6271 for_each_memblock(memory, r) {
6272 if (memblock_is_mirror(r))
6277 usable_startpfn = memblock_region_memory_base_pfn(r);
6279 if (usable_startpfn < 0x100000) {
6280 mem_below_4gb_not_mirrored = true;
6284 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6285 min(usable_startpfn, zone_movable_pfn[nid]) :
6289 if (mem_below_4gb_not_mirrored)
6290 pr_warn("This configuration results in unmirrored kernel memory.");
6296 * If movablecore=nn[KMG] was specified, calculate what size of
6297 * kernelcore that corresponds so that memory usable for
6298 * any allocation type is evenly spread. If both kernelcore
6299 * and movablecore are specified, then the value of kernelcore
6300 * will be used for required_kernelcore if it's greater than
6301 * what movablecore would have allowed.
6303 if (required_movablecore) {
6304 unsigned long corepages;
6307 * Round-up so that ZONE_MOVABLE is at least as large as what
6308 * was requested by the user
6310 required_movablecore =
6311 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6312 required_movablecore = min(totalpages, required_movablecore);
6313 corepages = totalpages - required_movablecore;
6315 required_kernelcore = max(required_kernelcore, corepages);
6319 * If kernelcore was not specified or kernelcore size is larger
6320 * than totalpages, there is no ZONE_MOVABLE.
6322 if (!required_kernelcore || required_kernelcore >= totalpages)
6325 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6326 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6329 /* Spread kernelcore memory as evenly as possible throughout nodes */
6330 kernelcore_node = required_kernelcore / usable_nodes;
6331 for_each_node_state(nid, N_MEMORY) {
6332 unsigned long start_pfn, end_pfn;
6335 * Recalculate kernelcore_node if the division per node
6336 * now exceeds what is necessary to satisfy the requested
6337 * amount of memory for the kernel
6339 if (required_kernelcore < kernelcore_node)
6340 kernelcore_node = required_kernelcore / usable_nodes;
6343 * As the map is walked, we track how much memory is usable
6344 * by the kernel using kernelcore_remaining. When it is
6345 * 0, the rest of the node is usable by ZONE_MOVABLE
6347 kernelcore_remaining = kernelcore_node;
6349 /* Go through each range of PFNs within this node */
6350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6351 unsigned long size_pages;
6353 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6354 if (start_pfn >= end_pfn)
6357 /* Account for what is only usable for kernelcore */
6358 if (start_pfn < usable_startpfn) {
6359 unsigned long kernel_pages;
6360 kernel_pages = min(end_pfn, usable_startpfn)
6363 kernelcore_remaining -= min(kernel_pages,
6364 kernelcore_remaining);
6365 required_kernelcore -= min(kernel_pages,
6366 required_kernelcore);
6368 /* Continue if range is now fully accounted */
6369 if (end_pfn <= usable_startpfn) {
6372 * Push zone_movable_pfn to the end so
6373 * that if we have to rebalance
6374 * kernelcore across nodes, we will
6375 * not double account here
6377 zone_movable_pfn[nid] = end_pfn;
6380 start_pfn = usable_startpfn;
6384 * The usable PFN range for ZONE_MOVABLE is from
6385 * start_pfn->end_pfn. Calculate size_pages as the
6386 * number of pages used as kernelcore
6388 size_pages = end_pfn - start_pfn;
6389 if (size_pages > kernelcore_remaining)
6390 size_pages = kernelcore_remaining;
6391 zone_movable_pfn[nid] = start_pfn + size_pages;
6394 * Some kernelcore has been met, update counts and
6395 * break if the kernelcore for this node has been
6398 required_kernelcore -= min(required_kernelcore,
6400 kernelcore_remaining -= size_pages;
6401 if (!kernelcore_remaining)
6407 * If there is still required_kernelcore, we do another pass with one
6408 * less node in the count. This will push zone_movable_pfn[nid] further
6409 * along on the nodes that still have memory until kernelcore is
6413 if (usable_nodes && required_kernelcore > usable_nodes)
6417 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6418 for (nid = 0; nid < MAX_NUMNODES; nid++)
6419 zone_movable_pfn[nid] =
6420 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6423 /* restore the node_state */
6424 node_states[N_MEMORY] = saved_node_state;
6427 /* Any regular or high memory on that node ? */
6428 static void check_for_memory(pg_data_t *pgdat, int nid)
6430 enum zone_type zone_type;
6432 if (N_MEMORY == N_NORMAL_MEMORY)
6435 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6436 struct zone *zone = &pgdat->node_zones[zone_type];
6437 if (populated_zone(zone)) {
6438 node_set_state(nid, N_HIGH_MEMORY);
6439 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6440 zone_type <= ZONE_NORMAL)
6441 node_set_state(nid, N_NORMAL_MEMORY);
6448 * free_area_init_nodes - Initialise all pg_data_t and zone data
6449 * @max_zone_pfn: an array of max PFNs for each zone
6451 * This will call free_area_init_node() for each active node in the system.
6452 * Using the page ranges provided by memblock_set_node(), the size of each
6453 * zone in each node and their holes is calculated. If the maximum PFN
6454 * between two adjacent zones match, it is assumed that the zone is empty.
6455 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6456 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6457 * starts where the previous one ended. For example, ZONE_DMA32 starts
6458 * at arch_max_dma_pfn.
6460 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6462 unsigned long start_pfn, end_pfn;
6465 /* Record where the zone boundaries are */
6466 memset(arch_zone_lowest_possible_pfn, 0,
6467 sizeof(arch_zone_lowest_possible_pfn));
6468 memset(arch_zone_highest_possible_pfn, 0,
6469 sizeof(arch_zone_highest_possible_pfn));
6471 start_pfn = find_min_pfn_with_active_regions();
6473 for (i = 0; i < MAX_NR_ZONES; i++) {
6474 if (i == ZONE_MOVABLE)
6477 end_pfn = max(max_zone_pfn[i], start_pfn);
6478 arch_zone_lowest_possible_pfn[i] = start_pfn;
6479 arch_zone_highest_possible_pfn[i] = end_pfn;
6481 start_pfn = end_pfn;
6484 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6485 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6486 find_zone_movable_pfns_for_nodes();
6488 /* Print out the zone ranges */
6489 pr_info("Zone ranges:\n");
6490 for (i = 0; i < MAX_NR_ZONES; i++) {
6491 if (i == ZONE_MOVABLE)
6493 pr_info(" %-8s ", zone_names[i]);
6494 if (arch_zone_lowest_possible_pfn[i] ==
6495 arch_zone_highest_possible_pfn[i])
6498 pr_cont("[mem %#018Lx-%#018Lx]\n",
6499 (u64)arch_zone_lowest_possible_pfn[i]
6501 ((u64)arch_zone_highest_possible_pfn[i]
6502 << PAGE_SHIFT) - 1);
6505 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6506 pr_info("Movable zone start for each node\n");
6507 for (i = 0; i < MAX_NUMNODES; i++) {
6508 if (zone_movable_pfn[i])
6509 pr_info(" Node %d: %#018Lx\n", i,
6510 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6513 /* Print out the early node map */
6514 pr_info("Early memory node ranges\n");
6515 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6516 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6517 (u64)start_pfn << PAGE_SHIFT,
6518 ((u64)end_pfn << PAGE_SHIFT) - 1);
6520 /* Initialise every node */
6521 mminit_verify_pageflags_layout();
6522 setup_nr_node_ids();
6523 for_each_online_node(nid) {
6524 pg_data_t *pgdat = NODE_DATA(nid);
6525 free_area_init_node(nid, NULL,
6526 find_min_pfn_for_node(nid), NULL);
6528 /* Any memory on that node */
6529 if (pgdat->node_present_pages)
6530 node_set_state(nid, N_MEMORY);
6531 check_for_memory(pgdat, nid);
6535 static int __init cmdline_parse_core(char *p, unsigned long *core)
6537 unsigned long long coremem;
6541 coremem = memparse(p, &p);
6542 *core = coremem >> PAGE_SHIFT;
6544 /* Paranoid check that UL is enough for the coremem value */
6545 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6551 * kernelcore=size sets the amount of memory for use for allocations that
6552 * cannot be reclaimed or migrated.
6554 static int __init cmdline_parse_kernelcore(char *p)
6556 /* parse kernelcore=mirror */
6557 if (parse_option_str(p, "mirror")) {
6558 mirrored_kernelcore = true;
6562 return cmdline_parse_core(p, &required_kernelcore);
6566 * movablecore=size sets the amount of memory for use for allocations that
6567 * can be reclaimed or migrated.
6569 static int __init cmdline_parse_movablecore(char *p)
6571 return cmdline_parse_core(p, &required_movablecore);
6574 early_param("kernelcore", cmdline_parse_kernelcore);
6575 early_param("movablecore", cmdline_parse_movablecore);
6577 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6579 void adjust_managed_page_count(struct page *page, long count)
6581 spin_lock(&managed_page_count_lock);
6582 page_zone(page)->managed_pages += count;
6583 totalram_pages += count;
6584 #ifdef CONFIG_HIGHMEM
6585 if (PageHighMem(page))
6586 totalhigh_pages += count;
6588 spin_unlock(&managed_page_count_lock);
6590 EXPORT_SYMBOL(adjust_managed_page_count);
6592 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6595 unsigned long pages = 0;
6597 start = (void *)PAGE_ALIGN((unsigned long)start);
6598 end = (void *)((unsigned long)end & PAGE_MASK);
6599 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6600 if ((unsigned int)poison <= 0xFF)
6601 memset(pos, poison, PAGE_SIZE);
6602 free_reserved_page(virt_to_page(pos));
6606 pr_info("Freeing %s memory: %ldK\n",
6607 s, pages << (PAGE_SHIFT - 10));
6611 EXPORT_SYMBOL(free_reserved_area);
6613 #ifdef CONFIG_HIGHMEM
6614 void free_highmem_page(struct page *page)
6616 __free_reserved_page(page);
6618 page_zone(page)->managed_pages++;
6624 void __init mem_init_print_info(const char *str)
6626 unsigned long physpages, codesize, datasize, rosize, bss_size;
6627 unsigned long init_code_size, init_data_size;
6629 physpages = get_num_physpages();
6630 codesize = _etext - _stext;
6631 datasize = _edata - _sdata;
6632 rosize = __end_rodata - __start_rodata;
6633 bss_size = __bss_stop - __bss_start;
6634 init_data_size = __init_end - __init_begin;
6635 init_code_size = _einittext - _sinittext;
6638 * Detect special cases and adjust section sizes accordingly:
6639 * 1) .init.* may be embedded into .data sections
6640 * 2) .init.text.* may be out of [__init_begin, __init_end],
6641 * please refer to arch/tile/kernel/vmlinux.lds.S.
6642 * 3) .rodata.* may be embedded into .text or .data sections.
6644 #define adj_init_size(start, end, size, pos, adj) \
6646 if (start <= pos && pos < end && size > adj) \
6650 adj_init_size(__init_begin, __init_end, init_data_size,
6651 _sinittext, init_code_size);
6652 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6653 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6654 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6655 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6657 #undef adj_init_size
6659 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6660 #ifdef CONFIG_HIGHMEM
6664 nr_free_pages() << (PAGE_SHIFT - 10),
6665 physpages << (PAGE_SHIFT - 10),
6666 codesize >> 10, datasize >> 10, rosize >> 10,
6667 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6668 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6669 totalcma_pages << (PAGE_SHIFT - 10),
6670 #ifdef CONFIG_HIGHMEM
6671 totalhigh_pages << (PAGE_SHIFT - 10),
6673 str ? ", " : "", str ? str : "");
6677 * set_dma_reserve - set the specified number of pages reserved in the first zone
6678 * @new_dma_reserve: The number of pages to mark reserved
6680 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6681 * In the DMA zone, a significant percentage may be consumed by kernel image
6682 * and other unfreeable allocations which can skew the watermarks badly. This
6683 * function may optionally be used to account for unfreeable pages in the
6684 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6685 * smaller per-cpu batchsize.
6687 void __init set_dma_reserve(unsigned long new_dma_reserve)
6689 dma_reserve = new_dma_reserve;
6692 void __init free_area_init(unsigned long *zones_size)
6694 free_area_init_node(0, zones_size,
6695 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6698 static int page_alloc_cpu_dead(unsigned int cpu)
6701 lru_add_drain_cpu(cpu);
6705 * Spill the event counters of the dead processor
6706 * into the current processors event counters.
6707 * This artificially elevates the count of the current
6710 vm_events_fold_cpu(cpu);
6713 * Zero the differential counters of the dead processor
6714 * so that the vm statistics are consistent.
6716 * This is only okay since the processor is dead and cannot
6717 * race with what we are doing.
6719 cpu_vm_stats_fold(cpu);
6723 void __init page_alloc_init(void)
6727 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6728 "mm/page_alloc:dead", NULL,
6729 page_alloc_cpu_dead);
6734 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6735 * or min_free_kbytes changes.
6737 static void calculate_totalreserve_pages(void)
6739 struct pglist_data *pgdat;
6740 unsigned long reserve_pages = 0;
6741 enum zone_type i, j;
6743 for_each_online_pgdat(pgdat) {
6745 pgdat->totalreserve_pages = 0;
6747 for (i = 0; i < MAX_NR_ZONES; i++) {
6748 struct zone *zone = pgdat->node_zones + i;
6751 /* Find valid and maximum lowmem_reserve in the zone */
6752 for (j = i; j < MAX_NR_ZONES; j++) {
6753 if (zone->lowmem_reserve[j] > max)
6754 max = zone->lowmem_reserve[j];
6757 /* we treat the high watermark as reserved pages. */
6758 max += high_wmark_pages(zone);
6760 if (max > zone->managed_pages)
6761 max = zone->managed_pages;
6763 pgdat->totalreserve_pages += max;
6765 reserve_pages += max;
6768 totalreserve_pages = reserve_pages;
6772 * setup_per_zone_lowmem_reserve - called whenever
6773 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6774 * has a correct pages reserved value, so an adequate number of
6775 * pages are left in the zone after a successful __alloc_pages().
6777 static void setup_per_zone_lowmem_reserve(void)
6779 struct pglist_data *pgdat;
6780 enum zone_type j, idx;
6782 for_each_online_pgdat(pgdat) {
6783 for (j = 0; j < MAX_NR_ZONES; j++) {
6784 struct zone *zone = pgdat->node_zones + j;
6785 unsigned long managed_pages = zone->managed_pages;
6787 zone->lowmem_reserve[j] = 0;
6791 struct zone *lower_zone;
6795 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6796 sysctl_lowmem_reserve_ratio[idx] = 1;
6798 lower_zone = pgdat->node_zones + idx;
6799 lower_zone->lowmem_reserve[j] = managed_pages /
6800 sysctl_lowmem_reserve_ratio[idx];
6801 managed_pages += lower_zone->managed_pages;
6806 /* update totalreserve_pages */
6807 calculate_totalreserve_pages();
6810 static void __setup_per_zone_wmarks(void)
6812 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6813 unsigned long lowmem_pages = 0;
6815 unsigned long flags;
6817 /* Calculate total number of !ZONE_HIGHMEM pages */
6818 for_each_zone(zone) {
6819 if (!is_highmem(zone))
6820 lowmem_pages += zone->managed_pages;
6823 for_each_zone(zone) {
6826 spin_lock_irqsave(&zone->lock, flags);
6827 tmp = (u64)pages_min * zone->managed_pages;
6828 do_div(tmp, lowmem_pages);
6829 if (is_highmem(zone)) {
6831 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6832 * need highmem pages, so cap pages_min to a small
6835 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6836 * deltas control asynch page reclaim, and so should
6837 * not be capped for highmem.
6839 unsigned long min_pages;
6841 min_pages = zone->managed_pages / 1024;
6842 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6843 zone->watermark[WMARK_MIN] = min_pages;
6846 * If it's a lowmem zone, reserve a number of pages
6847 * proportionate to the zone's size.
6849 zone->watermark[WMARK_MIN] = tmp;
6853 * Set the kswapd watermarks distance according to the
6854 * scale factor in proportion to available memory, but
6855 * ensure a minimum size on small systems.
6857 tmp = max_t(u64, tmp >> 2,
6858 mult_frac(zone->managed_pages,
6859 watermark_scale_factor, 10000));
6861 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6862 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6864 spin_unlock_irqrestore(&zone->lock, flags);
6867 /* update totalreserve_pages */
6868 calculate_totalreserve_pages();
6872 * setup_per_zone_wmarks - called when min_free_kbytes changes
6873 * or when memory is hot-{added|removed}
6875 * Ensures that the watermark[min,low,high] values for each zone are set
6876 * correctly with respect to min_free_kbytes.
6878 void setup_per_zone_wmarks(void)
6880 mutex_lock(&zonelists_mutex);
6881 __setup_per_zone_wmarks();
6882 mutex_unlock(&zonelists_mutex);
6886 * Initialise min_free_kbytes.
6888 * For small machines we want it small (128k min). For large machines
6889 * we want it large (64MB max). But it is not linear, because network
6890 * bandwidth does not increase linearly with machine size. We use
6892 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6893 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6909 int __meminit init_per_zone_wmark_min(void)
6911 unsigned long lowmem_kbytes;
6912 int new_min_free_kbytes;
6914 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6915 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6917 if (new_min_free_kbytes > user_min_free_kbytes) {
6918 min_free_kbytes = new_min_free_kbytes;
6919 if (min_free_kbytes < 128)
6920 min_free_kbytes = 128;
6921 if (min_free_kbytes > 65536)
6922 min_free_kbytes = 65536;
6924 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6925 new_min_free_kbytes, user_min_free_kbytes);
6927 setup_per_zone_wmarks();
6928 refresh_zone_stat_thresholds();
6929 setup_per_zone_lowmem_reserve();
6932 setup_min_unmapped_ratio();
6933 setup_min_slab_ratio();
6938 core_initcall(init_per_zone_wmark_min)
6941 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6942 * that we can call two helper functions whenever min_free_kbytes
6945 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6946 void __user *buffer, size_t *length, loff_t *ppos)
6950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6955 user_min_free_kbytes = min_free_kbytes;
6956 setup_per_zone_wmarks();
6961 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6962 void __user *buffer, size_t *length, loff_t *ppos)
6966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6971 setup_per_zone_wmarks();
6977 static void setup_min_unmapped_ratio(void)
6982 for_each_online_pgdat(pgdat)
6983 pgdat->min_unmapped_pages = 0;
6986 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6987 sysctl_min_unmapped_ratio) / 100;
6991 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6992 void __user *buffer, size_t *length, loff_t *ppos)
6996 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7000 setup_min_unmapped_ratio();
7005 static void setup_min_slab_ratio(void)
7010 for_each_online_pgdat(pgdat)
7011 pgdat->min_slab_pages = 0;
7014 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7015 sysctl_min_slab_ratio) / 100;
7018 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7019 void __user *buffer, size_t *length, loff_t *ppos)
7023 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7027 setup_min_slab_ratio();
7034 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7035 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7036 * whenever sysctl_lowmem_reserve_ratio changes.
7038 * The reserve ratio obviously has absolutely no relation with the
7039 * minimum watermarks. The lowmem reserve ratio can only make sense
7040 * if in function of the boot time zone sizes.
7042 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7043 void __user *buffer, size_t *length, loff_t *ppos)
7045 proc_dointvec_minmax(table, write, buffer, length, ppos);
7046 setup_per_zone_lowmem_reserve();
7051 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7052 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7053 * pagelist can have before it gets flushed back to buddy allocator.
7055 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7056 void __user *buffer, size_t *length, loff_t *ppos)
7059 int old_percpu_pagelist_fraction;
7062 mutex_lock(&pcp_batch_high_lock);
7063 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7065 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7066 if (!write || ret < 0)
7069 /* Sanity checking to avoid pcp imbalance */
7070 if (percpu_pagelist_fraction &&
7071 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7072 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7078 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7081 for_each_populated_zone(zone) {
7084 for_each_possible_cpu(cpu)
7085 pageset_set_high_and_batch(zone,
7086 per_cpu_ptr(zone->pageset, cpu));
7089 mutex_unlock(&pcp_batch_high_lock);
7094 int hashdist = HASHDIST_DEFAULT;
7096 static int __init set_hashdist(char *str)
7100 hashdist = simple_strtoul(str, &str, 0);
7103 __setup("hashdist=", set_hashdist);
7106 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7108 * Returns the number of pages that arch has reserved but
7109 * is not known to alloc_large_system_hash().
7111 static unsigned long __init arch_reserved_kernel_pages(void)
7118 * allocate a large system hash table from bootmem
7119 * - it is assumed that the hash table must contain an exact power-of-2
7120 * quantity of entries
7121 * - limit is the number of hash buckets, not the total allocation size
7123 void *__init alloc_large_system_hash(const char *tablename,
7124 unsigned long bucketsize,
7125 unsigned long numentries,
7128 unsigned int *_hash_shift,
7129 unsigned int *_hash_mask,
7130 unsigned long low_limit,
7131 unsigned long high_limit)
7133 unsigned long long max = high_limit;
7134 unsigned long log2qty, size;
7137 /* allow the kernel cmdline to have a say */
7139 /* round applicable memory size up to nearest megabyte */
7140 numentries = nr_kernel_pages;
7141 numentries -= arch_reserved_kernel_pages();
7143 /* It isn't necessary when PAGE_SIZE >= 1MB */
7144 if (PAGE_SHIFT < 20)
7145 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7147 /* limit to 1 bucket per 2^scale bytes of low memory */
7148 if (scale > PAGE_SHIFT)
7149 numentries >>= (scale - PAGE_SHIFT);
7151 numentries <<= (PAGE_SHIFT - scale);
7153 /* Make sure we've got at least a 0-order allocation.. */
7154 if (unlikely(flags & HASH_SMALL)) {
7155 /* Makes no sense without HASH_EARLY */
7156 WARN_ON(!(flags & HASH_EARLY));
7157 if (!(numentries >> *_hash_shift)) {
7158 numentries = 1UL << *_hash_shift;
7159 BUG_ON(!numentries);
7161 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7162 numentries = PAGE_SIZE / bucketsize;
7164 numentries = roundup_pow_of_two(numentries);
7166 /* limit allocation size to 1/16 total memory by default */
7168 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7169 do_div(max, bucketsize);
7171 max = min(max, 0x80000000ULL);
7173 if (numentries < low_limit)
7174 numentries = low_limit;
7175 if (numentries > max)
7178 log2qty = ilog2(numentries);
7181 size = bucketsize << log2qty;
7182 if (flags & HASH_EARLY)
7183 table = memblock_virt_alloc_nopanic(size, 0);
7185 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7188 * If bucketsize is not a power-of-two, we may free
7189 * some pages at the end of hash table which
7190 * alloc_pages_exact() automatically does
7192 if (get_order(size) < MAX_ORDER) {
7193 table = alloc_pages_exact(size, GFP_ATOMIC);
7194 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7197 } while (!table && size > PAGE_SIZE && --log2qty);
7200 panic("Failed to allocate %s hash table\n", tablename);
7202 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7203 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7206 *_hash_shift = log2qty;
7208 *_hash_mask = (1 << log2qty) - 1;
7214 * This function checks whether pageblock includes unmovable pages or not.
7215 * If @count is not zero, it is okay to include less @count unmovable pages
7217 * PageLRU check without isolation or lru_lock could race so that
7218 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7219 * check without lock_page also may miss some movable non-lru pages at
7220 * race condition. So you can't expect this function should be exact.
7222 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7223 bool skip_hwpoisoned_pages)
7225 unsigned long pfn, iter, found;
7229 * For avoiding noise data, lru_add_drain_all() should be called
7230 * If ZONE_MOVABLE, the zone never contains unmovable pages
7232 if (zone_idx(zone) == ZONE_MOVABLE)
7234 mt = get_pageblock_migratetype(page);
7235 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7238 pfn = page_to_pfn(page);
7239 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7240 unsigned long check = pfn + iter;
7242 if (!pfn_valid_within(check))
7245 page = pfn_to_page(check);
7248 * Hugepages are not in LRU lists, but they're movable.
7249 * We need not scan over tail pages bacause we don't
7250 * handle each tail page individually in migration.
7252 if (PageHuge(page)) {
7253 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7258 * We can't use page_count without pin a page
7259 * because another CPU can free compound page.
7260 * This check already skips compound tails of THP
7261 * because their page->_refcount is zero at all time.
7263 if (!page_ref_count(page)) {
7264 if (PageBuddy(page))
7265 iter += (1 << page_order(page)) - 1;
7270 * The HWPoisoned page may be not in buddy system, and
7271 * page_count() is not 0.
7273 if (skip_hwpoisoned_pages && PageHWPoison(page))
7276 if (__PageMovable(page))
7282 * If there are RECLAIMABLE pages, we need to check
7283 * it. But now, memory offline itself doesn't call
7284 * shrink_node_slabs() and it still to be fixed.
7287 * If the page is not RAM, page_count()should be 0.
7288 * we don't need more check. This is an _used_ not-movable page.
7290 * The problematic thing here is PG_reserved pages. PG_reserved
7291 * is set to both of a memory hole page and a _used_ kernel
7300 bool is_pageblock_removable_nolock(struct page *page)
7306 * We have to be careful here because we are iterating over memory
7307 * sections which are not zone aware so we might end up outside of
7308 * the zone but still within the section.
7309 * We have to take care about the node as well. If the node is offline
7310 * its NODE_DATA will be NULL - see page_zone.
7312 if (!node_online(page_to_nid(page)))
7315 zone = page_zone(page);
7316 pfn = page_to_pfn(page);
7317 if (!zone_spans_pfn(zone, pfn))
7320 return !has_unmovable_pages(zone, page, 0, true);
7323 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7325 static unsigned long pfn_max_align_down(unsigned long pfn)
7327 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7328 pageblock_nr_pages) - 1);
7331 static unsigned long pfn_max_align_up(unsigned long pfn)
7333 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7334 pageblock_nr_pages));
7337 /* [start, end) must belong to a single zone. */
7338 static int __alloc_contig_migrate_range(struct compact_control *cc,
7339 unsigned long start, unsigned long end)
7341 /* This function is based on compact_zone() from compaction.c. */
7342 unsigned long nr_reclaimed;
7343 unsigned long pfn = start;
7344 unsigned int tries = 0;
7349 while (pfn < end || !list_empty(&cc->migratepages)) {
7350 if (fatal_signal_pending(current)) {
7355 if (list_empty(&cc->migratepages)) {
7356 cc->nr_migratepages = 0;
7357 pfn = isolate_migratepages_range(cc, pfn, end);
7363 } else if (++tries == 5) {
7364 ret = ret < 0 ? ret : -EBUSY;
7368 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7370 cc->nr_migratepages -= nr_reclaimed;
7372 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7373 NULL, 0, cc->mode, MR_CMA);
7376 putback_movable_pages(&cc->migratepages);
7383 * alloc_contig_range() -- tries to allocate given range of pages
7384 * @start: start PFN to allocate
7385 * @end: one-past-the-last PFN to allocate
7386 * @migratetype: migratetype of the underlaying pageblocks (either
7387 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7388 * in range must have the same migratetype and it must
7389 * be either of the two.
7390 * @gfp_mask: GFP mask to use during compaction
7392 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7393 * aligned, however it's the caller's responsibility to guarantee that
7394 * we are the only thread that changes migrate type of pageblocks the
7397 * The PFN range must belong to a single zone.
7399 * Returns zero on success or negative error code. On success all
7400 * pages which PFN is in [start, end) are allocated for the caller and
7401 * need to be freed with free_contig_range().
7403 int alloc_contig_range(unsigned long start, unsigned long end,
7404 unsigned migratetype, gfp_t gfp_mask)
7406 unsigned long outer_start, outer_end;
7410 struct compact_control cc = {
7411 .nr_migratepages = 0,
7413 .zone = page_zone(pfn_to_page(start)),
7414 .mode = MIGRATE_SYNC,
7415 .ignore_skip_hint = true,
7416 .gfp_mask = memalloc_noio_flags(gfp_mask),
7418 INIT_LIST_HEAD(&cc.migratepages);
7421 * What we do here is we mark all pageblocks in range as
7422 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7423 * have different sizes, and due to the way page allocator
7424 * work, we align the range to biggest of the two pages so
7425 * that page allocator won't try to merge buddies from
7426 * different pageblocks and change MIGRATE_ISOLATE to some
7427 * other migration type.
7429 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7430 * migrate the pages from an unaligned range (ie. pages that
7431 * we are interested in). This will put all the pages in
7432 * range back to page allocator as MIGRATE_ISOLATE.
7434 * When this is done, we take the pages in range from page
7435 * allocator removing them from the buddy system. This way
7436 * page allocator will never consider using them.
7438 * This lets us mark the pageblocks back as
7439 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7440 * aligned range but not in the unaligned, original range are
7441 * put back to page allocator so that buddy can use them.
7444 ret = start_isolate_page_range(pfn_max_align_down(start),
7445 pfn_max_align_up(end), migratetype,
7451 * In case of -EBUSY, we'd like to know which page causes problem.
7452 * So, just fall through. We will check it in test_pages_isolated().
7454 ret = __alloc_contig_migrate_range(&cc, start, end);
7455 if (ret && ret != -EBUSY)
7459 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7460 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7461 * more, all pages in [start, end) are free in page allocator.
7462 * What we are going to do is to allocate all pages from
7463 * [start, end) (that is remove them from page allocator).
7465 * The only problem is that pages at the beginning and at the
7466 * end of interesting range may be not aligned with pages that
7467 * page allocator holds, ie. they can be part of higher order
7468 * pages. Because of this, we reserve the bigger range and
7469 * once this is done free the pages we are not interested in.
7471 * We don't have to hold zone->lock here because the pages are
7472 * isolated thus they won't get removed from buddy.
7475 lru_add_drain_all();
7476 drain_all_pages(cc.zone);
7479 outer_start = start;
7480 while (!PageBuddy(pfn_to_page(outer_start))) {
7481 if (++order >= MAX_ORDER) {
7482 outer_start = start;
7485 outer_start &= ~0UL << order;
7488 if (outer_start != start) {
7489 order = page_order(pfn_to_page(outer_start));
7492 * outer_start page could be small order buddy page and
7493 * it doesn't include start page. Adjust outer_start
7494 * in this case to report failed page properly
7495 * on tracepoint in test_pages_isolated()
7497 if (outer_start + (1UL << order) <= start)
7498 outer_start = start;
7501 /* Make sure the range is really isolated. */
7502 if (test_pages_isolated(outer_start, end, false)) {
7503 pr_info("%s: [%lx, %lx) PFNs busy\n",
7504 __func__, outer_start, end);
7509 /* Grab isolated pages from freelists. */
7510 outer_end = isolate_freepages_range(&cc, outer_start, end);
7516 /* Free head and tail (if any) */
7517 if (start != outer_start)
7518 free_contig_range(outer_start, start - outer_start);
7519 if (end != outer_end)
7520 free_contig_range(end, outer_end - end);
7523 undo_isolate_page_range(pfn_max_align_down(start),
7524 pfn_max_align_up(end), migratetype);
7528 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7530 unsigned int count = 0;
7532 for (; nr_pages--; pfn++) {
7533 struct page *page = pfn_to_page(pfn);
7535 count += page_count(page) != 1;
7538 WARN(count != 0, "%d pages are still in use!\n", count);
7542 #ifdef CONFIG_MEMORY_HOTPLUG
7544 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7545 * page high values need to be recalulated.
7547 void __meminit zone_pcp_update(struct zone *zone)
7550 mutex_lock(&pcp_batch_high_lock);
7551 for_each_possible_cpu(cpu)
7552 pageset_set_high_and_batch(zone,
7553 per_cpu_ptr(zone->pageset, cpu));
7554 mutex_unlock(&pcp_batch_high_lock);
7558 void zone_pcp_reset(struct zone *zone)
7560 unsigned long flags;
7562 struct per_cpu_pageset *pset;
7564 /* avoid races with drain_pages() */
7565 local_irq_save(flags);
7566 if (zone->pageset != &boot_pageset) {
7567 for_each_online_cpu(cpu) {
7568 pset = per_cpu_ptr(zone->pageset, cpu);
7569 drain_zonestat(zone, pset);
7571 free_percpu(zone->pageset);
7572 zone->pageset = &boot_pageset;
7574 local_irq_restore(flags);
7577 #ifdef CONFIG_MEMORY_HOTREMOVE
7579 * All pages in the range must be in a single zone and isolated
7580 * before calling this.
7583 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7587 unsigned int order, i;
7589 unsigned long flags;
7590 /* find the first valid pfn */
7591 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7596 zone = page_zone(pfn_to_page(pfn));
7597 spin_lock_irqsave(&zone->lock, flags);
7599 while (pfn < end_pfn) {
7600 if (!pfn_valid(pfn)) {
7604 page = pfn_to_page(pfn);
7606 * The HWPoisoned page may be not in buddy system, and
7607 * page_count() is not 0.
7609 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7611 SetPageReserved(page);
7615 BUG_ON(page_count(page));
7616 BUG_ON(!PageBuddy(page));
7617 order = page_order(page);
7618 #ifdef CONFIG_DEBUG_VM
7619 pr_info("remove from free list %lx %d %lx\n",
7620 pfn, 1 << order, end_pfn);
7622 list_del(&page->lru);
7623 rmv_page_order(page);
7624 zone->free_area[order].nr_free--;
7625 for (i = 0; i < (1 << order); i++)
7626 SetPageReserved((page+i));
7627 pfn += (1 << order);
7629 spin_unlock_irqrestore(&zone->lock, flags);
7633 bool is_free_buddy_page(struct page *page)
7635 struct zone *zone = page_zone(page);
7636 unsigned long pfn = page_to_pfn(page);
7637 unsigned long flags;
7640 spin_lock_irqsave(&zone->lock, flags);
7641 for (order = 0; order < MAX_ORDER; order++) {
7642 struct page *page_head = page - (pfn & ((1 << order) - 1));
7644 if (PageBuddy(page_head) && page_order(page_head) >= order)
7647 spin_unlock_irqrestore(&zone->lock, flags);
7649 return order < MAX_ORDER;