1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 #define pcp_trylock_prepare(flags) do { } while (0)
135 #define pcp_trylock_finish(flag) do { } while (0)
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags) local_irq_save(flags)
140 #define pcp_trylock_finish(flags) local_irq_restore(flags)
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin() preempt_disable()
153 #define pcpu_task_unpin() preempt_enable()
155 #define pcpu_task_pin() migrate_disable()
156 #define pcpu_task_unpin() migrate_enable()
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
163 #define pcpu_spin_lock(type, member, ptr) \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
193 #define pcpu_spin_unlock(member, ptr) \
195 spin_unlock(&ptr->member); \
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
201 spin_unlock_irqrestore(&ptr->member, flags); \
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 #define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 #define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 #define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
218 #define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
238 static DEFINE_MUTEX(pcpu_drain_mutex);
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
246 * Array of node states.
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
256 [N_MEMORY] = { { [0] = 1UL } },
257 [N_CPU] = { { [0] = 1UL } },
260 EXPORT_SYMBOL(node_states);
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
275 static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 early_param("init_on_alloc", early_init_on_alloc);
284 static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
288 return kstrtobool(buf, &_init_on_free_enabled_early);
290 early_param("init_on_free", early_init_on_free);
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
300 static inline int get_pcppage_migratetype(struct page *page)
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 page->index = migratetype;
310 #ifdef CONFIG_PM_SLEEP
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
321 static gfp_t saved_gfp_mask;
323 void pm_restore_gfp_mask(void)
325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
332 void pm_restrict_gfp_mask(void)
334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
340 bool pm_suspended_storage(void)
342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
346 #endif /* CONFIG_PM_SLEEP */
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
352 static void __free_pages_ok(struct page *page, unsigned int order,
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
370 #ifdef CONFIG_ZONE_DMA32
374 #ifdef CONFIG_HIGHMEM
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
384 #ifdef CONFIG_ZONE_DMA32
388 #ifdef CONFIG_HIGHMEM
392 #ifdef CONFIG_ZONE_DEVICE
397 const char * const migratetype_names[MIGRATE_TYPES] = {
405 #ifdef CONFIG_MEMORY_ISOLATION
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 [HUGETLB_PAGE_DTOR] = free_huge_page,
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 EXPORT_SYMBOL(movable_zone);
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
450 int page_group_by_mobility_disabled __read_mostly;
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 static inline bool deferred_pages_enabled(void)
462 return static_branch_unlikely(&deferred_pages);
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 int nid = early_pfn_to_nid(pfn);
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
477 * Returns true when the remaining initialisation should be deferred until
478 * later in the boot cycle when it can be parallelised.
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 static unsigned long prev_end_pfn, nr_initialised;
485 if (early_page_ext_enabled())
488 * prev_end_pfn static that contains the end of previous zone
489 * No need to protect because called very early in boot before smp_init.
491 if (prev_end_pfn != end_pfn) {
492 prev_end_pfn = end_pfn;
496 /* Always populate low zones for address-constrained allocations */
497 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
500 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
503 * We start only with one section of pages, more pages are added as
504 * needed until the rest of deferred pages are initialized.
507 if ((nr_initialised > PAGES_PER_SECTION) &&
508 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
509 NODE_DATA(nid)->first_deferred_pfn = pfn;
515 static inline bool deferred_pages_enabled(void)
520 static inline bool early_page_uninitialised(unsigned long pfn)
525 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
531 /* Return a pointer to the bitmap storing bits affecting a block of pages */
532 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
535 #ifdef CONFIG_SPARSEMEM
536 return section_to_usemap(__pfn_to_section(pfn));
538 return page_zone(page)->pageblock_flags;
539 #endif /* CONFIG_SPARSEMEM */
542 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 #ifdef CONFIG_SPARSEMEM
545 pfn &= (PAGES_PER_SECTION-1);
547 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
548 #endif /* CONFIG_SPARSEMEM */
549 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
552 static __always_inline
553 unsigned long __get_pfnblock_flags_mask(const struct page *page,
557 unsigned long *bitmap;
558 unsigned long bitidx, word_bitidx;
561 bitmap = get_pageblock_bitmap(page, pfn);
562 bitidx = pfn_to_bitidx(page, pfn);
563 word_bitidx = bitidx / BITS_PER_LONG;
564 bitidx &= (BITS_PER_LONG-1);
566 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
567 * a consistent read of the memory array, so that results, even though
568 * racy, are not corrupted.
570 word = READ_ONCE(bitmap[word_bitidx]);
571 return (word >> bitidx) & mask;
575 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
576 * @page: The page within the block of interest
577 * @pfn: The target page frame number
578 * @mask: mask of bits that the caller is interested in
580 * Return: pageblock_bits flags
582 unsigned long get_pfnblock_flags_mask(const struct page *page,
583 unsigned long pfn, unsigned long mask)
585 return __get_pfnblock_flags_mask(page, pfn, mask);
588 static __always_inline int get_pfnblock_migratetype(const struct page *page,
591 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
595 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
596 * @page: The page within the block of interest
597 * @flags: The flags to set
598 * @pfn: The target page frame number
599 * @mask: mask of bits that the caller is interested in
601 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
605 unsigned long *bitmap;
606 unsigned long bitidx, word_bitidx;
609 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
610 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 bitmap = get_pageblock_bitmap(page, pfn);
613 bitidx = pfn_to_bitidx(page, pfn);
614 word_bitidx = bitidx / BITS_PER_LONG;
615 bitidx &= (BITS_PER_LONG-1);
617 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
622 word = READ_ONCE(bitmap[word_bitidx]);
624 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
627 void set_pageblock_migratetype(struct page *page, int migratetype)
629 if (unlikely(page_group_by_mobility_disabled &&
630 migratetype < MIGRATE_PCPTYPES))
631 migratetype = MIGRATE_UNMOVABLE;
633 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
634 page_to_pfn(page), MIGRATETYPE_MASK);
637 #ifdef CONFIG_DEBUG_VM
638 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
642 unsigned long pfn = page_to_pfn(page);
643 unsigned long sp, start_pfn;
646 seq = zone_span_seqbegin(zone);
647 start_pfn = zone->zone_start_pfn;
648 sp = zone->spanned_pages;
649 if (!zone_spans_pfn(zone, pfn))
651 } while (zone_span_seqretry(zone, seq));
654 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
655 pfn, zone_to_nid(zone), zone->name,
656 start_pfn, start_pfn + sp);
661 static int page_is_consistent(struct zone *zone, struct page *page)
663 if (zone != page_zone(page))
669 * Temporary debugging check for pages not lying within a given zone.
671 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 if (page_outside_zone_boundaries(zone, page))
675 if (!page_is_consistent(zone, page))
681 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
687 static void bad_page(struct page *page, const char *reason)
689 static unsigned long resume;
690 static unsigned long nr_shown;
691 static unsigned long nr_unshown;
694 * Allow a burst of 60 reports, then keep quiet for that minute;
695 * or allow a steady drip of one report per second.
697 if (nr_shown == 60) {
698 if (time_before(jiffies, resume)) {
704 "BUG: Bad page state: %lu messages suppressed\n",
711 resume = jiffies + 60 * HZ;
713 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
714 current->comm, page_to_pfn(page));
715 dump_page(page, reason);
720 /* Leave bad fields for debug, except PageBuddy could make trouble */
721 page_mapcount_reset(page); /* remove PageBuddy */
722 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
725 static inline unsigned int order_to_pindex(int migratetype, int order)
729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 if (order > PAGE_ALLOC_COSTLY_ORDER) {
731 VM_BUG_ON(order != pageblock_order);
732 return NR_LOWORDER_PCP_LISTS;
735 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
738 return (MIGRATE_PCPTYPES * base) + migratetype;
741 static inline int pindex_to_order(unsigned int pindex)
743 int order = pindex / MIGRATE_PCPTYPES;
745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
746 if (pindex == NR_LOWORDER_PCP_LISTS)
747 order = pageblock_order;
749 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
755 static inline bool pcp_allowed_order(unsigned int order)
757 if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 if (order == pageblock_order)
766 static inline void free_the_page(struct page *page, unsigned int order)
768 if (pcp_allowed_order(order)) /* Via pcp? */
769 free_unref_page(page, order);
771 __free_pages_ok(page, order, FPI_NONE);
775 * Higher-order pages are called "compound pages". They are structured thusly:
777 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
780 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782 * The first tail page's ->compound_dtor holds the offset in array of compound
783 * page destructors. See compound_page_dtors.
785 * The first tail page's ->compound_order holds the order of allocation.
786 * This usage means that zero-order pages may not be compound.
789 void free_compound_page(struct page *page)
791 mem_cgroup_uncharge(page_folio(page));
792 free_the_page(page, compound_order(page));
795 static void prep_compound_head(struct page *page, unsigned int order)
797 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
798 set_compound_order(page, order);
799 atomic_set(compound_mapcount_ptr(page), -1);
800 atomic_set(compound_pincount_ptr(page), 0);
803 static void prep_compound_tail(struct page *head, int tail_idx)
805 struct page *p = head + tail_idx;
807 p->mapping = TAIL_MAPPING;
808 set_compound_head(p, head);
811 void prep_compound_page(struct page *page, unsigned int order)
814 int nr_pages = 1 << order;
817 for (i = 1; i < nr_pages; i++)
818 prep_compound_tail(page, i);
820 prep_compound_head(page, order);
823 void destroy_large_folio(struct folio *folio)
825 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
828 compound_page_dtors[dtor](&folio->page);
831 #ifdef CONFIG_DEBUG_PAGEALLOC
832 unsigned int _debug_guardpage_minorder;
834 bool _debug_pagealloc_enabled_early __read_mostly
835 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
837 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
838 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 static int __init early_debug_pagealloc(char *buf)
844 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 early_param("debug_pagealloc", early_debug_pagealloc);
848 static int __init debug_guardpage_minorder_setup(char *buf)
852 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
853 pr_err("Bad debug_guardpage_minorder value\n");
856 _debug_guardpage_minorder = res;
857 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
860 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 static inline bool set_page_guard(struct zone *zone, struct page *page,
863 unsigned int order, int migratetype)
865 if (!debug_guardpage_enabled())
868 if (order >= debug_guardpage_minorder())
871 __SetPageGuard(page);
872 INIT_LIST_HEAD(&page->buddy_list);
873 set_page_private(page, order);
874 /* Guard pages are not available for any usage */
875 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
880 static inline void clear_page_guard(struct zone *zone, struct page *page,
881 unsigned int order, int migratetype)
883 if (!debug_guardpage_enabled())
886 __ClearPageGuard(page);
888 set_page_private(page, 0);
889 if (!is_migrate_isolate(migratetype))
890 __mod_zone_freepage_state(zone, (1 << order), migratetype);
893 static inline bool set_page_guard(struct zone *zone, struct page *page,
894 unsigned int order, int migratetype) { return false; }
895 static inline void clear_page_guard(struct zone *zone, struct page *page,
896 unsigned int order, int migratetype) {}
900 * Enable static keys related to various memory debugging and hardening options.
901 * Some override others, and depend on early params that are evaluated in the
902 * order of appearance. So we need to first gather the full picture of what was
903 * enabled, and then make decisions.
905 void init_mem_debugging_and_hardening(void)
907 bool page_poisoning_requested = false;
909 #ifdef CONFIG_PAGE_POISONING
911 * Page poisoning is debug page alloc for some arches. If
912 * either of those options are enabled, enable poisoning.
914 if (page_poisoning_enabled() ||
915 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
916 debug_pagealloc_enabled())) {
917 static_branch_enable(&_page_poisoning_enabled);
918 page_poisoning_requested = true;
922 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
923 page_poisoning_requested) {
924 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
925 "will take precedence over init_on_alloc and init_on_free\n");
926 _init_on_alloc_enabled_early = false;
927 _init_on_free_enabled_early = false;
930 if (_init_on_alloc_enabled_early)
931 static_branch_enable(&init_on_alloc);
933 static_branch_disable(&init_on_alloc);
935 if (_init_on_free_enabled_early)
936 static_branch_enable(&init_on_free);
938 static_branch_disable(&init_on_free);
940 #ifdef CONFIG_DEBUG_PAGEALLOC
941 if (!debug_pagealloc_enabled())
944 static_branch_enable(&_debug_pagealloc_enabled);
946 if (!debug_guardpage_minorder())
949 static_branch_enable(&_debug_guardpage_enabled);
953 static inline void set_buddy_order(struct page *page, unsigned int order)
955 set_page_private(page, order);
956 __SetPageBuddy(page);
959 #ifdef CONFIG_COMPACTION
960 static inline struct capture_control *task_capc(struct zone *zone)
962 struct capture_control *capc = current->capture_control;
964 return unlikely(capc) &&
965 !(current->flags & PF_KTHREAD) &&
967 capc->cc->zone == zone ? capc : NULL;
971 compaction_capture(struct capture_control *capc, struct page *page,
972 int order, int migratetype)
974 if (!capc || order != capc->cc->order)
977 /* Do not accidentally pollute CMA or isolated regions*/
978 if (is_migrate_cma(migratetype) ||
979 is_migrate_isolate(migratetype))
983 * Do not let lower order allocations pollute a movable pageblock.
984 * This might let an unmovable request use a reclaimable pageblock
985 * and vice-versa but no more than normal fallback logic which can
986 * have trouble finding a high-order free page.
988 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
996 static inline struct capture_control *task_capc(struct zone *zone)
1002 compaction_capture(struct capture_control *capc, struct page *page,
1003 int order, int migratetype)
1007 #endif /* CONFIG_COMPACTION */
1009 /* Used for pages not on another list */
1010 static inline void add_to_free_list(struct page *page, struct zone *zone,
1011 unsigned int order, int migratetype)
1013 struct free_area *area = &zone->free_area[order];
1015 list_add(&page->buddy_list, &area->free_list[migratetype]);
1019 /* Used for pages not on another list */
1020 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1021 unsigned int order, int migratetype)
1023 struct free_area *area = &zone->free_area[order];
1025 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1030 * Used for pages which are on another list. Move the pages to the tail
1031 * of the list - so the moved pages won't immediately be considered for
1032 * allocation again (e.g., optimization for memory onlining).
1034 static inline void move_to_free_list(struct page *page, struct zone *zone,
1035 unsigned int order, int migratetype)
1037 struct free_area *area = &zone->free_area[order];
1039 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1042 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1045 /* clear reported state and update reported page count */
1046 if (page_reported(page))
1047 __ClearPageReported(page);
1049 list_del(&page->buddy_list);
1050 __ClearPageBuddy(page);
1051 set_page_private(page, 0);
1052 zone->free_area[order].nr_free--;
1056 * If this is not the largest possible page, check if the buddy
1057 * of the next-highest order is free. If it is, it's possible
1058 * that pages are being freed that will coalesce soon. In case,
1059 * that is happening, add the free page to the tail of the list
1060 * so it's less likely to be used soon and more likely to be merged
1061 * as a higher order page
1064 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1065 struct page *page, unsigned int order)
1067 unsigned long higher_page_pfn;
1068 struct page *higher_page;
1070 if (order >= MAX_ORDER - 2)
1073 higher_page_pfn = buddy_pfn & pfn;
1074 higher_page = page + (higher_page_pfn - pfn);
1076 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1081 * Freeing function for a buddy system allocator.
1083 * The concept of a buddy system is to maintain direct-mapped table
1084 * (containing bit values) for memory blocks of various "orders".
1085 * The bottom level table contains the map for the smallest allocatable
1086 * units of memory (here, pages), and each level above it describes
1087 * pairs of units from the levels below, hence, "buddies".
1088 * At a high level, all that happens here is marking the table entry
1089 * at the bottom level available, and propagating the changes upward
1090 * as necessary, plus some accounting needed to play nicely with other
1091 * parts of the VM system.
1092 * At each level, we keep a list of pages, which are heads of continuous
1093 * free pages of length of (1 << order) and marked with PageBuddy.
1094 * Page's order is recorded in page_private(page) field.
1095 * So when we are allocating or freeing one, we can derive the state of the
1096 * other. That is, if we allocate a small block, and both were
1097 * free, the remainder of the region must be split into blocks.
1098 * If a block is freed, and its buddy is also free, then this
1099 * triggers coalescing into a block of larger size.
1104 static inline void __free_one_page(struct page *page,
1106 struct zone *zone, unsigned int order,
1107 int migratetype, fpi_t fpi_flags)
1109 struct capture_control *capc = task_capc(zone);
1110 unsigned long buddy_pfn;
1111 unsigned long combined_pfn;
1115 VM_BUG_ON(!zone_is_initialized(zone));
1116 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1118 VM_BUG_ON(migratetype == -1);
1119 if (likely(!is_migrate_isolate(migratetype)))
1120 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1122 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1123 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1125 while (order < MAX_ORDER - 1) {
1126 if (compaction_capture(capc, page, order, migratetype)) {
1127 __mod_zone_freepage_state(zone, -(1 << order),
1132 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1136 if (unlikely(order >= pageblock_order)) {
1138 * We want to prevent merge between freepages on pageblock
1139 * without fallbacks and normal pageblock. Without this,
1140 * pageblock isolation could cause incorrect freepage or CMA
1141 * accounting or HIGHATOMIC accounting.
1143 int buddy_mt = get_pageblock_migratetype(buddy);
1145 if (migratetype != buddy_mt
1146 && (!migratetype_is_mergeable(migratetype) ||
1147 !migratetype_is_mergeable(buddy_mt)))
1152 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1153 * merge with it and move up one order.
1155 if (page_is_guard(buddy))
1156 clear_page_guard(zone, buddy, order, migratetype);
1158 del_page_from_free_list(buddy, zone, order);
1159 combined_pfn = buddy_pfn & pfn;
1160 page = page + (combined_pfn - pfn);
1166 set_buddy_order(page, order);
1168 if (fpi_flags & FPI_TO_TAIL)
1170 else if (is_shuffle_order(order))
1171 to_tail = shuffle_pick_tail();
1173 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1176 add_to_free_list_tail(page, zone, order, migratetype);
1178 add_to_free_list(page, zone, order, migratetype);
1180 /* Notify page reporting subsystem of freed page */
1181 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1182 page_reporting_notify_free(order);
1186 * split_free_page() -- split a free page at split_pfn_offset
1187 * @free_page: the original free page
1188 * @order: the order of the page
1189 * @split_pfn_offset: split offset within the page
1191 * Return -ENOENT if the free page is changed, otherwise 0
1193 * It is used when the free page crosses two pageblocks with different migratetypes
1194 * at split_pfn_offset within the page. The split free page will be put into
1195 * separate migratetype lists afterwards. Otherwise, the function achieves
1198 int split_free_page(struct page *free_page,
1199 unsigned int order, unsigned long split_pfn_offset)
1201 struct zone *zone = page_zone(free_page);
1202 unsigned long free_page_pfn = page_to_pfn(free_page);
1204 unsigned long flags;
1205 int free_page_order;
1209 if (split_pfn_offset == 0)
1212 spin_lock_irqsave(&zone->lock, flags);
1214 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1219 mt = get_pageblock_migratetype(free_page);
1220 if (likely(!is_migrate_isolate(mt)))
1221 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1223 del_page_from_free_list(free_page, zone, order);
1224 for (pfn = free_page_pfn;
1225 pfn < free_page_pfn + (1UL << order);) {
1226 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1228 free_page_order = min_t(unsigned int,
1229 pfn ? __ffs(pfn) : order,
1230 __fls(split_pfn_offset));
1231 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1233 pfn += 1UL << free_page_order;
1234 split_pfn_offset -= (1UL << free_page_order);
1235 /* we have done the first part, now switch to second part */
1236 if (split_pfn_offset == 0)
1237 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1240 spin_unlock_irqrestore(&zone->lock, flags);
1244 * A bad page could be due to a number of fields. Instead of multiple branches,
1245 * try and check multiple fields with one check. The caller must do a detailed
1246 * check if necessary.
1248 static inline bool page_expected_state(struct page *page,
1249 unsigned long check_flags)
1251 if (unlikely(atomic_read(&page->_mapcount) != -1))
1254 if (unlikely((unsigned long)page->mapping |
1255 page_ref_count(page) |
1259 (page->flags & check_flags)))
1265 static const char *page_bad_reason(struct page *page, unsigned long flags)
1267 const char *bad_reason = NULL;
1269 if (unlikely(atomic_read(&page->_mapcount) != -1))
1270 bad_reason = "nonzero mapcount";
1271 if (unlikely(page->mapping != NULL))
1272 bad_reason = "non-NULL mapping";
1273 if (unlikely(page_ref_count(page) != 0))
1274 bad_reason = "nonzero _refcount";
1275 if (unlikely(page->flags & flags)) {
1276 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1277 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1279 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1282 if (unlikely(page->memcg_data))
1283 bad_reason = "page still charged to cgroup";
1288 static void check_free_page_bad(struct page *page)
1291 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1294 static inline int check_free_page(struct page *page)
1296 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1299 /* Something has gone sideways, find it */
1300 check_free_page_bad(page);
1304 static int free_tail_pages_check(struct page *head_page, struct page *page)
1309 * We rely page->lru.next never has bit 0 set, unless the page
1310 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1312 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1314 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1318 switch (page - head_page) {
1320 /* the first tail page: ->mapping may be compound_mapcount() */
1321 if (unlikely(compound_mapcount(page))) {
1322 bad_page(page, "nonzero compound_mapcount");
1328 * the second tail page: ->mapping is
1329 * deferred_list.next -- ignore value.
1333 if (page->mapping != TAIL_MAPPING) {
1334 bad_page(page, "corrupted mapping in tail page");
1339 if (unlikely(!PageTail(page))) {
1340 bad_page(page, "PageTail not set");
1343 if (unlikely(compound_head(page) != head_page)) {
1344 bad_page(page, "compound_head not consistent");
1349 page->mapping = NULL;
1350 clear_compound_head(page);
1355 * Skip KASAN memory poisoning when either:
1357 * 1. Deferred memory initialization has not yet completed,
1358 * see the explanation below.
1359 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1360 * see the comment next to it.
1361 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1362 * see the comment next to it.
1364 * Poisoning pages during deferred memory init will greatly lengthen the
1365 * process and cause problem in large memory systems as the deferred pages
1366 * initialization is done with interrupt disabled.
1368 * Assuming that there will be no reference to those newly initialized
1369 * pages before they are ever allocated, this should have no effect on
1370 * KASAN memory tracking as the poison will be properly inserted at page
1371 * allocation time. The only corner case is when pages are allocated by
1372 * on-demand allocation and then freed again before the deferred pages
1373 * initialization is done, but this is not likely to happen.
1375 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377 return deferred_pages_enabled() ||
1378 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1379 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1380 PageSkipKASanPoison(page);
1383 static void kernel_init_pages(struct page *page, int numpages)
1387 /* s390's use of memset() could override KASAN redzones. */
1388 kasan_disable_current();
1389 for (i = 0; i < numpages; i++)
1390 clear_highpage_kasan_tagged(page + i);
1391 kasan_enable_current();
1394 static __always_inline bool free_pages_prepare(struct page *page,
1395 unsigned int order, bool check_free, fpi_t fpi_flags)
1398 bool init = want_init_on_free();
1400 VM_BUG_ON_PAGE(PageTail(page), page);
1402 trace_mm_page_free(page, order);
1404 if (unlikely(PageHWPoison(page)) && !order) {
1406 * Do not let hwpoison pages hit pcplists/buddy
1407 * Untie memcg state and reset page's owner
1409 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1410 __memcg_kmem_uncharge_page(page, order);
1411 reset_page_owner(page, order);
1412 page_table_check_free(page, order);
1417 * Check tail pages before head page information is cleared to
1418 * avoid checking PageCompound for order-0 pages.
1420 if (unlikely(order)) {
1421 bool compound = PageCompound(page);
1424 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1427 ClearPageDoubleMap(page);
1428 ClearPageHasHWPoisoned(page);
1430 for (i = 1; i < (1 << order); i++) {
1432 bad += free_tail_pages_check(page, page + i);
1433 if (unlikely(check_free_page(page + i))) {
1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 if (PageMappingFlags(page))
1441 page->mapping = NULL;
1442 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1443 __memcg_kmem_uncharge_page(page, order);
1445 bad += check_free_page(page);
1449 page_cpupid_reset_last(page);
1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 reset_page_owner(page, order);
1452 page_table_check_free(page, order);
1454 if (!PageHighMem(page)) {
1455 debug_check_no_locks_freed(page_address(page),
1456 PAGE_SIZE << order);
1457 debug_check_no_obj_freed(page_address(page),
1458 PAGE_SIZE << order);
1461 kernel_poison_pages(page, 1 << order);
1464 * As memory initialization might be integrated into KASAN,
1465 * KASAN poisoning and memory initialization code must be
1466 * kept together to avoid discrepancies in behavior.
1468 * With hardware tag-based KASAN, memory tags must be set before the
1469 * page becomes unavailable via debug_pagealloc or arch_free_page.
1471 if (!should_skip_kasan_poison(page, fpi_flags)) {
1472 kasan_poison_pages(page, order, init);
1474 /* Memory is already initialized if KASAN did it internally. */
1475 if (kasan_has_integrated_init())
1479 kernel_init_pages(page, 1 << order);
1482 * arch_free_page() can make the page's contents inaccessible. s390
1483 * does this. So nothing which can access the page's contents should
1484 * happen after this.
1486 arch_free_page(page, order);
1488 debug_pagealloc_unmap_pages(page, 1 << order);
1493 #ifdef CONFIG_DEBUG_VM
1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497 * moved from pcp lists to free lists.
1499 static bool free_pcp_prepare(struct page *page, unsigned int order)
1501 return free_pages_prepare(page, order, true, FPI_NONE);
1504 static bool bulkfree_pcp_prepare(struct page *page)
1506 if (debug_pagealloc_enabled_static())
1507 return check_free_page(page);
1513 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1514 * moving from pcp lists to free list in order to reduce overhead. With
1515 * debug_pagealloc enabled, they are checked also immediately when being freed
1518 static bool free_pcp_prepare(struct page *page, unsigned int order)
1520 if (debug_pagealloc_enabled_static())
1521 return free_pages_prepare(page, order, true, FPI_NONE);
1523 return free_pages_prepare(page, order, false, FPI_NONE);
1526 static bool bulkfree_pcp_prepare(struct page *page)
1528 return check_free_page(page);
1530 #endif /* CONFIG_DEBUG_VM */
1533 * Frees a number of pages from the PCP lists
1534 * Assumes all pages on list are in same zone.
1535 * count is the number of pages to free.
1537 static void free_pcppages_bulk(struct zone *zone, int count,
1538 struct per_cpu_pages *pcp,
1542 int max_pindex = NR_PCP_LISTS - 1;
1544 bool isolated_pageblocks;
1548 * Ensure proper count is passed which otherwise would stuck in the
1549 * below while (list_empty(list)) loop.
1551 count = min(pcp->count, count);
1553 /* Ensure requested pindex is drained first. */
1554 pindex = pindex - 1;
1556 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1557 spin_lock(&zone->lock);
1558 isolated_pageblocks = has_isolate_pageblock(zone);
1561 struct list_head *list;
1564 /* Remove pages from lists in a round-robin fashion. */
1566 if (++pindex > max_pindex)
1567 pindex = min_pindex;
1568 list = &pcp->lists[pindex];
1569 if (!list_empty(list))
1572 if (pindex == max_pindex)
1574 if (pindex == min_pindex)
1578 order = pindex_to_order(pindex);
1579 nr_pages = 1 << order;
1580 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1584 page = list_last_entry(list, struct page, pcp_list);
1585 mt = get_pcppage_migratetype(page);
1587 /* must delete to avoid corrupting pcp list */
1588 list_del(&page->pcp_list);
1590 pcp->count -= nr_pages;
1592 if (bulkfree_pcp_prepare(page))
1595 /* MIGRATE_ISOLATE page should not go to pcplists */
1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 /* Pageblock could have been isolated meanwhile */
1598 if (unlikely(isolated_pageblocks))
1599 mt = get_pageblock_migratetype(page);
1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 trace_mm_page_pcpu_drain(page, order, mt);
1603 } while (count > 0 && !list_empty(list));
1606 spin_unlock(&zone->lock);
1609 static void free_one_page(struct zone *zone,
1610 struct page *page, unsigned long pfn,
1612 int migratetype, fpi_t fpi_flags)
1614 unsigned long flags;
1616 spin_lock_irqsave(&zone->lock, flags);
1617 if (unlikely(has_isolate_pageblock(zone) ||
1618 is_migrate_isolate(migratetype))) {
1619 migratetype = get_pfnblock_migratetype(page, pfn);
1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1622 spin_unlock_irqrestore(&zone->lock, flags);
1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1626 unsigned long zone, int nid)
1628 mm_zero_struct_page(page);
1629 set_page_links(page, zone, nid, pfn);
1630 init_page_count(page);
1631 page_mapcount_reset(page);
1632 page_cpupid_reset_last(page);
1633 page_kasan_tag_reset(page);
1635 INIT_LIST_HEAD(&page->lru);
1636 #ifdef WANT_PAGE_VIRTUAL
1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 if (!is_highmem_idx(zone))
1639 set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1644 static void __meminit init_reserved_page(unsigned long pfn)
1649 if (!early_page_uninitialised(pfn))
1652 nid = early_pfn_to_nid(pfn);
1653 pgdat = NODE_DATA(nid);
1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 struct zone *zone = &pgdat->node_zones[zid];
1658 if (zone_spans_pfn(zone, pfn))
1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1664 static inline void init_reserved_page(unsigned long pfn)
1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670 * Initialised pages do not have PageReserved set. This function is
1671 * called for each range allocated by the bootmem allocator and
1672 * marks the pages PageReserved. The remaining valid pages are later
1673 * sent to the buddy page allocator.
1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1677 unsigned long start_pfn = PFN_DOWN(start);
1678 unsigned long end_pfn = PFN_UP(end);
1680 for (; start_pfn < end_pfn; start_pfn++) {
1681 if (pfn_valid(start_pfn)) {
1682 struct page *page = pfn_to_page(start_pfn);
1684 init_reserved_page(start_pfn);
1686 /* Avoid false-positive PageTail() */
1687 INIT_LIST_HEAD(&page->lru);
1690 * no need for atomic set_bit because the struct
1691 * page is not visible yet so nobody should
1694 __SetPageReserved(page);
1699 static void __free_pages_ok(struct page *page, unsigned int order,
1702 unsigned long flags;
1704 unsigned long pfn = page_to_pfn(page);
1705 struct zone *zone = page_zone(page);
1707 if (!free_pages_prepare(page, order, true, fpi_flags))
1710 migratetype = get_pfnblock_migratetype(page, pfn);
1712 spin_lock_irqsave(&zone->lock, flags);
1713 if (unlikely(has_isolate_pageblock(zone) ||
1714 is_migrate_isolate(migratetype))) {
1715 migratetype = get_pfnblock_migratetype(page, pfn);
1717 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718 spin_unlock_irqrestore(&zone->lock, flags);
1720 __count_vm_events(PGFREE, 1 << order);
1723 void __free_pages_core(struct page *page, unsigned int order)
1725 unsigned int nr_pages = 1 << order;
1726 struct page *p = page;
1730 * When initializing the memmap, __init_single_page() sets the refcount
1731 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732 * refcount of all involved pages to 0.
1735 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1737 __ClearPageReserved(p);
1738 set_page_count(p, 0);
1740 __ClearPageReserved(p);
1741 set_page_count(p, 0);
1743 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1746 * Bypass PCP and place fresh pages right to the tail, primarily
1747 * relevant for memory onlining.
1749 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1755 * During memory init memblocks map pfns to nids. The search is expensive and
1756 * this caches recent lookups. The implementation of __early_pfn_to_nid
1757 * treats start/end as pfns.
1759 struct mminit_pfnnid_cache {
1760 unsigned long last_start;
1761 unsigned long last_end;
1765 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1768 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1770 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1771 struct mminit_pfnnid_cache *state)
1773 unsigned long start_pfn, end_pfn;
1776 if (state->last_start <= pfn && pfn < state->last_end)
1777 return state->last_nid;
1779 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780 if (nid != NUMA_NO_NODE) {
1781 state->last_start = start_pfn;
1782 state->last_end = end_pfn;
1783 state->last_nid = nid;
1789 int __meminit early_pfn_to_nid(unsigned long pfn)
1791 static DEFINE_SPINLOCK(early_pfn_lock);
1794 spin_lock(&early_pfn_lock);
1795 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1797 nid = first_online_node;
1798 spin_unlock(&early_pfn_lock);
1802 #endif /* CONFIG_NUMA */
1804 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1807 if (early_page_uninitialised(pfn))
1809 __free_pages_core(page, order);
1813 * Check that the whole (or subset of) a pageblock given by the interval of
1814 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1815 * with the migration of free compaction scanner.
1817 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1819 * It's possible on some configurations to have a setup like node0 node1 node0
1820 * i.e. it's possible that all pages within a zones range of pages do not
1821 * belong to a single zone. We assume that a border between node0 and node1
1822 * can occur within a single pageblock, but not a node0 node1 node0
1823 * interleaving within a single pageblock. It is therefore sufficient to check
1824 * the first and last page of a pageblock and avoid checking each individual
1825 * page in a pageblock.
1827 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1828 unsigned long end_pfn, struct zone *zone)
1830 struct page *start_page;
1831 struct page *end_page;
1833 /* end_pfn is one past the range we are checking */
1836 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1839 start_page = pfn_to_online_page(start_pfn);
1843 if (page_zone(start_page) != zone)
1846 end_page = pfn_to_page(end_pfn);
1848 /* This gives a shorter code than deriving page_zone(end_page) */
1849 if (page_zone_id(start_page) != page_zone_id(end_page))
1855 void set_zone_contiguous(struct zone *zone)
1857 unsigned long block_start_pfn = zone->zone_start_pfn;
1858 unsigned long block_end_pfn;
1860 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1861 for (; block_start_pfn < zone_end_pfn(zone);
1862 block_start_pfn = block_end_pfn,
1863 block_end_pfn += pageblock_nr_pages) {
1865 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1867 if (!__pageblock_pfn_to_page(block_start_pfn,
1868 block_end_pfn, zone))
1873 /* We confirm that there is no hole */
1874 zone->contiguous = true;
1877 void clear_zone_contiguous(struct zone *zone)
1879 zone->contiguous = false;
1882 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1883 static void __init deferred_free_range(unsigned long pfn,
1884 unsigned long nr_pages)
1892 page = pfn_to_page(pfn);
1894 /* Free a large naturally-aligned chunk if possible */
1895 if (nr_pages == pageblock_nr_pages &&
1896 (pfn & (pageblock_nr_pages - 1)) == 0) {
1897 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1898 __free_pages_core(page, pageblock_order);
1902 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1903 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1904 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1905 __free_pages_core(page, 0);
1909 /* Completion tracking for deferred_init_memmap() threads */
1910 static atomic_t pgdat_init_n_undone __initdata;
1911 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1913 static inline void __init pgdat_init_report_one_done(void)
1915 if (atomic_dec_and_test(&pgdat_init_n_undone))
1916 complete(&pgdat_init_all_done_comp);
1920 * Returns true if page needs to be initialized or freed to buddy allocator.
1922 * First we check if pfn is valid on architectures where it is possible to have
1923 * holes within pageblock_nr_pages. On systems where it is not possible, this
1924 * function is optimized out.
1926 * Then, we check if a current large page is valid by only checking the validity
1929 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1931 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1937 * Free pages to buddy allocator. Try to free aligned pages in
1938 * pageblock_nr_pages sizes.
1940 static void __init deferred_free_pages(unsigned long pfn,
1941 unsigned long end_pfn)
1943 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1944 unsigned long nr_free = 0;
1946 for (; pfn < end_pfn; pfn++) {
1947 if (!deferred_pfn_valid(pfn)) {
1948 deferred_free_range(pfn - nr_free, nr_free);
1950 } else if (!(pfn & nr_pgmask)) {
1951 deferred_free_range(pfn - nr_free, nr_free);
1957 /* Free the last block of pages to allocator */
1958 deferred_free_range(pfn - nr_free, nr_free);
1962 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1963 * by performing it only once every pageblock_nr_pages.
1964 * Return number of pages initialized.
1966 static unsigned long __init deferred_init_pages(struct zone *zone,
1968 unsigned long end_pfn)
1970 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1971 int nid = zone_to_nid(zone);
1972 unsigned long nr_pages = 0;
1973 int zid = zone_idx(zone);
1974 struct page *page = NULL;
1976 for (; pfn < end_pfn; pfn++) {
1977 if (!deferred_pfn_valid(pfn)) {
1980 } else if (!page || !(pfn & nr_pgmask)) {
1981 page = pfn_to_page(pfn);
1985 __init_single_page(page, pfn, zid, nid);
1992 * This function is meant to pre-load the iterator for the zone init.
1993 * Specifically it walks through the ranges until we are caught up to the
1994 * first_init_pfn value and exits there. If we never encounter the value we
1995 * return false indicating there are no valid ranges left.
1998 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1999 unsigned long *spfn, unsigned long *epfn,
2000 unsigned long first_init_pfn)
2005 * Start out by walking through the ranges in this zone that have
2006 * already been initialized. We don't need to do anything with them
2007 * so we just need to flush them out of the system.
2009 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2010 if (*epfn <= first_init_pfn)
2012 if (*spfn < first_init_pfn)
2013 *spfn = first_init_pfn;
2022 * Initialize and free pages. We do it in two loops: first we initialize
2023 * struct page, then free to buddy allocator, because while we are
2024 * freeing pages we can access pages that are ahead (computing buddy
2025 * page in __free_one_page()).
2027 * In order to try and keep some memory in the cache we have the loop
2028 * broken along max page order boundaries. This way we will not cause
2029 * any issues with the buddy page computation.
2031 static unsigned long __init
2032 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2033 unsigned long *end_pfn)
2035 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2036 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2037 unsigned long nr_pages = 0;
2040 /* First we loop through and initialize the page values */
2041 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2044 if (mo_pfn <= *start_pfn)
2047 t = min(mo_pfn, *end_pfn);
2048 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2050 if (mo_pfn < *end_pfn) {
2051 *start_pfn = mo_pfn;
2056 /* Reset values and now loop through freeing pages as needed */
2059 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2065 t = min(mo_pfn, epfn);
2066 deferred_free_pages(spfn, t);
2076 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2079 unsigned long spfn, epfn;
2080 struct zone *zone = arg;
2083 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2086 * Initialize and free pages in MAX_ORDER sized increments so that we
2087 * can avoid introducing any issues with the buddy allocator.
2089 while (spfn < end_pfn) {
2090 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 /* An arch may override for more concurrency. */
2097 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 /* Initialise remaining memory on a node */
2103 static int __init deferred_init_memmap(void *data)
2105 pg_data_t *pgdat = data;
2106 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2107 unsigned long spfn = 0, epfn = 0;
2108 unsigned long first_init_pfn, flags;
2109 unsigned long start = jiffies;
2111 int zid, max_threads;
2114 /* Bind memory initialisation thread to a local node if possible */
2115 if (!cpumask_empty(cpumask))
2116 set_cpus_allowed_ptr(current, cpumask);
2118 pgdat_resize_lock(pgdat, &flags);
2119 first_init_pfn = pgdat->first_deferred_pfn;
2120 if (first_init_pfn == ULONG_MAX) {
2121 pgdat_resize_unlock(pgdat, &flags);
2122 pgdat_init_report_one_done();
2126 /* Sanity check boundaries */
2127 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2128 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2129 pgdat->first_deferred_pfn = ULONG_MAX;
2132 * Once we unlock here, the zone cannot be grown anymore, thus if an
2133 * interrupt thread must allocate this early in boot, zone must be
2134 * pre-grown prior to start of deferred page initialization.
2136 pgdat_resize_unlock(pgdat, &flags);
2138 /* Only the highest zone is deferred so find it */
2139 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2140 zone = pgdat->node_zones + zid;
2141 if (first_init_pfn < zone_end_pfn(zone))
2145 /* If the zone is empty somebody else may have cleared out the zone */
2146 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2150 max_threads = deferred_page_init_max_threads(cpumask);
2152 while (spfn < epfn) {
2153 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2154 struct padata_mt_job job = {
2155 .thread_fn = deferred_init_memmap_chunk,
2158 .size = epfn_align - spfn,
2159 .align = PAGES_PER_SECTION,
2160 .min_chunk = PAGES_PER_SECTION,
2161 .max_threads = max_threads,
2164 padata_do_multithreaded(&job);
2165 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2169 /* Sanity check that the next zone really is unpopulated */
2170 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2172 pr_info("node %d deferred pages initialised in %ums\n",
2173 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2175 pgdat_init_report_one_done();
2180 * If this zone has deferred pages, try to grow it by initializing enough
2181 * deferred pages to satisfy the allocation specified by order, rounded up to
2182 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2183 * of SECTION_SIZE bytes by initializing struct pages in increments of
2184 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2186 * Return true when zone was grown, otherwise return false. We return true even
2187 * when we grow less than requested, to let the caller decide if there are
2188 * enough pages to satisfy the allocation.
2190 * Note: We use noinline because this function is needed only during boot, and
2191 * it is called from a __ref function _deferred_grow_zone. This way we are
2192 * making sure that it is not inlined into permanent text section.
2194 static noinline bool __init
2195 deferred_grow_zone(struct zone *zone, unsigned int order)
2197 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2198 pg_data_t *pgdat = zone->zone_pgdat;
2199 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2200 unsigned long spfn, epfn, flags;
2201 unsigned long nr_pages = 0;
2204 /* Only the last zone may have deferred pages */
2205 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2208 pgdat_resize_lock(pgdat, &flags);
2211 * If someone grew this zone while we were waiting for spinlock, return
2212 * true, as there might be enough pages already.
2214 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2215 pgdat_resize_unlock(pgdat, &flags);
2219 /* If the zone is empty somebody else may have cleared out the zone */
2220 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 first_deferred_pfn)) {
2222 pgdat->first_deferred_pfn = ULONG_MAX;
2223 pgdat_resize_unlock(pgdat, &flags);
2224 /* Retry only once. */
2225 return first_deferred_pfn != ULONG_MAX;
2229 * Initialize and free pages in MAX_ORDER sized increments so
2230 * that we can avoid introducing any issues with the buddy
2233 while (spfn < epfn) {
2234 /* update our first deferred PFN for this section */
2235 first_deferred_pfn = spfn;
2237 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2238 touch_nmi_watchdog();
2240 /* We should only stop along section boundaries */
2241 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2244 /* If our quota has been met we can stop here */
2245 if (nr_pages >= nr_pages_needed)
2249 pgdat->first_deferred_pfn = spfn;
2250 pgdat_resize_unlock(pgdat, &flags);
2252 return nr_pages > 0;
2256 * deferred_grow_zone() is __init, but it is called from
2257 * get_page_from_freelist() during early boot until deferred_pages permanently
2258 * disables this call. This is why we have refdata wrapper to avoid warning,
2259 * and to ensure that the function body gets unloaded.
2262 _deferred_grow_zone(struct zone *zone, unsigned int order)
2264 return deferred_grow_zone(zone, order);
2267 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2269 void __init page_alloc_init_late(void)
2274 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2276 /* There will be num_node_state(N_MEMORY) threads */
2277 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2278 for_each_node_state(nid, N_MEMORY) {
2279 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2282 /* Block until all are initialised */
2283 wait_for_completion(&pgdat_init_all_done_comp);
2286 * We initialized the rest of the deferred pages. Permanently disable
2287 * on-demand struct page initialization.
2289 static_branch_disable(&deferred_pages);
2291 /* Reinit limits that are based on free pages after the kernel is up */
2292 files_maxfiles_init();
2297 /* Discard memblock private memory */
2300 for_each_node_state(nid, N_MEMORY)
2301 shuffle_free_memory(NODE_DATA(nid));
2303 for_each_populated_zone(zone)
2304 set_zone_contiguous(zone);
2308 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2309 void __init init_cma_reserved_pageblock(struct page *page)
2311 unsigned i = pageblock_nr_pages;
2312 struct page *p = page;
2315 __ClearPageReserved(p);
2316 set_page_count(p, 0);
2319 set_pageblock_migratetype(page, MIGRATE_CMA);
2320 set_page_refcounted(page);
2321 __free_pages(page, pageblock_order);
2323 adjust_managed_page_count(page, pageblock_nr_pages);
2324 page_zone(page)->cma_pages += pageblock_nr_pages;
2329 * The order of subdivision here is critical for the IO subsystem.
2330 * Please do not alter this order without good reasons and regression
2331 * testing. Specifically, as large blocks of memory are subdivided,
2332 * the order in which smaller blocks are delivered depends on the order
2333 * they're subdivided in this function. This is the primary factor
2334 * influencing the order in which pages are delivered to the IO
2335 * subsystem according to empirical testing, and this is also justified
2336 * by considering the behavior of a buddy system containing a single
2337 * large block of memory acted on by a series of small allocations.
2338 * This behavior is a critical factor in sglist merging's success.
2342 static inline void expand(struct zone *zone, struct page *page,
2343 int low, int high, int migratetype)
2345 unsigned long size = 1 << high;
2347 while (high > low) {
2350 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2353 * Mark as guard pages (or page), that will allow to
2354 * merge back to allocator when buddy will be freed.
2355 * Corresponding page table entries will not be touched,
2356 * pages will stay not present in virtual address space
2358 if (set_page_guard(zone, &page[size], high, migratetype))
2361 add_to_free_list(&page[size], zone, high, migratetype);
2362 set_buddy_order(&page[size], high);
2366 static void check_new_page_bad(struct page *page)
2368 if (unlikely(page->flags & __PG_HWPOISON)) {
2369 /* Don't complain about hwpoisoned pages */
2370 page_mapcount_reset(page); /* remove PageBuddy */
2375 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2379 * This page is about to be returned from the page allocator
2381 static inline int check_new_page(struct page *page)
2383 if (likely(page_expected_state(page,
2384 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2387 check_new_page_bad(page);
2391 static bool check_new_pages(struct page *page, unsigned int order)
2394 for (i = 0; i < (1 << order); i++) {
2395 struct page *p = page + i;
2397 if (unlikely(check_new_page(p)))
2404 #ifdef CONFIG_DEBUG_VM
2406 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2407 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2408 * also checked when pcp lists are refilled from the free lists.
2410 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2412 if (debug_pagealloc_enabled_static())
2413 return check_new_pages(page, order);
2418 static inline bool check_new_pcp(struct page *page, unsigned int order)
2420 return check_new_pages(page, order);
2424 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2425 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2426 * enabled, they are also checked when being allocated from the pcp lists.
2428 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2430 return check_new_pages(page, order);
2432 static inline bool check_new_pcp(struct page *page, unsigned int order)
2434 if (debug_pagealloc_enabled_static())
2435 return check_new_pages(page, order);
2439 #endif /* CONFIG_DEBUG_VM */
2441 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2443 /* Don't skip if a software KASAN mode is enabled. */
2444 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2445 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2448 /* Skip, if hardware tag-based KASAN is not enabled. */
2449 if (!kasan_hw_tags_enabled())
2453 * With hardware tag-based KASAN enabled, skip if this has been
2454 * requested via __GFP_SKIP_KASAN_UNPOISON.
2456 return flags & __GFP_SKIP_KASAN_UNPOISON;
2459 static inline bool should_skip_init(gfp_t flags)
2461 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2462 if (!kasan_hw_tags_enabled())
2465 /* For hardware tag-based KASAN, skip if requested. */
2466 return (flags & __GFP_SKIP_ZERO);
2469 inline void post_alloc_hook(struct page *page, unsigned int order,
2472 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2473 !should_skip_init(gfp_flags);
2474 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2477 set_page_private(page, 0);
2478 set_page_refcounted(page);
2480 arch_alloc_page(page, order);
2481 debug_pagealloc_map_pages(page, 1 << order);
2484 * Page unpoisoning must happen before memory initialization.
2485 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 * allocations and the page unpoisoning code will complain.
2488 kernel_unpoison_pages(page, 1 << order);
2491 * As memory initialization might be integrated into KASAN,
2492 * KASAN unpoisoning and memory initializion code must be
2493 * kept together to avoid discrepancies in behavior.
2497 * If memory tags should be zeroed (which happens only when memory
2498 * should be initialized as well).
2501 /* Initialize both memory and tags. */
2502 for (i = 0; i != 1 << order; ++i)
2503 tag_clear_highpage(page + i);
2505 /* Note that memory is already initialized by the loop above. */
2508 if (!should_skip_kasan_unpoison(gfp_flags)) {
2509 /* Unpoison shadow memory or set memory tags. */
2510 kasan_unpoison_pages(page, order, init);
2512 /* Note that memory is already initialized by KASAN. */
2513 if (kasan_has_integrated_init())
2516 /* Ensure page_address() dereferencing does not fault. */
2517 for (i = 0; i != 1 << order; ++i)
2518 page_kasan_tag_reset(page + i);
2520 /* If memory is still not initialized, do it now. */
2522 kernel_init_pages(page, 1 << order);
2523 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2524 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2525 SetPageSkipKASanPoison(page);
2527 set_page_owner(page, order, gfp_flags);
2528 page_table_check_alloc(page, order);
2531 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2532 unsigned int alloc_flags)
2534 post_alloc_hook(page, order, gfp_flags);
2536 if (order && (gfp_flags & __GFP_COMP))
2537 prep_compound_page(page, order);
2540 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2541 * allocate the page. The expectation is that the caller is taking
2542 * steps that will free more memory. The caller should avoid the page
2543 * being used for !PFMEMALLOC purposes.
2545 if (alloc_flags & ALLOC_NO_WATERMARKS)
2546 set_page_pfmemalloc(page);
2548 clear_page_pfmemalloc(page);
2552 * Go through the free lists for the given migratetype and remove
2553 * the smallest available page from the freelists
2555 static __always_inline
2556 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2559 unsigned int current_order;
2560 struct free_area *area;
2563 /* Find a page of the appropriate size in the preferred list */
2564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2565 area = &(zone->free_area[current_order]);
2566 page = get_page_from_free_area(area, migratetype);
2569 del_page_from_free_list(page, zone, current_order);
2570 expand(zone, page, order, current_order, migratetype);
2571 set_pcppage_migratetype(page, migratetype);
2572 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2573 pcp_allowed_order(order) &&
2574 migratetype < MIGRATE_PCPTYPES);
2583 * This array describes the order lists are fallen back to when
2584 * the free lists for the desirable migrate type are depleted
2586 * The other migratetypes do not have fallbacks.
2588 static int fallbacks[MIGRATE_TYPES][3] = {
2589 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2590 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2591 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2595 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2598 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2601 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2602 unsigned int order) { return NULL; }
2606 * Move the free pages in a range to the freelist tail of the requested type.
2607 * Note that start_page and end_pages are not aligned on a pageblock
2608 * boundary. If alignment is required, use move_freepages_block()
2610 static int move_freepages(struct zone *zone,
2611 unsigned long start_pfn, unsigned long end_pfn,
2612 int migratetype, int *num_movable)
2617 int pages_moved = 0;
2619 for (pfn = start_pfn; pfn <= end_pfn;) {
2620 page = pfn_to_page(pfn);
2621 if (!PageBuddy(page)) {
2623 * We assume that pages that could be isolated for
2624 * migration are movable. But we don't actually try
2625 * isolating, as that would be expensive.
2628 (PageLRU(page) || __PageMovable(page)))
2634 /* Make sure we are not inadvertently changing nodes */
2635 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2636 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2638 order = buddy_order(page);
2639 move_to_free_list(page, zone, order, migratetype);
2641 pages_moved += 1 << order;
2647 int move_freepages_block(struct zone *zone, struct page *page,
2648 int migratetype, int *num_movable)
2650 unsigned long start_pfn, end_pfn, pfn;
2655 pfn = page_to_pfn(page);
2656 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2657 end_pfn = start_pfn + pageblock_nr_pages - 1;
2659 /* Do not cross zone boundaries */
2660 if (!zone_spans_pfn(zone, start_pfn))
2662 if (!zone_spans_pfn(zone, end_pfn))
2665 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2669 static void change_pageblock_range(struct page *pageblock_page,
2670 int start_order, int migratetype)
2672 int nr_pageblocks = 1 << (start_order - pageblock_order);
2674 while (nr_pageblocks--) {
2675 set_pageblock_migratetype(pageblock_page, migratetype);
2676 pageblock_page += pageblock_nr_pages;
2681 * When we are falling back to another migratetype during allocation, try to
2682 * steal extra free pages from the same pageblocks to satisfy further
2683 * allocations, instead of polluting multiple pageblocks.
2685 * If we are stealing a relatively large buddy page, it is likely there will
2686 * be more free pages in the pageblock, so try to steal them all. For
2687 * reclaimable and unmovable allocations, we steal regardless of page size,
2688 * as fragmentation caused by those allocations polluting movable pageblocks
2689 * is worse than movable allocations stealing from unmovable and reclaimable
2692 static bool can_steal_fallback(unsigned int order, int start_mt)
2695 * Leaving this order check is intended, although there is
2696 * relaxed order check in next check. The reason is that
2697 * we can actually steal whole pageblock if this condition met,
2698 * but, below check doesn't guarantee it and that is just heuristic
2699 * so could be changed anytime.
2701 if (order >= pageblock_order)
2704 if (order >= pageblock_order / 2 ||
2705 start_mt == MIGRATE_RECLAIMABLE ||
2706 start_mt == MIGRATE_UNMOVABLE ||
2707 page_group_by_mobility_disabled)
2713 static inline bool boost_watermark(struct zone *zone)
2715 unsigned long max_boost;
2717 if (!watermark_boost_factor)
2720 * Don't bother in zones that are unlikely to produce results.
2721 * On small machines, including kdump capture kernels running
2722 * in a small area, boosting the watermark can cause an out of
2723 * memory situation immediately.
2725 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2728 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2729 watermark_boost_factor, 10000);
2732 * high watermark may be uninitialised if fragmentation occurs
2733 * very early in boot so do not boost. We do not fall
2734 * through and boost by pageblock_nr_pages as failing
2735 * allocations that early means that reclaim is not going
2736 * to help and it may even be impossible to reclaim the
2737 * boosted watermark resulting in a hang.
2742 max_boost = max(pageblock_nr_pages, max_boost);
2744 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2751 * This function implements actual steal behaviour. If order is large enough,
2752 * we can steal whole pageblock. If not, we first move freepages in this
2753 * pageblock to our migratetype and determine how many already-allocated pages
2754 * are there in the pageblock with a compatible migratetype. If at least half
2755 * of pages are free or compatible, we can change migratetype of the pageblock
2756 * itself, so pages freed in the future will be put on the correct free list.
2758 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2759 unsigned int alloc_flags, int start_type, bool whole_block)
2761 unsigned int current_order = buddy_order(page);
2762 int free_pages, movable_pages, alike_pages;
2765 old_block_type = get_pageblock_migratetype(page);
2768 * This can happen due to races and we want to prevent broken
2769 * highatomic accounting.
2771 if (is_migrate_highatomic(old_block_type))
2774 /* Take ownership for orders >= pageblock_order */
2775 if (current_order >= pageblock_order) {
2776 change_pageblock_range(page, current_order, start_type);
2781 * Boost watermarks to increase reclaim pressure to reduce the
2782 * likelihood of future fallbacks. Wake kswapd now as the node
2783 * may be balanced overall and kswapd will not wake naturally.
2785 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2786 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2788 /* We are not allowed to try stealing from the whole block */
2792 free_pages = move_freepages_block(zone, page, start_type,
2795 * Determine how many pages are compatible with our allocation.
2796 * For movable allocation, it's the number of movable pages which
2797 * we just obtained. For other types it's a bit more tricky.
2799 if (start_type == MIGRATE_MOVABLE) {
2800 alike_pages = movable_pages;
2803 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2804 * to MOVABLE pageblock, consider all non-movable pages as
2805 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2806 * vice versa, be conservative since we can't distinguish the
2807 * exact migratetype of non-movable pages.
2809 if (old_block_type == MIGRATE_MOVABLE)
2810 alike_pages = pageblock_nr_pages
2811 - (free_pages + movable_pages);
2816 /* moving whole block can fail due to zone boundary conditions */
2821 * If a sufficient number of pages in the block are either free or of
2822 * comparable migratability as our allocation, claim the whole block.
2824 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2825 page_group_by_mobility_disabled)
2826 set_pageblock_migratetype(page, start_type);
2831 move_to_free_list(page, zone, current_order, start_type);
2835 * Check whether there is a suitable fallback freepage with requested order.
2836 * If only_stealable is true, this function returns fallback_mt only if
2837 * we can steal other freepages all together. This would help to reduce
2838 * fragmentation due to mixed migratetype pages in one pageblock.
2840 int find_suitable_fallback(struct free_area *area, unsigned int order,
2841 int migratetype, bool only_stealable, bool *can_steal)
2846 if (area->nr_free == 0)
2851 fallback_mt = fallbacks[migratetype][i];
2852 if (fallback_mt == MIGRATE_TYPES)
2855 if (free_area_empty(area, fallback_mt))
2858 if (can_steal_fallback(order, migratetype))
2861 if (!only_stealable)
2872 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2873 * there are no empty page blocks that contain a page with a suitable order
2875 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2876 unsigned int alloc_order)
2879 unsigned long max_managed, flags;
2882 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2883 * Check is race-prone but harmless.
2885 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2886 if (zone->nr_reserved_highatomic >= max_managed)
2889 spin_lock_irqsave(&zone->lock, flags);
2891 /* Recheck the nr_reserved_highatomic limit under the lock */
2892 if (zone->nr_reserved_highatomic >= max_managed)
2896 mt = get_pageblock_migratetype(page);
2897 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2898 if (migratetype_is_mergeable(mt)) {
2899 zone->nr_reserved_highatomic += pageblock_nr_pages;
2900 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2901 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2905 spin_unlock_irqrestore(&zone->lock, flags);
2909 * Used when an allocation is about to fail under memory pressure. This
2910 * potentially hurts the reliability of high-order allocations when under
2911 * intense memory pressure but failed atomic allocations should be easier
2912 * to recover from than an OOM.
2914 * If @force is true, try to unreserve a pageblock even though highatomic
2915 * pageblock is exhausted.
2917 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2920 struct zonelist *zonelist = ac->zonelist;
2921 unsigned long flags;
2928 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2931 * Preserve at least one pageblock unless memory pressure
2934 if (!force && zone->nr_reserved_highatomic <=
2938 spin_lock_irqsave(&zone->lock, flags);
2939 for (order = 0; order < MAX_ORDER; order++) {
2940 struct free_area *area = &(zone->free_area[order]);
2942 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 * In page freeing path, migratetype change is racy so
2948 * we can counter several free pages in a pageblock
2949 * in this loop although we changed the pageblock type
2950 * from highatomic to ac->migratetype. So we should
2951 * adjust the count once.
2953 if (is_migrate_highatomic_page(page)) {
2955 * It should never happen but changes to
2956 * locking could inadvertently allow a per-cpu
2957 * drain to add pages to MIGRATE_HIGHATOMIC
2958 * while unreserving so be safe and watch for
2961 zone->nr_reserved_highatomic -= min(
2963 zone->nr_reserved_highatomic);
2967 * Convert to ac->migratetype and avoid the normal
2968 * pageblock stealing heuristics. Minimally, the caller
2969 * is doing the work and needs the pages. More
2970 * importantly, if the block was always converted to
2971 * MIGRATE_UNMOVABLE or another type then the number
2972 * of pageblocks that cannot be completely freed
2975 set_pageblock_migratetype(page, ac->migratetype);
2976 ret = move_freepages_block(zone, page, ac->migratetype,
2979 spin_unlock_irqrestore(&zone->lock, flags);
2983 spin_unlock_irqrestore(&zone->lock, flags);
2990 * Try finding a free buddy page on the fallback list and put it on the free
2991 * list of requested migratetype, possibly along with other pages from the same
2992 * block, depending on fragmentation avoidance heuristics. Returns true if
2993 * fallback was found so that __rmqueue_smallest() can grab it.
2995 * The use of signed ints for order and current_order is a deliberate
2996 * deviation from the rest of this file, to make the for loop
2997 * condition simpler.
2999 static __always_inline bool
3000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3001 unsigned int alloc_flags)
3003 struct free_area *area;
3005 int min_order = order;
3011 * Do not steal pages from freelists belonging to other pageblocks
3012 * i.e. orders < pageblock_order. If there are no local zones free,
3013 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3015 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3016 min_order = pageblock_order;
3019 * Find the largest available free page in the other list. This roughly
3020 * approximates finding the pageblock with the most free pages, which
3021 * would be too costly to do exactly.
3023 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3025 area = &(zone->free_area[current_order]);
3026 fallback_mt = find_suitable_fallback(area, current_order,
3027 start_migratetype, false, &can_steal);
3028 if (fallback_mt == -1)
3032 * We cannot steal all free pages from the pageblock and the
3033 * requested migratetype is movable. In that case it's better to
3034 * steal and split the smallest available page instead of the
3035 * largest available page, because even if the next movable
3036 * allocation falls back into a different pageblock than this
3037 * one, it won't cause permanent fragmentation.
3039 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3040 && current_order > order)
3049 for (current_order = order; current_order < MAX_ORDER;
3051 area = &(zone->free_area[current_order]);
3052 fallback_mt = find_suitable_fallback(area, current_order,
3053 start_migratetype, false, &can_steal);
3054 if (fallback_mt != -1)
3059 * This should not happen - we already found a suitable fallback
3060 * when looking for the largest page.
3062 VM_BUG_ON(current_order == MAX_ORDER);
3065 page = get_page_from_free_area(area, fallback_mt);
3067 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3070 trace_mm_page_alloc_extfrag(page, order, current_order,
3071 start_migratetype, fallback_mt);
3078 * Do the hard work of removing an element from the buddy allocator.
3079 * Call me with the zone->lock already held.
3081 static __always_inline struct page *
3082 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3083 unsigned int alloc_flags)
3087 if (IS_ENABLED(CONFIG_CMA)) {
3089 * Balance movable allocations between regular and CMA areas by
3090 * allocating from CMA when over half of the zone's free memory
3091 * is in the CMA area.
3093 if (alloc_flags & ALLOC_CMA &&
3094 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3095 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3096 page = __rmqueue_cma_fallback(zone, order);
3102 page = __rmqueue_smallest(zone, order, migratetype);
3103 if (unlikely(!page)) {
3104 if (alloc_flags & ALLOC_CMA)
3105 page = __rmqueue_cma_fallback(zone, order);
3107 if (!page && __rmqueue_fallback(zone, order, migratetype,
3115 * Obtain a specified number of elements from the buddy allocator, all under
3116 * a single hold of the lock, for efficiency. Add them to the supplied list.
3117 * Returns the number of new pages which were placed at *list.
3119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3120 unsigned long count, struct list_head *list,
3121 int migratetype, unsigned int alloc_flags)
3123 int i, allocated = 0;
3125 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3126 spin_lock(&zone->lock);
3127 for (i = 0; i < count; ++i) {
3128 struct page *page = __rmqueue(zone, order, migratetype,
3130 if (unlikely(page == NULL))
3133 if (unlikely(check_pcp_refill(page, order)))
3137 * Split buddy pages returned by expand() are received here in
3138 * physical page order. The page is added to the tail of
3139 * caller's list. From the callers perspective, the linked list
3140 * is ordered by page number under some conditions. This is
3141 * useful for IO devices that can forward direction from the
3142 * head, thus also in the physical page order. This is useful
3143 * for IO devices that can merge IO requests if the physical
3144 * pages are ordered properly.
3146 list_add_tail(&page->pcp_list, list);
3148 if (is_migrate_cma(get_pcppage_migratetype(page)))
3149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 * i pages were removed from the buddy list even if some leak due
3155 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3156 * on i. Do not confuse with 'allocated' which is the number of
3157 * pages added to the pcp list.
3159 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3160 spin_unlock(&zone->lock);
3166 * Called from the vmstat counter updater to drain pagesets of this
3167 * currently executing processor on remote nodes after they have
3170 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3172 int to_drain, batch;
3174 batch = READ_ONCE(pcp->batch);
3175 to_drain = min(pcp->count, batch);
3177 unsigned long flags;
3180 * free_pcppages_bulk expects IRQs disabled for zone->lock
3181 * so even though pcp->lock is not intended to be IRQ-safe,
3182 * it's needed in this context.
3184 spin_lock_irqsave(&pcp->lock, flags);
3185 free_pcppages_bulk(zone, to_drain, pcp, 0);
3186 spin_unlock_irqrestore(&pcp->lock, flags);
3192 * Drain pcplists of the indicated processor and zone.
3194 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3196 struct per_cpu_pages *pcp;
3198 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3200 unsigned long flags;
3202 /* See drain_zone_pages on why this is disabling IRQs */
3203 spin_lock_irqsave(&pcp->lock, flags);
3204 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3205 spin_unlock_irqrestore(&pcp->lock, flags);
3210 * Drain pcplists of all zones on the indicated processor.
3212 static void drain_pages(unsigned int cpu)
3216 for_each_populated_zone(zone) {
3217 drain_pages_zone(cpu, zone);
3222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3224 void drain_local_pages(struct zone *zone)
3226 int cpu = smp_processor_id();
3229 drain_pages_zone(cpu, zone);
3235 * The implementation of drain_all_pages(), exposing an extra parameter to
3236 * drain on all cpus.
3238 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3239 * not empty. The check for non-emptiness can however race with a free to
3240 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3241 * that need the guarantee that every CPU has drained can disable the
3242 * optimizing racy check.
3244 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 * Allocate in the BSS so we won't require allocation in
3250 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3252 static cpumask_t cpus_with_pcps;
3255 * Do not drain if one is already in progress unless it's specific to
3256 * a zone. Such callers are primarily CMA and memory hotplug and need
3257 * the drain to be complete when the call returns.
3259 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3262 mutex_lock(&pcpu_drain_mutex);
3266 * We don't care about racing with CPU hotplug event
3267 * as offline notification will cause the notified
3268 * cpu to drain that CPU pcps and on_each_cpu_mask
3269 * disables preemption as part of its processing
3271 for_each_online_cpu(cpu) {
3272 struct per_cpu_pages *pcp;
3274 bool has_pcps = false;
3276 if (force_all_cpus) {
3278 * The pcp.count check is racy, some callers need a
3279 * guarantee that no cpu is missed.
3283 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3287 for_each_populated_zone(z) {
3288 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3297 cpumask_set_cpu(cpu, &cpus_with_pcps);
3299 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3302 for_each_cpu(cpu, &cpus_with_pcps) {
3304 drain_pages_zone(cpu, zone);
3309 mutex_unlock(&pcpu_drain_mutex);
3313 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3315 * When zone parameter is non-NULL, spill just the single zone's pages.
3317 void drain_all_pages(struct zone *zone)
3319 __drain_all_pages(zone, false);
3322 #ifdef CONFIG_HIBERNATION
3325 * Touch the watchdog for every WD_PAGE_COUNT pages.
3327 #define WD_PAGE_COUNT (128*1024)
3329 void mark_free_pages(struct zone *zone)
3331 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3332 unsigned long flags;
3333 unsigned int order, t;
3336 if (zone_is_empty(zone))
3339 spin_lock_irqsave(&zone->lock, flags);
3341 max_zone_pfn = zone_end_pfn(zone);
3342 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3343 if (pfn_valid(pfn)) {
3344 page = pfn_to_page(pfn);
3346 if (!--page_count) {
3347 touch_nmi_watchdog();
3348 page_count = WD_PAGE_COUNT;
3351 if (page_zone(page) != zone)
3354 if (!swsusp_page_is_forbidden(page))
3355 swsusp_unset_page_free(page);
3358 for_each_migratetype_order(order, t) {
3359 list_for_each_entry(page,
3360 &zone->free_area[order].free_list[t], buddy_list) {
3363 pfn = page_to_pfn(page);
3364 for (i = 0; i < (1UL << order); i++) {
3365 if (!--page_count) {
3366 touch_nmi_watchdog();
3367 page_count = WD_PAGE_COUNT;
3369 swsusp_set_page_free(pfn_to_page(pfn + i));
3373 spin_unlock_irqrestore(&zone->lock, flags);
3375 #endif /* CONFIG_PM */
3377 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 if (!free_pcp_prepare(page, order))
3385 migratetype = get_pfnblock_migratetype(page, pfn);
3386 set_pcppage_migratetype(page, migratetype);
3390 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3393 int min_nr_free, max_nr_free;
3395 /* Free everything if batch freeing high-order pages. */
3396 if (unlikely(free_high))
3399 /* Check for PCP disabled or boot pageset */
3400 if (unlikely(high < batch))
3403 /* Leave at least pcp->batch pages on the list */
3404 min_nr_free = batch;
3405 max_nr_free = high - batch;
3408 * Double the number of pages freed each time there is subsequent
3409 * freeing of pages without any allocation.
3411 batch <<= pcp->free_factor;
3412 if (batch < max_nr_free)
3414 batch = clamp(batch, min_nr_free, max_nr_free);
3419 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3422 int high = READ_ONCE(pcp->high);
3424 if (unlikely(!high || free_high))
3427 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3431 * If reclaim is active, limit the number of pages that can be
3432 * stored on pcp lists
3434 return min(READ_ONCE(pcp->batch) << 2, high);
3437 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3438 struct page *page, int migratetype,
3445 __count_vm_event(PGFREE);
3446 pindex = order_to_pindex(migratetype, order);
3447 list_add(&page->pcp_list, &pcp->lists[pindex]);
3448 pcp->count += 1 << order;
3451 * As high-order pages other than THP's stored on PCP can contribute
3452 * to fragmentation, limit the number stored when PCP is heavily
3453 * freeing without allocation. The remainder after bulk freeing
3454 * stops will be drained from vmstat refresh context.
3456 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3458 high = nr_pcp_high(pcp, zone, free_high);
3459 if (pcp->count >= high) {
3460 int batch = READ_ONCE(pcp->batch);
3462 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3469 void free_unref_page(struct page *page, unsigned int order)
3471 unsigned long flags;
3472 unsigned long __maybe_unused UP_flags;
3473 struct per_cpu_pages *pcp;
3475 unsigned long pfn = page_to_pfn(page);
3478 if (!free_unref_page_prepare(page, pfn, order))
3482 * We only track unmovable, reclaimable and movable on pcp lists.
3483 * Place ISOLATE pages on the isolated list because they are being
3484 * offlined but treat HIGHATOMIC as movable pages so we can get those
3485 * areas back if necessary. Otherwise, we may have to free
3486 * excessively into the page allocator
3488 migratetype = get_pcppage_migratetype(page);
3489 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3490 if (unlikely(is_migrate_isolate(migratetype))) {
3491 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3494 migratetype = MIGRATE_MOVABLE;
3497 zone = page_zone(page);
3498 pcp_trylock_prepare(UP_flags);
3499 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3501 free_unref_page_commit(zone, pcp, page, migratetype, order);
3502 pcp_spin_unlock_irqrestore(pcp, flags);
3504 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3506 pcp_trylock_finish(UP_flags);
3510 * Free a list of 0-order pages
3512 void free_unref_page_list(struct list_head *list)
3514 struct page *page, *next;
3515 struct per_cpu_pages *pcp = NULL;
3516 struct zone *locked_zone = NULL;
3517 unsigned long flags;
3518 int batch_count = 0;
3521 /* Prepare pages for freeing */
3522 list_for_each_entry_safe(page, next, list, lru) {
3523 unsigned long pfn = page_to_pfn(page);
3524 if (!free_unref_page_prepare(page, pfn, 0)) {
3525 list_del(&page->lru);
3530 * Free isolated pages directly to the allocator, see
3531 * comment in free_unref_page.
3533 migratetype = get_pcppage_migratetype(page);
3534 if (unlikely(is_migrate_isolate(migratetype))) {
3535 list_del(&page->lru);
3536 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 list_for_each_entry_safe(page, next, list, lru) {
3542 struct zone *zone = page_zone(page);
3544 /* Different zone, different pcp lock. */
3545 if (zone != locked_zone) {
3547 pcp_spin_unlock_irqrestore(pcp, flags);
3550 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3554 * Non-isolated types over MIGRATE_PCPTYPES get added
3555 * to the MIGRATE_MOVABLE pcp list.
3557 migratetype = get_pcppage_migratetype(page);
3558 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3559 migratetype = MIGRATE_MOVABLE;
3561 trace_mm_page_free_batched(page);
3562 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3565 * Guard against excessive IRQ disabled times when we get
3566 * a large list of pages to free.
3568 if (++batch_count == SWAP_CLUSTER_MAX) {
3569 pcp_spin_unlock_irqrestore(pcp, flags);
3571 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 pcp_spin_unlock_irqrestore(pcp, flags);
3580 * split_page takes a non-compound higher-order page, and splits it into
3581 * n (1<<order) sub-pages: page[0..n]
3582 * Each sub-page must be freed individually.
3584 * Note: this is probably too low level an operation for use in drivers.
3585 * Please consult with lkml before using this in your driver.
3587 void split_page(struct page *page, unsigned int order)
3591 VM_BUG_ON_PAGE(PageCompound(page), page);
3592 VM_BUG_ON_PAGE(!page_count(page), page);
3594 for (i = 1; i < (1 << order); i++)
3595 set_page_refcounted(page + i);
3596 split_page_owner(page, 1 << order);
3597 split_page_memcg(page, 1 << order);
3599 EXPORT_SYMBOL_GPL(split_page);
3601 int __isolate_free_page(struct page *page, unsigned int order)
3603 unsigned long watermark;
3607 BUG_ON(!PageBuddy(page));
3609 zone = page_zone(page);
3610 mt = get_pageblock_migratetype(page);
3612 if (!is_migrate_isolate(mt)) {
3614 * Obey watermarks as if the page was being allocated. We can
3615 * emulate a high-order watermark check with a raised order-0
3616 * watermark, because we already know our high-order page
3619 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3620 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3623 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3626 /* Remove page from free list */
3628 del_page_from_free_list(page, zone, order);
3631 * Set the pageblock if the isolated page is at least half of a
3634 if (order >= pageblock_order - 1) {
3635 struct page *endpage = page + (1 << order) - 1;
3636 for (; page < endpage; page += pageblock_nr_pages) {
3637 int mt = get_pageblock_migratetype(page);
3639 * Only change normal pageblocks (i.e., they can merge
3642 if (migratetype_is_mergeable(mt))
3643 set_pageblock_migratetype(page,
3649 return 1UL << order;
3653 * __putback_isolated_page - Return a now-isolated page back where we got it
3654 * @page: Page that was isolated
3655 * @order: Order of the isolated page
3656 * @mt: The page's pageblock's migratetype
3658 * This function is meant to return a page pulled from the free lists via
3659 * __isolate_free_page back to the free lists they were pulled from.
3661 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3663 struct zone *zone = page_zone(page);
3665 /* zone lock should be held when this function is called */
3666 lockdep_assert_held(&zone->lock);
3668 /* Return isolated page to tail of freelist. */
3669 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3670 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3674 * Update NUMA hit/miss statistics
3676 * Must be called with interrupts disabled.
3678 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3682 enum numa_stat_item local_stat = NUMA_LOCAL;
3684 /* skip numa counters update if numa stats is disabled */
3685 if (!static_branch_likely(&vm_numa_stat_key))
3688 if (zone_to_nid(z) != numa_node_id())
3689 local_stat = NUMA_OTHER;
3691 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3692 __count_numa_events(z, NUMA_HIT, nr_account);
3694 __count_numa_events(z, NUMA_MISS, nr_account);
3695 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3697 __count_numa_events(z, local_stat, nr_account);
3701 static __always_inline
3702 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3703 unsigned int order, unsigned int alloc_flags,
3707 unsigned long flags;
3711 spin_lock_irqsave(&zone->lock, flags);
3713 * order-0 request can reach here when the pcplist is skipped
3714 * due to non-CMA allocation context. HIGHATOMIC area is
3715 * reserved for high-order atomic allocation, so order-0
3716 * request should skip it.
3718 if (order > 0 && alloc_flags & ALLOC_HARDER)
3719 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3721 page = __rmqueue(zone, order, migratetype, alloc_flags);
3723 spin_unlock_irqrestore(&zone->lock, flags);
3727 __mod_zone_freepage_state(zone, -(1 << order),
3728 get_pcppage_migratetype(page));
3729 spin_unlock_irqrestore(&zone->lock, flags);
3730 } while (check_new_pages(page, order));
3732 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3733 zone_statistics(preferred_zone, zone, 1);
3738 /* Remove page from the per-cpu list, caller must protect the list */
3740 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3742 unsigned int alloc_flags,
3743 struct per_cpu_pages *pcp,
3744 struct list_head *list)
3749 if (list_empty(list)) {
3750 int batch = READ_ONCE(pcp->batch);
3754 * Scale batch relative to order if batch implies
3755 * free pages can be stored on the PCP. Batch can
3756 * be 1 for small zones or for boot pagesets which
3757 * should never store free pages as the pages may
3758 * belong to arbitrary zones.
3761 batch = max(batch >> order, 2);
3762 alloced = rmqueue_bulk(zone, order,
3764 migratetype, alloc_flags);
3766 pcp->count += alloced << order;
3767 if (unlikely(list_empty(list)))
3771 page = list_first_entry(list, struct page, pcp_list);
3772 list_del(&page->pcp_list);
3773 pcp->count -= 1 << order;
3774 } while (check_new_pcp(page, order));
3779 /* Lock and remove page from the per-cpu list */
3780 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3781 struct zone *zone, unsigned int order,
3782 gfp_t gfp_flags, int migratetype,
3783 unsigned int alloc_flags)
3785 struct per_cpu_pages *pcp;
3786 struct list_head *list;
3788 unsigned long flags;
3789 unsigned long __maybe_unused UP_flags;
3792 * spin_trylock may fail due to a parallel drain. In the future, the
3793 * trylock will also protect against IRQ reentrancy.
3795 pcp_trylock_prepare(UP_flags);
3796 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3798 pcp_trylock_finish(UP_flags);
3803 * On allocation, reduce the number of pages that are batch freed.
3804 * See nr_pcp_free() where free_factor is increased for subsequent
3807 pcp->free_factor >>= 1;
3808 list = &pcp->lists[order_to_pindex(migratetype, order)];
3809 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3810 pcp_spin_unlock_irqrestore(pcp, flags);
3811 pcp_trylock_finish(UP_flags);
3813 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3814 zone_statistics(preferred_zone, zone, 1);
3820 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3823 struct page *rmqueue(struct zone *preferred_zone,
3824 struct zone *zone, unsigned int order,
3825 gfp_t gfp_flags, unsigned int alloc_flags,
3831 * We most definitely don't want callers attempting to
3832 * allocate greater than order-1 page units with __GFP_NOFAIL.
3834 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3836 if (likely(pcp_allowed_order(order))) {
3838 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3839 * we need to skip it when CMA area isn't allowed.
3841 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3842 migratetype != MIGRATE_MOVABLE) {
3843 page = rmqueue_pcplist(preferred_zone, zone, order,
3844 gfp_flags, migratetype, alloc_flags);
3850 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3854 /* Separate test+clear to avoid unnecessary atomics */
3855 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3856 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3857 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3860 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3864 #ifdef CONFIG_FAIL_PAGE_ALLOC
3867 struct fault_attr attr;
3869 bool ignore_gfp_highmem;
3870 bool ignore_gfp_reclaim;
3872 } fail_page_alloc = {
3873 .attr = FAULT_ATTR_INITIALIZER,
3874 .ignore_gfp_reclaim = true,
3875 .ignore_gfp_highmem = true,
3879 static int __init setup_fail_page_alloc(char *str)
3881 return setup_fault_attr(&fail_page_alloc.attr, str);
3883 __setup("fail_page_alloc=", setup_fail_page_alloc);
3885 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3887 if (order < fail_page_alloc.min_order)
3889 if (gfp_mask & __GFP_NOFAIL)
3891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3893 if (fail_page_alloc.ignore_gfp_reclaim &&
3894 (gfp_mask & __GFP_DIRECT_RECLAIM))
3897 if (gfp_mask & __GFP_NOWARN)
3898 fail_page_alloc.attr.no_warn = true;
3900 return should_fail(&fail_page_alloc.attr, 1 << order);
3903 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3905 static int __init fail_page_alloc_debugfs(void)
3907 umode_t mode = S_IFREG | 0600;
3910 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3911 &fail_page_alloc.attr);
3913 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3914 &fail_page_alloc.ignore_gfp_reclaim);
3915 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3916 &fail_page_alloc.ignore_gfp_highmem);
3917 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3922 late_initcall(fail_page_alloc_debugfs);
3924 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3926 #else /* CONFIG_FAIL_PAGE_ALLOC */
3928 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3933 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3935 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3937 return __should_fail_alloc_page(gfp_mask, order);
3939 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3941 static inline long __zone_watermark_unusable_free(struct zone *z,
3942 unsigned int order, unsigned int alloc_flags)
3944 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3945 long unusable_free = (1 << order) - 1;
3948 * If the caller does not have rights to ALLOC_HARDER then subtract
3949 * the high-atomic reserves. This will over-estimate the size of the
3950 * atomic reserve but it avoids a search.
3952 if (likely(!alloc_harder))
3953 unusable_free += z->nr_reserved_highatomic;
3956 /* If allocation can't use CMA areas don't use free CMA pages */
3957 if (!(alloc_flags & ALLOC_CMA))
3958 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3961 return unusable_free;
3965 * Return true if free base pages are above 'mark'. For high-order checks it
3966 * will return true of the order-0 watermark is reached and there is at least
3967 * one free page of a suitable size. Checking now avoids taking the zone lock
3968 * to check in the allocation paths if no pages are free.
3970 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3971 int highest_zoneidx, unsigned int alloc_flags,
3976 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3978 /* free_pages may go negative - that's OK */
3979 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3981 if (alloc_flags & ALLOC_HIGH)
3984 if (unlikely(alloc_harder)) {
3986 * OOM victims can try even harder than normal ALLOC_HARDER
3987 * users on the grounds that it's definitely going to be in
3988 * the exit path shortly and free memory. Any allocation it
3989 * makes during the free path will be small and short-lived.
3991 if (alloc_flags & ALLOC_OOM)
3998 * Check watermarks for an order-0 allocation request. If these
3999 * are not met, then a high-order request also cannot go ahead
4000 * even if a suitable page happened to be free.
4002 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4005 /* If this is an order-0 request then the watermark is fine */
4009 /* For a high-order request, check at least one suitable page is free */
4010 for (o = order; o < MAX_ORDER; o++) {
4011 struct free_area *area = &z->free_area[o];
4017 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4018 if (!free_area_empty(area, mt))
4023 if ((alloc_flags & ALLOC_CMA) &&
4024 !free_area_empty(area, MIGRATE_CMA)) {
4028 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4034 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4035 int highest_zoneidx, unsigned int alloc_flags)
4037 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4038 zone_page_state(z, NR_FREE_PAGES));
4041 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4042 unsigned long mark, int highest_zoneidx,
4043 unsigned int alloc_flags, gfp_t gfp_mask)
4047 free_pages = zone_page_state(z, NR_FREE_PAGES);
4050 * Fast check for order-0 only. If this fails then the reserves
4051 * need to be calculated.
4057 usable_free = free_pages;
4058 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4060 /* reserved may over estimate high-atomic reserves. */
4061 usable_free -= min(usable_free, reserved);
4062 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4066 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4070 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4071 * when checking the min watermark. The min watermark is the
4072 * point where boosting is ignored so that kswapd is woken up
4073 * when below the low watermark.
4075 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4076 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4077 mark = z->_watermark[WMARK_MIN];
4078 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4079 alloc_flags, free_pages);
4085 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4086 unsigned long mark, int highest_zoneidx)
4088 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4090 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4091 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4093 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4098 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4100 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4102 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4103 node_reclaim_distance;
4105 #else /* CONFIG_NUMA */
4106 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4110 #endif /* CONFIG_NUMA */
4113 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4114 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4115 * premature use of a lower zone may cause lowmem pressure problems that
4116 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4117 * probably too small. It only makes sense to spread allocations to avoid
4118 * fragmentation between the Normal and DMA32 zones.
4120 static inline unsigned int
4121 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4123 unsigned int alloc_flags;
4126 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4129 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4131 #ifdef CONFIG_ZONE_DMA32
4135 if (zone_idx(zone) != ZONE_NORMAL)
4139 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4140 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4141 * on UMA that if Normal is populated then so is DMA32.
4143 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4144 if (nr_online_nodes > 1 && !populated_zone(--zone))
4147 alloc_flags |= ALLOC_NOFRAGMENT;
4148 #endif /* CONFIG_ZONE_DMA32 */
4152 /* Must be called after current_gfp_context() which can change gfp_mask */
4153 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4154 unsigned int alloc_flags)
4157 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4158 alloc_flags |= ALLOC_CMA;
4164 * get_page_from_freelist goes through the zonelist trying to allocate
4167 static struct page *
4168 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4169 const struct alloc_context *ac)
4173 struct pglist_data *last_pgdat = NULL;
4174 bool last_pgdat_dirty_ok = false;
4179 * Scan zonelist, looking for a zone with enough free.
4180 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4182 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4183 z = ac->preferred_zoneref;
4184 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4189 if (cpusets_enabled() &&
4190 (alloc_flags & ALLOC_CPUSET) &&
4191 !__cpuset_zone_allowed(zone, gfp_mask))
4194 * When allocating a page cache page for writing, we
4195 * want to get it from a node that is within its dirty
4196 * limit, such that no single node holds more than its
4197 * proportional share of globally allowed dirty pages.
4198 * The dirty limits take into account the node's
4199 * lowmem reserves and high watermark so that kswapd
4200 * should be able to balance it without having to
4201 * write pages from its LRU list.
4203 * XXX: For now, allow allocations to potentially
4204 * exceed the per-node dirty limit in the slowpath
4205 * (spread_dirty_pages unset) before going into reclaim,
4206 * which is important when on a NUMA setup the allowed
4207 * nodes are together not big enough to reach the
4208 * global limit. The proper fix for these situations
4209 * will require awareness of nodes in the
4210 * dirty-throttling and the flusher threads.
4212 if (ac->spread_dirty_pages) {
4213 if (last_pgdat != zone->zone_pgdat) {
4214 last_pgdat = zone->zone_pgdat;
4215 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4218 if (!last_pgdat_dirty_ok)
4222 if (no_fallback && nr_online_nodes > 1 &&
4223 zone != ac->preferred_zoneref->zone) {
4227 * If moving to a remote node, retry but allow
4228 * fragmenting fallbacks. Locality is more important
4229 * than fragmentation avoidance.
4231 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4232 if (zone_to_nid(zone) != local_nid) {
4233 alloc_flags &= ~ALLOC_NOFRAGMENT;
4238 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4239 if (!zone_watermark_fast(zone, order, mark,
4240 ac->highest_zoneidx, alloc_flags,
4244 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4246 * Watermark failed for this zone, but see if we can
4247 * grow this zone if it contains deferred pages.
4249 if (static_branch_unlikely(&deferred_pages)) {
4250 if (_deferred_grow_zone(zone, order))
4254 /* Checked here to keep the fast path fast */
4255 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4256 if (alloc_flags & ALLOC_NO_WATERMARKS)
4259 if (!node_reclaim_enabled() ||
4260 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4263 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4265 case NODE_RECLAIM_NOSCAN:
4268 case NODE_RECLAIM_FULL:
4269 /* scanned but unreclaimable */
4272 /* did we reclaim enough */
4273 if (zone_watermark_ok(zone, order, mark,
4274 ac->highest_zoneidx, alloc_flags))
4282 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4283 gfp_mask, alloc_flags, ac->migratetype);
4285 prep_new_page(page, order, gfp_mask, alloc_flags);
4288 * If this is a high-order atomic allocation then check
4289 * if the pageblock should be reserved for the future
4291 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4292 reserve_highatomic_pageblock(page, zone, order);
4296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4297 /* Try again if zone has deferred pages */
4298 if (static_branch_unlikely(&deferred_pages)) {
4299 if (_deferred_grow_zone(zone, order))
4307 * It's possible on a UMA machine to get through all zones that are
4308 * fragmented. If avoiding fragmentation, reset and try again.
4311 alloc_flags &= ~ALLOC_NOFRAGMENT;
4318 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4320 unsigned int filter = SHOW_MEM_FILTER_NODES;
4323 * This documents exceptions given to allocations in certain
4324 * contexts that are allowed to allocate outside current's set
4327 if (!(gfp_mask & __GFP_NOMEMALLOC))
4328 if (tsk_is_oom_victim(current) ||
4329 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4330 filter &= ~SHOW_MEM_FILTER_NODES;
4331 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4332 filter &= ~SHOW_MEM_FILTER_NODES;
4334 show_mem(filter, nodemask);
4337 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4339 struct va_format vaf;
4341 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4343 if ((gfp_mask & __GFP_NOWARN) ||
4344 !__ratelimit(&nopage_rs) ||
4345 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4348 va_start(args, fmt);
4351 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4352 current->comm, &vaf, gfp_mask, &gfp_mask,
4353 nodemask_pr_args(nodemask));
4356 cpuset_print_current_mems_allowed();
4359 warn_alloc_show_mem(gfp_mask, nodemask);
4362 static inline struct page *
4363 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4364 unsigned int alloc_flags,
4365 const struct alloc_context *ac)
4369 page = get_page_from_freelist(gfp_mask, order,
4370 alloc_flags|ALLOC_CPUSET, ac);
4372 * fallback to ignore cpuset restriction if our nodes
4376 page = get_page_from_freelist(gfp_mask, order,
4382 static inline struct page *
4383 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4384 const struct alloc_context *ac, unsigned long *did_some_progress)
4386 struct oom_control oc = {
4387 .zonelist = ac->zonelist,
4388 .nodemask = ac->nodemask,
4390 .gfp_mask = gfp_mask,
4395 *did_some_progress = 0;
4398 * Acquire the oom lock. If that fails, somebody else is
4399 * making progress for us.
4401 if (!mutex_trylock(&oom_lock)) {
4402 *did_some_progress = 1;
4403 schedule_timeout_uninterruptible(1);
4408 * Go through the zonelist yet one more time, keep very high watermark
4409 * here, this is only to catch a parallel oom killing, we must fail if
4410 * we're still under heavy pressure. But make sure that this reclaim
4411 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4412 * allocation which will never fail due to oom_lock already held.
4414 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4415 ~__GFP_DIRECT_RECLAIM, order,
4416 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4420 /* Coredumps can quickly deplete all memory reserves */
4421 if (current->flags & PF_DUMPCORE)
4423 /* The OOM killer will not help higher order allocs */
4424 if (order > PAGE_ALLOC_COSTLY_ORDER)
4427 * We have already exhausted all our reclaim opportunities without any
4428 * success so it is time to admit defeat. We will skip the OOM killer
4429 * because it is very likely that the caller has a more reasonable
4430 * fallback than shooting a random task.
4432 * The OOM killer may not free memory on a specific node.
4434 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4436 /* The OOM killer does not needlessly kill tasks for lowmem */
4437 if (ac->highest_zoneidx < ZONE_NORMAL)
4439 if (pm_suspended_storage())
4442 * XXX: GFP_NOFS allocations should rather fail than rely on
4443 * other request to make a forward progress.
4444 * We are in an unfortunate situation where out_of_memory cannot
4445 * do much for this context but let's try it to at least get
4446 * access to memory reserved if the current task is killed (see
4447 * out_of_memory). Once filesystems are ready to handle allocation
4448 * failures more gracefully we should just bail out here.
4451 /* Exhausted what can be done so it's blame time */
4452 if (out_of_memory(&oc) ||
4453 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4454 *did_some_progress = 1;
4457 * Help non-failing allocations by giving them access to memory
4460 if (gfp_mask & __GFP_NOFAIL)
4461 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4462 ALLOC_NO_WATERMARKS, ac);
4465 mutex_unlock(&oom_lock);
4470 * Maximum number of compaction retries with a progress before OOM
4471 * killer is consider as the only way to move forward.
4473 #define MAX_COMPACT_RETRIES 16
4475 #ifdef CONFIG_COMPACTION
4476 /* Try memory compaction for high-order allocations before reclaim */
4477 static struct page *
4478 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4479 unsigned int alloc_flags, const struct alloc_context *ac,
4480 enum compact_priority prio, enum compact_result *compact_result)
4482 struct page *page = NULL;
4483 unsigned long pflags;
4484 unsigned int noreclaim_flag;
4489 psi_memstall_enter(&pflags);
4490 delayacct_compact_start();
4491 noreclaim_flag = memalloc_noreclaim_save();
4493 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4496 memalloc_noreclaim_restore(noreclaim_flag);
4497 psi_memstall_leave(&pflags);
4498 delayacct_compact_end();
4500 if (*compact_result == COMPACT_SKIPPED)
4503 * At least in one zone compaction wasn't deferred or skipped, so let's
4504 * count a compaction stall
4506 count_vm_event(COMPACTSTALL);
4508 /* Prep a captured page if available */
4510 prep_new_page(page, order, gfp_mask, alloc_flags);
4512 /* Try get a page from the freelist if available */
4514 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 struct zone *zone = page_zone(page);
4519 zone->compact_blockskip_flush = false;
4520 compaction_defer_reset(zone, order, true);
4521 count_vm_event(COMPACTSUCCESS);
4526 * It's bad if compaction run occurs and fails. The most likely reason
4527 * is that pages exist, but not enough to satisfy watermarks.
4529 count_vm_event(COMPACTFAIL);
4537 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4538 enum compact_result compact_result,
4539 enum compact_priority *compact_priority,
4540 int *compaction_retries)
4542 int max_retries = MAX_COMPACT_RETRIES;
4545 int retries = *compaction_retries;
4546 enum compact_priority priority = *compact_priority;
4551 if (fatal_signal_pending(current))
4554 if (compaction_made_progress(compact_result))
4555 (*compaction_retries)++;
4558 * compaction considers all the zone as desperately out of memory
4559 * so it doesn't really make much sense to retry except when the
4560 * failure could be caused by insufficient priority
4562 if (compaction_failed(compact_result))
4563 goto check_priority;
4566 * compaction was skipped because there are not enough order-0 pages
4567 * to work with, so we retry only if it looks like reclaim can help.
4569 if (compaction_needs_reclaim(compact_result)) {
4570 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4575 * make sure the compaction wasn't deferred or didn't bail out early
4576 * due to locks contention before we declare that we should give up.
4577 * But the next retry should use a higher priority if allowed, so
4578 * we don't just keep bailing out endlessly.
4580 if (compaction_withdrawn(compact_result)) {
4581 goto check_priority;
4585 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4586 * costly ones because they are de facto nofail and invoke OOM
4587 * killer to move on while costly can fail and users are ready
4588 * to cope with that. 1/4 retries is rather arbitrary but we
4589 * would need much more detailed feedback from compaction to
4590 * make a better decision.
4592 if (order > PAGE_ALLOC_COSTLY_ORDER)
4594 if (*compaction_retries <= max_retries) {
4600 * Make sure there are attempts at the highest priority if we exhausted
4601 * all retries or failed at the lower priorities.
4604 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4605 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4607 if (*compact_priority > min_priority) {
4608 (*compact_priority)--;
4609 *compaction_retries = 0;
4613 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4617 static inline struct page *
4618 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4619 unsigned int alloc_flags, const struct alloc_context *ac,
4620 enum compact_priority prio, enum compact_result *compact_result)
4622 *compact_result = COMPACT_SKIPPED;
4627 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4628 enum compact_result compact_result,
4629 enum compact_priority *compact_priority,
4630 int *compaction_retries)
4635 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4639 * There are setups with compaction disabled which would prefer to loop
4640 * inside the allocator rather than hit the oom killer prematurely.
4641 * Let's give them a good hope and keep retrying while the order-0
4642 * watermarks are OK.
4644 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4645 ac->highest_zoneidx, ac->nodemask) {
4646 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4647 ac->highest_zoneidx, alloc_flags))
4652 #endif /* CONFIG_COMPACTION */
4654 #ifdef CONFIG_LOCKDEP
4655 static struct lockdep_map __fs_reclaim_map =
4656 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4658 static bool __need_reclaim(gfp_t gfp_mask)
4660 /* no reclaim without waiting on it */
4661 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4664 /* this guy won't enter reclaim */
4665 if (current->flags & PF_MEMALLOC)
4668 if (gfp_mask & __GFP_NOLOCKDEP)
4674 void __fs_reclaim_acquire(unsigned long ip)
4676 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4679 void __fs_reclaim_release(unsigned long ip)
4681 lock_release(&__fs_reclaim_map, ip);
4684 void fs_reclaim_acquire(gfp_t gfp_mask)
4686 gfp_mask = current_gfp_context(gfp_mask);
4688 if (__need_reclaim(gfp_mask)) {
4689 if (gfp_mask & __GFP_FS)
4690 __fs_reclaim_acquire(_RET_IP_);
4692 #ifdef CONFIG_MMU_NOTIFIER
4693 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4694 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4699 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4701 void fs_reclaim_release(gfp_t gfp_mask)
4703 gfp_mask = current_gfp_context(gfp_mask);
4705 if (__need_reclaim(gfp_mask)) {
4706 if (gfp_mask & __GFP_FS)
4707 __fs_reclaim_release(_RET_IP_);
4710 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4713 /* Perform direct synchronous page reclaim */
4714 static unsigned long
4715 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4716 const struct alloc_context *ac)
4718 unsigned int noreclaim_flag;
4719 unsigned long progress;
4723 /* We now go into synchronous reclaim */
4724 cpuset_memory_pressure_bump();
4725 fs_reclaim_acquire(gfp_mask);
4726 noreclaim_flag = memalloc_noreclaim_save();
4728 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4731 memalloc_noreclaim_restore(noreclaim_flag);
4732 fs_reclaim_release(gfp_mask);
4739 /* The really slow allocator path where we enter direct reclaim */
4740 static inline struct page *
4741 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4742 unsigned int alloc_flags, const struct alloc_context *ac,
4743 unsigned long *did_some_progress)
4745 struct page *page = NULL;
4746 unsigned long pflags;
4747 bool drained = false;
4749 psi_memstall_enter(&pflags);
4750 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4751 if (unlikely(!(*did_some_progress)))
4755 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4758 * If an allocation failed after direct reclaim, it could be because
4759 * pages are pinned on the per-cpu lists or in high alloc reserves.
4760 * Shrink them and try again
4762 if (!page && !drained) {
4763 unreserve_highatomic_pageblock(ac, false);
4764 drain_all_pages(NULL);
4769 psi_memstall_leave(&pflags);
4774 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4775 const struct alloc_context *ac)
4779 pg_data_t *last_pgdat = NULL;
4780 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4782 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4784 if (!managed_zone(zone))
4786 if (last_pgdat != zone->zone_pgdat) {
4787 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4788 last_pgdat = zone->zone_pgdat;
4793 static inline unsigned int
4794 gfp_to_alloc_flags(gfp_t gfp_mask)
4796 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4799 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4800 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4801 * to save two branches.
4803 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4804 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4807 * The caller may dip into page reserves a bit more if the caller
4808 * cannot run direct reclaim, or if the caller has realtime scheduling
4809 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4810 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4812 alloc_flags |= (__force int)
4813 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4815 if (gfp_mask & __GFP_ATOMIC) {
4817 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4818 * if it can't schedule.
4820 if (!(gfp_mask & __GFP_NOMEMALLOC))
4821 alloc_flags |= ALLOC_HARDER;
4823 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4824 * comment for __cpuset_node_allowed().
4826 alloc_flags &= ~ALLOC_CPUSET;
4827 } else if (unlikely(rt_task(current)) && in_task())
4828 alloc_flags |= ALLOC_HARDER;
4830 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4835 static bool oom_reserves_allowed(struct task_struct *tsk)
4837 if (!tsk_is_oom_victim(tsk))
4841 * !MMU doesn't have oom reaper so give access to memory reserves
4842 * only to the thread with TIF_MEMDIE set
4844 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4851 * Distinguish requests which really need access to full memory
4852 * reserves from oom victims which can live with a portion of it
4854 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4856 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4858 if (gfp_mask & __GFP_MEMALLOC)
4859 return ALLOC_NO_WATERMARKS;
4860 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4861 return ALLOC_NO_WATERMARKS;
4862 if (!in_interrupt()) {
4863 if (current->flags & PF_MEMALLOC)
4864 return ALLOC_NO_WATERMARKS;
4865 else if (oom_reserves_allowed(current))
4872 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4874 return !!__gfp_pfmemalloc_flags(gfp_mask);
4878 * Checks whether it makes sense to retry the reclaim to make a forward progress
4879 * for the given allocation request.
4881 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4882 * without success, or when we couldn't even meet the watermark if we
4883 * reclaimed all remaining pages on the LRU lists.
4885 * Returns true if a retry is viable or false to enter the oom path.
4888 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4889 struct alloc_context *ac, int alloc_flags,
4890 bool did_some_progress, int *no_progress_loops)
4897 * Costly allocations might have made a progress but this doesn't mean
4898 * their order will become available due to high fragmentation so
4899 * always increment the no progress counter for them
4901 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4902 *no_progress_loops = 0;
4904 (*no_progress_loops)++;
4907 * Make sure we converge to OOM if we cannot make any progress
4908 * several times in the row.
4910 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4911 /* Before OOM, exhaust highatomic_reserve */
4912 return unreserve_highatomic_pageblock(ac, true);
4916 * Keep reclaiming pages while there is a chance this will lead
4917 * somewhere. If none of the target zones can satisfy our allocation
4918 * request even if all reclaimable pages are considered then we are
4919 * screwed and have to go OOM.
4921 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4922 ac->highest_zoneidx, ac->nodemask) {
4923 unsigned long available;
4924 unsigned long reclaimable;
4925 unsigned long min_wmark = min_wmark_pages(zone);
4928 available = reclaimable = zone_reclaimable_pages(zone);
4929 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4932 * Would the allocation succeed if we reclaimed all
4933 * reclaimable pages?
4935 wmark = __zone_watermark_ok(zone, order, min_wmark,
4936 ac->highest_zoneidx, alloc_flags, available);
4937 trace_reclaim_retry_zone(z, order, reclaimable,
4938 available, min_wmark, *no_progress_loops, wmark);
4946 * Memory allocation/reclaim might be called from a WQ context and the
4947 * current implementation of the WQ concurrency control doesn't
4948 * recognize that a particular WQ is congested if the worker thread is
4949 * looping without ever sleeping. Therefore we have to do a short sleep
4950 * here rather than calling cond_resched().
4952 if (current->flags & PF_WQ_WORKER)
4953 schedule_timeout_uninterruptible(1);
4960 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4963 * It's possible that cpuset's mems_allowed and the nodemask from
4964 * mempolicy don't intersect. This should be normally dealt with by
4965 * policy_nodemask(), but it's possible to race with cpuset update in
4966 * such a way the check therein was true, and then it became false
4967 * before we got our cpuset_mems_cookie here.
4968 * This assumes that for all allocations, ac->nodemask can come only
4969 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4970 * when it does not intersect with the cpuset restrictions) or the
4971 * caller can deal with a violated nodemask.
4973 if (cpusets_enabled() && ac->nodemask &&
4974 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4975 ac->nodemask = NULL;
4980 * When updating a task's mems_allowed or mempolicy nodemask, it is
4981 * possible to race with parallel threads in such a way that our
4982 * allocation can fail while the mask is being updated. If we are about
4983 * to fail, check if the cpuset changed during allocation and if so,
4986 if (read_mems_allowed_retry(cpuset_mems_cookie))
4992 static inline struct page *
4993 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4994 struct alloc_context *ac)
4996 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4997 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4998 struct page *page = NULL;
4999 unsigned int alloc_flags;
5000 unsigned long did_some_progress;
5001 enum compact_priority compact_priority;
5002 enum compact_result compact_result;
5003 int compaction_retries;
5004 int no_progress_loops;
5005 unsigned int cpuset_mems_cookie;
5009 * We also sanity check to catch abuse of atomic reserves being used by
5010 * callers that are not in atomic context.
5012 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5013 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5014 gfp_mask &= ~__GFP_ATOMIC;
5017 compaction_retries = 0;
5018 no_progress_loops = 0;
5019 compact_priority = DEF_COMPACT_PRIORITY;
5020 cpuset_mems_cookie = read_mems_allowed_begin();
5023 * The fast path uses conservative alloc_flags to succeed only until
5024 * kswapd needs to be woken up, and to avoid the cost of setting up
5025 * alloc_flags precisely. So we do that now.
5027 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5030 * We need to recalculate the starting point for the zonelist iterator
5031 * because we might have used different nodemask in the fast path, or
5032 * there was a cpuset modification and we are retrying - otherwise we
5033 * could end up iterating over non-eligible zones endlessly.
5035 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5036 ac->highest_zoneidx, ac->nodemask);
5037 if (!ac->preferred_zoneref->zone)
5041 * Check for insane configurations where the cpuset doesn't contain
5042 * any suitable zone to satisfy the request - e.g. non-movable
5043 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5045 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5046 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5047 ac->highest_zoneidx,
5048 &cpuset_current_mems_allowed);
5053 if (alloc_flags & ALLOC_KSWAPD)
5054 wake_all_kswapds(order, gfp_mask, ac);
5057 * The adjusted alloc_flags might result in immediate success, so try
5060 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5065 * For costly allocations, try direct compaction first, as it's likely
5066 * that we have enough base pages and don't need to reclaim. For non-
5067 * movable high-order allocations, do that as well, as compaction will
5068 * try prevent permanent fragmentation by migrating from blocks of the
5070 * Don't try this for allocations that are allowed to ignore
5071 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5073 if (can_direct_reclaim &&
5075 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5076 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5077 page = __alloc_pages_direct_compact(gfp_mask, order,
5079 INIT_COMPACT_PRIORITY,
5085 * Checks for costly allocations with __GFP_NORETRY, which
5086 * includes some THP page fault allocations
5088 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5090 * If allocating entire pageblock(s) and compaction
5091 * failed because all zones are below low watermarks
5092 * or is prohibited because it recently failed at this
5093 * order, fail immediately unless the allocator has
5094 * requested compaction and reclaim retry.
5097 * - potentially very expensive because zones are far
5098 * below their low watermarks or this is part of very
5099 * bursty high order allocations,
5100 * - not guaranteed to help because isolate_freepages()
5101 * may not iterate over freed pages as part of its
5103 * - unlikely to make entire pageblocks free on its
5106 if (compact_result == COMPACT_SKIPPED ||
5107 compact_result == COMPACT_DEFERRED)
5111 * Looks like reclaim/compaction is worth trying, but
5112 * sync compaction could be very expensive, so keep
5113 * using async compaction.
5115 compact_priority = INIT_COMPACT_PRIORITY;
5120 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5121 if (alloc_flags & ALLOC_KSWAPD)
5122 wake_all_kswapds(order, gfp_mask, ac);
5124 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5126 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5129 * Reset the nodemask and zonelist iterators if memory policies can be
5130 * ignored. These allocations are high priority and system rather than
5133 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5134 ac->nodemask = NULL;
5135 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5136 ac->highest_zoneidx, ac->nodemask);
5139 /* Attempt with potentially adjusted zonelist and alloc_flags */
5140 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5144 /* Caller is not willing to reclaim, we can't balance anything */
5145 if (!can_direct_reclaim)
5148 /* Avoid recursion of direct reclaim */
5149 if (current->flags & PF_MEMALLOC)
5152 /* Try direct reclaim and then allocating */
5153 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5154 &did_some_progress);
5158 /* Try direct compaction and then allocating */
5159 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5160 compact_priority, &compact_result);
5164 /* Do not loop if specifically requested */
5165 if (gfp_mask & __GFP_NORETRY)
5169 * Do not retry costly high order allocations unless they are
5170 * __GFP_RETRY_MAYFAIL
5172 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5175 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5176 did_some_progress > 0, &no_progress_loops))
5180 * It doesn't make any sense to retry for the compaction if the order-0
5181 * reclaim is not able to make any progress because the current
5182 * implementation of the compaction depends on the sufficient amount
5183 * of free memory (see __compaction_suitable)
5185 if (did_some_progress > 0 &&
5186 should_compact_retry(ac, order, alloc_flags,
5187 compact_result, &compact_priority,
5188 &compaction_retries))
5192 /* Deal with possible cpuset update races before we start OOM killing */
5193 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5196 /* Reclaim has failed us, start killing things */
5197 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5201 /* Avoid allocations with no watermarks from looping endlessly */
5202 if (tsk_is_oom_victim(current) &&
5203 (alloc_flags & ALLOC_OOM ||
5204 (gfp_mask & __GFP_NOMEMALLOC)))
5207 /* Retry as long as the OOM killer is making progress */
5208 if (did_some_progress) {
5209 no_progress_loops = 0;
5214 /* Deal with possible cpuset update races before we fail */
5215 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5219 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5222 if (gfp_mask & __GFP_NOFAIL) {
5224 * All existing users of the __GFP_NOFAIL are blockable, so warn
5225 * of any new users that actually require GFP_NOWAIT
5227 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5231 * PF_MEMALLOC request from this context is rather bizarre
5232 * because we cannot reclaim anything and only can loop waiting
5233 * for somebody to do a work for us
5235 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5238 * non failing costly orders are a hard requirement which we
5239 * are not prepared for much so let's warn about these users
5240 * so that we can identify them and convert them to something
5243 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5246 * Help non-failing allocations by giving them access to memory
5247 * reserves but do not use ALLOC_NO_WATERMARKS because this
5248 * could deplete whole memory reserves which would just make
5249 * the situation worse
5251 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5259 warn_alloc(gfp_mask, ac->nodemask,
5260 "page allocation failure: order:%u", order);
5265 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5266 int preferred_nid, nodemask_t *nodemask,
5267 struct alloc_context *ac, gfp_t *alloc_gfp,
5268 unsigned int *alloc_flags)
5270 ac->highest_zoneidx = gfp_zone(gfp_mask);
5271 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5272 ac->nodemask = nodemask;
5273 ac->migratetype = gfp_migratetype(gfp_mask);
5275 if (cpusets_enabled()) {
5276 *alloc_gfp |= __GFP_HARDWALL;
5278 * When we are in the interrupt context, it is irrelevant
5279 * to the current task context. It means that any node ok.
5281 if (in_task() && !ac->nodemask)
5282 ac->nodemask = &cpuset_current_mems_allowed;
5284 *alloc_flags |= ALLOC_CPUSET;
5287 might_alloc(gfp_mask);
5289 if (should_fail_alloc_page(gfp_mask, order))
5292 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5294 /* Dirty zone balancing only done in the fast path */
5295 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5298 * The preferred zone is used for statistics but crucially it is
5299 * also used as the starting point for the zonelist iterator. It
5300 * may get reset for allocations that ignore memory policies.
5302 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5303 ac->highest_zoneidx, ac->nodemask);
5309 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5310 * @gfp: GFP flags for the allocation
5311 * @preferred_nid: The preferred NUMA node ID to allocate from
5312 * @nodemask: Set of nodes to allocate from, may be NULL
5313 * @nr_pages: The number of pages desired on the list or array
5314 * @page_list: Optional list to store the allocated pages
5315 * @page_array: Optional array to store the pages
5317 * This is a batched version of the page allocator that attempts to
5318 * allocate nr_pages quickly. Pages are added to page_list if page_list
5319 * is not NULL, otherwise it is assumed that the page_array is valid.
5321 * For lists, nr_pages is the number of pages that should be allocated.
5323 * For arrays, only NULL elements are populated with pages and nr_pages
5324 * is the maximum number of pages that will be stored in the array.
5326 * Returns the number of pages on the list or array.
5328 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5329 nodemask_t *nodemask, int nr_pages,
5330 struct list_head *page_list,
5331 struct page **page_array)
5334 unsigned long flags;
5335 unsigned long __maybe_unused UP_flags;
5338 struct per_cpu_pages *pcp;
5339 struct list_head *pcp_list;
5340 struct alloc_context ac;
5342 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5343 int nr_populated = 0, nr_account = 0;
5346 * Skip populated array elements to determine if any pages need
5347 * to be allocated before disabling IRQs.
5349 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5352 /* No pages requested? */
5353 if (unlikely(nr_pages <= 0))
5356 /* Already populated array? */
5357 if (unlikely(page_array && nr_pages - nr_populated == 0))
5360 /* Bulk allocator does not support memcg accounting. */
5361 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5364 /* Use the single page allocator for one page. */
5365 if (nr_pages - nr_populated == 1)
5368 #ifdef CONFIG_PAGE_OWNER
5370 * PAGE_OWNER may recurse into the allocator to allocate space to
5371 * save the stack with pagesets.lock held. Releasing/reacquiring
5372 * removes much of the performance benefit of bulk allocation so
5373 * force the caller to allocate one page at a time as it'll have
5374 * similar performance to added complexity to the bulk allocator.
5376 if (static_branch_unlikely(&page_owner_inited))
5380 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5381 gfp &= gfp_allowed_mask;
5383 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5387 /* Find an allowed local zone that meets the low watermark. */
5388 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5391 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5392 !__cpuset_zone_allowed(zone, gfp)) {
5396 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5397 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5401 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5402 if (zone_watermark_fast(zone, 0, mark,
5403 zonelist_zone_idx(ac.preferred_zoneref),
5404 alloc_flags, gfp)) {
5410 * If there are no allowed local zones that meets the watermarks then
5411 * try to allocate a single page and reclaim if necessary.
5413 if (unlikely(!zone))
5416 /* Is a parallel drain in progress? */
5417 pcp_trylock_prepare(UP_flags);
5418 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5422 /* Attempt the batch allocation */
5423 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5424 while (nr_populated < nr_pages) {
5426 /* Skip existing pages */
5427 if (page_array && page_array[nr_populated]) {
5432 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5434 if (unlikely(!page)) {
5435 /* Try and allocate at least one page */
5437 pcp_spin_unlock_irqrestore(pcp, flags);
5444 prep_new_page(page, 0, gfp, 0);
5446 list_add(&page->lru, page_list);
5448 page_array[nr_populated] = page;
5452 pcp_spin_unlock_irqrestore(pcp, flags);
5453 pcp_trylock_finish(UP_flags);
5455 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5456 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5459 return nr_populated;
5462 pcp_trylock_finish(UP_flags);
5465 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5468 list_add(&page->lru, page_list);
5470 page_array[nr_populated] = page;
5476 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5479 * This is the 'heart' of the zoned buddy allocator.
5481 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5482 nodemask_t *nodemask)
5485 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5486 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5487 struct alloc_context ac = { };
5490 * There are several places where we assume that the order value is sane
5491 * so bail out early if the request is out of bound.
5493 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5496 gfp &= gfp_allowed_mask;
5498 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5499 * resp. GFP_NOIO which has to be inherited for all allocation requests
5500 * from a particular context which has been marked by
5501 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5502 * movable zones are not used during allocation.
5504 gfp = current_gfp_context(gfp);
5506 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5507 &alloc_gfp, &alloc_flags))
5511 * Forbid the first pass from falling back to types that fragment
5512 * memory until all local zones are considered.
5514 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5516 /* First allocation attempt */
5517 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5522 ac.spread_dirty_pages = false;
5525 * Restore the original nodemask if it was potentially replaced with
5526 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5528 ac.nodemask = nodemask;
5530 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5533 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5534 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5535 __free_pages(page, order);
5539 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5543 EXPORT_SYMBOL(__alloc_pages);
5545 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5546 nodemask_t *nodemask)
5548 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5549 preferred_nid, nodemask);
5551 if (page && order > 1)
5552 prep_transhuge_page(page);
5553 return (struct folio *)page;
5555 EXPORT_SYMBOL(__folio_alloc);
5558 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5559 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5560 * you need to access high mem.
5562 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5566 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5569 return (unsigned long) page_address(page);
5571 EXPORT_SYMBOL(__get_free_pages);
5573 unsigned long get_zeroed_page(gfp_t gfp_mask)
5575 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5577 EXPORT_SYMBOL(get_zeroed_page);
5580 * __free_pages - Free pages allocated with alloc_pages().
5581 * @page: The page pointer returned from alloc_pages().
5582 * @order: The order of the allocation.
5584 * This function can free multi-page allocations that are not compound
5585 * pages. It does not check that the @order passed in matches that of
5586 * the allocation, so it is easy to leak memory. Freeing more memory
5587 * than was allocated will probably emit a warning.
5589 * If the last reference to this page is speculative, it will be released
5590 * by put_page() which only frees the first page of a non-compound
5591 * allocation. To prevent the remaining pages from being leaked, we free
5592 * the subsequent pages here. If you want to use the page's reference
5593 * count to decide when to free the allocation, you should allocate a
5594 * compound page, and use put_page() instead of __free_pages().
5596 * Context: May be called in interrupt context or while holding a normal
5597 * spinlock, but not in NMI context or while holding a raw spinlock.
5599 void __free_pages(struct page *page, unsigned int order)
5601 if (put_page_testzero(page))
5602 free_the_page(page, order);
5603 else if (!PageHead(page))
5605 free_the_page(page + (1 << order), order);
5607 EXPORT_SYMBOL(__free_pages);
5609 void free_pages(unsigned long addr, unsigned int order)
5612 VM_BUG_ON(!virt_addr_valid((void *)addr));
5613 __free_pages(virt_to_page((void *)addr), order);
5617 EXPORT_SYMBOL(free_pages);
5621 * An arbitrary-length arbitrary-offset area of memory which resides
5622 * within a 0 or higher order page. Multiple fragments within that page
5623 * are individually refcounted, in the page's reference counter.
5625 * The page_frag functions below provide a simple allocation framework for
5626 * page fragments. This is used by the network stack and network device
5627 * drivers to provide a backing region of memory for use as either an
5628 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5630 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5633 struct page *page = NULL;
5634 gfp_t gfp = gfp_mask;
5636 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5637 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5639 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5640 PAGE_FRAG_CACHE_MAX_ORDER);
5641 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5643 if (unlikely(!page))
5644 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5646 nc->va = page ? page_address(page) : NULL;
5651 void __page_frag_cache_drain(struct page *page, unsigned int count)
5653 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5655 if (page_ref_sub_and_test(page, count))
5656 free_the_page(page, compound_order(page));
5658 EXPORT_SYMBOL(__page_frag_cache_drain);
5660 void *page_frag_alloc_align(struct page_frag_cache *nc,
5661 unsigned int fragsz, gfp_t gfp_mask,
5662 unsigned int align_mask)
5664 unsigned int size = PAGE_SIZE;
5668 if (unlikely(!nc->va)) {
5670 page = __page_frag_cache_refill(nc, gfp_mask);
5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5675 /* if size can vary use size else just use PAGE_SIZE */
5678 /* Even if we own the page, we do not use atomic_set().
5679 * This would break get_page_unless_zero() users.
5681 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5683 /* reset page count bias and offset to start of new frag */
5684 nc->pfmemalloc = page_is_pfmemalloc(page);
5685 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5689 offset = nc->offset - fragsz;
5690 if (unlikely(offset < 0)) {
5691 page = virt_to_page(nc->va);
5693 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5696 if (unlikely(nc->pfmemalloc)) {
5697 free_the_page(page, compound_order(page));
5701 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5702 /* if size can vary use size else just use PAGE_SIZE */
5705 /* OK, page count is 0, we can safely set it */
5706 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5708 /* reset page count bias and offset to start of new frag */
5709 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5710 offset = size - fragsz;
5714 offset &= align_mask;
5715 nc->offset = offset;
5717 return nc->va + offset;
5719 EXPORT_SYMBOL(page_frag_alloc_align);
5722 * Frees a page fragment allocated out of either a compound or order 0 page.
5724 void page_frag_free(void *addr)
5726 struct page *page = virt_to_head_page(addr);
5728 if (unlikely(put_page_testzero(page)))
5729 free_the_page(page, compound_order(page));
5731 EXPORT_SYMBOL(page_frag_free);
5733 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5737 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5738 unsigned long used = addr + PAGE_ALIGN(size);
5740 split_page(virt_to_page((void *)addr), order);
5741 while (used < alloc_end) {
5746 return (void *)addr;
5750 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5751 * @size: the number of bytes to allocate
5752 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5754 * This function is similar to alloc_pages(), except that it allocates the
5755 * minimum number of pages to satisfy the request. alloc_pages() can only
5756 * allocate memory in power-of-two pages.
5758 * This function is also limited by MAX_ORDER.
5760 * Memory allocated by this function must be released by free_pages_exact().
5762 * Return: pointer to the allocated area or %NULL in case of error.
5764 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5766 unsigned int order = get_order(size);
5769 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5770 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5772 addr = __get_free_pages(gfp_mask, order);
5773 return make_alloc_exact(addr, order, size);
5775 EXPORT_SYMBOL(alloc_pages_exact);
5778 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5780 * @nid: the preferred node ID where memory should be allocated
5781 * @size: the number of bytes to allocate
5782 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5784 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5787 * Return: pointer to the allocated area or %NULL in case of error.
5789 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5791 unsigned int order = get_order(size);
5794 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5795 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5797 p = alloc_pages_node(nid, gfp_mask, order);
5800 return make_alloc_exact((unsigned long)page_address(p), order, size);
5804 * free_pages_exact - release memory allocated via alloc_pages_exact()
5805 * @virt: the value returned by alloc_pages_exact.
5806 * @size: size of allocation, same value as passed to alloc_pages_exact().
5808 * Release the memory allocated by a previous call to alloc_pages_exact.
5810 void free_pages_exact(void *virt, size_t size)
5812 unsigned long addr = (unsigned long)virt;
5813 unsigned long end = addr + PAGE_ALIGN(size);
5815 while (addr < end) {
5820 EXPORT_SYMBOL(free_pages_exact);
5823 * nr_free_zone_pages - count number of pages beyond high watermark
5824 * @offset: The zone index of the highest zone
5826 * nr_free_zone_pages() counts the number of pages which are beyond the
5827 * high watermark within all zones at or below a given zone index. For each
5828 * zone, the number of pages is calculated as:
5830 * nr_free_zone_pages = managed_pages - high_pages
5832 * Return: number of pages beyond high watermark.
5834 static unsigned long nr_free_zone_pages(int offset)
5839 /* Just pick one node, since fallback list is circular */
5840 unsigned long sum = 0;
5842 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5844 for_each_zone_zonelist(zone, z, zonelist, offset) {
5845 unsigned long size = zone_managed_pages(zone);
5846 unsigned long high = high_wmark_pages(zone);
5855 * nr_free_buffer_pages - count number of pages beyond high watermark
5857 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5858 * watermark within ZONE_DMA and ZONE_NORMAL.
5860 * Return: number of pages beyond high watermark within ZONE_DMA and
5863 unsigned long nr_free_buffer_pages(void)
5865 return nr_free_zone_pages(gfp_zone(GFP_USER));
5867 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5869 static inline void show_node(struct zone *zone)
5871 if (IS_ENABLED(CONFIG_NUMA))
5872 printk("Node %d ", zone_to_nid(zone));
5875 long si_mem_available(void)
5878 unsigned long pagecache;
5879 unsigned long wmark_low = 0;
5880 unsigned long pages[NR_LRU_LISTS];
5881 unsigned long reclaimable;
5885 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5886 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5889 wmark_low += low_wmark_pages(zone);
5892 * Estimate the amount of memory available for userspace allocations,
5893 * without causing swapping or OOM.
5895 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5898 * Not all the page cache can be freed, otherwise the system will
5899 * start swapping or thrashing. Assume at least half of the page
5900 * cache, or the low watermark worth of cache, needs to stay.
5902 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5903 pagecache -= min(pagecache / 2, wmark_low);
5904 available += pagecache;
5907 * Part of the reclaimable slab and other kernel memory consists of
5908 * items that are in use, and cannot be freed. Cap this estimate at the
5911 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5912 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5913 available += reclaimable - min(reclaimable / 2, wmark_low);
5919 EXPORT_SYMBOL_GPL(si_mem_available);
5921 void si_meminfo(struct sysinfo *val)
5923 val->totalram = totalram_pages();
5924 val->sharedram = global_node_page_state(NR_SHMEM);
5925 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5926 val->bufferram = nr_blockdev_pages();
5927 val->totalhigh = totalhigh_pages();
5928 val->freehigh = nr_free_highpages();
5929 val->mem_unit = PAGE_SIZE;
5932 EXPORT_SYMBOL(si_meminfo);
5935 void si_meminfo_node(struct sysinfo *val, int nid)
5937 int zone_type; /* needs to be signed */
5938 unsigned long managed_pages = 0;
5939 unsigned long managed_highpages = 0;
5940 unsigned long free_highpages = 0;
5941 pg_data_t *pgdat = NODE_DATA(nid);
5943 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5944 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5945 val->totalram = managed_pages;
5946 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5947 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5948 #ifdef CONFIG_HIGHMEM
5949 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5950 struct zone *zone = &pgdat->node_zones[zone_type];
5952 if (is_highmem(zone)) {
5953 managed_highpages += zone_managed_pages(zone);
5954 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5957 val->totalhigh = managed_highpages;
5958 val->freehigh = free_highpages;
5960 val->totalhigh = managed_highpages;
5961 val->freehigh = free_highpages;
5963 val->mem_unit = PAGE_SIZE;
5968 * Determine whether the node should be displayed or not, depending on whether
5969 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5971 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5973 if (!(flags & SHOW_MEM_FILTER_NODES))
5977 * no node mask - aka implicit memory numa policy. Do not bother with
5978 * the synchronization - read_mems_allowed_begin - because we do not
5979 * have to be precise here.
5982 nodemask = &cpuset_current_mems_allowed;
5984 return !node_isset(nid, *nodemask);
5987 #define K(x) ((x) << (PAGE_SHIFT-10))
5989 static void show_migration_types(unsigned char type)
5991 static const char types[MIGRATE_TYPES] = {
5992 [MIGRATE_UNMOVABLE] = 'U',
5993 [MIGRATE_MOVABLE] = 'M',
5994 [MIGRATE_RECLAIMABLE] = 'E',
5995 [MIGRATE_HIGHATOMIC] = 'H',
5997 [MIGRATE_CMA] = 'C',
5999 #ifdef CONFIG_MEMORY_ISOLATION
6000 [MIGRATE_ISOLATE] = 'I',
6003 char tmp[MIGRATE_TYPES + 1];
6007 for (i = 0; i < MIGRATE_TYPES; i++) {
6008 if (type & (1 << i))
6013 printk(KERN_CONT "(%s) ", tmp);
6017 * Show free area list (used inside shift_scroll-lock stuff)
6018 * We also calculate the percentage fragmentation. We do this by counting the
6019 * memory on each free list with the exception of the first item on the list.
6022 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6025 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6027 unsigned long free_pcp = 0;
6032 for_each_populated_zone(zone) {
6033 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6036 for_each_online_cpu(cpu)
6037 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6040 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6041 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6042 " unevictable:%lu dirty:%lu writeback:%lu\n"
6043 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6044 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6045 " kernel_misc_reclaimable:%lu\n"
6046 " free:%lu free_pcp:%lu free_cma:%lu\n",
6047 global_node_page_state(NR_ACTIVE_ANON),
6048 global_node_page_state(NR_INACTIVE_ANON),
6049 global_node_page_state(NR_ISOLATED_ANON),
6050 global_node_page_state(NR_ACTIVE_FILE),
6051 global_node_page_state(NR_INACTIVE_FILE),
6052 global_node_page_state(NR_ISOLATED_FILE),
6053 global_node_page_state(NR_UNEVICTABLE),
6054 global_node_page_state(NR_FILE_DIRTY),
6055 global_node_page_state(NR_WRITEBACK),
6056 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6057 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6058 global_node_page_state(NR_FILE_MAPPED),
6059 global_node_page_state(NR_SHMEM),
6060 global_node_page_state(NR_PAGETABLE),
6061 global_zone_page_state(NR_BOUNCE),
6062 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6063 global_zone_page_state(NR_FREE_PAGES),
6065 global_zone_page_state(NR_FREE_CMA_PAGES));
6067 for_each_online_pgdat(pgdat) {
6068 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6072 " active_anon:%lukB"
6073 " inactive_anon:%lukB"
6074 " active_file:%lukB"
6075 " inactive_file:%lukB"
6076 " unevictable:%lukB"
6077 " isolated(anon):%lukB"
6078 " isolated(file):%lukB"
6083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6085 " shmem_pmdmapped: %lukB"
6088 " writeback_tmp:%lukB"
6089 " kernel_stack:%lukB"
6090 #ifdef CONFIG_SHADOW_CALL_STACK
6091 " shadow_call_stack:%lukB"
6094 " all_unreclaimable? %s"
6097 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6098 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6099 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6100 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6101 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6102 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6103 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6104 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6105 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6106 K(node_page_state(pgdat, NR_WRITEBACK)),
6107 K(node_page_state(pgdat, NR_SHMEM)),
6108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6109 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6110 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6111 K(node_page_state(pgdat, NR_ANON_THPS)),
6113 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6114 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6115 #ifdef CONFIG_SHADOW_CALL_STACK
6116 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6118 K(node_page_state(pgdat, NR_PAGETABLE)),
6119 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6123 for_each_populated_zone(zone) {
6126 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6130 for_each_online_cpu(cpu)
6131 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6141 " reserved_highatomic:%luKB"
6142 " active_anon:%lukB"
6143 " inactive_anon:%lukB"
6144 " active_file:%lukB"
6145 " inactive_file:%lukB"
6146 " unevictable:%lukB"
6147 " writepending:%lukB"
6157 K(zone_page_state(zone, NR_FREE_PAGES)),
6158 K(zone->watermark_boost),
6159 K(min_wmark_pages(zone)),
6160 K(low_wmark_pages(zone)),
6161 K(high_wmark_pages(zone)),
6162 K(zone->nr_reserved_highatomic),
6163 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6164 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6165 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6166 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6167 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6168 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6169 K(zone->present_pages),
6170 K(zone_managed_pages(zone)),
6171 K(zone_page_state(zone, NR_MLOCK)),
6172 K(zone_page_state(zone, NR_BOUNCE)),
6174 K(this_cpu_read(zone->per_cpu_pageset->count)),
6175 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6176 printk("lowmem_reserve[]:");
6177 for (i = 0; i < MAX_NR_ZONES; i++)
6178 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6179 printk(KERN_CONT "\n");
6182 for_each_populated_zone(zone) {
6184 unsigned long nr[MAX_ORDER], flags, total = 0;
6185 unsigned char types[MAX_ORDER];
6187 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6190 printk(KERN_CONT "%s: ", zone->name);
6192 spin_lock_irqsave(&zone->lock, flags);
6193 for (order = 0; order < MAX_ORDER; order++) {
6194 struct free_area *area = &zone->free_area[order];
6197 nr[order] = area->nr_free;
6198 total += nr[order] << order;
6201 for (type = 0; type < MIGRATE_TYPES; type++) {
6202 if (!free_area_empty(area, type))
6203 types[order] |= 1 << type;
6206 spin_unlock_irqrestore(&zone->lock, flags);
6207 for (order = 0; order < MAX_ORDER; order++) {
6208 printk(KERN_CONT "%lu*%lukB ",
6209 nr[order], K(1UL) << order);
6211 show_migration_types(types[order]);
6213 printk(KERN_CONT "= %lukB\n", K(total));
6216 for_each_online_node(nid) {
6217 if (show_mem_node_skip(filter, nid, nodemask))
6219 hugetlb_show_meminfo_node(nid);
6222 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6224 show_swap_cache_info();
6227 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6229 zoneref->zone = zone;
6230 zoneref->zone_idx = zone_idx(zone);
6234 * Builds allocation fallback zone lists.
6236 * Add all populated zones of a node to the zonelist.
6238 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6241 enum zone_type zone_type = MAX_NR_ZONES;
6246 zone = pgdat->node_zones + zone_type;
6247 if (populated_zone(zone)) {
6248 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6249 check_highest_zone(zone_type);
6251 } while (zone_type);
6258 static int __parse_numa_zonelist_order(char *s)
6261 * We used to support different zonelists modes but they turned
6262 * out to be just not useful. Let's keep the warning in place
6263 * if somebody still use the cmd line parameter so that we do
6264 * not fail it silently
6266 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6267 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6273 char numa_zonelist_order[] = "Node";
6276 * sysctl handler for numa_zonelist_order
6278 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6279 void *buffer, size_t *length, loff_t *ppos)
6282 return __parse_numa_zonelist_order(buffer);
6283 return proc_dostring(table, write, buffer, length, ppos);
6287 static int node_load[MAX_NUMNODES];
6290 * find_next_best_node - find the next node that should appear in a given node's fallback list
6291 * @node: node whose fallback list we're appending
6292 * @used_node_mask: nodemask_t of already used nodes
6294 * We use a number of factors to determine which is the next node that should
6295 * appear on a given node's fallback list. The node should not have appeared
6296 * already in @node's fallback list, and it should be the next closest node
6297 * according to the distance array (which contains arbitrary distance values
6298 * from each node to each node in the system), and should also prefer nodes
6299 * with no CPUs, since presumably they'll have very little allocation pressure
6300 * on them otherwise.
6302 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6304 int find_next_best_node(int node, nodemask_t *used_node_mask)
6307 int min_val = INT_MAX;
6308 int best_node = NUMA_NO_NODE;
6310 /* Use the local node if we haven't already */
6311 if (!node_isset(node, *used_node_mask)) {
6312 node_set(node, *used_node_mask);
6316 for_each_node_state(n, N_MEMORY) {
6318 /* Don't want a node to appear more than once */
6319 if (node_isset(n, *used_node_mask))
6322 /* Use the distance array to find the distance */
6323 val = node_distance(node, n);
6325 /* Penalize nodes under us ("prefer the next node") */
6328 /* Give preference to headless and unused nodes */
6329 if (!cpumask_empty(cpumask_of_node(n)))
6330 val += PENALTY_FOR_NODE_WITH_CPUS;
6332 /* Slight preference for less loaded node */
6333 val *= MAX_NUMNODES;
6334 val += node_load[n];
6336 if (val < min_val) {
6343 node_set(best_node, *used_node_mask);
6350 * Build zonelists ordered by node and zones within node.
6351 * This results in maximum locality--normal zone overflows into local
6352 * DMA zone, if any--but risks exhausting DMA zone.
6354 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6357 struct zoneref *zonerefs;
6360 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6362 for (i = 0; i < nr_nodes; i++) {
6365 pg_data_t *node = NODE_DATA(node_order[i]);
6367 nr_zones = build_zonerefs_node(node, zonerefs);
6368 zonerefs += nr_zones;
6370 zonerefs->zone = NULL;
6371 zonerefs->zone_idx = 0;
6375 * Build gfp_thisnode zonelists
6377 static void build_thisnode_zonelists(pg_data_t *pgdat)
6379 struct zoneref *zonerefs;
6382 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6383 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6384 zonerefs += nr_zones;
6385 zonerefs->zone = NULL;
6386 zonerefs->zone_idx = 0;
6390 * Build zonelists ordered by zone and nodes within zones.
6391 * This results in conserving DMA zone[s] until all Normal memory is
6392 * exhausted, but results in overflowing to remote node while memory
6393 * may still exist in local DMA zone.
6396 static void build_zonelists(pg_data_t *pgdat)
6398 static int node_order[MAX_NUMNODES];
6399 int node, nr_nodes = 0;
6400 nodemask_t used_mask = NODE_MASK_NONE;
6401 int local_node, prev_node;
6403 /* NUMA-aware ordering of nodes */
6404 local_node = pgdat->node_id;
6405 prev_node = local_node;
6407 memset(node_order, 0, sizeof(node_order));
6408 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6410 * We don't want to pressure a particular node.
6411 * So adding penalty to the first node in same
6412 * distance group to make it round-robin.
6414 if (node_distance(local_node, node) !=
6415 node_distance(local_node, prev_node))
6416 node_load[node] += 1;
6418 node_order[nr_nodes++] = node;
6422 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6423 build_thisnode_zonelists(pgdat);
6424 pr_info("Fallback order for Node %d: ", local_node);
6425 for (node = 0; node < nr_nodes; node++)
6426 pr_cont("%d ", node_order[node]);
6430 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6432 * Return node id of node used for "local" allocations.
6433 * I.e., first node id of first zone in arg node's generic zonelist.
6434 * Used for initializing percpu 'numa_mem', which is used primarily
6435 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6437 int local_memory_node(int node)
6441 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6442 gfp_zone(GFP_KERNEL),
6444 return zone_to_nid(z->zone);
6448 static void setup_min_unmapped_ratio(void);
6449 static void setup_min_slab_ratio(void);
6450 #else /* CONFIG_NUMA */
6452 static void build_zonelists(pg_data_t *pgdat)
6454 int node, local_node;
6455 struct zoneref *zonerefs;
6458 local_node = pgdat->node_id;
6460 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6461 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6462 zonerefs += nr_zones;
6465 * Now we build the zonelist so that it contains the zones
6466 * of all the other nodes.
6467 * We don't want to pressure a particular node, so when
6468 * building the zones for node N, we make sure that the
6469 * zones coming right after the local ones are those from
6470 * node N+1 (modulo N)
6472 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6473 if (!node_online(node))
6475 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6476 zonerefs += nr_zones;
6478 for (node = 0; node < local_node; node++) {
6479 if (!node_online(node))
6481 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6482 zonerefs += nr_zones;
6485 zonerefs->zone = NULL;
6486 zonerefs->zone_idx = 0;
6489 #endif /* CONFIG_NUMA */
6492 * Boot pageset table. One per cpu which is going to be used for all
6493 * zones and all nodes. The parameters will be set in such a way
6494 * that an item put on a list will immediately be handed over to
6495 * the buddy list. This is safe since pageset manipulation is done
6496 * with interrupts disabled.
6498 * The boot_pagesets must be kept even after bootup is complete for
6499 * unused processors and/or zones. They do play a role for bootstrapping
6500 * hotplugged processors.
6502 * zoneinfo_show() and maybe other functions do
6503 * not check if the processor is online before following the pageset pointer.
6504 * Other parts of the kernel may not check if the zone is available.
6506 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6507 /* These effectively disable the pcplists in the boot pageset completely */
6508 #define BOOT_PAGESET_HIGH 0
6509 #define BOOT_PAGESET_BATCH 1
6510 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6511 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6512 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6514 static void __build_all_zonelists(void *data)
6517 int __maybe_unused cpu;
6518 pg_data_t *self = data;
6519 static DEFINE_SPINLOCK(lock);
6524 memset(node_load, 0, sizeof(node_load));
6528 * This node is hotadded and no memory is yet present. So just
6529 * building zonelists is fine - no need to touch other nodes.
6531 if (self && !node_online(self->node_id)) {
6532 build_zonelists(self);
6535 * All possible nodes have pgdat preallocated
6538 for_each_node(nid) {
6539 pg_data_t *pgdat = NODE_DATA(nid);
6541 build_zonelists(pgdat);
6544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6546 * We now know the "local memory node" for each node--
6547 * i.e., the node of the first zone in the generic zonelist.
6548 * Set up numa_mem percpu variable for on-line cpus. During
6549 * boot, only the boot cpu should be on-line; we'll init the
6550 * secondary cpus' numa_mem as they come on-line. During
6551 * node/memory hotplug, we'll fixup all on-line cpus.
6553 for_each_online_cpu(cpu)
6554 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6561 static noinline void __init
6562 build_all_zonelists_init(void)
6566 __build_all_zonelists(NULL);
6569 * Initialize the boot_pagesets that are going to be used
6570 * for bootstrapping processors. The real pagesets for
6571 * each zone will be allocated later when the per cpu
6572 * allocator is available.
6574 * boot_pagesets are used also for bootstrapping offline
6575 * cpus if the system is already booted because the pagesets
6576 * are needed to initialize allocators on a specific cpu too.
6577 * F.e. the percpu allocator needs the page allocator which
6578 * needs the percpu allocator in order to allocate its pagesets
6579 * (a chicken-egg dilemma).
6581 for_each_possible_cpu(cpu)
6582 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6584 mminit_verify_zonelist();
6585 cpuset_init_current_mems_allowed();
6589 * unless system_state == SYSTEM_BOOTING.
6591 * __ref due to call of __init annotated helper build_all_zonelists_init
6592 * [protected by SYSTEM_BOOTING].
6594 void __ref build_all_zonelists(pg_data_t *pgdat)
6596 unsigned long vm_total_pages;
6598 if (system_state == SYSTEM_BOOTING) {
6599 build_all_zonelists_init();
6601 __build_all_zonelists(pgdat);
6602 /* cpuset refresh routine should be here */
6604 /* Get the number of free pages beyond high watermark in all zones. */
6605 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6607 * Disable grouping by mobility if the number of pages in the
6608 * system is too low to allow the mechanism to work. It would be
6609 * more accurate, but expensive to check per-zone. This check is
6610 * made on memory-hotadd so a system can start with mobility
6611 * disabled and enable it later
6613 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6614 page_group_by_mobility_disabled = 1;
6616 page_group_by_mobility_disabled = 0;
6618 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6620 page_group_by_mobility_disabled ? "off" : "on",
6623 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6627 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6628 static bool __meminit
6629 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6631 static struct memblock_region *r;
6633 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6634 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6635 for_each_mem_region(r) {
6636 if (*pfn < memblock_region_memory_end_pfn(r))
6640 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6641 memblock_is_mirror(r)) {
6642 *pfn = memblock_region_memory_end_pfn(r);
6650 * Initially all pages are reserved - free ones are freed
6651 * up by memblock_free_all() once the early boot process is
6652 * done. Non-atomic initialization, single-pass.
6654 * All aligned pageblocks are initialized to the specified migratetype
6655 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6656 * zone stats (e.g., nr_isolate_pageblock) are touched.
6658 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6659 unsigned long start_pfn, unsigned long zone_end_pfn,
6660 enum meminit_context context,
6661 struct vmem_altmap *altmap, int migratetype)
6663 unsigned long pfn, end_pfn = start_pfn + size;
6666 if (highest_memmap_pfn < end_pfn - 1)
6667 highest_memmap_pfn = end_pfn - 1;
6669 #ifdef CONFIG_ZONE_DEVICE
6671 * Honor reservation requested by the driver for this ZONE_DEVICE
6672 * memory. We limit the total number of pages to initialize to just
6673 * those that might contain the memory mapping. We will defer the
6674 * ZONE_DEVICE page initialization until after we have released
6677 if (zone == ZONE_DEVICE) {
6681 if (start_pfn == altmap->base_pfn)
6682 start_pfn += altmap->reserve;
6683 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6687 for (pfn = start_pfn; pfn < end_pfn; ) {
6689 * There can be holes in boot-time mem_map[]s handed to this
6690 * function. They do not exist on hotplugged memory.
6692 if (context == MEMINIT_EARLY) {
6693 if (overlap_memmap_init(zone, &pfn))
6695 if (defer_init(nid, pfn, zone_end_pfn))
6699 page = pfn_to_page(pfn);
6700 __init_single_page(page, pfn, zone, nid);
6701 if (context == MEMINIT_HOTPLUG)
6702 __SetPageReserved(page);
6705 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6706 * such that unmovable allocations won't be scattered all
6707 * over the place during system boot.
6709 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6710 set_pageblock_migratetype(page, migratetype);
6717 #ifdef CONFIG_ZONE_DEVICE
6718 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6719 unsigned long zone_idx, int nid,
6720 struct dev_pagemap *pgmap)
6723 __init_single_page(page, pfn, zone_idx, nid);
6726 * Mark page reserved as it will need to wait for onlining
6727 * phase for it to be fully associated with a zone.
6729 * We can use the non-atomic __set_bit operation for setting
6730 * the flag as we are still initializing the pages.
6732 __SetPageReserved(page);
6735 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6736 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6737 * ever freed or placed on a driver-private list.
6739 page->pgmap = pgmap;
6740 page->zone_device_data = NULL;
6743 * Mark the block movable so that blocks are reserved for
6744 * movable at startup. This will force kernel allocations
6745 * to reserve their blocks rather than leaking throughout
6746 * the address space during boot when many long-lived
6747 * kernel allocations are made.
6749 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6750 * because this is done early in section_activate()
6752 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6753 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6759 * With compound page geometry and when struct pages are stored in ram most
6760 * tail pages are reused. Consequently, the amount of unique struct pages to
6761 * initialize is a lot smaller that the total amount of struct pages being
6762 * mapped. This is a paired / mild layering violation with explicit knowledge
6763 * of how the sparse_vmemmap internals handle compound pages in the lack
6764 * of an altmap. See vmemmap_populate_compound_pages().
6766 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6767 unsigned long nr_pages)
6769 return is_power_of_2(sizeof(struct page)) &&
6770 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6773 static void __ref memmap_init_compound(struct page *head,
6774 unsigned long head_pfn,
6775 unsigned long zone_idx, int nid,
6776 struct dev_pagemap *pgmap,
6777 unsigned long nr_pages)
6779 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6780 unsigned int order = pgmap->vmemmap_shift;
6782 __SetPageHead(head);
6783 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6784 struct page *page = pfn_to_page(pfn);
6786 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6787 prep_compound_tail(head, pfn - head_pfn);
6788 set_page_count(page, 0);
6791 * The first tail page stores compound_mapcount_ptr() and
6792 * compound_order() and the second tail page stores
6793 * compound_pincount_ptr(). Call prep_compound_head() after
6794 * the first and second tail pages have been initialized to
6795 * not have the data overwritten.
6797 if (pfn == head_pfn + 2)
6798 prep_compound_head(head, order);
6802 void __ref memmap_init_zone_device(struct zone *zone,
6803 unsigned long start_pfn,
6804 unsigned long nr_pages,
6805 struct dev_pagemap *pgmap)
6807 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6808 struct pglist_data *pgdat = zone->zone_pgdat;
6809 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6810 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6811 unsigned long zone_idx = zone_idx(zone);
6812 unsigned long start = jiffies;
6813 int nid = pgdat->node_id;
6815 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6819 * The call to memmap_init should have already taken care
6820 * of the pages reserved for the memmap, so we can just jump to
6821 * the end of that region and start processing the device pages.
6824 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6825 nr_pages = end_pfn - start_pfn;
6828 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6829 struct page *page = pfn_to_page(pfn);
6831 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6833 if (pfns_per_compound == 1)
6836 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6837 compound_nr_pages(altmap, pfns_per_compound));
6840 pr_info("%s initialised %lu pages in %ums\n", __func__,
6841 nr_pages, jiffies_to_msecs(jiffies - start));
6845 static void __meminit zone_init_free_lists(struct zone *zone)
6847 unsigned int order, t;
6848 for_each_migratetype_order(order, t) {
6849 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6850 zone->free_area[order].nr_free = 0;
6855 * Only struct pages that correspond to ranges defined by memblock.memory
6856 * are zeroed and initialized by going through __init_single_page() during
6857 * memmap_init_zone_range().
6859 * But, there could be struct pages that correspond to holes in
6860 * memblock.memory. This can happen because of the following reasons:
6861 * - physical memory bank size is not necessarily the exact multiple of the
6862 * arbitrary section size
6863 * - early reserved memory may not be listed in memblock.memory
6864 * - memory layouts defined with memmap= kernel parameter may not align
6865 * nicely with memmap sections
6867 * Explicitly initialize those struct pages so that:
6868 * - PG_Reserved is set
6869 * - zone and node links point to zone and node that span the page if the
6870 * hole is in the middle of a zone
6871 * - zone and node links point to adjacent zone/node if the hole falls on
6872 * the zone boundary; the pages in such holes will be prepended to the
6873 * zone/node above the hole except for the trailing pages in the last
6874 * section that will be appended to the zone/node below.
6876 static void __init init_unavailable_range(unsigned long spfn,
6883 for (pfn = spfn; pfn < epfn; pfn++) {
6884 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6885 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6886 + pageblock_nr_pages - 1;
6889 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6890 __SetPageReserved(pfn_to_page(pfn));
6895 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6896 node, zone_names[zone], pgcnt);
6899 static void __init memmap_init_zone_range(struct zone *zone,
6900 unsigned long start_pfn,
6901 unsigned long end_pfn,
6902 unsigned long *hole_pfn)
6904 unsigned long zone_start_pfn = zone->zone_start_pfn;
6905 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6906 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6908 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6909 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6911 if (start_pfn >= end_pfn)
6914 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6915 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6917 if (*hole_pfn < start_pfn)
6918 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6920 *hole_pfn = end_pfn;
6923 static void __init memmap_init(void)
6925 unsigned long start_pfn, end_pfn;
6926 unsigned long hole_pfn = 0;
6927 int i, j, zone_id = 0, nid;
6929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6930 struct pglist_data *node = NODE_DATA(nid);
6932 for (j = 0; j < MAX_NR_ZONES; j++) {
6933 struct zone *zone = node->node_zones + j;
6935 if (!populated_zone(zone))
6938 memmap_init_zone_range(zone, start_pfn, end_pfn,
6944 #ifdef CONFIG_SPARSEMEM
6946 * Initialize the memory map for hole in the range [memory_end,
6948 * Append the pages in this hole to the highest zone in the last
6950 * The call to init_unavailable_range() is outside the ifdef to
6951 * silence the compiler warining about zone_id set but not used;
6952 * for FLATMEM it is a nop anyway
6954 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6955 if (hole_pfn < end_pfn)
6957 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6960 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6961 phys_addr_t min_addr, int nid, bool exact_nid)
6966 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6967 MEMBLOCK_ALLOC_ACCESSIBLE,
6970 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6971 MEMBLOCK_ALLOC_ACCESSIBLE,
6974 if (ptr && size > 0)
6975 page_init_poison(ptr, size);
6980 static int zone_batchsize(struct zone *zone)
6986 * The number of pages to batch allocate is either ~0.1%
6987 * of the zone or 1MB, whichever is smaller. The batch
6988 * size is striking a balance between allocation latency
6989 * and zone lock contention.
6991 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6992 batch /= 4; /* We effectively *= 4 below */
6997 * Clamp the batch to a 2^n - 1 value. Having a power
6998 * of 2 value was found to be more likely to have
6999 * suboptimal cache aliasing properties in some cases.
7001 * For example if 2 tasks are alternately allocating
7002 * batches of pages, one task can end up with a lot
7003 * of pages of one half of the possible page colors
7004 * and the other with pages of the other colors.
7006 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7011 /* The deferral and batching of frees should be suppressed under NOMMU
7014 * The problem is that NOMMU needs to be able to allocate large chunks
7015 * of contiguous memory as there's no hardware page translation to
7016 * assemble apparent contiguous memory from discontiguous pages.
7018 * Queueing large contiguous runs of pages for batching, however,
7019 * causes the pages to actually be freed in smaller chunks. As there
7020 * can be a significant delay between the individual batches being
7021 * recycled, this leads to the once large chunks of space being
7022 * fragmented and becoming unavailable for high-order allocations.
7028 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7033 unsigned long total_pages;
7035 if (!percpu_pagelist_high_fraction) {
7037 * By default, the high value of the pcp is based on the zone
7038 * low watermark so that if they are full then background
7039 * reclaim will not be started prematurely.
7041 total_pages = low_wmark_pages(zone);
7044 * If percpu_pagelist_high_fraction is configured, the high
7045 * value is based on a fraction of the managed pages in the
7048 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7052 * Split the high value across all online CPUs local to the zone. Note
7053 * that early in boot that CPUs may not be online yet and that during
7054 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7055 * onlined. For memory nodes that have no CPUs, split pcp->high across
7056 * all online CPUs to mitigate the risk that reclaim is triggered
7057 * prematurely due to pages stored on pcp lists.
7059 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7061 nr_split_cpus = num_online_cpus();
7062 high = total_pages / nr_split_cpus;
7065 * Ensure high is at least batch*4. The multiple is based on the
7066 * historical relationship between high and batch.
7068 high = max(high, batch << 2);
7077 * pcp->high and pcp->batch values are related and generally batch is lower
7078 * than high. They are also related to pcp->count such that count is lower
7079 * than high, and as soon as it reaches high, the pcplist is flushed.
7081 * However, guaranteeing these relations at all times would require e.g. write
7082 * barriers here but also careful usage of read barriers at the read side, and
7083 * thus be prone to error and bad for performance. Thus the update only prevents
7084 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7085 * can cope with those fields changing asynchronously, and fully trust only the
7086 * pcp->count field on the local CPU with interrupts disabled.
7088 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7089 * outside of boot time (or some other assurance that no concurrent updaters
7092 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7093 unsigned long batch)
7095 WRITE_ONCE(pcp->batch, batch);
7096 WRITE_ONCE(pcp->high, high);
7099 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7103 memset(pcp, 0, sizeof(*pcp));
7104 memset(pzstats, 0, sizeof(*pzstats));
7106 spin_lock_init(&pcp->lock);
7107 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7108 INIT_LIST_HEAD(&pcp->lists[pindex]);
7111 * Set batch and high values safe for a boot pageset. A true percpu
7112 * pageset's initialization will update them subsequently. Here we don't
7113 * need to be as careful as pageset_update() as nobody can access the
7116 pcp->high = BOOT_PAGESET_HIGH;
7117 pcp->batch = BOOT_PAGESET_BATCH;
7118 pcp->free_factor = 0;
7121 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7122 unsigned long batch)
7124 struct per_cpu_pages *pcp;
7127 for_each_possible_cpu(cpu) {
7128 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7129 pageset_update(pcp, high, batch);
7134 * Calculate and set new high and batch values for all per-cpu pagesets of a
7135 * zone based on the zone's size.
7137 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7139 int new_high, new_batch;
7141 new_batch = max(1, zone_batchsize(zone));
7142 new_high = zone_highsize(zone, new_batch, cpu_online);
7144 if (zone->pageset_high == new_high &&
7145 zone->pageset_batch == new_batch)
7148 zone->pageset_high = new_high;
7149 zone->pageset_batch = new_batch;
7151 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7154 void __meminit setup_zone_pageset(struct zone *zone)
7158 /* Size may be 0 on !SMP && !NUMA */
7159 if (sizeof(struct per_cpu_zonestat) > 0)
7160 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7162 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7163 for_each_possible_cpu(cpu) {
7164 struct per_cpu_pages *pcp;
7165 struct per_cpu_zonestat *pzstats;
7167 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7168 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7169 per_cpu_pages_init(pcp, pzstats);
7172 zone_set_pageset_high_and_batch(zone, 0);
7176 * Allocate per cpu pagesets and initialize them.
7177 * Before this call only boot pagesets were available.
7179 void __init setup_per_cpu_pageset(void)
7181 struct pglist_data *pgdat;
7183 int __maybe_unused cpu;
7185 for_each_populated_zone(zone)
7186 setup_zone_pageset(zone);
7190 * Unpopulated zones continue using the boot pagesets.
7191 * The numa stats for these pagesets need to be reset.
7192 * Otherwise, they will end up skewing the stats of
7193 * the nodes these zones are associated with.
7195 for_each_possible_cpu(cpu) {
7196 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7197 memset(pzstats->vm_numa_event, 0,
7198 sizeof(pzstats->vm_numa_event));
7202 for_each_online_pgdat(pgdat)
7203 pgdat->per_cpu_nodestats =
7204 alloc_percpu(struct per_cpu_nodestat);
7207 static __meminit void zone_pcp_init(struct zone *zone)
7210 * per cpu subsystem is not up at this point. The following code
7211 * relies on the ability of the linker to provide the
7212 * offset of a (static) per cpu variable into the per cpu area.
7214 zone->per_cpu_pageset = &boot_pageset;
7215 zone->per_cpu_zonestats = &boot_zonestats;
7216 zone->pageset_high = BOOT_PAGESET_HIGH;
7217 zone->pageset_batch = BOOT_PAGESET_BATCH;
7219 if (populated_zone(zone))
7220 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7221 zone->present_pages, zone_batchsize(zone));
7224 void __meminit init_currently_empty_zone(struct zone *zone,
7225 unsigned long zone_start_pfn,
7228 struct pglist_data *pgdat = zone->zone_pgdat;
7229 int zone_idx = zone_idx(zone) + 1;
7231 if (zone_idx > pgdat->nr_zones)
7232 pgdat->nr_zones = zone_idx;
7234 zone->zone_start_pfn = zone_start_pfn;
7236 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7237 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7239 (unsigned long)zone_idx(zone),
7240 zone_start_pfn, (zone_start_pfn + size));
7242 zone_init_free_lists(zone);
7243 zone->initialized = 1;
7247 * get_pfn_range_for_nid - Return the start and end page frames for a node
7248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7252 * It returns the start and end page frame of a node based on information
7253 * provided by memblock_set_node(). If called for a node
7254 * with no available memory, a warning is printed and the start and end
7257 void __init get_pfn_range_for_nid(unsigned int nid,
7258 unsigned long *start_pfn, unsigned long *end_pfn)
7260 unsigned long this_start_pfn, this_end_pfn;
7266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7267 *start_pfn = min(*start_pfn, this_start_pfn);
7268 *end_pfn = max(*end_pfn, this_end_pfn);
7271 if (*start_pfn == -1UL)
7276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7277 * assumption is made that zones within a node are ordered in monotonic
7278 * increasing memory addresses so that the "highest" populated zone is used
7280 static void __init find_usable_zone_for_movable(void)
7283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7284 if (zone_index == ZONE_MOVABLE)
7287 if (arch_zone_highest_possible_pfn[zone_index] >
7288 arch_zone_lowest_possible_pfn[zone_index])
7292 VM_BUG_ON(zone_index == -1);
7293 movable_zone = zone_index;
7297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7298 * because it is sized independent of architecture. Unlike the other zones,
7299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7300 * in each node depending on the size of each node and how evenly kernelcore
7301 * is distributed. This helper function adjusts the zone ranges
7302 * provided by the architecture for a given node by using the end of the
7303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7304 * zones within a node are in order of monotonic increases memory addresses
7306 static void __init adjust_zone_range_for_zone_movable(int nid,
7307 unsigned long zone_type,
7308 unsigned long node_start_pfn,
7309 unsigned long node_end_pfn,
7310 unsigned long *zone_start_pfn,
7311 unsigned long *zone_end_pfn)
7313 /* Only adjust if ZONE_MOVABLE is on this node */
7314 if (zone_movable_pfn[nid]) {
7315 /* Size ZONE_MOVABLE */
7316 if (zone_type == ZONE_MOVABLE) {
7317 *zone_start_pfn = zone_movable_pfn[nid];
7318 *zone_end_pfn = min(node_end_pfn,
7319 arch_zone_highest_possible_pfn[movable_zone]);
7321 /* Adjust for ZONE_MOVABLE starting within this range */
7322 } else if (!mirrored_kernelcore &&
7323 *zone_start_pfn < zone_movable_pfn[nid] &&
7324 *zone_end_pfn > zone_movable_pfn[nid]) {
7325 *zone_end_pfn = zone_movable_pfn[nid];
7327 /* Check if this whole range is within ZONE_MOVABLE */
7328 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7329 *zone_start_pfn = *zone_end_pfn;
7334 * Return the number of pages a zone spans in a node, including holes
7335 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7337 static unsigned long __init zone_spanned_pages_in_node(int nid,
7338 unsigned long zone_type,
7339 unsigned long node_start_pfn,
7340 unsigned long node_end_pfn,
7341 unsigned long *zone_start_pfn,
7342 unsigned long *zone_end_pfn)
7344 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7345 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7346 /* When hotadd a new node from cpu_up(), the node should be empty */
7347 if (!node_start_pfn && !node_end_pfn)
7350 /* Get the start and end of the zone */
7351 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7352 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7353 adjust_zone_range_for_zone_movable(nid, zone_type,
7354 node_start_pfn, node_end_pfn,
7355 zone_start_pfn, zone_end_pfn);
7357 /* Check that this node has pages within the zone's required range */
7358 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7361 /* Move the zone boundaries inside the node if necessary */
7362 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7363 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7365 /* Return the spanned pages */
7366 return *zone_end_pfn - *zone_start_pfn;
7370 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7371 * then all holes in the requested range will be accounted for.
7373 unsigned long __init __absent_pages_in_range(int nid,
7374 unsigned long range_start_pfn,
7375 unsigned long range_end_pfn)
7377 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7378 unsigned long start_pfn, end_pfn;
7381 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7382 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7383 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7384 nr_absent -= end_pfn - start_pfn;
7390 * absent_pages_in_range - Return number of page frames in holes within a range
7391 * @start_pfn: The start PFN to start searching for holes
7392 * @end_pfn: The end PFN to stop searching for holes
7394 * Return: the number of pages frames in memory holes within a range.
7396 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7397 unsigned long end_pfn)
7399 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7402 /* Return the number of page frames in holes in a zone on a node */
7403 static unsigned long __init zone_absent_pages_in_node(int nid,
7404 unsigned long zone_type,
7405 unsigned long node_start_pfn,
7406 unsigned long node_end_pfn)
7408 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7409 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7410 unsigned long zone_start_pfn, zone_end_pfn;
7411 unsigned long nr_absent;
7413 /* When hotadd a new node from cpu_up(), the node should be empty */
7414 if (!node_start_pfn && !node_end_pfn)
7417 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7418 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7420 adjust_zone_range_for_zone_movable(nid, zone_type,
7421 node_start_pfn, node_end_pfn,
7422 &zone_start_pfn, &zone_end_pfn);
7423 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7426 * ZONE_MOVABLE handling.
7427 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7430 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7431 unsigned long start_pfn, end_pfn;
7432 struct memblock_region *r;
7434 for_each_mem_region(r) {
7435 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7436 zone_start_pfn, zone_end_pfn);
7437 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7438 zone_start_pfn, zone_end_pfn);
7440 if (zone_type == ZONE_MOVABLE &&
7441 memblock_is_mirror(r))
7442 nr_absent += end_pfn - start_pfn;
7444 if (zone_type == ZONE_NORMAL &&
7445 !memblock_is_mirror(r))
7446 nr_absent += end_pfn - start_pfn;
7453 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7454 unsigned long node_start_pfn,
7455 unsigned long node_end_pfn)
7457 unsigned long realtotalpages = 0, totalpages = 0;
7460 for (i = 0; i < MAX_NR_ZONES; i++) {
7461 struct zone *zone = pgdat->node_zones + i;
7462 unsigned long zone_start_pfn, zone_end_pfn;
7463 unsigned long spanned, absent;
7464 unsigned long size, real_size;
7466 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7471 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7476 real_size = size - absent;
7479 zone->zone_start_pfn = zone_start_pfn;
7481 zone->zone_start_pfn = 0;
7482 zone->spanned_pages = size;
7483 zone->present_pages = real_size;
7484 #if defined(CONFIG_MEMORY_HOTPLUG)
7485 zone->present_early_pages = real_size;
7489 realtotalpages += real_size;
7492 pgdat->node_spanned_pages = totalpages;
7493 pgdat->node_present_pages = realtotalpages;
7494 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7497 #ifndef CONFIG_SPARSEMEM
7499 * Calculate the size of the zone->blockflags rounded to an unsigned long
7500 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7501 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7502 * round what is now in bits to nearest long in bits, then return it in
7505 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7507 unsigned long usemapsize;
7509 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7510 usemapsize = roundup(zonesize, pageblock_nr_pages);
7511 usemapsize = usemapsize >> pageblock_order;
7512 usemapsize *= NR_PAGEBLOCK_BITS;
7513 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7515 return usemapsize / 8;
7518 static void __ref setup_usemap(struct zone *zone)
7520 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7521 zone->spanned_pages);
7522 zone->pageblock_flags = NULL;
7524 zone->pageblock_flags =
7525 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7527 if (!zone->pageblock_flags)
7528 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7529 usemapsize, zone->name, zone_to_nid(zone));
7533 static inline void setup_usemap(struct zone *zone) {}
7534 #endif /* CONFIG_SPARSEMEM */
7536 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7538 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7539 void __init set_pageblock_order(void)
7541 unsigned int order = MAX_ORDER - 1;
7543 /* Check that pageblock_nr_pages has not already been setup */
7544 if (pageblock_order)
7547 /* Don't let pageblocks exceed the maximum allocation granularity. */
7548 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7549 order = HUGETLB_PAGE_ORDER;
7552 * Assume the largest contiguous order of interest is a huge page.
7553 * This value may be variable depending on boot parameters on IA64 and
7556 pageblock_order = order;
7558 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7561 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7562 * is unused as pageblock_order is set at compile-time. See
7563 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7566 void __init set_pageblock_order(void)
7570 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7572 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7573 unsigned long present_pages)
7575 unsigned long pages = spanned_pages;
7578 * Provide a more accurate estimation if there are holes within
7579 * the zone and SPARSEMEM is in use. If there are holes within the
7580 * zone, each populated memory region may cost us one or two extra
7581 * memmap pages due to alignment because memmap pages for each
7582 * populated regions may not be naturally aligned on page boundary.
7583 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7585 if (spanned_pages > present_pages + (present_pages >> 4) &&
7586 IS_ENABLED(CONFIG_SPARSEMEM))
7587 pages = present_pages;
7589 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7593 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7595 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7597 spin_lock_init(&ds_queue->split_queue_lock);
7598 INIT_LIST_HEAD(&ds_queue->split_queue);
7599 ds_queue->split_queue_len = 0;
7602 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7605 #ifdef CONFIG_COMPACTION
7606 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7608 init_waitqueue_head(&pgdat->kcompactd_wait);
7611 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7614 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7618 pgdat_resize_init(pgdat);
7620 pgdat_init_split_queue(pgdat);
7621 pgdat_init_kcompactd(pgdat);
7623 init_waitqueue_head(&pgdat->kswapd_wait);
7624 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7626 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7627 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7629 pgdat_page_ext_init(pgdat);
7630 lruvec_init(&pgdat->__lruvec);
7633 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7634 unsigned long remaining_pages)
7636 atomic_long_set(&zone->managed_pages, remaining_pages);
7637 zone_set_nid(zone, nid);
7638 zone->name = zone_names[idx];
7639 zone->zone_pgdat = NODE_DATA(nid);
7640 spin_lock_init(&zone->lock);
7641 zone_seqlock_init(zone);
7642 zone_pcp_init(zone);
7646 * Set up the zone data structures
7647 * - init pgdat internals
7648 * - init all zones belonging to this node
7650 * NOTE: this function is only called during memory hotplug
7652 #ifdef CONFIG_MEMORY_HOTPLUG
7653 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7655 int nid = pgdat->node_id;
7659 pgdat_init_internals(pgdat);
7661 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7662 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7665 * Reset the nr_zones, order and highest_zoneidx before reuse.
7666 * Note that kswapd will init kswapd_highest_zoneidx properly
7667 * when it starts in the near future.
7669 pgdat->nr_zones = 0;
7670 pgdat->kswapd_order = 0;
7671 pgdat->kswapd_highest_zoneidx = 0;
7672 pgdat->node_start_pfn = 0;
7673 for_each_online_cpu(cpu) {
7674 struct per_cpu_nodestat *p;
7676 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7677 memset(p, 0, sizeof(*p));
7680 for (z = 0; z < MAX_NR_ZONES; z++)
7681 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7686 * Set up the zone data structures:
7687 * - mark all pages reserved
7688 * - mark all memory queues empty
7689 * - clear the memory bitmaps
7691 * NOTE: pgdat should get zeroed by caller.
7692 * NOTE: this function is only called during early init.
7694 static void __init free_area_init_core(struct pglist_data *pgdat)
7697 int nid = pgdat->node_id;
7699 pgdat_init_internals(pgdat);
7700 pgdat->per_cpu_nodestats = &boot_nodestats;
7702 for (j = 0; j < MAX_NR_ZONES; j++) {
7703 struct zone *zone = pgdat->node_zones + j;
7704 unsigned long size, freesize, memmap_pages;
7706 size = zone->spanned_pages;
7707 freesize = zone->present_pages;
7710 * Adjust freesize so that it accounts for how much memory
7711 * is used by this zone for memmap. This affects the watermark
7712 * and per-cpu initialisations
7714 memmap_pages = calc_memmap_size(size, freesize);
7715 if (!is_highmem_idx(j)) {
7716 if (freesize >= memmap_pages) {
7717 freesize -= memmap_pages;
7719 pr_debug(" %s zone: %lu pages used for memmap\n",
7720 zone_names[j], memmap_pages);
7722 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7723 zone_names[j], memmap_pages, freesize);
7726 /* Account for reserved pages */
7727 if (j == 0 && freesize > dma_reserve) {
7728 freesize -= dma_reserve;
7729 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7732 if (!is_highmem_idx(j))
7733 nr_kernel_pages += freesize;
7734 /* Charge for highmem memmap if there are enough kernel pages */
7735 else if (nr_kernel_pages > memmap_pages * 2)
7736 nr_kernel_pages -= memmap_pages;
7737 nr_all_pages += freesize;
7740 * Set an approximate value for lowmem here, it will be adjusted
7741 * when the bootmem allocator frees pages into the buddy system.
7742 * And all highmem pages will be managed by the buddy system.
7744 zone_init_internals(zone, j, nid, freesize);
7749 set_pageblock_order();
7751 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7755 #ifdef CONFIG_FLATMEM
7756 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7758 unsigned long __maybe_unused start = 0;
7759 unsigned long __maybe_unused offset = 0;
7761 /* Skip empty nodes */
7762 if (!pgdat->node_spanned_pages)
7765 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7766 offset = pgdat->node_start_pfn - start;
7767 /* ia64 gets its own node_mem_map, before this, without bootmem */
7768 if (!pgdat->node_mem_map) {
7769 unsigned long size, end;
7773 * The zone's endpoints aren't required to be MAX_ORDER
7774 * aligned but the node_mem_map endpoints must be in order
7775 * for the buddy allocator to function correctly.
7777 end = pgdat_end_pfn(pgdat);
7778 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7779 size = (end - start) * sizeof(struct page);
7780 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7781 pgdat->node_id, false);
7783 panic("Failed to allocate %ld bytes for node %d memory map\n",
7784 size, pgdat->node_id);
7785 pgdat->node_mem_map = map + offset;
7787 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7788 __func__, pgdat->node_id, (unsigned long)pgdat,
7789 (unsigned long)pgdat->node_mem_map);
7792 * With no DISCONTIG, the global mem_map is just set as node 0's
7794 if (pgdat == NODE_DATA(0)) {
7795 mem_map = NODE_DATA(0)->node_mem_map;
7796 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7802 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7803 #endif /* CONFIG_FLATMEM */
7805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7806 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7808 pgdat->first_deferred_pfn = ULONG_MAX;
7811 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7814 static void __init free_area_init_node(int nid)
7816 pg_data_t *pgdat = NODE_DATA(nid);
7817 unsigned long start_pfn = 0;
7818 unsigned long end_pfn = 0;
7820 /* pg_data_t should be reset to zero when it's allocated */
7821 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7823 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7825 pgdat->node_id = nid;
7826 pgdat->node_start_pfn = start_pfn;
7827 pgdat->per_cpu_nodestats = NULL;
7829 if (start_pfn != end_pfn) {
7830 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7831 (u64)start_pfn << PAGE_SHIFT,
7832 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7834 pr_info("Initmem setup node %d as memoryless\n", nid);
7837 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7839 alloc_node_mem_map(pgdat);
7840 pgdat_set_deferred_range(pgdat);
7842 free_area_init_core(pgdat);
7845 static void __init free_area_init_memoryless_node(int nid)
7847 free_area_init_node(nid);
7850 #if MAX_NUMNODES > 1
7852 * Figure out the number of possible node ids.
7854 void __init setup_nr_node_ids(void)
7856 unsigned int highest;
7858 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7859 nr_node_ids = highest + 1;
7864 * node_map_pfn_alignment - determine the maximum internode alignment
7866 * This function should be called after node map is populated and sorted.
7867 * It calculates the maximum power of two alignment which can distinguish
7870 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7871 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7872 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7873 * shifted, 1GiB is enough and this function will indicate so.
7875 * This is used to test whether pfn -> nid mapping of the chosen memory
7876 * model has fine enough granularity to avoid incorrect mapping for the
7877 * populated node map.
7879 * Return: the determined alignment in pfn's. 0 if there is no alignment
7880 * requirement (single node).
7882 unsigned long __init node_map_pfn_alignment(void)
7884 unsigned long accl_mask = 0, last_end = 0;
7885 unsigned long start, end, mask;
7886 int last_nid = NUMA_NO_NODE;
7889 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7890 if (!start || last_nid < 0 || last_nid == nid) {
7897 * Start with a mask granular enough to pin-point to the
7898 * start pfn and tick off bits one-by-one until it becomes
7899 * too coarse to separate the current node from the last.
7901 mask = ~((1 << __ffs(start)) - 1);
7902 while (mask && last_end <= (start & (mask << 1)))
7905 /* accumulate all internode masks */
7909 /* convert mask to number of pages */
7910 return ~accl_mask + 1;
7914 * early_calculate_totalpages()
7915 * Sum pages in active regions for movable zone.
7916 * Populate N_MEMORY for calculating usable_nodes.
7918 static unsigned long __init early_calculate_totalpages(void)
7920 unsigned long totalpages = 0;
7921 unsigned long start_pfn, end_pfn;
7924 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7925 unsigned long pages = end_pfn - start_pfn;
7927 totalpages += pages;
7929 node_set_state(nid, N_MEMORY);
7935 * Find the PFN the Movable zone begins in each node. Kernel memory
7936 * is spread evenly between nodes as long as the nodes have enough
7937 * memory. When they don't, some nodes will have more kernelcore than
7940 static void __init find_zone_movable_pfns_for_nodes(void)
7943 unsigned long usable_startpfn;
7944 unsigned long kernelcore_node, kernelcore_remaining;
7945 /* save the state before borrow the nodemask */
7946 nodemask_t saved_node_state = node_states[N_MEMORY];
7947 unsigned long totalpages = early_calculate_totalpages();
7948 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7949 struct memblock_region *r;
7951 /* Need to find movable_zone earlier when movable_node is specified. */
7952 find_usable_zone_for_movable();
7955 * If movable_node is specified, ignore kernelcore and movablecore
7958 if (movable_node_is_enabled()) {
7959 for_each_mem_region(r) {
7960 if (!memblock_is_hotpluggable(r))
7963 nid = memblock_get_region_node(r);
7965 usable_startpfn = PFN_DOWN(r->base);
7966 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7967 min(usable_startpfn, zone_movable_pfn[nid]) :
7975 * If kernelcore=mirror is specified, ignore movablecore option
7977 if (mirrored_kernelcore) {
7978 bool mem_below_4gb_not_mirrored = false;
7980 for_each_mem_region(r) {
7981 if (memblock_is_mirror(r))
7984 nid = memblock_get_region_node(r);
7986 usable_startpfn = memblock_region_memory_base_pfn(r);
7988 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7989 mem_below_4gb_not_mirrored = true;
7993 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7994 min(usable_startpfn, zone_movable_pfn[nid]) :
7998 if (mem_below_4gb_not_mirrored)
7999 pr_warn("This configuration results in unmirrored kernel memory.\n");
8005 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8006 * amount of necessary memory.
8008 if (required_kernelcore_percent)
8009 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8011 if (required_movablecore_percent)
8012 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8016 * If movablecore= was specified, calculate what size of
8017 * kernelcore that corresponds so that memory usable for
8018 * any allocation type is evenly spread. If both kernelcore
8019 * and movablecore are specified, then the value of kernelcore
8020 * will be used for required_kernelcore if it's greater than
8021 * what movablecore would have allowed.
8023 if (required_movablecore) {
8024 unsigned long corepages;
8027 * Round-up so that ZONE_MOVABLE is at least as large as what
8028 * was requested by the user
8030 required_movablecore =
8031 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8032 required_movablecore = min(totalpages, required_movablecore);
8033 corepages = totalpages - required_movablecore;
8035 required_kernelcore = max(required_kernelcore, corepages);
8039 * If kernelcore was not specified or kernelcore size is larger
8040 * than totalpages, there is no ZONE_MOVABLE.
8042 if (!required_kernelcore || required_kernelcore >= totalpages)
8045 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8046 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8049 /* Spread kernelcore memory as evenly as possible throughout nodes */
8050 kernelcore_node = required_kernelcore / usable_nodes;
8051 for_each_node_state(nid, N_MEMORY) {
8052 unsigned long start_pfn, end_pfn;
8055 * Recalculate kernelcore_node if the division per node
8056 * now exceeds what is necessary to satisfy the requested
8057 * amount of memory for the kernel
8059 if (required_kernelcore < kernelcore_node)
8060 kernelcore_node = required_kernelcore / usable_nodes;
8063 * As the map is walked, we track how much memory is usable
8064 * by the kernel using kernelcore_remaining. When it is
8065 * 0, the rest of the node is usable by ZONE_MOVABLE
8067 kernelcore_remaining = kernelcore_node;
8069 /* Go through each range of PFNs within this node */
8070 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8071 unsigned long size_pages;
8073 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8074 if (start_pfn >= end_pfn)
8077 /* Account for what is only usable for kernelcore */
8078 if (start_pfn < usable_startpfn) {
8079 unsigned long kernel_pages;
8080 kernel_pages = min(end_pfn, usable_startpfn)
8083 kernelcore_remaining -= min(kernel_pages,
8084 kernelcore_remaining);
8085 required_kernelcore -= min(kernel_pages,
8086 required_kernelcore);
8088 /* Continue if range is now fully accounted */
8089 if (end_pfn <= usable_startpfn) {
8092 * Push zone_movable_pfn to the end so
8093 * that if we have to rebalance
8094 * kernelcore across nodes, we will
8095 * not double account here
8097 zone_movable_pfn[nid] = end_pfn;
8100 start_pfn = usable_startpfn;
8104 * The usable PFN range for ZONE_MOVABLE is from
8105 * start_pfn->end_pfn. Calculate size_pages as the
8106 * number of pages used as kernelcore
8108 size_pages = end_pfn - start_pfn;
8109 if (size_pages > kernelcore_remaining)
8110 size_pages = kernelcore_remaining;
8111 zone_movable_pfn[nid] = start_pfn + size_pages;
8114 * Some kernelcore has been met, update counts and
8115 * break if the kernelcore for this node has been
8118 required_kernelcore -= min(required_kernelcore,
8120 kernelcore_remaining -= size_pages;
8121 if (!kernelcore_remaining)
8127 * If there is still required_kernelcore, we do another pass with one
8128 * less node in the count. This will push zone_movable_pfn[nid] further
8129 * along on the nodes that still have memory until kernelcore is
8133 if (usable_nodes && required_kernelcore > usable_nodes)
8137 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8138 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8139 unsigned long start_pfn, end_pfn;
8141 zone_movable_pfn[nid] =
8142 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8144 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8145 if (zone_movable_pfn[nid] >= end_pfn)
8146 zone_movable_pfn[nid] = 0;
8150 /* restore the node_state */
8151 node_states[N_MEMORY] = saved_node_state;
8154 /* Any regular or high memory on that node ? */
8155 static void check_for_memory(pg_data_t *pgdat, int nid)
8157 enum zone_type zone_type;
8159 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8160 struct zone *zone = &pgdat->node_zones[zone_type];
8161 if (populated_zone(zone)) {
8162 if (IS_ENABLED(CONFIG_HIGHMEM))
8163 node_set_state(nid, N_HIGH_MEMORY);
8164 if (zone_type <= ZONE_NORMAL)
8165 node_set_state(nid, N_NORMAL_MEMORY);
8172 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8173 * such cases we allow max_zone_pfn sorted in the descending order
8175 bool __weak arch_has_descending_max_zone_pfns(void)
8181 * free_area_init - Initialise all pg_data_t and zone data
8182 * @max_zone_pfn: an array of max PFNs for each zone
8184 * This will call free_area_init_node() for each active node in the system.
8185 * Using the page ranges provided by memblock_set_node(), the size of each
8186 * zone in each node and their holes is calculated. If the maximum PFN
8187 * between two adjacent zones match, it is assumed that the zone is empty.
8188 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8189 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8190 * starts where the previous one ended. For example, ZONE_DMA32 starts
8191 * at arch_max_dma_pfn.
8193 void __init free_area_init(unsigned long *max_zone_pfn)
8195 unsigned long start_pfn, end_pfn;
8199 /* Record where the zone boundaries are */
8200 memset(arch_zone_lowest_possible_pfn, 0,
8201 sizeof(arch_zone_lowest_possible_pfn));
8202 memset(arch_zone_highest_possible_pfn, 0,
8203 sizeof(arch_zone_highest_possible_pfn));
8205 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8206 descending = arch_has_descending_max_zone_pfns();
8208 for (i = 0; i < MAX_NR_ZONES; i++) {
8210 zone = MAX_NR_ZONES - i - 1;
8214 if (zone == ZONE_MOVABLE)
8217 end_pfn = max(max_zone_pfn[zone], start_pfn);
8218 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8219 arch_zone_highest_possible_pfn[zone] = end_pfn;
8221 start_pfn = end_pfn;
8224 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8225 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8226 find_zone_movable_pfns_for_nodes();
8228 /* Print out the zone ranges */
8229 pr_info("Zone ranges:\n");
8230 for (i = 0; i < MAX_NR_ZONES; i++) {
8231 if (i == ZONE_MOVABLE)
8233 pr_info(" %-8s ", zone_names[i]);
8234 if (arch_zone_lowest_possible_pfn[i] ==
8235 arch_zone_highest_possible_pfn[i])
8238 pr_cont("[mem %#018Lx-%#018Lx]\n",
8239 (u64)arch_zone_lowest_possible_pfn[i]
8241 ((u64)arch_zone_highest_possible_pfn[i]
8242 << PAGE_SHIFT) - 1);
8245 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8246 pr_info("Movable zone start for each node\n");
8247 for (i = 0; i < MAX_NUMNODES; i++) {
8248 if (zone_movable_pfn[i])
8249 pr_info(" Node %d: %#018Lx\n", i,
8250 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8254 * Print out the early node map, and initialize the
8255 * subsection-map relative to active online memory ranges to
8256 * enable future "sub-section" extensions of the memory map.
8258 pr_info("Early memory node ranges\n");
8259 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8260 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8261 (u64)start_pfn << PAGE_SHIFT,
8262 ((u64)end_pfn << PAGE_SHIFT) - 1);
8263 subsection_map_init(start_pfn, end_pfn - start_pfn);
8266 /* Initialise every node */
8267 mminit_verify_pageflags_layout();
8268 setup_nr_node_ids();
8269 for_each_node(nid) {
8272 if (!node_online(nid)) {
8273 pr_info("Initializing node %d as memoryless\n", nid);
8275 /* Allocator not initialized yet */
8276 pgdat = arch_alloc_nodedata(nid);
8278 pr_err("Cannot allocate %zuB for node %d.\n",
8279 sizeof(*pgdat), nid);
8282 arch_refresh_nodedata(nid, pgdat);
8283 free_area_init_memoryless_node(nid);
8286 * We do not want to confuse userspace by sysfs
8287 * files/directories for node without any memory
8288 * attached to it, so this node is not marked as
8289 * N_MEMORY and not marked online so that no sysfs
8290 * hierarchy will be created via register_one_node for
8291 * it. The pgdat will get fully initialized by
8292 * hotadd_init_pgdat() when memory is hotplugged into
8298 pgdat = NODE_DATA(nid);
8299 free_area_init_node(nid);
8301 /* Any memory on that node */
8302 if (pgdat->node_present_pages)
8303 node_set_state(nid, N_MEMORY);
8304 check_for_memory(pgdat, nid);
8310 static int __init cmdline_parse_core(char *p, unsigned long *core,
8311 unsigned long *percent)
8313 unsigned long long coremem;
8319 /* Value may be a percentage of total memory, otherwise bytes */
8320 coremem = simple_strtoull(p, &endptr, 0);
8321 if (*endptr == '%') {
8322 /* Paranoid check for percent values greater than 100 */
8323 WARN_ON(coremem > 100);
8327 coremem = memparse(p, &p);
8328 /* Paranoid check that UL is enough for the coremem value */
8329 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8331 *core = coremem >> PAGE_SHIFT;
8338 * kernelcore=size sets the amount of memory for use for allocations that
8339 * cannot be reclaimed or migrated.
8341 static int __init cmdline_parse_kernelcore(char *p)
8343 /* parse kernelcore=mirror */
8344 if (parse_option_str(p, "mirror")) {
8345 mirrored_kernelcore = true;
8349 return cmdline_parse_core(p, &required_kernelcore,
8350 &required_kernelcore_percent);
8354 * movablecore=size sets the amount of memory for use for allocations that
8355 * can be reclaimed or migrated.
8357 static int __init cmdline_parse_movablecore(char *p)
8359 return cmdline_parse_core(p, &required_movablecore,
8360 &required_movablecore_percent);
8363 early_param("kernelcore", cmdline_parse_kernelcore);
8364 early_param("movablecore", cmdline_parse_movablecore);
8366 void adjust_managed_page_count(struct page *page, long count)
8368 atomic_long_add(count, &page_zone(page)->managed_pages);
8369 totalram_pages_add(count);
8370 #ifdef CONFIG_HIGHMEM
8371 if (PageHighMem(page))
8372 totalhigh_pages_add(count);
8375 EXPORT_SYMBOL(adjust_managed_page_count);
8377 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8380 unsigned long pages = 0;
8382 start = (void *)PAGE_ALIGN((unsigned long)start);
8383 end = (void *)((unsigned long)end & PAGE_MASK);
8384 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8385 struct page *page = virt_to_page(pos);
8386 void *direct_map_addr;
8389 * 'direct_map_addr' might be different from 'pos'
8390 * because some architectures' virt_to_page()
8391 * work with aliases. Getting the direct map
8392 * address ensures that we get a _writeable_
8393 * alias for the memset().
8395 direct_map_addr = page_address(page);
8397 * Perform a kasan-unchecked memset() since this memory
8398 * has not been initialized.
8400 direct_map_addr = kasan_reset_tag(direct_map_addr);
8401 if ((unsigned int)poison <= 0xFF)
8402 memset(direct_map_addr, poison, PAGE_SIZE);
8404 free_reserved_page(page);
8408 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8413 void __init mem_init_print_info(void)
8415 unsigned long physpages, codesize, datasize, rosize, bss_size;
8416 unsigned long init_code_size, init_data_size;
8418 physpages = get_num_physpages();
8419 codesize = _etext - _stext;
8420 datasize = _edata - _sdata;
8421 rosize = __end_rodata - __start_rodata;
8422 bss_size = __bss_stop - __bss_start;
8423 init_data_size = __init_end - __init_begin;
8424 init_code_size = _einittext - _sinittext;
8427 * Detect special cases and adjust section sizes accordingly:
8428 * 1) .init.* may be embedded into .data sections
8429 * 2) .init.text.* may be out of [__init_begin, __init_end],
8430 * please refer to arch/tile/kernel/vmlinux.lds.S.
8431 * 3) .rodata.* may be embedded into .text or .data sections.
8433 #define adj_init_size(start, end, size, pos, adj) \
8435 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8439 adj_init_size(__init_begin, __init_end, init_data_size,
8440 _sinittext, init_code_size);
8441 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8442 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8443 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8444 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8446 #undef adj_init_size
8448 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8449 #ifdef CONFIG_HIGHMEM
8453 K(nr_free_pages()), K(physpages),
8454 codesize >> 10, datasize >> 10, rosize >> 10,
8455 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8456 K(physpages - totalram_pages() - totalcma_pages),
8458 #ifdef CONFIG_HIGHMEM
8459 , K(totalhigh_pages())
8465 * set_dma_reserve - set the specified number of pages reserved in the first zone
8466 * @new_dma_reserve: The number of pages to mark reserved
8468 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8469 * In the DMA zone, a significant percentage may be consumed by kernel image
8470 * and other unfreeable allocations which can skew the watermarks badly. This
8471 * function may optionally be used to account for unfreeable pages in the
8472 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8473 * smaller per-cpu batchsize.
8475 void __init set_dma_reserve(unsigned long new_dma_reserve)
8477 dma_reserve = new_dma_reserve;
8480 static int page_alloc_cpu_dead(unsigned int cpu)
8484 lru_add_drain_cpu(cpu);
8485 mlock_page_drain_remote(cpu);
8489 * Spill the event counters of the dead processor
8490 * into the current processors event counters.
8491 * This artificially elevates the count of the current
8494 vm_events_fold_cpu(cpu);
8497 * Zero the differential counters of the dead processor
8498 * so that the vm statistics are consistent.
8500 * This is only okay since the processor is dead and cannot
8501 * race with what we are doing.
8503 cpu_vm_stats_fold(cpu);
8505 for_each_populated_zone(zone)
8506 zone_pcp_update(zone, 0);
8511 static int page_alloc_cpu_online(unsigned int cpu)
8515 for_each_populated_zone(zone)
8516 zone_pcp_update(zone, 1);
8521 int hashdist = HASHDIST_DEFAULT;
8523 static int __init set_hashdist(char *str)
8527 hashdist = simple_strtoul(str, &str, 0);
8530 __setup("hashdist=", set_hashdist);
8533 void __init page_alloc_init(void)
8538 if (num_node_state(N_MEMORY) == 1)
8542 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8543 "mm/page_alloc:pcp",
8544 page_alloc_cpu_online,
8545 page_alloc_cpu_dead);
8550 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8551 * or min_free_kbytes changes.
8553 static void calculate_totalreserve_pages(void)
8555 struct pglist_data *pgdat;
8556 unsigned long reserve_pages = 0;
8557 enum zone_type i, j;
8559 for_each_online_pgdat(pgdat) {
8561 pgdat->totalreserve_pages = 0;
8563 for (i = 0; i < MAX_NR_ZONES; i++) {
8564 struct zone *zone = pgdat->node_zones + i;
8566 unsigned long managed_pages = zone_managed_pages(zone);
8568 /* Find valid and maximum lowmem_reserve in the zone */
8569 for (j = i; j < MAX_NR_ZONES; j++) {
8570 if (zone->lowmem_reserve[j] > max)
8571 max = zone->lowmem_reserve[j];
8574 /* we treat the high watermark as reserved pages. */
8575 max += high_wmark_pages(zone);
8577 if (max > managed_pages)
8578 max = managed_pages;
8580 pgdat->totalreserve_pages += max;
8582 reserve_pages += max;
8585 totalreserve_pages = reserve_pages;
8589 * setup_per_zone_lowmem_reserve - called whenever
8590 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8591 * has a correct pages reserved value, so an adequate number of
8592 * pages are left in the zone after a successful __alloc_pages().
8594 static void setup_per_zone_lowmem_reserve(void)
8596 struct pglist_data *pgdat;
8597 enum zone_type i, j;
8599 for_each_online_pgdat(pgdat) {
8600 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8601 struct zone *zone = &pgdat->node_zones[i];
8602 int ratio = sysctl_lowmem_reserve_ratio[i];
8603 bool clear = !ratio || !zone_managed_pages(zone);
8604 unsigned long managed_pages = 0;
8606 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8607 struct zone *upper_zone = &pgdat->node_zones[j];
8609 managed_pages += zone_managed_pages(upper_zone);
8612 zone->lowmem_reserve[j] = 0;
8614 zone->lowmem_reserve[j] = managed_pages / ratio;
8619 /* update totalreserve_pages */
8620 calculate_totalreserve_pages();
8623 static void __setup_per_zone_wmarks(void)
8625 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8626 unsigned long lowmem_pages = 0;
8628 unsigned long flags;
8630 /* Calculate total number of !ZONE_HIGHMEM pages */
8631 for_each_zone(zone) {
8632 if (!is_highmem(zone))
8633 lowmem_pages += zone_managed_pages(zone);
8636 for_each_zone(zone) {
8639 spin_lock_irqsave(&zone->lock, flags);
8640 tmp = (u64)pages_min * zone_managed_pages(zone);
8641 do_div(tmp, lowmem_pages);
8642 if (is_highmem(zone)) {
8644 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8645 * need highmem pages, so cap pages_min to a small
8648 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8649 * deltas control async page reclaim, and so should
8650 * not be capped for highmem.
8652 unsigned long min_pages;
8654 min_pages = zone_managed_pages(zone) / 1024;
8655 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8656 zone->_watermark[WMARK_MIN] = min_pages;
8659 * If it's a lowmem zone, reserve a number of pages
8660 * proportionate to the zone's size.
8662 zone->_watermark[WMARK_MIN] = tmp;
8666 * Set the kswapd watermarks distance according to the
8667 * scale factor in proportion to available memory, but
8668 * ensure a minimum size on small systems.
8670 tmp = max_t(u64, tmp >> 2,
8671 mult_frac(zone_managed_pages(zone),
8672 watermark_scale_factor, 10000));
8674 zone->watermark_boost = 0;
8675 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8676 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8677 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8679 spin_unlock_irqrestore(&zone->lock, flags);
8682 /* update totalreserve_pages */
8683 calculate_totalreserve_pages();
8687 * setup_per_zone_wmarks - called when min_free_kbytes changes
8688 * or when memory is hot-{added|removed}
8690 * Ensures that the watermark[min,low,high] values for each zone are set
8691 * correctly with respect to min_free_kbytes.
8693 void setup_per_zone_wmarks(void)
8696 static DEFINE_SPINLOCK(lock);
8699 __setup_per_zone_wmarks();
8703 * The watermark size have changed so update the pcpu batch
8704 * and high limits or the limits may be inappropriate.
8707 zone_pcp_update(zone, 0);
8711 * Initialise min_free_kbytes.
8713 * For small machines we want it small (128k min). For large machines
8714 * we want it large (256MB max). But it is not linear, because network
8715 * bandwidth does not increase linearly with machine size. We use
8717 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8718 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8734 void calculate_min_free_kbytes(void)
8736 unsigned long lowmem_kbytes;
8737 int new_min_free_kbytes;
8739 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8740 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8742 if (new_min_free_kbytes > user_min_free_kbytes)
8743 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8745 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8746 new_min_free_kbytes, user_min_free_kbytes);
8750 int __meminit init_per_zone_wmark_min(void)
8752 calculate_min_free_kbytes();
8753 setup_per_zone_wmarks();
8754 refresh_zone_stat_thresholds();
8755 setup_per_zone_lowmem_reserve();
8758 setup_min_unmapped_ratio();
8759 setup_min_slab_ratio();
8762 khugepaged_min_free_kbytes_update();
8766 postcore_initcall(init_per_zone_wmark_min)
8769 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8770 * that we can call two helper functions whenever min_free_kbytes
8773 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8774 void *buffer, size_t *length, loff_t *ppos)
8778 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8783 user_min_free_kbytes = min_free_kbytes;
8784 setup_per_zone_wmarks();
8789 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8790 void *buffer, size_t *length, loff_t *ppos)
8794 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8799 setup_per_zone_wmarks();
8805 static void setup_min_unmapped_ratio(void)
8810 for_each_online_pgdat(pgdat)
8811 pgdat->min_unmapped_pages = 0;
8814 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8815 sysctl_min_unmapped_ratio) / 100;
8819 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8820 void *buffer, size_t *length, loff_t *ppos)
8824 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8828 setup_min_unmapped_ratio();
8833 static void setup_min_slab_ratio(void)
8838 for_each_online_pgdat(pgdat)
8839 pgdat->min_slab_pages = 0;
8842 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8843 sysctl_min_slab_ratio) / 100;
8846 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8847 void *buffer, size_t *length, loff_t *ppos)
8851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8855 setup_min_slab_ratio();
8862 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8863 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8864 * whenever sysctl_lowmem_reserve_ratio changes.
8866 * The reserve ratio obviously has absolutely no relation with the
8867 * minimum watermarks. The lowmem reserve ratio can only make sense
8868 * if in function of the boot time zone sizes.
8870 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8871 void *buffer, size_t *length, loff_t *ppos)
8875 proc_dointvec_minmax(table, write, buffer, length, ppos);
8877 for (i = 0; i < MAX_NR_ZONES; i++) {
8878 if (sysctl_lowmem_reserve_ratio[i] < 1)
8879 sysctl_lowmem_reserve_ratio[i] = 0;
8882 setup_per_zone_lowmem_reserve();
8887 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8888 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8889 * pagelist can have before it gets flushed back to buddy allocator.
8891 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8892 int write, void *buffer, size_t *length, loff_t *ppos)
8895 int old_percpu_pagelist_high_fraction;
8898 mutex_lock(&pcp_batch_high_lock);
8899 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8901 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8902 if (!write || ret < 0)
8905 /* Sanity checking to avoid pcp imbalance */
8906 if (percpu_pagelist_high_fraction &&
8907 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8908 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8914 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8917 for_each_populated_zone(zone)
8918 zone_set_pageset_high_and_batch(zone, 0);
8920 mutex_unlock(&pcp_batch_high_lock);
8924 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8926 * Returns the number of pages that arch has reserved but
8927 * is not known to alloc_large_system_hash().
8929 static unsigned long __init arch_reserved_kernel_pages(void)
8936 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8937 * machines. As memory size is increased the scale is also increased but at
8938 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8939 * quadruples the scale is increased by one, which means the size of hash table
8940 * only doubles, instead of quadrupling as well.
8941 * Because 32-bit systems cannot have large physical memory, where this scaling
8942 * makes sense, it is disabled on such platforms.
8944 #if __BITS_PER_LONG > 32
8945 #define ADAPT_SCALE_BASE (64ul << 30)
8946 #define ADAPT_SCALE_SHIFT 2
8947 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8951 * allocate a large system hash table from bootmem
8952 * - it is assumed that the hash table must contain an exact power-of-2
8953 * quantity of entries
8954 * - limit is the number of hash buckets, not the total allocation size
8956 void *__init alloc_large_system_hash(const char *tablename,
8957 unsigned long bucketsize,
8958 unsigned long numentries,
8961 unsigned int *_hash_shift,
8962 unsigned int *_hash_mask,
8963 unsigned long low_limit,
8964 unsigned long high_limit)
8966 unsigned long long max = high_limit;
8967 unsigned long log2qty, size;
8973 /* allow the kernel cmdline to have a say */
8975 /* round applicable memory size up to nearest megabyte */
8976 numentries = nr_kernel_pages;
8977 numentries -= arch_reserved_kernel_pages();
8979 /* It isn't necessary when PAGE_SIZE >= 1MB */
8980 if (PAGE_SHIFT < 20)
8981 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8983 #if __BITS_PER_LONG > 32
8985 unsigned long adapt;
8987 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8988 adapt <<= ADAPT_SCALE_SHIFT)
8993 /* limit to 1 bucket per 2^scale bytes of low memory */
8994 if (scale > PAGE_SHIFT)
8995 numentries >>= (scale - PAGE_SHIFT);
8997 numentries <<= (PAGE_SHIFT - scale);
8999 /* Make sure we've got at least a 0-order allocation.. */
9000 if (unlikely(flags & HASH_SMALL)) {
9001 /* Makes no sense without HASH_EARLY */
9002 WARN_ON(!(flags & HASH_EARLY));
9003 if (!(numentries >> *_hash_shift)) {
9004 numentries = 1UL << *_hash_shift;
9005 BUG_ON(!numentries);
9007 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9008 numentries = PAGE_SIZE / bucketsize;
9010 numentries = roundup_pow_of_two(numentries);
9012 /* limit allocation size to 1/16 total memory by default */
9014 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9015 do_div(max, bucketsize);
9017 max = min(max, 0x80000000ULL);
9019 if (numentries < low_limit)
9020 numentries = low_limit;
9021 if (numentries > max)
9024 log2qty = ilog2(numentries);
9026 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9029 size = bucketsize << log2qty;
9030 if (flags & HASH_EARLY) {
9031 if (flags & HASH_ZERO)
9032 table = memblock_alloc(size, SMP_CACHE_BYTES);
9034 table = memblock_alloc_raw(size,
9036 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9037 table = vmalloc_huge(size, gfp_flags);
9040 huge = is_vm_area_hugepages(table);
9043 * If bucketsize is not a power-of-two, we may free
9044 * some pages at the end of hash table which
9045 * alloc_pages_exact() automatically does
9047 table = alloc_pages_exact(size, gfp_flags);
9048 kmemleak_alloc(table, size, 1, gfp_flags);
9050 } while (!table && size > PAGE_SIZE && --log2qty);
9053 panic("Failed to allocate %s hash table\n", tablename);
9055 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9056 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9057 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9060 *_hash_shift = log2qty;
9062 *_hash_mask = (1 << log2qty) - 1;
9067 #ifdef CONFIG_CONTIG_ALLOC
9068 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9069 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9070 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9071 static void alloc_contig_dump_pages(struct list_head *page_list)
9073 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9075 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9079 list_for_each_entry(page, page_list, lru)
9080 dump_page(page, "migration failure");
9084 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9089 /* [start, end) must belong to a single zone. */
9090 int __alloc_contig_migrate_range(struct compact_control *cc,
9091 unsigned long start, unsigned long end)
9093 /* This function is based on compact_zone() from compaction.c. */
9094 unsigned int nr_reclaimed;
9095 unsigned long pfn = start;
9096 unsigned int tries = 0;
9098 struct migration_target_control mtc = {
9099 .nid = zone_to_nid(cc->zone),
9100 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9103 lru_cache_disable();
9105 while (pfn < end || !list_empty(&cc->migratepages)) {
9106 if (fatal_signal_pending(current)) {
9111 if (list_empty(&cc->migratepages)) {
9112 cc->nr_migratepages = 0;
9113 ret = isolate_migratepages_range(cc, pfn, end);
9114 if (ret && ret != -EAGAIN)
9116 pfn = cc->migrate_pfn;
9118 } else if (++tries == 5) {
9123 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9125 cc->nr_migratepages -= nr_reclaimed;
9127 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9128 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9131 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9132 * to retry again over this error, so do the same here.
9140 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9141 alloc_contig_dump_pages(&cc->migratepages);
9142 putback_movable_pages(&cc->migratepages);
9149 * alloc_contig_range() -- tries to allocate given range of pages
9150 * @start: start PFN to allocate
9151 * @end: one-past-the-last PFN to allocate
9152 * @migratetype: migratetype of the underlying pageblocks (either
9153 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9154 * in range must have the same migratetype and it must
9155 * be either of the two.
9156 * @gfp_mask: GFP mask to use during compaction
9158 * The PFN range does not have to be pageblock aligned. The PFN range must
9159 * belong to a single zone.
9161 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9162 * pageblocks in the range. Once isolated, the pageblocks should not
9163 * be modified by others.
9165 * Return: zero on success or negative error code. On success all
9166 * pages which PFN is in [start, end) are allocated for the caller and
9167 * need to be freed with free_contig_range().
9169 int alloc_contig_range(unsigned long start, unsigned long end,
9170 unsigned migratetype, gfp_t gfp_mask)
9172 unsigned long outer_start, outer_end;
9176 struct compact_control cc = {
9177 .nr_migratepages = 0,
9179 .zone = page_zone(pfn_to_page(start)),
9180 .mode = MIGRATE_SYNC,
9181 .ignore_skip_hint = true,
9182 .no_set_skip_hint = true,
9183 .gfp_mask = current_gfp_context(gfp_mask),
9184 .alloc_contig = true,
9186 INIT_LIST_HEAD(&cc.migratepages);
9189 * What we do here is we mark all pageblocks in range as
9190 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9191 * have different sizes, and due to the way page allocator
9192 * work, start_isolate_page_range() has special handlings for this.
9194 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9195 * migrate the pages from an unaligned range (ie. pages that
9196 * we are interested in). This will put all the pages in
9197 * range back to page allocator as MIGRATE_ISOLATE.
9199 * When this is done, we take the pages in range from page
9200 * allocator removing them from the buddy system. This way
9201 * page allocator will never consider using them.
9203 * This lets us mark the pageblocks back as
9204 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9205 * aligned range but not in the unaligned, original range are
9206 * put back to page allocator so that buddy can use them.
9209 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9213 drain_all_pages(cc.zone);
9216 * In case of -EBUSY, we'd like to know which page causes problem.
9217 * So, just fall through. test_pages_isolated() has a tracepoint
9218 * which will report the busy page.
9220 * It is possible that busy pages could become available before
9221 * the call to test_pages_isolated, and the range will actually be
9222 * allocated. So, if we fall through be sure to clear ret so that
9223 * -EBUSY is not accidentally used or returned to caller.
9225 ret = __alloc_contig_migrate_range(&cc, start, end);
9226 if (ret && ret != -EBUSY)
9231 * Pages from [start, end) are within a pageblock_nr_pages
9232 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9233 * more, all pages in [start, end) are free in page allocator.
9234 * What we are going to do is to allocate all pages from
9235 * [start, end) (that is remove them from page allocator).
9237 * The only problem is that pages at the beginning and at the
9238 * end of interesting range may be not aligned with pages that
9239 * page allocator holds, ie. they can be part of higher order
9240 * pages. Because of this, we reserve the bigger range and
9241 * once this is done free the pages we are not interested in.
9243 * We don't have to hold zone->lock here because the pages are
9244 * isolated thus they won't get removed from buddy.
9248 outer_start = start;
9249 while (!PageBuddy(pfn_to_page(outer_start))) {
9250 if (++order >= MAX_ORDER) {
9251 outer_start = start;
9254 outer_start &= ~0UL << order;
9257 if (outer_start != start) {
9258 order = buddy_order(pfn_to_page(outer_start));
9261 * outer_start page could be small order buddy page and
9262 * it doesn't include start page. Adjust outer_start
9263 * in this case to report failed page properly
9264 * on tracepoint in test_pages_isolated()
9266 if (outer_start + (1UL << order) <= start)
9267 outer_start = start;
9270 /* Make sure the range is really isolated. */
9271 if (test_pages_isolated(outer_start, end, 0)) {
9276 /* Grab isolated pages from freelists. */
9277 outer_end = isolate_freepages_range(&cc, outer_start, end);
9283 /* Free head and tail (if any) */
9284 if (start != outer_start)
9285 free_contig_range(outer_start, start - outer_start);
9286 if (end != outer_end)
9287 free_contig_range(end, outer_end - end);
9290 undo_isolate_page_range(start, end, migratetype);
9293 EXPORT_SYMBOL(alloc_contig_range);
9295 static int __alloc_contig_pages(unsigned long start_pfn,
9296 unsigned long nr_pages, gfp_t gfp_mask)
9298 unsigned long end_pfn = start_pfn + nr_pages;
9300 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9304 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9305 unsigned long nr_pages)
9307 unsigned long i, end_pfn = start_pfn + nr_pages;
9310 for (i = start_pfn; i < end_pfn; i++) {
9311 page = pfn_to_online_page(i);
9315 if (page_zone(page) != z)
9318 if (PageReserved(page))
9324 static bool zone_spans_last_pfn(const struct zone *zone,
9325 unsigned long start_pfn, unsigned long nr_pages)
9327 unsigned long last_pfn = start_pfn + nr_pages - 1;
9329 return zone_spans_pfn(zone, last_pfn);
9333 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9334 * @nr_pages: Number of contiguous pages to allocate
9335 * @gfp_mask: GFP mask to limit search and used during compaction
9337 * @nodemask: Mask for other possible nodes
9339 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9340 * on an applicable zonelist to find a contiguous pfn range which can then be
9341 * tried for allocation with alloc_contig_range(). This routine is intended
9342 * for allocation requests which can not be fulfilled with the buddy allocator.
9344 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9345 * power of two, then allocated range is also guaranteed to be aligned to same
9346 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9348 * Allocated pages can be freed with free_contig_range() or by manually calling
9349 * __free_page() on each allocated page.
9351 * Return: pointer to contiguous pages on success, or NULL if not successful.
9353 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9354 int nid, nodemask_t *nodemask)
9356 unsigned long ret, pfn, flags;
9357 struct zonelist *zonelist;
9361 zonelist = node_zonelist(nid, gfp_mask);
9362 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9363 gfp_zone(gfp_mask), nodemask) {
9364 spin_lock_irqsave(&zone->lock, flags);
9366 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9367 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9368 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9370 * We release the zone lock here because
9371 * alloc_contig_range() will also lock the zone
9372 * at some point. If there's an allocation
9373 * spinning on this lock, it may win the race
9374 * and cause alloc_contig_range() to fail...
9376 spin_unlock_irqrestore(&zone->lock, flags);
9377 ret = __alloc_contig_pages(pfn, nr_pages,
9380 return pfn_to_page(pfn);
9381 spin_lock_irqsave(&zone->lock, flags);
9385 spin_unlock_irqrestore(&zone->lock, flags);
9389 #endif /* CONFIG_CONTIG_ALLOC */
9391 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9393 unsigned long count = 0;
9395 for (; nr_pages--; pfn++) {
9396 struct page *page = pfn_to_page(pfn);
9398 count += page_count(page) != 1;
9401 WARN(count != 0, "%lu pages are still in use!\n", count);
9403 EXPORT_SYMBOL(free_contig_range);
9406 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9407 * page high values need to be recalculated.
9409 void zone_pcp_update(struct zone *zone, int cpu_online)
9411 mutex_lock(&pcp_batch_high_lock);
9412 zone_set_pageset_high_and_batch(zone, cpu_online);
9413 mutex_unlock(&pcp_batch_high_lock);
9417 * Effectively disable pcplists for the zone by setting the high limit to 0
9418 * and draining all cpus. A concurrent page freeing on another CPU that's about
9419 * to put the page on pcplist will either finish before the drain and the page
9420 * will be drained, or observe the new high limit and skip the pcplist.
9422 * Must be paired with a call to zone_pcp_enable().
9424 void zone_pcp_disable(struct zone *zone)
9426 mutex_lock(&pcp_batch_high_lock);
9427 __zone_set_pageset_high_and_batch(zone, 0, 1);
9428 __drain_all_pages(zone, true);
9431 void zone_pcp_enable(struct zone *zone)
9433 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9434 mutex_unlock(&pcp_batch_high_lock);
9437 void zone_pcp_reset(struct zone *zone)
9440 struct per_cpu_zonestat *pzstats;
9442 if (zone->per_cpu_pageset != &boot_pageset) {
9443 for_each_online_cpu(cpu) {
9444 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9445 drain_zonestat(zone, pzstats);
9447 free_percpu(zone->per_cpu_pageset);
9448 free_percpu(zone->per_cpu_zonestats);
9449 zone->per_cpu_pageset = &boot_pageset;
9450 zone->per_cpu_zonestats = &boot_zonestats;
9454 #ifdef CONFIG_MEMORY_HOTREMOVE
9456 * All pages in the range must be in a single zone, must not contain holes,
9457 * must span full sections, and must be isolated before calling this function.
9459 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9461 unsigned long pfn = start_pfn;
9465 unsigned long flags;
9467 offline_mem_sections(pfn, end_pfn);
9468 zone = page_zone(pfn_to_page(pfn));
9469 spin_lock_irqsave(&zone->lock, flags);
9470 while (pfn < end_pfn) {
9471 page = pfn_to_page(pfn);
9473 * The HWPoisoned page may be not in buddy system, and
9474 * page_count() is not 0.
9476 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9481 * At this point all remaining PageOffline() pages have a
9482 * reference count of 0 and can simply be skipped.
9484 if (PageOffline(page)) {
9485 BUG_ON(page_count(page));
9486 BUG_ON(PageBuddy(page));
9491 BUG_ON(page_count(page));
9492 BUG_ON(!PageBuddy(page));
9493 order = buddy_order(page);
9494 del_page_from_free_list(page, zone, order);
9495 pfn += (1 << order);
9497 spin_unlock_irqrestore(&zone->lock, flags);
9502 * This function returns a stable result only if called under zone lock.
9504 bool is_free_buddy_page(struct page *page)
9506 unsigned long pfn = page_to_pfn(page);
9509 for (order = 0; order < MAX_ORDER; order++) {
9510 struct page *page_head = page - (pfn & ((1 << order) - 1));
9512 if (PageBuddy(page_head) &&
9513 buddy_order_unsafe(page_head) >= order)
9517 return order < MAX_ORDER;
9519 EXPORT_SYMBOL(is_free_buddy_page);
9521 #ifdef CONFIG_MEMORY_FAILURE
9523 * Break down a higher-order page in sub-pages, and keep our target out of
9526 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9527 struct page *target, int low, int high,
9530 unsigned long size = 1 << high;
9531 struct page *current_buddy, *next_page;
9533 while (high > low) {
9537 if (target >= &page[size]) {
9538 next_page = page + size;
9539 current_buddy = page;
9542 current_buddy = page + size;
9545 if (set_page_guard(zone, current_buddy, high, migratetype))
9548 if (current_buddy != target) {
9549 add_to_free_list(current_buddy, zone, high, migratetype);
9550 set_buddy_order(current_buddy, high);
9557 * Take a page that will be marked as poisoned off the buddy allocator.
9559 bool take_page_off_buddy(struct page *page)
9561 struct zone *zone = page_zone(page);
9562 unsigned long pfn = page_to_pfn(page);
9563 unsigned long flags;
9567 spin_lock_irqsave(&zone->lock, flags);
9568 for (order = 0; order < MAX_ORDER; order++) {
9569 struct page *page_head = page - (pfn & ((1 << order) - 1));
9570 int page_order = buddy_order(page_head);
9572 if (PageBuddy(page_head) && page_order >= order) {
9573 unsigned long pfn_head = page_to_pfn(page_head);
9574 int migratetype = get_pfnblock_migratetype(page_head,
9577 del_page_from_free_list(page_head, zone, page_order);
9578 break_down_buddy_pages(zone, page_head, page, 0,
9579 page_order, migratetype);
9580 SetPageHWPoisonTakenOff(page);
9581 if (!is_migrate_isolate(migratetype))
9582 __mod_zone_freepage_state(zone, -1, migratetype);
9586 if (page_count(page_head) > 0)
9589 spin_unlock_irqrestore(&zone->lock, flags);
9594 * Cancel takeoff done by take_page_off_buddy().
9596 bool put_page_back_buddy(struct page *page)
9598 struct zone *zone = page_zone(page);
9599 unsigned long pfn = page_to_pfn(page);
9600 unsigned long flags;
9601 int migratetype = get_pfnblock_migratetype(page, pfn);
9604 spin_lock_irqsave(&zone->lock, flags);
9605 if (put_page_testzero(page)) {
9606 ClearPageHWPoisonTakenOff(page);
9607 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9608 if (TestClearPageHWPoison(page)) {
9612 spin_unlock_irqrestore(&zone->lock, flags);
9618 #ifdef CONFIG_ZONE_DMA
9619 bool has_managed_dma(void)
9621 struct pglist_data *pgdat;
9623 for_each_online_pgdat(pgdat) {
9624 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9626 if (managed_zone(zone))
9631 #endif /* CONFIG_ZONE_DMA */