1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
164 #define pcpu_spin_lock(type, member, ptr) \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
177 _ret = this_cpu_ptr(ptr); \
178 spin_lock_irqsave(&_ret->member, flags); \
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
186 _ret = this_cpu_ptr(ptr); \
187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
194 #define pcpu_spin_unlock(member, ptr) \
196 spin_unlock(&ptr->member); \
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
202 spin_unlock_irqrestore(&ptr->member, flags); \
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr) \
208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
210 #define pcp_spin_lock_irqsave(ptr, flags) \
211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
213 #define pcp_spin_trylock_irqsave(ptr, flags) \
214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
216 #define pcp_spin_unlock(ptr) \
217 pcpu_spin_unlock(lock, ptr)
219 #define pcp_spin_unlock_irqrestore(ptr, flags) \
220 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233 * defined in <linux/topology.h>.
235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
239 static DEFINE_MUTEX(pcpu_drain_mutex);
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
247 * Array of node states.
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 [N_POSSIBLE] = NODE_MASK_ALL,
251 [N_ONLINE] = { { [0] = 1UL } },
253 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 [N_HIGH_MEMORY] = { { [0] = 1UL } },
257 [N_MEMORY] = { { [0] = 1UL } },
258 [N_CPU] = { { [0] = 1UL } },
261 EXPORT_SYMBOL(node_states);
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
276 static bool _init_on_alloc_enabled_early __read_mostly
277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
281 return kstrtobool(buf, &_init_on_alloc_enabled_early);
283 early_param("init_on_alloc", early_init_on_alloc);
285 static bool _init_on_free_enabled_early __read_mostly
286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
289 return kstrtobool(buf, &_init_on_free_enabled_early);
291 early_param("init_on_free", early_init_on_free);
294 * A cached value of the page's pageblock's migratetype, used when the page is
295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297 * Also the migratetype set in the page does not necessarily match the pcplist
298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299 * other index - this ensures that it will be put on the correct CMA freelist.
301 static inline int get_pcppage_migratetype(struct page *page)
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
308 page->index = migratetype;
311 #ifdef CONFIG_PM_SLEEP
313 * The following functions are used by the suspend/hibernate code to temporarily
314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315 * while devices are suspended. To avoid races with the suspend/hibernate code,
316 * they should always be called with system_transition_mutex held
317 * (gfp_allowed_mask also should only be modified with system_transition_mutex
318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319 * with that modification).
322 static gfp_t saved_gfp_mask;
324 void pm_restore_gfp_mask(void)
326 WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 if (saved_gfp_mask) {
328 gfp_allowed_mask = saved_gfp_mask;
333 void pm_restrict_gfp_mask(void)
335 WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 WARN_ON(saved_gfp_mask);
337 saved_gfp_mask = gfp_allowed_mask;
338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
341 bool pm_suspended_storage(void)
343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
347 #endif /* CONFIG_PM_SLEEP */
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
353 static void __free_pages_ok(struct page *page, unsigned int order,
357 * results with 256, 32 in the lowmem_reserve sysctl:
358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359 * 1G machine -> (16M dma, 784M normal, 224M high)
360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
364 * TBD: should special case ZONE_DMA32 machines here - in those we normally
365 * don't need any ZONE_NORMAL reservation
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
371 #ifdef CONFIG_ZONE_DMA32
375 #ifdef CONFIG_HIGHMEM
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
385 #ifdef CONFIG_ZONE_DMA32
389 #ifdef CONFIG_HIGHMEM
393 #ifdef CONFIG_ZONE_DEVICE
398 const char * const migratetype_names[MIGRATE_TYPES] = {
406 #ifdef CONFIG_MEMORY_ISOLATION
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 [NULL_COMPOUND_DTOR] = NULL,
413 [COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 [HUGETLB_PAGE_DTOR] = free_huge_page,
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
442 EXPORT_SYMBOL(movable_zone);
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
451 int page_group_by_mobility_disabled __read_mostly;
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
455 * During boot we initialize deferred pages on-demand, as needed, but once
456 * page_alloc_init_late() has finished, the deferred pages are all initialized,
457 * and we can permanently disable that path.
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
461 static inline bool deferred_pages_enabled(void)
463 return static_branch_unlikely(&deferred_pages);
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
469 int nid = early_pfn_to_nid(pfn);
471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
478 * Returns true when the remaining initialisation should be deferred until
479 * later in the boot cycle when it can be parallelised.
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
484 static unsigned long prev_end_pfn, nr_initialised;
486 if (early_page_ext_enabled())
489 * prev_end_pfn static that contains the end of previous zone
490 * No need to protect because called very early in boot before smp_init.
492 if (prev_end_pfn != end_pfn) {
493 prev_end_pfn = end_pfn;
497 /* Always populate low zones for address-constrained allocations */
498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
504 * We start only with one section of pages, more pages are added as
505 * needed until the rest of deferred pages are initialized.
508 if ((nr_initialised > PAGES_PER_SECTION) &&
509 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 NODE_DATA(nid)->first_deferred_pfn = pfn;
516 static inline bool deferred_pages_enabled(void)
521 static inline bool early_page_uninitialised(unsigned long pfn)
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
536 #ifdef CONFIG_SPARSEMEM
537 return section_to_usemap(__pfn_to_section(pfn));
539 return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
545 #ifdef CONFIG_SPARSEMEM
546 pfn &= (PAGES_PER_SECTION-1);
548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
558 unsigned long *bitmap;
559 unsigned long bitidx, word_bitidx;
562 bitmap = get_pageblock_bitmap(page, pfn);
563 bitidx = pfn_to_bitidx(page, pfn);
564 word_bitidx = bitidx / BITS_PER_LONG;
565 bitidx &= (BITS_PER_LONG-1);
567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 * a consistent read of the memory array, so that results, even though
569 * racy, are not corrupted.
571 word = READ_ONCE(bitmap[word_bitidx]);
572 return (word >> bitidx) & mask;
576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @pfn: The target page frame number
579 * @mask: mask of bits that the caller is interested in
581 * Return: pageblock_bits flags
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 unsigned long pfn, unsigned long mask)
586 return __get_pfnblock_flags_mask(page, pfn, mask);
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597 * @page: The page within the block of interest
598 * @flags: The flags to set
599 * @pfn: The target page frame number
600 * @mask: mask of bits that the caller is interested in
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
606 unsigned long *bitmap;
607 unsigned long bitidx, word_bitidx;
610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
613 bitmap = get_pageblock_bitmap(page, pfn);
614 bitidx = pfn_to_bitidx(page, pfn);
615 word_bitidx = bitidx / BITS_PER_LONG;
616 bitidx &= (BITS_PER_LONG-1);
618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
623 word = READ_ONCE(bitmap[word_bitidx]);
625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
628 void set_pageblock_migratetype(struct page *page, int migratetype)
630 if (unlikely(page_group_by_mobility_disabled &&
631 migratetype < MIGRATE_PCPTYPES))
632 migratetype = MIGRATE_UNMOVABLE;
634 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 page_to_pfn(page), MIGRATETYPE_MASK);
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
643 unsigned long pfn = page_to_pfn(page);
644 unsigned long sp, start_pfn;
647 seq = zone_span_seqbegin(zone);
648 start_pfn = zone->zone_start_pfn;
649 sp = zone->spanned_pages;
650 if (!zone_spans_pfn(zone, pfn))
652 } while (zone_span_seqretry(zone, seq));
655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 pfn, zone_to_nid(zone), zone->name,
657 start_pfn, start_pfn + sp);
662 static int page_is_consistent(struct zone *zone, struct page *page)
664 if (zone != page_zone(page))
670 * Temporary debugging check for pages not lying within a given zone.
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
674 if (page_outside_zone_boundaries(zone, page))
676 if (!page_is_consistent(zone, page))
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
688 static void bad_page(struct page *page, const char *reason)
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
705 "BUG: Bad page state: %lu messages suppressed\n",
712 resume = jiffies + 60 * HZ;
714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
715 current->comm, page_to_pfn(page));
716 dump_page(page, reason);
721 /* Leave bad fields for debug, except PageBuddy could make trouble */
722 page_mapcount_reset(page); /* remove PageBuddy */
723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
726 static inline unsigned int order_to_pindex(int migratetype, int order)
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 VM_BUG_ON(order != pageblock_order);
733 return NR_LOWORDER_PCP_LISTS;
736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
739 return (MIGRATE_PCPTYPES * base) + migratetype;
742 static inline int pindex_to_order(unsigned int pindex)
744 int order = pindex / MIGRATE_PCPTYPES;
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 if (pindex == NR_LOWORDER_PCP_LISTS)
748 order = pageblock_order;
750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
756 static inline bool pcp_allowed_order(unsigned int order)
758 if (order <= PAGE_ALLOC_COSTLY_ORDER)
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 if (order == pageblock_order)
767 static inline void free_the_page(struct page *page, unsigned int order)
769 if (pcp_allowed_order(order)) /* Via pcp? */
770 free_unref_page(page, order);
772 __free_pages_ok(page, order, FPI_NONE);
776 * Higher-order pages are called "compound pages". They are structured thusly:
778 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
783 * The first tail page's ->compound_dtor holds the offset in array of compound
784 * page destructors. See compound_page_dtors.
786 * The first tail page's ->compound_order holds the order of allocation.
787 * This usage means that zero-order pages may not be compound.
790 void free_compound_page(struct page *page)
792 mem_cgroup_uncharge(page_folio(page));
793 free_the_page(page, compound_order(page));
796 static void prep_compound_head(struct page *page, unsigned int order)
798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 set_compound_order(page, order);
800 atomic_set(compound_mapcount_ptr(page), -1);
801 atomic_set(compound_pincount_ptr(page), 0);
804 static void prep_compound_tail(struct page *head, int tail_idx)
806 struct page *p = head + tail_idx;
808 p->mapping = TAIL_MAPPING;
809 set_compound_head(p, head);
812 void prep_compound_page(struct page *page, unsigned int order)
815 int nr_pages = 1 << order;
818 for (i = 1; i < nr_pages; i++)
819 prep_compound_tail(page, i);
821 prep_compound_head(page, order);
824 void destroy_large_folio(struct folio *folio)
826 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
828 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 compound_page_dtors[dtor](&folio->page);
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
835 bool _debug_pagealloc_enabled_early __read_mostly
836 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
843 static int __init early_debug_pagealloc(char *buf)
845 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
847 early_param("debug_pagealloc", early_debug_pagealloc);
849 static int __init debug_guardpage_minorder_setup(char *buf)
853 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
854 pr_err("Bad debug_guardpage_minorder value\n");
857 _debug_guardpage_minorder = res;
858 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 unsigned int order, int migratetype)
866 if (!debug_guardpage_enabled())
869 if (order >= debug_guardpage_minorder())
872 __SetPageGuard(page);
873 INIT_LIST_HEAD(&page->buddy_list);
874 set_page_private(page, order);
875 /* Guard pages are not available for any usage */
876 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
881 static inline void clear_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype)
884 if (!debug_guardpage_enabled())
887 __ClearPageGuard(page);
889 set_page_private(page, 0);
890 if (!is_migrate_isolate(migratetype))
891 __mod_zone_freepage_state(zone, (1 << order), migratetype);
894 static inline bool set_page_guard(struct zone *zone, struct page *page,
895 unsigned int order, int migratetype) { return false; }
896 static inline void clear_page_guard(struct zone *zone, struct page *page,
897 unsigned int order, int migratetype) {}
901 * Enable static keys related to various memory debugging and hardening options.
902 * Some override others, and depend on early params that are evaluated in the
903 * order of appearance. So we need to first gather the full picture of what was
904 * enabled, and then make decisions.
906 void init_mem_debugging_and_hardening(void)
908 bool page_poisoning_requested = false;
910 #ifdef CONFIG_PAGE_POISONING
912 * Page poisoning is debug page alloc for some arches. If
913 * either of those options are enabled, enable poisoning.
915 if (page_poisoning_enabled() ||
916 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
917 debug_pagealloc_enabled())) {
918 static_branch_enable(&_page_poisoning_enabled);
919 page_poisoning_requested = true;
923 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
924 page_poisoning_requested) {
925 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
926 "will take precedence over init_on_alloc and init_on_free\n");
927 _init_on_alloc_enabled_early = false;
928 _init_on_free_enabled_early = false;
931 if (_init_on_alloc_enabled_early)
932 static_branch_enable(&init_on_alloc);
934 static_branch_disable(&init_on_alloc);
936 if (_init_on_free_enabled_early)
937 static_branch_enable(&init_on_free);
939 static_branch_disable(&init_on_free);
941 #ifdef CONFIG_DEBUG_PAGEALLOC
942 if (!debug_pagealloc_enabled())
945 static_branch_enable(&_debug_pagealloc_enabled);
947 if (!debug_guardpage_minorder())
950 static_branch_enable(&_debug_guardpage_enabled);
954 static inline void set_buddy_order(struct page *page, unsigned int order)
956 set_page_private(page, order);
957 __SetPageBuddy(page);
960 #ifdef CONFIG_COMPACTION
961 static inline struct capture_control *task_capc(struct zone *zone)
963 struct capture_control *capc = current->capture_control;
965 return unlikely(capc) &&
966 !(current->flags & PF_KTHREAD) &&
968 capc->cc->zone == zone ? capc : NULL;
972 compaction_capture(struct capture_control *capc, struct page *page,
973 int order, int migratetype)
975 if (!capc || order != capc->cc->order)
978 /* Do not accidentally pollute CMA or isolated regions*/
979 if (is_migrate_cma(migratetype) ||
980 is_migrate_isolate(migratetype))
984 * Do not let lower order allocations pollute a movable pageblock.
985 * This might let an unmovable request use a reclaimable pageblock
986 * and vice-versa but no more than normal fallback logic which can
987 * have trouble finding a high-order free page.
989 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
997 static inline struct capture_control *task_capc(struct zone *zone)
1003 compaction_capture(struct capture_control *capc, struct page *page,
1004 int order, int migratetype)
1008 #endif /* CONFIG_COMPACTION */
1010 /* Used for pages not on another list */
1011 static inline void add_to_free_list(struct page *page, struct zone *zone,
1012 unsigned int order, int migratetype)
1014 struct free_area *area = &zone->free_area[order];
1016 list_add(&page->buddy_list, &area->free_list[migratetype]);
1020 /* Used for pages not on another list */
1021 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1022 unsigned int order, int migratetype)
1024 struct free_area *area = &zone->free_area[order];
1026 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1031 * Used for pages which are on another list. Move the pages to the tail
1032 * of the list - so the moved pages won't immediately be considered for
1033 * allocation again (e.g., optimization for memory onlining).
1035 static inline void move_to_free_list(struct page *page, struct zone *zone,
1036 unsigned int order, int migratetype)
1038 struct free_area *area = &zone->free_area[order];
1040 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1043 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1046 /* clear reported state and update reported page count */
1047 if (page_reported(page))
1048 __ClearPageReported(page);
1050 list_del(&page->buddy_list);
1051 __ClearPageBuddy(page);
1052 set_page_private(page, 0);
1053 zone->free_area[order].nr_free--;
1057 * If this is not the largest possible page, check if the buddy
1058 * of the next-highest order is free. If it is, it's possible
1059 * that pages are being freed that will coalesce soon. In case,
1060 * that is happening, add the free page to the tail of the list
1061 * so it's less likely to be used soon and more likely to be merged
1062 * as a higher order page
1065 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1066 struct page *page, unsigned int order)
1068 unsigned long higher_page_pfn;
1069 struct page *higher_page;
1071 if (order >= MAX_ORDER - 2)
1074 higher_page_pfn = buddy_pfn & pfn;
1075 higher_page = page + (higher_page_pfn - pfn);
1077 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1082 * Freeing function for a buddy system allocator.
1084 * The concept of a buddy system is to maintain direct-mapped table
1085 * (containing bit values) for memory blocks of various "orders".
1086 * The bottom level table contains the map for the smallest allocatable
1087 * units of memory (here, pages), and each level above it describes
1088 * pairs of units from the levels below, hence, "buddies".
1089 * At a high level, all that happens here is marking the table entry
1090 * at the bottom level available, and propagating the changes upward
1091 * as necessary, plus some accounting needed to play nicely with other
1092 * parts of the VM system.
1093 * At each level, we keep a list of pages, which are heads of continuous
1094 * free pages of length of (1 << order) and marked with PageBuddy.
1095 * Page's order is recorded in page_private(page) field.
1096 * So when we are allocating or freeing one, we can derive the state of the
1097 * other. That is, if we allocate a small block, and both were
1098 * free, the remainder of the region must be split into blocks.
1099 * If a block is freed, and its buddy is also free, then this
1100 * triggers coalescing into a block of larger size.
1105 static inline void __free_one_page(struct page *page,
1107 struct zone *zone, unsigned int order,
1108 int migratetype, fpi_t fpi_flags)
1110 struct capture_control *capc = task_capc(zone);
1111 unsigned long buddy_pfn;
1112 unsigned long combined_pfn;
1116 VM_BUG_ON(!zone_is_initialized(zone));
1117 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1119 VM_BUG_ON(migratetype == -1);
1120 if (likely(!is_migrate_isolate(migratetype)))
1121 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1123 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1124 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1126 while (order < MAX_ORDER - 1) {
1127 if (compaction_capture(capc, page, order, migratetype)) {
1128 __mod_zone_freepage_state(zone, -(1 << order),
1133 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1137 if (unlikely(order >= pageblock_order)) {
1139 * We want to prevent merge between freepages on pageblock
1140 * without fallbacks and normal pageblock. Without this,
1141 * pageblock isolation could cause incorrect freepage or CMA
1142 * accounting or HIGHATOMIC accounting.
1144 int buddy_mt = get_pageblock_migratetype(buddy);
1146 if (migratetype != buddy_mt
1147 && (!migratetype_is_mergeable(migratetype) ||
1148 !migratetype_is_mergeable(buddy_mt)))
1153 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1154 * merge with it and move up one order.
1156 if (page_is_guard(buddy))
1157 clear_page_guard(zone, buddy, order, migratetype);
1159 del_page_from_free_list(buddy, zone, order);
1160 combined_pfn = buddy_pfn & pfn;
1161 page = page + (combined_pfn - pfn);
1167 set_buddy_order(page, order);
1169 if (fpi_flags & FPI_TO_TAIL)
1171 else if (is_shuffle_order(order))
1172 to_tail = shuffle_pick_tail();
1174 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1177 add_to_free_list_tail(page, zone, order, migratetype);
1179 add_to_free_list(page, zone, order, migratetype);
1181 /* Notify page reporting subsystem of freed page */
1182 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1183 page_reporting_notify_free(order);
1187 * split_free_page() -- split a free page at split_pfn_offset
1188 * @free_page: the original free page
1189 * @order: the order of the page
1190 * @split_pfn_offset: split offset within the page
1192 * Return -ENOENT if the free page is changed, otherwise 0
1194 * It is used when the free page crosses two pageblocks with different migratetypes
1195 * at split_pfn_offset within the page. The split free page will be put into
1196 * separate migratetype lists afterwards. Otherwise, the function achieves
1199 int split_free_page(struct page *free_page,
1200 unsigned int order, unsigned long split_pfn_offset)
1202 struct zone *zone = page_zone(free_page);
1203 unsigned long free_page_pfn = page_to_pfn(free_page);
1205 unsigned long flags;
1206 int free_page_order;
1210 if (split_pfn_offset == 0)
1213 spin_lock_irqsave(&zone->lock, flags);
1215 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1220 mt = get_pageblock_migratetype(free_page);
1221 if (likely(!is_migrate_isolate(mt)))
1222 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1224 del_page_from_free_list(free_page, zone, order);
1225 for (pfn = free_page_pfn;
1226 pfn < free_page_pfn + (1UL << order);) {
1227 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1229 free_page_order = min_t(unsigned int,
1230 pfn ? __ffs(pfn) : order,
1231 __fls(split_pfn_offset));
1232 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1234 pfn += 1UL << free_page_order;
1235 split_pfn_offset -= (1UL << free_page_order);
1236 /* we have done the first part, now switch to second part */
1237 if (split_pfn_offset == 0)
1238 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1241 spin_unlock_irqrestore(&zone->lock, flags);
1245 * A bad page could be due to a number of fields. Instead of multiple branches,
1246 * try and check multiple fields with one check. The caller must do a detailed
1247 * check if necessary.
1249 static inline bool page_expected_state(struct page *page,
1250 unsigned long check_flags)
1252 if (unlikely(atomic_read(&page->_mapcount) != -1))
1255 if (unlikely((unsigned long)page->mapping |
1256 page_ref_count(page) |
1260 (page->flags & check_flags)))
1266 static const char *page_bad_reason(struct page *page, unsigned long flags)
1268 const char *bad_reason = NULL;
1270 if (unlikely(atomic_read(&page->_mapcount) != -1))
1271 bad_reason = "nonzero mapcount";
1272 if (unlikely(page->mapping != NULL))
1273 bad_reason = "non-NULL mapping";
1274 if (unlikely(page_ref_count(page) != 0))
1275 bad_reason = "nonzero _refcount";
1276 if (unlikely(page->flags & flags)) {
1277 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1278 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1280 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1283 if (unlikely(page->memcg_data))
1284 bad_reason = "page still charged to cgroup";
1289 static void free_page_is_bad_report(struct page *page)
1292 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1295 static inline bool free_page_is_bad(struct page *page)
1297 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1300 /* Something has gone sideways, find it */
1301 free_page_is_bad_report(page);
1305 static int free_tail_pages_check(struct page *head_page, struct page *page)
1310 * We rely page->lru.next never has bit 0 set, unless the page
1311 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1313 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1315 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1319 switch (page - head_page) {
1321 /* the first tail page: ->mapping may be compound_mapcount() */
1322 if (unlikely(compound_mapcount(page))) {
1323 bad_page(page, "nonzero compound_mapcount");
1329 * the second tail page: ->mapping is
1330 * deferred_list.next -- ignore value.
1334 if (page->mapping != TAIL_MAPPING) {
1335 bad_page(page, "corrupted mapping in tail page");
1340 if (unlikely(!PageTail(page))) {
1341 bad_page(page, "PageTail not set");
1344 if (unlikely(compound_head(page) != head_page)) {
1345 bad_page(page, "compound_head not consistent");
1350 page->mapping = NULL;
1351 clear_compound_head(page);
1356 * Skip KASAN memory poisoning when either:
1358 * 1. Deferred memory initialization has not yet completed,
1359 * see the explanation below.
1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363 * see the comment next to it.
1365 * Poisoning pages during deferred memory init will greatly lengthen the
1366 * process and cause problem in large memory systems as the deferred pages
1367 * initialization is done with interrupt disabled.
1369 * Assuming that there will be no reference to those newly initialized
1370 * pages before they are ever allocated, this should have no effect on
1371 * KASAN memory tracking as the poison will be properly inserted at page
1372 * allocation time. The only corner case is when pages are allocated by
1373 * on-demand allocation and then freed again before the deferred pages
1374 * initialization is done, but this is not likely to happen.
1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1378 return deferred_pages_enabled() ||
1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 PageSkipKASanPoison(page);
1384 static void kernel_init_pages(struct page *page, int numpages)
1388 /* s390's use of memset() could override KASAN redzones. */
1389 kasan_disable_current();
1390 for (i = 0; i < numpages; i++)
1391 clear_highpage_kasan_tagged(page + i);
1392 kasan_enable_current();
1395 static __always_inline bool free_pages_prepare(struct page *page,
1396 unsigned int order, bool check_free, fpi_t fpi_flags)
1399 bool init = want_init_on_free();
1401 VM_BUG_ON_PAGE(PageTail(page), page);
1403 trace_mm_page_free(page, order);
1404 kmsan_free_page(page, order);
1406 if (unlikely(PageHWPoison(page)) && !order) {
1408 * Do not let hwpoison pages hit pcplists/buddy
1409 * Untie memcg state and reset page's owner
1411 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1412 __memcg_kmem_uncharge_page(page, order);
1413 reset_page_owner(page, order);
1414 page_table_check_free(page, order);
1419 * Check tail pages before head page information is cleared to
1420 * avoid checking PageCompound for order-0 pages.
1422 if (unlikely(order)) {
1423 bool compound = PageCompound(page);
1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1429 ClearPageDoubleMap(page);
1430 ClearPageHasHWPoisoned(page);
1432 for (i = 1; i < (1 << order); i++) {
1434 bad += free_tail_pages_check(page, page + i);
1435 if (unlikely(free_page_is_bad(page + i))) {
1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1442 if (PageMappingFlags(page))
1443 page->mapping = NULL;
1444 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1445 __memcg_kmem_uncharge_page(page, order);
1446 if (check_free && free_page_is_bad(page))
1451 page_cpupid_reset_last(page);
1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 reset_page_owner(page, order);
1454 page_table_check_free(page, order);
1456 if (!PageHighMem(page)) {
1457 debug_check_no_locks_freed(page_address(page),
1458 PAGE_SIZE << order);
1459 debug_check_no_obj_freed(page_address(page),
1460 PAGE_SIZE << order);
1463 kernel_poison_pages(page, 1 << order);
1466 * As memory initialization might be integrated into KASAN,
1467 * KASAN poisoning and memory initialization code must be
1468 * kept together to avoid discrepancies in behavior.
1470 * With hardware tag-based KASAN, memory tags must be set before the
1471 * page becomes unavailable via debug_pagealloc or arch_free_page.
1473 if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 kasan_poison_pages(page, order, init);
1476 /* Memory is already initialized if KASAN did it internally. */
1477 if (kasan_has_integrated_init())
1481 kernel_init_pages(page, 1 << order);
1484 * arch_free_page() can make the page's contents inaccessible. s390
1485 * does this. So nothing which can access the page's contents should
1486 * happen after this.
1488 arch_free_page(page, order);
1490 debug_pagealloc_unmap_pages(page, 1 << order);
1495 #ifdef CONFIG_DEBUG_VM
1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499 * moved from pcp lists to free lists.
1501 static bool free_pcp_prepare(struct page *page, unsigned int order)
1503 return free_pages_prepare(page, order, true, FPI_NONE);
1506 /* return true if this page has an inappropriate state */
1507 static bool bulkfree_pcp_prepare(struct page *page)
1509 if (debug_pagealloc_enabled_static())
1510 return free_page_is_bad(page);
1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517 * moving from pcp lists to free list in order to reduce overhead. With
1518 * debug_pagealloc enabled, they are checked also immediately when being freed
1521 static bool free_pcp_prepare(struct page *page, unsigned int order)
1523 if (debug_pagealloc_enabled_static())
1524 return free_pages_prepare(page, order, true, FPI_NONE);
1526 return free_pages_prepare(page, order, false, FPI_NONE);
1529 static bool bulkfree_pcp_prepare(struct page *page)
1531 return free_page_is_bad(page);
1533 #endif /* CONFIG_DEBUG_VM */
1536 * Frees a number of pages from the PCP lists
1537 * Assumes all pages on list are in same zone.
1538 * count is the number of pages to free.
1540 static void free_pcppages_bulk(struct zone *zone, int count,
1541 struct per_cpu_pages *pcp,
1545 int max_pindex = NR_PCP_LISTS - 1;
1547 bool isolated_pageblocks;
1551 * Ensure proper count is passed which otherwise would stuck in the
1552 * below while (list_empty(list)) loop.
1554 count = min(pcp->count, count);
1556 /* Ensure requested pindex is drained first. */
1557 pindex = pindex - 1;
1559 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1560 spin_lock(&zone->lock);
1561 isolated_pageblocks = has_isolate_pageblock(zone);
1564 struct list_head *list;
1567 /* Remove pages from lists in a round-robin fashion. */
1569 if (++pindex > max_pindex)
1570 pindex = min_pindex;
1571 list = &pcp->lists[pindex];
1572 if (!list_empty(list))
1575 if (pindex == max_pindex)
1577 if (pindex == min_pindex)
1581 order = pindex_to_order(pindex);
1582 nr_pages = 1 << order;
1583 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1587 page = list_last_entry(list, struct page, pcp_list);
1588 mt = get_pcppage_migratetype(page);
1590 /* must delete to avoid corrupting pcp list */
1591 list_del(&page->pcp_list);
1593 pcp->count -= nr_pages;
1595 if (bulkfree_pcp_prepare(page))
1598 /* MIGRATE_ISOLATE page should not go to pcplists */
1599 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1600 /* Pageblock could have been isolated meanwhile */
1601 if (unlikely(isolated_pageblocks))
1602 mt = get_pageblock_migratetype(page);
1604 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1605 trace_mm_page_pcpu_drain(page, order, mt);
1606 } while (count > 0 && !list_empty(list));
1609 spin_unlock(&zone->lock);
1612 static void free_one_page(struct zone *zone,
1613 struct page *page, unsigned long pfn,
1615 int migratetype, fpi_t fpi_flags)
1617 unsigned long flags;
1619 spin_lock_irqsave(&zone->lock, flags);
1620 if (unlikely(has_isolate_pageblock(zone) ||
1621 is_migrate_isolate(migratetype))) {
1622 migratetype = get_pfnblock_migratetype(page, pfn);
1624 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1625 spin_unlock_irqrestore(&zone->lock, flags);
1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1629 unsigned long zone, int nid)
1631 mm_zero_struct_page(page);
1632 set_page_links(page, zone, nid, pfn);
1633 init_page_count(page);
1634 page_mapcount_reset(page);
1635 page_cpupid_reset_last(page);
1636 page_kasan_tag_reset(page);
1638 INIT_LIST_HEAD(&page->lru);
1639 #ifdef WANT_PAGE_VIRTUAL
1640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1641 if (!is_highmem_idx(zone))
1642 set_page_address(page, __va(pfn << PAGE_SHIFT));
1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1647 static void __meminit init_reserved_page(unsigned long pfn)
1652 if (!early_page_uninitialised(pfn))
1655 nid = early_pfn_to_nid(pfn);
1656 pgdat = NODE_DATA(nid);
1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 struct zone *zone = &pgdat->node_zones[zid];
1661 if (zone_spans_pfn(zone, pfn))
1664 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1667 static inline void init_reserved_page(unsigned long pfn)
1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1673 * Initialised pages do not have PageReserved set. This function is
1674 * called for each range allocated by the bootmem allocator and
1675 * marks the pages PageReserved. The remaining valid pages are later
1676 * sent to the buddy page allocator.
1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1680 unsigned long start_pfn = PFN_DOWN(start);
1681 unsigned long end_pfn = PFN_UP(end);
1683 for (; start_pfn < end_pfn; start_pfn++) {
1684 if (pfn_valid(start_pfn)) {
1685 struct page *page = pfn_to_page(start_pfn);
1687 init_reserved_page(start_pfn);
1689 /* Avoid false-positive PageTail() */
1690 INIT_LIST_HEAD(&page->lru);
1693 * no need for atomic set_bit because the struct
1694 * page is not visible yet so nobody should
1697 __SetPageReserved(page);
1702 static void __free_pages_ok(struct page *page, unsigned int order,
1705 unsigned long flags;
1707 unsigned long pfn = page_to_pfn(page);
1708 struct zone *zone = page_zone(page);
1710 if (!free_pages_prepare(page, order, true, fpi_flags))
1713 migratetype = get_pfnblock_migratetype(page, pfn);
1715 spin_lock_irqsave(&zone->lock, flags);
1716 if (unlikely(has_isolate_pageblock(zone) ||
1717 is_migrate_isolate(migratetype))) {
1718 migratetype = get_pfnblock_migratetype(page, pfn);
1720 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1721 spin_unlock_irqrestore(&zone->lock, flags);
1723 __count_vm_events(PGFREE, 1 << order);
1726 void __free_pages_core(struct page *page, unsigned int order)
1728 unsigned int nr_pages = 1 << order;
1729 struct page *p = page;
1733 * When initializing the memmap, __init_single_page() sets the refcount
1734 * of all pages to 1 ("allocated"/"not free"). We have to set the
1735 * refcount of all involved pages to 0.
1738 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1740 __ClearPageReserved(p);
1741 set_page_count(p, 0);
1743 __ClearPageReserved(p);
1744 set_page_count(p, 0);
1746 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1749 * Bypass PCP and place fresh pages right to the tail, primarily
1750 * relevant for memory onlining.
1752 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1758 * During memory init memblocks map pfns to nids. The search is expensive and
1759 * this caches recent lookups. The implementation of __early_pfn_to_nid
1760 * treats start/end as pfns.
1762 struct mminit_pfnnid_cache {
1763 unsigned long last_start;
1764 unsigned long last_end;
1768 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1771 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1773 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1774 struct mminit_pfnnid_cache *state)
1776 unsigned long start_pfn, end_pfn;
1779 if (state->last_start <= pfn && pfn < state->last_end)
1780 return state->last_nid;
1782 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1783 if (nid != NUMA_NO_NODE) {
1784 state->last_start = start_pfn;
1785 state->last_end = end_pfn;
1786 state->last_nid = nid;
1792 int __meminit early_pfn_to_nid(unsigned long pfn)
1794 static DEFINE_SPINLOCK(early_pfn_lock);
1797 spin_lock(&early_pfn_lock);
1798 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1800 nid = first_online_node;
1801 spin_unlock(&early_pfn_lock);
1805 #endif /* CONFIG_NUMA */
1807 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1810 if (early_page_uninitialised(pfn))
1812 __free_pages_core(page, order);
1816 * Check that the whole (or subset of) a pageblock given by the interval of
1817 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1818 * with the migration of free compaction scanner.
1820 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1822 * It's possible on some configurations to have a setup like node0 node1 node0
1823 * i.e. it's possible that all pages within a zones range of pages do not
1824 * belong to a single zone. We assume that a border between node0 and node1
1825 * can occur within a single pageblock, but not a node0 node1 node0
1826 * interleaving within a single pageblock. It is therefore sufficient to check
1827 * the first and last page of a pageblock and avoid checking each individual
1828 * page in a pageblock.
1830 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1831 unsigned long end_pfn, struct zone *zone)
1833 struct page *start_page;
1834 struct page *end_page;
1836 /* end_pfn is one past the range we are checking */
1839 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1842 start_page = pfn_to_online_page(start_pfn);
1846 if (page_zone(start_page) != zone)
1849 end_page = pfn_to_page(end_pfn);
1851 /* This gives a shorter code than deriving page_zone(end_page) */
1852 if (page_zone_id(start_page) != page_zone_id(end_page))
1858 void set_zone_contiguous(struct zone *zone)
1860 unsigned long block_start_pfn = zone->zone_start_pfn;
1861 unsigned long block_end_pfn;
1863 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1864 for (; block_start_pfn < zone_end_pfn(zone);
1865 block_start_pfn = block_end_pfn,
1866 block_end_pfn += pageblock_nr_pages) {
1868 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1870 if (!__pageblock_pfn_to_page(block_start_pfn,
1871 block_end_pfn, zone))
1876 /* We confirm that there is no hole */
1877 zone->contiguous = true;
1880 void clear_zone_contiguous(struct zone *zone)
1882 zone->contiguous = false;
1885 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1886 static void __init deferred_free_range(unsigned long pfn,
1887 unsigned long nr_pages)
1895 page = pfn_to_page(pfn);
1897 /* Free a large naturally-aligned chunk if possible */
1898 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1899 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1900 __free_pages_core(page, pageblock_order);
1904 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1905 if (pageblock_aligned(pfn))
1906 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1907 __free_pages_core(page, 0);
1911 /* Completion tracking for deferred_init_memmap() threads */
1912 static atomic_t pgdat_init_n_undone __initdata;
1913 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1915 static inline void __init pgdat_init_report_one_done(void)
1917 if (atomic_dec_and_test(&pgdat_init_n_undone))
1918 complete(&pgdat_init_all_done_comp);
1922 * Returns true if page needs to be initialized or freed to buddy allocator.
1924 * First we check if pfn is valid on architectures where it is possible to have
1925 * holes within pageblock_nr_pages. On systems where it is not possible, this
1926 * function is optimized out.
1928 * Then, we check if a current large page is valid by only checking the validity
1931 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1933 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1939 * Free pages to buddy allocator. Try to free aligned pages in
1940 * pageblock_nr_pages sizes.
1942 static void __init deferred_free_pages(unsigned long pfn,
1943 unsigned long end_pfn)
1945 unsigned long nr_free = 0;
1947 for (; pfn < end_pfn; pfn++) {
1948 if (!deferred_pfn_valid(pfn)) {
1949 deferred_free_range(pfn - nr_free, nr_free);
1951 } else if (pageblock_aligned(pfn)) {
1952 deferred_free_range(pfn - nr_free, nr_free);
1958 /* Free the last block of pages to allocator */
1959 deferred_free_range(pfn - nr_free, nr_free);
1963 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1964 * by performing it only once every pageblock_nr_pages.
1965 * Return number of pages initialized.
1967 static unsigned long __init deferred_init_pages(struct zone *zone,
1969 unsigned long end_pfn)
1971 int nid = zone_to_nid(zone);
1972 unsigned long nr_pages = 0;
1973 int zid = zone_idx(zone);
1974 struct page *page = NULL;
1976 for (; pfn < end_pfn; pfn++) {
1977 if (!deferred_pfn_valid(pfn)) {
1980 } else if (!page || pageblock_aligned(pfn)) {
1981 page = pfn_to_page(pfn);
1985 __init_single_page(page, pfn, zid, nid);
1992 * This function is meant to pre-load the iterator for the zone init.
1993 * Specifically it walks through the ranges until we are caught up to the
1994 * first_init_pfn value and exits there. If we never encounter the value we
1995 * return false indicating there are no valid ranges left.
1998 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1999 unsigned long *spfn, unsigned long *epfn,
2000 unsigned long first_init_pfn)
2005 * Start out by walking through the ranges in this zone that have
2006 * already been initialized. We don't need to do anything with them
2007 * so we just need to flush them out of the system.
2009 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2010 if (*epfn <= first_init_pfn)
2012 if (*spfn < first_init_pfn)
2013 *spfn = first_init_pfn;
2022 * Initialize and free pages. We do it in two loops: first we initialize
2023 * struct page, then free to buddy allocator, because while we are
2024 * freeing pages we can access pages that are ahead (computing buddy
2025 * page in __free_one_page()).
2027 * In order to try and keep some memory in the cache we have the loop
2028 * broken along max page order boundaries. This way we will not cause
2029 * any issues with the buddy page computation.
2031 static unsigned long __init
2032 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2033 unsigned long *end_pfn)
2035 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2036 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2037 unsigned long nr_pages = 0;
2040 /* First we loop through and initialize the page values */
2041 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2044 if (mo_pfn <= *start_pfn)
2047 t = min(mo_pfn, *end_pfn);
2048 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2050 if (mo_pfn < *end_pfn) {
2051 *start_pfn = mo_pfn;
2056 /* Reset values and now loop through freeing pages as needed */
2059 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2065 t = min(mo_pfn, epfn);
2066 deferred_free_pages(spfn, t);
2076 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2079 unsigned long spfn, epfn;
2080 struct zone *zone = arg;
2083 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2086 * Initialize and free pages in MAX_ORDER sized increments so that we
2087 * can avoid introducing any issues with the buddy allocator.
2089 while (spfn < end_pfn) {
2090 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 /* An arch may override for more concurrency. */
2097 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 /* Initialise remaining memory on a node */
2103 static int __init deferred_init_memmap(void *data)
2105 pg_data_t *pgdat = data;
2106 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2107 unsigned long spfn = 0, epfn = 0;
2108 unsigned long first_init_pfn, flags;
2109 unsigned long start = jiffies;
2111 int zid, max_threads;
2114 /* Bind memory initialisation thread to a local node if possible */
2115 if (!cpumask_empty(cpumask))
2116 set_cpus_allowed_ptr(current, cpumask);
2118 pgdat_resize_lock(pgdat, &flags);
2119 first_init_pfn = pgdat->first_deferred_pfn;
2120 if (first_init_pfn == ULONG_MAX) {
2121 pgdat_resize_unlock(pgdat, &flags);
2122 pgdat_init_report_one_done();
2126 /* Sanity check boundaries */
2127 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2128 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2129 pgdat->first_deferred_pfn = ULONG_MAX;
2132 * Once we unlock here, the zone cannot be grown anymore, thus if an
2133 * interrupt thread must allocate this early in boot, zone must be
2134 * pre-grown prior to start of deferred page initialization.
2136 pgdat_resize_unlock(pgdat, &flags);
2138 /* Only the highest zone is deferred so find it */
2139 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2140 zone = pgdat->node_zones + zid;
2141 if (first_init_pfn < zone_end_pfn(zone))
2145 /* If the zone is empty somebody else may have cleared out the zone */
2146 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2150 max_threads = deferred_page_init_max_threads(cpumask);
2152 while (spfn < epfn) {
2153 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2154 struct padata_mt_job job = {
2155 .thread_fn = deferred_init_memmap_chunk,
2158 .size = epfn_align - spfn,
2159 .align = PAGES_PER_SECTION,
2160 .min_chunk = PAGES_PER_SECTION,
2161 .max_threads = max_threads,
2164 padata_do_multithreaded(&job);
2165 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2169 /* Sanity check that the next zone really is unpopulated */
2170 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2172 pr_info("node %d deferred pages initialised in %ums\n",
2173 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2175 pgdat_init_report_one_done();
2180 * If this zone has deferred pages, try to grow it by initializing enough
2181 * deferred pages to satisfy the allocation specified by order, rounded up to
2182 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2183 * of SECTION_SIZE bytes by initializing struct pages in increments of
2184 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2186 * Return true when zone was grown, otherwise return false. We return true even
2187 * when we grow less than requested, to let the caller decide if there are
2188 * enough pages to satisfy the allocation.
2190 * Note: We use noinline because this function is needed only during boot, and
2191 * it is called from a __ref function _deferred_grow_zone. This way we are
2192 * making sure that it is not inlined into permanent text section.
2194 static noinline bool __init
2195 deferred_grow_zone(struct zone *zone, unsigned int order)
2197 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2198 pg_data_t *pgdat = zone->zone_pgdat;
2199 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2200 unsigned long spfn, epfn, flags;
2201 unsigned long nr_pages = 0;
2204 /* Only the last zone may have deferred pages */
2205 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2208 pgdat_resize_lock(pgdat, &flags);
2211 * If someone grew this zone while we were waiting for spinlock, return
2212 * true, as there might be enough pages already.
2214 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2215 pgdat_resize_unlock(pgdat, &flags);
2219 /* If the zone is empty somebody else may have cleared out the zone */
2220 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 first_deferred_pfn)) {
2222 pgdat->first_deferred_pfn = ULONG_MAX;
2223 pgdat_resize_unlock(pgdat, &flags);
2224 /* Retry only once. */
2225 return first_deferred_pfn != ULONG_MAX;
2229 * Initialize and free pages in MAX_ORDER sized increments so
2230 * that we can avoid introducing any issues with the buddy
2233 while (spfn < epfn) {
2234 /* update our first deferred PFN for this section */
2235 first_deferred_pfn = spfn;
2237 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2238 touch_nmi_watchdog();
2240 /* We should only stop along section boundaries */
2241 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2244 /* If our quota has been met we can stop here */
2245 if (nr_pages >= nr_pages_needed)
2249 pgdat->first_deferred_pfn = spfn;
2250 pgdat_resize_unlock(pgdat, &flags);
2252 return nr_pages > 0;
2256 * deferred_grow_zone() is __init, but it is called from
2257 * get_page_from_freelist() during early boot until deferred_pages permanently
2258 * disables this call. This is why we have refdata wrapper to avoid warning,
2259 * and to ensure that the function body gets unloaded.
2262 _deferred_grow_zone(struct zone *zone, unsigned int order)
2264 return deferred_grow_zone(zone, order);
2267 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2269 void __init page_alloc_init_late(void)
2274 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2276 /* There will be num_node_state(N_MEMORY) threads */
2277 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2278 for_each_node_state(nid, N_MEMORY) {
2279 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2282 /* Block until all are initialised */
2283 wait_for_completion(&pgdat_init_all_done_comp);
2286 * We initialized the rest of the deferred pages. Permanently disable
2287 * on-demand struct page initialization.
2289 static_branch_disable(&deferred_pages);
2291 /* Reinit limits that are based on free pages after the kernel is up */
2292 files_maxfiles_init();
2297 /* Discard memblock private memory */
2300 for_each_node_state(nid, N_MEMORY)
2301 shuffle_free_memory(NODE_DATA(nid));
2303 for_each_populated_zone(zone)
2304 set_zone_contiguous(zone);
2308 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2309 void __init init_cma_reserved_pageblock(struct page *page)
2311 unsigned i = pageblock_nr_pages;
2312 struct page *p = page;
2315 __ClearPageReserved(p);
2316 set_page_count(p, 0);
2319 set_pageblock_migratetype(page, MIGRATE_CMA);
2320 set_page_refcounted(page);
2321 __free_pages(page, pageblock_order);
2323 adjust_managed_page_count(page, pageblock_nr_pages);
2324 page_zone(page)->cma_pages += pageblock_nr_pages;
2329 * The order of subdivision here is critical for the IO subsystem.
2330 * Please do not alter this order without good reasons and regression
2331 * testing. Specifically, as large blocks of memory are subdivided,
2332 * the order in which smaller blocks are delivered depends on the order
2333 * they're subdivided in this function. This is the primary factor
2334 * influencing the order in which pages are delivered to the IO
2335 * subsystem according to empirical testing, and this is also justified
2336 * by considering the behavior of a buddy system containing a single
2337 * large block of memory acted on by a series of small allocations.
2338 * This behavior is a critical factor in sglist merging's success.
2342 static inline void expand(struct zone *zone, struct page *page,
2343 int low, int high, int migratetype)
2345 unsigned long size = 1 << high;
2347 while (high > low) {
2350 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2353 * Mark as guard pages (or page), that will allow to
2354 * merge back to allocator when buddy will be freed.
2355 * Corresponding page table entries will not be touched,
2356 * pages will stay not present in virtual address space
2358 if (set_page_guard(zone, &page[size], high, migratetype))
2361 add_to_free_list(&page[size], zone, high, migratetype);
2362 set_buddy_order(&page[size], high);
2366 static void check_new_page_bad(struct page *page)
2368 if (unlikely(page->flags & __PG_HWPOISON)) {
2369 /* Don't complain about hwpoisoned pages */
2370 page_mapcount_reset(page); /* remove PageBuddy */
2375 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2379 * This page is about to be returned from the page allocator
2381 static inline int check_new_page(struct page *page)
2383 if (likely(page_expected_state(page,
2384 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2387 check_new_page_bad(page);
2391 static bool check_new_pages(struct page *page, unsigned int order)
2394 for (i = 0; i < (1 << order); i++) {
2395 struct page *p = page + i;
2397 if (unlikely(check_new_page(p)))
2404 #ifdef CONFIG_DEBUG_VM
2406 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2407 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2408 * also checked when pcp lists are refilled from the free lists.
2410 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2412 if (debug_pagealloc_enabled_static())
2413 return check_new_pages(page, order);
2418 static inline bool check_new_pcp(struct page *page, unsigned int order)
2420 return check_new_pages(page, order);
2424 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2425 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2426 * enabled, they are also checked when being allocated from the pcp lists.
2428 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2430 return check_new_pages(page, order);
2432 static inline bool check_new_pcp(struct page *page, unsigned int order)
2434 if (debug_pagealloc_enabled_static())
2435 return check_new_pages(page, order);
2439 #endif /* CONFIG_DEBUG_VM */
2441 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2443 /* Don't skip if a software KASAN mode is enabled. */
2444 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2445 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2448 /* Skip, if hardware tag-based KASAN is not enabled. */
2449 if (!kasan_hw_tags_enabled())
2453 * With hardware tag-based KASAN enabled, skip if this has been
2454 * requested via __GFP_SKIP_KASAN_UNPOISON.
2456 return flags & __GFP_SKIP_KASAN_UNPOISON;
2459 static inline bool should_skip_init(gfp_t flags)
2461 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2462 if (!kasan_hw_tags_enabled())
2465 /* For hardware tag-based KASAN, skip if requested. */
2466 return (flags & __GFP_SKIP_ZERO);
2469 inline void post_alloc_hook(struct page *page, unsigned int order,
2472 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2473 !should_skip_init(gfp_flags);
2474 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2477 set_page_private(page, 0);
2478 set_page_refcounted(page);
2480 arch_alloc_page(page, order);
2481 debug_pagealloc_map_pages(page, 1 << order);
2484 * Page unpoisoning must happen before memory initialization.
2485 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 * allocations and the page unpoisoning code will complain.
2488 kernel_unpoison_pages(page, 1 << order);
2491 * As memory initialization might be integrated into KASAN,
2492 * KASAN unpoisoning and memory initializion code must be
2493 * kept together to avoid discrepancies in behavior.
2497 * If memory tags should be zeroed (which happens only when memory
2498 * should be initialized as well).
2501 /* Initialize both memory and tags. */
2502 for (i = 0; i != 1 << order; ++i)
2503 tag_clear_highpage(page + i);
2505 /* Note that memory is already initialized by the loop above. */
2508 if (!should_skip_kasan_unpoison(gfp_flags)) {
2509 /* Unpoison shadow memory or set memory tags. */
2510 kasan_unpoison_pages(page, order, init);
2512 /* Note that memory is already initialized by KASAN. */
2513 if (kasan_has_integrated_init())
2516 /* Ensure page_address() dereferencing does not fault. */
2517 for (i = 0; i != 1 << order; ++i)
2518 page_kasan_tag_reset(page + i);
2520 /* If memory is still not initialized, do it now. */
2522 kernel_init_pages(page, 1 << order);
2523 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2524 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2525 SetPageSkipKASanPoison(page);
2527 set_page_owner(page, order, gfp_flags);
2528 page_table_check_alloc(page, order);
2531 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2532 unsigned int alloc_flags)
2534 post_alloc_hook(page, order, gfp_flags);
2536 if (order && (gfp_flags & __GFP_COMP))
2537 prep_compound_page(page, order);
2540 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2541 * allocate the page. The expectation is that the caller is taking
2542 * steps that will free more memory. The caller should avoid the page
2543 * being used for !PFMEMALLOC purposes.
2545 if (alloc_flags & ALLOC_NO_WATERMARKS)
2546 set_page_pfmemalloc(page);
2548 clear_page_pfmemalloc(page);
2552 * Go through the free lists for the given migratetype and remove
2553 * the smallest available page from the freelists
2555 static __always_inline
2556 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2559 unsigned int current_order;
2560 struct free_area *area;
2563 /* Find a page of the appropriate size in the preferred list */
2564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2565 area = &(zone->free_area[current_order]);
2566 page = get_page_from_free_area(area, migratetype);
2569 del_page_from_free_list(page, zone, current_order);
2570 expand(zone, page, order, current_order, migratetype);
2571 set_pcppage_migratetype(page, migratetype);
2572 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2573 pcp_allowed_order(order) &&
2574 migratetype < MIGRATE_PCPTYPES);
2583 * This array describes the order lists are fallen back to when
2584 * the free lists for the desirable migrate type are depleted
2586 * The other migratetypes do not have fallbacks.
2588 static int fallbacks[MIGRATE_TYPES][3] = {
2589 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2590 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2591 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2595 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2598 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2601 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2602 unsigned int order) { return NULL; }
2606 * Move the free pages in a range to the freelist tail of the requested type.
2607 * Note that start_page and end_pages are not aligned on a pageblock
2608 * boundary. If alignment is required, use move_freepages_block()
2610 static int move_freepages(struct zone *zone,
2611 unsigned long start_pfn, unsigned long end_pfn,
2612 int migratetype, int *num_movable)
2617 int pages_moved = 0;
2619 for (pfn = start_pfn; pfn <= end_pfn;) {
2620 page = pfn_to_page(pfn);
2621 if (!PageBuddy(page)) {
2623 * We assume that pages that could be isolated for
2624 * migration are movable. But we don't actually try
2625 * isolating, as that would be expensive.
2628 (PageLRU(page) || __PageMovable(page)))
2634 /* Make sure we are not inadvertently changing nodes */
2635 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2636 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2638 order = buddy_order(page);
2639 move_to_free_list(page, zone, order, migratetype);
2641 pages_moved += 1 << order;
2647 int move_freepages_block(struct zone *zone, struct page *page,
2648 int migratetype, int *num_movable)
2650 unsigned long start_pfn, end_pfn, pfn;
2655 pfn = page_to_pfn(page);
2656 start_pfn = pageblock_start_pfn(pfn);
2657 end_pfn = pageblock_end_pfn(pfn) - 1;
2659 /* Do not cross zone boundaries */
2660 if (!zone_spans_pfn(zone, start_pfn))
2662 if (!zone_spans_pfn(zone, end_pfn))
2665 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2669 static void change_pageblock_range(struct page *pageblock_page,
2670 int start_order, int migratetype)
2672 int nr_pageblocks = 1 << (start_order - pageblock_order);
2674 while (nr_pageblocks--) {
2675 set_pageblock_migratetype(pageblock_page, migratetype);
2676 pageblock_page += pageblock_nr_pages;
2681 * When we are falling back to another migratetype during allocation, try to
2682 * steal extra free pages from the same pageblocks to satisfy further
2683 * allocations, instead of polluting multiple pageblocks.
2685 * If we are stealing a relatively large buddy page, it is likely there will
2686 * be more free pages in the pageblock, so try to steal them all. For
2687 * reclaimable and unmovable allocations, we steal regardless of page size,
2688 * as fragmentation caused by those allocations polluting movable pageblocks
2689 * is worse than movable allocations stealing from unmovable and reclaimable
2692 static bool can_steal_fallback(unsigned int order, int start_mt)
2695 * Leaving this order check is intended, although there is
2696 * relaxed order check in next check. The reason is that
2697 * we can actually steal whole pageblock if this condition met,
2698 * but, below check doesn't guarantee it and that is just heuristic
2699 * so could be changed anytime.
2701 if (order >= pageblock_order)
2704 if (order >= pageblock_order / 2 ||
2705 start_mt == MIGRATE_RECLAIMABLE ||
2706 start_mt == MIGRATE_UNMOVABLE ||
2707 page_group_by_mobility_disabled)
2713 static inline bool boost_watermark(struct zone *zone)
2715 unsigned long max_boost;
2717 if (!watermark_boost_factor)
2720 * Don't bother in zones that are unlikely to produce results.
2721 * On small machines, including kdump capture kernels running
2722 * in a small area, boosting the watermark can cause an out of
2723 * memory situation immediately.
2725 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2728 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2729 watermark_boost_factor, 10000);
2732 * high watermark may be uninitialised if fragmentation occurs
2733 * very early in boot so do not boost. We do not fall
2734 * through and boost by pageblock_nr_pages as failing
2735 * allocations that early means that reclaim is not going
2736 * to help and it may even be impossible to reclaim the
2737 * boosted watermark resulting in a hang.
2742 max_boost = max(pageblock_nr_pages, max_boost);
2744 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2751 * This function implements actual steal behaviour. If order is large enough,
2752 * we can steal whole pageblock. If not, we first move freepages in this
2753 * pageblock to our migratetype and determine how many already-allocated pages
2754 * are there in the pageblock with a compatible migratetype. If at least half
2755 * of pages are free or compatible, we can change migratetype of the pageblock
2756 * itself, so pages freed in the future will be put on the correct free list.
2758 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2759 unsigned int alloc_flags, int start_type, bool whole_block)
2761 unsigned int current_order = buddy_order(page);
2762 int free_pages, movable_pages, alike_pages;
2765 old_block_type = get_pageblock_migratetype(page);
2768 * This can happen due to races and we want to prevent broken
2769 * highatomic accounting.
2771 if (is_migrate_highatomic(old_block_type))
2774 /* Take ownership for orders >= pageblock_order */
2775 if (current_order >= pageblock_order) {
2776 change_pageblock_range(page, current_order, start_type);
2781 * Boost watermarks to increase reclaim pressure to reduce the
2782 * likelihood of future fallbacks. Wake kswapd now as the node
2783 * may be balanced overall and kswapd will not wake naturally.
2785 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2786 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2788 /* We are not allowed to try stealing from the whole block */
2792 free_pages = move_freepages_block(zone, page, start_type,
2795 * Determine how many pages are compatible with our allocation.
2796 * For movable allocation, it's the number of movable pages which
2797 * we just obtained. For other types it's a bit more tricky.
2799 if (start_type == MIGRATE_MOVABLE) {
2800 alike_pages = movable_pages;
2803 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2804 * to MOVABLE pageblock, consider all non-movable pages as
2805 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2806 * vice versa, be conservative since we can't distinguish the
2807 * exact migratetype of non-movable pages.
2809 if (old_block_type == MIGRATE_MOVABLE)
2810 alike_pages = pageblock_nr_pages
2811 - (free_pages + movable_pages);
2816 /* moving whole block can fail due to zone boundary conditions */
2821 * If a sufficient number of pages in the block are either free or of
2822 * comparable migratability as our allocation, claim the whole block.
2824 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2825 page_group_by_mobility_disabled)
2826 set_pageblock_migratetype(page, start_type);
2831 move_to_free_list(page, zone, current_order, start_type);
2835 * Check whether there is a suitable fallback freepage with requested order.
2836 * If only_stealable is true, this function returns fallback_mt only if
2837 * we can steal other freepages all together. This would help to reduce
2838 * fragmentation due to mixed migratetype pages in one pageblock.
2840 int find_suitable_fallback(struct free_area *area, unsigned int order,
2841 int migratetype, bool only_stealable, bool *can_steal)
2846 if (area->nr_free == 0)
2851 fallback_mt = fallbacks[migratetype][i];
2852 if (fallback_mt == MIGRATE_TYPES)
2855 if (free_area_empty(area, fallback_mt))
2858 if (can_steal_fallback(order, migratetype))
2861 if (!only_stealable)
2872 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2873 * there are no empty page blocks that contain a page with a suitable order
2875 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2876 unsigned int alloc_order)
2879 unsigned long max_managed, flags;
2882 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2883 * Check is race-prone but harmless.
2885 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2886 if (zone->nr_reserved_highatomic >= max_managed)
2889 spin_lock_irqsave(&zone->lock, flags);
2891 /* Recheck the nr_reserved_highatomic limit under the lock */
2892 if (zone->nr_reserved_highatomic >= max_managed)
2896 mt = get_pageblock_migratetype(page);
2897 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2898 if (migratetype_is_mergeable(mt)) {
2899 zone->nr_reserved_highatomic += pageblock_nr_pages;
2900 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2901 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2905 spin_unlock_irqrestore(&zone->lock, flags);
2909 * Used when an allocation is about to fail under memory pressure. This
2910 * potentially hurts the reliability of high-order allocations when under
2911 * intense memory pressure but failed atomic allocations should be easier
2912 * to recover from than an OOM.
2914 * If @force is true, try to unreserve a pageblock even though highatomic
2915 * pageblock is exhausted.
2917 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2920 struct zonelist *zonelist = ac->zonelist;
2921 unsigned long flags;
2928 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2931 * Preserve at least one pageblock unless memory pressure
2934 if (!force && zone->nr_reserved_highatomic <=
2938 spin_lock_irqsave(&zone->lock, flags);
2939 for (order = 0; order < MAX_ORDER; order++) {
2940 struct free_area *area = &(zone->free_area[order]);
2942 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 * In page freeing path, migratetype change is racy so
2948 * we can counter several free pages in a pageblock
2949 * in this loop although we changed the pageblock type
2950 * from highatomic to ac->migratetype. So we should
2951 * adjust the count once.
2953 if (is_migrate_highatomic_page(page)) {
2955 * It should never happen but changes to
2956 * locking could inadvertently allow a per-cpu
2957 * drain to add pages to MIGRATE_HIGHATOMIC
2958 * while unreserving so be safe and watch for
2961 zone->nr_reserved_highatomic -= min(
2963 zone->nr_reserved_highatomic);
2967 * Convert to ac->migratetype and avoid the normal
2968 * pageblock stealing heuristics. Minimally, the caller
2969 * is doing the work and needs the pages. More
2970 * importantly, if the block was always converted to
2971 * MIGRATE_UNMOVABLE or another type then the number
2972 * of pageblocks that cannot be completely freed
2975 set_pageblock_migratetype(page, ac->migratetype);
2976 ret = move_freepages_block(zone, page, ac->migratetype,
2979 spin_unlock_irqrestore(&zone->lock, flags);
2983 spin_unlock_irqrestore(&zone->lock, flags);
2990 * Try finding a free buddy page on the fallback list and put it on the free
2991 * list of requested migratetype, possibly along with other pages from the same
2992 * block, depending on fragmentation avoidance heuristics. Returns true if
2993 * fallback was found so that __rmqueue_smallest() can grab it.
2995 * The use of signed ints for order and current_order is a deliberate
2996 * deviation from the rest of this file, to make the for loop
2997 * condition simpler.
2999 static __always_inline bool
3000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3001 unsigned int alloc_flags)
3003 struct free_area *area;
3005 int min_order = order;
3011 * Do not steal pages from freelists belonging to other pageblocks
3012 * i.e. orders < pageblock_order. If there are no local zones free,
3013 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3015 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3016 min_order = pageblock_order;
3019 * Find the largest available free page in the other list. This roughly
3020 * approximates finding the pageblock with the most free pages, which
3021 * would be too costly to do exactly.
3023 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3025 area = &(zone->free_area[current_order]);
3026 fallback_mt = find_suitable_fallback(area, current_order,
3027 start_migratetype, false, &can_steal);
3028 if (fallback_mt == -1)
3032 * We cannot steal all free pages from the pageblock and the
3033 * requested migratetype is movable. In that case it's better to
3034 * steal and split the smallest available page instead of the
3035 * largest available page, because even if the next movable
3036 * allocation falls back into a different pageblock than this
3037 * one, it won't cause permanent fragmentation.
3039 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3040 && current_order > order)
3049 for (current_order = order; current_order < MAX_ORDER;
3051 area = &(zone->free_area[current_order]);
3052 fallback_mt = find_suitable_fallback(area, current_order,
3053 start_migratetype, false, &can_steal);
3054 if (fallback_mt != -1)
3059 * This should not happen - we already found a suitable fallback
3060 * when looking for the largest page.
3062 VM_BUG_ON(current_order == MAX_ORDER);
3065 page = get_page_from_free_area(area, fallback_mt);
3067 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3070 trace_mm_page_alloc_extfrag(page, order, current_order,
3071 start_migratetype, fallback_mt);
3078 * Do the hard work of removing an element from the buddy allocator.
3079 * Call me with the zone->lock already held.
3081 static __always_inline struct page *
3082 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3083 unsigned int alloc_flags)
3087 if (IS_ENABLED(CONFIG_CMA)) {
3089 * Balance movable allocations between regular and CMA areas by
3090 * allocating from CMA when over half of the zone's free memory
3091 * is in the CMA area.
3093 if (alloc_flags & ALLOC_CMA &&
3094 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3095 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3096 page = __rmqueue_cma_fallback(zone, order);
3102 page = __rmqueue_smallest(zone, order, migratetype);
3103 if (unlikely(!page)) {
3104 if (alloc_flags & ALLOC_CMA)
3105 page = __rmqueue_cma_fallback(zone, order);
3107 if (!page && __rmqueue_fallback(zone, order, migratetype,
3115 * Obtain a specified number of elements from the buddy allocator, all under
3116 * a single hold of the lock, for efficiency. Add them to the supplied list.
3117 * Returns the number of new pages which were placed at *list.
3119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3120 unsigned long count, struct list_head *list,
3121 int migratetype, unsigned int alloc_flags)
3123 int i, allocated = 0;
3125 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3126 spin_lock(&zone->lock);
3127 for (i = 0; i < count; ++i) {
3128 struct page *page = __rmqueue(zone, order, migratetype,
3130 if (unlikely(page == NULL))
3133 if (unlikely(check_pcp_refill(page, order)))
3137 * Split buddy pages returned by expand() are received here in
3138 * physical page order. The page is added to the tail of
3139 * caller's list. From the callers perspective, the linked list
3140 * is ordered by page number under some conditions. This is
3141 * useful for IO devices that can forward direction from the
3142 * head, thus also in the physical page order. This is useful
3143 * for IO devices that can merge IO requests if the physical
3144 * pages are ordered properly.
3146 list_add_tail(&page->pcp_list, list);
3148 if (is_migrate_cma(get_pcppage_migratetype(page)))
3149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 * i pages were removed from the buddy list even if some leak due
3155 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3156 * on i. Do not confuse with 'allocated' which is the number of
3157 * pages added to the pcp list.
3159 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3160 spin_unlock(&zone->lock);
3166 * Called from the vmstat counter updater to drain pagesets of this
3167 * currently executing processor on remote nodes after they have
3170 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3172 int to_drain, batch;
3174 batch = READ_ONCE(pcp->batch);
3175 to_drain = min(pcp->count, batch);
3177 unsigned long flags;
3180 * free_pcppages_bulk expects IRQs disabled for zone->lock
3181 * so even though pcp->lock is not intended to be IRQ-safe,
3182 * it's needed in this context.
3184 spin_lock_irqsave(&pcp->lock, flags);
3185 free_pcppages_bulk(zone, to_drain, pcp, 0);
3186 spin_unlock_irqrestore(&pcp->lock, flags);
3192 * Drain pcplists of the indicated processor and zone.
3194 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3196 struct per_cpu_pages *pcp;
3198 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3200 unsigned long flags;
3202 /* See drain_zone_pages on why this is disabling IRQs */
3203 spin_lock_irqsave(&pcp->lock, flags);
3204 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3205 spin_unlock_irqrestore(&pcp->lock, flags);
3210 * Drain pcplists of all zones on the indicated processor.
3212 static void drain_pages(unsigned int cpu)
3216 for_each_populated_zone(zone) {
3217 drain_pages_zone(cpu, zone);
3222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3224 void drain_local_pages(struct zone *zone)
3226 int cpu = smp_processor_id();
3229 drain_pages_zone(cpu, zone);
3235 * The implementation of drain_all_pages(), exposing an extra parameter to
3236 * drain on all cpus.
3238 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3239 * not empty. The check for non-emptiness can however race with a free to
3240 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3241 * that need the guarantee that every CPU has drained can disable the
3242 * optimizing racy check.
3244 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 * Allocate in the BSS so we won't require allocation in
3250 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3252 static cpumask_t cpus_with_pcps;
3255 * Do not drain if one is already in progress unless it's specific to
3256 * a zone. Such callers are primarily CMA and memory hotplug and need
3257 * the drain to be complete when the call returns.
3259 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3262 mutex_lock(&pcpu_drain_mutex);
3266 * We don't care about racing with CPU hotplug event
3267 * as offline notification will cause the notified
3268 * cpu to drain that CPU pcps and on_each_cpu_mask
3269 * disables preemption as part of its processing
3271 for_each_online_cpu(cpu) {
3272 struct per_cpu_pages *pcp;
3274 bool has_pcps = false;
3276 if (force_all_cpus) {
3278 * The pcp.count check is racy, some callers need a
3279 * guarantee that no cpu is missed.
3283 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3287 for_each_populated_zone(z) {
3288 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3297 cpumask_set_cpu(cpu, &cpus_with_pcps);
3299 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3302 for_each_cpu(cpu, &cpus_with_pcps) {
3304 drain_pages_zone(cpu, zone);
3309 mutex_unlock(&pcpu_drain_mutex);
3313 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3315 * When zone parameter is non-NULL, spill just the single zone's pages.
3317 void drain_all_pages(struct zone *zone)
3319 __drain_all_pages(zone, false);
3322 #ifdef CONFIG_HIBERNATION
3325 * Touch the watchdog for every WD_PAGE_COUNT pages.
3327 #define WD_PAGE_COUNT (128*1024)
3329 void mark_free_pages(struct zone *zone)
3331 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3332 unsigned long flags;
3333 unsigned int order, t;
3336 if (zone_is_empty(zone))
3339 spin_lock_irqsave(&zone->lock, flags);
3341 max_zone_pfn = zone_end_pfn(zone);
3342 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3343 if (pfn_valid(pfn)) {
3344 page = pfn_to_page(pfn);
3346 if (!--page_count) {
3347 touch_nmi_watchdog();
3348 page_count = WD_PAGE_COUNT;
3351 if (page_zone(page) != zone)
3354 if (!swsusp_page_is_forbidden(page))
3355 swsusp_unset_page_free(page);
3358 for_each_migratetype_order(order, t) {
3359 list_for_each_entry(page,
3360 &zone->free_area[order].free_list[t], buddy_list) {
3363 pfn = page_to_pfn(page);
3364 for (i = 0; i < (1UL << order); i++) {
3365 if (!--page_count) {
3366 touch_nmi_watchdog();
3367 page_count = WD_PAGE_COUNT;
3369 swsusp_set_page_free(pfn_to_page(pfn + i));
3373 spin_unlock_irqrestore(&zone->lock, flags);
3375 #endif /* CONFIG_PM */
3377 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 if (!free_pcp_prepare(page, order))
3385 migratetype = get_pfnblock_migratetype(page, pfn);
3386 set_pcppage_migratetype(page, migratetype);
3390 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3393 int min_nr_free, max_nr_free;
3395 /* Free everything if batch freeing high-order pages. */
3396 if (unlikely(free_high))
3399 /* Check for PCP disabled or boot pageset */
3400 if (unlikely(high < batch))
3403 /* Leave at least pcp->batch pages on the list */
3404 min_nr_free = batch;
3405 max_nr_free = high - batch;
3408 * Double the number of pages freed each time there is subsequent
3409 * freeing of pages without any allocation.
3411 batch <<= pcp->free_factor;
3412 if (batch < max_nr_free)
3414 batch = clamp(batch, min_nr_free, max_nr_free);
3419 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3422 int high = READ_ONCE(pcp->high);
3424 if (unlikely(!high || free_high))
3427 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3431 * If reclaim is active, limit the number of pages that can be
3432 * stored on pcp lists
3434 return min(READ_ONCE(pcp->batch) << 2, high);
3437 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3438 struct page *page, int migratetype,
3445 __count_vm_event(PGFREE);
3446 pindex = order_to_pindex(migratetype, order);
3447 list_add(&page->pcp_list, &pcp->lists[pindex]);
3448 pcp->count += 1 << order;
3451 * As high-order pages other than THP's stored on PCP can contribute
3452 * to fragmentation, limit the number stored when PCP is heavily
3453 * freeing without allocation. The remainder after bulk freeing
3454 * stops will be drained from vmstat refresh context.
3456 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3458 high = nr_pcp_high(pcp, zone, free_high);
3459 if (pcp->count >= high) {
3460 int batch = READ_ONCE(pcp->batch);
3462 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3469 void free_unref_page(struct page *page, unsigned int order)
3471 unsigned long flags;
3472 unsigned long __maybe_unused UP_flags;
3473 struct per_cpu_pages *pcp;
3475 unsigned long pfn = page_to_pfn(page);
3478 if (!free_unref_page_prepare(page, pfn, order))
3482 * We only track unmovable, reclaimable and movable on pcp lists.
3483 * Place ISOLATE pages on the isolated list because they are being
3484 * offlined but treat HIGHATOMIC as movable pages so we can get those
3485 * areas back if necessary. Otherwise, we may have to free
3486 * excessively into the page allocator
3488 migratetype = get_pcppage_migratetype(page);
3489 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3490 if (unlikely(is_migrate_isolate(migratetype))) {
3491 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3494 migratetype = MIGRATE_MOVABLE;
3497 zone = page_zone(page);
3498 pcp_trylock_prepare(UP_flags);
3499 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3501 free_unref_page_commit(zone, pcp, page, migratetype, order);
3502 pcp_spin_unlock_irqrestore(pcp, flags);
3504 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3506 pcp_trylock_finish(UP_flags);
3510 * Free a list of 0-order pages
3512 void free_unref_page_list(struct list_head *list)
3514 struct page *page, *next;
3515 struct per_cpu_pages *pcp = NULL;
3516 struct zone *locked_zone = NULL;
3517 unsigned long flags;
3518 int batch_count = 0;
3521 /* Prepare pages for freeing */
3522 list_for_each_entry_safe(page, next, list, lru) {
3523 unsigned long pfn = page_to_pfn(page);
3524 if (!free_unref_page_prepare(page, pfn, 0)) {
3525 list_del(&page->lru);
3530 * Free isolated pages directly to the allocator, see
3531 * comment in free_unref_page.
3533 migratetype = get_pcppage_migratetype(page);
3534 if (unlikely(is_migrate_isolate(migratetype))) {
3535 list_del(&page->lru);
3536 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 list_for_each_entry_safe(page, next, list, lru) {
3542 struct zone *zone = page_zone(page);
3544 /* Different zone, different pcp lock. */
3545 if (zone != locked_zone) {
3547 pcp_spin_unlock_irqrestore(pcp, flags);
3550 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3554 * Non-isolated types over MIGRATE_PCPTYPES get added
3555 * to the MIGRATE_MOVABLE pcp list.
3557 migratetype = get_pcppage_migratetype(page);
3558 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3559 migratetype = MIGRATE_MOVABLE;
3561 trace_mm_page_free_batched(page);
3562 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3565 * Guard against excessive IRQ disabled times when we get
3566 * a large list of pages to free.
3568 if (++batch_count == SWAP_CLUSTER_MAX) {
3569 pcp_spin_unlock_irqrestore(pcp, flags);
3571 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 pcp_spin_unlock_irqrestore(pcp, flags);
3580 * split_page takes a non-compound higher-order page, and splits it into
3581 * n (1<<order) sub-pages: page[0..n]
3582 * Each sub-page must be freed individually.
3584 * Note: this is probably too low level an operation for use in drivers.
3585 * Please consult with lkml before using this in your driver.
3587 void split_page(struct page *page, unsigned int order)
3591 VM_BUG_ON_PAGE(PageCompound(page), page);
3592 VM_BUG_ON_PAGE(!page_count(page), page);
3594 for (i = 1; i < (1 << order); i++)
3595 set_page_refcounted(page + i);
3596 split_page_owner(page, 1 << order);
3597 split_page_memcg(page, 1 << order);
3599 EXPORT_SYMBOL_GPL(split_page);
3601 int __isolate_free_page(struct page *page, unsigned int order)
3603 struct zone *zone = page_zone(page);
3604 int mt = get_pageblock_migratetype(page);
3606 if (!is_migrate_isolate(mt)) {
3607 unsigned long watermark;
3609 * Obey watermarks as if the page was being allocated. We can
3610 * emulate a high-order watermark check with a raised order-0
3611 * watermark, because we already know our high-order page
3614 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3615 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3618 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3621 del_page_from_free_list(page, zone, order);
3624 * Set the pageblock if the isolated page is at least half of a
3627 if (order >= pageblock_order - 1) {
3628 struct page *endpage = page + (1 << order) - 1;
3629 for (; page < endpage; page += pageblock_nr_pages) {
3630 int mt = get_pageblock_migratetype(page);
3632 * Only change normal pageblocks (i.e., they can merge
3635 if (migratetype_is_mergeable(mt))
3636 set_pageblock_migratetype(page,
3641 return 1UL << order;
3645 * __putback_isolated_page - Return a now-isolated page back where we got it
3646 * @page: Page that was isolated
3647 * @order: Order of the isolated page
3648 * @mt: The page's pageblock's migratetype
3650 * This function is meant to return a page pulled from the free lists via
3651 * __isolate_free_page back to the free lists they were pulled from.
3653 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3655 struct zone *zone = page_zone(page);
3657 /* zone lock should be held when this function is called */
3658 lockdep_assert_held(&zone->lock);
3660 /* Return isolated page to tail of freelist. */
3661 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3662 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3666 * Update NUMA hit/miss statistics
3668 * Must be called with interrupts disabled.
3670 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3674 enum numa_stat_item local_stat = NUMA_LOCAL;
3676 /* skip numa counters update if numa stats is disabled */
3677 if (!static_branch_likely(&vm_numa_stat_key))
3680 if (zone_to_nid(z) != numa_node_id())
3681 local_stat = NUMA_OTHER;
3683 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3684 __count_numa_events(z, NUMA_HIT, nr_account);
3686 __count_numa_events(z, NUMA_MISS, nr_account);
3687 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3689 __count_numa_events(z, local_stat, nr_account);
3693 static __always_inline
3694 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3695 unsigned int order, unsigned int alloc_flags,
3699 unsigned long flags;
3703 spin_lock_irqsave(&zone->lock, flags);
3705 * order-0 request can reach here when the pcplist is skipped
3706 * due to non-CMA allocation context. HIGHATOMIC area is
3707 * reserved for high-order atomic allocation, so order-0
3708 * request should skip it.
3710 if (order > 0 && alloc_flags & ALLOC_HARDER)
3711 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3713 page = __rmqueue(zone, order, migratetype, alloc_flags);
3715 spin_unlock_irqrestore(&zone->lock, flags);
3719 __mod_zone_freepage_state(zone, -(1 << order),
3720 get_pcppage_migratetype(page));
3721 spin_unlock_irqrestore(&zone->lock, flags);
3722 } while (check_new_pages(page, order));
3724 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3725 zone_statistics(preferred_zone, zone, 1);
3730 /* Remove page from the per-cpu list, caller must protect the list */
3732 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3734 unsigned int alloc_flags,
3735 struct per_cpu_pages *pcp,
3736 struct list_head *list)
3741 if (list_empty(list)) {
3742 int batch = READ_ONCE(pcp->batch);
3746 * Scale batch relative to order if batch implies
3747 * free pages can be stored on the PCP. Batch can
3748 * be 1 for small zones or for boot pagesets which
3749 * should never store free pages as the pages may
3750 * belong to arbitrary zones.
3753 batch = max(batch >> order, 2);
3754 alloced = rmqueue_bulk(zone, order,
3756 migratetype, alloc_flags);
3758 pcp->count += alloced << order;
3759 if (unlikely(list_empty(list)))
3763 page = list_first_entry(list, struct page, pcp_list);
3764 list_del(&page->pcp_list);
3765 pcp->count -= 1 << order;
3766 } while (check_new_pcp(page, order));
3771 /* Lock and remove page from the per-cpu list */
3772 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3773 struct zone *zone, unsigned int order,
3774 int migratetype, unsigned int alloc_flags)
3776 struct per_cpu_pages *pcp;
3777 struct list_head *list;
3779 unsigned long flags;
3780 unsigned long __maybe_unused UP_flags;
3783 * spin_trylock may fail due to a parallel drain. In the future, the
3784 * trylock will also protect against IRQ reentrancy.
3786 pcp_trylock_prepare(UP_flags);
3787 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3789 pcp_trylock_finish(UP_flags);
3794 * On allocation, reduce the number of pages that are batch freed.
3795 * See nr_pcp_free() where free_factor is increased for subsequent
3798 pcp->free_factor >>= 1;
3799 list = &pcp->lists[order_to_pindex(migratetype, order)];
3800 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3801 pcp_spin_unlock_irqrestore(pcp, flags);
3802 pcp_trylock_finish(UP_flags);
3804 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3805 zone_statistics(preferred_zone, zone, 1);
3811 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3815 * Do not instrument rmqueue() with KMSAN. This function may call
3816 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3817 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3818 * may call rmqueue() again, which will result in a deadlock.
3820 __no_sanitize_memory
3822 struct page *rmqueue(struct zone *preferred_zone,
3823 struct zone *zone, unsigned int order,
3824 gfp_t gfp_flags, unsigned int alloc_flags,
3830 * We most definitely don't want callers attempting to
3831 * allocate greater than order-1 page units with __GFP_NOFAIL.
3833 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3835 if (likely(pcp_allowed_order(order))) {
3837 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3838 * we need to skip it when CMA area isn't allowed.
3840 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3841 migratetype != MIGRATE_MOVABLE) {
3842 page = rmqueue_pcplist(preferred_zone, zone, order,
3843 migratetype, alloc_flags);
3849 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3853 /* Separate test+clear to avoid unnecessary atomics */
3854 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3855 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3856 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3859 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3863 #ifdef CONFIG_FAIL_PAGE_ALLOC
3866 struct fault_attr attr;
3868 bool ignore_gfp_highmem;
3869 bool ignore_gfp_reclaim;
3871 } fail_page_alloc = {
3872 .attr = FAULT_ATTR_INITIALIZER,
3873 .ignore_gfp_reclaim = true,
3874 .ignore_gfp_highmem = true,
3878 static int __init setup_fail_page_alloc(char *str)
3880 return setup_fault_attr(&fail_page_alloc.attr, str);
3882 __setup("fail_page_alloc=", setup_fail_page_alloc);
3884 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3886 if (order < fail_page_alloc.min_order)
3888 if (gfp_mask & __GFP_NOFAIL)
3890 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3892 if (fail_page_alloc.ignore_gfp_reclaim &&
3893 (gfp_mask & __GFP_DIRECT_RECLAIM))
3896 if (gfp_mask & __GFP_NOWARN)
3897 fail_page_alloc.attr.no_warn = true;
3899 return should_fail(&fail_page_alloc.attr, 1 << order);
3902 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3904 static int __init fail_page_alloc_debugfs(void)
3906 umode_t mode = S_IFREG | 0600;
3909 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3910 &fail_page_alloc.attr);
3912 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3913 &fail_page_alloc.ignore_gfp_reclaim);
3914 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3915 &fail_page_alloc.ignore_gfp_highmem);
3916 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3921 late_initcall(fail_page_alloc_debugfs);
3923 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3925 #else /* CONFIG_FAIL_PAGE_ALLOC */
3927 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3932 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3934 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3936 return __should_fail_alloc_page(gfp_mask, order);
3938 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3940 static inline long __zone_watermark_unusable_free(struct zone *z,
3941 unsigned int order, unsigned int alloc_flags)
3943 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3944 long unusable_free = (1 << order) - 1;
3947 * If the caller does not have rights to ALLOC_HARDER then subtract
3948 * the high-atomic reserves. This will over-estimate the size of the
3949 * atomic reserve but it avoids a search.
3951 if (likely(!alloc_harder))
3952 unusable_free += z->nr_reserved_highatomic;
3955 /* If allocation can't use CMA areas don't use free CMA pages */
3956 if (!(alloc_flags & ALLOC_CMA))
3957 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3960 return unusable_free;
3964 * Return true if free base pages are above 'mark'. For high-order checks it
3965 * will return true of the order-0 watermark is reached and there is at least
3966 * one free page of a suitable size. Checking now avoids taking the zone lock
3967 * to check in the allocation paths if no pages are free.
3969 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3970 int highest_zoneidx, unsigned int alloc_flags,
3975 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3977 /* free_pages may go negative - that's OK */
3978 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3980 if (alloc_flags & ALLOC_HIGH)
3983 if (unlikely(alloc_harder)) {
3985 * OOM victims can try even harder than normal ALLOC_HARDER
3986 * users on the grounds that it's definitely going to be in
3987 * the exit path shortly and free memory. Any allocation it
3988 * makes during the free path will be small and short-lived.
3990 if (alloc_flags & ALLOC_OOM)
3997 * Check watermarks for an order-0 allocation request. If these
3998 * are not met, then a high-order request also cannot go ahead
3999 * even if a suitable page happened to be free.
4001 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4004 /* If this is an order-0 request then the watermark is fine */
4008 /* For a high-order request, check at least one suitable page is free */
4009 for (o = order; o < MAX_ORDER; o++) {
4010 struct free_area *area = &z->free_area[o];
4016 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4017 if (!free_area_empty(area, mt))
4022 if ((alloc_flags & ALLOC_CMA) &&
4023 !free_area_empty(area, MIGRATE_CMA)) {
4027 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4033 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4034 int highest_zoneidx, unsigned int alloc_flags)
4036 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4037 zone_page_state(z, NR_FREE_PAGES));
4040 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4041 unsigned long mark, int highest_zoneidx,
4042 unsigned int alloc_flags, gfp_t gfp_mask)
4046 free_pages = zone_page_state(z, NR_FREE_PAGES);
4049 * Fast check for order-0 only. If this fails then the reserves
4050 * need to be calculated.
4056 usable_free = free_pages;
4057 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4059 /* reserved may over estimate high-atomic reserves. */
4060 usable_free -= min(usable_free, reserved);
4061 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4065 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4069 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4070 * when checking the min watermark. The min watermark is the
4071 * point where boosting is ignored so that kswapd is woken up
4072 * when below the low watermark.
4074 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4075 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4076 mark = z->_watermark[WMARK_MIN];
4077 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4078 alloc_flags, free_pages);
4084 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4085 unsigned long mark, int highest_zoneidx)
4087 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4089 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4090 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4092 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4097 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4101 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4102 node_reclaim_distance;
4104 #else /* CONFIG_NUMA */
4105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4109 #endif /* CONFIG_NUMA */
4112 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4113 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4114 * premature use of a lower zone may cause lowmem pressure problems that
4115 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4116 * probably too small. It only makes sense to spread allocations to avoid
4117 * fragmentation between the Normal and DMA32 zones.
4119 static inline unsigned int
4120 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4122 unsigned int alloc_flags;
4125 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4128 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4130 #ifdef CONFIG_ZONE_DMA32
4134 if (zone_idx(zone) != ZONE_NORMAL)
4138 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4139 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4140 * on UMA that if Normal is populated then so is DMA32.
4142 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4143 if (nr_online_nodes > 1 && !populated_zone(--zone))
4146 alloc_flags |= ALLOC_NOFRAGMENT;
4147 #endif /* CONFIG_ZONE_DMA32 */
4151 /* Must be called after current_gfp_context() which can change gfp_mask */
4152 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4153 unsigned int alloc_flags)
4156 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4157 alloc_flags |= ALLOC_CMA;
4163 * get_page_from_freelist goes through the zonelist trying to allocate
4166 static struct page *
4167 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4168 const struct alloc_context *ac)
4172 struct pglist_data *last_pgdat = NULL;
4173 bool last_pgdat_dirty_ok = false;
4178 * Scan zonelist, looking for a zone with enough free.
4179 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4181 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4182 z = ac->preferred_zoneref;
4183 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4188 if (cpusets_enabled() &&
4189 (alloc_flags & ALLOC_CPUSET) &&
4190 !__cpuset_zone_allowed(zone, gfp_mask))
4193 * When allocating a page cache page for writing, we
4194 * want to get it from a node that is within its dirty
4195 * limit, such that no single node holds more than its
4196 * proportional share of globally allowed dirty pages.
4197 * The dirty limits take into account the node's
4198 * lowmem reserves and high watermark so that kswapd
4199 * should be able to balance it without having to
4200 * write pages from its LRU list.
4202 * XXX: For now, allow allocations to potentially
4203 * exceed the per-node dirty limit in the slowpath
4204 * (spread_dirty_pages unset) before going into reclaim,
4205 * which is important when on a NUMA setup the allowed
4206 * nodes are together not big enough to reach the
4207 * global limit. The proper fix for these situations
4208 * will require awareness of nodes in the
4209 * dirty-throttling and the flusher threads.
4211 if (ac->spread_dirty_pages) {
4212 if (last_pgdat != zone->zone_pgdat) {
4213 last_pgdat = zone->zone_pgdat;
4214 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4217 if (!last_pgdat_dirty_ok)
4221 if (no_fallback && nr_online_nodes > 1 &&
4222 zone != ac->preferred_zoneref->zone) {
4226 * If moving to a remote node, retry but allow
4227 * fragmenting fallbacks. Locality is more important
4228 * than fragmentation avoidance.
4230 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4231 if (zone_to_nid(zone) != local_nid) {
4232 alloc_flags &= ~ALLOC_NOFRAGMENT;
4237 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4238 if (!zone_watermark_fast(zone, order, mark,
4239 ac->highest_zoneidx, alloc_flags,
4243 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4245 * Watermark failed for this zone, but see if we can
4246 * grow this zone if it contains deferred pages.
4248 if (static_branch_unlikely(&deferred_pages)) {
4249 if (_deferred_grow_zone(zone, order))
4253 /* Checked here to keep the fast path fast */
4254 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4255 if (alloc_flags & ALLOC_NO_WATERMARKS)
4258 if (!node_reclaim_enabled() ||
4259 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4262 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4264 case NODE_RECLAIM_NOSCAN:
4267 case NODE_RECLAIM_FULL:
4268 /* scanned but unreclaimable */
4271 /* did we reclaim enough */
4272 if (zone_watermark_ok(zone, order, mark,
4273 ac->highest_zoneidx, alloc_flags))
4281 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4282 gfp_mask, alloc_flags, ac->migratetype);
4284 prep_new_page(page, order, gfp_mask, alloc_flags);
4287 * If this is a high-order atomic allocation then check
4288 * if the pageblock should be reserved for the future
4290 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4291 reserve_highatomic_pageblock(page, zone, order);
4295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4296 /* Try again if zone has deferred pages */
4297 if (static_branch_unlikely(&deferred_pages)) {
4298 if (_deferred_grow_zone(zone, order))
4306 * It's possible on a UMA machine to get through all zones that are
4307 * fragmented. If avoiding fragmentation, reset and try again.
4310 alloc_flags &= ~ALLOC_NOFRAGMENT;
4317 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4319 unsigned int filter = SHOW_MEM_FILTER_NODES;
4322 * This documents exceptions given to allocations in certain
4323 * contexts that are allowed to allocate outside current's set
4326 if (!(gfp_mask & __GFP_NOMEMALLOC))
4327 if (tsk_is_oom_victim(current) ||
4328 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4329 filter &= ~SHOW_MEM_FILTER_NODES;
4330 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4331 filter &= ~SHOW_MEM_FILTER_NODES;
4333 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4336 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4338 struct va_format vaf;
4340 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4342 if ((gfp_mask & __GFP_NOWARN) ||
4343 !__ratelimit(&nopage_rs) ||
4344 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4347 va_start(args, fmt);
4350 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4351 current->comm, &vaf, gfp_mask, &gfp_mask,
4352 nodemask_pr_args(nodemask));
4355 cpuset_print_current_mems_allowed();
4358 warn_alloc_show_mem(gfp_mask, nodemask);
4361 static inline struct page *
4362 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4363 unsigned int alloc_flags,
4364 const struct alloc_context *ac)
4368 page = get_page_from_freelist(gfp_mask, order,
4369 alloc_flags|ALLOC_CPUSET, ac);
4371 * fallback to ignore cpuset restriction if our nodes
4375 page = get_page_from_freelist(gfp_mask, order,
4381 static inline struct page *
4382 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4383 const struct alloc_context *ac, unsigned long *did_some_progress)
4385 struct oom_control oc = {
4386 .zonelist = ac->zonelist,
4387 .nodemask = ac->nodemask,
4389 .gfp_mask = gfp_mask,
4394 *did_some_progress = 0;
4397 * Acquire the oom lock. If that fails, somebody else is
4398 * making progress for us.
4400 if (!mutex_trylock(&oom_lock)) {
4401 *did_some_progress = 1;
4402 schedule_timeout_uninterruptible(1);
4407 * Go through the zonelist yet one more time, keep very high watermark
4408 * here, this is only to catch a parallel oom killing, we must fail if
4409 * we're still under heavy pressure. But make sure that this reclaim
4410 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4411 * allocation which will never fail due to oom_lock already held.
4413 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4414 ~__GFP_DIRECT_RECLAIM, order,
4415 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4419 /* Coredumps can quickly deplete all memory reserves */
4420 if (current->flags & PF_DUMPCORE)
4422 /* The OOM killer will not help higher order allocs */
4423 if (order > PAGE_ALLOC_COSTLY_ORDER)
4426 * We have already exhausted all our reclaim opportunities without any
4427 * success so it is time to admit defeat. We will skip the OOM killer
4428 * because it is very likely that the caller has a more reasonable
4429 * fallback than shooting a random task.
4431 * The OOM killer may not free memory on a specific node.
4433 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4435 /* The OOM killer does not needlessly kill tasks for lowmem */
4436 if (ac->highest_zoneidx < ZONE_NORMAL)
4438 if (pm_suspended_storage())
4441 * XXX: GFP_NOFS allocations should rather fail than rely on
4442 * other request to make a forward progress.
4443 * We are in an unfortunate situation where out_of_memory cannot
4444 * do much for this context but let's try it to at least get
4445 * access to memory reserved if the current task is killed (see
4446 * out_of_memory). Once filesystems are ready to handle allocation
4447 * failures more gracefully we should just bail out here.
4450 /* Exhausted what can be done so it's blame time */
4451 if (out_of_memory(&oc) ||
4452 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4453 *did_some_progress = 1;
4456 * Help non-failing allocations by giving them access to memory
4459 if (gfp_mask & __GFP_NOFAIL)
4460 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4461 ALLOC_NO_WATERMARKS, ac);
4464 mutex_unlock(&oom_lock);
4469 * Maximum number of compaction retries with a progress before OOM
4470 * killer is consider as the only way to move forward.
4472 #define MAX_COMPACT_RETRIES 16
4474 #ifdef CONFIG_COMPACTION
4475 /* Try memory compaction for high-order allocations before reclaim */
4476 static struct page *
4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4478 unsigned int alloc_flags, const struct alloc_context *ac,
4479 enum compact_priority prio, enum compact_result *compact_result)
4481 struct page *page = NULL;
4482 unsigned long pflags;
4483 unsigned int noreclaim_flag;
4488 psi_memstall_enter(&pflags);
4489 delayacct_compact_start();
4490 noreclaim_flag = memalloc_noreclaim_save();
4492 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4495 memalloc_noreclaim_restore(noreclaim_flag);
4496 psi_memstall_leave(&pflags);
4497 delayacct_compact_end();
4499 if (*compact_result == COMPACT_SKIPPED)
4502 * At least in one zone compaction wasn't deferred or skipped, so let's
4503 * count a compaction stall
4505 count_vm_event(COMPACTSTALL);
4507 /* Prep a captured page if available */
4509 prep_new_page(page, order, gfp_mask, alloc_flags);
4511 /* Try get a page from the freelist if available */
4513 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4516 struct zone *zone = page_zone(page);
4518 zone->compact_blockskip_flush = false;
4519 compaction_defer_reset(zone, order, true);
4520 count_vm_event(COMPACTSUCCESS);
4525 * It's bad if compaction run occurs and fails. The most likely reason
4526 * is that pages exist, but not enough to satisfy watermarks.
4528 count_vm_event(COMPACTFAIL);
4536 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4537 enum compact_result compact_result,
4538 enum compact_priority *compact_priority,
4539 int *compaction_retries)
4541 int max_retries = MAX_COMPACT_RETRIES;
4544 int retries = *compaction_retries;
4545 enum compact_priority priority = *compact_priority;
4550 if (fatal_signal_pending(current))
4553 if (compaction_made_progress(compact_result))
4554 (*compaction_retries)++;
4557 * compaction considers all the zone as desperately out of memory
4558 * so it doesn't really make much sense to retry except when the
4559 * failure could be caused by insufficient priority
4561 if (compaction_failed(compact_result))
4562 goto check_priority;
4565 * compaction was skipped because there are not enough order-0 pages
4566 * to work with, so we retry only if it looks like reclaim can help.
4568 if (compaction_needs_reclaim(compact_result)) {
4569 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4574 * make sure the compaction wasn't deferred or didn't bail out early
4575 * due to locks contention before we declare that we should give up.
4576 * But the next retry should use a higher priority if allowed, so
4577 * we don't just keep bailing out endlessly.
4579 if (compaction_withdrawn(compact_result)) {
4580 goto check_priority;
4584 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4585 * costly ones because they are de facto nofail and invoke OOM
4586 * killer to move on while costly can fail and users are ready
4587 * to cope with that. 1/4 retries is rather arbitrary but we
4588 * would need much more detailed feedback from compaction to
4589 * make a better decision.
4591 if (order > PAGE_ALLOC_COSTLY_ORDER)
4593 if (*compaction_retries <= max_retries) {
4599 * Make sure there are attempts at the highest priority if we exhausted
4600 * all retries or failed at the lower priorities.
4603 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4604 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4606 if (*compact_priority > min_priority) {
4607 (*compact_priority)--;
4608 *compaction_retries = 0;
4612 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4616 static inline struct page *
4617 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4618 unsigned int alloc_flags, const struct alloc_context *ac,
4619 enum compact_priority prio, enum compact_result *compact_result)
4621 *compact_result = COMPACT_SKIPPED;
4626 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4627 enum compact_result compact_result,
4628 enum compact_priority *compact_priority,
4629 int *compaction_retries)
4634 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4638 * There are setups with compaction disabled which would prefer to loop
4639 * inside the allocator rather than hit the oom killer prematurely.
4640 * Let's give them a good hope and keep retrying while the order-0
4641 * watermarks are OK.
4643 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4644 ac->highest_zoneidx, ac->nodemask) {
4645 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4646 ac->highest_zoneidx, alloc_flags))
4651 #endif /* CONFIG_COMPACTION */
4653 #ifdef CONFIG_LOCKDEP
4654 static struct lockdep_map __fs_reclaim_map =
4655 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4657 static bool __need_reclaim(gfp_t gfp_mask)
4659 /* no reclaim without waiting on it */
4660 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4663 /* this guy won't enter reclaim */
4664 if (current->flags & PF_MEMALLOC)
4667 if (gfp_mask & __GFP_NOLOCKDEP)
4673 void __fs_reclaim_acquire(unsigned long ip)
4675 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4678 void __fs_reclaim_release(unsigned long ip)
4680 lock_release(&__fs_reclaim_map, ip);
4683 void fs_reclaim_acquire(gfp_t gfp_mask)
4685 gfp_mask = current_gfp_context(gfp_mask);
4687 if (__need_reclaim(gfp_mask)) {
4688 if (gfp_mask & __GFP_FS)
4689 __fs_reclaim_acquire(_RET_IP_);
4691 #ifdef CONFIG_MMU_NOTIFIER
4692 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4693 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4698 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4700 void fs_reclaim_release(gfp_t gfp_mask)
4702 gfp_mask = current_gfp_context(gfp_mask);
4704 if (__need_reclaim(gfp_mask)) {
4705 if (gfp_mask & __GFP_FS)
4706 __fs_reclaim_release(_RET_IP_);
4709 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4713 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4714 * have been rebuilt so allocation retries. Reader side does not lock and
4715 * retries the allocation if zonelist changes. Writer side is protected by the
4716 * embedded spin_lock.
4718 static DEFINE_SEQLOCK(zonelist_update_seq);
4720 static unsigned int zonelist_iter_begin(void)
4722 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4723 return read_seqbegin(&zonelist_update_seq);
4728 static unsigned int check_retry_zonelist(unsigned int seq)
4730 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4731 return read_seqretry(&zonelist_update_seq, seq);
4736 /* Perform direct synchronous page reclaim */
4737 static unsigned long
4738 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4739 const struct alloc_context *ac)
4741 unsigned int noreclaim_flag;
4742 unsigned long progress;
4746 /* We now go into synchronous reclaim */
4747 cpuset_memory_pressure_bump();
4748 fs_reclaim_acquire(gfp_mask);
4749 noreclaim_flag = memalloc_noreclaim_save();
4751 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4754 memalloc_noreclaim_restore(noreclaim_flag);
4755 fs_reclaim_release(gfp_mask);
4762 /* The really slow allocator path where we enter direct reclaim */
4763 static inline struct page *
4764 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4765 unsigned int alloc_flags, const struct alloc_context *ac,
4766 unsigned long *did_some_progress)
4768 struct page *page = NULL;
4769 unsigned long pflags;
4770 bool drained = false;
4772 psi_memstall_enter(&pflags);
4773 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4774 if (unlikely(!(*did_some_progress)))
4778 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4781 * If an allocation failed after direct reclaim, it could be because
4782 * pages are pinned on the per-cpu lists or in high alloc reserves.
4783 * Shrink them and try again
4785 if (!page && !drained) {
4786 unreserve_highatomic_pageblock(ac, false);
4787 drain_all_pages(NULL);
4792 psi_memstall_leave(&pflags);
4797 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4798 const struct alloc_context *ac)
4802 pg_data_t *last_pgdat = NULL;
4803 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4805 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4807 if (!managed_zone(zone))
4809 if (last_pgdat != zone->zone_pgdat) {
4810 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4811 last_pgdat = zone->zone_pgdat;
4816 static inline unsigned int
4817 gfp_to_alloc_flags(gfp_t gfp_mask)
4819 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4822 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4823 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4824 * to save two branches.
4826 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4827 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4830 * The caller may dip into page reserves a bit more if the caller
4831 * cannot run direct reclaim, or if the caller has realtime scheduling
4832 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4833 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4835 alloc_flags |= (__force int)
4836 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4838 if (gfp_mask & __GFP_ATOMIC) {
4840 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4841 * if it can't schedule.
4843 if (!(gfp_mask & __GFP_NOMEMALLOC))
4844 alloc_flags |= ALLOC_HARDER;
4846 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4847 * comment for __cpuset_node_allowed().
4849 alloc_flags &= ~ALLOC_CPUSET;
4850 } else if (unlikely(rt_task(current)) && in_task())
4851 alloc_flags |= ALLOC_HARDER;
4853 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4858 static bool oom_reserves_allowed(struct task_struct *tsk)
4860 if (!tsk_is_oom_victim(tsk))
4864 * !MMU doesn't have oom reaper so give access to memory reserves
4865 * only to the thread with TIF_MEMDIE set
4867 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4874 * Distinguish requests which really need access to full memory
4875 * reserves from oom victims which can live with a portion of it
4877 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4879 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4881 if (gfp_mask & __GFP_MEMALLOC)
4882 return ALLOC_NO_WATERMARKS;
4883 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4884 return ALLOC_NO_WATERMARKS;
4885 if (!in_interrupt()) {
4886 if (current->flags & PF_MEMALLOC)
4887 return ALLOC_NO_WATERMARKS;
4888 else if (oom_reserves_allowed(current))
4895 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4897 return !!__gfp_pfmemalloc_flags(gfp_mask);
4901 * Checks whether it makes sense to retry the reclaim to make a forward progress
4902 * for the given allocation request.
4904 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4905 * without success, or when we couldn't even meet the watermark if we
4906 * reclaimed all remaining pages on the LRU lists.
4908 * Returns true if a retry is viable or false to enter the oom path.
4911 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4912 struct alloc_context *ac, int alloc_flags,
4913 bool did_some_progress, int *no_progress_loops)
4920 * Costly allocations might have made a progress but this doesn't mean
4921 * their order will become available due to high fragmentation so
4922 * always increment the no progress counter for them
4924 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4925 *no_progress_loops = 0;
4927 (*no_progress_loops)++;
4930 * Make sure we converge to OOM if we cannot make any progress
4931 * several times in the row.
4933 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4934 /* Before OOM, exhaust highatomic_reserve */
4935 return unreserve_highatomic_pageblock(ac, true);
4939 * Keep reclaiming pages while there is a chance this will lead
4940 * somewhere. If none of the target zones can satisfy our allocation
4941 * request even if all reclaimable pages are considered then we are
4942 * screwed and have to go OOM.
4944 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4945 ac->highest_zoneidx, ac->nodemask) {
4946 unsigned long available;
4947 unsigned long reclaimable;
4948 unsigned long min_wmark = min_wmark_pages(zone);
4951 available = reclaimable = zone_reclaimable_pages(zone);
4952 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4955 * Would the allocation succeed if we reclaimed all
4956 * reclaimable pages?
4958 wmark = __zone_watermark_ok(zone, order, min_wmark,
4959 ac->highest_zoneidx, alloc_flags, available);
4960 trace_reclaim_retry_zone(z, order, reclaimable,
4961 available, min_wmark, *no_progress_loops, wmark);
4969 * Memory allocation/reclaim might be called from a WQ context and the
4970 * current implementation of the WQ concurrency control doesn't
4971 * recognize that a particular WQ is congested if the worker thread is
4972 * looping without ever sleeping. Therefore we have to do a short sleep
4973 * here rather than calling cond_resched().
4975 if (current->flags & PF_WQ_WORKER)
4976 schedule_timeout_uninterruptible(1);
4983 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4986 * It's possible that cpuset's mems_allowed and the nodemask from
4987 * mempolicy don't intersect. This should be normally dealt with by
4988 * policy_nodemask(), but it's possible to race with cpuset update in
4989 * such a way the check therein was true, and then it became false
4990 * before we got our cpuset_mems_cookie here.
4991 * This assumes that for all allocations, ac->nodemask can come only
4992 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4993 * when it does not intersect with the cpuset restrictions) or the
4994 * caller can deal with a violated nodemask.
4996 if (cpusets_enabled() && ac->nodemask &&
4997 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4998 ac->nodemask = NULL;
5003 * When updating a task's mems_allowed or mempolicy nodemask, it is
5004 * possible to race with parallel threads in such a way that our
5005 * allocation can fail while the mask is being updated. If we are about
5006 * to fail, check if the cpuset changed during allocation and if so,
5009 if (read_mems_allowed_retry(cpuset_mems_cookie))
5015 static inline struct page *
5016 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5017 struct alloc_context *ac)
5019 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5020 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5021 struct page *page = NULL;
5022 unsigned int alloc_flags;
5023 unsigned long did_some_progress;
5024 enum compact_priority compact_priority;
5025 enum compact_result compact_result;
5026 int compaction_retries;
5027 int no_progress_loops;
5028 unsigned int cpuset_mems_cookie;
5029 unsigned int zonelist_iter_cookie;
5033 * We also sanity check to catch abuse of atomic reserves being used by
5034 * callers that are not in atomic context.
5036 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5037 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5038 gfp_mask &= ~__GFP_ATOMIC;
5041 compaction_retries = 0;
5042 no_progress_loops = 0;
5043 compact_priority = DEF_COMPACT_PRIORITY;
5044 cpuset_mems_cookie = read_mems_allowed_begin();
5045 zonelist_iter_cookie = zonelist_iter_begin();
5048 * The fast path uses conservative alloc_flags to succeed only until
5049 * kswapd needs to be woken up, and to avoid the cost of setting up
5050 * alloc_flags precisely. So we do that now.
5052 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5055 * We need to recalculate the starting point for the zonelist iterator
5056 * because we might have used different nodemask in the fast path, or
5057 * there was a cpuset modification and we are retrying - otherwise we
5058 * could end up iterating over non-eligible zones endlessly.
5060 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5061 ac->highest_zoneidx, ac->nodemask);
5062 if (!ac->preferred_zoneref->zone)
5066 * Check for insane configurations where the cpuset doesn't contain
5067 * any suitable zone to satisfy the request - e.g. non-movable
5068 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5070 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5071 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5072 ac->highest_zoneidx,
5073 &cpuset_current_mems_allowed);
5078 if (alloc_flags & ALLOC_KSWAPD)
5079 wake_all_kswapds(order, gfp_mask, ac);
5082 * The adjusted alloc_flags might result in immediate success, so try
5085 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5090 * For costly allocations, try direct compaction first, as it's likely
5091 * that we have enough base pages and don't need to reclaim. For non-
5092 * movable high-order allocations, do that as well, as compaction will
5093 * try prevent permanent fragmentation by migrating from blocks of the
5095 * Don't try this for allocations that are allowed to ignore
5096 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5098 if (can_direct_reclaim &&
5100 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5101 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5102 page = __alloc_pages_direct_compact(gfp_mask, order,
5104 INIT_COMPACT_PRIORITY,
5110 * Checks for costly allocations with __GFP_NORETRY, which
5111 * includes some THP page fault allocations
5113 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5115 * If allocating entire pageblock(s) and compaction
5116 * failed because all zones are below low watermarks
5117 * or is prohibited because it recently failed at this
5118 * order, fail immediately unless the allocator has
5119 * requested compaction and reclaim retry.
5122 * - potentially very expensive because zones are far
5123 * below their low watermarks or this is part of very
5124 * bursty high order allocations,
5125 * - not guaranteed to help because isolate_freepages()
5126 * may not iterate over freed pages as part of its
5128 * - unlikely to make entire pageblocks free on its
5131 if (compact_result == COMPACT_SKIPPED ||
5132 compact_result == COMPACT_DEFERRED)
5136 * Looks like reclaim/compaction is worth trying, but
5137 * sync compaction could be very expensive, so keep
5138 * using async compaction.
5140 compact_priority = INIT_COMPACT_PRIORITY;
5145 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5146 if (alloc_flags & ALLOC_KSWAPD)
5147 wake_all_kswapds(order, gfp_mask, ac);
5149 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5151 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5154 * Reset the nodemask and zonelist iterators if memory policies can be
5155 * ignored. These allocations are high priority and system rather than
5158 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5159 ac->nodemask = NULL;
5160 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5161 ac->highest_zoneidx, ac->nodemask);
5164 /* Attempt with potentially adjusted zonelist and alloc_flags */
5165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5169 /* Caller is not willing to reclaim, we can't balance anything */
5170 if (!can_direct_reclaim)
5173 /* Avoid recursion of direct reclaim */
5174 if (current->flags & PF_MEMALLOC)
5177 /* Try direct reclaim and then allocating */
5178 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5179 &did_some_progress);
5183 /* Try direct compaction and then allocating */
5184 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5185 compact_priority, &compact_result);
5189 /* Do not loop if specifically requested */
5190 if (gfp_mask & __GFP_NORETRY)
5194 * Do not retry costly high order allocations unless they are
5195 * __GFP_RETRY_MAYFAIL
5197 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5200 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5201 did_some_progress > 0, &no_progress_loops))
5205 * It doesn't make any sense to retry for the compaction if the order-0
5206 * reclaim is not able to make any progress because the current
5207 * implementation of the compaction depends on the sufficient amount
5208 * of free memory (see __compaction_suitable)
5210 if (did_some_progress > 0 &&
5211 should_compact_retry(ac, order, alloc_flags,
5212 compact_result, &compact_priority,
5213 &compaction_retries))
5218 * Deal with possible cpuset update races or zonelist updates to avoid
5219 * a unnecessary OOM kill.
5221 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5222 check_retry_zonelist(zonelist_iter_cookie))
5225 /* Reclaim has failed us, start killing things */
5226 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5230 /* Avoid allocations with no watermarks from looping endlessly */
5231 if (tsk_is_oom_victim(current) &&
5232 (alloc_flags & ALLOC_OOM ||
5233 (gfp_mask & __GFP_NOMEMALLOC)))
5236 /* Retry as long as the OOM killer is making progress */
5237 if (did_some_progress) {
5238 no_progress_loops = 0;
5244 * Deal with possible cpuset update races or zonelist updates to avoid
5245 * a unnecessary OOM kill.
5247 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5248 check_retry_zonelist(zonelist_iter_cookie))
5252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5255 if (gfp_mask & __GFP_NOFAIL) {
5257 * All existing users of the __GFP_NOFAIL are blockable, so warn
5258 * of any new users that actually require GFP_NOWAIT
5260 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5264 * PF_MEMALLOC request from this context is rather bizarre
5265 * because we cannot reclaim anything and only can loop waiting
5266 * for somebody to do a work for us
5268 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5271 * non failing costly orders are a hard requirement which we
5272 * are not prepared for much so let's warn about these users
5273 * so that we can identify them and convert them to something
5276 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5279 * Help non-failing allocations by giving them access to memory
5280 * reserves but do not use ALLOC_NO_WATERMARKS because this
5281 * could deplete whole memory reserves which would just make
5282 * the situation worse
5284 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5292 warn_alloc(gfp_mask, ac->nodemask,
5293 "page allocation failure: order:%u", order);
5298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5299 int preferred_nid, nodemask_t *nodemask,
5300 struct alloc_context *ac, gfp_t *alloc_gfp,
5301 unsigned int *alloc_flags)
5303 ac->highest_zoneidx = gfp_zone(gfp_mask);
5304 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5305 ac->nodemask = nodemask;
5306 ac->migratetype = gfp_migratetype(gfp_mask);
5308 if (cpusets_enabled()) {
5309 *alloc_gfp |= __GFP_HARDWALL;
5311 * When we are in the interrupt context, it is irrelevant
5312 * to the current task context. It means that any node ok.
5314 if (in_task() && !ac->nodemask)
5315 ac->nodemask = &cpuset_current_mems_allowed;
5317 *alloc_flags |= ALLOC_CPUSET;
5320 might_alloc(gfp_mask);
5322 if (should_fail_alloc_page(gfp_mask, order))
5325 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5327 /* Dirty zone balancing only done in the fast path */
5328 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5331 * The preferred zone is used for statistics but crucially it is
5332 * also used as the starting point for the zonelist iterator. It
5333 * may get reset for allocations that ignore memory policies.
5335 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5336 ac->highest_zoneidx, ac->nodemask);
5342 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5343 * @gfp: GFP flags for the allocation
5344 * @preferred_nid: The preferred NUMA node ID to allocate from
5345 * @nodemask: Set of nodes to allocate from, may be NULL
5346 * @nr_pages: The number of pages desired on the list or array
5347 * @page_list: Optional list to store the allocated pages
5348 * @page_array: Optional array to store the pages
5350 * This is a batched version of the page allocator that attempts to
5351 * allocate nr_pages quickly. Pages are added to page_list if page_list
5352 * is not NULL, otherwise it is assumed that the page_array is valid.
5354 * For lists, nr_pages is the number of pages that should be allocated.
5356 * For arrays, only NULL elements are populated with pages and nr_pages
5357 * is the maximum number of pages that will be stored in the array.
5359 * Returns the number of pages on the list or array.
5361 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5362 nodemask_t *nodemask, int nr_pages,
5363 struct list_head *page_list,
5364 struct page **page_array)
5367 unsigned long flags;
5368 unsigned long __maybe_unused UP_flags;
5371 struct per_cpu_pages *pcp;
5372 struct list_head *pcp_list;
5373 struct alloc_context ac;
5375 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5376 int nr_populated = 0, nr_account = 0;
5379 * Skip populated array elements to determine if any pages need
5380 * to be allocated before disabling IRQs.
5382 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5385 /* No pages requested? */
5386 if (unlikely(nr_pages <= 0))
5389 /* Already populated array? */
5390 if (unlikely(page_array && nr_pages - nr_populated == 0))
5393 /* Bulk allocator does not support memcg accounting. */
5394 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5397 /* Use the single page allocator for one page. */
5398 if (nr_pages - nr_populated == 1)
5401 #ifdef CONFIG_PAGE_OWNER
5403 * PAGE_OWNER may recurse into the allocator to allocate space to
5404 * save the stack with pagesets.lock held. Releasing/reacquiring
5405 * removes much of the performance benefit of bulk allocation so
5406 * force the caller to allocate one page at a time as it'll have
5407 * similar performance to added complexity to the bulk allocator.
5409 if (static_branch_unlikely(&page_owner_inited))
5413 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5414 gfp &= gfp_allowed_mask;
5416 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5420 /* Find an allowed local zone that meets the low watermark. */
5421 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5424 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5425 !__cpuset_zone_allowed(zone, gfp)) {
5429 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5430 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5434 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5435 if (zone_watermark_fast(zone, 0, mark,
5436 zonelist_zone_idx(ac.preferred_zoneref),
5437 alloc_flags, gfp)) {
5443 * If there are no allowed local zones that meets the watermarks then
5444 * try to allocate a single page and reclaim if necessary.
5446 if (unlikely(!zone))
5449 /* Is a parallel drain in progress? */
5450 pcp_trylock_prepare(UP_flags);
5451 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5455 /* Attempt the batch allocation */
5456 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5457 while (nr_populated < nr_pages) {
5459 /* Skip existing pages */
5460 if (page_array && page_array[nr_populated]) {
5465 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5467 if (unlikely(!page)) {
5468 /* Try and allocate at least one page */
5470 pcp_spin_unlock_irqrestore(pcp, flags);
5477 prep_new_page(page, 0, gfp, 0);
5479 list_add(&page->lru, page_list);
5481 page_array[nr_populated] = page;
5485 pcp_spin_unlock_irqrestore(pcp, flags);
5486 pcp_trylock_finish(UP_flags);
5488 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5489 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5492 return nr_populated;
5495 pcp_trylock_finish(UP_flags);
5498 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5501 list_add(&page->lru, page_list);
5503 page_array[nr_populated] = page;
5509 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5512 * This is the 'heart' of the zoned buddy allocator.
5514 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5515 nodemask_t *nodemask)
5518 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5519 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5520 struct alloc_context ac = { };
5523 * There are several places where we assume that the order value is sane
5524 * so bail out early if the request is out of bound.
5526 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5529 gfp &= gfp_allowed_mask;
5531 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5532 * resp. GFP_NOIO which has to be inherited for all allocation requests
5533 * from a particular context which has been marked by
5534 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5535 * movable zones are not used during allocation.
5537 gfp = current_gfp_context(gfp);
5539 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5540 &alloc_gfp, &alloc_flags))
5544 * Forbid the first pass from falling back to types that fragment
5545 * memory until all local zones are considered.
5547 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5549 /* First allocation attempt */
5550 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5555 ac.spread_dirty_pages = false;
5558 * Restore the original nodemask if it was potentially replaced with
5559 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5561 ac.nodemask = nodemask;
5563 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5566 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5567 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5568 __free_pages(page, order);
5572 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5573 kmsan_alloc_page(page, order, alloc_gfp);
5577 EXPORT_SYMBOL(__alloc_pages);
5579 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5580 nodemask_t *nodemask)
5582 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5583 preferred_nid, nodemask);
5585 if (page && order > 1)
5586 prep_transhuge_page(page);
5587 return (struct folio *)page;
5589 EXPORT_SYMBOL(__folio_alloc);
5592 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5593 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5594 * you need to access high mem.
5596 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5600 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5603 return (unsigned long) page_address(page);
5605 EXPORT_SYMBOL(__get_free_pages);
5607 unsigned long get_zeroed_page(gfp_t gfp_mask)
5609 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5611 EXPORT_SYMBOL(get_zeroed_page);
5614 * __free_pages - Free pages allocated with alloc_pages().
5615 * @page: The page pointer returned from alloc_pages().
5616 * @order: The order of the allocation.
5618 * This function can free multi-page allocations that are not compound
5619 * pages. It does not check that the @order passed in matches that of
5620 * the allocation, so it is easy to leak memory. Freeing more memory
5621 * than was allocated will probably emit a warning.
5623 * If the last reference to this page is speculative, it will be released
5624 * by put_page() which only frees the first page of a non-compound
5625 * allocation. To prevent the remaining pages from being leaked, we free
5626 * the subsequent pages here. If you want to use the page's reference
5627 * count to decide when to free the allocation, you should allocate a
5628 * compound page, and use put_page() instead of __free_pages().
5630 * Context: May be called in interrupt context or while holding a normal
5631 * spinlock, but not in NMI context or while holding a raw spinlock.
5633 void __free_pages(struct page *page, unsigned int order)
5635 if (put_page_testzero(page))
5636 free_the_page(page, order);
5637 else if (!PageHead(page))
5639 free_the_page(page + (1 << order), order);
5641 EXPORT_SYMBOL(__free_pages);
5643 void free_pages(unsigned long addr, unsigned int order)
5646 VM_BUG_ON(!virt_addr_valid((void *)addr));
5647 __free_pages(virt_to_page((void *)addr), order);
5651 EXPORT_SYMBOL(free_pages);
5655 * An arbitrary-length arbitrary-offset area of memory which resides
5656 * within a 0 or higher order page. Multiple fragments within that page
5657 * are individually refcounted, in the page's reference counter.
5659 * The page_frag functions below provide a simple allocation framework for
5660 * page fragments. This is used by the network stack and network device
5661 * drivers to provide a backing region of memory for use as either an
5662 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5664 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5667 struct page *page = NULL;
5668 gfp_t gfp = gfp_mask;
5670 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5671 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5673 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5674 PAGE_FRAG_CACHE_MAX_ORDER);
5675 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5677 if (unlikely(!page))
5678 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5680 nc->va = page ? page_address(page) : NULL;
5685 void __page_frag_cache_drain(struct page *page, unsigned int count)
5687 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5689 if (page_ref_sub_and_test(page, count))
5690 free_the_page(page, compound_order(page));
5692 EXPORT_SYMBOL(__page_frag_cache_drain);
5694 void *page_frag_alloc_align(struct page_frag_cache *nc,
5695 unsigned int fragsz, gfp_t gfp_mask,
5696 unsigned int align_mask)
5698 unsigned int size = PAGE_SIZE;
5702 if (unlikely(!nc->va)) {
5704 page = __page_frag_cache_refill(nc, gfp_mask);
5708 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5709 /* if size can vary use size else just use PAGE_SIZE */
5712 /* Even if we own the page, we do not use atomic_set().
5713 * This would break get_page_unless_zero() users.
5715 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5717 /* reset page count bias and offset to start of new frag */
5718 nc->pfmemalloc = page_is_pfmemalloc(page);
5719 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5723 offset = nc->offset - fragsz;
5724 if (unlikely(offset < 0)) {
5725 page = virt_to_page(nc->va);
5727 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5730 if (unlikely(nc->pfmemalloc)) {
5731 free_the_page(page, compound_order(page));
5735 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5736 /* if size can vary use size else just use PAGE_SIZE */
5739 /* OK, page count is 0, we can safely set it */
5740 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5742 /* reset page count bias and offset to start of new frag */
5743 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5744 offset = size - fragsz;
5745 if (unlikely(offset < 0)) {
5747 * The caller is trying to allocate a fragment
5748 * with fragsz > PAGE_SIZE but the cache isn't big
5749 * enough to satisfy the request, this may
5750 * happen in low memory conditions.
5751 * We don't release the cache page because
5752 * it could make memory pressure worse
5753 * so we simply return NULL here.
5760 offset &= align_mask;
5761 nc->offset = offset;
5763 return nc->va + offset;
5765 EXPORT_SYMBOL(page_frag_alloc_align);
5768 * Frees a page fragment allocated out of either a compound or order 0 page.
5770 void page_frag_free(void *addr)
5772 struct page *page = virt_to_head_page(addr);
5774 if (unlikely(put_page_testzero(page)))
5775 free_the_page(page, compound_order(page));
5777 EXPORT_SYMBOL(page_frag_free);
5779 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5783 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5784 unsigned long used = addr + PAGE_ALIGN(size);
5786 split_page(virt_to_page((void *)addr), order);
5787 while (used < alloc_end) {
5792 return (void *)addr;
5796 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5797 * @size: the number of bytes to allocate
5798 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5800 * This function is similar to alloc_pages(), except that it allocates the
5801 * minimum number of pages to satisfy the request. alloc_pages() can only
5802 * allocate memory in power-of-two pages.
5804 * This function is also limited by MAX_ORDER.
5806 * Memory allocated by this function must be released by free_pages_exact().
5808 * Return: pointer to the allocated area or %NULL in case of error.
5810 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5812 unsigned int order = get_order(size);
5815 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5816 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5818 addr = __get_free_pages(gfp_mask, order);
5819 return make_alloc_exact(addr, order, size);
5821 EXPORT_SYMBOL(alloc_pages_exact);
5824 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5826 * @nid: the preferred node ID where memory should be allocated
5827 * @size: the number of bytes to allocate
5828 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5830 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5833 * Return: pointer to the allocated area or %NULL in case of error.
5835 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5837 unsigned int order = get_order(size);
5840 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5841 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5843 p = alloc_pages_node(nid, gfp_mask, order);
5846 return make_alloc_exact((unsigned long)page_address(p), order, size);
5850 * free_pages_exact - release memory allocated via alloc_pages_exact()
5851 * @virt: the value returned by alloc_pages_exact.
5852 * @size: size of allocation, same value as passed to alloc_pages_exact().
5854 * Release the memory allocated by a previous call to alloc_pages_exact.
5856 void free_pages_exact(void *virt, size_t size)
5858 unsigned long addr = (unsigned long)virt;
5859 unsigned long end = addr + PAGE_ALIGN(size);
5861 while (addr < end) {
5866 EXPORT_SYMBOL(free_pages_exact);
5869 * nr_free_zone_pages - count number of pages beyond high watermark
5870 * @offset: The zone index of the highest zone
5872 * nr_free_zone_pages() counts the number of pages which are beyond the
5873 * high watermark within all zones at or below a given zone index. For each
5874 * zone, the number of pages is calculated as:
5876 * nr_free_zone_pages = managed_pages - high_pages
5878 * Return: number of pages beyond high watermark.
5880 static unsigned long nr_free_zone_pages(int offset)
5885 /* Just pick one node, since fallback list is circular */
5886 unsigned long sum = 0;
5888 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5890 for_each_zone_zonelist(zone, z, zonelist, offset) {
5891 unsigned long size = zone_managed_pages(zone);
5892 unsigned long high = high_wmark_pages(zone);
5901 * nr_free_buffer_pages - count number of pages beyond high watermark
5903 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5904 * watermark within ZONE_DMA and ZONE_NORMAL.
5906 * Return: number of pages beyond high watermark within ZONE_DMA and
5909 unsigned long nr_free_buffer_pages(void)
5911 return nr_free_zone_pages(gfp_zone(GFP_USER));
5913 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5915 static inline void show_node(struct zone *zone)
5917 if (IS_ENABLED(CONFIG_NUMA))
5918 printk("Node %d ", zone_to_nid(zone));
5921 long si_mem_available(void)
5924 unsigned long pagecache;
5925 unsigned long wmark_low = 0;
5926 unsigned long pages[NR_LRU_LISTS];
5927 unsigned long reclaimable;
5931 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5932 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5935 wmark_low += low_wmark_pages(zone);
5938 * Estimate the amount of memory available for userspace allocations,
5939 * without causing swapping or OOM.
5941 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5944 * Not all the page cache can be freed, otherwise the system will
5945 * start swapping or thrashing. Assume at least half of the page
5946 * cache, or the low watermark worth of cache, needs to stay.
5948 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5949 pagecache -= min(pagecache / 2, wmark_low);
5950 available += pagecache;
5953 * Part of the reclaimable slab and other kernel memory consists of
5954 * items that are in use, and cannot be freed. Cap this estimate at the
5957 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5958 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5959 available += reclaimable - min(reclaimable / 2, wmark_low);
5965 EXPORT_SYMBOL_GPL(si_mem_available);
5967 void si_meminfo(struct sysinfo *val)
5969 val->totalram = totalram_pages();
5970 val->sharedram = global_node_page_state(NR_SHMEM);
5971 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5972 val->bufferram = nr_blockdev_pages();
5973 val->totalhigh = totalhigh_pages();
5974 val->freehigh = nr_free_highpages();
5975 val->mem_unit = PAGE_SIZE;
5978 EXPORT_SYMBOL(si_meminfo);
5981 void si_meminfo_node(struct sysinfo *val, int nid)
5983 int zone_type; /* needs to be signed */
5984 unsigned long managed_pages = 0;
5985 unsigned long managed_highpages = 0;
5986 unsigned long free_highpages = 0;
5987 pg_data_t *pgdat = NODE_DATA(nid);
5989 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5990 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5991 val->totalram = managed_pages;
5992 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5993 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5994 #ifdef CONFIG_HIGHMEM
5995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5996 struct zone *zone = &pgdat->node_zones[zone_type];
5998 if (is_highmem(zone)) {
5999 managed_highpages += zone_managed_pages(zone);
6000 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6003 val->totalhigh = managed_highpages;
6004 val->freehigh = free_highpages;
6006 val->totalhigh = managed_highpages;
6007 val->freehigh = free_highpages;
6009 val->mem_unit = PAGE_SIZE;
6014 * Determine whether the node should be displayed or not, depending on whether
6015 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6017 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6019 if (!(flags & SHOW_MEM_FILTER_NODES))
6023 * no node mask - aka implicit memory numa policy. Do not bother with
6024 * the synchronization - read_mems_allowed_begin - because we do not
6025 * have to be precise here.
6028 nodemask = &cpuset_current_mems_allowed;
6030 return !node_isset(nid, *nodemask);
6033 #define K(x) ((x) << (PAGE_SHIFT-10))
6035 static void show_migration_types(unsigned char type)
6037 static const char types[MIGRATE_TYPES] = {
6038 [MIGRATE_UNMOVABLE] = 'U',
6039 [MIGRATE_MOVABLE] = 'M',
6040 [MIGRATE_RECLAIMABLE] = 'E',
6041 [MIGRATE_HIGHATOMIC] = 'H',
6043 [MIGRATE_CMA] = 'C',
6045 #ifdef CONFIG_MEMORY_ISOLATION
6046 [MIGRATE_ISOLATE] = 'I',
6049 char tmp[MIGRATE_TYPES + 1];
6053 for (i = 0; i < MIGRATE_TYPES; i++) {
6054 if (type & (1 << i))
6059 printk(KERN_CONT "(%s) ", tmp);
6062 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6065 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6066 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6072 * Show free area list (used inside shift_scroll-lock stuff)
6073 * We also calculate the percentage fragmentation. We do this by counting the
6074 * memory on each free list with the exception of the first item on the list.
6077 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6080 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6082 unsigned long free_pcp = 0;
6087 for_each_populated_zone(zone) {
6088 if (zone_idx(zone) > max_zone_idx)
6090 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6093 for_each_online_cpu(cpu)
6094 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6097 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6098 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6099 " unevictable:%lu dirty:%lu writeback:%lu\n"
6100 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6101 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6102 " kernel_misc_reclaimable:%lu\n"
6103 " free:%lu free_pcp:%lu free_cma:%lu\n",
6104 global_node_page_state(NR_ACTIVE_ANON),
6105 global_node_page_state(NR_INACTIVE_ANON),
6106 global_node_page_state(NR_ISOLATED_ANON),
6107 global_node_page_state(NR_ACTIVE_FILE),
6108 global_node_page_state(NR_INACTIVE_FILE),
6109 global_node_page_state(NR_ISOLATED_FILE),
6110 global_node_page_state(NR_UNEVICTABLE),
6111 global_node_page_state(NR_FILE_DIRTY),
6112 global_node_page_state(NR_WRITEBACK),
6113 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6114 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6115 global_node_page_state(NR_FILE_MAPPED),
6116 global_node_page_state(NR_SHMEM),
6117 global_node_page_state(NR_PAGETABLE),
6118 global_zone_page_state(NR_BOUNCE),
6119 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6120 global_zone_page_state(NR_FREE_PAGES),
6122 global_zone_page_state(NR_FREE_CMA_PAGES));
6124 for_each_online_pgdat(pgdat) {
6125 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6127 if (!node_has_managed_zones(pgdat, max_zone_idx))
6131 " active_anon:%lukB"
6132 " inactive_anon:%lukB"
6133 " active_file:%lukB"
6134 " inactive_file:%lukB"
6135 " unevictable:%lukB"
6136 " isolated(anon):%lukB"
6137 " isolated(file):%lukB"
6142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6144 " shmem_pmdmapped: %lukB"
6147 " writeback_tmp:%lukB"
6148 " kernel_stack:%lukB"
6149 #ifdef CONFIG_SHADOW_CALL_STACK
6150 " shadow_call_stack:%lukB"
6153 " all_unreclaimable? %s"
6156 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6157 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6158 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6159 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6160 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6161 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6162 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6163 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6164 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6165 K(node_page_state(pgdat, NR_WRITEBACK)),
6166 K(node_page_state(pgdat, NR_SHMEM)),
6167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6168 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6169 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6170 K(node_page_state(pgdat, NR_ANON_THPS)),
6172 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6173 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6174 #ifdef CONFIG_SHADOW_CALL_STACK
6175 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6177 K(node_page_state(pgdat, NR_PAGETABLE)),
6178 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6182 for_each_populated_zone(zone) {
6185 if (zone_idx(zone) > max_zone_idx)
6187 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6191 for_each_online_cpu(cpu)
6192 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6202 " reserved_highatomic:%luKB"
6203 " active_anon:%lukB"
6204 " inactive_anon:%lukB"
6205 " active_file:%lukB"
6206 " inactive_file:%lukB"
6207 " unevictable:%lukB"
6208 " writepending:%lukB"
6218 K(zone_page_state(zone, NR_FREE_PAGES)),
6219 K(zone->watermark_boost),
6220 K(min_wmark_pages(zone)),
6221 K(low_wmark_pages(zone)),
6222 K(high_wmark_pages(zone)),
6223 K(zone->nr_reserved_highatomic),
6224 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6225 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6226 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6227 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6228 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6229 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6230 K(zone->present_pages),
6231 K(zone_managed_pages(zone)),
6232 K(zone_page_state(zone, NR_MLOCK)),
6233 K(zone_page_state(zone, NR_BOUNCE)),
6235 K(this_cpu_read(zone->per_cpu_pageset->count)),
6236 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6237 printk("lowmem_reserve[]:");
6238 for (i = 0; i < MAX_NR_ZONES; i++)
6239 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6240 printk(KERN_CONT "\n");
6243 for_each_populated_zone(zone) {
6245 unsigned long nr[MAX_ORDER], flags, total = 0;
6246 unsigned char types[MAX_ORDER];
6248 if (zone_idx(zone) > max_zone_idx)
6250 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6253 printk(KERN_CONT "%s: ", zone->name);
6255 spin_lock_irqsave(&zone->lock, flags);
6256 for (order = 0; order < MAX_ORDER; order++) {
6257 struct free_area *area = &zone->free_area[order];
6260 nr[order] = area->nr_free;
6261 total += nr[order] << order;
6264 for (type = 0; type < MIGRATE_TYPES; type++) {
6265 if (!free_area_empty(area, type))
6266 types[order] |= 1 << type;
6269 spin_unlock_irqrestore(&zone->lock, flags);
6270 for (order = 0; order < MAX_ORDER; order++) {
6271 printk(KERN_CONT "%lu*%lukB ",
6272 nr[order], K(1UL) << order);
6274 show_migration_types(types[order]);
6276 printk(KERN_CONT "= %lukB\n", K(total));
6279 for_each_online_node(nid) {
6280 if (show_mem_node_skip(filter, nid, nodemask))
6282 hugetlb_show_meminfo_node(nid);
6285 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6287 show_swap_cache_info();
6290 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6292 zoneref->zone = zone;
6293 zoneref->zone_idx = zone_idx(zone);
6297 * Builds allocation fallback zone lists.
6299 * Add all populated zones of a node to the zonelist.
6301 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6304 enum zone_type zone_type = MAX_NR_ZONES;
6309 zone = pgdat->node_zones + zone_type;
6310 if (populated_zone(zone)) {
6311 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6312 check_highest_zone(zone_type);
6314 } while (zone_type);
6321 static int __parse_numa_zonelist_order(char *s)
6324 * We used to support different zonelists modes but they turned
6325 * out to be just not useful. Let's keep the warning in place
6326 * if somebody still use the cmd line parameter so that we do
6327 * not fail it silently
6329 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6330 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6336 char numa_zonelist_order[] = "Node";
6339 * sysctl handler for numa_zonelist_order
6341 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6342 void *buffer, size_t *length, loff_t *ppos)
6345 return __parse_numa_zonelist_order(buffer);
6346 return proc_dostring(table, write, buffer, length, ppos);
6350 static int node_load[MAX_NUMNODES];
6353 * find_next_best_node - find the next node that should appear in a given node's fallback list
6354 * @node: node whose fallback list we're appending
6355 * @used_node_mask: nodemask_t of already used nodes
6357 * We use a number of factors to determine which is the next node that should
6358 * appear on a given node's fallback list. The node should not have appeared
6359 * already in @node's fallback list, and it should be the next closest node
6360 * according to the distance array (which contains arbitrary distance values
6361 * from each node to each node in the system), and should also prefer nodes
6362 * with no CPUs, since presumably they'll have very little allocation pressure
6363 * on them otherwise.
6365 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6367 int find_next_best_node(int node, nodemask_t *used_node_mask)
6370 int min_val = INT_MAX;
6371 int best_node = NUMA_NO_NODE;
6373 /* Use the local node if we haven't already */
6374 if (!node_isset(node, *used_node_mask)) {
6375 node_set(node, *used_node_mask);
6379 for_each_node_state(n, N_MEMORY) {
6381 /* Don't want a node to appear more than once */
6382 if (node_isset(n, *used_node_mask))
6385 /* Use the distance array to find the distance */
6386 val = node_distance(node, n);
6388 /* Penalize nodes under us ("prefer the next node") */
6391 /* Give preference to headless and unused nodes */
6392 if (!cpumask_empty(cpumask_of_node(n)))
6393 val += PENALTY_FOR_NODE_WITH_CPUS;
6395 /* Slight preference for less loaded node */
6396 val *= MAX_NUMNODES;
6397 val += node_load[n];
6399 if (val < min_val) {
6406 node_set(best_node, *used_node_mask);
6413 * Build zonelists ordered by node and zones within node.
6414 * This results in maximum locality--normal zone overflows into local
6415 * DMA zone, if any--but risks exhausting DMA zone.
6417 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6420 struct zoneref *zonerefs;
6423 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6425 for (i = 0; i < nr_nodes; i++) {
6428 pg_data_t *node = NODE_DATA(node_order[i]);
6430 nr_zones = build_zonerefs_node(node, zonerefs);
6431 zonerefs += nr_zones;
6433 zonerefs->zone = NULL;
6434 zonerefs->zone_idx = 0;
6438 * Build gfp_thisnode zonelists
6440 static void build_thisnode_zonelists(pg_data_t *pgdat)
6442 struct zoneref *zonerefs;
6445 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6446 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6447 zonerefs += nr_zones;
6448 zonerefs->zone = NULL;
6449 zonerefs->zone_idx = 0;
6453 * Build zonelists ordered by zone and nodes within zones.
6454 * This results in conserving DMA zone[s] until all Normal memory is
6455 * exhausted, but results in overflowing to remote node while memory
6456 * may still exist in local DMA zone.
6459 static void build_zonelists(pg_data_t *pgdat)
6461 static int node_order[MAX_NUMNODES];
6462 int node, nr_nodes = 0;
6463 nodemask_t used_mask = NODE_MASK_NONE;
6464 int local_node, prev_node;
6466 /* NUMA-aware ordering of nodes */
6467 local_node = pgdat->node_id;
6468 prev_node = local_node;
6470 memset(node_order, 0, sizeof(node_order));
6471 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6473 * We don't want to pressure a particular node.
6474 * So adding penalty to the first node in same
6475 * distance group to make it round-robin.
6477 if (node_distance(local_node, node) !=
6478 node_distance(local_node, prev_node))
6479 node_load[node] += 1;
6481 node_order[nr_nodes++] = node;
6485 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6486 build_thisnode_zonelists(pgdat);
6487 pr_info("Fallback order for Node %d: ", local_node);
6488 for (node = 0; node < nr_nodes; node++)
6489 pr_cont("%d ", node_order[node]);
6493 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6495 * Return node id of node used for "local" allocations.
6496 * I.e., first node id of first zone in arg node's generic zonelist.
6497 * Used for initializing percpu 'numa_mem', which is used primarily
6498 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6500 int local_memory_node(int node)
6504 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6505 gfp_zone(GFP_KERNEL),
6507 return zone_to_nid(z->zone);
6511 static void setup_min_unmapped_ratio(void);
6512 static void setup_min_slab_ratio(void);
6513 #else /* CONFIG_NUMA */
6515 static void build_zonelists(pg_data_t *pgdat)
6517 int node, local_node;
6518 struct zoneref *zonerefs;
6521 local_node = pgdat->node_id;
6523 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6524 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6525 zonerefs += nr_zones;
6528 * Now we build the zonelist so that it contains the zones
6529 * of all the other nodes.
6530 * We don't want to pressure a particular node, so when
6531 * building the zones for node N, we make sure that the
6532 * zones coming right after the local ones are those from
6533 * node N+1 (modulo N)
6535 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6536 if (!node_online(node))
6538 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6539 zonerefs += nr_zones;
6541 for (node = 0; node < local_node; node++) {
6542 if (!node_online(node))
6544 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6545 zonerefs += nr_zones;
6548 zonerefs->zone = NULL;
6549 zonerefs->zone_idx = 0;
6552 #endif /* CONFIG_NUMA */
6555 * Boot pageset table. One per cpu which is going to be used for all
6556 * zones and all nodes. The parameters will be set in such a way
6557 * that an item put on a list will immediately be handed over to
6558 * the buddy list. This is safe since pageset manipulation is done
6559 * with interrupts disabled.
6561 * The boot_pagesets must be kept even after bootup is complete for
6562 * unused processors and/or zones. They do play a role for bootstrapping
6563 * hotplugged processors.
6565 * zoneinfo_show() and maybe other functions do
6566 * not check if the processor is online before following the pageset pointer.
6567 * Other parts of the kernel may not check if the zone is available.
6569 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6570 /* These effectively disable the pcplists in the boot pageset completely */
6571 #define BOOT_PAGESET_HIGH 0
6572 #define BOOT_PAGESET_BATCH 1
6573 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6574 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6575 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6577 static void __build_all_zonelists(void *data)
6580 int __maybe_unused cpu;
6581 pg_data_t *self = data;
6583 write_seqlock(&zonelist_update_seq);
6586 memset(node_load, 0, sizeof(node_load));
6590 * This node is hotadded and no memory is yet present. So just
6591 * building zonelists is fine - no need to touch other nodes.
6593 if (self && !node_online(self->node_id)) {
6594 build_zonelists(self);
6597 * All possible nodes have pgdat preallocated
6600 for_each_node(nid) {
6601 pg_data_t *pgdat = NODE_DATA(nid);
6603 build_zonelists(pgdat);
6606 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6608 * We now know the "local memory node" for each node--
6609 * i.e., the node of the first zone in the generic zonelist.
6610 * Set up numa_mem percpu variable for on-line cpus. During
6611 * boot, only the boot cpu should be on-line; we'll init the
6612 * secondary cpus' numa_mem as they come on-line. During
6613 * node/memory hotplug, we'll fixup all on-line cpus.
6615 for_each_online_cpu(cpu)
6616 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6620 write_sequnlock(&zonelist_update_seq);
6623 static noinline void __init
6624 build_all_zonelists_init(void)
6628 __build_all_zonelists(NULL);
6631 * Initialize the boot_pagesets that are going to be used
6632 * for bootstrapping processors. The real pagesets for
6633 * each zone will be allocated later when the per cpu
6634 * allocator is available.
6636 * boot_pagesets are used also for bootstrapping offline
6637 * cpus if the system is already booted because the pagesets
6638 * are needed to initialize allocators on a specific cpu too.
6639 * F.e. the percpu allocator needs the page allocator which
6640 * needs the percpu allocator in order to allocate its pagesets
6641 * (a chicken-egg dilemma).
6643 for_each_possible_cpu(cpu)
6644 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6646 mminit_verify_zonelist();
6647 cpuset_init_current_mems_allowed();
6651 * unless system_state == SYSTEM_BOOTING.
6653 * __ref due to call of __init annotated helper build_all_zonelists_init
6654 * [protected by SYSTEM_BOOTING].
6656 void __ref build_all_zonelists(pg_data_t *pgdat)
6658 unsigned long vm_total_pages;
6660 if (system_state == SYSTEM_BOOTING) {
6661 build_all_zonelists_init();
6663 __build_all_zonelists(pgdat);
6664 /* cpuset refresh routine should be here */
6666 /* Get the number of free pages beyond high watermark in all zones. */
6667 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6669 * Disable grouping by mobility if the number of pages in the
6670 * system is too low to allow the mechanism to work. It would be
6671 * more accurate, but expensive to check per-zone. This check is
6672 * made on memory-hotadd so a system can start with mobility
6673 * disabled and enable it later
6675 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6676 page_group_by_mobility_disabled = 1;
6678 page_group_by_mobility_disabled = 0;
6680 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6682 page_group_by_mobility_disabled ? "off" : "on",
6685 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6689 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6690 static bool __meminit
6691 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6693 static struct memblock_region *r;
6695 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6696 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6697 for_each_mem_region(r) {
6698 if (*pfn < memblock_region_memory_end_pfn(r))
6702 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6703 memblock_is_mirror(r)) {
6704 *pfn = memblock_region_memory_end_pfn(r);
6712 * Initially all pages are reserved - free ones are freed
6713 * up by memblock_free_all() once the early boot process is
6714 * done. Non-atomic initialization, single-pass.
6716 * All aligned pageblocks are initialized to the specified migratetype
6717 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6718 * zone stats (e.g., nr_isolate_pageblock) are touched.
6720 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6721 unsigned long start_pfn, unsigned long zone_end_pfn,
6722 enum meminit_context context,
6723 struct vmem_altmap *altmap, int migratetype)
6725 unsigned long pfn, end_pfn = start_pfn + size;
6728 if (highest_memmap_pfn < end_pfn - 1)
6729 highest_memmap_pfn = end_pfn - 1;
6731 #ifdef CONFIG_ZONE_DEVICE
6733 * Honor reservation requested by the driver for this ZONE_DEVICE
6734 * memory. We limit the total number of pages to initialize to just
6735 * those that might contain the memory mapping. We will defer the
6736 * ZONE_DEVICE page initialization until after we have released
6739 if (zone == ZONE_DEVICE) {
6743 if (start_pfn == altmap->base_pfn)
6744 start_pfn += altmap->reserve;
6745 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6749 for (pfn = start_pfn; pfn < end_pfn; ) {
6751 * There can be holes in boot-time mem_map[]s handed to this
6752 * function. They do not exist on hotplugged memory.
6754 if (context == MEMINIT_EARLY) {
6755 if (overlap_memmap_init(zone, &pfn))
6757 if (defer_init(nid, pfn, zone_end_pfn))
6761 page = pfn_to_page(pfn);
6762 __init_single_page(page, pfn, zone, nid);
6763 if (context == MEMINIT_HOTPLUG)
6764 __SetPageReserved(page);
6767 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6768 * such that unmovable allocations won't be scattered all
6769 * over the place during system boot.
6771 if (pageblock_aligned(pfn)) {
6772 set_pageblock_migratetype(page, migratetype);
6779 #ifdef CONFIG_ZONE_DEVICE
6780 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6781 unsigned long zone_idx, int nid,
6782 struct dev_pagemap *pgmap)
6785 __init_single_page(page, pfn, zone_idx, nid);
6788 * Mark page reserved as it will need to wait for onlining
6789 * phase for it to be fully associated with a zone.
6791 * We can use the non-atomic __set_bit operation for setting
6792 * the flag as we are still initializing the pages.
6794 __SetPageReserved(page);
6797 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6798 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6799 * ever freed or placed on a driver-private list.
6801 page->pgmap = pgmap;
6802 page->zone_device_data = NULL;
6805 * Mark the block movable so that blocks are reserved for
6806 * movable at startup. This will force kernel allocations
6807 * to reserve their blocks rather than leaking throughout
6808 * the address space during boot when many long-lived
6809 * kernel allocations are made.
6811 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6812 * because this is done early in section_activate()
6814 if (pageblock_aligned(pfn)) {
6815 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6821 * With compound page geometry and when struct pages are stored in ram most
6822 * tail pages are reused. Consequently, the amount of unique struct pages to
6823 * initialize is a lot smaller that the total amount of struct pages being
6824 * mapped. This is a paired / mild layering violation with explicit knowledge
6825 * of how the sparse_vmemmap internals handle compound pages in the lack
6826 * of an altmap. See vmemmap_populate_compound_pages().
6828 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6829 unsigned long nr_pages)
6831 return is_power_of_2(sizeof(struct page)) &&
6832 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6835 static void __ref memmap_init_compound(struct page *head,
6836 unsigned long head_pfn,
6837 unsigned long zone_idx, int nid,
6838 struct dev_pagemap *pgmap,
6839 unsigned long nr_pages)
6841 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6842 unsigned int order = pgmap->vmemmap_shift;
6844 __SetPageHead(head);
6845 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6846 struct page *page = pfn_to_page(pfn);
6848 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6849 prep_compound_tail(head, pfn - head_pfn);
6850 set_page_count(page, 0);
6853 * The first tail page stores compound_mapcount_ptr() and
6854 * compound_order() and the second tail page stores
6855 * compound_pincount_ptr(). Call prep_compound_head() after
6856 * the first and second tail pages have been initialized to
6857 * not have the data overwritten.
6859 if (pfn == head_pfn + 2)
6860 prep_compound_head(head, order);
6864 void __ref memmap_init_zone_device(struct zone *zone,
6865 unsigned long start_pfn,
6866 unsigned long nr_pages,
6867 struct dev_pagemap *pgmap)
6869 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6870 struct pglist_data *pgdat = zone->zone_pgdat;
6871 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6872 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6873 unsigned long zone_idx = zone_idx(zone);
6874 unsigned long start = jiffies;
6875 int nid = pgdat->node_id;
6877 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6881 * The call to memmap_init should have already taken care
6882 * of the pages reserved for the memmap, so we can just jump to
6883 * the end of that region and start processing the device pages.
6886 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6887 nr_pages = end_pfn - start_pfn;
6890 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6891 struct page *page = pfn_to_page(pfn);
6893 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6895 if (pfns_per_compound == 1)
6898 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6899 compound_nr_pages(altmap, pfns_per_compound));
6902 pr_info("%s initialised %lu pages in %ums\n", __func__,
6903 nr_pages, jiffies_to_msecs(jiffies - start));
6907 static void __meminit zone_init_free_lists(struct zone *zone)
6909 unsigned int order, t;
6910 for_each_migratetype_order(order, t) {
6911 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6912 zone->free_area[order].nr_free = 0;
6917 * Only struct pages that correspond to ranges defined by memblock.memory
6918 * are zeroed and initialized by going through __init_single_page() during
6919 * memmap_init_zone_range().
6921 * But, there could be struct pages that correspond to holes in
6922 * memblock.memory. This can happen because of the following reasons:
6923 * - physical memory bank size is not necessarily the exact multiple of the
6924 * arbitrary section size
6925 * - early reserved memory may not be listed in memblock.memory
6926 * - memory layouts defined with memmap= kernel parameter may not align
6927 * nicely with memmap sections
6929 * Explicitly initialize those struct pages so that:
6930 * - PG_Reserved is set
6931 * - zone and node links point to zone and node that span the page if the
6932 * hole is in the middle of a zone
6933 * - zone and node links point to adjacent zone/node if the hole falls on
6934 * the zone boundary; the pages in such holes will be prepended to the
6935 * zone/node above the hole except for the trailing pages in the last
6936 * section that will be appended to the zone/node below.
6938 static void __init init_unavailable_range(unsigned long spfn,
6945 for (pfn = spfn; pfn < epfn; pfn++) {
6946 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6947 pfn = pageblock_end_pfn(pfn) - 1;
6950 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6951 __SetPageReserved(pfn_to_page(pfn));
6956 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6957 node, zone_names[zone], pgcnt);
6960 static void __init memmap_init_zone_range(struct zone *zone,
6961 unsigned long start_pfn,
6962 unsigned long end_pfn,
6963 unsigned long *hole_pfn)
6965 unsigned long zone_start_pfn = zone->zone_start_pfn;
6966 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6967 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6969 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6970 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6972 if (start_pfn >= end_pfn)
6975 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6976 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6978 if (*hole_pfn < start_pfn)
6979 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6981 *hole_pfn = end_pfn;
6984 static void __init memmap_init(void)
6986 unsigned long start_pfn, end_pfn;
6987 unsigned long hole_pfn = 0;
6988 int i, j, zone_id = 0, nid;
6990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6991 struct pglist_data *node = NODE_DATA(nid);
6993 for (j = 0; j < MAX_NR_ZONES; j++) {
6994 struct zone *zone = node->node_zones + j;
6996 if (!populated_zone(zone))
6999 memmap_init_zone_range(zone, start_pfn, end_pfn,
7005 #ifdef CONFIG_SPARSEMEM
7007 * Initialize the memory map for hole in the range [memory_end,
7009 * Append the pages in this hole to the highest zone in the last
7011 * The call to init_unavailable_range() is outside the ifdef to
7012 * silence the compiler warining about zone_id set but not used;
7013 * for FLATMEM it is a nop anyway
7015 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7016 if (hole_pfn < end_pfn)
7018 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7021 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7022 phys_addr_t min_addr, int nid, bool exact_nid)
7027 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7028 MEMBLOCK_ALLOC_ACCESSIBLE,
7031 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7032 MEMBLOCK_ALLOC_ACCESSIBLE,
7035 if (ptr && size > 0)
7036 page_init_poison(ptr, size);
7041 static int zone_batchsize(struct zone *zone)
7047 * The number of pages to batch allocate is either ~0.1%
7048 * of the zone or 1MB, whichever is smaller. The batch
7049 * size is striking a balance between allocation latency
7050 * and zone lock contention.
7052 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7053 batch /= 4; /* We effectively *= 4 below */
7058 * Clamp the batch to a 2^n - 1 value. Having a power
7059 * of 2 value was found to be more likely to have
7060 * suboptimal cache aliasing properties in some cases.
7062 * For example if 2 tasks are alternately allocating
7063 * batches of pages, one task can end up with a lot
7064 * of pages of one half of the possible page colors
7065 * and the other with pages of the other colors.
7067 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7072 /* The deferral and batching of frees should be suppressed under NOMMU
7075 * The problem is that NOMMU needs to be able to allocate large chunks
7076 * of contiguous memory as there's no hardware page translation to
7077 * assemble apparent contiguous memory from discontiguous pages.
7079 * Queueing large contiguous runs of pages for batching, however,
7080 * causes the pages to actually be freed in smaller chunks. As there
7081 * can be a significant delay between the individual batches being
7082 * recycled, this leads to the once large chunks of space being
7083 * fragmented and becoming unavailable for high-order allocations.
7089 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7094 unsigned long total_pages;
7096 if (!percpu_pagelist_high_fraction) {
7098 * By default, the high value of the pcp is based on the zone
7099 * low watermark so that if they are full then background
7100 * reclaim will not be started prematurely.
7102 total_pages = low_wmark_pages(zone);
7105 * If percpu_pagelist_high_fraction is configured, the high
7106 * value is based on a fraction of the managed pages in the
7109 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7113 * Split the high value across all online CPUs local to the zone. Note
7114 * that early in boot that CPUs may not be online yet and that during
7115 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7116 * onlined. For memory nodes that have no CPUs, split pcp->high across
7117 * all online CPUs to mitigate the risk that reclaim is triggered
7118 * prematurely due to pages stored on pcp lists.
7120 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7122 nr_split_cpus = num_online_cpus();
7123 high = total_pages / nr_split_cpus;
7126 * Ensure high is at least batch*4. The multiple is based on the
7127 * historical relationship between high and batch.
7129 high = max(high, batch << 2);
7138 * pcp->high and pcp->batch values are related and generally batch is lower
7139 * than high. They are also related to pcp->count such that count is lower
7140 * than high, and as soon as it reaches high, the pcplist is flushed.
7142 * However, guaranteeing these relations at all times would require e.g. write
7143 * barriers here but also careful usage of read barriers at the read side, and
7144 * thus be prone to error and bad for performance. Thus the update only prevents
7145 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7146 * can cope with those fields changing asynchronously, and fully trust only the
7147 * pcp->count field on the local CPU with interrupts disabled.
7149 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7150 * outside of boot time (or some other assurance that no concurrent updaters
7153 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7154 unsigned long batch)
7156 WRITE_ONCE(pcp->batch, batch);
7157 WRITE_ONCE(pcp->high, high);
7160 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7164 memset(pcp, 0, sizeof(*pcp));
7165 memset(pzstats, 0, sizeof(*pzstats));
7167 spin_lock_init(&pcp->lock);
7168 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7169 INIT_LIST_HEAD(&pcp->lists[pindex]);
7172 * Set batch and high values safe for a boot pageset. A true percpu
7173 * pageset's initialization will update them subsequently. Here we don't
7174 * need to be as careful as pageset_update() as nobody can access the
7177 pcp->high = BOOT_PAGESET_HIGH;
7178 pcp->batch = BOOT_PAGESET_BATCH;
7179 pcp->free_factor = 0;
7182 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7183 unsigned long batch)
7185 struct per_cpu_pages *pcp;
7188 for_each_possible_cpu(cpu) {
7189 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7190 pageset_update(pcp, high, batch);
7195 * Calculate and set new high and batch values for all per-cpu pagesets of a
7196 * zone based on the zone's size.
7198 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7200 int new_high, new_batch;
7202 new_batch = max(1, zone_batchsize(zone));
7203 new_high = zone_highsize(zone, new_batch, cpu_online);
7205 if (zone->pageset_high == new_high &&
7206 zone->pageset_batch == new_batch)
7209 zone->pageset_high = new_high;
7210 zone->pageset_batch = new_batch;
7212 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7215 void __meminit setup_zone_pageset(struct zone *zone)
7219 /* Size may be 0 on !SMP && !NUMA */
7220 if (sizeof(struct per_cpu_zonestat) > 0)
7221 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7223 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7224 for_each_possible_cpu(cpu) {
7225 struct per_cpu_pages *pcp;
7226 struct per_cpu_zonestat *pzstats;
7228 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7229 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7230 per_cpu_pages_init(pcp, pzstats);
7233 zone_set_pageset_high_and_batch(zone, 0);
7237 * Allocate per cpu pagesets and initialize them.
7238 * Before this call only boot pagesets were available.
7240 void __init setup_per_cpu_pageset(void)
7242 struct pglist_data *pgdat;
7244 int __maybe_unused cpu;
7246 for_each_populated_zone(zone)
7247 setup_zone_pageset(zone);
7251 * Unpopulated zones continue using the boot pagesets.
7252 * The numa stats for these pagesets need to be reset.
7253 * Otherwise, they will end up skewing the stats of
7254 * the nodes these zones are associated with.
7256 for_each_possible_cpu(cpu) {
7257 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7258 memset(pzstats->vm_numa_event, 0,
7259 sizeof(pzstats->vm_numa_event));
7263 for_each_online_pgdat(pgdat)
7264 pgdat->per_cpu_nodestats =
7265 alloc_percpu(struct per_cpu_nodestat);
7268 static __meminit void zone_pcp_init(struct zone *zone)
7271 * per cpu subsystem is not up at this point. The following code
7272 * relies on the ability of the linker to provide the
7273 * offset of a (static) per cpu variable into the per cpu area.
7275 zone->per_cpu_pageset = &boot_pageset;
7276 zone->per_cpu_zonestats = &boot_zonestats;
7277 zone->pageset_high = BOOT_PAGESET_HIGH;
7278 zone->pageset_batch = BOOT_PAGESET_BATCH;
7280 if (populated_zone(zone))
7281 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7282 zone->present_pages, zone_batchsize(zone));
7285 void __meminit init_currently_empty_zone(struct zone *zone,
7286 unsigned long zone_start_pfn,
7289 struct pglist_data *pgdat = zone->zone_pgdat;
7290 int zone_idx = zone_idx(zone) + 1;
7292 if (zone_idx > pgdat->nr_zones)
7293 pgdat->nr_zones = zone_idx;
7295 zone->zone_start_pfn = zone_start_pfn;
7297 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7298 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7300 (unsigned long)zone_idx(zone),
7301 zone_start_pfn, (zone_start_pfn + size));
7303 zone_init_free_lists(zone);
7304 zone->initialized = 1;
7308 * get_pfn_range_for_nid - Return the start and end page frames for a node
7309 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7310 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7311 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7313 * It returns the start and end page frame of a node based on information
7314 * provided by memblock_set_node(). If called for a node
7315 * with no available memory, a warning is printed and the start and end
7318 void __init get_pfn_range_for_nid(unsigned int nid,
7319 unsigned long *start_pfn, unsigned long *end_pfn)
7321 unsigned long this_start_pfn, this_end_pfn;
7327 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7328 *start_pfn = min(*start_pfn, this_start_pfn);
7329 *end_pfn = max(*end_pfn, this_end_pfn);
7332 if (*start_pfn == -1UL)
7337 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7338 * assumption is made that zones within a node are ordered in monotonic
7339 * increasing memory addresses so that the "highest" populated zone is used
7341 static void __init find_usable_zone_for_movable(void)
7344 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7345 if (zone_index == ZONE_MOVABLE)
7348 if (arch_zone_highest_possible_pfn[zone_index] >
7349 arch_zone_lowest_possible_pfn[zone_index])
7353 VM_BUG_ON(zone_index == -1);
7354 movable_zone = zone_index;
7358 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7359 * because it is sized independent of architecture. Unlike the other zones,
7360 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7361 * in each node depending on the size of each node and how evenly kernelcore
7362 * is distributed. This helper function adjusts the zone ranges
7363 * provided by the architecture for a given node by using the end of the
7364 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7365 * zones within a node are in order of monotonic increases memory addresses
7367 static void __init adjust_zone_range_for_zone_movable(int nid,
7368 unsigned long zone_type,
7369 unsigned long node_start_pfn,
7370 unsigned long node_end_pfn,
7371 unsigned long *zone_start_pfn,
7372 unsigned long *zone_end_pfn)
7374 /* Only adjust if ZONE_MOVABLE is on this node */
7375 if (zone_movable_pfn[nid]) {
7376 /* Size ZONE_MOVABLE */
7377 if (zone_type == ZONE_MOVABLE) {
7378 *zone_start_pfn = zone_movable_pfn[nid];
7379 *zone_end_pfn = min(node_end_pfn,
7380 arch_zone_highest_possible_pfn[movable_zone]);
7382 /* Adjust for ZONE_MOVABLE starting within this range */
7383 } else if (!mirrored_kernelcore &&
7384 *zone_start_pfn < zone_movable_pfn[nid] &&
7385 *zone_end_pfn > zone_movable_pfn[nid]) {
7386 *zone_end_pfn = zone_movable_pfn[nid];
7388 /* Check if this whole range is within ZONE_MOVABLE */
7389 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7390 *zone_start_pfn = *zone_end_pfn;
7395 * Return the number of pages a zone spans in a node, including holes
7396 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7398 static unsigned long __init zone_spanned_pages_in_node(int nid,
7399 unsigned long zone_type,
7400 unsigned long node_start_pfn,
7401 unsigned long node_end_pfn,
7402 unsigned long *zone_start_pfn,
7403 unsigned long *zone_end_pfn)
7405 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7406 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7407 /* When hotadd a new node from cpu_up(), the node should be empty */
7408 if (!node_start_pfn && !node_end_pfn)
7411 /* Get the start and end of the zone */
7412 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7413 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7414 adjust_zone_range_for_zone_movable(nid, zone_type,
7415 node_start_pfn, node_end_pfn,
7416 zone_start_pfn, zone_end_pfn);
7418 /* Check that this node has pages within the zone's required range */
7419 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7422 /* Move the zone boundaries inside the node if necessary */
7423 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7424 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7426 /* Return the spanned pages */
7427 return *zone_end_pfn - *zone_start_pfn;
7431 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7432 * then all holes in the requested range will be accounted for.
7434 unsigned long __init __absent_pages_in_range(int nid,
7435 unsigned long range_start_pfn,
7436 unsigned long range_end_pfn)
7438 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7439 unsigned long start_pfn, end_pfn;
7442 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7443 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7444 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7445 nr_absent -= end_pfn - start_pfn;
7451 * absent_pages_in_range - Return number of page frames in holes within a range
7452 * @start_pfn: The start PFN to start searching for holes
7453 * @end_pfn: The end PFN to stop searching for holes
7455 * Return: the number of pages frames in memory holes within a range.
7457 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7458 unsigned long end_pfn)
7460 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7463 /* Return the number of page frames in holes in a zone on a node */
7464 static unsigned long __init zone_absent_pages_in_node(int nid,
7465 unsigned long zone_type,
7466 unsigned long node_start_pfn,
7467 unsigned long node_end_pfn)
7469 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7470 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7471 unsigned long zone_start_pfn, zone_end_pfn;
7472 unsigned long nr_absent;
7474 /* When hotadd a new node from cpu_up(), the node should be empty */
7475 if (!node_start_pfn && !node_end_pfn)
7478 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7479 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7481 adjust_zone_range_for_zone_movable(nid, zone_type,
7482 node_start_pfn, node_end_pfn,
7483 &zone_start_pfn, &zone_end_pfn);
7484 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7487 * ZONE_MOVABLE handling.
7488 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7491 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7492 unsigned long start_pfn, end_pfn;
7493 struct memblock_region *r;
7495 for_each_mem_region(r) {
7496 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7497 zone_start_pfn, zone_end_pfn);
7498 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7499 zone_start_pfn, zone_end_pfn);
7501 if (zone_type == ZONE_MOVABLE &&
7502 memblock_is_mirror(r))
7503 nr_absent += end_pfn - start_pfn;
7505 if (zone_type == ZONE_NORMAL &&
7506 !memblock_is_mirror(r))
7507 nr_absent += end_pfn - start_pfn;
7514 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7515 unsigned long node_start_pfn,
7516 unsigned long node_end_pfn)
7518 unsigned long realtotalpages = 0, totalpages = 0;
7521 for (i = 0; i < MAX_NR_ZONES; i++) {
7522 struct zone *zone = pgdat->node_zones + i;
7523 unsigned long zone_start_pfn, zone_end_pfn;
7524 unsigned long spanned, absent;
7525 unsigned long size, real_size;
7527 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7532 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7537 real_size = size - absent;
7540 zone->zone_start_pfn = zone_start_pfn;
7542 zone->zone_start_pfn = 0;
7543 zone->spanned_pages = size;
7544 zone->present_pages = real_size;
7545 #if defined(CONFIG_MEMORY_HOTPLUG)
7546 zone->present_early_pages = real_size;
7550 realtotalpages += real_size;
7553 pgdat->node_spanned_pages = totalpages;
7554 pgdat->node_present_pages = realtotalpages;
7555 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7558 #ifndef CONFIG_SPARSEMEM
7560 * Calculate the size of the zone->blockflags rounded to an unsigned long
7561 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7562 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7563 * round what is now in bits to nearest long in bits, then return it in
7566 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7568 unsigned long usemapsize;
7570 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7571 usemapsize = roundup(zonesize, pageblock_nr_pages);
7572 usemapsize = usemapsize >> pageblock_order;
7573 usemapsize *= NR_PAGEBLOCK_BITS;
7574 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7576 return usemapsize / 8;
7579 static void __ref setup_usemap(struct zone *zone)
7581 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7582 zone->spanned_pages);
7583 zone->pageblock_flags = NULL;
7585 zone->pageblock_flags =
7586 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7588 if (!zone->pageblock_flags)
7589 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7590 usemapsize, zone->name, zone_to_nid(zone));
7594 static inline void setup_usemap(struct zone *zone) {}
7595 #endif /* CONFIG_SPARSEMEM */
7597 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7599 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7600 void __init set_pageblock_order(void)
7602 unsigned int order = MAX_ORDER - 1;
7604 /* Check that pageblock_nr_pages has not already been setup */
7605 if (pageblock_order)
7608 /* Don't let pageblocks exceed the maximum allocation granularity. */
7609 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7610 order = HUGETLB_PAGE_ORDER;
7613 * Assume the largest contiguous order of interest is a huge page.
7614 * This value may be variable depending on boot parameters on IA64 and
7617 pageblock_order = order;
7619 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7622 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7623 * is unused as pageblock_order is set at compile-time. See
7624 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7627 void __init set_pageblock_order(void)
7631 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7633 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7634 unsigned long present_pages)
7636 unsigned long pages = spanned_pages;
7639 * Provide a more accurate estimation if there are holes within
7640 * the zone and SPARSEMEM is in use. If there are holes within the
7641 * zone, each populated memory region may cost us one or two extra
7642 * memmap pages due to alignment because memmap pages for each
7643 * populated regions may not be naturally aligned on page boundary.
7644 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7646 if (spanned_pages > present_pages + (present_pages >> 4) &&
7647 IS_ENABLED(CONFIG_SPARSEMEM))
7648 pages = present_pages;
7650 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7654 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7656 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7658 spin_lock_init(&ds_queue->split_queue_lock);
7659 INIT_LIST_HEAD(&ds_queue->split_queue);
7660 ds_queue->split_queue_len = 0;
7663 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7666 #ifdef CONFIG_COMPACTION
7667 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7669 init_waitqueue_head(&pgdat->kcompactd_wait);
7672 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7675 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7679 pgdat_resize_init(pgdat);
7680 pgdat_kswapd_lock_init(pgdat);
7682 pgdat_init_split_queue(pgdat);
7683 pgdat_init_kcompactd(pgdat);
7685 init_waitqueue_head(&pgdat->kswapd_wait);
7686 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7688 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7689 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7691 pgdat_page_ext_init(pgdat);
7692 lruvec_init(&pgdat->__lruvec);
7695 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7696 unsigned long remaining_pages)
7698 atomic_long_set(&zone->managed_pages, remaining_pages);
7699 zone_set_nid(zone, nid);
7700 zone->name = zone_names[idx];
7701 zone->zone_pgdat = NODE_DATA(nid);
7702 spin_lock_init(&zone->lock);
7703 zone_seqlock_init(zone);
7704 zone_pcp_init(zone);
7708 * Set up the zone data structures
7709 * - init pgdat internals
7710 * - init all zones belonging to this node
7712 * NOTE: this function is only called during memory hotplug
7714 #ifdef CONFIG_MEMORY_HOTPLUG
7715 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7717 int nid = pgdat->node_id;
7721 pgdat_init_internals(pgdat);
7723 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7724 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7727 * Reset the nr_zones, order and highest_zoneidx before reuse.
7728 * Note that kswapd will init kswapd_highest_zoneidx properly
7729 * when it starts in the near future.
7731 pgdat->nr_zones = 0;
7732 pgdat->kswapd_order = 0;
7733 pgdat->kswapd_highest_zoneidx = 0;
7734 pgdat->node_start_pfn = 0;
7735 for_each_online_cpu(cpu) {
7736 struct per_cpu_nodestat *p;
7738 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7739 memset(p, 0, sizeof(*p));
7742 for (z = 0; z < MAX_NR_ZONES; z++)
7743 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7748 * Set up the zone data structures:
7749 * - mark all pages reserved
7750 * - mark all memory queues empty
7751 * - clear the memory bitmaps
7753 * NOTE: pgdat should get zeroed by caller.
7754 * NOTE: this function is only called during early init.
7756 static void __init free_area_init_core(struct pglist_data *pgdat)
7759 int nid = pgdat->node_id;
7761 pgdat_init_internals(pgdat);
7762 pgdat->per_cpu_nodestats = &boot_nodestats;
7764 for (j = 0; j < MAX_NR_ZONES; j++) {
7765 struct zone *zone = pgdat->node_zones + j;
7766 unsigned long size, freesize, memmap_pages;
7768 size = zone->spanned_pages;
7769 freesize = zone->present_pages;
7772 * Adjust freesize so that it accounts for how much memory
7773 * is used by this zone for memmap. This affects the watermark
7774 * and per-cpu initialisations
7776 memmap_pages = calc_memmap_size(size, freesize);
7777 if (!is_highmem_idx(j)) {
7778 if (freesize >= memmap_pages) {
7779 freesize -= memmap_pages;
7781 pr_debug(" %s zone: %lu pages used for memmap\n",
7782 zone_names[j], memmap_pages);
7784 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7785 zone_names[j], memmap_pages, freesize);
7788 /* Account for reserved pages */
7789 if (j == 0 && freesize > dma_reserve) {
7790 freesize -= dma_reserve;
7791 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7794 if (!is_highmem_idx(j))
7795 nr_kernel_pages += freesize;
7796 /* Charge for highmem memmap if there are enough kernel pages */
7797 else if (nr_kernel_pages > memmap_pages * 2)
7798 nr_kernel_pages -= memmap_pages;
7799 nr_all_pages += freesize;
7802 * Set an approximate value for lowmem here, it will be adjusted
7803 * when the bootmem allocator frees pages into the buddy system.
7804 * And all highmem pages will be managed by the buddy system.
7806 zone_init_internals(zone, j, nid, freesize);
7811 set_pageblock_order();
7813 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7817 #ifdef CONFIG_FLATMEM
7818 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7820 unsigned long __maybe_unused start = 0;
7821 unsigned long __maybe_unused offset = 0;
7823 /* Skip empty nodes */
7824 if (!pgdat->node_spanned_pages)
7827 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7828 offset = pgdat->node_start_pfn - start;
7829 /* ia64 gets its own node_mem_map, before this, without bootmem */
7830 if (!pgdat->node_mem_map) {
7831 unsigned long size, end;
7835 * The zone's endpoints aren't required to be MAX_ORDER
7836 * aligned but the node_mem_map endpoints must be in order
7837 * for the buddy allocator to function correctly.
7839 end = pgdat_end_pfn(pgdat);
7840 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7841 size = (end - start) * sizeof(struct page);
7842 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7843 pgdat->node_id, false);
7845 panic("Failed to allocate %ld bytes for node %d memory map\n",
7846 size, pgdat->node_id);
7847 pgdat->node_mem_map = map + offset;
7849 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7850 __func__, pgdat->node_id, (unsigned long)pgdat,
7851 (unsigned long)pgdat->node_mem_map);
7854 * With no DISCONTIG, the global mem_map is just set as node 0's
7856 if (pgdat == NODE_DATA(0)) {
7857 mem_map = NODE_DATA(0)->node_mem_map;
7858 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7864 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7865 #endif /* CONFIG_FLATMEM */
7867 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7868 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7870 pgdat->first_deferred_pfn = ULONG_MAX;
7873 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7876 static void __init free_area_init_node(int nid)
7878 pg_data_t *pgdat = NODE_DATA(nid);
7879 unsigned long start_pfn = 0;
7880 unsigned long end_pfn = 0;
7882 /* pg_data_t should be reset to zero when it's allocated */
7883 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7885 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7887 pgdat->node_id = nid;
7888 pgdat->node_start_pfn = start_pfn;
7889 pgdat->per_cpu_nodestats = NULL;
7891 if (start_pfn != end_pfn) {
7892 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7893 (u64)start_pfn << PAGE_SHIFT,
7894 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7896 pr_info("Initmem setup node %d as memoryless\n", nid);
7899 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7901 alloc_node_mem_map(pgdat);
7902 pgdat_set_deferred_range(pgdat);
7904 free_area_init_core(pgdat);
7907 static void __init free_area_init_memoryless_node(int nid)
7909 free_area_init_node(nid);
7912 #if MAX_NUMNODES > 1
7914 * Figure out the number of possible node ids.
7916 void __init setup_nr_node_ids(void)
7918 unsigned int highest;
7920 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7921 nr_node_ids = highest + 1;
7926 * node_map_pfn_alignment - determine the maximum internode alignment
7928 * This function should be called after node map is populated and sorted.
7929 * It calculates the maximum power of two alignment which can distinguish
7932 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7933 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7934 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7935 * shifted, 1GiB is enough and this function will indicate so.
7937 * This is used to test whether pfn -> nid mapping of the chosen memory
7938 * model has fine enough granularity to avoid incorrect mapping for the
7939 * populated node map.
7941 * Return: the determined alignment in pfn's. 0 if there is no alignment
7942 * requirement (single node).
7944 unsigned long __init node_map_pfn_alignment(void)
7946 unsigned long accl_mask = 0, last_end = 0;
7947 unsigned long start, end, mask;
7948 int last_nid = NUMA_NO_NODE;
7951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7952 if (!start || last_nid < 0 || last_nid == nid) {
7959 * Start with a mask granular enough to pin-point to the
7960 * start pfn and tick off bits one-by-one until it becomes
7961 * too coarse to separate the current node from the last.
7963 mask = ~((1 << __ffs(start)) - 1);
7964 while (mask && last_end <= (start & (mask << 1)))
7967 /* accumulate all internode masks */
7971 /* convert mask to number of pages */
7972 return ~accl_mask + 1;
7976 * early_calculate_totalpages()
7977 * Sum pages in active regions for movable zone.
7978 * Populate N_MEMORY for calculating usable_nodes.
7980 static unsigned long __init early_calculate_totalpages(void)
7982 unsigned long totalpages = 0;
7983 unsigned long start_pfn, end_pfn;
7986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7987 unsigned long pages = end_pfn - start_pfn;
7989 totalpages += pages;
7991 node_set_state(nid, N_MEMORY);
7997 * Find the PFN the Movable zone begins in each node. Kernel memory
7998 * is spread evenly between nodes as long as the nodes have enough
7999 * memory. When they don't, some nodes will have more kernelcore than
8002 static void __init find_zone_movable_pfns_for_nodes(void)
8005 unsigned long usable_startpfn;
8006 unsigned long kernelcore_node, kernelcore_remaining;
8007 /* save the state before borrow the nodemask */
8008 nodemask_t saved_node_state = node_states[N_MEMORY];
8009 unsigned long totalpages = early_calculate_totalpages();
8010 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8011 struct memblock_region *r;
8013 /* Need to find movable_zone earlier when movable_node is specified. */
8014 find_usable_zone_for_movable();
8017 * If movable_node is specified, ignore kernelcore and movablecore
8020 if (movable_node_is_enabled()) {
8021 for_each_mem_region(r) {
8022 if (!memblock_is_hotpluggable(r))
8025 nid = memblock_get_region_node(r);
8027 usable_startpfn = PFN_DOWN(r->base);
8028 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8029 min(usable_startpfn, zone_movable_pfn[nid]) :
8037 * If kernelcore=mirror is specified, ignore movablecore option
8039 if (mirrored_kernelcore) {
8040 bool mem_below_4gb_not_mirrored = false;
8042 for_each_mem_region(r) {
8043 if (memblock_is_mirror(r))
8046 nid = memblock_get_region_node(r);
8048 usable_startpfn = memblock_region_memory_base_pfn(r);
8050 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8051 mem_below_4gb_not_mirrored = true;
8055 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8056 min(usable_startpfn, zone_movable_pfn[nid]) :
8060 if (mem_below_4gb_not_mirrored)
8061 pr_warn("This configuration results in unmirrored kernel memory.\n");
8067 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8068 * amount of necessary memory.
8070 if (required_kernelcore_percent)
8071 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8073 if (required_movablecore_percent)
8074 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8078 * If movablecore= was specified, calculate what size of
8079 * kernelcore that corresponds so that memory usable for
8080 * any allocation type is evenly spread. If both kernelcore
8081 * and movablecore are specified, then the value of kernelcore
8082 * will be used for required_kernelcore if it's greater than
8083 * what movablecore would have allowed.
8085 if (required_movablecore) {
8086 unsigned long corepages;
8089 * Round-up so that ZONE_MOVABLE is at least as large as what
8090 * was requested by the user
8092 required_movablecore =
8093 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8094 required_movablecore = min(totalpages, required_movablecore);
8095 corepages = totalpages - required_movablecore;
8097 required_kernelcore = max(required_kernelcore, corepages);
8101 * If kernelcore was not specified or kernelcore size is larger
8102 * than totalpages, there is no ZONE_MOVABLE.
8104 if (!required_kernelcore || required_kernelcore >= totalpages)
8107 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8108 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8111 /* Spread kernelcore memory as evenly as possible throughout nodes */
8112 kernelcore_node = required_kernelcore / usable_nodes;
8113 for_each_node_state(nid, N_MEMORY) {
8114 unsigned long start_pfn, end_pfn;
8117 * Recalculate kernelcore_node if the division per node
8118 * now exceeds what is necessary to satisfy the requested
8119 * amount of memory for the kernel
8121 if (required_kernelcore < kernelcore_node)
8122 kernelcore_node = required_kernelcore / usable_nodes;
8125 * As the map is walked, we track how much memory is usable
8126 * by the kernel using kernelcore_remaining. When it is
8127 * 0, the rest of the node is usable by ZONE_MOVABLE
8129 kernelcore_remaining = kernelcore_node;
8131 /* Go through each range of PFNs within this node */
8132 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8133 unsigned long size_pages;
8135 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8136 if (start_pfn >= end_pfn)
8139 /* Account for what is only usable for kernelcore */
8140 if (start_pfn < usable_startpfn) {
8141 unsigned long kernel_pages;
8142 kernel_pages = min(end_pfn, usable_startpfn)
8145 kernelcore_remaining -= min(kernel_pages,
8146 kernelcore_remaining);
8147 required_kernelcore -= min(kernel_pages,
8148 required_kernelcore);
8150 /* Continue if range is now fully accounted */
8151 if (end_pfn <= usable_startpfn) {
8154 * Push zone_movable_pfn to the end so
8155 * that if we have to rebalance
8156 * kernelcore across nodes, we will
8157 * not double account here
8159 zone_movable_pfn[nid] = end_pfn;
8162 start_pfn = usable_startpfn;
8166 * The usable PFN range for ZONE_MOVABLE is from
8167 * start_pfn->end_pfn. Calculate size_pages as the
8168 * number of pages used as kernelcore
8170 size_pages = end_pfn - start_pfn;
8171 if (size_pages > kernelcore_remaining)
8172 size_pages = kernelcore_remaining;
8173 zone_movable_pfn[nid] = start_pfn + size_pages;
8176 * Some kernelcore has been met, update counts and
8177 * break if the kernelcore for this node has been
8180 required_kernelcore -= min(required_kernelcore,
8182 kernelcore_remaining -= size_pages;
8183 if (!kernelcore_remaining)
8189 * If there is still required_kernelcore, we do another pass with one
8190 * less node in the count. This will push zone_movable_pfn[nid] further
8191 * along on the nodes that still have memory until kernelcore is
8195 if (usable_nodes && required_kernelcore > usable_nodes)
8199 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8200 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8201 unsigned long start_pfn, end_pfn;
8203 zone_movable_pfn[nid] =
8204 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8206 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8207 if (zone_movable_pfn[nid] >= end_pfn)
8208 zone_movable_pfn[nid] = 0;
8212 /* restore the node_state */
8213 node_states[N_MEMORY] = saved_node_state;
8216 /* Any regular or high memory on that node ? */
8217 static void check_for_memory(pg_data_t *pgdat, int nid)
8219 enum zone_type zone_type;
8221 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8222 struct zone *zone = &pgdat->node_zones[zone_type];
8223 if (populated_zone(zone)) {
8224 if (IS_ENABLED(CONFIG_HIGHMEM))
8225 node_set_state(nid, N_HIGH_MEMORY);
8226 if (zone_type <= ZONE_NORMAL)
8227 node_set_state(nid, N_NORMAL_MEMORY);
8234 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8235 * such cases we allow max_zone_pfn sorted in the descending order
8237 bool __weak arch_has_descending_max_zone_pfns(void)
8243 * free_area_init - Initialise all pg_data_t and zone data
8244 * @max_zone_pfn: an array of max PFNs for each zone
8246 * This will call free_area_init_node() for each active node in the system.
8247 * Using the page ranges provided by memblock_set_node(), the size of each
8248 * zone in each node and their holes is calculated. If the maximum PFN
8249 * between two adjacent zones match, it is assumed that the zone is empty.
8250 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8251 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8252 * starts where the previous one ended. For example, ZONE_DMA32 starts
8253 * at arch_max_dma_pfn.
8255 void __init free_area_init(unsigned long *max_zone_pfn)
8257 unsigned long start_pfn, end_pfn;
8261 /* Record where the zone boundaries are */
8262 memset(arch_zone_lowest_possible_pfn, 0,
8263 sizeof(arch_zone_lowest_possible_pfn));
8264 memset(arch_zone_highest_possible_pfn, 0,
8265 sizeof(arch_zone_highest_possible_pfn));
8267 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8268 descending = arch_has_descending_max_zone_pfns();
8270 for (i = 0; i < MAX_NR_ZONES; i++) {
8272 zone = MAX_NR_ZONES - i - 1;
8276 if (zone == ZONE_MOVABLE)
8279 end_pfn = max(max_zone_pfn[zone], start_pfn);
8280 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8281 arch_zone_highest_possible_pfn[zone] = end_pfn;
8283 start_pfn = end_pfn;
8286 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8287 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8288 find_zone_movable_pfns_for_nodes();
8290 /* Print out the zone ranges */
8291 pr_info("Zone ranges:\n");
8292 for (i = 0; i < MAX_NR_ZONES; i++) {
8293 if (i == ZONE_MOVABLE)
8295 pr_info(" %-8s ", zone_names[i]);
8296 if (arch_zone_lowest_possible_pfn[i] ==
8297 arch_zone_highest_possible_pfn[i])
8300 pr_cont("[mem %#018Lx-%#018Lx]\n",
8301 (u64)arch_zone_lowest_possible_pfn[i]
8303 ((u64)arch_zone_highest_possible_pfn[i]
8304 << PAGE_SHIFT) - 1);
8307 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8308 pr_info("Movable zone start for each node\n");
8309 for (i = 0; i < MAX_NUMNODES; i++) {
8310 if (zone_movable_pfn[i])
8311 pr_info(" Node %d: %#018Lx\n", i,
8312 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8316 * Print out the early node map, and initialize the
8317 * subsection-map relative to active online memory ranges to
8318 * enable future "sub-section" extensions of the memory map.
8320 pr_info("Early memory node ranges\n");
8321 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8322 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8323 (u64)start_pfn << PAGE_SHIFT,
8324 ((u64)end_pfn << PAGE_SHIFT) - 1);
8325 subsection_map_init(start_pfn, end_pfn - start_pfn);
8328 /* Initialise every node */
8329 mminit_verify_pageflags_layout();
8330 setup_nr_node_ids();
8331 for_each_node(nid) {
8334 if (!node_online(nid)) {
8335 pr_info("Initializing node %d as memoryless\n", nid);
8337 /* Allocator not initialized yet */
8338 pgdat = arch_alloc_nodedata(nid);
8340 pr_err("Cannot allocate %zuB for node %d.\n",
8341 sizeof(*pgdat), nid);
8344 arch_refresh_nodedata(nid, pgdat);
8345 free_area_init_memoryless_node(nid);
8348 * We do not want to confuse userspace by sysfs
8349 * files/directories for node without any memory
8350 * attached to it, so this node is not marked as
8351 * N_MEMORY and not marked online so that no sysfs
8352 * hierarchy will be created via register_one_node for
8353 * it. The pgdat will get fully initialized by
8354 * hotadd_init_pgdat() when memory is hotplugged into
8360 pgdat = NODE_DATA(nid);
8361 free_area_init_node(nid);
8363 /* Any memory on that node */
8364 if (pgdat->node_present_pages)
8365 node_set_state(nid, N_MEMORY);
8366 check_for_memory(pgdat, nid);
8372 static int __init cmdline_parse_core(char *p, unsigned long *core,
8373 unsigned long *percent)
8375 unsigned long long coremem;
8381 /* Value may be a percentage of total memory, otherwise bytes */
8382 coremem = simple_strtoull(p, &endptr, 0);
8383 if (*endptr == '%') {
8384 /* Paranoid check for percent values greater than 100 */
8385 WARN_ON(coremem > 100);
8389 coremem = memparse(p, &p);
8390 /* Paranoid check that UL is enough for the coremem value */
8391 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8393 *core = coremem >> PAGE_SHIFT;
8400 * kernelcore=size sets the amount of memory for use for allocations that
8401 * cannot be reclaimed or migrated.
8403 static int __init cmdline_parse_kernelcore(char *p)
8405 /* parse kernelcore=mirror */
8406 if (parse_option_str(p, "mirror")) {
8407 mirrored_kernelcore = true;
8411 return cmdline_parse_core(p, &required_kernelcore,
8412 &required_kernelcore_percent);
8416 * movablecore=size sets the amount of memory for use for allocations that
8417 * can be reclaimed or migrated.
8419 static int __init cmdline_parse_movablecore(char *p)
8421 return cmdline_parse_core(p, &required_movablecore,
8422 &required_movablecore_percent);
8425 early_param("kernelcore", cmdline_parse_kernelcore);
8426 early_param("movablecore", cmdline_parse_movablecore);
8428 void adjust_managed_page_count(struct page *page, long count)
8430 atomic_long_add(count, &page_zone(page)->managed_pages);
8431 totalram_pages_add(count);
8432 #ifdef CONFIG_HIGHMEM
8433 if (PageHighMem(page))
8434 totalhigh_pages_add(count);
8437 EXPORT_SYMBOL(adjust_managed_page_count);
8439 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8442 unsigned long pages = 0;
8444 start = (void *)PAGE_ALIGN((unsigned long)start);
8445 end = (void *)((unsigned long)end & PAGE_MASK);
8446 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8447 struct page *page = virt_to_page(pos);
8448 void *direct_map_addr;
8451 * 'direct_map_addr' might be different from 'pos'
8452 * because some architectures' virt_to_page()
8453 * work with aliases. Getting the direct map
8454 * address ensures that we get a _writeable_
8455 * alias for the memset().
8457 direct_map_addr = page_address(page);
8459 * Perform a kasan-unchecked memset() since this memory
8460 * has not been initialized.
8462 direct_map_addr = kasan_reset_tag(direct_map_addr);
8463 if ((unsigned int)poison <= 0xFF)
8464 memset(direct_map_addr, poison, PAGE_SIZE);
8466 free_reserved_page(page);
8470 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8475 void __init mem_init_print_info(void)
8477 unsigned long physpages, codesize, datasize, rosize, bss_size;
8478 unsigned long init_code_size, init_data_size;
8480 physpages = get_num_physpages();
8481 codesize = _etext - _stext;
8482 datasize = _edata - _sdata;
8483 rosize = __end_rodata - __start_rodata;
8484 bss_size = __bss_stop - __bss_start;
8485 init_data_size = __init_end - __init_begin;
8486 init_code_size = _einittext - _sinittext;
8489 * Detect special cases and adjust section sizes accordingly:
8490 * 1) .init.* may be embedded into .data sections
8491 * 2) .init.text.* may be out of [__init_begin, __init_end],
8492 * please refer to arch/tile/kernel/vmlinux.lds.S.
8493 * 3) .rodata.* may be embedded into .text or .data sections.
8495 #define adj_init_size(start, end, size, pos, adj) \
8497 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8501 adj_init_size(__init_begin, __init_end, init_data_size,
8502 _sinittext, init_code_size);
8503 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8504 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8505 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8506 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8508 #undef adj_init_size
8510 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8511 #ifdef CONFIG_HIGHMEM
8515 K(nr_free_pages()), K(physpages),
8516 codesize >> 10, datasize >> 10, rosize >> 10,
8517 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8518 K(physpages - totalram_pages() - totalcma_pages),
8520 #ifdef CONFIG_HIGHMEM
8521 , K(totalhigh_pages())
8527 * set_dma_reserve - set the specified number of pages reserved in the first zone
8528 * @new_dma_reserve: The number of pages to mark reserved
8530 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8531 * In the DMA zone, a significant percentage may be consumed by kernel image
8532 * and other unfreeable allocations which can skew the watermarks badly. This
8533 * function may optionally be used to account for unfreeable pages in the
8534 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8535 * smaller per-cpu batchsize.
8537 void __init set_dma_reserve(unsigned long new_dma_reserve)
8539 dma_reserve = new_dma_reserve;
8542 static int page_alloc_cpu_dead(unsigned int cpu)
8546 lru_add_drain_cpu(cpu);
8547 mlock_page_drain_remote(cpu);
8551 * Spill the event counters of the dead processor
8552 * into the current processors event counters.
8553 * This artificially elevates the count of the current
8556 vm_events_fold_cpu(cpu);
8559 * Zero the differential counters of the dead processor
8560 * so that the vm statistics are consistent.
8562 * This is only okay since the processor is dead and cannot
8563 * race with what we are doing.
8565 cpu_vm_stats_fold(cpu);
8567 for_each_populated_zone(zone)
8568 zone_pcp_update(zone, 0);
8573 static int page_alloc_cpu_online(unsigned int cpu)
8577 for_each_populated_zone(zone)
8578 zone_pcp_update(zone, 1);
8583 int hashdist = HASHDIST_DEFAULT;
8585 static int __init set_hashdist(char *str)
8589 hashdist = simple_strtoul(str, &str, 0);
8592 __setup("hashdist=", set_hashdist);
8595 void __init page_alloc_init(void)
8600 if (num_node_state(N_MEMORY) == 1)
8604 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8605 "mm/page_alloc:pcp",
8606 page_alloc_cpu_online,
8607 page_alloc_cpu_dead);
8612 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8613 * or min_free_kbytes changes.
8615 static void calculate_totalreserve_pages(void)
8617 struct pglist_data *pgdat;
8618 unsigned long reserve_pages = 0;
8619 enum zone_type i, j;
8621 for_each_online_pgdat(pgdat) {
8623 pgdat->totalreserve_pages = 0;
8625 for (i = 0; i < MAX_NR_ZONES; i++) {
8626 struct zone *zone = pgdat->node_zones + i;
8628 unsigned long managed_pages = zone_managed_pages(zone);
8630 /* Find valid and maximum lowmem_reserve in the zone */
8631 for (j = i; j < MAX_NR_ZONES; j++) {
8632 if (zone->lowmem_reserve[j] > max)
8633 max = zone->lowmem_reserve[j];
8636 /* we treat the high watermark as reserved pages. */
8637 max += high_wmark_pages(zone);
8639 if (max > managed_pages)
8640 max = managed_pages;
8642 pgdat->totalreserve_pages += max;
8644 reserve_pages += max;
8647 totalreserve_pages = reserve_pages;
8651 * setup_per_zone_lowmem_reserve - called whenever
8652 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8653 * has a correct pages reserved value, so an adequate number of
8654 * pages are left in the zone after a successful __alloc_pages().
8656 static void setup_per_zone_lowmem_reserve(void)
8658 struct pglist_data *pgdat;
8659 enum zone_type i, j;
8661 for_each_online_pgdat(pgdat) {
8662 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8663 struct zone *zone = &pgdat->node_zones[i];
8664 int ratio = sysctl_lowmem_reserve_ratio[i];
8665 bool clear = !ratio || !zone_managed_pages(zone);
8666 unsigned long managed_pages = 0;
8668 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8669 struct zone *upper_zone = &pgdat->node_zones[j];
8671 managed_pages += zone_managed_pages(upper_zone);
8674 zone->lowmem_reserve[j] = 0;
8676 zone->lowmem_reserve[j] = managed_pages / ratio;
8681 /* update totalreserve_pages */
8682 calculate_totalreserve_pages();
8685 static void __setup_per_zone_wmarks(void)
8687 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8688 unsigned long lowmem_pages = 0;
8690 unsigned long flags;
8692 /* Calculate total number of !ZONE_HIGHMEM pages */
8693 for_each_zone(zone) {
8694 if (!is_highmem(zone))
8695 lowmem_pages += zone_managed_pages(zone);
8698 for_each_zone(zone) {
8701 spin_lock_irqsave(&zone->lock, flags);
8702 tmp = (u64)pages_min * zone_managed_pages(zone);
8703 do_div(tmp, lowmem_pages);
8704 if (is_highmem(zone)) {
8706 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8707 * need highmem pages, so cap pages_min to a small
8710 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8711 * deltas control async page reclaim, and so should
8712 * not be capped for highmem.
8714 unsigned long min_pages;
8716 min_pages = zone_managed_pages(zone) / 1024;
8717 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8718 zone->_watermark[WMARK_MIN] = min_pages;
8721 * If it's a lowmem zone, reserve a number of pages
8722 * proportionate to the zone's size.
8724 zone->_watermark[WMARK_MIN] = tmp;
8728 * Set the kswapd watermarks distance according to the
8729 * scale factor in proportion to available memory, but
8730 * ensure a minimum size on small systems.
8732 tmp = max_t(u64, tmp >> 2,
8733 mult_frac(zone_managed_pages(zone),
8734 watermark_scale_factor, 10000));
8736 zone->watermark_boost = 0;
8737 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8738 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8739 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8741 spin_unlock_irqrestore(&zone->lock, flags);
8744 /* update totalreserve_pages */
8745 calculate_totalreserve_pages();
8749 * setup_per_zone_wmarks - called when min_free_kbytes changes
8750 * or when memory is hot-{added|removed}
8752 * Ensures that the watermark[min,low,high] values for each zone are set
8753 * correctly with respect to min_free_kbytes.
8755 void setup_per_zone_wmarks(void)
8758 static DEFINE_SPINLOCK(lock);
8761 __setup_per_zone_wmarks();
8765 * The watermark size have changed so update the pcpu batch
8766 * and high limits or the limits may be inappropriate.
8769 zone_pcp_update(zone, 0);
8773 * Initialise min_free_kbytes.
8775 * For small machines we want it small (128k min). For large machines
8776 * we want it large (256MB max). But it is not linear, because network
8777 * bandwidth does not increase linearly with machine size. We use
8779 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8780 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8796 void calculate_min_free_kbytes(void)
8798 unsigned long lowmem_kbytes;
8799 int new_min_free_kbytes;
8801 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8802 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8804 if (new_min_free_kbytes > user_min_free_kbytes)
8805 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8807 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8808 new_min_free_kbytes, user_min_free_kbytes);
8812 int __meminit init_per_zone_wmark_min(void)
8814 calculate_min_free_kbytes();
8815 setup_per_zone_wmarks();
8816 refresh_zone_stat_thresholds();
8817 setup_per_zone_lowmem_reserve();
8820 setup_min_unmapped_ratio();
8821 setup_min_slab_ratio();
8824 khugepaged_min_free_kbytes_update();
8828 postcore_initcall(init_per_zone_wmark_min)
8831 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8832 * that we can call two helper functions whenever min_free_kbytes
8835 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8836 void *buffer, size_t *length, loff_t *ppos)
8840 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8845 user_min_free_kbytes = min_free_kbytes;
8846 setup_per_zone_wmarks();
8851 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8852 void *buffer, size_t *length, loff_t *ppos)
8856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8861 setup_per_zone_wmarks();
8867 static void setup_min_unmapped_ratio(void)
8872 for_each_online_pgdat(pgdat)
8873 pgdat->min_unmapped_pages = 0;
8876 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8877 sysctl_min_unmapped_ratio) / 100;
8881 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8882 void *buffer, size_t *length, loff_t *ppos)
8886 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8890 setup_min_unmapped_ratio();
8895 static void setup_min_slab_ratio(void)
8900 for_each_online_pgdat(pgdat)
8901 pgdat->min_slab_pages = 0;
8904 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8905 sysctl_min_slab_ratio) / 100;
8908 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8909 void *buffer, size_t *length, loff_t *ppos)
8913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8917 setup_min_slab_ratio();
8924 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8925 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8926 * whenever sysctl_lowmem_reserve_ratio changes.
8928 * The reserve ratio obviously has absolutely no relation with the
8929 * minimum watermarks. The lowmem reserve ratio can only make sense
8930 * if in function of the boot time zone sizes.
8932 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8933 void *buffer, size_t *length, loff_t *ppos)
8937 proc_dointvec_minmax(table, write, buffer, length, ppos);
8939 for (i = 0; i < MAX_NR_ZONES; i++) {
8940 if (sysctl_lowmem_reserve_ratio[i] < 1)
8941 sysctl_lowmem_reserve_ratio[i] = 0;
8944 setup_per_zone_lowmem_reserve();
8949 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8950 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8951 * pagelist can have before it gets flushed back to buddy allocator.
8953 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8954 int write, void *buffer, size_t *length, loff_t *ppos)
8957 int old_percpu_pagelist_high_fraction;
8960 mutex_lock(&pcp_batch_high_lock);
8961 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8963 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8964 if (!write || ret < 0)
8967 /* Sanity checking to avoid pcp imbalance */
8968 if (percpu_pagelist_high_fraction &&
8969 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8970 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8976 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8979 for_each_populated_zone(zone)
8980 zone_set_pageset_high_and_batch(zone, 0);
8982 mutex_unlock(&pcp_batch_high_lock);
8986 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8988 * Returns the number of pages that arch has reserved but
8989 * is not known to alloc_large_system_hash().
8991 static unsigned long __init arch_reserved_kernel_pages(void)
8998 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8999 * machines. As memory size is increased the scale is also increased but at
9000 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9001 * quadruples the scale is increased by one, which means the size of hash table
9002 * only doubles, instead of quadrupling as well.
9003 * Because 32-bit systems cannot have large physical memory, where this scaling
9004 * makes sense, it is disabled on such platforms.
9006 #if __BITS_PER_LONG > 32
9007 #define ADAPT_SCALE_BASE (64ul << 30)
9008 #define ADAPT_SCALE_SHIFT 2
9009 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9013 * allocate a large system hash table from bootmem
9014 * - it is assumed that the hash table must contain an exact power-of-2
9015 * quantity of entries
9016 * - limit is the number of hash buckets, not the total allocation size
9018 void *__init alloc_large_system_hash(const char *tablename,
9019 unsigned long bucketsize,
9020 unsigned long numentries,
9023 unsigned int *_hash_shift,
9024 unsigned int *_hash_mask,
9025 unsigned long low_limit,
9026 unsigned long high_limit)
9028 unsigned long long max = high_limit;
9029 unsigned long log2qty, size;
9035 /* allow the kernel cmdline to have a say */
9037 /* round applicable memory size up to nearest megabyte */
9038 numentries = nr_kernel_pages;
9039 numentries -= arch_reserved_kernel_pages();
9041 /* It isn't necessary when PAGE_SIZE >= 1MB */
9042 if (PAGE_SHIFT < 20)
9043 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9045 #if __BITS_PER_LONG > 32
9047 unsigned long adapt;
9049 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9050 adapt <<= ADAPT_SCALE_SHIFT)
9055 /* limit to 1 bucket per 2^scale bytes of low memory */
9056 if (scale > PAGE_SHIFT)
9057 numentries >>= (scale - PAGE_SHIFT);
9059 numentries <<= (PAGE_SHIFT - scale);
9061 /* Make sure we've got at least a 0-order allocation.. */
9062 if (unlikely(flags & HASH_SMALL)) {
9063 /* Makes no sense without HASH_EARLY */
9064 WARN_ON(!(flags & HASH_EARLY));
9065 if (!(numentries >> *_hash_shift)) {
9066 numentries = 1UL << *_hash_shift;
9067 BUG_ON(!numentries);
9069 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9070 numentries = PAGE_SIZE / bucketsize;
9072 numentries = roundup_pow_of_two(numentries);
9074 /* limit allocation size to 1/16 total memory by default */
9076 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9077 do_div(max, bucketsize);
9079 max = min(max, 0x80000000ULL);
9081 if (numentries < low_limit)
9082 numentries = low_limit;
9083 if (numentries > max)
9086 log2qty = ilog2(numentries);
9088 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9091 size = bucketsize << log2qty;
9092 if (flags & HASH_EARLY) {
9093 if (flags & HASH_ZERO)
9094 table = memblock_alloc(size, SMP_CACHE_BYTES);
9096 table = memblock_alloc_raw(size,
9098 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9099 table = vmalloc_huge(size, gfp_flags);
9102 huge = is_vm_area_hugepages(table);
9105 * If bucketsize is not a power-of-two, we may free
9106 * some pages at the end of hash table which
9107 * alloc_pages_exact() automatically does
9109 table = alloc_pages_exact(size, gfp_flags);
9110 kmemleak_alloc(table, size, 1, gfp_flags);
9112 } while (!table && size > PAGE_SIZE && --log2qty);
9115 panic("Failed to allocate %s hash table\n", tablename);
9117 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9118 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9119 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9122 *_hash_shift = log2qty;
9124 *_hash_mask = (1 << log2qty) - 1;
9129 #ifdef CONFIG_CONTIG_ALLOC
9130 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9131 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9132 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9133 static void alloc_contig_dump_pages(struct list_head *page_list)
9135 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9137 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9141 list_for_each_entry(page, page_list, lru)
9142 dump_page(page, "migration failure");
9146 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9151 /* [start, end) must belong to a single zone. */
9152 int __alloc_contig_migrate_range(struct compact_control *cc,
9153 unsigned long start, unsigned long end)
9155 /* This function is based on compact_zone() from compaction.c. */
9156 unsigned int nr_reclaimed;
9157 unsigned long pfn = start;
9158 unsigned int tries = 0;
9160 struct migration_target_control mtc = {
9161 .nid = zone_to_nid(cc->zone),
9162 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9165 lru_cache_disable();
9167 while (pfn < end || !list_empty(&cc->migratepages)) {
9168 if (fatal_signal_pending(current)) {
9173 if (list_empty(&cc->migratepages)) {
9174 cc->nr_migratepages = 0;
9175 ret = isolate_migratepages_range(cc, pfn, end);
9176 if (ret && ret != -EAGAIN)
9178 pfn = cc->migrate_pfn;
9180 } else if (++tries == 5) {
9185 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9187 cc->nr_migratepages -= nr_reclaimed;
9189 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9190 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9193 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9194 * to retry again over this error, so do the same here.
9202 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9203 alloc_contig_dump_pages(&cc->migratepages);
9204 putback_movable_pages(&cc->migratepages);
9211 * alloc_contig_range() -- tries to allocate given range of pages
9212 * @start: start PFN to allocate
9213 * @end: one-past-the-last PFN to allocate
9214 * @migratetype: migratetype of the underlying pageblocks (either
9215 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9216 * in range must have the same migratetype and it must
9217 * be either of the two.
9218 * @gfp_mask: GFP mask to use during compaction
9220 * The PFN range does not have to be pageblock aligned. The PFN range must
9221 * belong to a single zone.
9223 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9224 * pageblocks in the range. Once isolated, the pageblocks should not
9225 * be modified by others.
9227 * Return: zero on success or negative error code. On success all
9228 * pages which PFN is in [start, end) are allocated for the caller and
9229 * need to be freed with free_contig_range().
9231 int alloc_contig_range(unsigned long start, unsigned long end,
9232 unsigned migratetype, gfp_t gfp_mask)
9234 unsigned long outer_start, outer_end;
9238 struct compact_control cc = {
9239 .nr_migratepages = 0,
9241 .zone = page_zone(pfn_to_page(start)),
9242 .mode = MIGRATE_SYNC,
9243 .ignore_skip_hint = true,
9244 .no_set_skip_hint = true,
9245 .gfp_mask = current_gfp_context(gfp_mask),
9246 .alloc_contig = true,
9248 INIT_LIST_HEAD(&cc.migratepages);
9251 * What we do here is we mark all pageblocks in range as
9252 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9253 * have different sizes, and due to the way page allocator
9254 * work, start_isolate_page_range() has special handlings for this.
9256 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9257 * migrate the pages from an unaligned range (ie. pages that
9258 * we are interested in). This will put all the pages in
9259 * range back to page allocator as MIGRATE_ISOLATE.
9261 * When this is done, we take the pages in range from page
9262 * allocator removing them from the buddy system. This way
9263 * page allocator will never consider using them.
9265 * This lets us mark the pageblocks back as
9266 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9267 * aligned range but not in the unaligned, original range are
9268 * put back to page allocator so that buddy can use them.
9271 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9275 drain_all_pages(cc.zone);
9278 * In case of -EBUSY, we'd like to know which page causes problem.
9279 * So, just fall through. test_pages_isolated() has a tracepoint
9280 * which will report the busy page.
9282 * It is possible that busy pages could become available before
9283 * the call to test_pages_isolated, and the range will actually be
9284 * allocated. So, if we fall through be sure to clear ret so that
9285 * -EBUSY is not accidentally used or returned to caller.
9287 ret = __alloc_contig_migrate_range(&cc, start, end);
9288 if (ret && ret != -EBUSY)
9293 * Pages from [start, end) are within a pageblock_nr_pages
9294 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9295 * more, all pages in [start, end) are free in page allocator.
9296 * What we are going to do is to allocate all pages from
9297 * [start, end) (that is remove them from page allocator).
9299 * The only problem is that pages at the beginning and at the
9300 * end of interesting range may be not aligned with pages that
9301 * page allocator holds, ie. they can be part of higher order
9302 * pages. Because of this, we reserve the bigger range and
9303 * once this is done free the pages we are not interested in.
9305 * We don't have to hold zone->lock here because the pages are
9306 * isolated thus they won't get removed from buddy.
9310 outer_start = start;
9311 while (!PageBuddy(pfn_to_page(outer_start))) {
9312 if (++order >= MAX_ORDER) {
9313 outer_start = start;
9316 outer_start &= ~0UL << order;
9319 if (outer_start != start) {
9320 order = buddy_order(pfn_to_page(outer_start));
9323 * outer_start page could be small order buddy page and
9324 * it doesn't include start page. Adjust outer_start
9325 * in this case to report failed page properly
9326 * on tracepoint in test_pages_isolated()
9328 if (outer_start + (1UL << order) <= start)
9329 outer_start = start;
9332 /* Make sure the range is really isolated. */
9333 if (test_pages_isolated(outer_start, end, 0)) {
9338 /* Grab isolated pages from freelists. */
9339 outer_end = isolate_freepages_range(&cc, outer_start, end);
9345 /* Free head and tail (if any) */
9346 if (start != outer_start)
9347 free_contig_range(outer_start, start - outer_start);
9348 if (end != outer_end)
9349 free_contig_range(end, outer_end - end);
9352 undo_isolate_page_range(start, end, migratetype);
9355 EXPORT_SYMBOL(alloc_contig_range);
9357 static int __alloc_contig_pages(unsigned long start_pfn,
9358 unsigned long nr_pages, gfp_t gfp_mask)
9360 unsigned long end_pfn = start_pfn + nr_pages;
9362 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9366 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9367 unsigned long nr_pages)
9369 unsigned long i, end_pfn = start_pfn + nr_pages;
9372 for (i = start_pfn; i < end_pfn; i++) {
9373 page = pfn_to_online_page(i);
9377 if (page_zone(page) != z)
9380 if (PageReserved(page))
9386 static bool zone_spans_last_pfn(const struct zone *zone,
9387 unsigned long start_pfn, unsigned long nr_pages)
9389 unsigned long last_pfn = start_pfn + nr_pages - 1;
9391 return zone_spans_pfn(zone, last_pfn);
9395 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9396 * @nr_pages: Number of contiguous pages to allocate
9397 * @gfp_mask: GFP mask to limit search and used during compaction
9399 * @nodemask: Mask for other possible nodes
9401 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9402 * on an applicable zonelist to find a contiguous pfn range which can then be
9403 * tried for allocation with alloc_contig_range(). This routine is intended
9404 * for allocation requests which can not be fulfilled with the buddy allocator.
9406 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9407 * power of two, then allocated range is also guaranteed to be aligned to same
9408 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9410 * Allocated pages can be freed with free_contig_range() or by manually calling
9411 * __free_page() on each allocated page.
9413 * Return: pointer to contiguous pages on success, or NULL if not successful.
9415 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9416 int nid, nodemask_t *nodemask)
9418 unsigned long ret, pfn, flags;
9419 struct zonelist *zonelist;
9423 zonelist = node_zonelist(nid, gfp_mask);
9424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9425 gfp_zone(gfp_mask), nodemask) {
9426 spin_lock_irqsave(&zone->lock, flags);
9428 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9429 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9430 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9432 * We release the zone lock here because
9433 * alloc_contig_range() will also lock the zone
9434 * at some point. If there's an allocation
9435 * spinning on this lock, it may win the race
9436 * and cause alloc_contig_range() to fail...
9438 spin_unlock_irqrestore(&zone->lock, flags);
9439 ret = __alloc_contig_pages(pfn, nr_pages,
9442 return pfn_to_page(pfn);
9443 spin_lock_irqsave(&zone->lock, flags);
9447 spin_unlock_irqrestore(&zone->lock, flags);
9451 #endif /* CONFIG_CONTIG_ALLOC */
9453 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9455 unsigned long count = 0;
9457 for (; nr_pages--; pfn++) {
9458 struct page *page = pfn_to_page(pfn);
9460 count += page_count(page) != 1;
9463 WARN(count != 0, "%lu pages are still in use!\n", count);
9465 EXPORT_SYMBOL(free_contig_range);
9468 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9469 * page high values need to be recalculated.
9471 void zone_pcp_update(struct zone *zone, int cpu_online)
9473 mutex_lock(&pcp_batch_high_lock);
9474 zone_set_pageset_high_and_batch(zone, cpu_online);
9475 mutex_unlock(&pcp_batch_high_lock);
9479 * Effectively disable pcplists for the zone by setting the high limit to 0
9480 * and draining all cpus. A concurrent page freeing on another CPU that's about
9481 * to put the page on pcplist will either finish before the drain and the page
9482 * will be drained, or observe the new high limit and skip the pcplist.
9484 * Must be paired with a call to zone_pcp_enable().
9486 void zone_pcp_disable(struct zone *zone)
9488 mutex_lock(&pcp_batch_high_lock);
9489 __zone_set_pageset_high_and_batch(zone, 0, 1);
9490 __drain_all_pages(zone, true);
9493 void zone_pcp_enable(struct zone *zone)
9495 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9496 mutex_unlock(&pcp_batch_high_lock);
9499 void zone_pcp_reset(struct zone *zone)
9502 struct per_cpu_zonestat *pzstats;
9504 if (zone->per_cpu_pageset != &boot_pageset) {
9505 for_each_online_cpu(cpu) {
9506 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9507 drain_zonestat(zone, pzstats);
9509 free_percpu(zone->per_cpu_pageset);
9510 free_percpu(zone->per_cpu_zonestats);
9511 zone->per_cpu_pageset = &boot_pageset;
9512 zone->per_cpu_zonestats = &boot_zonestats;
9516 #ifdef CONFIG_MEMORY_HOTREMOVE
9518 * All pages in the range must be in a single zone, must not contain holes,
9519 * must span full sections, and must be isolated before calling this function.
9521 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9523 unsigned long pfn = start_pfn;
9527 unsigned long flags;
9529 offline_mem_sections(pfn, end_pfn);
9530 zone = page_zone(pfn_to_page(pfn));
9531 spin_lock_irqsave(&zone->lock, flags);
9532 while (pfn < end_pfn) {
9533 page = pfn_to_page(pfn);
9535 * The HWPoisoned page may be not in buddy system, and
9536 * page_count() is not 0.
9538 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9543 * At this point all remaining PageOffline() pages have a
9544 * reference count of 0 and can simply be skipped.
9546 if (PageOffline(page)) {
9547 BUG_ON(page_count(page));
9548 BUG_ON(PageBuddy(page));
9553 BUG_ON(page_count(page));
9554 BUG_ON(!PageBuddy(page));
9555 order = buddy_order(page);
9556 del_page_from_free_list(page, zone, order);
9557 pfn += (1 << order);
9559 spin_unlock_irqrestore(&zone->lock, flags);
9564 * This function returns a stable result only if called under zone lock.
9566 bool is_free_buddy_page(struct page *page)
9568 unsigned long pfn = page_to_pfn(page);
9571 for (order = 0; order < MAX_ORDER; order++) {
9572 struct page *page_head = page - (pfn & ((1 << order) - 1));
9574 if (PageBuddy(page_head) &&
9575 buddy_order_unsafe(page_head) >= order)
9579 return order < MAX_ORDER;
9581 EXPORT_SYMBOL(is_free_buddy_page);
9583 #ifdef CONFIG_MEMORY_FAILURE
9585 * Break down a higher-order page in sub-pages, and keep our target out of
9588 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9589 struct page *target, int low, int high,
9592 unsigned long size = 1 << high;
9593 struct page *current_buddy, *next_page;
9595 while (high > low) {
9599 if (target >= &page[size]) {
9600 next_page = page + size;
9601 current_buddy = page;
9604 current_buddy = page + size;
9607 if (set_page_guard(zone, current_buddy, high, migratetype))
9610 if (current_buddy != target) {
9611 add_to_free_list(current_buddy, zone, high, migratetype);
9612 set_buddy_order(current_buddy, high);
9619 * Take a page that will be marked as poisoned off the buddy allocator.
9621 bool take_page_off_buddy(struct page *page)
9623 struct zone *zone = page_zone(page);
9624 unsigned long pfn = page_to_pfn(page);
9625 unsigned long flags;
9629 spin_lock_irqsave(&zone->lock, flags);
9630 for (order = 0; order < MAX_ORDER; order++) {
9631 struct page *page_head = page - (pfn & ((1 << order) - 1));
9632 int page_order = buddy_order(page_head);
9634 if (PageBuddy(page_head) && page_order >= order) {
9635 unsigned long pfn_head = page_to_pfn(page_head);
9636 int migratetype = get_pfnblock_migratetype(page_head,
9639 del_page_from_free_list(page_head, zone, page_order);
9640 break_down_buddy_pages(zone, page_head, page, 0,
9641 page_order, migratetype);
9642 SetPageHWPoisonTakenOff(page);
9643 if (!is_migrate_isolate(migratetype))
9644 __mod_zone_freepage_state(zone, -1, migratetype);
9648 if (page_count(page_head) > 0)
9651 spin_unlock_irqrestore(&zone->lock, flags);
9656 * Cancel takeoff done by take_page_off_buddy().
9658 bool put_page_back_buddy(struct page *page)
9660 struct zone *zone = page_zone(page);
9661 unsigned long pfn = page_to_pfn(page);
9662 unsigned long flags;
9663 int migratetype = get_pfnblock_migratetype(page, pfn);
9666 spin_lock_irqsave(&zone->lock, flags);
9667 if (put_page_testzero(page)) {
9668 ClearPageHWPoisonTakenOff(page);
9669 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9670 if (TestClearPageHWPoison(page)) {
9674 spin_unlock_irqrestore(&zone->lock, flags);
9680 #ifdef CONFIG_ZONE_DMA
9681 bool has_managed_dma(void)
9683 struct pglist_data *pgdat;
9685 for_each_online_pgdat(pgdat) {
9686 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9688 if (managed_zone(zone))
9693 #endif /* CONFIG_ZONE_DMA */