1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
132 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 .lock = INIT_LOCAL_LOCK(lock),
136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137 DEFINE_PER_CPU(int, numa_node);
138 EXPORT_PER_CPU_SYMBOL(numa_node);
141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148 * defined in <linux/topology.h>.
150 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
151 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
154 /* work_structs for global per-cpu drains */
157 struct work_struct work;
159 static DEFINE_MUTEX(pcpu_drain_mutex);
160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163 volatile unsigned long latent_entropy __latent_entropy;
164 EXPORT_SYMBOL(latent_entropy);
168 * Array of node states.
170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 [N_POSSIBLE] = NODE_MASK_ALL,
172 [N_ONLINE] = { { [0] = 1UL } },
174 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
175 #ifdef CONFIG_HIGHMEM
176 [N_HIGH_MEMORY] = { { [0] = 1UL } },
178 [N_MEMORY] = { { [0] = 1UL } },
179 [N_CPU] = { { [0] = 1UL } },
182 EXPORT_SYMBOL(node_states);
184 atomic_long_t _totalram_pages __read_mostly;
185 EXPORT_SYMBOL(_totalram_pages);
186 unsigned long totalreserve_pages __read_mostly;
187 unsigned long totalcma_pages __read_mostly;
189 int percpu_pagelist_high_fraction;
190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192 EXPORT_SYMBOL(init_on_alloc);
194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195 EXPORT_SYMBOL(init_on_free);
197 static bool _init_on_alloc_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199 static int __init early_init_on_alloc(char *buf)
202 return kstrtobool(buf, &_init_on_alloc_enabled_early);
204 early_param("init_on_alloc", early_init_on_alloc);
206 static bool _init_on_free_enabled_early __read_mostly
207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208 static int __init early_init_on_free(char *buf)
210 return kstrtobool(buf, &_init_on_free_enabled_early);
212 early_param("init_on_free", early_init_on_free);
215 * A cached value of the page's pageblock's migratetype, used when the page is
216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218 * Also the migratetype set in the page does not necessarily match the pcplist
219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220 * other index - this ensures that it will be put on the correct CMA freelist.
222 static inline int get_pcppage_migratetype(struct page *page)
227 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
229 page->index = migratetype;
232 #ifdef CONFIG_PM_SLEEP
234 * The following functions are used by the suspend/hibernate code to temporarily
235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236 * while devices are suspended. To avoid races with the suspend/hibernate code,
237 * they should always be called with system_transition_mutex held
238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240 * with that modification).
243 static gfp_t saved_gfp_mask;
245 void pm_restore_gfp_mask(void)
247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 if (saved_gfp_mask) {
249 gfp_allowed_mask = saved_gfp_mask;
254 void pm_restrict_gfp_mask(void)
256 WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 WARN_ON(saved_gfp_mask);
258 saved_gfp_mask = gfp_allowed_mask;
259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
262 bool pm_suspended_storage(void)
264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
268 #endif /* CONFIG_PM_SLEEP */
270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271 unsigned int pageblock_order __read_mostly;
274 static void __free_pages_ok(struct page *page, unsigned int order,
278 * results with 256, 32 in the lowmem_reserve sysctl:
279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280 * 1G machine -> (16M dma, 784M normal, 224M high)
281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
286 * don't need any ZONE_NORMAL reservation
288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289 #ifdef CONFIG_ZONE_DMA
292 #ifdef CONFIG_ZONE_DMA32
296 #ifdef CONFIG_HIGHMEM
302 static char * const zone_names[MAX_NR_ZONES] = {
303 #ifdef CONFIG_ZONE_DMA
306 #ifdef CONFIG_ZONE_DMA32
310 #ifdef CONFIG_HIGHMEM
314 #ifdef CONFIG_ZONE_DEVICE
319 const char * const migratetype_names[MIGRATE_TYPES] = {
327 #ifdef CONFIG_MEMORY_ISOLATION
332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 [NULL_COMPOUND_DTOR] = NULL,
334 [COMPOUND_PAGE_DTOR] = free_compound_page,
335 #ifdef CONFIG_HUGETLB_PAGE
336 [HUGETLB_PAGE_DTOR] = free_huge_page,
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
343 int min_free_kbytes = 1024;
344 int user_min_free_kbytes = -1;
345 int watermark_boost_factor __read_mostly = 15000;
346 int watermark_scale_factor = 10;
348 static unsigned long nr_kernel_pages __initdata;
349 static unsigned long nr_all_pages __initdata;
350 static unsigned long dma_reserve __initdata;
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
363 EXPORT_SYMBOL(movable_zone);
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
372 int page_group_by_mobility_disabled __read_mostly;
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
382 static inline bool deferred_pages_enabled(void)
384 return static_branch_unlikely(&deferred_pages);
387 /* Returns true if the struct page for the pfn is uninitialised */
388 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 int nid = early_pfn_to_nid(pfn);
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 * Returns true when the remaining initialisation should be deferred until
400 * later in the boot cycle when it can be parallelised.
402 static bool __meminit
403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 static unsigned long prev_end_pfn, nr_initialised;
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
416 /* Always populate low zones for address-constrained allocations */
417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
435 static inline bool deferred_pages_enabled(void)
440 static inline bool early_page_uninitialised(unsigned long pfn)
445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
451 /* Return a pointer to the bitmap storing bits affecting a block of pages */
452 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
455 #ifdef CONFIG_SPARSEMEM
456 return section_to_usemap(__pfn_to_section(pfn));
458 return page_zone(page)->pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
464 #ifdef CONFIG_SPARSEMEM
465 pfn &= (PAGES_PER_SECTION-1);
467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468 #endif /* CONFIG_SPARSEMEM */
469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
472 static __always_inline
473 unsigned long __get_pfnblock_flags_mask(const struct page *page,
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
487 * a consistent read of the memory array, so that results, even though
488 * racy, are not corrupted.
490 word = READ_ONCE(bitmap[word_bitidx]);
491 return (word >> bitidx) & mask;
495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496 * @page: The page within the block of interest
497 * @pfn: The target page frame number
498 * @mask: mask of bits that the caller is interested in
500 * Return: pageblock_bits flags
502 unsigned long get_pfnblock_flags_mask(const struct page *page,
503 unsigned long pfn, unsigned long mask)
505 return __get_pfnblock_flags_mask(page, pfn, mask);
508 static __always_inline int get_pfnblock_migratetype(const struct page *page,
511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
516 * @page: The page within the block of interest
517 * @flags: The flags to set
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
521 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
525 unsigned long *bitmap;
526 unsigned long bitidx, word_bitidx;
527 unsigned long old_word, word;
529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
532 bitmap = get_pageblock_bitmap(page, pfn);
533 bitidx = pfn_to_bitidx(page, pfn);
534 word_bitidx = bitidx / BITS_PER_LONG;
535 bitidx &= (BITS_PER_LONG-1);
537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
542 word = READ_ONCE(bitmap[word_bitidx]);
544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 if (word == old_word)
551 void set_pageblock_migratetype(struct page *page, int migratetype)
553 if (unlikely(page_group_by_mobility_disabled &&
554 migratetype < MIGRATE_PCPTYPES))
555 migratetype = MIGRATE_UNMOVABLE;
557 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
558 page_to_pfn(page), MIGRATETYPE_MASK);
561 #ifdef CONFIG_DEBUG_VM
562 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
566 unsigned long pfn = page_to_pfn(page);
567 unsigned long sp, start_pfn;
570 seq = zone_span_seqbegin(zone);
571 start_pfn = zone->zone_start_pfn;
572 sp = zone->spanned_pages;
573 if (!zone_spans_pfn(zone, pfn))
575 } while (zone_span_seqretry(zone, seq));
578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 pfn, zone_to_nid(zone), zone->name,
580 start_pfn, start_pfn + sp);
585 static int page_is_consistent(struct zone *zone, struct page *page)
587 if (zone != page_zone(page))
593 * Temporary debugging check for pages not lying within a given zone.
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 if (page_outside_zone_boundaries(zone, page))
599 if (!page_is_consistent(zone, page))
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
611 static void bad_page(struct page *page, const char *reason)
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
628 "BUG: Bad page state: %lu messages suppressed\n",
635 resume = jiffies + 60 * HZ;
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 dump_page(page, reason);
644 /* Leave bad fields for debug, except PageBuddy could make trouble */
645 page_mapcount_reset(page); /* remove PageBuddy */
646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 static inline unsigned int order_to_pindex(int migratetype, int order)
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 if (order > PAGE_ALLOC_COSTLY_ORDER) {
655 VM_BUG_ON(order != pageblock_order);
656 base = PAGE_ALLOC_COSTLY_ORDER + 1;
659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
662 return (MIGRATE_PCPTYPES * base) + migratetype;
665 static inline int pindex_to_order(unsigned int pindex)
667 int order = pindex / MIGRATE_PCPTYPES;
669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 if (order > PAGE_ALLOC_COSTLY_ORDER)
671 order = pageblock_order;
673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
679 static inline bool pcp_allowed_order(unsigned int order)
681 if (order <= PAGE_ALLOC_COSTLY_ORDER)
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 if (order == pageblock_order)
690 static inline void free_the_page(struct page *page, unsigned int order)
692 if (pcp_allowed_order(order)) /* Via pcp? */
693 free_unref_page(page, order);
695 __free_pages_ok(page, order, FPI_NONE);
699 * Higher-order pages are called "compound pages". They are structured thusly:
701 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
706 * The first tail page's ->compound_dtor holds the offset in array of compound
707 * page destructors. See compound_page_dtors.
709 * The first tail page's ->compound_order holds the order of allocation.
710 * This usage means that zero-order pages may not be compound.
713 void free_compound_page(struct page *page)
715 mem_cgroup_uncharge(page_folio(page));
716 free_the_page(page, compound_order(page));
719 static void prep_compound_head(struct page *page, unsigned int order)
721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
722 set_compound_order(page, order);
723 atomic_set(compound_mapcount_ptr(page), -1);
724 atomic_set(compound_pincount_ptr(page), 0);
727 static void prep_compound_tail(struct page *head, int tail_idx)
729 struct page *p = head + tail_idx;
731 p->mapping = TAIL_MAPPING;
732 set_compound_head(p, head);
735 void prep_compound_page(struct page *page, unsigned int order)
738 int nr_pages = 1 << order;
741 for (i = 1; i < nr_pages; i++)
742 prep_compound_tail(page, i);
744 prep_compound_head(page, order);
747 #ifdef CONFIG_DEBUG_PAGEALLOC
748 unsigned int _debug_guardpage_minorder;
750 bool _debug_pagealloc_enabled_early __read_mostly
751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
752 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
753 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
754 EXPORT_SYMBOL(_debug_pagealloc_enabled);
756 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
758 static int __init early_debug_pagealloc(char *buf)
760 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
762 early_param("debug_pagealloc", early_debug_pagealloc);
764 static int __init debug_guardpage_minorder_setup(char *buf)
768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
769 pr_err("Bad debug_guardpage_minorder value\n");
772 _debug_guardpage_minorder = res;
773 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
776 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
778 static inline bool set_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype)
781 if (!debug_guardpage_enabled())
784 if (order >= debug_guardpage_minorder())
787 __SetPageGuard(page);
788 INIT_LIST_HEAD(&page->lru);
789 set_page_private(page, order);
790 /* Guard pages are not available for any usage */
791 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
796 static inline void clear_page_guard(struct zone *zone, struct page *page,
797 unsigned int order, int migratetype)
799 if (!debug_guardpage_enabled())
802 __ClearPageGuard(page);
804 set_page_private(page, 0);
805 if (!is_migrate_isolate(migratetype))
806 __mod_zone_freepage_state(zone, (1 << order), migratetype);
809 static inline bool set_page_guard(struct zone *zone, struct page *page,
810 unsigned int order, int migratetype) { return false; }
811 static inline void clear_page_guard(struct zone *zone, struct page *page,
812 unsigned int order, int migratetype) {}
816 * Enable static keys related to various memory debugging and hardening options.
817 * Some override others, and depend on early params that are evaluated in the
818 * order of appearance. So we need to first gather the full picture of what was
819 * enabled, and then make decisions.
821 void init_mem_debugging_and_hardening(void)
823 bool page_poisoning_requested = false;
825 #ifdef CONFIG_PAGE_POISONING
827 * Page poisoning is debug page alloc for some arches. If
828 * either of those options are enabled, enable poisoning.
830 if (page_poisoning_enabled() ||
831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
832 debug_pagealloc_enabled())) {
833 static_branch_enable(&_page_poisoning_enabled);
834 page_poisoning_requested = true;
838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
839 page_poisoning_requested) {
840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 "will take precedence over init_on_alloc and init_on_free\n");
842 _init_on_alloc_enabled_early = false;
843 _init_on_free_enabled_early = false;
846 if (_init_on_alloc_enabled_early)
847 static_branch_enable(&init_on_alloc);
849 static_branch_disable(&init_on_alloc);
851 if (_init_on_free_enabled_early)
852 static_branch_enable(&init_on_free);
854 static_branch_disable(&init_on_free);
856 #ifdef CONFIG_DEBUG_PAGEALLOC
857 if (!debug_pagealloc_enabled())
860 static_branch_enable(&_debug_pagealloc_enabled);
862 if (!debug_guardpage_minorder())
865 static_branch_enable(&_debug_guardpage_enabled);
869 static inline void set_buddy_order(struct page *page, unsigned int order)
871 set_page_private(page, order);
872 __SetPageBuddy(page);
875 #ifdef CONFIG_COMPACTION
876 static inline struct capture_control *task_capc(struct zone *zone)
878 struct capture_control *capc = current->capture_control;
880 return unlikely(capc) &&
881 !(current->flags & PF_KTHREAD) &&
883 capc->cc->zone == zone ? capc : NULL;
887 compaction_capture(struct capture_control *capc, struct page *page,
888 int order, int migratetype)
890 if (!capc || order != capc->cc->order)
893 /* Do not accidentally pollute CMA or isolated regions*/
894 if (is_migrate_cma(migratetype) ||
895 is_migrate_isolate(migratetype))
899 * Do not let lower order allocations pollute a movable pageblock.
900 * This might let an unmovable request use a reclaimable pageblock
901 * and vice-versa but no more than normal fallback logic which can
902 * have trouble finding a high-order free page.
904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
912 static inline struct capture_control *task_capc(struct zone *zone)
918 compaction_capture(struct capture_control *capc, struct page *page,
919 int order, int migratetype)
923 #endif /* CONFIG_COMPACTION */
925 /* Used for pages not on another list */
926 static inline void add_to_free_list(struct page *page, struct zone *zone,
927 unsigned int order, int migratetype)
929 struct free_area *area = &zone->free_area[order];
931 list_add(&page->lru, &area->free_list[migratetype]);
935 /* Used for pages not on another list */
936 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
937 unsigned int order, int migratetype)
939 struct free_area *area = &zone->free_area[order];
941 list_add_tail(&page->lru, &area->free_list[migratetype]);
946 * Used for pages which are on another list. Move the pages to the tail
947 * of the list - so the moved pages won't immediately be considered for
948 * allocation again (e.g., optimization for memory onlining).
950 static inline void move_to_free_list(struct page *page, struct zone *zone,
951 unsigned int order, int migratetype)
953 struct free_area *area = &zone->free_area[order];
955 list_move_tail(&page->lru, &area->free_list[migratetype]);
958 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
961 /* clear reported state and update reported page count */
962 if (page_reported(page))
963 __ClearPageReported(page);
965 list_del(&page->lru);
966 __ClearPageBuddy(page);
967 set_page_private(page, 0);
968 zone->free_area[order].nr_free--;
972 * If this is not the largest possible page, check if the buddy
973 * of the next-highest order is free. If it is, it's possible
974 * that pages are being freed that will coalesce soon. In case,
975 * that is happening, add the free page to the tail of the list
976 * so it's less likely to be used soon and more likely to be merged
977 * as a higher order page
980 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
981 struct page *page, unsigned int order)
983 unsigned long higher_page_pfn;
984 struct page *higher_page;
986 if (order >= MAX_ORDER - 2)
989 higher_page_pfn = buddy_pfn & pfn;
990 higher_page = page + (higher_page_pfn - pfn);
992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
997 * Freeing function for a buddy system allocator.
999 * The concept of a buddy system is to maintain direct-mapped table
1000 * (containing bit values) for memory blocks of various "orders".
1001 * The bottom level table contains the map for the smallest allocatable
1002 * units of memory (here, pages), and each level above it describes
1003 * pairs of units from the levels below, hence, "buddies".
1004 * At a high level, all that happens here is marking the table entry
1005 * at the bottom level available, and propagating the changes upward
1006 * as necessary, plus some accounting needed to play nicely with other
1007 * parts of the VM system.
1008 * At each level, we keep a list of pages, which are heads of continuous
1009 * free pages of length of (1 << order) and marked with PageBuddy.
1010 * Page's order is recorded in page_private(page) field.
1011 * So when we are allocating or freeing one, we can derive the state of the
1012 * other. That is, if we allocate a small block, and both were
1013 * free, the remainder of the region must be split into blocks.
1014 * If a block is freed, and its buddy is also free, then this
1015 * triggers coalescing into a block of larger size.
1020 static inline void __free_one_page(struct page *page,
1022 struct zone *zone, unsigned int order,
1023 int migratetype, fpi_t fpi_flags)
1025 struct capture_control *capc = task_capc(zone);
1026 unsigned long buddy_pfn;
1027 unsigned long combined_pfn;
1031 VM_BUG_ON(!zone_is_initialized(zone));
1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1034 VM_BUG_ON(migratetype == -1);
1035 if (likely(!is_migrate_isolate(migratetype)))
1036 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1041 while (order < MAX_ORDER - 1) {
1042 if (compaction_capture(capc, page, order, migratetype)) {
1043 __mod_zone_freepage_state(zone, -(1 << order),
1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1052 if (unlikely(order >= pageblock_order)) {
1054 * We want to prevent merge between freepages on pageblock
1055 * without fallbacks and normal pageblock. Without this,
1056 * pageblock isolation could cause incorrect freepage or CMA
1057 * accounting or HIGHATOMIC accounting.
1059 int buddy_mt = get_pageblock_migratetype(buddy);
1061 if (migratetype != buddy_mt
1062 && (!migratetype_is_mergeable(migratetype) ||
1063 !migratetype_is_mergeable(buddy_mt)))
1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1069 * merge with it and move up one order.
1071 if (page_is_guard(buddy))
1072 clear_page_guard(zone, buddy, order, migratetype);
1074 del_page_from_free_list(buddy, zone, order);
1075 combined_pfn = buddy_pfn & pfn;
1076 page = page + (combined_pfn - pfn);
1082 set_buddy_order(page, order);
1084 if (fpi_flags & FPI_TO_TAIL)
1086 else if (is_shuffle_order(order))
1087 to_tail = shuffle_pick_tail();
1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1092 add_to_free_list_tail(page, zone, order, migratetype);
1094 add_to_free_list(page, zone, order, migratetype);
1096 /* Notify page reporting subsystem of freed page */
1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1098 page_reporting_notify_free(order);
1102 * split_free_page() -- split a free page at split_pfn_offset
1103 * @free_page: the original free page
1104 * @order: the order of the page
1105 * @split_pfn_offset: split offset within the page
1107 * Return -ENOENT if the free page is changed, otherwise 0
1109 * It is used when the free page crosses two pageblocks with different migratetypes
1110 * at split_pfn_offset within the page. The split free page will be put into
1111 * separate migratetype lists afterwards. Otherwise, the function achieves
1114 int split_free_page(struct page *free_page,
1115 unsigned int order, unsigned long split_pfn_offset)
1117 struct zone *zone = page_zone(free_page);
1118 unsigned long free_page_pfn = page_to_pfn(free_page);
1120 unsigned long flags;
1121 int free_page_order;
1125 if (split_pfn_offset == 0)
1128 spin_lock_irqsave(&zone->lock, flags);
1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1135 mt = get_pageblock_migratetype(free_page);
1136 if (likely(!is_migrate_isolate(mt)))
1137 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1139 del_page_from_free_list(free_page, zone, order);
1140 for (pfn = free_page_pfn;
1141 pfn < free_page_pfn + (1UL << order);) {
1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1144 free_page_order = min_t(unsigned int,
1145 pfn ? __ffs(pfn) : order,
1146 __fls(split_pfn_offset));
1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1149 pfn += 1UL << free_page_order;
1150 split_pfn_offset -= (1UL << free_page_order);
1151 /* we have done the first part, now switch to second part */
1152 if (split_pfn_offset == 0)
1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1156 spin_unlock_irqrestore(&zone->lock, flags);
1160 * A bad page could be due to a number of fields. Instead of multiple branches,
1161 * try and check multiple fields with one check. The caller must do a detailed
1162 * check if necessary.
1164 static inline bool page_expected_state(struct page *page,
1165 unsigned long check_flags)
1167 if (unlikely(atomic_read(&page->_mapcount) != -1))
1170 if (unlikely((unsigned long)page->mapping |
1171 page_ref_count(page) |
1175 (page->flags & check_flags)))
1181 static const char *page_bad_reason(struct page *page, unsigned long flags)
1183 const char *bad_reason = NULL;
1185 if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 bad_reason = "nonzero mapcount";
1187 if (unlikely(page->mapping != NULL))
1188 bad_reason = "non-NULL mapping";
1189 if (unlikely(page_ref_count(page) != 0))
1190 bad_reason = "nonzero _refcount";
1191 if (unlikely(page->flags & flags)) {
1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1198 if (unlikely(page->memcg_data))
1199 bad_reason = "page still charged to cgroup";
1204 static void check_free_page_bad(struct page *page)
1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1210 static inline int check_free_page(struct page *page)
1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1215 /* Something has gone sideways, find it */
1216 check_free_page_bad(page);
1220 static int free_tail_pages_check(struct page *head_page, struct page *page)
1225 * We rely page->lru.next never has bit 0 set, unless the page
1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1234 switch (page - head_page) {
1236 /* the first tail page: ->mapping may be compound_mapcount() */
1237 if (unlikely(compound_mapcount(page))) {
1238 bad_page(page, "nonzero compound_mapcount");
1244 * the second tail page: ->mapping is
1245 * deferred_list.next -- ignore value.
1249 if (page->mapping != TAIL_MAPPING) {
1250 bad_page(page, "corrupted mapping in tail page");
1255 if (unlikely(!PageTail(page))) {
1256 bad_page(page, "PageTail not set");
1259 if (unlikely(compound_head(page) != head_page)) {
1260 bad_page(page, "compound_head not consistent");
1265 page->mapping = NULL;
1266 clear_compound_head(page);
1271 * Skip KASAN memory poisoning when either:
1273 * 1. Deferred memory initialization has not yet completed,
1274 * see the explanation below.
1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1276 * see the comment next to it.
1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1278 * see the comment next to it.
1280 * Poisoning pages during deferred memory init will greatly lengthen the
1281 * process and cause problem in large memory systems as the deferred pages
1282 * initialization is done with interrupt disabled.
1284 * Assuming that there will be no reference to those newly initialized
1285 * pages before they are ever allocated, this should have no effect on
1286 * KASAN memory tracking as the poison will be properly inserted at page
1287 * allocation time. The only corner case is when pages are allocated by
1288 * on-demand allocation and then freed again before the deferred pages
1289 * initialization is done, but this is not likely to happen.
1291 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1293 return deferred_pages_enabled() ||
1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1296 PageSkipKASanPoison(page);
1299 static void kernel_init_free_pages(struct page *page, int numpages)
1303 /* s390's use of memset() could override KASAN redzones. */
1304 kasan_disable_current();
1305 for (i = 0; i < numpages; i++) {
1306 u8 tag = page_kasan_tag(page + i);
1307 page_kasan_tag_reset(page + i);
1308 clear_highpage(page + i);
1309 page_kasan_tag_set(page + i, tag);
1311 kasan_enable_current();
1314 static __always_inline bool free_pages_prepare(struct page *page,
1315 unsigned int order, bool check_free, fpi_t fpi_flags)
1318 bool init = want_init_on_free();
1320 VM_BUG_ON_PAGE(PageTail(page), page);
1322 trace_mm_page_free(page, order);
1324 if (unlikely(PageHWPoison(page)) && !order) {
1326 * Do not let hwpoison pages hit pcplists/buddy
1327 * Untie memcg state and reset page's owner
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 reset_page_owner(page, order);
1332 page_table_check_free(page, order);
1337 * Check tail pages before head page information is cleared to
1338 * avoid checking PageCompound for order-0 pages.
1340 if (unlikely(order)) {
1341 bool compound = PageCompound(page);
1344 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1347 ClearPageDoubleMap(page);
1348 ClearPageHasHWPoisoned(page);
1350 for (i = 1; i < (1 << order); i++) {
1352 bad += free_tail_pages_check(page, page + i);
1353 if (unlikely(check_free_page(page + i))) {
1357 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1360 if (PageMappingFlags(page))
1361 page->mapping = NULL;
1362 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1363 __memcg_kmem_uncharge_page(page, order);
1365 bad += check_free_page(page);
1369 page_cpupid_reset_last(page);
1370 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1371 reset_page_owner(page, order);
1372 page_table_check_free(page, order);
1374 if (!PageHighMem(page)) {
1375 debug_check_no_locks_freed(page_address(page),
1376 PAGE_SIZE << order);
1377 debug_check_no_obj_freed(page_address(page),
1378 PAGE_SIZE << order);
1381 kernel_poison_pages(page, 1 << order);
1384 * As memory initialization might be integrated into KASAN,
1385 * KASAN poisoning and memory initialization code must be
1386 * kept together to avoid discrepancies in behavior.
1388 * With hardware tag-based KASAN, memory tags must be set before the
1389 * page becomes unavailable via debug_pagealloc or arch_free_page.
1391 if (!should_skip_kasan_poison(page, fpi_flags)) {
1392 kasan_poison_pages(page, order, init);
1394 /* Memory is already initialized if KASAN did it internally. */
1395 if (kasan_has_integrated_init())
1399 kernel_init_free_pages(page, 1 << order);
1402 * arch_free_page() can make the page's contents inaccessible. s390
1403 * does this. So nothing which can access the page's contents should
1404 * happen after this.
1406 arch_free_page(page, order);
1408 debug_pagealloc_unmap_pages(page, 1 << order);
1413 #ifdef CONFIG_DEBUG_VM
1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1417 * moved from pcp lists to free lists.
1419 static bool free_pcp_prepare(struct page *page, unsigned int order)
1421 return free_pages_prepare(page, order, true, FPI_NONE);
1424 static bool bulkfree_pcp_prepare(struct page *page)
1426 if (debug_pagealloc_enabled_static())
1427 return check_free_page(page);
1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1434 * moving from pcp lists to free list in order to reduce overhead. With
1435 * debug_pagealloc enabled, they are checked also immediately when being freed
1438 static bool free_pcp_prepare(struct page *page, unsigned int order)
1440 if (debug_pagealloc_enabled_static())
1441 return free_pages_prepare(page, order, true, FPI_NONE);
1443 return free_pages_prepare(page, order, false, FPI_NONE);
1446 static bool bulkfree_pcp_prepare(struct page *page)
1448 return check_free_page(page);
1450 #endif /* CONFIG_DEBUG_VM */
1453 * Frees a number of pages from the PCP lists
1454 * Assumes all pages on list are in same zone.
1455 * count is the number of pages to free.
1457 static void free_pcppages_bulk(struct zone *zone, int count,
1458 struct per_cpu_pages *pcp,
1462 int max_pindex = NR_PCP_LISTS - 1;
1464 bool isolated_pageblocks;
1468 * Ensure proper count is passed which otherwise would stuck in the
1469 * below while (list_empty(list)) loop.
1471 count = min(pcp->count, count);
1473 /* Ensure requested pindex is drained first. */
1474 pindex = pindex - 1;
1477 * local_lock_irq held so equivalent to spin_lock_irqsave for
1478 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1480 spin_lock(&zone->lock);
1481 isolated_pageblocks = has_isolate_pageblock(zone);
1484 struct list_head *list;
1487 /* Remove pages from lists in a round-robin fashion. */
1489 if (++pindex > max_pindex)
1490 pindex = min_pindex;
1491 list = &pcp->lists[pindex];
1492 if (!list_empty(list))
1495 if (pindex == max_pindex)
1497 if (pindex == min_pindex)
1501 order = pindex_to_order(pindex);
1502 nr_pages = 1 << order;
1503 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1507 page = list_last_entry(list, struct page, lru);
1508 mt = get_pcppage_migratetype(page);
1510 /* must delete to avoid corrupting pcp list */
1511 list_del(&page->lru);
1513 pcp->count -= nr_pages;
1515 if (bulkfree_pcp_prepare(page))
1518 /* MIGRATE_ISOLATE page should not go to pcplists */
1519 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1520 /* Pageblock could have been isolated meanwhile */
1521 if (unlikely(isolated_pageblocks))
1522 mt = get_pageblock_migratetype(page);
1524 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1525 trace_mm_page_pcpu_drain(page, order, mt);
1526 } while (count > 0 && !list_empty(list));
1529 spin_unlock(&zone->lock);
1532 static void free_one_page(struct zone *zone,
1533 struct page *page, unsigned long pfn,
1535 int migratetype, fpi_t fpi_flags)
1537 unsigned long flags;
1539 spin_lock_irqsave(&zone->lock, flags);
1540 if (unlikely(has_isolate_pageblock(zone) ||
1541 is_migrate_isolate(migratetype))) {
1542 migratetype = get_pfnblock_migratetype(page, pfn);
1544 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1545 spin_unlock_irqrestore(&zone->lock, flags);
1548 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1549 unsigned long zone, int nid)
1551 mm_zero_struct_page(page);
1552 set_page_links(page, zone, nid, pfn);
1553 init_page_count(page);
1554 page_mapcount_reset(page);
1555 page_cpupid_reset_last(page);
1556 page_kasan_tag_reset(page);
1558 INIT_LIST_HEAD(&page->lru);
1559 #ifdef WANT_PAGE_VIRTUAL
1560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1561 if (!is_highmem_idx(zone))
1562 set_page_address(page, __va(pfn << PAGE_SHIFT));
1566 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1567 static void __meminit init_reserved_page(unsigned long pfn)
1572 if (!early_page_uninitialised(pfn))
1575 nid = early_pfn_to_nid(pfn);
1576 pgdat = NODE_DATA(nid);
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 struct zone *zone = &pgdat->node_zones[zid];
1581 if (zone_spans_pfn(zone, pfn))
1584 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1587 static inline void init_reserved_page(unsigned long pfn)
1590 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1593 * Initialised pages do not have PageReserved set. This function is
1594 * called for each range allocated by the bootmem allocator and
1595 * marks the pages PageReserved. The remaining valid pages are later
1596 * sent to the buddy page allocator.
1598 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1600 unsigned long start_pfn = PFN_DOWN(start);
1601 unsigned long end_pfn = PFN_UP(end);
1603 for (; start_pfn < end_pfn; start_pfn++) {
1604 if (pfn_valid(start_pfn)) {
1605 struct page *page = pfn_to_page(start_pfn);
1607 init_reserved_page(start_pfn);
1609 /* Avoid false-positive PageTail() */
1610 INIT_LIST_HEAD(&page->lru);
1613 * no need for atomic set_bit because the struct
1614 * page is not visible yet so nobody should
1617 __SetPageReserved(page);
1622 static void __free_pages_ok(struct page *page, unsigned int order,
1625 unsigned long flags;
1627 unsigned long pfn = page_to_pfn(page);
1628 struct zone *zone = page_zone(page);
1630 if (!free_pages_prepare(page, order, true, fpi_flags))
1633 migratetype = get_pfnblock_migratetype(page, pfn);
1635 spin_lock_irqsave(&zone->lock, flags);
1636 if (unlikely(has_isolate_pageblock(zone) ||
1637 is_migrate_isolate(migratetype))) {
1638 migratetype = get_pfnblock_migratetype(page, pfn);
1640 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1641 spin_unlock_irqrestore(&zone->lock, flags);
1643 __count_vm_events(PGFREE, 1 << order);
1646 void __free_pages_core(struct page *page, unsigned int order)
1648 unsigned int nr_pages = 1 << order;
1649 struct page *p = page;
1653 * When initializing the memmap, __init_single_page() sets the refcount
1654 * of all pages to 1 ("allocated"/"not free"). We have to set the
1655 * refcount of all involved pages to 0.
1658 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1660 __ClearPageReserved(p);
1661 set_page_count(p, 0);
1663 __ClearPageReserved(p);
1664 set_page_count(p, 0);
1666 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1669 * Bypass PCP and place fresh pages right to the tail, primarily
1670 * relevant for memory onlining.
1672 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1678 * During memory init memblocks map pfns to nids. The search is expensive and
1679 * this caches recent lookups. The implementation of __early_pfn_to_nid
1680 * treats start/end as pfns.
1682 struct mminit_pfnnid_cache {
1683 unsigned long last_start;
1684 unsigned long last_end;
1688 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1693 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1694 struct mminit_pfnnid_cache *state)
1696 unsigned long start_pfn, end_pfn;
1699 if (state->last_start <= pfn && pfn < state->last_end)
1700 return state->last_nid;
1702 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1703 if (nid != NUMA_NO_NODE) {
1704 state->last_start = start_pfn;
1705 state->last_end = end_pfn;
1706 state->last_nid = nid;
1712 int __meminit early_pfn_to_nid(unsigned long pfn)
1714 static DEFINE_SPINLOCK(early_pfn_lock);
1717 spin_lock(&early_pfn_lock);
1718 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1720 nid = first_online_node;
1721 spin_unlock(&early_pfn_lock);
1725 #endif /* CONFIG_NUMA */
1727 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1730 if (early_page_uninitialised(pfn))
1732 __free_pages_core(page, order);
1736 * Check that the whole (or subset of) a pageblock given by the interval of
1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1738 * with the migration of free compaction scanner.
1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1742 * It's possible on some configurations to have a setup like node0 node1 node0
1743 * i.e. it's possible that all pages within a zones range of pages do not
1744 * belong to a single zone. We assume that a border between node0 and node1
1745 * can occur within a single pageblock, but not a node0 node1 node0
1746 * interleaving within a single pageblock. It is therefore sufficient to check
1747 * the first and last page of a pageblock and avoid checking each individual
1748 * page in a pageblock.
1750 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1751 unsigned long end_pfn, struct zone *zone)
1753 struct page *start_page;
1754 struct page *end_page;
1756 /* end_pfn is one past the range we are checking */
1759 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1762 start_page = pfn_to_online_page(start_pfn);
1766 if (page_zone(start_page) != zone)
1769 end_page = pfn_to_page(end_pfn);
1771 /* This gives a shorter code than deriving page_zone(end_page) */
1772 if (page_zone_id(start_page) != page_zone_id(end_page))
1778 void set_zone_contiguous(struct zone *zone)
1780 unsigned long block_start_pfn = zone->zone_start_pfn;
1781 unsigned long block_end_pfn;
1783 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1784 for (; block_start_pfn < zone_end_pfn(zone);
1785 block_start_pfn = block_end_pfn,
1786 block_end_pfn += pageblock_nr_pages) {
1788 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1790 if (!__pageblock_pfn_to_page(block_start_pfn,
1791 block_end_pfn, zone))
1796 /* We confirm that there is no hole */
1797 zone->contiguous = true;
1800 void clear_zone_contiguous(struct zone *zone)
1802 zone->contiguous = false;
1805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1806 static void __init deferred_free_range(unsigned long pfn,
1807 unsigned long nr_pages)
1815 page = pfn_to_page(pfn);
1817 /* Free a large naturally-aligned chunk if possible */
1818 if (nr_pages == pageblock_nr_pages &&
1819 (pfn & (pageblock_nr_pages - 1)) == 0) {
1820 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1821 __free_pages_core(page, pageblock_order);
1825 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1826 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1827 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1828 __free_pages_core(page, 0);
1832 /* Completion tracking for deferred_init_memmap() threads */
1833 static atomic_t pgdat_init_n_undone __initdata;
1834 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1836 static inline void __init pgdat_init_report_one_done(void)
1838 if (atomic_dec_and_test(&pgdat_init_n_undone))
1839 complete(&pgdat_init_all_done_comp);
1843 * Returns true if page needs to be initialized or freed to buddy allocator.
1845 * First we check if pfn is valid on architectures where it is possible to have
1846 * holes within pageblock_nr_pages. On systems where it is not possible, this
1847 * function is optimized out.
1849 * Then, we check if a current large page is valid by only checking the validity
1852 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1854 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1860 * Free pages to buddy allocator. Try to free aligned pages in
1861 * pageblock_nr_pages sizes.
1863 static void __init deferred_free_pages(unsigned long pfn,
1864 unsigned long end_pfn)
1866 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1867 unsigned long nr_free = 0;
1869 for (; pfn < end_pfn; pfn++) {
1870 if (!deferred_pfn_valid(pfn)) {
1871 deferred_free_range(pfn - nr_free, nr_free);
1873 } else if (!(pfn & nr_pgmask)) {
1874 deferred_free_range(pfn - nr_free, nr_free);
1880 /* Free the last block of pages to allocator */
1881 deferred_free_range(pfn - nr_free, nr_free);
1885 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1886 * by performing it only once every pageblock_nr_pages.
1887 * Return number of pages initialized.
1889 static unsigned long __init deferred_init_pages(struct zone *zone,
1891 unsigned long end_pfn)
1893 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1894 int nid = zone_to_nid(zone);
1895 unsigned long nr_pages = 0;
1896 int zid = zone_idx(zone);
1897 struct page *page = NULL;
1899 for (; pfn < end_pfn; pfn++) {
1900 if (!deferred_pfn_valid(pfn)) {
1903 } else if (!page || !(pfn & nr_pgmask)) {
1904 page = pfn_to_page(pfn);
1908 __init_single_page(page, pfn, zid, nid);
1915 * This function is meant to pre-load the iterator for the zone init.
1916 * Specifically it walks through the ranges until we are caught up to the
1917 * first_init_pfn value and exits there. If we never encounter the value we
1918 * return false indicating there are no valid ranges left.
1921 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1922 unsigned long *spfn, unsigned long *epfn,
1923 unsigned long first_init_pfn)
1928 * Start out by walking through the ranges in this zone that have
1929 * already been initialized. We don't need to do anything with them
1930 * so we just need to flush them out of the system.
1932 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1933 if (*epfn <= first_init_pfn)
1935 if (*spfn < first_init_pfn)
1936 *spfn = first_init_pfn;
1945 * Initialize and free pages. We do it in two loops: first we initialize
1946 * struct page, then free to buddy allocator, because while we are
1947 * freeing pages we can access pages that are ahead (computing buddy
1948 * page in __free_one_page()).
1950 * In order to try and keep some memory in the cache we have the loop
1951 * broken along max page order boundaries. This way we will not cause
1952 * any issues with the buddy page computation.
1954 static unsigned long __init
1955 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1956 unsigned long *end_pfn)
1958 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1959 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1960 unsigned long nr_pages = 0;
1963 /* First we loop through and initialize the page values */
1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1967 if (mo_pfn <= *start_pfn)
1970 t = min(mo_pfn, *end_pfn);
1971 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1973 if (mo_pfn < *end_pfn) {
1974 *start_pfn = mo_pfn;
1979 /* Reset values and now loop through freeing pages as needed */
1982 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1988 t = min(mo_pfn, epfn);
1989 deferred_free_pages(spfn, t);
1999 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2002 unsigned long spfn, epfn;
2003 struct zone *zone = arg;
2006 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2009 * Initialize and free pages in MAX_ORDER sized increments so that we
2010 * can avoid introducing any issues with the buddy allocator.
2012 while (spfn < end_pfn) {
2013 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2018 /* An arch may override for more concurrency. */
2020 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2025 /* Initialise remaining memory on a node */
2026 static int __init deferred_init_memmap(void *data)
2028 pg_data_t *pgdat = data;
2029 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2030 unsigned long spfn = 0, epfn = 0;
2031 unsigned long first_init_pfn, flags;
2032 unsigned long start = jiffies;
2034 int zid, max_threads;
2037 /* Bind memory initialisation thread to a local node if possible */
2038 if (!cpumask_empty(cpumask))
2039 set_cpus_allowed_ptr(current, cpumask);
2041 pgdat_resize_lock(pgdat, &flags);
2042 first_init_pfn = pgdat->first_deferred_pfn;
2043 if (first_init_pfn == ULONG_MAX) {
2044 pgdat_resize_unlock(pgdat, &flags);
2045 pgdat_init_report_one_done();
2049 /* Sanity check boundaries */
2050 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2051 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2052 pgdat->first_deferred_pfn = ULONG_MAX;
2055 * Once we unlock here, the zone cannot be grown anymore, thus if an
2056 * interrupt thread must allocate this early in boot, zone must be
2057 * pre-grown prior to start of deferred page initialization.
2059 pgdat_resize_unlock(pgdat, &flags);
2061 /* Only the highest zone is deferred so find it */
2062 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2063 zone = pgdat->node_zones + zid;
2064 if (first_init_pfn < zone_end_pfn(zone))
2068 /* If the zone is empty somebody else may have cleared out the zone */
2069 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2073 max_threads = deferred_page_init_max_threads(cpumask);
2075 while (spfn < epfn) {
2076 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2077 struct padata_mt_job job = {
2078 .thread_fn = deferred_init_memmap_chunk,
2081 .size = epfn_align - spfn,
2082 .align = PAGES_PER_SECTION,
2083 .min_chunk = PAGES_PER_SECTION,
2084 .max_threads = max_threads,
2087 padata_do_multithreaded(&job);
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2092 /* Sanity check that the next zone really is unpopulated */
2093 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2095 pr_info("node %d deferred pages initialised in %ums\n",
2096 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2098 pgdat_init_report_one_done();
2103 * If this zone has deferred pages, try to grow it by initializing enough
2104 * deferred pages to satisfy the allocation specified by order, rounded up to
2105 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2106 * of SECTION_SIZE bytes by initializing struct pages in increments of
2107 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2109 * Return true when zone was grown, otherwise return false. We return true even
2110 * when we grow less than requested, to let the caller decide if there are
2111 * enough pages to satisfy the allocation.
2113 * Note: We use noinline because this function is needed only during boot, and
2114 * it is called from a __ref function _deferred_grow_zone. This way we are
2115 * making sure that it is not inlined into permanent text section.
2117 static noinline bool __init
2118 deferred_grow_zone(struct zone *zone, unsigned int order)
2120 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2121 pg_data_t *pgdat = zone->zone_pgdat;
2122 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2123 unsigned long spfn, epfn, flags;
2124 unsigned long nr_pages = 0;
2127 /* Only the last zone may have deferred pages */
2128 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2131 pgdat_resize_lock(pgdat, &flags);
2134 * If someone grew this zone while we were waiting for spinlock, return
2135 * true, as there might be enough pages already.
2137 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2138 pgdat_resize_unlock(pgdat, &flags);
2142 /* If the zone is empty somebody else may have cleared out the zone */
2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144 first_deferred_pfn)) {
2145 pgdat->first_deferred_pfn = ULONG_MAX;
2146 pgdat_resize_unlock(pgdat, &flags);
2147 /* Retry only once. */
2148 return first_deferred_pfn != ULONG_MAX;
2152 * Initialize and free pages in MAX_ORDER sized increments so
2153 * that we can avoid introducing any issues with the buddy
2156 while (spfn < epfn) {
2157 /* update our first deferred PFN for this section */
2158 first_deferred_pfn = spfn;
2160 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2161 touch_nmi_watchdog();
2163 /* We should only stop along section boundaries */
2164 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2167 /* If our quota has been met we can stop here */
2168 if (nr_pages >= nr_pages_needed)
2172 pgdat->first_deferred_pfn = spfn;
2173 pgdat_resize_unlock(pgdat, &flags);
2175 return nr_pages > 0;
2179 * deferred_grow_zone() is __init, but it is called from
2180 * get_page_from_freelist() during early boot until deferred_pages permanently
2181 * disables this call. This is why we have refdata wrapper to avoid warning,
2182 * and to ensure that the function body gets unloaded.
2185 _deferred_grow_zone(struct zone *zone, unsigned int order)
2187 return deferred_grow_zone(zone, order);
2190 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2192 void __init page_alloc_init_late(void)
2197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2199 /* There will be num_node_state(N_MEMORY) threads */
2200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2201 for_each_node_state(nid, N_MEMORY) {
2202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2205 /* Block until all are initialised */
2206 wait_for_completion(&pgdat_init_all_done_comp);
2209 * We initialized the rest of the deferred pages. Permanently disable
2210 * on-demand struct page initialization.
2212 static_branch_disable(&deferred_pages);
2214 /* Reinit limits that are based on free pages after the kernel is up */
2215 files_maxfiles_init();
2220 /* Discard memblock private memory */
2223 for_each_node_state(nid, N_MEMORY)
2224 shuffle_free_memory(NODE_DATA(nid));
2226 for_each_populated_zone(zone)
2227 set_zone_contiguous(zone);
2231 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2232 void __init init_cma_reserved_pageblock(struct page *page)
2234 unsigned i = pageblock_nr_pages;
2235 struct page *p = page;
2238 __ClearPageReserved(p);
2239 set_page_count(p, 0);
2242 set_pageblock_migratetype(page, MIGRATE_CMA);
2243 set_page_refcounted(page);
2244 __free_pages(page, pageblock_order);
2246 adjust_managed_page_count(page, pageblock_nr_pages);
2247 page_zone(page)->cma_pages += pageblock_nr_pages;
2252 * The order of subdivision here is critical for the IO subsystem.
2253 * Please do not alter this order without good reasons and regression
2254 * testing. Specifically, as large blocks of memory are subdivided,
2255 * the order in which smaller blocks are delivered depends on the order
2256 * they're subdivided in this function. This is the primary factor
2257 * influencing the order in which pages are delivered to the IO
2258 * subsystem according to empirical testing, and this is also justified
2259 * by considering the behavior of a buddy system containing a single
2260 * large block of memory acted on by a series of small allocations.
2261 * This behavior is a critical factor in sglist merging's success.
2265 static inline void expand(struct zone *zone, struct page *page,
2266 int low, int high, int migratetype)
2268 unsigned long size = 1 << high;
2270 while (high > low) {
2273 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2276 * Mark as guard pages (or page), that will allow to
2277 * merge back to allocator when buddy will be freed.
2278 * Corresponding page table entries will not be touched,
2279 * pages will stay not present in virtual address space
2281 if (set_page_guard(zone, &page[size], high, migratetype))
2284 add_to_free_list(&page[size], zone, high, migratetype);
2285 set_buddy_order(&page[size], high);
2289 static void check_new_page_bad(struct page *page)
2291 if (unlikely(page->flags & __PG_HWPOISON)) {
2292 /* Don't complain about hwpoisoned pages */
2293 page_mapcount_reset(page); /* remove PageBuddy */
2298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2302 * This page is about to be returned from the page allocator
2304 static inline int check_new_page(struct page *page)
2306 if (likely(page_expected_state(page,
2307 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2310 check_new_page_bad(page);
2314 static bool check_new_pages(struct page *page, unsigned int order)
2317 for (i = 0; i < (1 << order); i++) {
2318 struct page *p = page + i;
2320 if (unlikely(check_new_page(p)))
2327 #ifdef CONFIG_DEBUG_VM
2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2331 * also checked when pcp lists are refilled from the free lists.
2333 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2335 if (debug_pagealloc_enabled_static())
2336 return check_new_pages(page, order);
2341 static inline bool check_new_pcp(struct page *page, unsigned int order)
2343 return check_new_pages(page, order);
2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2349 * enabled, they are also checked when being allocated from the pcp lists.
2351 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2353 return check_new_pages(page, order);
2355 static inline bool check_new_pcp(struct page *page, unsigned int order)
2357 if (debug_pagealloc_enabled_static())
2358 return check_new_pages(page, order);
2362 #endif /* CONFIG_DEBUG_VM */
2364 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2366 /* Don't skip if a software KASAN mode is enabled. */
2367 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2368 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2371 /* Skip, if hardware tag-based KASAN is not enabled. */
2372 if (!kasan_hw_tags_enabled())
2376 * With hardware tag-based KASAN enabled, skip if this has been
2377 * requested via __GFP_SKIP_KASAN_UNPOISON.
2379 return flags & __GFP_SKIP_KASAN_UNPOISON;
2382 static inline bool should_skip_init(gfp_t flags)
2384 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2385 if (!kasan_hw_tags_enabled())
2388 /* For hardware tag-based KASAN, skip if requested. */
2389 return (flags & __GFP_SKIP_ZERO);
2392 inline void post_alloc_hook(struct page *page, unsigned int order,
2395 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2396 !should_skip_init(gfp_flags);
2397 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2400 set_page_private(page, 0);
2401 set_page_refcounted(page);
2403 arch_alloc_page(page, order);
2404 debug_pagealloc_map_pages(page, 1 << order);
2407 * Page unpoisoning must happen before memory initialization.
2408 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2409 * allocations and the page unpoisoning code will complain.
2411 kernel_unpoison_pages(page, 1 << order);
2414 * As memory initialization might be integrated into KASAN,
2415 * KASAN unpoisoning and memory initializion code must be
2416 * kept together to avoid discrepancies in behavior.
2420 * If memory tags should be zeroed (which happens only when memory
2421 * should be initialized as well).
2424 /* Initialize both memory and tags. */
2425 for (i = 0; i != 1 << order; ++i)
2426 tag_clear_highpage(page + i);
2428 /* Note that memory is already initialized by the loop above. */
2431 if (!should_skip_kasan_unpoison(gfp_flags)) {
2432 /* Unpoison shadow memory or set memory tags. */
2433 kasan_unpoison_pages(page, order, init);
2435 /* Note that memory is already initialized by KASAN. */
2436 if (kasan_has_integrated_init())
2439 /* Ensure page_address() dereferencing does not fault. */
2440 for (i = 0; i != 1 << order; ++i)
2441 page_kasan_tag_reset(page + i);
2443 /* If memory is still not initialized, do it now. */
2445 kernel_init_free_pages(page, 1 << order);
2446 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2447 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2448 SetPageSkipKASanPoison(page);
2450 set_page_owner(page, order, gfp_flags);
2451 page_table_check_alloc(page, order);
2454 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2455 unsigned int alloc_flags)
2457 post_alloc_hook(page, order, gfp_flags);
2459 if (order && (gfp_flags & __GFP_COMP))
2460 prep_compound_page(page, order);
2463 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2464 * allocate the page. The expectation is that the caller is taking
2465 * steps that will free more memory. The caller should avoid the page
2466 * being used for !PFMEMALLOC purposes.
2468 if (alloc_flags & ALLOC_NO_WATERMARKS)
2469 set_page_pfmemalloc(page);
2471 clear_page_pfmemalloc(page);
2475 * Go through the free lists for the given migratetype and remove
2476 * the smallest available page from the freelists
2478 static __always_inline
2479 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2482 unsigned int current_order;
2483 struct free_area *area;
2486 /* Find a page of the appropriate size in the preferred list */
2487 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2488 area = &(zone->free_area[current_order]);
2489 page = get_page_from_free_area(area, migratetype);
2492 del_page_from_free_list(page, zone, current_order);
2493 expand(zone, page, order, current_order, migratetype);
2494 set_pcppage_migratetype(page, migratetype);
2495 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2496 pcp_allowed_order(order) &&
2497 migratetype < MIGRATE_PCPTYPES);
2506 * This array describes the order lists are fallen back to when
2507 * the free lists for the desirable migrate type are depleted
2509 * The other migratetypes do not have fallbacks.
2511 static int fallbacks[MIGRATE_TYPES][3] = {
2512 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2513 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2514 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2518 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2521 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2524 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2525 unsigned int order) { return NULL; }
2529 * Move the free pages in a range to the freelist tail of the requested type.
2530 * Note that start_page and end_pages are not aligned on a pageblock
2531 * boundary. If alignment is required, use move_freepages_block()
2533 static int move_freepages(struct zone *zone,
2534 unsigned long start_pfn, unsigned long end_pfn,
2535 int migratetype, int *num_movable)
2540 int pages_moved = 0;
2542 for (pfn = start_pfn; pfn <= end_pfn;) {
2543 page = pfn_to_page(pfn);
2544 if (!PageBuddy(page)) {
2546 * We assume that pages that could be isolated for
2547 * migration are movable. But we don't actually try
2548 * isolating, as that would be expensive.
2551 (PageLRU(page) || __PageMovable(page)))
2557 /* Make sure we are not inadvertently changing nodes */
2558 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2559 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2561 order = buddy_order(page);
2562 move_to_free_list(page, zone, order, migratetype);
2564 pages_moved += 1 << order;
2570 int move_freepages_block(struct zone *zone, struct page *page,
2571 int migratetype, int *num_movable)
2573 unsigned long start_pfn, end_pfn, pfn;
2578 pfn = page_to_pfn(page);
2579 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2580 end_pfn = start_pfn + pageblock_nr_pages - 1;
2582 /* Do not cross zone boundaries */
2583 if (!zone_spans_pfn(zone, start_pfn))
2585 if (!zone_spans_pfn(zone, end_pfn))
2588 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2592 static void change_pageblock_range(struct page *pageblock_page,
2593 int start_order, int migratetype)
2595 int nr_pageblocks = 1 << (start_order - pageblock_order);
2597 while (nr_pageblocks--) {
2598 set_pageblock_migratetype(pageblock_page, migratetype);
2599 pageblock_page += pageblock_nr_pages;
2604 * When we are falling back to another migratetype during allocation, try to
2605 * steal extra free pages from the same pageblocks to satisfy further
2606 * allocations, instead of polluting multiple pageblocks.
2608 * If we are stealing a relatively large buddy page, it is likely there will
2609 * be more free pages in the pageblock, so try to steal them all. For
2610 * reclaimable and unmovable allocations, we steal regardless of page size,
2611 * as fragmentation caused by those allocations polluting movable pageblocks
2612 * is worse than movable allocations stealing from unmovable and reclaimable
2615 static bool can_steal_fallback(unsigned int order, int start_mt)
2618 * Leaving this order check is intended, although there is
2619 * relaxed order check in next check. The reason is that
2620 * we can actually steal whole pageblock if this condition met,
2621 * but, below check doesn't guarantee it and that is just heuristic
2622 * so could be changed anytime.
2624 if (order >= pageblock_order)
2627 if (order >= pageblock_order / 2 ||
2628 start_mt == MIGRATE_RECLAIMABLE ||
2629 start_mt == MIGRATE_UNMOVABLE ||
2630 page_group_by_mobility_disabled)
2636 static inline bool boost_watermark(struct zone *zone)
2638 unsigned long max_boost;
2640 if (!watermark_boost_factor)
2643 * Don't bother in zones that are unlikely to produce results.
2644 * On small machines, including kdump capture kernels running
2645 * in a small area, boosting the watermark can cause an out of
2646 * memory situation immediately.
2648 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2651 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2652 watermark_boost_factor, 10000);
2655 * high watermark may be uninitialised if fragmentation occurs
2656 * very early in boot so do not boost. We do not fall
2657 * through and boost by pageblock_nr_pages as failing
2658 * allocations that early means that reclaim is not going
2659 * to help and it may even be impossible to reclaim the
2660 * boosted watermark resulting in a hang.
2665 max_boost = max(pageblock_nr_pages, max_boost);
2667 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2674 * This function implements actual steal behaviour. If order is large enough,
2675 * we can steal whole pageblock. If not, we first move freepages in this
2676 * pageblock to our migratetype and determine how many already-allocated pages
2677 * are there in the pageblock with a compatible migratetype. If at least half
2678 * of pages are free or compatible, we can change migratetype of the pageblock
2679 * itself, so pages freed in the future will be put on the correct free list.
2681 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2682 unsigned int alloc_flags, int start_type, bool whole_block)
2684 unsigned int current_order = buddy_order(page);
2685 int free_pages, movable_pages, alike_pages;
2688 old_block_type = get_pageblock_migratetype(page);
2691 * This can happen due to races and we want to prevent broken
2692 * highatomic accounting.
2694 if (is_migrate_highatomic(old_block_type))
2697 /* Take ownership for orders >= pageblock_order */
2698 if (current_order >= pageblock_order) {
2699 change_pageblock_range(page, current_order, start_type);
2704 * Boost watermarks to increase reclaim pressure to reduce the
2705 * likelihood of future fallbacks. Wake kswapd now as the node
2706 * may be balanced overall and kswapd will not wake naturally.
2708 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2709 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2711 /* We are not allowed to try stealing from the whole block */
2715 free_pages = move_freepages_block(zone, page, start_type,
2718 * Determine how many pages are compatible with our allocation.
2719 * For movable allocation, it's the number of movable pages which
2720 * we just obtained. For other types it's a bit more tricky.
2722 if (start_type == MIGRATE_MOVABLE) {
2723 alike_pages = movable_pages;
2726 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2727 * to MOVABLE pageblock, consider all non-movable pages as
2728 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2729 * vice versa, be conservative since we can't distinguish the
2730 * exact migratetype of non-movable pages.
2732 if (old_block_type == MIGRATE_MOVABLE)
2733 alike_pages = pageblock_nr_pages
2734 - (free_pages + movable_pages);
2739 /* moving whole block can fail due to zone boundary conditions */
2744 * If a sufficient number of pages in the block are either free or of
2745 * comparable migratability as our allocation, claim the whole block.
2747 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2748 page_group_by_mobility_disabled)
2749 set_pageblock_migratetype(page, start_type);
2754 move_to_free_list(page, zone, current_order, start_type);
2758 * Check whether there is a suitable fallback freepage with requested order.
2759 * If only_stealable is true, this function returns fallback_mt only if
2760 * we can steal other freepages all together. This would help to reduce
2761 * fragmentation due to mixed migratetype pages in one pageblock.
2763 int find_suitable_fallback(struct free_area *area, unsigned int order,
2764 int migratetype, bool only_stealable, bool *can_steal)
2769 if (area->nr_free == 0)
2774 fallback_mt = fallbacks[migratetype][i];
2775 if (fallback_mt == MIGRATE_TYPES)
2778 if (free_area_empty(area, fallback_mt))
2781 if (can_steal_fallback(order, migratetype))
2784 if (!only_stealable)
2795 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2796 * there are no empty page blocks that contain a page with a suitable order
2798 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2799 unsigned int alloc_order)
2802 unsigned long max_managed, flags;
2805 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2806 * Check is race-prone but harmless.
2808 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2809 if (zone->nr_reserved_highatomic >= max_managed)
2812 spin_lock_irqsave(&zone->lock, flags);
2814 /* Recheck the nr_reserved_highatomic limit under the lock */
2815 if (zone->nr_reserved_highatomic >= max_managed)
2819 mt = get_pageblock_migratetype(page);
2820 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2821 if (migratetype_is_mergeable(mt)) {
2822 zone->nr_reserved_highatomic += pageblock_nr_pages;
2823 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2824 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2828 spin_unlock_irqrestore(&zone->lock, flags);
2832 * Used when an allocation is about to fail under memory pressure. This
2833 * potentially hurts the reliability of high-order allocations when under
2834 * intense memory pressure but failed atomic allocations should be easier
2835 * to recover from than an OOM.
2837 * If @force is true, try to unreserve a pageblock even though highatomic
2838 * pageblock is exhausted.
2840 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2843 struct zonelist *zonelist = ac->zonelist;
2844 unsigned long flags;
2851 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2854 * Preserve at least one pageblock unless memory pressure
2857 if (!force && zone->nr_reserved_highatomic <=
2861 spin_lock_irqsave(&zone->lock, flags);
2862 for (order = 0; order < MAX_ORDER; order++) {
2863 struct free_area *area = &(zone->free_area[order]);
2865 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2870 * In page freeing path, migratetype change is racy so
2871 * we can counter several free pages in a pageblock
2872 * in this loop although we changed the pageblock type
2873 * from highatomic to ac->migratetype. So we should
2874 * adjust the count once.
2876 if (is_migrate_highatomic_page(page)) {
2878 * It should never happen but changes to
2879 * locking could inadvertently allow a per-cpu
2880 * drain to add pages to MIGRATE_HIGHATOMIC
2881 * while unreserving so be safe and watch for
2884 zone->nr_reserved_highatomic -= min(
2886 zone->nr_reserved_highatomic);
2890 * Convert to ac->migratetype and avoid the normal
2891 * pageblock stealing heuristics. Minimally, the caller
2892 * is doing the work and needs the pages. More
2893 * importantly, if the block was always converted to
2894 * MIGRATE_UNMOVABLE or another type then the number
2895 * of pageblocks that cannot be completely freed
2898 set_pageblock_migratetype(page, ac->migratetype);
2899 ret = move_freepages_block(zone, page, ac->migratetype,
2902 spin_unlock_irqrestore(&zone->lock, flags);
2906 spin_unlock_irqrestore(&zone->lock, flags);
2913 * Try finding a free buddy page on the fallback list and put it on the free
2914 * list of requested migratetype, possibly along with other pages from the same
2915 * block, depending on fragmentation avoidance heuristics. Returns true if
2916 * fallback was found so that __rmqueue_smallest() can grab it.
2918 * The use of signed ints for order and current_order is a deliberate
2919 * deviation from the rest of this file, to make the for loop
2920 * condition simpler.
2922 static __always_inline bool
2923 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2924 unsigned int alloc_flags)
2926 struct free_area *area;
2928 int min_order = order;
2934 * Do not steal pages from freelists belonging to other pageblocks
2935 * i.e. orders < pageblock_order. If there are no local zones free,
2936 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2938 if (alloc_flags & ALLOC_NOFRAGMENT)
2939 min_order = pageblock_order;
2942 * Find the largest available free page in the other list. This roughly
2943 * approximates finding the pageblock with the most free pages, which
2944 * would be too costly to do exactly.
2946 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2948 area = &(zone->free_area[current_order]);
2949 fallback_mt = find_suitable_fallback(area, current_order,
2950 start_migratetype, false, &can_steal);
2951 if (fallback_mt == -1)
2955 * We cannot steal all free pages from the pageblock and the
2956 * requested migratetype is movable. In that case it's better to
2957 * steal and split the smallest available page instead of the
2958 * largest available page, because even if the next movable
2959 * allocation falls back into a different pageblock than this
2960 * one, it won't cause permanent fragmentation.
2962 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2963 && current_order > order)
2972 for (current_order = order; current_order < MAX_ORDER;
2974 area = &(zone->free_area[current_order]);
2975 fallback_mt = find_suitable_fallback(area, current_order,
2976 start_migratetype, false, &can_steal);
2977 if (fallback_mt != -1)
2982 * This should not happen - we already found a suitable fallback
2983 * when looking for the largest page.
2985 VM_BUG_ON(current_order == MAX_ORDER);
2988 page = get_page_from_free_area(area, fallback_mt);
2990 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2993 trace_mm_page_alloc_extfrag(page, order, current_order,
2994 start_migratetype, fallback_mt);
3001 * Do the hard work of removing an element from the buddy allocator.
3002 * Call me with the zone->lock already held.
3004 static __always_inline struct page *
3005 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3006 unsigned int alloc_flags)
3010 if (IS_ENABLED(CONFIG_CMA)) {
3012 * Balance movable allocations between regular and CMA areas by
3013 * allocating from CMA when over half of the zone's free memory
3014 * is in the CMA area.
3016 if (alloc_flags & ALLOC_CMA &&
3017 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3018 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3019 page = __rmqueue_cma_fallback(zone, order);
3025 page = __rmqueue_smallest(zone, order, migratetype);
3026 if (unlikely(!page)) {
3027 if (alloc_flags & ALLOC_CMA)
3028 page = __rmqueue_cma_fallback(zone, order);
3030 if (!page && __rmqueue_fallback(zone, order, migratetype,
3038 * Obtain a specified number of elements from the buddy allocator, all under
3039 * a single hold of the lock, for efficiency. Add them to the supplied list.
3040 * Returns the number of new pages which were placed at *list.
3042 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3043 unsigned long count, struct list_head *list,
3044 int migratetype, unsigned int alloc_flags)
3046 int i, allocated = 0;
3049 * local_lock_irq held so equivalent to spin_lock_irqsave for
3050 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3052 spin_lock(&zone->lock);
3053 for (i = 0; i < count; ++i) {
3054 struct page *page = __rmqueue(zone, order, migratetype,
3056 if (unlikely(page == NULL))
3059 if (unlikely(check_pcp_refill(page, order)))
3063 * Split buddy pages returned by expand() are received here in
3064 * physical page order. The page is added to the tail of
3065 * caller's list. From the callers perspective, the linked list
3066 * is ordered by page number under some conditions. This is
3067 * useful for IO devices that can forward direction from the
3068 * head, thus also in the physical page order. This is useful
3069 * for IO devices that can merge IO requests if the physical
3070 * pages are ordered properly.
3072 list_add_tail(&page->lru, list);
3074 if (is_migrate_cma(get_pcppage_migratetype(page)))
3075 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3080 * i pages were removed from the buddy list even if some leak due
3081 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3082 * on i. Do not confuse with 'allocated' which is the number of
3083 * pages added to the pcp list.
3085 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3086 spin_unlock(&zone->lock);
3092 * Called from the vmstat counter updater to drain pagesets of this
3093 * currently executing processor on remote nodes after they have
3096 * Note that this function must be called with the thread pinned to
3097 * a single processor.
3099 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3101 unsigned long flags;
3102 int to_drain, batch;
3104 local_lock_irqsave(&pagesets.lock, flags);
3105 batch = READ_ONCE(pcp->batch);
3106 to_drain = min(pcp->count, batch);
3108 free_pcppages_bulk(zone, to_drain, pcp, 0);
3109 local_unlock_irqrestore(&pagesets.lock, flags);
3114 * Drain pcplists of the indicated processor and zone.
3116 * The processor must either be the current processor and the
3117 * thread pinned to the current processor or a processor that
3120 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3122 unsigned long flags;
3123 struct per_cpu_pages *pcp;
3125 local_lock_irqsave(&pagesets.lock, flags);
3127 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3129 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3131 local_unlock_irqrestore(&pagesets.lock, flags);
3135 * Drain pcplists of all zones on the indicated processor.
3137 * The processor must either be the current processor and the
3138 * thread pinned to the current processor or a processor that
3141 static void drain_pages(unsigned int cpu)
3145 for_each_populated_zone(zone) {
3146 drain_pages_zone(cpu, zone);
3151 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3153 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3154 * the single zone's pages.
3156 void drain_local_pages(struct zone *zone)
3158 int cpu = smp_processor_id();
3161 drain_pages_zone(cpu, zone);
3166 static void drain_local_pages_wq(struct work_struct *work)
3168 struct pcpu_drain *drain;
3170 drain = container_of(work, struct pcpu_drain, work);
3173 * drain_all_pages doesn't use proper cpu hotplug protection so
3174 * we can race with cpu offline when the WQ can move this from
3175 * a cpu pinned worker to an unbound one. We can operate on a different
3176 * cpu which is alright but we also have to make sure to not move to
3180 drain_local_pages(drain->zone);
3185 * The implementation of drain_all_pages(), exposing an extra parameter to
3186 * drain on all cpus.
3188 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3189 * not empty. The check for non-emptiness can however race with a free to
3190 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3191 * that need the guarantee that every CPU has drained can disable the
3192 * optimizing racy check.
3194 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3199 * Allocate in the BSS so we won't require allocation in
3200 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3202 static cpumask_t cpus_with_pcps;
3205 * Make sure nobody triggers this path before mm_percpu_wq is fully
3208 if (WARN_ON_ONCE(!mm_percpu_wq))
3212 * Do not drain if one is already in progress unless it's specific to
3213 * a zone. Such callers are primarily CMA and memory hotplug and need
3214 * the drain to be complete when the call returns.
3216 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3219 mutex_lock(&pcpu_drain_mutex);
3223 * We don't care about racing with CPU hotplug event
3224 * as offline notification will cause the notified
3225 * cpu to drain that CPU pcps and on_each_cpu_mask
3226 * disables preemption as part of its processing
3228 for_each_online_cpu(cpu) {
3229 struct per_cpu_pages *pcp;
3231 bool has_pcps = false;
3233 if (force_all_cpus) {
3235 * The pcp.count check is racy, some callers need a
3236 * guarantee that no cpu is missed.
3240 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3244 for_each_populated_zone(z) {
3245 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3254 cpumask_set_cpu(cpu, &cpus_with_pcps);
3256 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3259 for_each_cpu(cpu, &cpus_with_pcps) {
3260 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3263 INIT_WORK(&drain->work, drain_local_pages_wq);
3264 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3266 for_each_cpu(cpu, &cpus_with_pcps)
3267 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3269 mutex_unlock(&pcpu_drain_mutex);
3273 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3275 * When zone parameter is non-NULL, spill just the single zone's pages.
3277 * Note that this can be extremely slow as the draining happens in a workqueue.
3279 void drain_all_pages(struct zone *zone)
3281 __drain_all_pages(zone, false);
3284 #ifdef CONFIG_HIBERNATION
3287 * Touch the watchdog for every WD_PAGE_COUNT pages.
3289 #define WD_PAGE_COUNT (128*1024)
3291 void mark_free_pages(struct zone *zone)
3293 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3294 unsigned long flags;
3295 unsigned int order, t;
3298 if (zone_is_empty(zone))
3301 spin_lock_irqsave(&zone->lock, flags);
3303 max_zone_pfn = zone_end_pfn(zone);
3304 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3305 if (pfn_valid(pfn)) {
3306 page = pfn_to_page(pfn);
3308 if (!--page_count) {
3309 touch_nmi_watchdog();
3310 page_count = WD_PAGE_COUNT;
3313 if (page_zone(page) != zone)
3316 if (!swsusp_page_is_forbidden(page))
3317 swsusp_unset_page_free(page);
3320 for_each_migratetype_order(order, t) {
3321 list_for_each_entry(page,
3322 &zone->free_area[order].free_list[t], lru) {
3325 pfn = page_to_pfn(page);
3326 for (i = 0; i < (1UL << order); i++) {
3327 if (!--page_count) {
3328 touch_nmi_watchdog();
3329 page_count = WD_PAGE_COUNT;
3331 swsusp_set_page_free(pfn_to_page(pfn + i));
3335 spin_unlock_irqrestore(&zone->lock, flags);
3337 #endif /* CONFIG_PM */
3339 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3344 if (!free_pcp_prepare(page, order))
3347 migratetype = get_pfnblock_migratetype(page, pfn);
3348 set_pcppage_migratetype(page, migratetype);
3352 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3355 int min_nr_free, max_nr_free;
3357 /* Free everything if batch freeing high-order pages. */
3358 if (unlikely(free_high))
3361 /* Check for PCP disabled or boot pageset */
3362 if (unlikely(high < batch))
3365 /* Leave at least pcp->batch pages on the list */
3366 min_nr_free = batch;
3367 max_nr_free = high - batch;
3370 * Double the number of pages freed each time there is subsequent
3371 * freeing of pages without any allocation.
3373 batch <<= pcp->free_factor;
3374 if (batch < max_nr_free)
3376 batch = clamp(batch, min_nr_free, max_nr_free);
3381 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3384 int high = READ_ONCE(pcp->high);
3386 if (unlikely(!high || free_high))
3389 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3393 * If reclaim is active, limit the number of pages that can be
3394 * stored on pcp lists
3396 return min(READ_ONCE(pcp->batch) << 2, high);
3399 static void free_unref_page_commit(struct page *page, int migratetype,
3402 struct zone *zone = page_zone(page);
3403 struct per_cpu_pages *pcp;
3408 __count_vm_event(PGFREE);
3409 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3410 pindex = order_to_pindex(migratetype, order);
3411 list_add(&page->lru, &pcp->lists[pindex]);
3412 pcp->count += 1 << order;
3415 * As high-order pages other than THP's stored on PCP can contribute
3416 * to fragmentation, limit the number stored when PCP is heavily
3417 * freeing without allocation. The remainder after bulk freeing
3418 * stops will be drained from vmstat refresh context.
3420 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3422 high = nr_pcp_high(pcp, zone, free_high);
3423 if (pcp->count >= high) {
3424 int batch = READ_ONCE(pcp->batch);
3426 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3433 void free_unref_page(struct page *page, unsigned int order)
3435 unsigned long flags;
3436 unsigned long pfn = page_to_pfn(page);
3439 if (!free_unref_page_prepare(page, pfn, order))
3443 * We only track unmovable, reclaimable and movable on pcp lists.
3444 * Place ISOLATE pages on the isolated list because they are being
3445 * offlined but treat HIGHATOMIC as movable pages so we can get those
3446 * areas back if necessary. Otherwise, we may have to free
3447 * excessively into the page allocator
3449 migratetype = get_pcppage_migratetype(page);
3450 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3451 if (unlikely(is_migrate_isolate(migratetype))) {
3452 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3455 migratetype = MIGRATE_MOVABLE;
3458 local_lock_irqsave(&pagesets.lock, flags);
3459 free_unref_page_commit(page, migratetype, order);
3460 local_unlock_irqrestore(&pagesets.lock, flags);
3464 * Free a list of 0-order pages
3466 void free_unref_page_list(struct list_head *list)
3468 struct page *page, *next;
3469 unsigned long flags;
3470 int batch_count = 0;
3473 /* Prepare pages for freeing */
3474 list_for_each_entry_safe(page, next, list, lru) {
3475 unsigned long pfn = page_to_pfn(page);
3476 if (!free_unref_page_prepare(page, pfn, 0)) {
3477 list_del(&page->lru);
3482 * Free isolated pages directly to the allocator, see
3483 * comment in free_unref_page.
3485 migratetype = get_pcppage_migratetype(page);
3486 if (unlikely(is_migrate_isolate(migratetype))) {
3487 list_del(&page->lru);
3488 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3493 local_lock_irqsave(&pagesets.lock, flags);
3494 list_for_each_entry_safe(page, next, list, lru) {
3496 * Non-isolated types over MIGRATE_PCPTYPES get added
3497 * to the MIGRATE_MOVABLE pcp list.
3499 migratetype = get_pcppage_migratetype(page);
3500 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3501 migratetype = MIGRATE_MOVABLE;
3503 trace_mm_page_free_batched(page);
3504 free_unref_page_commit(page, migratetype, 0);
3507 * Guard against excessive IRQ disabled times when we get
3508 * a large list of pages to free.
3510 if (++batch_count == SWAP_CLUSTER_MAX) {
3511 local_unlock_irqrestore(&pagesets.lock, flags);
3513 local_lock_irqsave(&pagesets.lock, flags);
3516 local_unlock_irqrestore(&pagesets.lock, flags);
3520 * split_page takes a non-compound higher-order page, and splits it into
3521 * n (1<<order) sub-pages: page[0..n]
3522 * Each sub-page must be freed individually.
3524 * Note: this is probably too low level an operation for use in drivers.
3525 * Please consult with lkml before using this in your driver.
3527 void split_page(struct page *page, unsigned int order)
3531 VM_BUG_ON_PAGE(PageCompound(page), page);
3532 VM_BUG_ON_PAGE(!page_count(page), page);
3534 for (i = 1; i < (1 << order); i++)
3535 set_page_refcounted(page + i);
3536 split_page_owner(page, 1 << order);
3537 split_page_memcg(page, 1 << order);
3539 EXPORT_SYMBOL_GPL(split_page);
3541 int __isolate_free_page(struct page *page, unsigned int order)
3543 unsigned long watermark;
3547 BUG_ON(!PageBuddy(page));
3549 zone = page_zone(page);
3550 mt = get_pageblock_migratetype(page);
3552 if (!is_migrate_isolate(mt)) {
3554 * Obey watermarks as if the page was being allocated. We can
3555 * emulate a high-order watermark check with a raised order-0
3556 * watermark, because we already know our high-order page
3559 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3560 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3563 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3566 /* Remove page from free list */
3568 del_page_from_free_list(page, zone, order);
3571 * Set the pageblock if the isolated page is at least half of a
3574 if (order >= pageblock_order - 1) {
3575 struct page *endpage = page + (1 << order) - 1;
3576 for (; page < endpage; page += pageblock_nr_pages) {
3577 int mt = get_pageblock_migratetype(page);
3579 * Only change normal pageblocks (i.e., they can merge
3582 if (migratetype_is_mergeable(mt))
3583 set_pageblock_migratetype(page,
3589 return 1UL << order;
3593 * __putback_isolated_page - Return a now-isolated page back where we got it
3594 * @page: Page that was isolated
3595 * @order: Order of the isolated page
3596 * @mt: The page's pageblock's migratetype
3598 * This function is meant to return a page pulled from the free lists via
3599 * __isolate_free_page back to the free lists they were pulled from.
3601 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3603 struct zone *zone = page_zone(page);
3605 /* zone lock should be held when this function is called */
3606 lockdep_assert_held(&zone->lock);
3608 /* Return isolated page to tail of freelist. */
3609 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3610 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3614 * Update NUMA hit/miss statistics
3616 * Must be called with interrupts disabled.
3618 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3622 enum numa_stat_item local_stat = NUMA_LOCAL;
3624 /* skip numa counters update if numa stats is disabled */
3625 if (!static_branch_likely(&vm_numa_stat_key))
3628 if (zone_to_nid(z) != numa_node_id())
3629 local_stat = NUMA_OTHER;
3631 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3632 __count_numa_events(z, NUMA_HIT, nr_account);
3634 __count_numa_events(z, NUMA_MISS, nr_account);
3635 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3637 __count_numa_events(z, local_stat, nr_account);
3641 /* Remove page from the per-cpu list, caller must protect the list */
3643 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3645 unsigned int alloc_flags,
3646 struct per_cpu_pages *pcp,
3647 struct list_head *list)
3652 if (list_empty(list)) {
3653 int batch = READ_ONCE(pcp->batch);
3657 * Scale batch relative to order if batch implies
3658 * free pages can be stored on the PCP. Batch can
3659 * be 1 for small zones or for boot pagesets which
3660 * should never store free pages as the pages may
3661 * belong to arbitrary zones.
3664 batch = max(batch >> order, 2);
3665 alloced = rmqueue_bulk(zone, order,
3667 migratetype, alloc_flags);
3669 pcp->count += alloced << order;
3670 if (unlikely(list_empty(list)))
3674 page = list_first_entry(list, struct page, lru);
3675 list_del(&page->lru);
3676 pcp->count -= 1 << order;
3677 } while (check_new_pcp(page, order));
3682 /* Lock and remove page from the per-cpu list */
3683 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3684 struct zone *zone, unsigned int order,
3685 gfp_t gfp_flags, int migratetype,
3686 unsigned int alloc_flags)
3688 struct per_cpu_pages *pcp;
3689 struct list_head *list;
3691 unsigned long flags;
3693 local_lock_irqsave(&pagesets.lock, flags);
3696 * On allocation, reduce the number of pages that are batch freed.
3697 * See nr_pcp_free() where free_factor is increased for subsequent
3700 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3701 pcp->free_factor >>= 1;
3702 list = &pcp->lists[order_to_pindex(migratetype, order)];
3703 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3704 local_unlock_irqrestore(&pagesets.lock, flags);
3706 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3707 zone_statistics(preferred_zone, zone, 1);
3713 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3716 struct page *rmqueue(struct zone *preferred_zone,
3717 struct zone *zone, unsigned int order,
3718 gfp_t gfp_flags, unsigned int alloc_flags,
3721 unsigned long flags;
3724 if (likely(pcp_allowed_order(order))) {
3726 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3727 * we need to skip it when CMA area isn't allowed.
3729 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3730 migratetype != MIGRATE_MOVABLE) {
3731 page = rmqueue_pcplist(preferred_zone, zone, order,
3732 gfp_flags, migratetype, alloc_flags);
3738 * We most definitely don't want callers attempting to
3739 * allocate greater than order-1 page units with __GFP_NOFAIL.
3741 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3745 spin_lock_irqsave(&zone->lock, flags);
3747 * order-0 request can reach here when the pcplist is skipped
3748 * due to non-CMA allocation context. HIGHATOMIC area is
3749 * reserved for high-order atomic allocation, so order-0
3750 * request should skip it.
3752 if (order > 0 && alloc_flags & ALLOC_HARDER)
3753 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3755 page = __rmqueue(zone, order, migratetype, alloc_flags);
3759 __mod_zone_freepage_state(zone, -(1 << order),
3760 get_pcppage_migratetype(page));
3761 spin_unlock_irqrestore(&zone->lock, flags);
3762 } while (check_new_pages(page, order));
3764 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3765 zone_statistics(preferred_zone, zone, 1);
3768 /* Separate test+clear to avoid unnecessary atomics */
3769 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3770 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3771 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3774 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3778 spin_unlock_irqrestore(&zone->lock, flags);
3782 #ifdef CONFIG_FAIL_PAGE_ALLOC
3785 struct fault_attr attr;
3787 bool ignore_gfp_highmem;
3788 bool ignore_gfp_reclaim;
3790 } fail_page_alloc = {
3791 .attr = FAULT_ATTR_INITIALIZER,
3792 .ignore_gfp_reclaim = true,
3793 .ignore_gfp_highmem = true,
3797 static int __init setup_fail_page_alloc(char *str)
3799 return setup_fault_attr(&fail_page_alloc.attr, str);
3801 __setup("fail_page_alloc=", setup_fail_page_alloc);
3803 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3805 if (order < fail_page_alloc.min_order)
3807 if (gfp_mask & __GFP_NOFAIL)
3809 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3811 if (fail_page_alloc.ignore_gfp_reclaim &&
3812 (gfp_mask & __GFP_DIRECT_RECLAIM))
3815 if (gfp_mask & __GFP_NOWARN)
3816 fail_page_alloc.attr.no_warn = true;
3818 return should_fail(&fail_page_alloc.attr, 1 << order);
3821 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3823 static int __init fail_page_alloc_debugfs(void)
3825 umode_t mode = S_IFREG | 0600;
3828 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3829 &fail_page_alloc.attr);
3831 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3832 &fail_page_alloc.ignore_gfp_reclaim);
3833 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3834 &fail_page_alloc.ignore_gfp_highmem);
3835 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3840 late_initcall(fail_page_alloc_debugfs);
3842 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3844 #else /* CONFIG_FAIL_PAGE_ALLOC */
3846 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3851 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3853 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3855 return __should_fail_alloc_page(gfp_mask, order);
3857 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3859 static inline long __zone_watermark_unusable_free(struct zone *z,
3860 unsigned int order, unsigned int alloc_flags)
3862 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3863 long unusable_free = (1 << order) - 1;
3866 * If the caller does not have rights to ALLOC_HARDER then subtract
3867 * the high-atomic reserves. This will over-estimate the size of the
3868 * atomic reserve but it avoids a search.
3870 if (likely(!alloc_harder))
3871 unusable_free += z->nr_reserved_highatomic;
3874 /* If allocation can't use CMA areas don't use free CMA pages */
3875 if (!(alloc_flags & ALLOC_CMA))
3876 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3879 return unusable_free;
3883 * Return true if free base pages are above 'mark'. For high-order checks it
3884 * will return true of the order-0 watermark is reached and there is at least
3885 * one free page of a suitable size. Checking now avoids taking the zone lock
3886 * to check in the allocation paths if no pages are free.
3888 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3889 int highest_zoneidx, unsigned int alloc_flags,
3894 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3896 /* free_pages may go negative - that's OK */
3897 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3899 if (alloc_flags & ALLOC_HIGH)
3902 if (unlikely(alloc_harder)) {
3904 * OOM victims can try even harder than normal ALLOC_HARDER
3905 * users on the grounds that it's definitely going to be in
3906 * the exit path shortly and free memory. Any allocation it
3907 * makes during the free path will be small and short-lived.
3909 if (alloc_flags & ALLOC_OOM)
3916 * Check watermarks for an order-0 allocation request. If these
3917 * are not met, then a high-order request also cannot go ahead
3918 * even if a suitable page happened to be free.
3920 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3923 /* If this is an order-0 request then the watermark is fine */
3927 /* For a high-order request, check at least one suitable page is free */
3928 for (o = order; o < MAX_ORDER; o++) {
3929 struct free_area *area = &z->free_area[o];
3935 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3936 if (!free_area_empty(area, mt))
3941 if ((alloc_flags & ALLOC_CMA) &&
3942 !free_area_empty(area, MIGRATE_CMA)) {
3946 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3952 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3953 int highest_zoneidx, unsigned int alloc_flags)
3955 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3956 zone_page_state(z, NR_FREE_PAGES));
3959 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3960 unsigned long mark, int highest_zoneidx,
3961 unsigned int alloc_flags, gfp_t gfp_mask)
3965 free_pages = zone_page_state(z, NR_FREE_PAGES);
3968 * Fast check for order-0 only. If this fails then the reserves
3969 * need to be calculated.
3975 usable_free = free_pages;
3976 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3978 /* reserved may over estimate high-atomic reserves. */
3979 usable_free -= min(usable_free, reserved);
3980 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3984 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3988 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3989 * when checking the min watermark. The min watermark is the
3990 * point where boosting is ignored so that kswapd is woken up
3991 * when below the low watermark.
3993 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3994 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3995 mark = z->_watermark[WMARK_MIN];
3996 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3997 alloc_flags, free_pages);
4003 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4004 unsigned long mark, int highest_zoneidx)
4006 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4008 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4009 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4011 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4016 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4018 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4020 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4021 node_reclaim_distance;
4023 #else /* CONFIG_NUMA */
4024 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4028 #endif /* CONFIG_NUMA */
4031 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4032 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4033 * premature use of a lower zone may cause lowmem pressure problems that
4034 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4035 * probably too small. It only makes sense to spread allocations to avoid
4036 * fragmentation between the Normal and DMA32 zones.
4038 static inline unsigned int
4039 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4041 unsigned int alloc_flags;
4044 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4047 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4049 #ifdef CONFIG_ZONE_DMA32
4053 if (zone_idx(zone) != ZONE_NORMAL)
4057 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4058 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4059 * on UMA that if Normal is populated then so is DMA32.
4061 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4062 if (nr_online_nodes > 1 && !populated_zone(--zone))
4065 alloc_flags |= ALLOC_NOFRAGMENT;
4066 #endif /* CONFIG_ZONE_DMA32 */
4070 /* Must be called after current_gfp_context() which can change gfp_mask */
4071 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4072 unsigned int alloc_flags)
4075 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4076 alloc_flags |= ALLOC_CMA;
4082 * get_page_from_freelist goes through the zonelist trying to allocate
4085 static struct page *
4086 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4087 const struct alloc_context *ac)
4091 struct pglist_data *last_pgdat = NULL;
4092 bool last_pgdat_dirty_ok = false;
4097 * Scan zonelist, looking for a zone with enough free.
4098 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4100 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4101 z = ac->preferred_zoneref;
4102 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4107 if (cpusets_enabled() &&
4108 (alloc_flags & ALLOC_CPUSET) &&
4109 !__cpuset_zone_allowed(zone, gfp_mask))
4112 * When allocating a page cache page for writing, we
4113 * want to get it from a node that is within its dirty
4114 * limit, such that no single node holds more than its
4115 * proportional share of globally allowed dirty pages.
4116 * The dirty limits take into account the node's
4117 * lowmem reserves and high watermark so that kswapd
4118 * should be able to balance it without having to
4119 * write pages from its LRU list.
4121 * XXX: For now, allow allocations to potentially
4122 * exceed the per-node dirty limit in the slowpath
4123 * (spread_dirty_pages unset) before going into reclaim,
4124 * which is important when on a NUMA setup the allowed
4125 * nodes are together not big enough to reach the
4126 * global limit. The proper fix for these situations
4127 * will require awareness of nodes in the
4128 * dirty-throttling and the flusher threads.
4130 if (ac->spread_dirty_pages) {
4131 if (last_pgdat != zone->zone_pgdat) {
4132 last_pgdat = zone->zone_pgdat;
4133 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4136 if (!last_pgdat_dirty_ok)
4140 if (no_fallback && nr_online_nodes > 1 &&
4141 zone != ac->preferred_zoneref->zone) {
4145 * If moving to a remote node, retry but allow
4146 * fragmenting fallbacks. Locality is more important
4147 * than fragmentation avoidance.
4149 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4150 if (zone_to_nid(zone) != local_nid) {
4151 alloc_flags &= ~ALLOC_NOFRAGMENT;
4156 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4157 if (!zone_watermark_fast(zone, order, mark,
4158 ac->highest_zoneidx, alloc_flags,
4162 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4164 * Watermark failed for this zone, but see if we can
4165 * grow this zone if it contains deferred pages.
4167 if (static_branch_unlikely(&deferred_pages)) {
4168 if (_deferred_grow_zone(zone, order))
4172 /* Checked here to keep the fast path fast */
4173 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4174 if (alloc_flags & ALLOC_NO_WATERMARKS)
4177 if (!node_reclaim_enabled() ||
4178 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4181 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4183 case NODE_RECLAIM_NOSCAN:
4186 case NODE_RECLAIM_FULL:
4187 /* scanned but unreclaimable */
4190 /* did we reclaim enough */
4191 if (zone_watermark_ok(zone, order, mark,
4192 ac->highest_zoneidx, alloc_flags))
4200 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4201 gfp_mask, alloc_flags, ac->migratetype);
4203 prep_new_page(page, order, gfp_mask, alloc_flags);
4206 * If this is a high-order atomic allocation then check
4207 * if the pageblock should be reserved for the future
4209 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4210 reserve_highatomic_pageblock(page, zone, order);
4214 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4215 /* Try again if zone has deferred pages */
4216 if (static_branch_unlikely(&deferred_pages)) {
4217 if (_deferred_grow_zone(zone, order))
4225 * It's possible on a UMA machine to get through all zones that are
4226 * fragmented. If avoiding fragmentation, reset and try again.
4229 alloc_flags &= ~ALLOC_NOFRAGMENT;
4236 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4238 unsigned int filter = SHOW_MEM_FILTER_NODES;
4241 * This documents exceptions given to allocations in certain
4242 * contexts that are allowed to allocate outside current's set
4245 if (!(gfp_mask & __GFP_NOMEMALLOC))
4246 if (tsk_is_oom_victim(current) ||
4247 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4248 filter &= ~SHOW_MEM_FILTER_NODES;
4249 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4250 filter &= ~SHOW_MEM_FILTER_NODES;
4252 show_mem(filter, nodemask);
4255 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4257 struct va_format vaf;
4259 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4261 if ((gfp_mask & __GFP_NOWARN) ||
4262 !__ratelimit(&nopage_rs) ||
4263 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4266 va_start(args, fmt);
4269 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4270 current->comm, &vaf, gfp_mask, &gfp_mask,
4271 nodemask_pr_args(nodemask));
4274 cpuset_print_current_mems_allowed();
4277 warn_alloc_show_mem(gfp_mask, nodemask);
4280 static inline struct page *
4281 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4282 unsigned int alloc_flags,
4283 const struct alloc_context *ac)
4287 page = get_page_from_freelist(gfp_mask, order,
4288 alloc_flags|ALLOC_CPUSET, ac);
4290 * fallback to ignore cpuset restriction if our nodes
4294 page = get_page_from_freelist(gfp_mask, order,
4300 static inline struct page *
4301 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4302 const struct alloc_context *ac, unsigned long *did_some_progress)
4304 struct oom_control oc = {
4305 .zonelist = ac->zonelist,
4306 .nodemask = ac->nodemask,
4308 .gfp_mask = gfp_mask,
4313 *did_some_progress = 0;
4316 * Acquire the oom lock. If that fails, somebody else is
4317 * making progress for us.
4319 if (!mutex_trylock(&oom_lock)) {
4320 *did_some_progress = 1;
4321 schedule_timeout_uninterruptible(1);
4326 * Go through the zonelist yet one more time, keep very high watermark
4327 * here, this is only to catch a parallel oom killing, we must fail if
4328 * we're still under heavy pressure. But make sure that this reclaim
4329 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4330 * allocation which will never fail due to oom_lock already held.
4332 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4333 ~__GFP_DIRECT_RECLAIM, order,
4334 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4338 /* Coredumps can quickly deplete all memory reserves */
4339 if (current->flags & PF_DUMPCORE)
4341 /* The OOM killer will not help higher order allocs */
4342 if (order > PAGE_ALLOC_COSTLY_ORDER)
4345 * We have already exhausted all our reclaim opportunities without any
4346 * success so it is time to admit defeat. We will skip the OOM killer
4347 * because it is very likely that the caller has a more reasonable
4348 * fallback than shooting a random task.
4350 * The OOM killer may not free memory on a specific node.
4352 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4354 /* The OOM killer does not needlessly kill tasks for lowmem */
4355 if (ac->highest_zoneidx < ZONE_NORMAL)
4357 if (pm_suspended_storage())
4360 * XXX: GFP_NOFS allocations should rather fail than rely on
4361 * other request to make a forward progress.
4362 * We are in an unfortunate situation where out_of_memory cannot
4363 * do much for this context but let's try it to at least get
4364 * access to memory reserved if the current task is killed (see
4365 * out_of_memory). Once filesystems are ready to handle allocation
4366 * failures more gracefully we should just bail out here.
4369 /* Exhausted what can be done so it's blame time */
4370 if (out_of_memory(&oc) ||
4371 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4372 *did_some_progress = 1;
4375 * Help non-failing allocations by giving them access to memory
4378 if (gfp_mask & __GFP_NOFAIL)
4379 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4380 ALLOC_NO_WATERMARKS, ac);
4383 mutex_unlock(&oom_lock);
4388 * Maximum number of compaction retries with a progress before OOM
4389 * killer is consider as the only way to move forward.
4391 #define MAX_COMPACT_RETRIES 16
4393 #ifdef CONFIG_COMPACTION
4394 /* Try memory compaction for high-order allocations before reclaim */
4395 static struct page *
4396 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4397 unsigned int alloc_flags, const struct alloc_context *ac,
4398 enum compact_priority prio, enum compact_result *compact_result)
4400 struct page *page = NULL;
4401 unsigned long pflags;
4402 unsigned int noreclaim_flag;
4407 psi_memstall_enter(&pflags);
4408 delayacct_compact_start();
4409 noreclaim_flag = memalloc_noreclaim_save();
4411 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4414 memalloc_noreclaim_restore(noreclaim_flag);
4415 psi_memstall_leave(&pflags);
4416 delayacct_compact_end();
4418 if (*compact_result == COMPACT_SKIPPED)
4421 * At least in one zone compaction wasn't deferred or skipped, so let's
4422 * count a compaction stall
4424 count_vm_event(COMPACTSTALL);
4426 /* Prep a captured page if available */
4428 prep_new_page(page, order, gfp_mask, alloc_flags);
4430 /* Try get a page from the freelist if available */
4432 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4435 struct zone *zone = page_zone(page);
4437 zone->compact_blockskip_flush = false;
4438 compaction_defer_reset(zone, order, true);
4439 count_vm_event(COMPACTSUCCESS);
4444 * It's bad if compaction run occurs and fails. The most likely reason
4445 * is that pages exist, but not enough to satisfy watermarks.
4447 count_vm_event(COMPACTFAIL);
4455 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4456 enum compact_result compact_result,
4457 enum compact_priority *compact_priority,
4458 int *compaction_retries)
4460 int max_retries = MAX_COMPACT_RETRIES;
4463 int retries = *compaction_retries;
4464 enum compact_priority priority = *compact_priority;
4469 if (fatal_signal_pending(current))
4472 if (compaction_made_progress(compact_result))
4473 (*compaction_retries)++;
4476 * compaction considers all the zone as desperately out of memory
4477 * so it doesn't really make much sense to retry except when the
4478 * failure could be caused by insufficient priority
4480 if (compaction_failed(compact_result))
4481 goto check_priority;
4484 * compaction was skipped because there are not enough order-0 pages
4485 * to work with, so we retry only if it looks like reclaim can help.
4487 if (compaction_needs_reclaim(compact_result)) {
4488 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4493 * make sure the compaction wasn't deferred or didn't bail out early
4494 * due to locks contention before we declare that we should give up.
4495 * But the next retry should use a higher priority if allowed, so
4496 * we don't just keep bailing out endlessly.
4498 if (compaction_withdrawn(compact_result)) {
4499 goto check_priority;
4503 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4504 * costly ones because they are de facto nofail and invoke OOM
4505 * killer to move on while costly can fail and users are ready
4506 * to cope with that. 1/4 retries is rather arbitrary but we
4507 * would need much more detailed feedback from compaction to
4508 * make a better decision.
4510 if (order > PAGE_ALLOC_COSTLY_ORDER)
4512 if (*compaction_retries <= max_retries) {
4518 * Make sure there are attempts at the highest priority if we exhausted
4519 * all retries or failed at the lower priorities.
4522 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4523 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4525 if (*compact_priority > min_priority) {
4526 (*compact_priority)--;
4527 *compaction_retries = 0;
4531 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4535 static inline struct page *
4536 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4537 unsigned int alloc_flags, const struct alloc_context *ac,
4538 enum compact_priority prio, enum compact_result *compact_result)
4540 *compact_result = COMPACT_SKIPPED;
4545 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4546 enum compact_result compact_result,
4547 enum compact_priority *compact_priority,
4548 int *compaction_retries)
4553 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4557 * There are setups with compaction disabled which would prefer to loop
4558 * inside the allocator rather than hit the oom killer prematurely.
4559 * Let's give them a good hope and keep retrying while the order-0
4560 * watermarks are OK.
4562 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4563 ac->highest_zoneidx, ac->nodemask) {
4564 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4565 ac->highest_zoneidx, alloc_flags))
4570 #endif /* CONFIG_COMPACTION */
4572 #ifdef CONFIG_LOCKDEP
4573 static struct lockdep_map __fs_reclaim_map =
4574 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4576 static bool __need_reclaim(gfp_t gfp_mask)
4578 /* no reclaim without waiting on it */
4579 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4582 /* this guy won't enter reclaim */
4583 if (current->flags & PF_MEMALLOC)
4586 if (gfp_mask & __GFP_NOLOCKDEP)
4592 void __fs_reclaim_acquire(unsigned long ip)
4594 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4597 void __fs_reclaim_release(unsigned long ip)
4599 lock_release(&__fs_reclaim_map, ip);
4602 void fs_reclaim_acquire(gfp_t gfp_mask)
4604 gfp_mask = current_gfp_context(gfp_mask);
4606 if (__need_reclaim(gfp_mask)) {
4607 if (gfp_mask & __GFP_FS)
4608 __fs_reclaim_acquire(_RET_IP_);
4610 #ifdef CONFIG_MMU_NOTIFIER
4611 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4612 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4617 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4619 void fs_reclaim_release(gfp_t gfp_mask)
4621 gfp_mask = current_gfp_context(gfp_mask);
4623 if (__need_reclaim(gfp_mask)) {
4624 if (gfp_mask & __GFP_FS)
4625 __fs_reclaim_release(_RET_IP_);
4628 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4631 /* Perform direct synchronous page reclaim */
4632 static unsigned long
4633 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4634 const struct alloc_context *ac)
4636 unsigned int noreclaim_flag;
4637 unsigned long progress;
4641 /* We now go into synchronous reclaim */
4642 cpuset_memory_pressure_bump();
4643 fs_reclaim_acquire(gfp_mask);
4644 noreclaim_flag = memalloc_noreclaim_save();
4646 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4649 memalloc_noreclaim_restore(noreclaim_flag);
4650 fs_reclaim_release(gfp_mask);
4657 /* The really slow allocator path where we enter direct reclaim */
4658 static inline struct page *
4659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4660 unsigned int alloc_flags, const struct alloc_context *ac,
4661 unsigned long *did_some_progress)
4663 struct page *page = NULL;
4664 unsigned long pflags;
4665 bool drained = false;
4667 psi_memstall_enter(&pflags);
4668 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4669 if (unlikely(!(*did_some_progress)))
4673 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4676 * If an allocation failed after direct reclaim, it could be because
4677 * pages are pinned on the per-cpu lists or in high alloc reserves.
4678 * Shrink them and try again
4680 if (!page && !drained) {
4681 unreserve_highatomic_pageblock(ac, false);
4682 drain_all_pages(NULL);
4687 psi_memstall_leave(&pflags);
4692 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4693 const struct alloc_context *ac)
4697 pg_data_t *last_pgdat = NULL;
4698 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4700 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4702 if (!managed_zone(zone))
4704 if (last_pgdat != zone->zone_pgdat) {
4705 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4706 last_pgdat = zone->zone_pgdat;
4711 static inline unsigned int
4712 gfp_to_alloc_flags(gfp_t gfp_mask)
4714 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4717 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4718 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4719 * to save two branches.
4721 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4722 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4725 * The caller may dip into page reserves a bit more if the caller
4726 * cannot run direct reclaim, or if the caller has realtime scheduling
4727 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4728 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4730 alloc_flags |= (__force int)
4731 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4733 if (gfp_mask & __GFP_ATOMIC) {
4735 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4736 * if it can't schedule.
4738 if (!(gfp_mask & __GFP_NOMEMALLOC))
4739 alloc_flags |= ALLOC_HARDER;
4741 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4742 * comment for __cpuset_node_allowed().
4744 alloc_flags &= ~ALLOC_CPUSET;
4745 } else if (unlikely(rt_task(current)) && in_task())
4746 alloc_flags |= ALLOC_HARDER;
4748 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4753 static bool oom_reserves_allowed(struct task_struct *tsk)
4755 if (!tsk_is_oom_victim(tsk))
4759 * !MMU doesn't have oom reaper so give access to memory reserves
4760 * only to the thread with TIF_MEMDIE set
4762 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4769 * Distinguish requests which really need access to full memory
4770 * reserves from oom victims which can live with a portion of it
4772 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4774 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4776 if (gfp_mask & __GFP_MEMALLOC)
4777 return ALLOC_NO_WATERMARKS;
4778 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4779 return ALLOC_NO_WATERMARKS;
4780 if (!in_interrupt()) {
4781 if (current->flags & PF_MEMALLOC)
4782 return ALLOC_NO_WATERMARKS;
4783 else if (oom_reserves_allowed(current))
4790 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4792 return !!__gfp_pfmemalloc_flags(gfp_mask);
4796 * Checks whether it makes sense to retry the reclaim to make a forward progress
4797 * for the given allocation request.
4799 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4800 * without success, or when we couldn't even meet the watermark if we
4801 * reclaimed all remaining pages on the LRU lists.
4803 * Returns true if a retry is viable or false to enter the oom path.
4806 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4807 struct alloc_context *ac, int alloc_flags,
4808 bool did_some_progress, int *no_progress_loops)
4815 * Costly allocations might have made a progress but this doesn't mean
4816 * their order will become available due to high fragmentation so
4817 * always increment the no progress counter for them
4819 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4820 *no_progress_loops = 0;
4822 (*no_progress_loops)++;
4825 * Make sure we converge to OOM if we cannot make any progress
4826 * several times in the row.
4828 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4829 /* Before OOM, exhaust highatomic_reserve */
4830 return unreserve_highatomic_pageblock(ac, true);
4834 * Keep reclaiming pages while there is a chance this will lead
4835 * somewhere. If none of the target zones can satisfy our allocation
4836 * request even if all reclaimable pages are considered then we are
4837 * screwed and have to go OOM.
4839 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4840 ac->highest_zoneidx, ac->nodemask) {
4841 unsigned long available;
4842 unsigned long reclaimable;
4843 unsigned long min_wmark = min_wmark_pages(zone);
4846 available = reclaimable = zone_reclaimable_pages(zone);
4847 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4850 * Would the allocation succeed if we reclaimed all
4851 * reclaimable pages?
4853 wmark = __zone_watermark_ok(zone, order, min_wmark,
4854 ac->highest_zoneidx, alloc_flags, available);
4855 trace_reclaim_retry_zone(z, order, reclaimable,
4856 available, min_wmark, *no_progress_loops, wmark);
4864 * Memory allocation/reclaim might be called from a WQ context and the
4865 * current implementation of the WQ concurrency control doesn't
4866 * recognize that a particular WQ is congested if the worker thread is
4867 * looping without ever sleeping. Therefore we have to do a short sleep
4868 * here rather than calling cond_resched().
4870 if (current->flags & PF_WQ_WORKER)
4871 schedule_timeout_uninterruptible(1);
4878 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4881 * It's possible that cpuset's mems_allowed and the nodemask from
4882 * mempolicy don't intersect. This should be normally dealt with by
4883 * policy_nodemask(), but it's possible to race with cpuset update in
4884 * such a way the check therein was true, and then it became false
4885 * before we got our cpuset_mems_cookie here.
4886 * This assumes that for all allocations, ac->nodemask can come only
4887 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4888 * when it does not intersect with the cpuset restrictions) or the
4889 * caller can deal with a violated nodemask.
4891 if (cpusets_enabled() && ac->nodemask &&
4892 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4893 ac->nodemask = NULL;
4898 * When updating a task's mems_allowed or mempolicy nodemask, it is
4899 * possible to race with parallel threads in such a way that our
4900 * allocation can fail while the mask is being updated. If we are about
4901 * to fail, check if the cpuset changed during allocation and if so,
4904 if (read_mems_allowed_retry(cpuset_mems_cookie))
4910 static inline struct page *
4911 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4912 struct alloc_context *ac)
4914 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4915 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4916 struct page *page = NULL;
4917 unsigned int alloc_flags;
4918 unsigned long did_some_progress;
4919 enum compact_priority compact_priority;
4920 enum compact_result compact_result;
4921 int compaction_retries;
4922 int no_progress_loops;
4923 unsigned int cpuset_mems_cookie;
4927 * We also sanity check to catch abuse of atomic reserves being used by
4928 * callers that are not in atomic context.
4930 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4931 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4932 gfp_mask &= ~__GFP_ATOMIC;
4935 compaction_retries = 0;
4936 no_progress_loops = 0;
4937 compact_priority = DEF_COMPACT_PRIORITY;
4938 cpuset_mems_cookie = read_mems_allowed_begin();
4941 * The fast path uses conservative alloc_flags to succeed only until
4942 * kswapd needs to be woken up, and to avoid the cost of setting up
4943 * alloc_flags precisely. So we do that now.
4945 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4948 * We need to recalculate the starting point for the zonelist iterator
4949 * because we might have used different nodemask in the fast path, or
4950 * there was a cpuset modification and we are retrying - otherwise we
4951 * could end up iterating over non-eligible zones endlessly.
4953 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4954 ac->highest_zoneidx, ac->nodemask);
4955 if (!ac->preferred_zoneref->zone)
4959 * Check for insane configurations where the cpuset doesn't contain
4960 * any suitable zone to satisfy the request - e.g. non-movable
4961 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4963 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4964 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4965 ac->highest_zoneidx,
4966 &cpuset_current_mems_allowed);
4971 if (alloc_flags & ALLOC_KSWAPD)
4972 wake_all_kswapds(order, gfp_mask, ac);
4975 * The adjusted alloc_flags might result in immediate success, so try
4978 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4983 * For costly allocations, try direct compaction first, as it's likely
4984 * that we have enough base pages and don't need to reclaim. For non-
4985 * movable high-order allocations, do that as well, as compaction will
4986 * try prevent permanent fragmentation by migrating from blocks of the
4988 * Don't try this for allocations that are allowed to ignore
4989 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4991 if (can_direct_reclaim &&
4993 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4994 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4995 page = __alloc_pages_direct_compact(gfp_mask, order,
4997 INIT_COMPACT_PRIORITY,
5003 * Checks for costly allocations with __GFP_NORETRY, which
5004 * includes some THP page fault allocations
5006 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5008 * If allocating entire pageblock(s) and compaction
5009 * failed because all zones are below low watermarks
5010 * or is prohibited because it recently failed at this
5011 * order, fail immediately unless the allocator has
5012 * requested compaction and reclaim retry.
5015 * - potentially very expensive because zones are far
5016 * below their low watermarks or this is part of very
5017 * bursty high order allocations,
5018 * - not guaranteed to help because isolate_freepages()
5019 * may not iterate over freed pages as part of its
5021 * - unlikely to make entire pageblocks free on its
5024 if (compact_result == COMPACT_SKIPPED ||
5025 compact_result == COMPACT_DEFERRED)
5029 * Looks like reclaim/compaction is worth trying, but
5030 * sync compaction could be very expensive, so keep
5031 * using async compaction.
5033 compact_priority = INIT_COMPACT_PRIORITY;
5038 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5039 if (alloc_flags & ALLOC_KSWAPD)
5040 wake_all_kswapds(order, gfp_mask, ac);
5042 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5044 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5047 * Reset the nodemask and zonelist iterators if memory policies can be
5048 * ignored. These allocations are high priority and system rather than
5051 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5052 ac->nodemask = NULL;
5053 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5054 ac->highest_zoneidx, ac->nodemask);
5057 /* Attempt with potentially adjusted zonelist and alloc_flags */
5058 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5062 /* Caller is not willing to reclaim, we can't balance anything */
5063 if (!can_direct_reclaim)
5066 /* Avoid recursion of direct reclaim */
5067 if (current->flags & PF_MEMALLOC)
5070 /* Try direct reclaim and then allocating */
5071 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5072 &did_some_progress);
5076 /* Try direct compaction and then allocating */
5077 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5078 compact_priority, &compact_result);
5082 /* Do not loop if specifically requested */
5083 if (gfp_mask & __GFP_NORETRY)
5087 * Do not retry costly high order allocations unless they are
5088 * __GFP_RETRY_MAYFAIL
5090 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5093 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5094 did_some_progress > 0, &no_progress_loops))
5098 * It doesn't make any sense to retry for the compaction if the order-0
5099 * reclaim is not able to make any progress because the current
5100 * implementation of the compaction depends on the sufficient amount
5101 * of free memory (see __compaction_suitable)
5103 if (did_some_progress > 0 &&
5104 should_compact_retry(ac, order, alloc_flags,
5105 compact_result, &compact_priority,
5106 &compaction_retries))
5110 /* Deal with possible cpuset update races before we start OOM killing */
5111 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5114 /* Reclaim has failed us, start killing things */
5115 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5119 /* Avoid allocations with no watermarks from looping endlessly */
5120 if (tsk_is_oom_victim(current) &&
5121 (alloc_flags & ALLOC_OOM ||
5122 (gfp_mask & __GFP_NOMEMALLOC)))
5125 /* Retry as long as the OOM killer is making progress */
5126 if (did_some_progress) {
5127 no_progress_loops = 0;
5132 /* Deal with possible cpuset update races before we fail */
5133 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5137 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5140 if (gfp_mask & __GFP_NOFAIL) {
5142 * All existing users of the __GFP_NOFAIL are blockable, so warn
5143 * of any new users that actually require GFP_NOWAIT
5145 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5149 * PF_MEMALLOC request from this context is rather bizarre
5150 * because we cannot reclaim anything and only can loop waiting
5151 * for somebody to do a work for us
5153 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5156 * non failing costly orders are a hard requirement which we
5157 * are not prepared for much so let's warn about these users
5158 * so that we can identify them and convert them to something
5161 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5164 * Help non-failing allocations by giving them access to memory
5165 * reserves but do not use ALLOC_NO_WATERMARKS because this
5166 * could deplete whole memory reserves which would just make
5167 * the situation worse
5169 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5177 warn_alloc(gfp_mask, ac->nodemask,
5178 "page allocation failure: order:%u", order);
5183 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5184 int preferred_nid, nodemask_t *nodemask,
5185 struct alloc_context *ac, gfp_t *alloc_gfp,
5186 unsigned int *alloc_flags)
5188 ac->highest_zoneidx = gfp_zone(gfp_mask);
5189 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5190 ac->nodemask = nodemask;
5191 ac->migratetype = gfp_migratetype(gfp_mask);
5193 if (cpusets_enabled()) {
5194 *alloc_gfp |= __GFP_HARDWALL;
5196 * When we are in the interrupt context, it is irrelevant
5197 * to the current task context. It means that any node ok.
5199 if (in_task() && !ac->nodemask)
5200 ac->nodemask = &cpuset_current_mems_allowed;
5202 *alloc_flags |= ALLOC_CPUSET;
5205 fs_reclaim_acquire(gfp_mask);
5206 fs_reclaim_release(gfp_mask);
5208 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5210 if (should_fail_alloc_page(gfp_mask, order))
5213 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5215 /* Dirty zone balancing only done in the fast path */
5216 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5219 * The preferred zone is used for statistics but crucially it is
5220 * also used as the starting point for the zonelist iterator. It
5221 * may get reset for allocations that ignore memory policies.
5223 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5224 ac->highest_zoneidx, ac->nodemask);
5230 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5231 * @gfp: GFP flags for the allocation
5232 * @preferred_nid: The preferred NUMA node ID to allocate from
5233 * @nodemask: Set of nodes to allocate from, may be NULL
5234 * @nr_pages: The number of pages desired on the list or array
5235 * @page_list: Optional list to store the allocated pages
5236 * @page_array: Optional array to store the pages
5238 * This is a batched version of the page allocator that attempts to
5239 * allocate nr_pages quickly. Pages are added to page_list if page_list
5240 * is not NULL, otherwise it is assumed that the page_array is valid.
5242 * For lists, nr_pages is the number of pages that should be allocated.
5244 * For arrays, only NULL elements are populated with pages and nr_pages
5245 * is the maximum number of pages that will be stored in the array.
5247 * Returns the number of pages on the list or array.
5249 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5250 nodemask_t *nodemask, int nr_pages,
5251 struct list_head *page_list,
5252 struct page **page_array)
5255 unsigned long flags;
5258 struct per_cpu_pages *pcp;
5259 struct list_head *pcp_list;
5260 struct alloc_context ac;
5262 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5263 int nr_populated = 0, nr_account = 0;
5266 * Skip populated array elements to determine if any pages need
5267 * to be allocated before disabling IRQs.
5269 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5272 /* No pages requested? */
5273 if (unlikely(nr_pages <= 0))
5276 /* Already populated array? */
5277 if (unlikely(page_array && nr_pages - nr_populated == 0))
5280 /* Bulk allocator does not support memcg accounting. */
5281 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5284 /* Use the single page allocator for one page. */
5285 if (nr_pages - nr_populated == 1)
5288 #ifdef CONFIG_PAGE_OWNER
5290 * PAGE_OWNER may recurse into the allocator to allocate space to
5291 * save the stack with pagesets.lock held. Releasing/reacquiring
5292 * removes much of the performance benefit of bulk allocation so
5293 * force the caller to allocate one page at a time as it'll have
5294 * similar performance to added complexity to the bulk allocator.
5296 if (static_branch_unlikely(&page_owner_inited))
5300 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5301 gfp &= gfp_allowed_mask;
5303 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5307 /* Find an allowed local zone that meets the low watermark. */
5308 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5311 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5312 !__cpuset_zone_allowed(zone, gfp)) {
5316 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5317 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5321 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5322 if (zone_watermark_fast(zone, 0, mark,
5323 zonelist_zone_idx(ac.preferred_zoneref),
5324 alloc_flags, gfp)) {
5330 * If there are no allowed local zones that meets the watermarks then
5331 * try to allocate a single page and reclaim if necessary.
5333 if (unlikely(!zone))
5336 /* Attempt the batch allocation */
5337 local_lock_irqsave(&pagesets.lock, flags);
5338 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5339 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5341 while (nr_populated < nr_pages) {
5343 /* Skip existing pages */
5344 if (page_array && page_array[nr_populated]) {
5349 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5351 if (unlikely(!page)) {
5352 /* Try and allocate at least one page */
5359 prep_new_page(page, 0, gfp, 0);
5361 list_add(&page->lru, page_list);
5363 page_array[nr_populated] = page;
5367 local_unlock_irqrestore(&pagesets.lock, flags);
5369 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5370 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5373 return nr_populated;
5376 local_unlock_irqrestore(&pagesets.lock, flags);
5379 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5382 list_add(&page->lru, page_list);
5384 page_array[nr_populated] = page;
5390 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5393 * This is the 'heart' of the zoned buddy allocator.
5395 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5396 nodemask_t *nodemask)
5399 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5400 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5401 struct alloc_context ac = { };
5404 * There are several places where we assume that the order value is sane
5405 * so bail out early if the request is out of bound.
5407 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5410 gfp &= gfp_allowed_mask;
5412 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5413 * resp. GFP_NOIO which has to be inherited for all allocation requests
5414 * from a particular context which has been marked by
5415 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5416 * movable zones are not used during allocation.
5418 gfp = current_gfp_context(gfp);
5420 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5421 &alloc_gfp, &alloc_flags))
5425 * Forbid the first pass from falling back to types that fragment
5426 * memory until all local zones are considered.
5428 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5430 /* First allocation attempt */
5431 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5436 ac.spread_dirty_pages = false;
5439 * Restore the original nodemask if it was potentially replaced with
5440 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5442 ac.nodemask = nodemask;
5444 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5447 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5448 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5449 __free_pages(page, order);
5453 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5457 EXPORT_SYMBOL(__alloc_pages);
5459 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5460 nodemask_t *nodemask)
5462 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5463 preferred_nid, nodemask);
5465 if (page && order > 1)
5466 prep_transhuge_page(page);
5467 return (struct folio *)page;
5469 EXPORT_SYMBOL(__folio_alloc);
5472 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5473 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5474 * you need to access high mem.
5476 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5480 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5483 return (unsigned long) page_address(page);
5485 EXPORT_SYMBOL(__get_free_pages);
5487 unsigned long get_zeroed_page(gfp_t gfp_mask)
5489 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5491 EXPORT_SYMBOL(get_zeroed_page);
5494 * __free_pages - Free pages allocated with alloc_pages().
5495 * @page: The page pointer returned from alloc_pages().
5496 * @order: The order of the allocation.
5498 * This function can free multi-page allocations that are not compound
5499 * pages. It does not check that the @order passed in matches that of
5500 * the allocation, so it is easy to leak memory. Freeing more memory
5501 * than was allocated will probably emit a warning.
5503 * If the last reference to this page is speculative, it will be released
5504 * by put_page() which only frees the first page of a non-compound
5505 * allocation. To prevent the remaining pages from being leaked, we free
5506 * the subsequent pages here. If you want to use the page's reference
5507 * count to decide when to free the allocation, you should allocate a
5508 * compound page, and use put_page() instead of __free_pages().
5510 * Context: May be called in interrupt context or while holding a normal
5511 * spinlock, but not in NMI context or while holding a raw spinlock.
5513 void __free_pages(struct page *page, unsigned int order)
5515 if (put_page_testzero(page))
5516 free_the_page(page, order);
5517 else if (!PageHead(page))
5519 free_the_page(page + (1 << order), order);
5521 EXPORT_SYMBOL(__free_pages);
5523 void free_pages(unsigned long addr, unsigned int order)
5526 VM_BUG_ON(!virt_addr_valid((void *)addr));
5527 __free_pages(virt_to_page((void *)addr), order);
5531 EXPORT_SYMBOL(free_pages);
5535 * An arbitrary-length arbitrary-offset area of memory which resides
5536 * within a 0 or higher order page. Multiple fragments within that page
5537 * are individually refcounted, in the page's reference counter.
5539 * The page_frag functions below provide a simple allocation framework for
5540 * page fragments. This is used by the network stack and network device
5541 * drivers to provide a backing region of memory for use as either an
5542 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5544 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5547 struct page *page = NULL;
5548 gfp_t gfp = gfp_mask;
5550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5551 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5553 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5554 PAGE_FRAG_CACHE_MAX_ORDER);
5555 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5557 if (unlikely(!page))
5558 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5560 nc->va = page ? page_address(page) : NULL;
5565 void __page_frag_cache_drain(struct page *page, unsigned int count)
5567 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5569 if (page_ref_sub_and_test(page, count))
5570 free_the_page(page, compound_order(page));
5572 EXPORT_SYMBOL(__page_frag_cache_drain);
5574 void *page_frag_alloc_align(struct page_frag_cache *nc,
5575 unsigned int fragsz, gfp_t gfp_mask,
5576 unsigned int align_mask)
5578 unsigned int size = PAGE_SIZE;
5582 if (unlikely(!nc->va)) {
5584 page = __page_frag_cache_refill(nc, gfp_mask);
5588 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5589 /* if size can vary use size else just use PAGE_SIZE */
5592 /* Even if we own the page, we do not use atomic_set().
5593 * This would break get_page_unless_zero() users.
5595 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5597 /* reset page count bias and offset to start of new frag */
5598 nc->pfmemalloc = page_is_pfmemalloc(page);
5599 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5603 offset = nc->offset - fragsz;
5604 if (unlikely(offset < 0)) {
5605 page = virt_to_page(nc->va);
5607 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5610 if (unlikely(nc->pfmemalloc)) {
5611 free_the_page(page, compound_order(page));
5615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5616 /* if size can vary use size else just use PAGE_SIZE */
5619 /* OK, page count is 0, we can safely set it */
5620 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5622 /* reset page count bias and offset to start of new frag */
5623 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5624 offset = size - fragsz;
5628 offset &= align_mask;
5629 nc->offset = offset;
5631 return nc->va + offset;
5633 EXPORT_SYMBOL(page_frag_alloc_align);
5636 * Frees a page fragment allocated out of either a compound or order 0 page.
5638 void page_frag_free(void *addr)
5640 struct page *page = virt_to_head_page(addr);
5642 if (unlikely(put_page_testzero(page)))
5643 free_the_page(page, compound_order(page));
5645 EXPORT_SYMBOL(page_frag_free);
5647 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5651 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5652 unsigned long used = addr + PAGE_ALIGN(size);
5654 split_page(virt_to_page((void *)addr), order);
5655 while (used < alloc_end) {
5660 return (void *)addr;
5664 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5665 * @size: the number of bytes to allocate
5666 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5668 * This function is similar to alloc_pages(), except that it allocates the
5669 * minimum number of pages to satisfy the request. alloc_pages() can only
5670 * allocate memory in power-of-two pages.
5672 * This function is also limited by MAX_ORDER.
5674 * Memory allocated by this function must be released by free_pages_exact().
5676 * Return: pointer to the allocated area or %NULL in case of error.
5678 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5680 unsigned int order = get_order(size);
5683 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5684 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5686 addr = __get_free_pages(gfp_mask, order);
5687 return make_alloc_exact(addr, order, size);
5689 EXPORT_SYMBOL(alloc_pages_exact);
5692 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5694 * @nid: the preferred node ID where memory should be allocated
5695 * @size: the number of bytes to allocate
5696 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5698 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5701 * Return: pointer to the allocated area or %NULL in case of error.
5703 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5705 unsigned int order = get_order(size);
5708 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5709 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5711 p = alloc_pages_node(nid, gfp_mask, order);
5714 return make_alloc_exact((unsigned long)page_address(p), order, size);
5718 * free_pages_exact - release memory allocated via alloc_pages_exact()
5719 * @virt: the value returned by alloc_pages_exact.
5720 * @size: size of allocation, same value as passed to alloc_pages_exact().
5722 * Release the memory allocated by a previous call to alloc_pages_exact.
5724 void free_pages_exact(void *virt, size_t size)
5726 unsigned long addr = (unsigned long)virt;
5727 unsigned long end = addr + PAGE_ALIGN(size);
5729 while (addr < end) {
5734 EXPORT_SYMBOL(free_pages_exact);
5737 * nr_free_zone_pages - count number of pages beyond high watermark
5738 * @offset: The zone index of the highest zone
5740 * nr_free_zone_pages() counts the number of pages which are beyond the
5741 * high watermark within all zones at or below a given zone index. For each
5742 * zone, the number of pages is calculated as:
5744 * nr_free_zone_pages = managed_pages - high_pages
5746 * Return: number of pages beyond high watermark.
5748 static unsigned long nr_free_zone_pages(int offset)
5753 /* Just pick one node, since fallback list is circular */
5754 unsigned long sum = 0;
5756 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5758 for_each_zone_zonelist(zone, z, zonelist, offset) {
5759 unsigned long size = zone_managed_pages(zone);
5760 unsigned long high = high_wmark_pages(zone);
5769 * nr_free_buffer_pages - count number of pages beyond high watermark
5771 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5772 * watermark within ZONE_DMA and ZONE_NORMAL.
5774 * Return: number of pages beyond high watermark within ZONE_DMA and
5777 unsigned long nr_free_buffer_pages(void)
5779 return nr_free_zone_pages(gfp_zone(GFP_USER));
5781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5783 static inline void show_node(struct zone *zone)
5785 if (IS_ENABLED(CONFIG_NUMA))
5786 printk("Node %d ", zone_to_nid(zone));
5789 long si_mem_available(void)
5792 unsigned long pagecache;
5793 unsigned long wmark_low = 0;
5794 unsigned long pages[NR_LRU_LISTS];
5795 unsigned long reclaimable;
5799 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5800 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5803 wmark_low += low_wmark_pages(zone);
5806 * Estimate the amount of memory available for userspace allocations,
5807 * without causing swapping.
5809 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5812 * Not all the page cache can be freed, otherwise the system will
5813 * start swapping. Assume at least half of the page cache, or the
5814 * low watermark worth of cache, needs to stay.
5816 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5817 pagecache -= min(pagecache / 2, wmark_low);
5818 available += pagecache;
5821 * Part of the reclaimable slab and other kernel memory consists of
5822 * items that are in use, and cannot be freed. Cap this estimate at the
5825 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5826 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5827 available += reclaimable - min(reclaimable / 2, wmark_low);
5833 EXPORT_SYMBOL_GPL(si_mem_available);
5835 void si_meminfo(struct sysinfo *val)
5837 val->totalram = totalram_pages();
5838 val->sharedram = global_node_page_state(NR_SHMEM);
5839 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5840 val->bufferram = nr_blockdev_pages();
5841 val->totalhigh = totalhigh_pages();
5842 val->freehigh = nr_free_highpages();
5843 val->mem_unit = PAGE_SIZE;
5846 EXPORT_SYMBOL(si_meminfo);
5849 void si_meminfo_node(struct sysinfo *val, int nid)
5851 int zone_type; /* needs to be signed */
5852 unsigned long managed_pages = 0;
5853 unsigned long managed_highpages = 0;
5854 unsigned long free_highpages = 0;
5855 pg_data_t *pgdat = NODE_DATA(nid);
5857 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5858 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5859 val->totalram = managed_pages;
5860 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5861 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5862 #ifdef CONFIG_HIGHMEM
5863 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5864 struct zone *zone = &pgdat->node_zones[zone_type];
5866 if (is_highmem(zone)) {
5867 managed_highpages += zone_managed_pages(zone);
5868 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5871 val->totalhigh = managed_highpages;
5872 val->freehigh = free_highpages;
5874 val->totalhigh = managed_highpages;
5875 val->freehigh = free_highpages;
5877 val->mem_unit = PAGE_SIZE;
5882 * Determine whether the node should be displayed or not, depending on whether
5883 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5885 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5887 if (!(flags & SHOW_MEM_FILTER_NODES))
5891 * no node mask - aka implicit memory numa policy. Do not bother with
5892 * the synchronization - read_mems_allowed_begin - because we do not
5893 * have to be precise here.
5896 nodemask = &cpuset_current_mems_allowed;
5898 return !node_isset(nid, *nodemask);
5901 #define K(x) ((x) << (PAGE_SHIFT-10))
5903 static void show_migration_types(unsigned char type)
5905 static const char types[MIGRATE_TYPES] = {
5906 [MIGRATE_UNMOVABLE] = 'U',
5907 [MIGRATE_MOVABLE] = 'M',
5908 [MIGRATE_RECLAIMABLE] = 'E',
5909 [MIGRATE_HIGHATOMIC] = 'H',
5911 [MIGRATE_CMA] = 'C',
5913 #ifdef CONFIG_MEMORY_ISOLATION
5914 [MIGRATE_ISOLATE] = 'I',
5917 char tmp[MIGRATE_TYPES + 1];
5921 for (i = 0; i < MIGRATE_TYPES; i++) {
5922 if (type & (1 << i))
5927 printk(KERN_CONT "(%s) ", tmp);
5931 * Show free area list (used inside shift_scroll-lock stuff)
5932 * We also calculate the percentage fragmentation. We do this by counting the
5933 * memory on each free list with the exception of the first item on the list.
5936 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5939 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5941 unsigned long free_pcp = 0;
5946 for_each_populated_zone(zone) {
5947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5950 for_each_online_cpu(cpu)
5951 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5954 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5955 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5956 " unevictable:%lu dirty:%lu writeback:%lu\n"
5957 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5958 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5959 " kernel_misc_reclaimable:%lu\n"
5960 " free:%lu free_pcp:%lu free_cma:%lu\n",
5961 global_node_page_state(NR_ACTIVE_ANON),
5962 global_node_page_state(NR_INACTIVE_ANON),
5963 global_node_page_state(NR_ISOLATED_ANON),
5964 global_node_page_state(NR_ACTIVE_FILE),
5965 global_node_page_state(NR_INACTIVE_FILE),
5966 global_node_page_state(NR_ISOLATED_FILE),
5967 global_node_page_state(NR_UNEVICTABLE),
5968 global_node_page_state(NR_FILE_DIRTY),
5969 global_node_page_state(NR_WRITEBACK),
5970 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5971 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5972 global_node_page_state(NR_FILE_MAPPED),
5973 global_node_page_state(NR_SHMEM),
5974 global_node_page_state(NR_PAGETABLE),
5975 global_zone_page_state(NR_BOUNCE),
5976 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5977 global_zone_page_state(NR_FREE_PAGES),
5979 global_zone_page_state(NR_FREE_CMA_PAGES));
5981 for_each_online_pgdat(pgdat) {
5982 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5986 " active_anon:%lukB"
5987 " inactive_anon:%lukB"
5988 " active_file:%lukB"
5989 " inactive_file:%lukB"
5990 " unevictable:%lukB"
5991 " isolated(anon):%lukB"
5992 " isolated(file):%lukB"
5997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5999 " shmem_pmdmapped: %lukB"
6002 " writeback_tmp:%lukB"
6003 " kernel_stack:%lukB"
6004 #ifdef CONFIG_SHADOW_CALL_STACK
6005 " shadow_call_stack:%lukB"
6008 " all_unreclaimable? %s"
6011 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6012 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6013 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6014 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6015 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6016 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6017 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6018 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6019 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6020 K(node_page_state(pgdat, NR_WRITEBACK)),
6021 K(node_page_state(pgdat, NR_SHMEM)),
6022 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6023 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6024 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6025 K(node_page_state(pgdat, NR_ANON_THPS)),
6027 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6028 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6029 #ifdef CONFIG_SHADOW_CALL_STACK
6030 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6032 K(node_page_state(pgdat, NR_PAGETABLE)),
6033 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6037 for_each_populated_zone(zone) {
6040 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6044 for_each_online_cpu(cpu)
6045 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6055 " reserved_highatomic:%luKB"
6056 " active_anon:%lukB"
6057 " inactive_anon:%lukB"
6058 " active_file:%lukB"
6059 " inactive_file:%lukB"
6060 " unevictable:%lukB"
6061 " writepending:%lukB"
6071 K(zone_page_state(zone, NR_FREE_PAGES)),
6072 K(zone->watermark_boost),
6073 K(min_wmark_pages(zone)),
6074 K(low_wmark_pages(zone)),
6075 K(high_wmark_pages(zone)),
6076 K(zone->nr_reserved_highatomic),
6077 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6078 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6079 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6080 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6081 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6082 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6083 K(zone->present_pages),
6084 K(zone_managed_pages(zone)),
6085 K(zone_page_state(zone, NR_MLOCK)),
6086 K(zone_page_state(zone, NR_BOUNCE)),
6088 K(this_cpu_read(zone->per_cpu_pageset->count)),
6089 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6090 printk("lowmem_reserve[]:");
6091 for (i = 0; i < MAX_NR_ZONES; i++)
6092 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6093 printk(KERN_CONT "\n");
6096 for_each_populated_zone(zone) {
6098 unsigned long nr[MAX_ORDER], flags, total = 0;
6099 unsigned char types[MAX_ORDER];
6101 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6104 printk(KERN_CONT "%s: ", zone->name);
6106 spin_lock_irqsave(&zone->lock, flags);
6107 for (order = 0; order < MAX_ORDER; order++) {
6108 struct free_area *area = &zone->free_area[order];
6111 nr[order] = area->nr_free;
6112 total += nr[order] << order;
6115 for (type = 0; type < MIGRATE_TYPES; type++) {
6116 if (!free_area_empty(area, type))
6117 types[order] |= 1 << type;
6120 spin_unlock_irqrestore(&zone->lock, flags);
6121 for (order = 0; order < MAX_ORDER; order++) {
6122 printk(KERN_CONT "%lu*%lukB ",
6123 nr[order], K(1UL) << order);
6125 show_migration_types(types[order]);
6127 printk(KERN_CONT "= %lukB\n", K(total));
6130 hugetlb_show_meminfo();
6132 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6134 show_swap_cache_info();
6137 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6139 zoneref->zone = zone;
6140 zoneref->zone_idx = zone_idx(zone);
6144 * Builds allocation fallback zone lists.
6146 * Add all populated zones of a node to the zonelist.
6148 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6151 enum zone_type zone_type = MAX_NR_ZONES;
6156 zone = pgdat->node_zones + zone_type;
6157 if (populated_zone(zone)) {
6158 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6159 check_highest_zone(zone_type);
6161 } while (zone_type);
6168 static int __parse_numa_zonelist_order(char *s)
6171 * We used to support different zonelists modes but they turned
6172 * out to be just not useful. Let's keep the warning in place
6173 * if somebody still use the cmd line parameter so that we do
6174 * not fail it silently
6176 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6177 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6183 char numa_zonelist_order[] = "Node";
6186 * sysctl handler for numa_zonelist_order
6188 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6189 void *buffer, size_t *length, loff_t *ppos)
6192 return __parse_numa_zonelist_order(buffer);
6193 return proc_dostring(table, write, buffer, length, ppos);
6197 static int node_load[MAX_NUMNODES];
6200 * find_next_best_node - find the next node that should appear in a given node's fallback list
6201 * @node: node whose fallback list we're appending
6202 * @used_node_mask: nodemask_t of already used nodes
6204 * We use a number of factors to determine which is the next node that should
6205 * appear on a given node's fallback list. The node should not have appeared
6206 * already in @node's fallback list, and it should be the next closest node
6207 * according to the distance array (which contains arbitrary distance values
6208 * from each node to each node in the system), and should also prefer nodes
6209 * with no CPUs, since presumably they'll have very little allocation pressure
6210 * on them otherwise.
6212 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6214 int find_next_best_node(int node, nodemask_t *used_node_mask)
6217 int min_val = INT_MAX;
6218 int best_node = NUMA_NO_NODE;
6220 /* Use the local node if we haven't already */
6221 if (!node_isset(node, *used_node_mask)) {
6222 node_set(node, *used_node_mask);
6226 for_each_node_state(n, N_MEMORY) {
6228 /* Don't want a node to appear more than once */
6229 if (node_isset(n, *used_node_mask))
6232 /* Use the distance array to find the distance */
6233 val = node_distance(node, n);
6235 /* Penalize nodes under us ("prefer the next node") */
6238 /* Give preference to headless and unused nodes */
6239 if (!cpumask_empty(cpumask_of_node(n)))
6240 val += PENALTY_FOR_NODE_WITH_CPUS;
6242 /* Slight preference for less loaded node */
6243 val *= MAX_NUMNODES;
6244 val += node_load[n];
6246 if (val < min_val) {
6253 node_set(best_node, *used_node_mask);
6260 * Build zonelists ordered by node and zones within node.
6261 * This results in maximum locality--normal zone overflows into local
6262 * DMA zone, if any--but risks exhausting DMA zone.
6264 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6267 struct zoneref *zonerefs;
6270 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6272 for (i = 0; i < nr_nodes; i++) {
6275 pg_data_t *node = NODE_DATA(node_order[i]);
6277 nr_zones = build_zonerefs_node(node, zonerefs);
6278 zonerefs += nr_zones;
6280 zonerefs->zone = NULL;
6281 zonerefs->zone_idx = 0;
6285 * Build gfp_thisnode zonelists
6287 static void build_thisnode_zonelists(pg_data_t *pgdat)
6289 struct zoneref *zonerefs;
6292 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6293 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6294 zonerefs += nr_zones;
6295 zonerefs->zone = NULL;
6296 zonerefs->zone_idx = 0;
6300 * Build zonelists ordered by zone and nodes within zones.
6301 * This results in conserving DMA zone[s] until all Normal memory is
6302 * exhausted, but results in overflowing to remote node while memory
6303 * may still exist in local DMA zone.
6306 static void build_zonelists(pg_data_t *pgdat)
6308 static int node_order[MAX_NUMNODES];
6309 int node, nr_nodes = 0;
6310 nodemask_t used_mask = NODE_MASK_NONE;
6311 int local_node, prev_node;
6313 /* NUMA-aware ordering of nodes */
6314 local_node = pgdat->node_id;
6315 prev_node = local_node;
6317 memset(node_order, 0, sizeof(node_order));
6318 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6320 * We don't want to pressure a particular node.
6321 * So adding penalty to the first node in same
6322 * distance group to make it round-robin.
6324 if (node_distance(local_node, node) !=
6325 node_distance(local_node, prev_node))
6326 node_load[node] += 1;
6328 node_order[nr_nodes++] = node;
6332 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6333 build_thisnode_zonelists(pgdat);
6334 pr_info("Fallback order for Node %d: ", local_node);
6335 for (node = 0; node < nr_nodes; node++)
6336 pr_cont("%d ", node_order[node]);
6340 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6342 * Return node id of node used for "local" allocations.
6343 * I.e., first node id of first zone in arg node's generic zonelist.
6344 * Used for initializing percpu 'numa_mem', which is used primarily
6345 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6347 int local_memory_node(int node)
6351 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6352 gfp_zone(GFP_KERNEL),
6354 return zone_to_nid(z->zone);
6358 static void setup_min_unmapped_ratio(void);
6359 static void setup_min_slab_ratio(void);
6360 #else /* CONFIG_NUMA */
6362 static void build_zonelists(pg_data_t *pgdat)
6364 int node, local_node;
6365 struct zoneref *zonerefs;
6368 local_node = pgdat->node_id;
6370 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6371 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6372 zonerefs += nr_zones;
6375 * Now we build the zonelist so that it contains the zones
6376 * of all the other nodes.
6377 * We don't want to pressure a particular node, so when
6378 * building the zones for node N, we make sure that the
6379 * zones coming right after the local ones are those from
6380 * node N+1 (modulo N)
6382 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6383 if (!node_online(node))
6385 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6386 zonerefs += nr_zones;
6388 for (node = 0; node < local_node; node++) {
6389 if (!node_online(node))
6391 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6392 zonerefs += nr_zones;
6395 zonerefs->zone = NULL;
6396 zonerefs->zone_idx = 0;
6399 #endif /* CONFIG_NUMA */
6402 * Boot pageset table. One per cpu which is going to be used for all
6403 * zones and all nodes. The parameters will be set in such a way
6404 * that an item put on a list will immediately be handed over to
6405 * the buddy list. This is safe since pageset manipulation is done
6406 * with interrupts disabled.
6408 * The boot_pagesets must be kept even after bootup is complete for
6409 * unused processors and/or zones. They do play a role for bootstrapping
6410 * hotplugged processors.
6412 * zoneinfo_show() and maybe other functions do
6413 * not check if the processor is online before following the pageset pointer.
6414 * Other parts of the kernel may not check if the zone is available.
6416 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6417 /* These effectively disable the pcplists in the boot pageset completely */
6418 #define BOOT_PAGESET_HIGH 0
6419 #define BOOT_PAGESET_BATCH 1
6420 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6421 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6422 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6424 static void __build_all_zonelists(void *data)
6427 int __maybe_unused cpu;
6428 pg_data_t *self = data;
6429 static DEFINE_SPINLOCK(lock);
6434 memset(node_load, 0, sizeof(node_load));
6438 * This node is hotadded and no memory is yet present. So just
6439 * building zonelists is fine - no need to touch other nodes.
6441 if (self && !node_online(self->node_id)) {
6442 build_zonelists(self);
6445 * All possible nodes have pgdat preallocated
6448 for_each_node(nid) {
6449 pg_data_t *pgdat = NODE_DATA(nid);
6451 build_zonelists(pgdat);
6454 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6456 * We now know the "local memory node" for each node--
6457 * i.e., the node of the first zone in the generic zonelist.
6458 * Set up numa_mem percpu variable for on-line cpus. During
6459 * boot, only the boot cpu should be on-line; we'll init the
6460 * secondary cpus' numa_mem as they come on-line. During
6461 * node/memory hotplug, we'll fixup all on-line cpus.
6463 for_each_online_cpu(cpu)
6464 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6471 static noinline void __init
6472 build_all_zonelists_init(void)
6476 __build_all_zonelists(NULL);
6479 * Initialize the boot_pagesets that are going to be used
6480 * for bootstrapping processors. The real pagesets for
6481 * each zone will be allocated later when the per cpu
6482 * allocator is available.
6484 * boot_pagesets are used also for bootstrapping offline
6485 * cpus if the system is already booted because the pagesets
6486 * are needed to initialize allocators on a specific cpu too.
6487 * F.e. the percpu allocator needs the page allocator which
6488 * needs the percpu allocator in order to allocate its pagesets
6489 * (a chicken-egg dilemma).
6491 for_each_possible_cpu(cpu)
6492 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6494 mminit_verify_zonelist();
6495 cpuset_init_current_mems_allowed();
6499 * unless system_state == SYSTEM_BOOTING.
6501 * __ref due to call of __init annotated helper build_all_zonelists_init
6502 * [protected by SYSTEM_BOOTING].
6504 void __ref build_all_zonelists(pg_data_t *pgdat)
6506 unsigned long vm_total_pages;
6508 if (system_state == SYSTEM_BOOTING) {
6509 build_all_zonelists_init();
6511 __build_all_zonelists(pgdat);
6512 /* cpuset refresh routine should be here */
6514 /* Get the number of free pages beyond high watermark in all zones. */
6515 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6517 * Disable grouping by mobility if the number of pages in the
6518 * system is too low to allow the mechanism to work. It would be
6519 * more accurate, but expensive to check per-zone. This check is
6520 * made on memory-hotadd so a system can start with mobility
6521 * disabled and enable it later
6523 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6524 page_group_by_mobility_disabled = 1;
6526 page_group_by_mobility_disabled = 0;
6528 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6530 page_group_by_mobility_disabled ? "off" : "on",
6533 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6537 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6538 static bool __meminit
6539 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6541 static struct memblock_region *r;
6543 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6544 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6545 for_each_mem_region(r) {
6546 if (*pfn < memblock_region_memory_end_pfn(r))
6550 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6551 memblock_is_mirror(r)) {
6552 *pfn = memblock_region_memory_end_pfn(r);
6560 * Initially all pages are reserved - free ones are freed
6561 * up by memblock_free_all() once the early boot process is
6562 * done. Non-atomic initialization, single-pass.
6564 * All aligned pageblocks are initialized to the specified migratetype
6565 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6566 * zone stats (e.g., nr_isolate_pageblock) are touched.
6568 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6569 unsigned long start_pfn, unsigned long zone_end_pfn,
6570 enum meminit_context context,
6571 struct vmem_altmap *altmap, int migratetype)
6573 unsigned long pfn, end_pfn = start_pfn + size;
6576 if (highest_memmap_pfn < end_pfn - 1)
6577 highest_memmap_pfn = end_pfn - 1;
6579 #ifdef CONFIG_ZONE_DEVICE
6581 * Honor reservation requested by the driver for this ZONE_DEVICE
6582 * memory. We limit the total number of pages to initialize to just
6583 * those that might contain the memory mapping. We will defer the
6584 * ZONE_DEVICE page initialization until after we have released
6587 if (zone == ZONE_DEVICE) {
6591 if (start_pfn == altmap->base_pfn)
6592 start_pfn += altmap->reserve;
6593 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6597 for (pfn = start_pfn; pfn < end_pfn; ) {
6599 * There can be holes in boot-time mem_map[]s handed to this
6600 * function. They do not exist on hotplugged memory.
6602 if (context == MEMINIT_EARLY) {
6603 if (overlap_memmap_init(zone, &pfn))
6605 if (defer_init(nid, pfn, zone_end_pfn))
6609 page = pfn_to_page(pfn);
6610 __init_single_page(page, pfn, zone, nid);
6611 if (context == MEMINIT_HOTPLUG)
6612 __SetPageReserved(page);
6615 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6616 * such that unmovable allocations won't be scattered all
6617 * over the place during system boot.
6619 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6620 set_pageblock_migratetype(page, migratetype);
6627 #ifdef CONFIG_ZONE_DEVICE
6628 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6629 unsigned long zone_idx, int nid,
6630 struct dev_pagemap *pgmap)
6633 __init_single_page(page, pfn, zone_idx, nid);
6636 * Mark page reserved as it will need to wait for onlining
6637 * phase for it to be fully associated with a zone.
6639 * We can use the non-atomic __set_bit operation for setting
6640 * the flag as we are still initializing the pages.
6642 __SetPageReserved(page);
6645 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6646 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6647 * ever freed or placed on a driver-private list.
6649 page->pgmap = pgmap;
6650 page->zone_device_data = NULL;
6653 * Mark the block movable so that blocks are reserved for
6654 * movable at startup. This will force kernel allocations
6655 * to reserve their blocks rather than leaking throughout
6656 * the address space during boot when many long-lived
6657 * kernel allocations are made.
6659 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6660 * because this is done early in section_activate()
6662 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6663 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6669 * With compound page geometry and when struct pages are stored in ram most
6670 * tail pages are reused. Consequently, the amount of unique struct pages to
6671 * initialize is a lot smaller that the total amount of struct pages being
6672 * mapped. This is a paired / mild layering violation with explicit knowledge
6673 * of how the sparse_vmemmap internals handle compound pages in the lack
6674 * of an altmap. See vmemmap_populate_compound_pages().
6676 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6677 unsigned long nr_pages)
6679 return is_power_of_2(sizeof(struct page)) &&
6680 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6683 static void __ref memmap_init_compound(struct page *head,
6684 unsigned long head_pfn,
6685 unsigned long zone_idx, int nid,
6686 struct dev_pagemap *pgmap,
6687 unsigned long nr_pages)
6689 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6690 unsigned int order = pgmap->vmemmap_shift;
6692 __SetPageHead(head);
6693 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6694 struct page *page = pfn_to_page(pfn);
6696 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6697 prep_compound_tail(head, pfn - head_pfn);
6698 set_page_count(page, 0);
6701 * The first tail page stores compound_mapcount_ptr() and
6702 * compound_order() and the second tail page stores
6703 * compound_pincount_ptr(). Call prep_compound_head() after
6704 * the first and second tail pages have been initialized to
6705 * not have the data overwritten.
6707 if (pfn == head_pfn + 2)
6708 prep_compound_head(head, order);
6712 void __ref memmap_init_zone_device(struct zone *zone,
6713 unsigned long start_pfn,
6714 unsigned long nr_pages,
6715 struct dev_pagemap *pgmap)
6717 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6718 struct pglist_data *pgdat = zone->zone_pgdat;
6719 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6720 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6721 unsigned long zone_idx = zone_idx(zone);
6722 unsigned long start = jiffies;
6723 int nid = pgdat->node_id;
6725 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6729 * The call to memmap_init should have already taken care
6730 * of the pages reserved for the memmap, so we can just jump to
6731 * the end of that region and start processing the device pages.
6734 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6735 nr_pages = end_pfn - start_pfn;
6738 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6739 struct page *page = pfn_to_page(pfn);
6741 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6743 if (pfns_per_compound == 1)
6746 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6747 compound_nr_pages(altmap, pfns_per_compound));
6750 pr_info("%s initialised %lu pages in %ums\n", __func__,
6751 nr_pages, jiffies_to_msecs(jiffies - start));
6755 static void __meminit zone_init_free_lists(struct zone *zone)
6757 unsigned int order, t;
6758 for_each_migratetype_order(order, t) {
6759 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6760 zone->free_area[order].nr_free = 0;
6765 * Only struct pages that correspond to ranges defined by memblock.memory
6766 * are zeroed and initialized by going through __init_single_page() during
6767 * memmap_init_zone_range().
6769 * But, there could be struct pages that correspond to holes in
6770 * memblock.memory. This can happen because of the following reasons:
6771 * - physical memory bank size is not necessarily the exact multiple of the
6772 * arbitrary section size
6773 * - early reserved memory may not be listed in memblock.memory
6774 * - memory layouts defined with memmap= kernel parameter may not align
6775 * nicely with memmap sections
6777 * Explicitly initialize those struct pages so that:
6778 * - PG_Reserved is set
6779 * - zone and node links point to zone and node that span the page if the
6780 * hole is in the middle of a zone
6781 * - zone and node links point to adjacent zone/node if the hole falls on
6782 * the zone boundary; the pages in such holes will be prepended to the
6783 * zone/node above the hole except for the trailing pages in the last
6784 * section that will be appended to the zone/node below.
6786 static void __init init_unavailable_range(unsigned long spfn,
6793 for (pfn = spfn; pfn < epfn; pfn++) {
6794 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6795 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6796 + pageblock_nr_pages - 1;
6799 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6800 __SetPageReserved(pfn_to_page(pfn));
6805 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6806 node, zone_names[zone], pgcnt);
6809 static void __init memmap_init_zone_range(struct zone *zone,
6810 unsigned long start_pfn,
6811 unsigned long end_pfn,
6812 unsigned long *hole_pfn)
6814 unsigned long zone_start_pfn = zone->zone_start_pfn;
6815 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6816 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6818 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6819 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6821 if (start_pfn >= end_pfn)
6824 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6825 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6827 if (*hole_pfn < start_pfn)
6828 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6830 *hole_pfn = end_pfn;
6833 static void __init memmap_init(void)
6835 unsigned long start_pfn, end_pfn;
6836 unsigned long hole_pfn = 0;
6837 int i, j, zone_id = 0, nid;
6839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6840 struct pglist_data *node = NODE_DATA(nid);
6842 for (j = 0; j < MAX_NR_ZONES; j++) {
6843 struct zone *zone = node->node_zones + j;
6845 if (!populated_zone(zone))
6848 memmap_init_zone_range(zone, start_pfn, end_pfn,
6854 #ifdef CONFIG_SPARSEMEM
6856 * Initialize the memory map for hole in the range [memory_end,
6858 * Append the pages in this hole to the highest zone in the last
6860 * The call to init_unavailable_range() is outside the ifdef to
6861 * silence the compiler warining about zone_id set but not used;
6862 * for FLATMEM it is a nop anyway
6864 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6865 if (hole_pfn < end_pfn)
6867 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6870 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6871 phys_addr_t min_addr, int nid, bool exact_nid)
6876 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6877 MEMBLOCK_ALLOC_ACCESSIBLE,
6880 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6881 MEMBLOCK_ALLOC_ACCESSIBLE,
6884 if (ptr && size > 0)
6885 page_init_poison(ptr, size);
6890 static int zone_batchsize(struct zone *zone)
6896 * The number of pages to batch allocate is either ~0.1%
6897 * of the zone or 1MB, whichever is smaller. The batch
6898 * size is striking a balance between allocation latency
6899 * and zone lock contention.
6901 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6902 batch /= 4; /* We effectively *= 4 below */
6907 * Clamp the batch to a 2^n - 1 value. Having a power
6908 * of 2 value was found to be more likely to have
6909 * suboptimal cache aliasing properties in some cases.
6911 * For example if 2 tasks are alternately allocating
6912 * batches of pages, one task can end up with a lot
6913 * of pages of one half of the possible page colors
6914 * and the other with pages of the other colors.
6916 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6921 /* The deferral and batching of frees should be suppressed under NOMMU
6924 * The problem is that NOMMU needs to be able to allocate large chunks
6925 * of contiguous memory as there's no hardware page translation to
6926 * assemble apparent contiguous memory from discontiguous pages.
6928 * Queueing large contiguous runs of pages for batching, however,
6929 * causes the pages to actually be freed in smaller chunks. As there
6930 * can be a significant delay between the individual batches being
6931 * recycled, this leads to the once large chunks of space being
6932 * fragmented and becoming unavailable for high-order allocations.
6938 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6943 unsigned long total_pages;
6945 if (!percpu_pagelist_high_fraction) {
6947 * By default, the high value of the pcp is based on the zone
6948 * low watermark so that if they are full then background
6949 * reclaim will not be started prematurely.
6951 total_pages = low_wmark_pages(zone);
6954 * If percpu_pagelist_high_fraction is configured, the high
6955 * value is based on a fraction of the managed pages in the
6958 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6962 * Split the high value across all online CPUs local to the zone. Note
6963 * that early in boot that CPUs may not be online yet and that during
6964 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6965 * onlined. For memory nodes that have no CPUs, split pcp->high across
6966 * all online CPUs to mitigate the risk that reclaim is triggered
6967 * prematurely due to pages stored on pcp lists.
6969 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6971 nr_split_cpus = num_online_cpus();
6972 high = total_pages / nr_split_cpus;
6975 * Ensure high is at least batch*4. The multiple is based on the
6976 * historical relationship between high and batch.
6978 high = max(high, batch << 2);
6987 * pcp->high and pcp->batch values are related and generally batch is lower
6988 * than high. They are also related to pcp->count such that count is lower
6989 * than high, and as soon as it reaches high, the pcplist is flushed.
6991 * However, guaranteeing these relations at all times would require e.g. write
6992 * barriers here but also careful usage of read barriers at the read side, and
6993 * thus be prone to error and bad for performance. Thus the update only prevents
6994 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6995 * can cope with those fields changing asynchronously, and fully trust only the
6996 * pcp->count field on the local CPU with interrupts disabled.
6998 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6999 * outside of boot time (or some other assurance that no concurrent updaters
7002 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7003 unsigned long batch)
7005 WRITE_ONCE(pcp->batch, batch);
7006 WRITE_ONCE(pcp->high, high);
7009 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7013 memset(pcp, 0, sizeof(*pcp));
7014 memset(pzstats, 0, sizeof(*pzstats));
7016 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7017 INIT_LIST_HEAD(&pcp->lists[pindex]);
7020 * Set batch and high values safe for a boot pageset. A true percpu
7021 * pageset's initialization will update them subsequently. Here we don't
7022 * need to be as careful as pageset_update() as nobody can access the
7025 pcp->high = BOOT_PAGESET_HIGH;
7026 pcp->batch = BOOT_PAGESET_BATCH;
7027 pcp->free_factor = 0;
7030 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7031 unsigned long batch)
7033 struct per_cpu_pages *pcp;
7036 for_each_possible_cpu(cpu) {
7037 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7038 pageset_update(pcp, high, batch);
7043 * Calculate and set new high and batch values for all per-cpu pagesets of a
7044 * zone based on the zone's size.
7046 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7048 int new_high, new_batch;
7050 new_batch = max(1, zone_batchsize(zone));
7051 new_high = zone_highsize(zone, new_batch, cpu_online);
7053 if (zone->pageset_high == new_high &&
7054 zone->pageset_batch == new_batch)
7057 zone->pageset_high = new_high;
7058 zone->pageset_batch = new_batch;
7060 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7063 void __meminit setup_zone_pageset(struct zone *zone)
7067 /* Size may be 0 on !SMP && !NUMA */
7068 if (sizeof(struct per_cpu_zonestat) > 0)
7069 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7071 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7072 for_each_possible_cpu(cpu) {
7073 struct per_cpu_pages *pcp;
7074 struct per_cpu_zonestat *pzstats;
7076 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7077 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7078 per_cpu_pages_init(pcp, pzstats);
7081 zone_set_pageset_high_and_batch(zone, 0);
7085 * Allocate per cpu pagesets and initialize them.
7086 * Before this call only boot pagesets were available.
7088 void __init setup_per_cpu_pageset(void)
7090 struct pglist_data *pgdat;
7092 int __maybe_unused cpu;
7094 for_each_populated_zone(zone)
7095 setup_zone_pageset(zone);
7099 * Unpopulated zones continue using the boot pagesets.
7100 * The numa stats for these pagesets need to be reset.
7101 * Otherwise, they will end up skewing the stats of
7102 * the nodes these zones are associated with.
7104 for_each_possible_cpu(cpu) {
7105 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7106 memset(pzstats->vm_numa_event, 0,
7107 sizeof(pzstats->vm_numa_event));
7111 for_each_online_pgdat(pgdat)
7112 pgdat->per_cpu_nodestats =
7113 alloc_percpu(struct per_cpu_nodestat);
7116 static __meminit void zone_pcp_init(struct zone *zone)
7119 * per cpu subsystem is not up at this point. The following code
7120 * relies on the ability of the linker to provide the
7121 * offset of a (static) per cpu variable into the per cpu area.
7123 zone->per_cpu_pageset = &boot_pageset;
7124 zone->per_cpu_zonestats = &boot_zonestats;
7125 zone->pageset_high = BOOT_PAGESET_HIGH;
7126 zone->pageset_batch = BOOT_PAGESET_BATCH;
7128 if (populated_zone(zone))
7129 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7130 zone->present_pages, zone_batchsize(zone));
7133 void __meminit init_currently_empty_zone(struct zone *zone,
7134 unsigned long zone_start_pfn,
7137 struct pglist_data *pgdat = zone->zone_pgdat;
7138 int zone_idx = zone_idx(zone) + 1;
7140 if (zone_idx > pgdat->nr_zones)
7141 pgdat->nr_zones = zone_idx;
7143 zone->zone_start_pfn = zone_start_pfn;
7145 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7146 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7148 (unsigned long)zone_idx(zone),
7149 zone_start_pfn, (zone_start_pfn + size));
7151 zone_init_free_lists(zone);
7152 zone->initialized = 1;
7156 * get_pfn_range_for_nid - Return the start and end page frames for a node
7157 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7158 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7159 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7161 * It returns the start and end page frame of a node based on information
7162 * provided by memblock_set_node(). If called for a node
7163 * with no available memory, a warning is printed and the start and end
7166 void __init get_pfn_range_for_nid(unsigned int nid,
7167 unsigned long *start_pfn, unsigned long *end_pfn)
7169 unsigned long this_start_pfn, this_end_pfn;
7175 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7176 *start_pfn = min(*start_pfn, this_start_pfn);
7177 *end_pfn = max(*end_pfn, this_end_pfn);
7180 if (*start_pfn == -1UL)
7185 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7186 * assumption is made that zones within a node are ordered in monotonic
7187 * increasing memory addresses so that the "highest" populated zone is used
7189 static void __init find_usable_zone_for_movable(void)
7192 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7193 if (zone_index == ZONE_MOVABLE)
7196 if (arch_zone_highest_possible_pfn[zone_index] >
7197 arch_zone_lowest_possible_pfn[zone_index])
7201 VM_BUG_ON(zone_index == -1);
7202 movable_zone = zone_index;
7206 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7207 * because it is sized independent of architecture. Unlike the other zones,
7208 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7209 * in each node depending on the size of each node and how evenly kernelcore
7210 * is distributed. This helper function adjusts the zone ranges
7211 * provided by the architecture for a given node by using the end of the
7212 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7213 * zones within a node are in order of monotonic increases memory addresses
7215 static void __init adjust_zone_range_for_zone_movable(int nid,
7216 unsigned long zone_type,
7217 unsigned long node_start_pfn,
7218 unsigned long node_end_pfn,
7219 unsigned long *zone_start_pfn,
7220 unsigned long *zone_end_pfn)
7222 /* Only adjust if ZONE_MOVABLE is on this node */
7223 if (zone_movable_pfn[nid]) {
7224 /* Size ZONE_MOVABLE */
7225 if (zone_type == ZONE_MOVABLE) {
7226 *zone_start_pfn = zone_movable_pfn[nid];
7227 *zone_end_pfn = min(node_end_pfn,
7228 arch_zone_highest_possible_pfn[movable_zone]);
7230 /* Adjust for ZONE_MOVABLE starting within this range */
7231 } else if (!mirrored_kernelcore &&
7232 *zone_start_pfn < zone_movable_pfn[nid] &&
7233 *zone_end_pfn > zone_movable_pfn[nid]) {
7234 *zone_end_pfn = zone_movable_pfn[nid];
7236 /* Check if this whole range is within ZONE_MOVABLE */
7237 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7238 *zone_start_pfn = *zone_end_pfn;
7243 * Return the number of pages a zone spans in a node, including holes
7244 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7246 static unsigned long __init zone_spanned_pages_in_node(int nid,
7247 unsigned long zone_type,
7248 unsigned long node_start_pfn,
7249 unsigned long node_end_pfn,
7250 unsigned long *zone_start_pfn,
7251 unsigned long *zone_end_pfn)
7253 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7254 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7255 /* When hotadd a new node from cpu_up(), the node should be empty */
7256 if (!node_start_pfn && !node_end_pfn)
7259 /* Get the start and end of the zone */
7260 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7261 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7262 adjust_zone_range_for_zone_movable(nid, zone_type,
7263 node_start_pfn, node_end_pfn,
7264 zone_start_pfn, zone_end_pfn);
7266 /* Check that this node has pages within the zone's required range */
7267 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7270 /* Move the zone boundaries inside the node if necessary */
7271 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7272 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7274 /* Return the spanned pages */
7275 return *zone_end_pfn - *zone_start_pfn;
7279 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7280 * then all holes in the requested range will be accounted for.
7282 unsigned long __init __absent_pages_in_range(int nid,
7283 unsigned long range_start_pfn,
7284 unsigned long range_end_pfn)
7286 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7287 unsigned long start_pfn, end_pfn;
7290 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7291 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7292 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7293 nr_absent -= end_pfn - start_pfn;
7299 * absent_pages_in_range - Return number of page frames in holes within a range
7300 * @start_pfn: The start PFN to start searching for holes
7301 * @end_pfn: The end PFN to stop searching for holes
7303 * Return: the number of pages frames in memory holes within a range.
7305 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7306 unsigned long end_pfn)
7308 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7311 /* Return the number of page frames in holes in a zone on a node */
7312 static unsigned long __init zone_absent_pages_in_node(int nid,
7313 unsigned long zone_type,
7314 unsigned long node_start_pfn,
7315 unsigned long node_end_pfn)
7317 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7318 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7319 unsigned long zone_start_pfn, zone_end_pfn;
7320 unsigned long nr_absent;
7322 /* When hotadd a new node from cpu_up(), the node should be empty */
7323 if (!node_start_pfn && !node_end_pfn)
7326 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7327 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7329 adjust_zone_range_for_zone_movable(nid, zone_type,
7330 node_start_pfn, node_end_pfn,
7331 &zone_start_pfn, &zone_end_pfn);
7332 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7335 * ZONE_MOVABLE handling.
7336 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7339 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7340 unsigned long start_pfn, end_pfn;
7341 struct memblock_region *r;
7343 for_each_mem_region(r) {
7344 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7345 zone_start_pfn, zone_end_pfn);
7346 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7347 zone_start_pfn, zone_end_pfn);
7349 if (zone_type == ZONE_MOVABLE &&
7350 memblock_is_mirror(r))
7351 nr_absent += end_pfn - start_pfn;
7353 if (zone_type == ZONE_NORMAL &&
7354 !memblock_is_mirror(r))
7355 nr_absent += end_pfn - start_pfn;
7362 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7363 unsigned long node_start_pfn,
7364 unsigned long node_end_pfn)
7366 unsigned long realtotalpages = 0, totalpages = 0;
7369 for (i = 0; i < MAX_NR_ZONES; i++) {
7370 struct zone *zone = pgdat->node_zones + i;
7371 unsigned long zone_start_pfn, zone_end_pfn;
7372 unsigned long spanned, absent;
7373 unsigned long size, real_size;
7375 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7380 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7385 real_size = size - absent;
7388 zone->zone_start_pfn = zone_start_pfn;
7390 zone->zone_start_pfn = 0;
7391 zone->spanned_pages = size;
7392 zone->present_pages = real_size;
7393 #if defined(CONFIG_MEMORY_HOTPLUG)
7394 zone->present_early_pages = real_size;
7398 realtotalpages += real_size;
7401 pgdat->node_spanned_pages = totalpages;
7402 pgdat->node_present_pages = realtotalpages;
7403 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7406 #ifndef CONFIG_SPARSEMEM
7408 * Calculate the size of the zone->blockflags rounded to an unsigned long
7409 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7410 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7411 * round what is now in bits to nearest long in bits, then return it in
7414 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7416 unsigned long usemapsize;
7418 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7419 usemapsize = roundup(zonesize, pageblock_nr_pages);
7420 usemapsize = usemapsize >> pageblock_order;
7421 usemapsize *= NR_PAGEBLOCK_BITS;
7422 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7424 return usemapsize / 8;
7427 static void __ref setup_usemap(struct zone *zone)
7429 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7430 zone->spanned_pages);
7431 zone->pageblock_flags = NULL;
7433 zone->pageblock_flags =
7434 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7436 if (!zone->pageblock_flags)
7437 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7438 usemapsize, zone->name, zone_to_nid(zone));
7442 static inline void setup_usemap(struct zone *zone) {}
7443 #endif /* CONFIG_SPARSEMEM */
7445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7448 void __init set_pageblock_order(void)
7450 unsigned int order = MAX_ORDER - 1;
7452 /* Check that pageblock_nr_pages has not already been setup */
7453 if (pageblock_order)
7456 /* Don't let pageblocks exceed the maximum allocation granularity. */
7457 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7458 order = HUGETLB_PAGE_ORDER;
7461 * Assume the largest contiguous order of interest is a huge page.
7462 * This value may be variable depending on boot parameters on IA64 and
7465 pageblock_order = order;
7467 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7470 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7471 * is unused as pageblock_order is set at compile-time. See
7472 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7475 void __init set_pageblock_order(void)
7479 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7481 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7482 unsigned long present_pages)
7484 unsigned long pages = spanned_pages;
7487 * Provide a more accurate estimation if there are holes within
7488 * the zone and SPARSEMEM is in use. If there are holes within the
7489 * zone, each populated memory region may cost us one or two extra
7490 * memmap pages due to alignment because memmap pages for each
7491 * populated regions may not be naturally aligned on page boundary.
7492 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7494 if (spanned_pages > present_pages + (present_pages >> 4) &&
7495 IS_ENABLED(CONFIG_SPARSEMEM))
7496 pages = present_pages;
7498 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7502 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7504 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7506 spin_lock_init(&ds_queue->split_queue_lock);
7507 INIT_LIST_HEAD(&ds_queue->split_queue);
7508 ds_queue->split_queue_len = 0;
7511 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7514 #ifdef CONFIG_COMPACTION
7515 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7517 init_waitqueue_head(&pgdat->kcompactd_wait);
7520 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7523 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7527 pgdat_resize_init(pgdat);
7529 pgdat_init_split_queue(pgdat);
7530 pgdat_init_kcompactd(pgdat);
7532 init_waitqueue_head(&pgdat->kswapd_wait);
7533 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7535 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7536 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7538 pgdat_page_ext_init(pgdat);
7539 lruvec_init(&pgdat->__lruvec);
7542 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7543 unsigned long remaining_pages)
7545 atomic_long_set(&zone->managed_pages, remaining_pages);
7546 zone_set_nid(zone, nid);
7547 zone->name = zone_names[idx];
7548 zone->zone_pgdat = NODE_DATA(nid);
7549 spin_lock_init(&zone->lock);
7550 zone_seqlock_init(zone);
7551 zone_pcp_init(zone);
7555 * Set up the zone data structures
7556 * - init pgdat internals
7557 * - init all zones belonging to this node
7559 * NOTE: this function is only called during memory hotplug
7561 #ifdef CONFIG_MEMORY_HOTPLUG
7562 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7564 int nid = pgdat->node_id;
7568 pgdat_init_internals(pgdat);
7570 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7571 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7574 * Reset the nr_zones, order and highest_zoneidx before reuse.
7575 * Note that kswapd will init kswapd_highest_zoneidx properly
7576 * when it starts in the near future.
7578 pgdat->nr_zones = 0;
7579 pgdat->kswapd_order = 0;
7580 pgdat->kswapd_highest_zoneidx = 0;
7581 pgdat->node_start_pfn = 0;
7582 for_each_online_cpu(cpu) {
7583 struct per_cpu_nodestat *p;
7585 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7586 memset(p, 0, sizeof(*p));
7589 for (z = 0; z < MAX_NR_ZONES; z++)
7590 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7595 * Set up the zone data structures:
7596 * - mark all pages reserved
7597 * - mark all memory queues empty
7598 * - clear the memory bitmaps
7600 * NOTE: pgdat should get zeroed by caller.
7601 * NOTE: this function is only called during early init.
7603 static void __init free_area_init_core(struct pglist_data *pgdat)
7606 int nid = pgdat->node_id;
7608 pgdat_init_internals(pgdat);
7609 pgdat->per_cpu_nodestats = &boot_nodestats;
7611 for (j = 0; j < MAX_NR_ZONES; j++) {
7612 struct zone *zone = pgdat->node_zones + j;
7613 unsigned long size, freesize, memmap_pages;
7615 size = zone->spanned_pages;
7616 freesize = zone->present_pages;
7619 * Adjust freesize so that it accounts for how much memory
7620 * is used by this zone for memmap. This affects the watermark
7621 * and per-cpu initialisations
7623 memmap_pages = calc_memmap_size(size, freesize);
7624 if (!is_highmem_idx(j)) {
7625 if (freesize >= memmap_pages) {
7626 freesize -= memmap_pages;
7628 pr_debug(" %s zone: %lu pages used for memmap\n",
7629 zone_names[j], memmap_pages);
7631 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7632 zone_names[j], memmap_pages, freesize);
7635 /* Account for reserved pages */
7636 if (j == 0 && freesize > dma_reserve) {
7637 freesize -= dma_reserve;
7638 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7641 if (!is_highmem_idx(j))
7642 nr_kernel_pages += freesize;
7643 /* Charge for highmem memmap if there are enough kernel pages */
7644 else if (nr_kernel_pages > memmap_pages * 2)
7645 nr_kernel_pages -= memmap_pages;
7646 nr_all_pages += freesize;
7649 * Set an approximate value for lowmem here, it will be adjusted
7650 * when the bootmem allocator frees pages into the buddy system.
7651 * And all highmem pages will be managed by the buddy system.
7653 zone_init_internals(zone, j, nid, freesize);
7658 set_pageblock_order();
7660 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7664 #ifdef CONFIG_FLATMEM
7665 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7667 unsigned long __maybe_unused start = 0;
7668 unsigned long __maybe_unused offset = 0;
7670 /* Skip empty nodes */
7671 if (!pgdat->node_spanned_pages)
7674 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7675 offset = pgdat->node_start_pfn - start;
7676 /* ia64 gets its own node_mem_map, before this, without bootmem */
7677 if (!pgdat->node_mem_map) {
7678 unsigned long size, end;
7682 * The zone's endpoints aren't required to be MAX_ORDER
7683 * aligned but the node_mem_map endpoints must be in order
7684 * for the buddy allocator to function correctly.
7686 end = pgdat_end_pfn(pgdat);
7687 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7688 size = (end - start) * sizeof(struct page);
7689 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7690 pgdat->node_id, false);
7692 panic("Failed to allocate %ld bytes for node %d memory map\n",
7693 size, pgdat->node_id);
7694 pgdat->node_mem_map = map + offset;
7696 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7697 __func__, pgdat->node_id, (unsigned long)pgdat,
7698 (unsigned long)pgdat->node_mem_map);
7701 * With no DISCONTIG, the global mem_map is just set as node 0's
7703 if (pgdat == NODE_DATA(0)) {
7704 mem_map = NODE_DATA(0)->node_mem_map;
7705 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7711 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7712 #endif /* CONFIG_FLATMEM */
7714 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7715 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7717 pgdat->first_deferred_pfn = ULONG_MAX;
7720 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7723 static void __init free_area_init_node(int nid)
7725 pg_data_t *pgdat = NODE_DATA(nid);
7726 unsigned long start_pfn = 0;
7727 unsigned long end_pfn = 0;
7729 /* pg_data_t should be reset to zero when it's allocated */
7730 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7732 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7734 pgdat->node_id = nid;
7735 pgdat->node_start_pfn = start_pfn;
7736 pgdat->per_cpu_nodestats = NULL;
7738 if (start_pfn != end_pfn) {
7739 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7740 (u64)start_pfn << PAGE_SHIFT,
7741 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7743 pr_info("Initmem setup node %d as memoryless\n", nid);
7746 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7748 alloc_node_mem_map(pgdat);
7749 pgdat_set_deferred_range(pgdat);
7751 free_area_init_core(pgdat);
7754 static void __init free_area_init_memoryless_node(int nid)
7756 free_area_init_node(nid);
7759 #if MAX_NUMNODES > 1
7761 * Figure out the number of possible node ids.
7763 void __init setup_nr_node_ids(void)
7765 unsigned int highest;
7767 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7768 nr_node_ids = highest + 1;
7773 * node_map_pfn_alignment - determine the maximum internode alignment
7775 * This function should be called after node map is populated and sorted.
7776 * It calculates the maximum power of two alignment which can distinguish
7779 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7780 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7781 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7782 * shifted, 1GiB is enough and this function will indicate so.
7784 * This is used to test whether pfn -> nid mapping of the chosen memory
7785 * model has fine enough granularity to avoid incorrect mapping for the
7786 * populated node map.
7788 * Return: the determined alignment in pfn's. 0 if there is no alignment
7789 * requirement (single node).
7791 unsigned long __init node_map_pfn_alignment(void)
7793 unsigned long accl_mask = 0, last_end = 0;
7794 unsigned long start, end, mask;
7795 int last_nid = NUMA_NO_NODE;
7798 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7799 if (!start || last_nid < 0 || last_nid == nid) {
7806 * Start with a mask granular enough to pin-point to the
7807 * start pfn and tick off bits one-by-one until it becomes
7808 * too coarse to separate the current node from the last.
7810 mask = ~((1 << __ffs(start)) - 1);
7811 while (mask && last_end <= (start & (mask << 1)))
7814 /* accumulate all internode masks */
7818 /* convert mask to number of pages */
7819 return ~accl_mask + 1;
7823 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7825 * Return: the minimum PFN based on information provided via
7826 * memblock_set_node().
7828 unsigned long __init find_min_pfn_with_active_regions(void)
7830 return PHYS_PFN(memblock_start_of_DRAM());
7834 * early_calculate_totalpages()
7835 * Sum pages in active regions for movable zone.
7836 * Populate N_MEMORY for calculating usable_nodes.
7838 static unsigned long __init early_calculate_totalpages(void)
7840 unsigned long totalpages = 0;
7841 unsigned long start_pfn, end_pfn;
7844 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7845 unsigned long pages = end_pfn - start_pfn;
7847 totalpages += pages;
7849 node_set_state(nid, N_MEMORY);
7855 * Find the PFN the Movable zone begins in each node. Kernel memory
7856 * is spread evenly between nodes as long as the nodes have enough
7857 * memory. When they don't, some nodes will have more kernelcore than
7860 static void __init find_zone_movable_pfns_for_nodes(void)
7863 unsigned long usable_startpfn;
7864 unsigned long kernelcore_node, kernelcore_remaining;
7865 /* save the state before borrow the nodemask */
7866 nodemask_t saved_node_state = node_states[N_MEMORY];
7867 unsigned long totalpages = early_calculate_totalpages();
7868 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7869 struct memblock_region *r;
7871 /* Need to find movable_zone earlier when movable_node is specified. */
7872 find_usable_zone_for_movable();
7875 * If movable_node is specified, ignore kernelcore and movablecore
7878 if (movable_node_is_enabled()) {
7879 for_each_mem_region(r) {
7880 if (!memblock_is_hotpluggable(r))
7883 nid = memblock_get_region_node(r);
7885 usable_startpfn = PFN_DOWN(r->base);
7886 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7887 min(usable_startpfn, zone_movable_pfn[nid]) :
7895 * If kernelcore=mirror is specified, ignore movablecore option
7897 if (mirrored_kernelcore) {
7898 bool mem_below_4gb_not_mirrored = false;
7900 for_each_mem_region(r) {
7901 if (memblock_is_mirror(r))
7904 nid = memblock_get_region_node(r);
7906 usable_startpfn = memblock_region_memory_base_pfn(r);
7908 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7909 mem_below_4gb_not_mirrored = true;
7913 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7914 min(usable_startpfn, zone_movable_pfn[nid]) :
7918 if (mem_below_4gb_not_mirrored)
7919 pr_warn("This configuration results in unmirrored kernel memory.\n");
7925 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7926 * amount of necessary memory.
7928 if (required_kernelcore_percent)
7929 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7931 if (required_movablecore_percent)
7932 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7936 * If movablecore= was specified, calculate what size of
7937 * kernelcore that corresponds so that memory usable for
7938 * any allocation type is evenly spread. If both kernelcore
7939 * and movablecore are specified, then the value of kernelcore
7940 * will be used for required_kernelcore if it's greater than
7941 * what movablecore would have allowed.
7943 if (required_movablecore) {
7944 unsigned long corepages;
7947 * Round-up so that ZONE_MOVABLE is at least as large as what
7948 * was requested by the user
7950 required_movablecore =
7951 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7952 required_movablecore = min(totalpages, required_movablecore);
7953 corepages = totalpages - required_movablecore;
7955 required_kernelcore = max(required_kernelcore, corepages);
7959 * If kernelcore was not specified or kernelcore size is larger
7960 * than totalpages, there is no ZONE_MOVABLE.
7962 if (!required_kernelcore || required_kernelcore >= totalpages)
7965 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7966 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7969 /* Spread kernelcore memory as evenly as possible throughout nodes */
7970 kernelcore_node = required_kernelcore / usable_nodes;
7971 for_each_node_state(nid, N_MEMORY) {
7972 unsigned long start_pfn, end_pfn;
7975 * Recalculate kernelcore_node if the division per node
7976 * now exceeds what is necessary to satisfy the requested
7977 * amount of memory for the kernel
7979 if (required_kernelcore < kernelcore_node)
7980 kernelcore_node = required_kernelcore / usable_nodes;
7983 * As the map is walked, we track how much memory is usable
7984 * by the kernel using kernelcore_remaining. When it is
7985 * 0, the rest of the node is usable by ZONE_MOVABLE
7987 kernelcore_remaining = kernelcore_node;
7989 /* Go through each range of PFNs within this node */
7990 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7991 unsigned long size_pages;
7993 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7994 if (start_pfn >= end_pfn)
7997 /* Account for what is only usable for kernelcore */
7998 if (start_pfn < usable_startpfn) {
7999 unsigned long kernel_pages;
8000 kernel_pages = min(end_pfn, usable_startpfn)
8003 kernelcore_remaining -= min(kernel_pages,
8004 kernelcore_remaining);
8005 required_kernelcore -= min(kernel_pages,
8006 required_kernelcore);
8008 /* Continue if range is now fully accounted */
8009 if (end_pfn <= usable_startpfn) {
8012 * Push zone_movable_pfn to the end so
8013 * that if we have to rebalance
8014 * kernelcore across nodes, we will
8015 * not double account here
8017 zone_movable_pfn[nid] = end_pfn;
8020 start_pfn = usable_startpfn;
8024 * The usable PFN range for ZONE_MOVABLE is from
8025 * start_pfn->end_pfn. Calculate size_pages as the
8026 * number of pages used as kernelcore
8028 size_pages = end_pfn - start_pfn;
8029 if (size_pages > kernelcore_remaining)
8030 size_pages = kernelcore_remaining;
8031 zone_movable_pfn[nid] = start_pfn + size_pages;
8034 * Some kernelcore has been met, update counts and
8035 * break if the kernelcore for this node has been
8038 required_kernelcore -= min(required_kernelcore,
8040 kernelcore_remaining -= size_pages;
8041 if (!kernelcore_remaining)
8047 * If there is still required_kernelcore, we do another pass with one
8048 * less node in the count. This will push zone_movable_pfn[nid] further
8049 * along on the nodes that still have memory until kernelcore is
8053 if (usable_nodes && required_kernelcore > usable_nodes)
8057 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8058 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8059 unsigned long start_pfn, end_pfn;
8061 zone_movable_pfn[nid] =
8062 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8064 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8065 if (zone_movable_pfn[nid] >= end_pfn)
8066 zone_movable_pfn[nid] = 0;
8070 /* restore the node_state */
8071 node_states[N_MEMORY] = saved_node_state;
8074 /* Any regular or high memory on that node ? */
8075 static void check_for_memory(pg_data_t *pgdat, int nid)
8077 enum zone_type zone_type;
8079 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8080 struct zone *zone = &pgdat->node_zones[zone_type];
8081 if (populated_zone(zone)) {
8082 if (IS_ENABLED(CONFIG_HIGHMEM))
8083 node_set_state(nid, N_HIGH_MEMORY);
8084 if (zone_type <= ZONE_NORMAL)
8085 node_set_state(nid, N_NORMAL_MEMORY);
8092 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8093 * such cases we allow max_zone_pfn sorted in the descending order
8095 bool __weak arch_has_descending_max_zone_pfns(void)
8101 * free_area_init - Initialise all pg_data_t and zone data
8102 * @max_zone_pfn: an array of max PFNs for each zone
8104 * This will call free_area_init_node() for each active node in the system.
8105 * Using the page ranges provided by memblock_set_node(), the size of each
8106 * zone in each node and their holes is calculated. If the maximum PFN
8107 * between two adjacent zones match, it is assumed that the zone is empty.
8108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8110 * starts where the previous one ended. For example, ZONE_DMA32 starts
8111 * at arch_max_dma_pfn.
8113 void __init free_area_init(unsigned long *max_zone_pfn)
8115 unsigned long start_pfn, end_pfn;
8119 /* Record where the zone boundaries are */
8120 memset(arch_zone_lowest_possible_pfn, 0,
8121 sizeof(arch_zone_lowest_possible_pfn));
8122 memset(arch_zone_highest_possible_pfn, 0,
8123 sizeof(arch_zone_highest_possible_pfn));
8125 start_pfn = find_min_pfn_with_active_regions();
8126 descending = arch_has_descending_max_zone_pfns();
8128 for (i = 0; i < MAX_NR_ZONES; i++) {
8130 zone = MAX_NR_ZONES - i - 1;
8134 if (zone == ZONE_MOVABLE)
8137 end_pfn = max(max_zone_pfn[zone], start_pfn);
8138 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8139 arch_zone_highest_possible_pfn[zone] = end_pfn;
8141 start_pfn = end_pfn;
8144 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8145 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8146 find_zone_movable_pfns_for_nodes();
8148 /* Print out the zone ranges */
8149 pr_info("Zone ranges:\n");
8150 for (i = 0; i < MAX_NR_ZONES; i++) {
8151 if (i == ZONE_MOVABLE)
8153 pr_info(" %-8s ", zone_names[i]);
8154 if (arch_zone_lowest_possible_pfn[i] ==
8155 arch_zone_highest_possible_pfn[i])
8158 pr_cont("[mem %#018Lx-%#018Lx]\n",
8159 (u64)arch_zone_lowest_possible_pfn[i]
8161 ((u64)arch_zone_highest_possible_pfn[i]
8162 << PAGE_SHIFT) - 1);
8165 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8166 pr_info("Movable zone start for each node\n");
8167 for (i = 0; i < MAX_NUMNODES; i++) {
8168 if (zone_movable_pfn[i])
8169 pr_info(" Node %d: %#018Lx\n", i,
8170 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8174 * Print out the early node map, and initialize the
8175 * subsection-map relative to active online memory ranges to
8176 * enable future "sub-section" extensions of the memory map.
8178 pr_info("Early memory node ranges\n");
8179 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8180 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8181 (u64)start_pfn << PAGE_SHIFT,
8182 ((u64)end_pfn << PAGE_SHIFT) - 1);
8183 subsection_map_init(start_pfn, end_pfn - start_pfn);
8186 /* Initialise every node */
8187 mminit_verify_pageflags_layout();
8188 setup_nr_node_ids();
8189 for_each_node(nid) {
8192 if (!node_online(nid)) {
8193 pr_info("Initializing node %d as memoryless\n", nid);
8195 /* Allocator not initialized yet */
8196 pgdat = arch_alloc_nodedata(nid);
8198 pr_err("Cannot allocate %zuB for node %d.\n",
8199 sizeof(*pgdat), nid);
8202 arch_refresh_nodedata(nid, pgdat);
8203 free_area_init_memoryless_node(nid);
8206 * We do not want to confuse userspace by sysfs
8207 * files/directories for node without any memory
8208 * attached to it, so this node is not marked as
8209 * N_MEMORY and not marked online so that no sysfs
8210 * hierarchy will be created via register_one_node for
8211 * it. The pgdat will get fully initialized by
8212 * hotadd_init_pgdat() when memory is hotplugged into
8218 pgdat = NODE_DATA(nid);
8219 free_area_init_node(nid);
8221 /* Any memory on that node */
8222 if (pgdat->node_present_pages)
8223 node_set_state(nid, N_MEMORY);
8224 check_for_memory(pgdat, nid);
8230 static int __init cmdline_parse_core(char *p, unsigned long *core,
8231 unsigned long *percent)
8233 unsigned long long coremem;
8239 /* Value may be a percentage of total memory, otherwise bytes */
8240 coremem = simple_strtoull(p, &endptr, 0);
8241 if (*endptr == '%') {
8242 /* Paranoid check for percent values greater than 100 */
8243 WARN_ON(coremem > 100);
8247 coremem = memparse(p, &p);
8248 /* Paranoid check that UL is enough for the coremem value */
8249 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8251 *core = coremem >> PAGE_SHIFT;
8258 * kernelcore=size sets the amount of memory for use for allocations that
8259 * cannot be reclaimed or migrated.
8261 static int __init cmdline_parse_kernelcore(char *p)
8263 /* parse kernelcore=mirror */
8264 if (parse_option_str(p, "mirror")) {
8265 mirrored_kernelcore = true;
8269 return cmdline_parse_core(p, &required_kernelcore,
8270 &required_kernelcore_percent);
8274 * movablecore=size sets the amount of memory for use for allocations that
8275 * can be reclaimed or migrated.
8277 static int __init cmdline_parse_movablecore(char *p)
8279 return cmdline_parse_core(p, &required_movablecore,
8280 &required_movablecore_percent);
8283 early_param("kernelcore", cmdline_parse_kernelcore);
8284 early_param("movablecore", cmdline_parse_movablecore);
8286 void adjust_managed_page_count(struct page *page, long count)
8288 atomic_long_add(count, &page_zone(page)->managed_pages);
8289 totalram_pages_add(count);
8290 #ifdef CONFIG_HIGHMEM
8291 if (PageHighMem(page))
8292 totalhigh_pages_add(count);
8295 EXPORT_SYMBOL(adjust_managed_page_count);
8297 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8300 unsigned long pages = 0;
8302 start = (void *)PAGE_ALIGN((unsigned long)start);
8303 end = (void *)((unsigned long)end & PAGE_MASK);
8304 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8305 struct page *page = virt_to_page(pos);
8306 void *direct_map_addr;
8309 * 'direct_map_addr' might be different from 'pos'
8310 * because some architectures' virt_to_page()
8311 * work with aliases. Getting the direct map
8312 * address ensures that we get a _writeable_
8313 * alias for the memset().
8315 direct_map_addr = page_address(page);
8317 * Perform a kasan-unchecked memset() since this memory
8318 * has not been initialized.
8320 direct_map_addr = kasan_reset_tag(direct_map_addr);
8321 if ((unsigned int)poison <= 0xFF)
8322 memset(direct_map_addr, poison, PAGE_SIZE);
8324 free_reserved_page(page);
8328 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8333 void __init mem_init_print_info(void)
8335 unsigned long physpages, codesize, datasize, rosize, bss_size;
8336 unsigned long init_code_size, init_data_size;
8338 physpages = get_num_physpages();
8339 codesize = _etext - _stext;
8340 datasize = _edata - _sdata;
8341 rosize = __end_rodata - __start_rodata;
8342 bss_size = __bss_stop - __bss_start;
8343 init_data_size = __init_end - __init_begin;
8344 init_code_size = _einittext - _sinittext;
8347 * Detect special cases and adjust section sizes accordingly:
8348 * 1) .init.* may be embedded into .data sections
8349 * 2) .init.text.* may be out of [__init_begin, __init_end],
8350 * please refer to arch/tile/kernel/vmlinux.lds.S.
8351 * 3) .rodata.* may be embedded into .text or .data sections.
8353 #define adj_init_size(start, end, size, pos, adj) \
8355 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8359 adj_init_size(__init_begin, __init_end, init_data_size,
8360 _sinittext, init_code_size);
8361 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8362 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8363 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8364 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8366 #undef adj_init_size
8368 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8369 #ifdef CONFIG_HIGHMEM
8373 K(nr_free_pages()), K(physpages),
8374 codesize >> 10, datasize >> 10, rosize >> 10,
8375 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8376 K(physpages - totalram_pages() - totalcma_pages),
8378 #ifdef CONFIG_HIGHMEM
8379 , K(totalhigh_pages())
8385 * set_dma_reserve - set the specified number of pages reserved in the first zone
8386 * @new_dma_reserve: The number of pages to mark reserved
8388 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8389 * In the DMA zone, a significant percentage may be consumed by kernel image
8390 * and other unfreeable allocations which can skew the watermarks badly. This
8391 * function may optionally be used to account for unfreeable pages in the
8392 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8393 * smaller per-cpu batchsize.
8395 void __init set_dma_reserve(unsigned long new_dma_reserve)
8397 dma_reserve = new_dma_reserve;
8400 static int page_alloc_cpu_dead(unsigned int cpu)
8404 lru_add_drain_cpu(cpu);
8405 mlock_page_drain_remote(cpu);
8409 * Spill the event counters of the dead processor
8410 * into the current processors event counters.
8411 * This artificially elevates the count of the current
8414 vm_events_fold_cpu(cpu);
8417 * Zero the differential counters of the dead processor
8418 * so that the vm statistics are consistent.
8420 * This is only okay since the processor is dead and cannot
8421 * race with what we are doing.
8423 cpu_vm_stats_fold(cpu);
8425 for_each_populated_zone(zone)
8426 zone_pcp_update(zone, 0);
8431 static int page_alloc_cpu_online(unsigned int cpu)
8435 for_each_populated_zone(zone)
8436 zone_pcp_update(zone, 1);
8441 int hashdist = HASHDIST_DEFAULT;
8443 static int __init set_hashdist(char *str)
8447 hashdist = simple_strtoul(str, &str, 0);
8450 __setup("hashdist=", set_hashdist);
8453 void __init page_alloc_init(void)
8458 if (num_node_state(N_MEMORY) == 1)
8462 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8463 "mm/page_alloc:pcp",
8464 page_alloc_cpu_online,
8465 page_alloc_cpu_dead);
8470 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8471 * or min_free_kbytes changes.
8473 static void calculate_totalreserve_pages(void)
8475 struct pglist_data *pgdat;
8476 unsigned long reserve_pages = 0;
8477 enum zone_type i, j;
8479 for_each_online_pgdat(pgdat) {
8481 pgdat->totalreserve_pages = 0;
8483 for (i = 0; i < MAX_NR_ZONES; i++) {
8484 struct zone *zone = pgdat->node_zones + i;
8486 unsigned long managed_pages = zone_managed_pages(zone);
8488 /* Find valid and maximum lowmem_reserve in the zone */
8489 for (j = i; j < MAX_NR_ZONES; j++) {
8490 if (zone->lowmem_reserve[j] > max)
8491 max = zone->lowmem_reserve[j];
8494 /* we treat the high watermark as reserved pages. */
8495 max += high_wmark_pages(zone);
8497 if (max > managed_pages)
8498 max = managed_pages;
8500 pgdat->totalreserve_pages += max;
8502 reserve_pages += max;
8505 totalreserve_pages = reserve_pages;
8509 * setup_per_zone_lowmem_reserve - called whenever
8510 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8511 * has a correct pages reserved value, so an adequate number of
8512 * pages are left in the zone after a successful __alloc_pages().
8514 static void setup_per_zone_lowmem_reserve(void)
8516 struct pglist_data *pgdat;
8517 enum zone_type i, j;
8519 for_each_online_pgdat(pgdat) {
8520 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8521 struct zone *zone = &pgdat->node_zones[i];
8522 int ratio = sysctl_lowmem_reserve_ratio[i];
8523 bool clear = !ratio || !zone_managed_pages(zone);
8524 unsigned long managed_pages = 0;
8526 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8527 struct zone *upper_zone = &pgdat->node_zones[j];
8529 managed_pages += zone_managed_pages(upper_zone);
8532 zone->lowmem_reserve[j] = 0;
8534 zone->lowmem_reserve[j] = managed_pages / ratio;
8539 /* update totalreserve_pages */
8540 calculate_totalreserve_pages();
8543 static void __setup_per_zone_wmarks(void)
8545 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8546 unsigned long lowmem_pages = 0;
8548 unsigned long flags;
8550 /* Calculate total number of !ZONE_HIGHMEM pages */
8551 for_each_zone(zone) {
8552 if (!is_highmem(zone))
8553 lowmem_pages += zone_managed_pages(zone);
8556 for_each_zone(zone) {
8559 spin_lock_irqsave(&zone->lock, flags);
8560 tmp = (u64)pages_min * zone_managed_pages(zone);
8561 do_div(tmp, lowmem_pages);
8562 if (is_highmem(zone)) {
8564 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8565 * need highmem pages, so cap pages_min to a small
8568 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8569 * deltas control async page reclaim, and so should
8570 * not be capped for highmem.
8572 unsigned long min_pages;
8574 min_pages = zone_managed_pages(zone) / 1024;
8575 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8576 zone->_watermark[WMARK_MIN] = min_pages;
8579 * If it's a lowmem zone, reserve a number of pages
8580 * proportionate to the zone's size.
8582 zone->_watermark[WMARK_MIN] = tmp;
8586 * Set the kswapd watermarks distance according to the
8587 * scale factor in proportion to available memory, but
8588 * ensure a minimum size on small systems.
8590 tmp = max_t(u64, tmp >> 2,
8591 mult_frac(zone_managed_pages(zone),
8592 watermark_scale_factor, 10000));
8594 zone->watermark_boost = 0;
8595 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8596 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8597 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8599 spin_unlock_irqrestore(&zone->lock, flags);
8602 /* update totalreserve_pages */
8603 calculate_totalreserve_pages();
8607 * setup_per_zone_wmarks - called when min_free_kbytes changes
8608 * or when memory is hot-{added|removed}
8610 * Ensures that the watermark[min,low,high] values for each zone are set
8611 * correctly with respect to min_free_kbytes.
8613 void setup_per_zone_wmarks(void)
8616 static DEFINE_SPINLOCK(lock);
8619 __setup_per_zone_wmarks();
8623 * The watermark size have changed so update the pcpu batch
8624 * and high limits or the limits may be inappropriate.
8627 zone_pcp_update(zone, 0);
8631 * Initialise min_free_kbytes.
8633 * For small machines we want it small (128k min). For large machines
8634 * we want it large (256MB max). But it is not linear, because network
8635 * bandwidth does not increase linearly with machine size. We use
8637 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8638 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8654 void calculate_min_free_kbytes(void)
8656 unsigned long lowmem_kbytes;
8657 int new_min_free_kbytes;
8659 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8660 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8662 if (new_min_free_kbytes > user_min_free_kbytes)
8663 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8665 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8666 new_min_free_kbytes, user_min_free_kbytes);
8670 int __meminit init_per_zone_wmark_min(void)
8672 calculate_min_free_kbytes();
8673 setup_per_zone_wmarks();
8674 refresh_zone_stat_thresholds();
8675 setup_per_zone_lowmem_reserve();
8678 setup_min_unmapped_ratio();
8679 setup_min_slab_ratio();
8682 khugepaged_min_free_kbytes_update();
8686 postcore_initcall(init_per_zone_wmark_min)
8689 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8690 * that we can call two helper functions whenever min_free_kbytes
8693 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8694 void *buffer, size_t *length, loff_t *ppos)
8698 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8703 user_min_free_kbytes = min_free_kbytes;
8704 setup_per_zone_wmarks();
8709 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8710 void *buffer, size_t *length, loff_t *ppos)
8714 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8719 setup_per_zone_wmarks();
8725 static void setup_min_unmapped_ratio(void)
8730 for_each_online_pgdat(pgdat)
8731 pgdat->min_unmapped_pages = 0;
8734 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8735 sysctl_min_unmapped_ratio) / 100;
8739 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8740 void *buffer, size_t *length, loff_t *ppos)
8744 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8748 setup_min_unmapped_ratio();
8753 static void setup_min_slab_ratio(void)
8758 for_each_online_pgdat(pgdat)
8759 pgdat->min_slab_pages = 0;
8762 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8763 sysctl_min_slab_ratio) / 100;
8766 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8767 void *buffer, size_t *length, loff_t *ppos)
8771 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8775 setup_min_slab_ratio();
8782 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8783 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8784 * whenever sysctl_lowmem_reserve_ratio changes.
8786 * The reserve ratio obviously has absolutely no relation with the
8787 * minimum watermarks. The lowmem reserve ratio can only make sense
8788 * if in function of the boot time zone sizes.
8790 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8791 void *buffer, size_t *length, loff_t *ppos)
8795 proc_dointvec_minmax(table, write, buffer, length, ppos);
8797 for (i = 0; i < MAX_NR_ZONES; i++) {
8798 if (sysctl_lowmem_reserve_ratio[i] < 1)
8799 sysctl_lowmem_reserve_ratio[i] = 0;
8802 setup_per_zone_lowmem_reserve();
8807 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8808 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8809 * pagelist can have before it gets flushed back to buddy allocator.
8811 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8812 int write, void *buffer, size_t *length, loff_t *ppos)
8815 int old_percpu_pagelist_high_fraction;
8818 mutex_lock(&pcp_batch_high_lock);
8819 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8821 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8822 if (!write || ret < 0)
8825 /* Sanity checking to avoid pcp imbalance */
8826 if (percpu_pagelist_high_fraction &&
8827 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8828 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8834 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8837 for_each_populated_zone(zone)
8838 zone_set_pageset_high_and_batch(zone, 0);
8840 mutex_unlock(&pcp_batch_high_lock);
8844 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8846 * Returns the number of pages that arch has reserved but
8847 * is not known to alloc_large_system_hash().
8849 static unsigned long __init arch_reserved_kernel_pages(void)
8856 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8857 * machines. As memory size is increased the scale is also increased but at
8858 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8859 * quadruples the scale is increased by one, which means the size of hash table
8860 * only doubles, instead of quadrupling as well.
8861 * Because 32-bit systems cannot have large physical memory, where this scaling
8862 * makes sense, it is disabled on such platforms.
8864 #if __BITS_PER_LONG > 32
8865 #define ADAPT_SCALE_BASE (64ul << 30)
8866 #define ADAPT_SCALE_SHIFT 2
8867 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8871 * allocate a large system hash table from bootmem
8872 * - it is assumed that the hash table must contain an exact power-of-2
8873 * quantity of entries
8874 * - limit is the number of hash buckets, not the total allocation size
8876 void *__init alloc_large_system_hash(const char *tablename,
8877 unsigned long bucketsize,
8878 unsigned long numentries,
8881 unsigned int *_hash_shift,
8882 unsigned int *_hash_mask,
8883 unsigned long low_limit,
8884 unsigned long high_limit)
8886 unsigned long long max = high_limit;
8887 unsigned long log2qty, size;
8893 /* allow the kernel cmdline to have a say */
8895 /* round applicable memory size up to nearest megabyte */
8896 numentries = nr_kernel_pages;
8897 numentries -= arch_reserved_kernel_pages();
8899 /* It isn't necessary when PAGE_SIZE >= 1MB */
8900 if (PAGE_SHIFT < 20)
8901 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8903 #if __BITS_PER_LONG > 32
8905 unsigned long adapt;
8907 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8908 adapt <<= ADAPT_SCALE_SHIFT)
8913 /* limit to 1 bucket per 2^scale bytes of low memory */
8914 if (scale > PAGE_SHIFT)
8915 numentries >>= (scale - PAGE_SHIFT);
8917 numentries <<= (PAGE_SHIFT - scale);
8919 /* Make sure we've got at least a 0-order allocation.. */
8920 if (unlikely(flags & HASH_SMALL)) {
8921 /* Makes no sense without HASH_EARLY */
8922 WARN_ON(!(flags & HASH_EARLY));
8923 if (!(numentries >> *_hash_shift)) {
8924 numentries = 1UL << *_hash_shift;
8925 BUG_ON(!numentries);
8927 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8928 numentries = PAGE_SIZE / bucketsize;
8930 numentries = roundup_pow_of_two(numentries);
8932 /* limit allocation size to 1/16 total memory by default */
8934 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8935 do_div(max, bucketsize);
8937 max = min(max, 0x80000000ULL);
8939 if (numentries < low_limit)
8940 numentries = low_limit;
8941 if (numentries > max)
8944 log2qty = ilog2(numentries);
8946 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8949 size = bucketsize << log2qty;
8950 if (flags & HASH_EARLY) {
8951 if (flags & HASH_ZERO)
8952 table = memblock_alloc(size, SMP_CACHE_BYTES);
8954 table = memblock_alloc_raw(size,
8956 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8957 table = vmalloc_huge(size, gfp_flags);
8960 huge = is_vm_area_hugepages(table);
8963 * If bucketsize is not a power-of-two, we may free
8964 * some pages at the end of hash table which
8965 * alloc_pages_exact() automatically does
8967 table = alloc_pages_exact(size, gfp_flags);
8968 kmemleak_alloc(table, size, 1, gfp_flags);
8970 } while (!table && size > PAGE_SIZE && --log2qty);
8973 panic("Failed to allocate %s hash table\n", tablename);
8975 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8976 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8977 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8980 *_hash_shift = log2qty;
8982 *_hash_mask = (1 << log2qty) - 1;
8987 #ifdef CONFIG_CONTIG_ALLOC
8988 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8989 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8990 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8991 static void alloc_contig_dump_pages(struct list_head *page_list)
8993 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8995 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8999 list_for_each_entry(page, page_list, lru)
9000 dump_page(page, "migration failure");
9004 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9009 /* [start, end) must belong to a single zone. */
9010 int __alloc_contig_migrate_range(struct compact_control *cc,
9011 unsigned long start, unsigned long end)
9013 /* This function is based on compact_zone() from compaction.c. */
9014 unsigned int nr_reclaimed;
9015 unsigned long pfn = start;
9016 unsigned int tries = 0;
9018 struct migration_target_control mtc = {
9019 .nid = zone_to_nid(cc->zone),
9020 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9023 lru_cache_disable();
9025 while (pfn < end || !list_empty(&cc->migratepages)) {
9026 if (fatal_signal_pending(current)) {
9031 if (list_empty(&cc->migratepages)) {
9032 cc->nr_migratepages = 0;
9033 ret = isolate_migratepages_range(cc, pfn, end);
9034 if (ret && ret != -EAGAIN)
9036 pfn = cc->migrate_pfn;
9038 } else if (++tries == 5) {
9043 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9045 cc->nr_migratepages -= nr_reclaimed;
9047 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9048 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9051 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9052 * to retry again over this error, so do the same here.
9060 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9061 alloc_contig_dump_pages(&cc->migratepages);
9062 putback_movable_pages(&cc->migratepages);
9069 * alloc_contig_range() -- tries to allocate given range of pages
9070 * @start: start PFN to allocate
9071 * @end: one-past-the-last PFN to allocate
9072 * @migratetype: migratetype of the underlying pageblocks (either
9073 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9074 * in range must have the same migratetype and it must
9075 * be either of the two.
9076 * @gfp_mask: GFP mask to use during compaction
9078 * The PFN range does not have to be pageblock aligned. The PFN range must
9079 * belong to a single zone.
9081 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9082 * pageblocks in the range. Once isolated, the pageblocks should not
9083 * be modified by others.
9085 * Return: zero on success or negative error code. On success all
9086 * pages which PFN is in [start, end) are allocated for the caller and
9087 * need to be freed with free_contig_range().
9089 int alloc_contig_range(unsigned long start, unsigned long end,
9090 unsigned migratetype, gfp_t gfp_mask)
9092 unsigned long outer_start, outer_end;
9096 struct compact_control cc = {
9097 .nr_migratepages = 0,
9099 .zone = page_zone(pfn_to_page(start)),
9100 .mode = MIGRATE_SYNC,
9101 .ignore_skip_hint = true,
9102 .no_set_skip_hint = true,
9103 .gfp_mask = current_gfp_context(gfp_mask),
9104 .alloc_contig = true,
9106 INIT_LIST_HEAD(&cc.migratepages);
9109 * What we do here is we mark all pageblocks in range as
9110 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9111 * have different sizes, and due to the way page allocator
9112 * work, start_isolate_page_range() has special handlings for this.
9114 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9115 * migrate the pages from an unaligned range (ie. pages that
9116 * we are interested in). This will put all the pages in
9117 * range back to page allocator as MIGRATE_ISOLATE.
9119 * When this is done, we take the pages in range from page
9120 * allocator removing them from the buddy system. This way
9121 * page allocator will never consider using them.
9123 * This lets us mark the pageblocks back as
9124 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9125 * aligned range but not in the unaligned, original range are
9126 * put back to page allocator so that buddy can use them.
9129 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9133 drain_all_pages(cc.zone);
9136 * In case of -EBUSY, we'd like to know which page causes problem.
9137 * So, just fall through. test_pages_isolated() has a tracepoint
9138 * which will report the busy page.
9140 * It is possible that busy pages could become available before
9141 * the call to test_pages_isolated, and the range will actually be
9142 * allocated. So, if we fall through be sure to clear ret so that
9143 * -EBUSY is not accidentally used or returned to caller.
9145 ret = __alloc_contig_migrate_range(&cc, start, end);
9146 if (ret && ret != -EBUSY)
9151 * Pages from [start, end) are within a pageblock_nr_pages
9152 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9153 * more, all pages in [start, end) are free in page allocator.
9154 * What we are going to do is to allocate all pages from
9155 * [start, end) (that is remove them from page allocator).
9157 * The only problem is that pages at the beginning and at the
9158 * end of interesting range may be not aligned with pages that
9159 * page allocator holds, ie. they can be part of higher order
9160 * pages. Because of this, we reserve the bigger range and
9161 * once this is done free the pages we are not interested in.
9163 * We don't have to hold zone->lock here because the pages are
9164 * isolated thus they won't get removed from buddy.
9168 outer_start = start;
9169 while (!PageBuddy(pfn_to_page(outer_start))) {
9170 if (++order >= MAX_ORDER) {
9171 outer_start = start;
9174 outer_start &= ~0UL << order;
9177 if (outer_start != start) {
9178 order = buddy_order(pfn_to_page(outer_start));
9181 * outer_start page could be small order buddy page and
9182 * it doesn't include start page. Adjust outer_start
9183 * in this case to report failed page properly
9184 * on tracepoint in test_pages_isolated()
9186 if (outer_start + (1UL << order) <= start)
9187 outer_start = start;
9190 /* Make sure the range is really isolated. */
9191 if (test_pages_isolated(outer_start, end, 0)) {
9196 /* Grab isolated pages from freelists. */
9197 outer_end = isolate_freepages_range(&cc, outer_start, end);
9203 /* Free head and tail (if any) */
9204 if (start != outer_start)
9205 free_contig_range(outer_start, start - outer_start);
9206 if (end != outer_end)
9207 free_contig_range(end, outer_end - end);
9210 undo_isolate_page_range(start, end, migratetype);
9213 EXPORT_SYMBOL(alloc_contig_range);
9215 static int __alloc_contig_pages(unsigned long start_pfn,
9216 unsigned long nr_pages, gfp_t gfp_mask)
9218 unsigned long end_pfn = start_pfn + nr_pages;
9220 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9224 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9225 unsigned long nr_pages)
9227 unsigned long i, end_pfn = start_pfn + nr_pages;
9230 for (i = start_pfn; i < end_pfn; i++) {
9231 page = pfn_to_online_page(i);
9235 if (page_zone(page) != z)
9238 if (PageReserved(page))
9244 static bool zone_spans_last_pfn(const struct zone *zone,
9245 unsigned long start_pfn, unsigned long nr_pages)
9247 unsigned long last_pfn = start_pfn + nr_pages - 1;
9249 return zone_spans_pfn(zone, last_pfn);
9253 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9254 * @nr_pages: Number of contiguous pages to allocate
9255 * @gfp_mask: GFP mask to limit search and used during compaction
9257 * @nodemask: Mask for other possible nodes
9259 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9260 * on an applicable zonelist to find a contiguous pfn range which can then be
9261 * tried for allocation with alloc_contig_range(). This routine is intended
9262 * for allocation requests which can not be fulfilled with the buddy allocator.
9264 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9265 * power of two, then allocated range is also guaranteed to be aligned to same
9266 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9268 * Allocated pages can be freed with free_contig_range() or by manually calling
9269 * __free_page() on each allocated page.
9271 * Return: pointer to contiguous pages on success, or NULL if not successful.
9273 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9274 int nid, nodemask_t *nodemask)
9276 unsigned long ret, pfn, flags;
9277 struct zonelist *zonelist;
9281 zonelist = node_zonelist(nid, gfp_mask);
9282 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9283 gfp_zone(gfp_mask), nodemask) {
9284 spin_lock_irqsave(&zone->lock, flags);
9286 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9287 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9288 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9290 * We release the zone lock here because
9291 * alloc_contig_range() will also lock the zone
9292 * at some point. If there's an allocation
9293 * spinning on this lock, it may win the race
9294 * and cause alloc_contig_range() to fail...
9296 spin_unlock_irqrestore(&zone->lock, flags);
9297 ret = __alloc_contig_pages(pfn, nr_pages,
9300 return pfn_to_page(pfn);
9301 spin_lock_irqsave(&zone->lock, flags);
9305 spin_unlock_irqrestore(&zone->lock, flags);
9309 #endif /* CONFIG_CONTIG_ALLOC */
9311 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9313 unsigned long count = 0;
9315 for (; nr_pages--; pfn++) {
9316 struct page *page = pfn_to_page(pfn);
9318 count += page_count(page) != 1;
9321 WARN(count != 0, "%lu pages are still in use!\n", count);
9323 EXPORT_SYMBOL(free_contig_range);
9326 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9327 * page high values need to be recalculated.
9329 void zone_pcp_update(struct zone *zone, int cpu_online)
9331 mutex_lock(&pcp_batch_high_lock);
9332 zone_set_pageset_high_and_batch(zone, cpu_online);
9333 mutex_unlock(&pcp_batch_high_lock);
9337 * Effectively disable pcplists for the zone by setting the high limit to 0
9338 * and draining all cpus. A concurrent page freeing on another CPU that's about
9339 * to put the page on pcplist will either finish before the drain and the page
9340 * will be drained, or observe the new high limit and skip the pcplist.
9342 * Must be paired with a call to zone_pcp_enable().
9344 void zone_pcp_disable(struct zone *zone)
9346 mutex_lock(&pcp_batch_high_lock);
9347 __zone_set_pageset_high_and_batch(zone, 0, 1);
9348 __drain_all_pages(zone, true);
9351 void zone_pcp_enable(struct zone *zone)
9353 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9354 mutex_unlock(&pcp_batch_high_lock);
9357 void zone_pcp_reset(struct zone *zone)
9360 struct per_cpu_zonestat *pzstats;
9362 if (zone->per_cpu_pageset != &boot_pageset) {
9363 for_each_online_cpu(cpu) {
9364 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9365 drain_zonestat(zone, pzstats);
9367 free_percpu(zone->per_cpu_pageset);
9368 free_percpu(zone->per_cpu_zonestats);
9369 zone->per_cpu_pageset = &boot_pageset;
9370 zone->per_cpu_zonestats = &boot_zonestats;
9374 #ifdef CONFIG_MEMORY_HOTREMOVE
9376 * All pages in the range must be in a single zone, must not contain holes,
9377 * must span full sections, and must be isolated before calling this function.
9379 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9381 unsigned long pfn = start_pfn;
9385 unsigned long flags;
9387 offline_mem_sections(pfn, end_pfn);
9388 zone = page_zone(pfn_to_page(pfn));
9389 spin_lock_irqsave(&zone->lock, flags);
9390 while (pfn < end_pfn) {
9391 page = pfn_to_page(pfn);
9393 * The HWPoisoned page may be not in buddy system, and
9394 * page_count() is not 0.
9396 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9401 * At this point all remaining PageOffline() pages have a
9402 * reference count of 0 and can simply be skipped.
9404 if (PageOffline(page)) {
9405 BUG_ON(page_count(page));
9406 BUG_ON(PageBuddy(page));
9411 BUG_ON(page_count(page));
9412 BUG_ON(!PageBuddy(page));
9413 order = buddy_order(page);
9414 del_page_from_free_list(page, zone, order);
9415 pfn += (1 << order);
9417 spin_unlock_irqrestore(&zone->lock, flags);
9422 * This function returns a stable result only if called under zone lock.
9424 bool is_free_buddy_page(struct page *page)
9426 unsigned long pfn = page_to_pfn(page);
9429 for (order = 0; order < MAX_ORDER; order++) {
9430 struct page *page_head = page - (pfn & ((1 << order) - 1));
9432 if (PageBuddy(page_head) &&
9433 buddy_order_unsafe(page_head) >= order)
9437 return order < MAX_ORDER;
9439 EXPORT_SYMBOL(is_free_buddy_page);
9441 #ifdef CONFIG_MEMORY_FAILURE
9443 * Break down a higher-order page in sub-pages, and keep our target out of
9446 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9447 struct page *target, int low, int high,
9450 unsigned long size = 1 << high;
9451 struct page *current_buddy, *next_page;
9453 while (high > low) {
9457 if (target >= &page[size]) {
9458 next_page = page + size;
9459 current_buddy = page;
9462 current_buddy = page + size;
9465 if (set_page_guard(zone, current_buddy, high, migratetype))
9468 if (current_buddy != target) {
9469 add_to_free_list(current_buddy, zone, high, migratetype);
9470 set_buddy_order(current_buddy, high);
9477 * Take a page that will be marked as poisoned off the buddy allocator.
9479 bool take_page_off_buddy(struct page *page)
9481 struct zone *zone = page_zone(page);
9482 unsigned long pfn = page_to_pfn(page);
9483 unsigned long flags;
9487 spin_lock_irqsave(&zone->lock, flags);
9488 for (order = 0; order < MAX_ORDER; order++) {
9489 struct page *page_head = page - (pfn & ((1 << order) - 1));
9490 int page_order = buddy_order(page_head);
9492 if (PageBuddy(page_head) && page_order >= order) {
9493 unsigned long pfn_head = page_to_pfn(page_head);
9494 int migratetype = get_pfnblock_migratetype(page_head,
9497 del_page_from_free_list(page_head, zone, page_order);
9498 break_down_buddy_pages(zone, page_head, page, 0,
9499 page_order, migratetype);
9500 SetPageHWPoisonTakenOff(page);
9501 if (!is_migrate_isolate(migratetype))
9502 __mod_zone_freepage_state(zone, -1, migratetype);
9506 if (page_count(page_head) > 0)
9509 spin_unlock_irqrestore(&zone->lock, flags);
9514 * Cancel takeoff done by take_page_off_buddy().
9516 bool put_page_back_buddy(struct page *page)
9518 struct zone *zone = page_zone(page);
9519 unsigned long pfn = page_to_pfn(page);
9520 unsigned long flags;
9521 int migratetype = get_pfnblock_migratetype(page, pfn);
9524 spin_lock_irqsave(&zone->lock, flags);
9525 if (put_page_testzero(page)) {
9526 ClearPageHWPoisonTakenOff(page);
9527 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9528 if (TestClearPageHWPoison(page)) {
9532 spin_unlock_irqrestore(&zone->lock, flags);
9538 #ifdef CONFIG_ZONE_DMA
9539 bool has_managed_dma(void)
9541 struct pglist_data *pgdat;
9543 for_each_online_pgdat(pgdat) {
9544 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9546 if (managed_zone(zone))
9551 #endif /* CONFIG_ZONE_DMA */