2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node);
70 EXPORT_PER_CPU_SYMBOL(numa_node);
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78 * defined in <linux/topology.h>.
80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85 * Array of node states.
87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
88 [N_POSSIBLE] = NODE_MASK_ALL,
89 [N_ONLINE] = { { [0] = 1UL } },
91 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
93 [N_HIGH_MEMORY] = { { [0] = 1UL } },
95 #ifdef CONFIG_MOVABLE_NODE
96 [N_MEMORY] = { { [0] = 1UL } },
98 [N_CPU] = { { [0] = 1UL } },
101 EXPORT_SYMBOL(node_states);
103 unsigned long totalram_pages __read_mostly;
104 unsigned long totalreserve_pages __read_mostly;
106 * When calculating the number of globally allowed dirty pages, there
107 * is a certain number of per-zone reserves that should not be
108 * considered dirtyable memory. This is the sum of those reserves
109 * over all existing zones that contribute dirtyable memory.
111 unsigned long dirty_balance_reserve __read_mostly;
113 int percpu_pagelist_fraction;
114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
116 #ifdef CONFIG_PM_SLEEP
118 * The following functions are used by the suspend/hibernate code to temporarily
119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
120 * while devices are suspended. To avoid races with the suspend/hibernate code,
121 * they should always be called with pm_mutex held (gfp_allowed_mask also should
122 * only be modified with pm_mutex held, unless the suspend/hibernate code is
123 * guaranteed not to run in parallel with that modification).
126 static gfp_t saved_gfp_mask;
128 void pm_restore_gfp_mask(void)
130 WARN_ON(!mutex_is_locked(&pm_mutex));
131 if (saved_gfp_mask) {
132 gfp_allowed_mask = saved_gfp_mask;
137 void pm_restrict_gfp_mask(void)
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 WARN_ON(saved_gfp_mask);
141 saved_gfp_mask = gfp_allowed_mask;
142 gfp_allowed_mask &= ~GFP_IOFS;
145 bool pm_suspended_storage(void)
147 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
151 #endif /* CONFIG_PM_SLEEP */
153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
154 int pageblock_order __read_mostly;
157 static void __free_pages_ok(struct page *page, unsigned int order);
160 * results with 256, 32 in the lowmem_reserve sysctl:
161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
162 * 1G machine -> (16M dma, 784M normal, 224M high)
163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
167 * TBD: should special case ZONE_DMA32 machines here - in those we normally
168 * don't need any ZONE_NORMAL reservation
170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
171 #ifdef CONFIG_ZONE_DMA
174 #ifdef CONFIG_ZONE_DMA32
177 #ifdef CONFIG_HIGHMEM
183 EXPORT_SYMBOL(totalram_pages);
185 static char * const zone_names[MAX_NR_ZONES] = {
186 #ifdef CONFIG_ZONE_DMA
189 #ifdef CONFIG_ZONE_DMA32
193 #ifdef CONFIG_HIGHMEM
199 int min_free_kbytes = 1024;
201 static unsigned long __meminitdata nr_kernel_pages;
202 static unsigned long __meminitdata nr_all_pages;
203 static unsigned long __meminitdata dma_reserve;
205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __initdata required_kernelcore;
209 static unsigned long __initdata required_movablecore;
210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 EXPORT_SYMBOL(movable_zone);
215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
218 int nr_node_ids __read_mostly = MAX_NUMNODES;
219 int nr_online_nodes __read_mostly = 1;
220 EXPORT_SYMBOL(nr_node_ids);
221 EXPORT_SYMBOL(nr_online_nodes);
224 int page_group_by_mobility_disabled __read_mostly;
226 void set_pageblock_migratetype(struct page *page, int migratetype)
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
236 bool oom_killer_disabled __read_mostly;
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 unsigned long pfn = page_to_pfn(page);
244 unsigned long sp, start_pfn;
247 seq = zone_span_seqbegin(zone);
248 start_pfn = zone->zone_start_pfn;
249 sp = zone->spanned_pages;
250 if (!zone_spans_pfn(zone, pfn))
252 } while (zone_span_seqretry(zone, seq));
255 pr_err("page %lu outside zone [ %lu - %lu ]\n",
256 pfn, start_pfn, start_pfn + sp);
261 static int page_is_consistent(struct zone *zone, struct page *page)
263 if (!pfn_valid_within(page_to_pfn(page)))
265 if (zone != page_zone(page))
271 * Temporary debugging check for pages not lying within a given zone.
273 static int bad_range(struct zone *zone, struct page *page)
275 if (page_outside_zone_boundaries(zone, page))
277 if (!page_is_consistent(zone, page))
283 static inline int bad_range(struct zone *zone, struct page *page)
289 static void bad_page(struct page *page)
291 static unsigned long resume;
292 static unsigned long nr_shown;
293 static unsigned long nr_unshown;
295 /* Don't complain about poisoned pages */
296 if (PageHWPoison(page)) {
297 page_mapcount_reset(page); /* remove PageBuddy */
302 * Allow a burst of 60 reports, then keep quiet for that minute;
303 * or allow a steady drip of one report per second.
305 if (nr_shown == 60) {
306 if (time_before(jiffies, resume)) {
312 "BUG: Bad page state: %lu messages suppressed\n",
319 resume = jiffies + 60 * HZ;
321 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
322 current->comm, page_to_pfn(page));
328 /* Leave bad fields for debug, except PageBuddy could make trouble */
329 page_mapcount_reset(page); /* remove PageBuddy */
330 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
334 * Higher-order pages are called "compound pages". They are structured thusly:
336 * The first PAGE_SIZE page is called the "head page".
338 * The remaining PAGE_SIZE pages are called "tail pages".
340 * All pages have PG_compound set. All tail pages have their ->first_page
341 * pointing at the head page.
343 * The first tail page's ->lru.next holds the address of the compound page's
344 * put_page() function. Its ->lru.prev holds the order of allocation.
345 * This usage means that zero-order pages may not be compound.
348 static void free_compound_page(struct page *page)
350 __free_pages_ok(page, compound_order(page));
353 void prep_compound_page(struct page *page, unsigned long order)
356 int nr_pages = 1 << order;
358 set_compound_page_dtor(page, free_compound_page);
359 set_compound_order(page, order);
361 for (i = 1; i < nr_pages; i++) {
362 struct page *p = page + i;
364 set_page_count(p, 0);
365 p->first_page = page;
369 /* update __split_huge_page_refcount if you change this function */
370 static int destroy_compound_page(struct page *page, unsigned long order)
373 int nr_pages = 1 << order;
376 if (unlikely(compound_order(page) != order)) {
381 __ClearPageHead(page);
383 for (i = 1; i < nr_pages; i++) {
384 struct page *p = page + i;
386 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 * and __GFP_HIGHMEM from hard or soft interrupt context.
404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
405 for (i = 0; i < (1 << order); i++)
406 clear_highpage(page + i);
409 #ifdef CONFIG_DEBUG_PAGEALLOC
410 unsigned int _debug_guardpage_minorder;
412 static int __init debug_guardpage_minorder_setup(char *buf)
416 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
417 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
420 _debug_guardpage_minorder = res;
421 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
426 static inline void set_page_guard_flag(struct page *page)
428 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
431 static inline void clear_page_guard_flag(struct page *page)
433 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
436 static inline void set_page_guard_flag(struct page *page) { }
437 static inline void clear_page_guard_flag(struct page *page) { }
440 static inline void set_page_order(struct page *page, int order)
442 set_page_private(page, order);
443 __SetPageBuddy(page);
446 static inline void rmv_page_order(struct page *page)
448 __ClearPageBuddy(page);
449 set_page_private(page, 0);
453 * Locate the struct page for both the matching buddy in our
454 * pair (buddy1) and the combined O(n+1) page they form (page).
456 * 1) Any buddy B1 will have an order O twin B2 which satisfies
457 * the following equation:
459 * For example, if the starting buddy (buddy2) is #8 its order
461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
463 * 2) Any buddy B will have an order O+1 parent P which
464 * satisfies the following equation:
467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
469 static inline unsigned long
470 __find_buddy_index(unsigned long page_idx, unsigned int order)
472 return page_idx ^ (1 << order);
476 * This function checks whether a page is free && is the buddy
477 * we can do coalesce a page and its buddy if
478 * (a) the buddy is not in a hole &&
479 * (b) the buddy is in the buddy system &&
480 * (c) a page and its buddy have the same order &&
481 * (d) a page and its buddy are in the same zone.
483 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
486 * For recording page's order, we use page_private(page).
488 static inline int page_is_buddy(struct page *page, struct page *buddy,
491 if (!pfn_valid_within(page_to_pfn(buddy)))
494 if (page_zone_id(page) != page_zone_id(buddy))
497 if (page_is_guard(buddy) && page_order(buddy) == order) {
498 VM_BUG_ON(page_count(buddy) != 0);
502 if (PageBuddy(buddy) && page_order(buddy) == order) {
503 VM_BUG_ON(page_count(buddy) != 0);
510 * Freeing function for a buddy system allocator.
512 * The concept of a buddy system is to maintain direct-mapped table
513 * (containing bit values) for memory blocks of various "orders".
514 * The bottom level table contains the map for the smallest allocatable
515 * units of memory (here, pages), and each level above it describes
516 * pairs of units from the levels below, hence, "buddies".
517 * At a high level, all that happens here is marking the table entry
518 * at the bottom level available, and propagating the changes upward
519 * as necessary, plus some accounting needed to play nicely with other
520 * parts of the VM system.
521 * At each level, we keep a list of pages, which are heads of continuous
522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
523 * order is recorded in page_private(page) field.
524 * So when we are allocating or freeing one, we can derive the state of the
525 * other. That is, if we allocate a small block, and both were
526 * free, the remainder of the region must be split into blocks.
527 * If a block is freed, and its buddy is also free, then this
528 * triggers coalescing into a block of larger size.
533 static inline void __free_one_page(struct page *page,
534 struct zone *zone, unsigned int order,
537 unsigned long page_idx;
538 unsigned long combined_idx;
539 unsigned long uninitialized_var(buddy_idx);
542 VM_BUG_ON(!zone_is_initialized(zone));
544 if (unlikely(PageCompound(page)))
545 if (unlikely(destroy_compound_page(page, order)))
548 VM_BUG_ON(migratetype == -1);
550 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
552 VM_BUG_ON(page_idx & ((1 << order) - 1));
553 VM_BUG_ON(bad_range(zone, page));
555 while (order < MAX_ORDER-1) {
556 buddy_idx = __find_buddy_index(page_idx, order);
557 buddy = page + (buddy_idx - page_idx);
558 if (!page_is_buddy(page, buddy, order))
561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
562 * merge with it and move up one order.
564 if (page_is_guard(buddy)) {
565 clear_page_guard_flag(buddy);
566 set_page_private(page, 0);
567 __mod_zone_freepage_state(zone, 1 << order,
570 list_del(&buddy->lru);
571 zone->free_area[order].nr_free--;
572 rmv_page_order(buddy);
574 combined_idx = buddy_idx & page_idx;
575 page = page + (combined_idx - page_idx);
576 page_idx = combined_idx;
579 set_page_order(page, order);
582 * If this is not the largest possible page, check if the buddy
583 * of the next-highest order is free. If it is, it's possible
584 * that pages are being freed that will coalesce soon. In case,
585 * that is happening, add the free page to the tail of the list
586 * so it's less likely to be used soon and more likely to be merged
587 * as a higher order page
589 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
590 struct page *higher_page, *higher_buddy;
591 combined_idx = buddy_idx & page_idx;
592 higher_page = page + (combined_idx - page_idx);
593 buddy_idx = __find_buddy_index(combined_idx, order + 1);
594 higher_buddy = higher_page + (buddy_idx - combined_idx);
595 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
596 list_add_tail(&page->lru,
597 &zone->free_area[order].free_list[migratetype]);
602 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
604 zone->free_area[order].nr_free++;
607 static inline int free_pages_check(struct page *page)
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
617 page_nid_reset_last(page);
618 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
619 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 * Frees a number of pages from the PCP lists
625 * Assumes all pages on list are in same zone, and of same order.
626 * count is the number of pages to free.
628 * If the zone was previously in an "all pages pinned" state then look to
629 * see if this freeing clears that state.
631 * And clear the zone's pages_scanned counter, to hold off the "all pages are
632 * pinned" detection logic.
634 static void free_pcppages_bulk(struct zone *zone, int count,
635 struct per_cpu_pages *pcp)
641 spin_lock(&zone->lock);
642 zone->all_unreclaimable = 0;
643 zone->pages_scanned = 0;
647 struct list_head *list;
650 * Remove pages from lists in a round-robin fashion. A
651 * batch_free count is maintained that is incremented when an
652 * empty list is encountered. This is so more pages are freed
653 * off fuller lists instead of spinning excessively around empty
658 if (++migratetype == MIGRATE_PCPTYPES)
660 list = &pcp->lists[migratetype];
661 } while (list_empty(list));
663 /* This is the only non-empty list. Free them all. */
664 if (batch_free == MIGRATE_PCPTYPES)
665 batch_free = to_free;
668 int mt; /* migratetype of the to-be-freed page */
670 page = list_entry(list->prev, struct page, lru);
671 /* must delete as __free_one_page list manipulates */
672 list_del(&page->lru);
673 mt = get_freepage_migratetype(page);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, mt);
676 trace_mm_page_pcpu_drain(page, 0, mt);
677 if (likely(!is_migrate_isolate_page(page))) {
678 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
679 if (is_migrate_cma(mt))
680 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
682 } while (--to_free && --batch_free && !list_empty(list));
684 spin_unlock(&zone->lock);
687 static void free_one_page(struct zone *zone, struct page *page, int order,
690 spin_lock(&zone->lock);
691 zone->all_unreclaimable = 0;
692 zone->pages_scanned = 0;
694 __free_one_page(page, zone, order, migratetype);
695 if (unlikely(!is_migrate_isolate(migratetype)))
696 __mod_zone_freepage_state(zone, 1 << order, migratetype);
697 spin_unlock(&zone->lock);
700 static bool free_pages_prepare(struct page *page, unsigned int order)
705 trace_mm_page_free(page, order);
706 kmemcheck_free_shadow(page, order);
709 page->mapping = NULL;
710 for (i = 0; i < (1 << order); i++)
711 bad += free_pages_check(page + i);
715 if (!PageHighMem(page)) {
716 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
717 debug_check_no_obj_freed(page_address(page),
720 arch_free_page(page, order);
721 kernel_map_pages(page, 1 << order, 0);
726 static void __free_pages_ok(struct page *page, unsigned int order)
731 if (!free_pages_prepare(page, order))
734 local_irq_save(flags);
735 __count_vm_events(PGFREE, 1 << order);
736 migratetype = get_pageblock_migratetype(page);
737 set_freepage_migratetype(page, migratetype);
738 free_one_page(page_zone(page), page, order, migratetype);
739 local_irq_restore(flags);
743 * Read access to zone->managed_pages is safe because it's unsigned long,
744 * but we still need to serialize writers. Currently all callers of
745 * __free_pages_bootmem() except put_page_bootmem() should only be used
746 * at boot time. So for shorter boot time, we shift the burden to
747 * put_page_bootmem() to serialize writers.
749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
751 unsigned int nr_pages = 1 << order;
755 for (loop = 0; loop < nr_pages; loop++) {
756 struct page *p = &page[loop];
758 if (loop + 1 < nr_pages)
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
764 page_zone(page)->managed_pages += 1 << order;
765 set_page_refcounted(page);
766 __free_pages(page, order);
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
773 unsigned i = pageblock_nr_pages;
774 struct page *p = page;
777 __ClearPageReserved(p);
778 set_page_count(p, 0);
781 set_page_refcounted(page);
782 set_pageblock_migratetype(page, MIGRATE_CMA);
783 __free_pages(page, pageblock_order);
784 totalram_pages += pageblock_nr_pages;
785 #ifdef CONFIG_HIGHMEM
786 if (PageHighMem(page))
787 totalhigh_pages += pageblock_nr_pages;
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
810 unsigned long size = 1 << high;
816 VM_BUG_ON(bad_range(zone, &page[size]));
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
835 list_add(&page[size].lru, &area->free_list[migratetype]);
837 set_page_order(&page[size], high);
842 * This page is about to be returned from the page allocator
844 static inline int check_new_page(struct page *page)
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
867 set_page_private(page, 0);
868 set_page_refcounted(page);
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
890 unsigned int current_order;
891 struct free_area * area;
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
900 page = list_entry(area->free_list[migratetype].next,
902 list_del(&page->lru);
903 rmv_page_order(page);
905 expand(zone, page, order, current_order, area, migratetype);
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
945 #ifndef CONFIG_HOLES_IN_ZONE
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
960 if (!pfn_valid_within(page_to_pfn(page))) {
965 if (!PageBuddy(page)) {
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
975 pages_moved += 1 << order;
981 int move_freepages_block(struct zone *zone, struct page *page,
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
996 if (!zone_spans_pfn(zone, end_pfn))
999 return move_freepages(zone, start_page, end_page, migratetype);
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1013 /* Remove an element from the buddy allocator from the fallback list */
1014 static inline struct page *
1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1017 struct free_area * area;
1022 /* Find the largest possible block of pages in the other list */
1023 for (current_order = MAX_ORDER-1; current_order >= order;
1026 migratetype = fallbacks[start_migratetype][i];
1028 /* MIGRATE_RESERVE handled later if necessary */
1029 if (migratetype == MIGRATE_RESERVE)
1032 area = &(zone->free_area[current_order]);
1033 if (list_empty(&area->free_list[migratetype]))
1036 page = list_entry(area->free_list[migratetype].next,
1041 * If breaking a large block of pages, move all free
1042 * pages to the preferred allocation list. If falling
1043 * back for a reclaimable kernel allocation, be more
1044 * aggressive about taking ownership of free pages
1046 * On the other hand, never change migration
1047 * type of MIGRATE_CMA pageblocks nor move CMA
1048 * pages on different free lists. We don't
1049 * want unmovable pages to be allocated from
1050 * MIGRATE_CMA areas.
1052 if (!is_migrate_cma(migratetype) &&
1053 (unlikely(current_order >= pageblock_order / 2) ||
1054 start_migratetype == MIGRATE_RECLAIMABLE ||
1055 page_group_by_mobility_disabled)) {
1057 pages = move_freepages_block(zone, page,
1060 /* Claim the whole block if over half of it is free */
1061 if (pages >= (1 << (pageblock_order-1)) ||
1062 page_group_by_mobility_disabled)
1063 set_pageblock_migratetype(page,
1066 migratetype = start_migratetype;
1069 /* Remove the page from the freelists */
1070 list_del(&page->lru);
1071 rmv_page_order(page);
1073 /* Take ownership for orders >= pageblock_order */
1074 if (current_order >= pageblock_order &&
1075 !is_migrate_cma(migratetype))
1076 change_pageblock_range(page, current_order,
1079 expand(zone, page, order, current_order, area,
1080 is_migrate_cma(migratetype)
1081 ? migratetype : start_migratetype);
1083 trace_mm_page_alloc_extfrag(page, order, current_order,
1084 start_migratetype, migratetype);
1094 * Do the hard work of removing an element from the buddy allocator.
1095 * Call me with the zone->lock already held.
1097 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1103 page = __rmqueue_smallest(zone, order, migratetype);
1105 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1106 page = __rmqueue_fallback(zone, order, migratetype);
1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1110 * is used because __rmqueue_smallest is an inline function
1111 * and we want just one call site
1114 migratetype = MIGRATE_RESERVE;
1119 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1124 * Obtain a specified number of elements from the buddy allocator, all under
1125 * a single hold of the lock, for efficiency. Add them to the supplied list.
1126 * Returns the number of new pages which were placed at *list.
1128 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1129 unsigned long count, struct list_head *list,
1130 int migratetype, int cold)
1132 int mt = migratetype, i;
1134 spin_lock(&zone->lock);
1135 for (i = 0; i < count; ++i) {
1136 struct page *page = __rmqueue(zone, order, migratetype);
1137 if (unlikely(page == NULL))
1141 * Split buddy pages returned by expand() are received here
1142 * in physical page order. The page is added to the callers and
1143 * list and the list head then moves forward. From the callers
1144 * perspective, the linked list is ordered by page number in
1145 * some conditions. This is useful for IO devices that can
1146 * merge IO requests if the physical pages are ordered
1149 if (likely(cold == 0))
1150 list_add(&page->lru, list);
1152 list_add_tail(&page->lru, list);
1153 if (IS_ENABLED(CONFIG_CMA)) {
1154 mt = get_pageblock_migratetype(page);
1155 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1158 set_freepage_migratetype(page, mt);
1160 if (is_migrate_cma(mt))
1161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1165 spin_unlock(&zone->lock);
1171 * Called from the vmstat counter updater to drain pagesets of this
1172 * currently executing processor on remote nodes after they have
1175 * Note that this function must be called with the thread pinned to
1176 * a single processor.
1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1180 unsigned long flags;
1183 local_irq_save(flags);
1184 if (pcp->count >= pcp->batch)
1185 to_drain = pcp->batch;
1187 to_drain = pcp->count;
1189 free_pcppages_bulk(zone, to_drain, pcp);
1190 pcp->count -= to_drain;
1192 local_irq_restore(flags);
1197 * Drain pages of the indicated processor.
1199 * The processor must either be the current processor and the
1200 * thread pinned to the current processor or a processor that
1203 static void drain_pages(unsigned int cpu)
1205 unsigned long flags;
1208 for_each_populated_zone(zone) {
1209 struct per_cpu_pageset *pset;
1210 struct per_cpu_pages *pcp;
1212 local_irq_save(flags);
1213 pset = per_cpu_ptr(zone->pageset, cpu);
1217 free_pcppages_bulk(zone, pcp->count, pcp);
1220 local_irq_restore(flags);
1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1227 void drain_local_pages(void *arg)
1229 drain_pages(smp_processor_id());
1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1235 * Note that this code is protected against sending an IPI to an offline
1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238 * nothing keeps CPUs from showing up after we populated the cpumask and
1239 * before the call to on_each_cpu_mask().
1241 void drain_all_pages(void)
1244 struct per_cpu_pageset *pcp;
1248 * Allocate in the BSS so we wont require allocation in
1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1251 static cpumask_t cpus_with_pcps;
1254 * We don't care about racing with CPU hotplug event
1255 * as offline notification will cause the notified
1256 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 * disables preemption as part of its processing
1259 for_each_online_cpu(cpu) {
1260 bool has_pcps = false;
1261 for_each_populated_zone(zone) {
1262 pcp = per_cpu_ptr(zone->pageset, cpu);
1263 if (pcp->pcp.count) {
1269 cpumask_set_cpu(cpu, &cpus_with_pcps);
1271 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1276 #ifdef CONFIG_HIBERNATION
1278 void mark_free_pages(struct zone *zone)
1280 unsigned long pfn, max_zone_pfn;
1281 unsigned long flags;
1283 struct list_head *curr;
1285 if (!zone->spanned_pages)
1288 spin_lock_irqsave(&zone->lock, flags);
1290 max_zone_pfn = zone_end_pfn(zone);
1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1292 if (pfn_valid(pfn)) {
1293 struct page *page = pfn_to_page(pfn);
1295 if (!swsusp_page_is_forbidden(page))
1296 swsusp_unset_page_free(page);
1299 for_each_migratetype_order(order, t) {
1300 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1303 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1304 for (i = 0; i < (1UL << order); i++)
1305 swsusp_set_page_free(pfn_to_page(pfn + i));
1308 spin_unlock_irqrestore(&zone->lock, flags);
1310 #endif /* CONFIG_PM */
1313 * Free a 0-order page
1314 * cold == 1 ? free a cold page : free a hot page
1316 void free_hot_cold_page(struct page *page, int cold)
1318 struct zone *zone = page_zone(page);
1319 struct per_cpu_pages *pcp;
1320 unsigned long flags;
1323 if (!free_pages_prepare(page, 0))
1326 migratetype = get_pageblock_migratetype(page);
1327 set_freepage_migratetype(page, migratetype);
1328 local_irq_save(flags);
1329 __count_vm_event(PGFREE);
1332 * We only track unmovable, reclaimable and movable on pcp lists.
1333 * Free ISOLATE pages back to the allocator because they are being
1334 * offlined but treat RESERVE as movable pages so we can get those
1335 * areas back if necessary. Otherwise, we may have to free
1336 * excessively into the page allocator
1338 if (migratetype >= MIGRATE_PCPTYPES) {
1339 if (unlikely(is_migrate_isolate(migratetype))) {
1340 free_one_page(zone, page, 0, migratetype);
1343 migratetype = MIGRATE_MOVABLE;
1346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1348 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1350 list_add(&page->lru, &pcp->lists[migratetype]);
1352 if (pcp->count >= pcp->high) {
1353 free_pcppages_bulk(zone, pcp->batch, pcp);
1354 pcp->count -= pcp->batch;
1358 local_irq_restore(flags);
1362 * Free a list of 0-order pages
1364 void free_hot_cold_page_list(struct list_head *list, int cold)
1366 struct page *page, *next;
1368 list_for_each_entry_safe(page, next, list, lru) {
1369 trace_mm_page_free_batched(page, cold);
1370 free_hot_cold_page(page, cold);
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1382 void split_page(struct page *page, unsigned int order)
1386 VM_BUG_ON(PageCompound(page));
1387 VM_BUG_ON(!page_count(page));
1389 #ifdef CONFIG_KMEMCHECK
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1394 if (kmemcheck_page_is_tracked(page))
1395 split_page(virt_to_page(page[0].shadow), order);
1398 for (i = 1; i < (1 << order); i++)
1399 set_page_refcounted(page + i);
1401 EXPORT_SYMBOL_GPL(split_page);
1403 static int __isolate_free_page(struct page *page, unsigned int order)
1405 unsigned long watermark;
1409 BUG_ON(!PageBuddy(page));
1411 zone = page_zone(page);
1412 mt = get_pageblock_migratetype(page);
1414 if (!is_migrate_isolate(mt)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark = low_wmark_pages(zone) + (1 << order);
1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1420 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1423 /* Remove page from free list */
1424 list_del(&page->lru);
1425 zone->free_area[order].nr_free--;
1426 rmv_page_order(page);
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1439 return 1UL << order;
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1452 int split_free_page(struct page *page)
1457 order = page_order(page);
1459 nr_pages = __isolate_free_page(page, order);
1463 /* Split into individual pages */
1464 set_page_refcounted(page);
1465 split_page(page, order);
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1475 struct page *buffered_rmqueue(struct zone *preferred_zone,
1476 struct zone *zone, int order, gfp_t gfp_flags,
1479 unsigned long flags;
1481 int cold = !!(gfp_flags & __GFP_COLD);
1484 if (likely(order == 0)) {
1485 struct per_cpu_pages *pcp;
1486 struct list_head *list;
1488 local_irq_save(flags);
1489 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 list = &pcp->lists[migratetype];
1491 if (list_empty(list)) {
1492 pcp->count += rmqueue_bulk(zone, 0,
1495 if (unlikely(list_empty(list)))
1500 page = list_entry(list->prev, struct page, lru);
1502 page = list_entry(list->next, struct page, lru);
1504 list_del(&page->lru);
1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 * __GFP_NOFAIL is not to be used in new code.
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1518 WARN_ON_ONCE(order > 1);
1520 spin_lock_irqsave(&zone->lock, flags);
1521 page = __rmqueue(zone, order, migratetype);
1522 spin_unlock(&zone->lock);
1525 __mod_zone_freepage_state(zone, -(1 << order),
1526 get_pageblock_migratetype(page));
1529 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1530 zone_statistics(preferred_zone, zone, gfp_flags);
1531 local_irq_restore(flags);
1533 VM_BUG_ON(bad_range(zone, page));
1534 if (prep_new_page(page, order, gfp_flags))
1539 local_irq_restore(flags);
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1546 struct fault_attr attr;
1548 u32 ignore_gfp_highmem;
1549 u32 ignore_gfp_wait;
1551 } fail_page_alloc = {
1552 .attr = FAULT_ATTR_INITIALIZER,
1553 .ignore_gfp_wait = 1,
1554 .ignore_gfp_highmem = 1,
1558 static int __init setup_fail_page_alloc(char *str)
1560 return setup_fault_attr(&fail_page_alloc.attr, str);
1562 __setup("fail_page_alloc=", setup_fail_page_alloc);
1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1566 if (order < fail_page_alloc.min_order)
1568 if (gfp_mask & __GFP_NOFAIL)
1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1575 return should_fail(&fail_page_alloc.attr, 1 << order);
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580 static int __init fail_page_alloc_debugfs(void)
1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 &fail_page_alloc.attr);
1588 return PTR_ERR(dir);
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 &fail_page_alloc.ignore_gfp_wait))
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 &fail_page_alloc.ignore_gfp_highmem))
1596 if (!debugfs_create_u32("min-order", mode, dir,
1597 &fail_page_alloc.min_order))
1602 debugfs_remove_recursive(dir);
1607 late_initcall(fail_page_alloc_debugfs);
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 int classzone_idx, int alloc_flags, long free_pages)
1627 /* free_pages my go negative - that's OK */
1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1632 free_pages -= (1 << order) - 1;
1633 if (alloc_flags & ALLOC_HIGH)
1635 if (alloc_flags & ALLOC_HARDER)
1638 /* If allocation can't use CMA areas don't use free CMA pages */
1639 if (!(alloc_flags & ALLOC_CMA))
1640 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642 if (free_pages <= min + lowmem_reserve)
1644 for (o = 0; o < order; o++) {
1645 /* At the next order, this order's pages become unavailable */
1646 free_pages -= z->free_area[o].nr_free << o;
1648 /* Require fewer higher order pages to be free */
1651 if (free_pages <= min)
1657 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1658 int classzone_idx, int alloc_flags)
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 zone_page_state(z, NR_FREE_PAGES));
1664 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1665 int classzone_idx, int alloc_flags)
1667 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1670 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1678 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1679 * skip over zones that are not allowed by the cpuset, or that have
1680 * been recently (in last second) found to be nearly full. See further
1681 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1682 * that have to skip over a lot of full or unallowed zones.
1684 * If the zonelist cache is present in the passed in zonelist, then
1685 * returns a pointer to the allowed node mask (either the current
1686 * tasks mems_allowed, or node_states[N_MEMORY].)
1688 * If the zonelist cache is not available for this zonelist, does
1689 * nothing and returns NULL.
1691 * If the fullzones BITMAP in the zonelist cache is stale (more than
1692 * a second since last zap'd) then we zap it out (clear its bits.)
1694 * We hold off even calling zlc_setup, until after we've checked the
1695 * first zone in the zonelist, on the theory that most allocations will
1696 * be satisfied from that first zone, so best to examine that zone as
1697 * quickly as we can.
1699 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1701 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1702 nodemask_t *allowednodes; /* zonelist_cache approximation */
1704 zlc = zonelist->zlcache_ptr;
1708 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1710 zlc->last_full_zap = jiffies;
1713 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1714 &cpuset_current_mems_allowed :
1715 &node_states[N_MEMORY];
1716 return allowednodes;
1720 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1721 * if it is worth looking at further for free memory:
1722 * 1) Check that the zone isn't thought to be full (doesn't have its
1723 * bit set in the zonelist_cache fullzones BITMAP).
1724 * 2) Check that the zones node (obtained from the zonelist_cache
1725 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1726 * Return true (non-zero) if zone is worth looking at further, or
1727 * else return false (zero) if it is not.
1729 * This check -ignores- the distinction between various watermarks,
1730 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1731 * found to be full for any variation of these watermarks, it will
1732 * be considered full for up to one second by all requests, unless
1733 * we are so low on memory on all allowed nodes that we are forced
1734 * into the second scan of the zonelist.
1736 * In the second scan we ignore this zonelist cache and exactly
1737 * apply the watermarks to all zones, even it is slower to do so.
1738 * We are low on memory in the second scan, and should leave no stone
1739 * unturned looking for a free page.
1741 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1742 nodemask_t *allowednodes)
1744 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1745 int i; /* index of *z in zonelist zones */
1746 int n; /* node that zone *z is on */
1748 zlc = zonelist->zlcache_ptr;
1752 i = z - zonelist->_zonerefs;
1755 /* This zone is worth trying if it is allowed but not full */
1756 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1760 * Given 'z' scanning a zonelist, set the corresponding bit in
1761 * zlc->fullzones, so that subsequent attempts to allocate a page
1762 * from that zone don't waste time re-examining it.
1764 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1766 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1767 int i; /* index of *z in zonelist zones */
1769 zlc = zonelist->zlcache_ptr;
1773 i = z - zonelist->_zonerefs;
1775 set_bit(i, zlc->fullzones);
1779 * clear all zones full, called after direct reclaim makes progress so that
1780 * a zone that was recently full is not skipped over for up to a second
1782 static void zlc_clear_zones_full(struct zonelist *zonelist)
1784 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1786 zlc = zonelist->zlcache_ptr;
1790 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1793 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1795 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1798 static void __paginginit init_zone_allows_reclaim(int nid)
1802 for_each_online_node(i)
1803 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1804 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1806 zone_reclaim_mode = 1;
1809 #else /* CONFIG_NUMA */
1811 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1817 nodemask_t *allowednodes)
1822 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1826 static void zlc_clear_zones_full(struct zonelist *zonelist)
1830 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1835 static inline void init_zone_allows_reclaim(int nid)
1838 #endif /* CONFIG_NUMA */
1841 * get_page_from_freelist goes through the zonelist trying to allocate
1844 static struct page *
1845 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1846 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1847 struct zone *preferred_zone, int migratetype)
1850 struct page *page = NULL;
1853 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1854 int zlc_active = 0; /* set if using zonelist_cache */
1855 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1857 classzone_idx = zone_idx(preferred_zone);
1860 * Scan zonelist, looking for a zone with enough free.
1861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1863 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1864 high_zoneidx, nodemask) {
1865 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1866 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1868 if ((alloc_flags & ALLOC_CPUSET) &&
1869 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1872 * When allocating a page cache page for writing, we
1873 * want to get it from a zone that is within its dirty
1874 * limit, such that no single zone holds more than its
1875 * proportional share of globally allowed dirty pages.
1876 * The dirty limits take into account the zone's
1877 * lowmem reserves and high watermark so that kswapd
1878 * should be able to balance it without having to
1879 * write pages from its LRU list.
1881 * This may look like it could increase pressure on
1882 * lower zones by failing allocations in higher zones
1883 * before they are full. But the pages that do spill
1884 * over are limited as the lower zones are protected
1885 * by this very same mechanism. It should not become
1886 * a practical burden to them.
1888 * XXX: For now, allow allocations to potentially
1889 * exceed the per-zone dirty limit in the slowpath
1890 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1891 * which is important when on a NUMA setup the allowed
1892 * zones are together not big enough to reach the
1893 * global limit. The proper fix for these situations
1894 * will require awareness of zones in the
1895 * dirty-throttling and the flusher threads.
1897 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1898 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1899 goto this_zone_full;
1901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1902 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1906 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1907 if (zone_watermark_ok(zone, order, mark,
1908 classzone_idx, alloc_flags))
1911 if (IS_ENABLED(CONFIG_NUMA) &&
1912 !did_zlc_setup && nr_online_nodes > 1) {
1914 * we do zlc_setup if there are multiple nodes
1915 * and before considering the first zone allowed
1918 allowednodes = zlc_setup(zonelist, alloc_flags);
1923 if (zone_reclaim_mode == 0 ||
1924 !zone_allows_reclaim(preferred_zone, zone))
1925 goto this_zone_full;
1928 * As we may have just activated ZLC, check if the first
1929 * eligible zone has failed zone_reclaim recently.
1931 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1932 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 ret = zone_reclaim(zone, gfp_mask, order);
1937 case ZONE_RECLAIM_NOSCAN:
1940 case ZONE_RECLAIM_FULL:
1941 /* scanned but unreclaimable */
1944 /* did we reclaim enough */
1945 if (!zone_watermark_ok(zone, order, mark,
1946 classzone_idx, alloc_flags))
1947 goto this_zone_full;
1952 page = buffered_rmqueue(preferred_zone, zone, order,
1953 gfp_mask, migratetype);
1957 if (IS_ENABLED(CONFIG_NUMA))
1958 zlc_mark_zone_full(zonelist, z);
1961 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1962 /* Disable zlc cache for second zonelist scan */
1969 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1970 * necessary to allocate the page. The expectation is
1971 * that the caller is taking steps that will free more
1972 * memory. The caller should avoid the page being used
1973 * for !PFMEMALLOC purposes.
1975 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1981 * Large machines with many possible nodes should not always dump per-node
1982 * meminfo in irq context.
1984 static inline bool should_suppress_show_mem(void)
1989 ret = in_interrupt();
1994 static DEFINE_RATELIMIT_STATE(nopage_rs,
1995 DEFAULT_RATELIMIT_INTERVAL,
1996 DEFAULT_RATELIMIT_BURST);
1998 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2000 unsigned int filter = SHOW_MEM_FILTER_NODES;
2002 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2003 debug_guardpage_minorder() > 0)
2007 * Walking all memory to count page types is very expensive and should
2008 * be inhibited in non-blockable contexts.
2010 if (!(gfp_mask & __GFP_WAIT))
2011 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2014 * This documents exceptions given to allocations in certain
2015 * contexts that are allowed to allocate outside current's set
2018 if (!(gfp_mask & __GFP_NOMEMALLOC))
2019 if (test_thread_flag(TIF_MEMDIE) ||
2020 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2021 filter &= ~SHOW_MEM_FILTER_NODES;
2022 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2023 filter &= ~SHOW_MEM_FILTER_NODES;
2026 struct va_format vaf;
2029 va_start(args, fmt);
2034 pr_warn("%pV", &vaf);
2039 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2040 current->comm, order, gfp_mask);
2043 if (!should_suppress_show_mem())
2048 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2049 unsigned long did_some_progress,
2050 unsigned long pages_reclaimed)
2052 /* Do not loop if specifically requested */
2053 if (gfp_mask & __GFP_NORETRY)
2056 /* Always retry if specifically requested */
2057 if (gfp_mask & __GFP_NOFAIL)
2061 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2062 * making forward progress without invoking OOM. Suspend also disables
2063 * storage devices so kswapd will not help. Bail if we are suspending.
2065 if (!did_some_progress && pm_suspended_storage())
2069 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2070 * means __GFP_NOFAIL, but that may not be true in other
2073 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2077 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2078 * specified, then we retry until we no longer reclaim any pages
2079 * (above), or we've reclaimed an order of pages at least as
2080 * large as the allocation's order. In both cases, if the
2081 * allocation still fails, we stop retrying.
2083 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2089 static inline struct page *
2090 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2091 struct zonelist *zonelist, enum zone_type high_zoneidx,
2092 nodemask_t *nodemask, struct zone *preferred_zone,
2097 /* Acquire the OOM killer lock for the zones in zonelist */
2098 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2099 schedule_timeout_uninterruptible(1);
2104 * Go through the zonelist yet one more time, keep very high watermark
2105 * here, this is only to catch a parallel oom killing, we must fail if
2106 * we're still under heavy pressure.
2108 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2109 order, zonelist, high_zoneidx,
2110 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2111 preferred_zone, migratetype);
2115 if (!(gfp_mask & __GFP_NOFAIL)) {
2116 /* The OOM killer will not help higher order allocs */
2117 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 /* The OOM killer does not needlessly kill tasks for lowmem */
2120 if (high_zoneidx < ZONE_NORMAL)
2123 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2124 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2125 * The caller should handle page allocation failure by itself if
2126 * it specifies __GFP_THISNODE.
2127 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 if (gfp_mask & __GFP_THISNODE)
2132 /* Exhausted what can be done so it's blamo time */
2133 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2136 clear_zonelist_oom(zonelist, gfp_mask);
2140 #ifdef CONFIG_COMPACTION
2141 /* Try memory compaction for high-order allocations before reclaim */
2142 static struct page *
2143 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2144 struct zonelist *zonelist, enum zone_type high_zoneidx,
2145 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2146 int migratetype, bool sync_migration,
2147 bool *contended_compaction, bool *deferred_compaction,
2148 unsigned long *did_some_progress)
2153 if (compaction_deferred(preferred_zone, order)) {
2154 *deferred_compaction = true;
2158 current->flags |= PF_MEMALLOC;
2159 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2160 nodemask, sync_migration,
2161 contended_compaction);
2162 current->flags &= ~PF_MEMALLOC;
2164 if (*did_some_progress != COMPACT_SKIPPED) {
2167 /* Page migration frees to the PCP lists but we want merging */
2168 drain_pages(get_cpu());
2171 page = get_page_from_freelist(gfp_mask, nodemask,
2172 order, zonelist, high_zoneidx,
2173 alloc_flags & ~ALLOC_NO_WATERMARKS,
2174 preferred_zone, migratetype);
2176 preferred_zone->compact_blockskip_flush = false;
2177 preferred_zone->compact_considered = 0;
2178 preferred_zone->compact_defer_shift = 0;
2179 if (order >= preferred_zone->compact_order_failed)
2180 preferred_zone->compact_order_failed = order + 1;
2181 count_vm_event(COMPACTSUCCESS);
2186 * It's bad if compaction run occurs and fails.
2187 * The most likely reason is that pages exist,
2188 * but not enough to satisfy watermarks.
2190 count_vm_event(COMPACTFAIL);
2193 * As async compaction considers a subset of pageblocks, only
2194 * defer if the failure was a sync compaction failure.
2197 defer_compaction(preferred_zone, order);
2205 static inline struct page *
2206 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2207 struct zonelist *zonelist, enum zone_type high_zoneidx,
2208 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2209 int migratetype, bool sync_migration,
2210 bool *contended_compaction, bool *deferred_compaction,
2211 unsigned long *did_some_progress)
2215 #endif /* CONFIG_COMPACTION */
2217 /* Perform direct synchronous page reclaim */
2219 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2220 nodemask_t *nodemask)
2222 struct reclaim_state reclaim_state;
2227 /* We now go into synchronous reclaim */
2228 cpuset_memory_pressure_bump();
2229 current->flags |= PF_MEMALLOC;
2230 lockdep_set_current_reclaim_state(gfp_mask);
2231 reclaim_state.reclaimed_slab = 0;
2232 current->reclaim_state = &reclaim_state;
2234 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2236 current->reclaim_state = NULL;
2237 lockdep_clear_current_reclaim_state();
2238 current->flags &= ~PF_MEMALLOC;
2245 /* The really slow allocator path where we enter direct reclaim */
2246 static inline struct page *
2247 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2248 struct zonelist *zonelist, enum zone_type high_zoneidx,
2249 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2250 int migratetype, unsigned long *did_some_progress)
2252 struct page *page = NULL;
2253 bool drained = false;
2255 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2257 if (unlikely(!(*did_some_progress)))
2260 /* After successful reclaim, reconsider all zones for allocation */
2261 if (IS_ENABLED(CONFIG_NUMA))
2262 zlc_clear_zones_full(zonelist);
2265 page = get_page_from_freelist(gfp_mask, nodemask, order,
2266 zonelist, high_zoneidx,
2267 alloc_flags & ~ALLOC_NO_WATERMARKS,
2268 preferred_zone, migratetype);
2271 * If an allocation failed after direct reclaim, it could be because
2272 * pages are pinned on the per-cpu lists. Drain them and try again
2274 if (!page && !drained) {
2284 * This is called in the allocator slow-path if the allocation request is of
2285 * sufficient urgency to ignore watermarks and take other desperate measures
2287 static inline struct page *
2288 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2289 struct zonelist *zonelist, enum zone_type high_zoneidx,
2290 nodemask_t *nodemask, struct zone *preferred_zone,
2296 page = get_page_from_freelist(gfp_mask, nodemask, order,
2297 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2298 preferred_zone, migratetype);
2300 if (!page && gfp_mask & __GFP_NOFAIL)
2301 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2302 } while (!page && (gfp_mask & __GFP_NOFAIL));
2308 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2309 enum zone_type high_zoneidx,
2310 enum zone_type classzone_idx)
2315 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2316 wakeup_kswapd(zone, order, classzone_idx);
2320 gfp_to_alloc_flags(gfp_t gfp_mask)
2322 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2323 const gfp_t wait = gfp_mask & __GFP_WAIT;
2325 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2326 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2329 * The caller may dip into page reserves a bit more if the caller
2330 * cannot run direct reclaim, or if the caller has realtime scheduling
2331 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2332 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2334 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2338 * Not worth trying to allocate harder for
2339 * __GFP_NOMEMALLOC even if it can't schedule.
2341 if (!(gfp_mask & __GFP_NOMEMALLOC))
2342 alloc_flags |= ALLOC_HARDER;
2344 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2345 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2347 alloc_flags &= ~ALLOC_CPUSET;
2348 } else if (unlikely(rt_task(current)) && !in_interrupt())
2349 alloc_flags |= ALLOC_HARDER;
2351 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2352 if (gfp_mask & __GFP_MEMALLOC)
2353 alloc_flags |= ALLOC_NO_WATERMARKS;
2354 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2355 alloc_flags |= ALLOC_NO_WATERMARKS;
2356 else if (!in_interrupt() &&
2357 ((current->flags & PF_MEMALLOC) ||
2358 unlikely(test_thread_flag(TIF_MEMDIE))))
2359 alloc_flags |= ALLOC_NO_WATERMARKS;
2362 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2363 alloc_flags |= ALLOC_CMA;
2368 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2370 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2373 static inline struct page *
2374 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2375 struct zonelist *zonelist, enum zone_type high_zoneidx,
2376 nodemask_t *nodemask, struct zone *preferred_zone,
2379 const gfp_t wait = gfp_mask & __GFP_WAIT;
2380 struct page *page = NULL;
2382 unsigned long pages_reclaimed = 0;
2383 unsigned long did_some_progress;
2384 bool sync_migration = false;
2385 bool deferred_compaction = false;
2386 bool contended_compaction = false;
2389 * In the slowpath, we sanity check order to avoid ever trying to
2390 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2391 * be using allocators in order of preference for an area that is
2394 if (order >= MAX_ORDER) {
2395 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2400 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2401 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2402 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2403 * using a larger set of nodes after it has established that the
2404 * allowed per node queues are empty and that nodes are
2407 if (IS_ENABLED(CONFIG_NUMA) &&
2408 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2412 if (!(gfp_mask & __GFP_NO_KSWAPD))
2413 wake_all_kswapd(order, zonelist, high_zoneidx,
2414 zone_idx(preferred_zone));
2417 * OK, we're below the kswapd watermark and have kicked background
2418 * reclaim. Now things get more complex, so set up alloc_flags according
2419 * to how we want to proceed.
2421 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2424 * Find the true preferred zone if the allocation is unconstrained by
2427 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2428 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2432 /* This is the last chance, in general, before the goto nopage. */
2433 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2434 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2435 preferred_zone, migratetype);
2439 /* Allocate without watermarks if the context allows */
2440 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2442 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2443 * the allocation is high priority and these type of
2444 * allocations are system rather than user orientated
2446 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2448 page = __alloc_pages_high_priority(gfp_mask, order,
2449 zonelist, high_zoneidx, nodemask,
2450 preferred_zone, migratetype);
2456 /* Atomic allocations - we can't balance anything */
2460 /* Avoid recursion of direct reclaim */
2461 if (current->flags & PF_MEMALLOC)
2464 /* Avoid allocations with no watermarks from looping endlessly */
2465 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2469 * Try direct compaction. The first pass is asynchronous. Subsequent
2470 * attempts after direct reclaim are synchronous
2472 page = __alloc_pages_direct_compact(gfp_mask, order,
2473 zonelist, high_zoneidx,
2475 alloc_flags, preferred_zone,
2476 migratetype, sync_migration,
2477 &contended_compaction,
2478 &deferred_compaction,
2479 &did_some_progress);
2482 sync_migration = true;
2485 * If compaction is deferred for high-order allocations, it is because
2486 * sync compaction recently failed. In this is the case and the caller
2487 * requested a movable allocation that does not heavily disrupt the
2488 * system then fail the allocation instead of entering direct reclaim.
2490 if ((deferred_compaction || contended_compaction) &&
2491 (gfp_mask & __GFP_NO_KSWAPD))
2494 /* Try direct reclaim and then allocating */
2495 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2496 zonelist, high_zoneidx,
2498 alloc_flags, preferred_zone,
2499 migratetype, &did_some_progress);
2504 * If we failed to make any progress reclaiming, then we are
2505 * running out of options and have to consider going OOM
2507 if (!did_some_progress) {
2508 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2509 if (oom_killer_disabled)
2511 /* Coredumps can quickly deplete all memory reserves */
2512 if ((current->flags & PF_DUMPCORE) &&
2513 !(gfp_mask & __GFP_NOFAIL))
2515 page = __alloc_pages_may_oom(gfp_mask, order,
2516 zonelist, high_zoneidx,
2517 nodemask, preferred_zone,
2522 if (!(gfp_mask & __GFP_NOFAIL)) {
2524 * The oom killer is not called for high-order
2525 * allocations that may fail, so if no progress
2526 * is being made, there are no other options and
2527 * retrying is unlikely to help.
2529 if (order > PAGE_ALLOC_COSTLY_ORDER)
2532 * The oom killer is not called for lowmem
2533 * allocations to prevent needlessly killing
2536 if (high_zoneidx < ZONE_NORMAL)
2544 /* Check if we should retry the allocation */
2545 pages_reclaimed += did_some_progress;
2546 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2548 /* Wait for some write requests to complete then retry */
2549 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2553 * High-order allocations do not necessarily loop after
2554 * direct reclaim and reclaim/compaction depends on compaction
2555 * being called after reclaim so call directly if necessary
2557 page = __alloc_pages_direct_compact(gfp_mask, order,
2558 zonelist, high_zoneidx,
2560 alloc_flags, preferred_zone,
2561 migratetype, sync_migration,
2562 &contended_compaction,
2563 &deferred_compaction,
2564 &did_some_progress);
2570 warn_alloc_failed(gfp_mask, order, NULL);
2573 if (kmemcheck_enabled)
2574 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2580 * This is the 'heart' of the zoned buddy allocator.
2583 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2584 struct zonelist *zonelist, nodemask_t *nodemask)
2586 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2587 struct zone *preferred_zone;
2588 struct page *page = NULL;
2589 int migratetype = allocflags_to_migratetype(gfp_mask);
2590 unsigned int cpuset_mems_cookie;
2591 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2592 struct mem_cgroup *memcg = NULL;
2594 gfp_mask &= gfp_allowed_mask;
2596 lockdep_trace_alloc(gfp_mask);
2598 might_sleep_if(gfp_mask & __GFP_WAIT);
2600 if (should_fail_alloc_page(gfp_mask, order))
2604 * Check the zones suitable for the gfp_mask contain at least one
2605 * valid zone. It's possible to have an empty zonelist as a result
2606 * of GFP_THISNODE and a memoryless node
2608 if (unlikely(!zonelist->_zonerefs->zone))
2612 * Will only have any effect when __GFP_KMEMCG is set. This is
2613 * verified in the (always inline) callee
2615 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2619 cpuset_mems_cookie = get_mems_allowed();
2621 /* The preferred zone is used for statistics later */
2622 first_zones_zonelist(zonelist, high_zoneidx,
2623 nodemask ? : &cpuset_current_mems_allowed,
2625 if (!preferred_zone)
2629 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2630 alloc_flags |= ALLOC_CMA;
2632 /* First allocation attempt */
2633 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2634 zonelist, high_zoneidx, alloc_flags,
2635 preferred_zone, migratetype);
2636 if (unlikely(!page)) {
2638 * Runtime PM, block IO and its error handling path
2639 * can deadlock because I/O on the device might not
2642 gfp_mask = memalloc_noio_flags(gfp_mask);
2643 page = __alloc_pages_slowpath(gfp_mask, order,
2644 zonelist, high_zoneidx, nodemask,
2645 preferred_zone, migratetype);
2648 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2652 * When updating a task's mems_allowed, it is possible to race with
2653 * parallel threads in such a way that an allocation can fail while
2654 * the mask is being updated. If a page allocation is about to fail,
2655 * check if the cpuset changed during allocation and if so, retry.
2657 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2660 memcg_kmem_commit_charge(page, memcg, order);
2664 EXPORT_SYMBOL(__alloc_pages_nodemask);
2667 * Common helper functions.
2669 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2674 * __get_free_pages() returns a 32-bit address, which cannot represent
2677 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2679 page = alloc_pages(gfp_mask, order);
2682 return (unsigned long) page_address(page);
2684 EXPORT_SYMBOL(__get_free_pages);
2686 unsigned long get_zeroed_page(gfp_t gfp_mask)
2688 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2690 EXPORT_SYMBOL(get_zeroed_page);
2692 void __free_pages(struct page *page, unsigned int order)
2694 if (put_page_testzero(page)) {
2696 free_hot_cold_page(page, 0);
2698 __free_pages_ok(page, order);
2702 EXPORT_SYMBOL(__free_pages);
2704 void free_pages(unsigned long addr, unsigned int order)
2707 VM_BUG_ON(!virt_addr_valid((void *)addr));
2708 __free_pages(virt_to_page((void *)addr), order);
2712 EXPORT_SYMBOL(free_pages);
2715 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2716 * pages allocated with __GFP_KMEMCG.
2718 * Those pages are accounted to a particular memcg, embedded in the
2719 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2720 * for that information only to find out that it is NULL for users who have no
2721 * interest in that whatsoever, we provide these functions.
2723 * The caller knows better which flags it relies on.
2725 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2727 memcg_kmem_uncharge_pages(page, order);
2728 __free_pages(page, order);
2731 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2734 VM_BUG_ON(!virt_addr_valid((void *)addr));
2735 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2739 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2742 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2743 unsigned long used = addr + PAGE_ALIGN(size);
2745 split_page(virt_to_page((void *)addr), order);
2746 while (used < alloc_end) {
2751 return (void *)addr;
2755 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2756 * @size: the number of bytes to allocate
2757 * @gfp_mask: GFP flags for the allocation
2759 * This function is similar to alloc_pages(), except that it allocates the
2760 * minimum number of pages to satisfy the request. alloc_pages() can only
2761 * allocate memory in power-of-two pages.
2763 * This function is also limited by MAX_ORDER.
2765 * Memory allocated by this function must be released by free_pages_exact().
2767 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2769 unsigned int order = get_order(size);
2772 addr = __get_free_pages(gfp_mask, order);
2773 return make_alloc_exact(addr, order, size);
2775 EXPORT_SYMBOL(alloc_pages_exact);
2778 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2780 * @nid: the preferred node ID where memory should be allocated
2781 * @size: the number of bytes to allocate
2782 * @gfp_mask: GFP flags for the allocation
2784 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2786 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2789 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2791 unsigned order = get_order(size);
2792 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2795 return make_alloc_exact((unsigned long)page_address(p), order, size);
2797 EXPORT_SYMBOL(alloc_pages_exact_nid);
2800 * free_pages_exact - release memory allocated via alloc_pages_exact()
2801 * @virt: the value returned by alloc_pages_exact.
2802 * @size: size of allocation, same value as passed to alloc_pages_exact().
2804 * Release the memory allocated by a previous call to alloc_pages_exact.
2806 void free_pages_exact(void *virt, size_t size)
2808 unsigned long addr = (unsigned long)virt;
2809 unsigned long end = addr + PAGE_ALIGN(size);
2811 while (addr < end) {
2816 EXPORT_SYMBOL(free_pages_exact);
2819 * nr_free_zone_pages - count number of pages beyond high watermark
2820 * @offset: The zone index of the highest zone
2822 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2823 * high watermark within all zones at or below a given zone index. For each
2824 * zone, the number of pages is calculated as:
2825 * present_pages - high_pages
2827 static unsigned long nr_free_zone_pages(int offset)
2832 /* Just pick one node, since fallback list is circular */
2833 unsigned long sum = 0;
2835 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2837 for_each_zone_zonelist(zone, z, zonelist, offset) {
2838 unsigned long size = zone->managed_pages;
2839 unsigned long high = high_wmark_pages(zone);
2848 * nr_free_buffer_pages - count number of pages beyond high watermark
2850 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2851 * watermark within ZONE_DMA and ZONE_NORMAL.
2853 unsigned long nr_free_buffer_pages(void)
2855 return nr_free_zone_pages(gfp_zone(GFP_USER));
2857 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2860 * nr_free_pagecache_pages - count number of pages beyond high watermark
2862 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2863 * high watermark within all zones.
2865 unsigned long nr_free_pagecache_pages(void)
2867 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2870 static inline void show_node(struct zone *zone)
2872 if (IS_ENABLED(CONFIG_NUMA))
2873 printk("Node %d ", zone_to_nid(zone));
2876 void si_meminfo(struct sysinfo *val)
2878 val->totalram = totalram_pages;
2880 val->freeram = global_page_state(NR_FREE_PAGES);
2881 val->bufferram = nr_blockdev_pages();
2882 val->totalhigh = totalhigh_pages;
2883 val->freehigh = nr_free_highpages();
2884 val->mem_unit = PAGE_SIZE;
2887 EXPORT_SYMBOL(si_meminfo);
2890 void si_meminfo_node(struct sysinfo *val, int nid)
2892 pg_data_t *pgdat = NODE_DATA(nid);
2894 val->totalram = pgdat->node_present_pages;
2895 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2896 #ifdef CONFIG_HIGHMEM
2897 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2898 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2904 val->mem_unit = PAGE_SIZE;
2909 * Determine whether the node should be displayed or not, depending on whether
2910 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2912 bool skip_free_areas_node(unsigned int flags, int nid)
2915 unsigned int cpuset_mems_cookie;
2917 if (!(flags & SHOW_MEM_FILTER_NODES))
2921 cpuset_mems_cookie = get_mems_allowed();
2922 ret = !node_isset(nid, cpuset_current_mems_allowed);
2923 } while (!put_mems_allowed(cpuset_mems_cookie));
2928 #define K(x) ((x) << (PAGE_SHIFT-10))
2930 static void show_migration_types(unsigned char type)
2932 static const char types[MIGRATE_TYPES] = {
2933 [MIGRATE_UNMOVABLE] = 'U',
2934 [MIGRATE_RECLAIMABLE] = 'E',
2935 [MIGRATE_MOVABLE] = 'M',
2936 [MIGRATE_RESERVE] = 'R',
2938 [MIGRATE_CMA] = 'C',
2940 #ifdef CONFIG_MEMORY_ISOLATION
2941 [MIGRATE_ISOLATE] = 'I',
2944 char tmp[MIGRATE_TYPES + 1];
2948 for (i = 0; i < MIGRATE_TYPES; i++) {
2949 if (type & (1 << i))
2954 printk("(%s) ", tmp);
2958 * Show free area list (used inside shift_scroll-lock stuff)
2959 * We also calculate the percentage fragmentation. We do this by counting the
2960 * memory on each free list with the exception of the first item on the list.
2961 * Suppresses nodes that are not allowed by current's cpuset if
2962 * SHOW_MEM_FILTER_NODES is passed.
2964 void show_free_areas(unsigned int filter)
2969 for_each_populated_zone(zone) {
2970 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2973 printk("%s per-cpu:\n", zone->name);
2975 for_each_online_cpu(cpu) {
2976 struct per_cpu_pageset *pageset;
2978 pageset = per_cpu_ptr(zone->pageset, cpu);
2980 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2981 cpu, pageset->pcp.high,
2982 pageset->pcp.batch, pageset->pcp.count);
2986 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2987 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2989 " dirty:%lu writeback:%lu unstable:%lu\n"
2990 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2991 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2993 global_page_state(NR_ACTIVE_ANON),
2994 global_page_state(NR_INACTIVE_ANON),
2995 global_page_state(NR_ISOLATED_ANON),
2996 global_page_state(NR_ACTIVE_FILE),
2997 global_page_state(NR_INACTIVE_FILE),
2998 global_page_state(NR_ISOLATED_FILE),
2999 global_page_state(NR_UNEVICTABLE),
3000 global_page_state(NR_FILE_DIRTY),
3001 global_page_state(NR_WRITEBACK),
3002 global_page_state(NR_UNSTABLE_NFS),
3003 global_page_state(NR_FREE_PAGES),
3004 global_page_state(NR_SLAB_RECLAIMABLE),
3005 global_page_state(NR_SLAB_UNRECLAIMABLE),
3006 global_page_state(NR_FILE_MAPPED),
3007 global_page_state(NR_SHMEM),
3008 global_page_state(NR_PAGETABLE),
3009 global_page_state(NR_BOUNCE),
3010 global_page_state(NR_FREE_CMA_PAGES));
3012 for_each_populated_zone(zone) {
3015 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3023 " active_anon:%lukB"
3024 " inactive_anon:%lukB"
3025 " active_file:%lukB"
3026 " inactive_file:%lukB"
3027 " unevictable:%lukB"
3028 " isolated(anon):%lukB"
3029 " isolated(file):%lukB"
3037 " slab_reclaimable:%lukB"
3038 " slab_unreclaimable:%lukB"
3039 " kernel_stack:%lukB"
3044 " writeback_tmp:%lukB"
3045 " pages_scanned:%lu"
3046 " all_unreclaimable? %s"
3049 K(zone_page_state(zone, NR_FREE_PAGES)),
3050 K(min_wmark_pages(zone)),
3051 K(low_wmark_pages(zone)),
3052 K(high_wmark_pages(zone)),
3053 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3054 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3055 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3056 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3057 K(zone_page_state(zone, NR_UNEVICTABLE)),
3058 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3059 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3060 K(zone->present_pages),
3061 K(zone->managed_pages),
3062 K(zone_page_state(zone, NR_MLOCK)),
3063 K(zone_page_state(zone, NR_FILE_DIRTY)),
3064 K(zone_page_state(zone, NR_WRITEBACK)),
3065 K(zone_page_state(zone, NR_FILE_MAPPED)),
3066 K(zone_page_state(zone, NR_SHMEM)),
3067 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3068 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3069 zone_page_state(zone, NR_KERNEL_STACK) *
3071 K(zone_page_state(zone, NR_PAGETABLE)),
3072 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3073 K(zone_page_state(zone, NR_BOUNCE)),
3074 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3075 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3076 zone->pages_scanned,
3077 (zone->all_unreclaimable ? "yes" : "no")
3079 printk("lowmem_reserve[]:");
3080 for (i = 0; i < MAX_NR_ZONES; i++)
3081 printk(" %lu", zone->lowmem_reserve[i]);
3085 for_each_populated_zone(zone) {
3086 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3087 unsigned char types[MAX_ORDER];
3089 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3092 printk("%s: ", zone->name);
3094 spin_lock_irqsave(&zone->lock, flags);
3095 for (order = 0; order < MAX_ORDER; order++) {
3096 struct free_area *area = &zone->free_area[order];
3099 nr[order] = area->nr_free;
3100 total += nr[order] << order;
3103 for (type = 0; type < MIGRATE_TYPES; type++) {
3104 if (!list_empty(&area->free_list[type]))
3105 types[order] |= 1 << type;
3108 spin_unlock_irqrestore(&zone->lock, flags);
3109 for (order = 0; order < MAX_ORDER; order++) {
3110 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3112 show_migration_types(types[order]);
3114 printk("= %lukB\n", K(total));
3117 hugetlb_show_meminfo();
3119 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3121 show_swap_cache_info();
3124 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3126 zoneref->zone = zone;
3127 zoneref->zone_idx = zone_idx(zone);
3131 * Builds allocation fallback zone lists.
3133 * Add all populated zones of a node to the zonelist.
3135 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3136 int nr_zones, enum zone_type zone_type)
3140 BUG_ON(zone_type >= MAX_NR_ZONES);
3145 zone = pgdat->node_zones + zone_type;
3146 if (populated_zone(zone)) {
3147 zoneref_set_zone(zone,
3148 &zonelist->_zonerefs[nr_zones++]);
3149 check_highest_zone(zone_type);
3152 } while (zone_type);
3159 * 0 = automatic detection of better ordering.
3160 * 1 = order by ([node] distance, -zonetype)
3161 * 2 = order by (-zonetype, [node] distance)
3163 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3164 * the same zonelist. So only NUMA can configure this param.
3166 #define ZONELIST_ORDER_DEFAULT 0
3167 #define ZONELIST_ORDER_NODE 1
3168 #define ZONELIST_ORDER_ZONE 2
3170 /* zonelist order in the kernel.
3171 * set_zonelist_order() will set this to NODE or ZONE.
3173 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3174 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3178 /* The value user specified ....changed by config */
3179 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3180 /* string for sysctl */
3181 #define NUMA_ZONELIST_ORDER_LEN 16
3182 char numa_zonelist_order[16] = "default";
3185 * interface for configure zonelist ordering.
3186 * command line option "numa_zonelist_order"
3187 * = "[dD]efault - default, automatic configuration.
3188 * = "[nN]ode - order by node locality, then by zone within node
3189 * = "[zZ]one - order by zone, then by locality within zone
3192 static int __parse_numa_zonelist_order(char *s)
3194 if (*s == 'd' || *s == 'D') {
3195 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3196 } else if (*s == 'n' || *s == 'N') {
3197 user_zonelist_order = ZONELIST_ORDER_NODE;
3198 } else if (*s == 'z' || *s == 'Z') {
3199 user_zonelist_order = ZONELIST_ORDER_ZONE;
3202 "Ignoring invalid numa_zonelist_order value: "
3209 static __init int setup_numa_zonelist_order(char *s)
3216 ret = __parse_numa_zonelist_order(s);
3218 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3222 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3225 * sysctl handler for numa_zonelist_order
3227 int numa_zonelist_order_handler(ctl_table *table, int write,
3228 void __user *buffer, size_t *length,
3231 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3233 static DEFINE_MUTEX(zl_order_mutex);
3235 mutex_lock(&zl_order_mutex);
3237 strcpy(saved_string, (char*)table->data);
3238 ret = proc_dostring(table, write, buffer, length, ppos);
3242 int oldval = user_zonelist_order;
3243 if (__parse_numa_zonelist_order((char*)table->data)) {
3245 * bogus value. restore saved string
3247 strncpy((char*)table->data, saved_string,
3248 NUMA_ZONELIST_ORDER_LEN);
3249 user_zonelist_order = oldval;
3250 } else if (oldval != user_zonelist_order) {
3251 mutex_lock(&zonelists_mutex);
3252 build_all_zonelists(NULL, NULL);
3253 mutex_unlock(&zonelists_mutex);
3257 mutex_unlock(&zl_order_mutex);
3262 #define MAX_NODE_LOAD (nr_online_nodes)
3263 static int node_load[MAX_NUMNODES];
3266 * find_next_best_node - find the next node that should appear in a given node's fallback list
3267 * @node: node whose fallback list we're appending
3268 * @used_node_mask: nodemask_t of already used nodes
3270 * We use a number of factors to determine which is the next node that should
3271 * appear on a given node's fallback list. The node should not have appeared
3272 * already in @node's fallback list, and it should be the next closest node
3273 * according to the distance array (which contains arbitrary distance values
3274 * from each node to each node in the system), and should also prefer nodes
3275 * with no CPUs, since presumably they'll have very little allocation pressure
3276 * on them otherwise.
3277 * It returns -1 if no node is found.
3279 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3282 int min_val = INT_MAX;
3283 int best_node = NUMA_NO_NODE;
3284 const struct cpumask *tmp = cpumask_of_node(0);
3286 /* Use the local node if we haven't already */
3287 if (!node_isset(node, *used_node_mask)) {
3288 node_set(node, *used_node_mask);
3292 for_each_node_state(n, N_MEMORY) {
3294 /* Don't want a node to appear more than once */
3295 if (node_isset(n, *used_node_mask))
3298 /* Use the distance array to find the distance */
3299 val = node_distance(node, n);
3301 /* Penalize nodes under us ("prefer the next node") */
3304 /* Give preference to headless and unused nodes */
3305 tmp = cpumask_of_node(n);
3306 if (!cpumask_empty(tmp))
3307 val += PENALTY_FOR_NODE_WITH_CPUS;
3309 /* Slight preference for less loaded node */
3310 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3311 val += node_load[n];
3313 if (val < min_val) {
3320 node_set(best_node, *used_node_mask);
3327 * Build zonelists ordered by node and zones within node.
3328 * This results in maximum locality--normal zone overflows into local
3329 * DMA zone, if any--but risks exhausting DMA zone.
3331 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3334 struct zonelist *zonelist;
3336 zonelist = &pgdat->node_zonelists[0];
3337 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3339 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3341 zonelist->_zonerefs[j].zone = NULL;
3342 zonelist->_zonerefs[j].zone_idx = 0;
3346 * Build gfp_thisnode zonelists
3348 static void build_thisnode_zonelists(pg_data_t *pgdat)
3351 struct zonelist *zonelist;
3353 zonelist = &pgdat->node_zonelists[1];
3354 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3355 zonelist->_zonerefs[j].zone = NULL;
3356 zonelist->_zonerefs[j].zone_idx = 0;
3360 * Build zonelists ordered by zone and nodes within zones.
3361 * This results in conserving DMA zone[s] until all Normal memory is
3362 * exhausted, but results in overflowing to remote node while memory
3363 * may still exist in local DMA zone.
3365 static int node_order[MAX_NUMNODES];
3367 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3370 int zone_type; /* needs to be signed */
3372 struct zonelist *zonelist;
3374 zonelist = &pgdat->node_zonelists[0];
3376 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3377 for (j = 0; j < nr_nodes; j++) {
3378 node = node_order[j];
3379 z = &NODE_DATA(node)->node_zones[zone_type];
3380 if (populated_zone(z)) {
3382 &zonelist->_zonerefs[pos++]);
3383 check_highest_zone(zone_type);
3387 zonelist->_zonerefs[pos].zone = NULL;
3388 zonelist->_zonerefs[pos].zone_idx = 0;
3391 static int default_zonelist_order(void)
3394 unsigned long low_kmem_size,total_size;
3398 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3399 * If they are really small and used heavily, the system can fall
3400 * into OOM very easily.
3401 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3403 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3406 for_each_online_node(nid) {
3407 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3408 z = &NODE_DATA(nid)->node_zones[zone_type];
3409 if (populated_zone(z)) {
3410 if (zone_type < ZONE_NORMAL)
3411 low_kmem_size += z->present_pages;
3412 total_size += z->present_pages;
3413 } else if (zone_type == ZONE_NORMAL) {
3415 * If any node has only lowmem, then node order
3416 * is preferred to allow kernel allocations
3417 * locally; otherwise, they can easily infringe
3418 * on other nodes when there is an abundance of
3419 * lowmem available to allocate from.
3421 return ZONELIST_ORDER_NODE;
3425 if (!low_kmem_size || /* there are no DMA area. */
3426 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3427 return ZONELIST_ORDER_NODE;
3429 * look into each node's config.
3430 * If there is a node whose DMA/DMA32 memory is very big area on
3431 * local memory, NODE_ORDER may be suitable.
3433 average_size = total_size /
3434 (nodes_weight(node_states[N_MEMORY]) + 1);
3435 for_each_online_node(nid) {
3438 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3439 z = &NODE_DATA(nid)->node_zones[zone_type];
3440 if (populated_zone(z)) {
3441 if (zone_type < ZONE_NORMAL)
3442 low_kmem_size += z->present_pages;
3443 total_size += z->present_pages;
3446 if (low_kmem_size &&
3447 total_size > average_size && /* ignore small node */
3448 low_kmem_size > total_size * 70/100)
3449 return ZONELIST_ORDER_NODE;
3451 return ZONELIST_ORDER_ZONE;
3454 static void set_zonelist_order(void)
3456 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3457 current_zonelist_order = default_zonelist_order();
3459 current_zonelist_order = user_zonelist_order;
3462 static void build_zonelists(pg_data_t *pgdat)
3466 nodemask_t used_mask;
3467 int local_node, prev_node;
3468 struct zonelist *zonelist;
3469 int order = current_zonelist_order;
3471 /* initialize zonelists */
3472 for (i = 0; i < MAX_ZONELISTS; i++) {
3473 zonelist = pgdat->node_zonelists + i;
3474 zonelist->_zonerefs[0].zone = NULL;
3475 zonelist->_zonerefs[0].zone_idx = 0;
3478 /* NUMA-aware ordering of nodes */
3479 local_node = pgdat->node_id;
3480 load = nr_online_nodes;
3481 prev_node = local_node;
3482 nodes_clear(used_mask);
3484 memset(node_order, 0, sizeof(node_order));
3487 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3489 * We don't want to pressure a particular node.
3490 * So adding penalty to the first node in same
3491 * distance group to make it round-robin.
3493 if (node_distance(local_node, node) !=
3494 node_distance(local_node, prev_node))
3495 node_load[node] = load;
3499 if (order == ZONELIST_ORDER_NODE)
3500 build_zonelists_in_node_order(pgdat, node);
3502 node_order[j++] = node; /* remember order */
3505 if (order == ZONELIST_ORDER_ZONE) {
3506 /* calculate node order -- i.e., DMA last! */
3507 build_zonelists_in_zone_order(pgdat, j);
3510 build_thisnode_zonelists(pgdat);
3513 /* Construct the zonelist performance cache - see further mmzone.h */
3514 static void build_zonelist_cache(pg_data_t *pgdat)
3516 struct zonelist *zonelist;
3517 struct zonelist_cache *zlc;
3520 zonelist = &pgdat->node_zonelists[0];
3521 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3522 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3523 for (z = zonelist->_zonerefs; z->zone; z++)
3524 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3527 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3529 * Return node id of node used for "local" allocations.
3530 * I.e., first node id of first zone in arg node's generic zonelist.
3531 * Used for initializing percpu 'numa_mem', which is used primarily
3532 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3534 int local_memory_node(int node)
3538 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3539 gfp_zone(GFP_KERNEL),
3546 #else /* CONFIG_NUMA */
3548 static void set_zonelist_order(void)
3550 current_zonelist_order = ZONELIST_ORDER_ZONE;
3553 static void build_zonelists(pg_data_t *pgdat)
3555 int node, local_node;
3557 struct zonelist *zonelist;
3559 local_node = pgdat->node_id;
3561 zonelist = &pgdat->node_zonelists[0];
3562 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3565 * Now we build the zonelist so that it contains the zones
3566 * of all the other nodes.
3567 * We don't want to pressure a particular node, so when
3568 * building the zones for node N, we make sure that the
3569 * zones coming right after the local ones are those from
3570 * node N+1 (modulo N)
3572 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3573 if (!node_online(node))
3575 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3578 for (node = 0; node < local_node; node++) {
3579 if (!node_online(node))
3581 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3585 zonelist->_zonerefs[j].zone = NULL;
3586 zonelist->_zonerefs[j].zone_idx = 0;
3589 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3590 static void build_zonelist_cache(pg_data_t *pgdat)
3592 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3595 #endif /* CONFIG_NUMA */
3598 * Boot pageset table. One per cpu which is going to be used for all
3599 * zones and all nodes. The parameters will be set in such a way
3600 * that an item put on a list will immediately be handed over to
3601 * the buddy list. This is safe since pageset manipulation is done
3602 * with interrupts disabled.
3604 * The boot_pagesets must be kept even after bootup is complete for
3605 * unused processors and/or zones. They do play a role for bootstrapping
3606 * hotplugged processors.
3608 * zoneinfo_show() and maybe other functions do
3609 * not check if the processor is online before following the pageset pointer.
3610 * Other parts of the kernel may not check if the zone is available.
3612 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3613 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3614 static void setup_zone_pageset(struct zone *zone);
3617 * Global mutex to protect against size modification of zonelists
3618 * as well as to serialize pageset setup for the new populated zone.
3620 DEFINE_MUTEX(zonelists_mutex);
3622 /* return values int ....just for stop_machine() */
3623 static int __build_all_zonelists(void *data)
3627 pg_data_t *self = data;
3630 memset(node_load, 0, sizeof(node_load));
3633 if (self && !node_online(self->node_id)) {
3634 build_zonelists(self);
3635 build_zonelist_cache(self);
3638 for_each_online_node(nid) {
3639 pg_data_t *pgdat = NODE_DATA(nid);
3641 build_zonelists(pgdat);
3642 build_zonelist_cache(pgdat);
3646 * Initialize the boot_pagesets that are going to be used
3647 * for bootstrapping processors. The real pagesets for
3648 * each zone will be allocated later when the per cpu
3649 * allocator is available.
3651 * boot_pagesets are used also for bootstrapping offline
3652 * cpus if the system is already booted because the pagesets
3653 * are needed to initialize allocators on a specific cpu too.
3654 * F.e. the percpu allocator needs the page allocator which
3655 * needs the percpu allocator in order to allocate its pagesets
3656 * (a chicken-egg dilemma).
3658 for_each_possible_cpu(cpu) {
3659 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3661 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3663 * We now know the "local memory node" for each node--
3664 * i.e., the node of the first zone in the generic zonelist.
3665 * Set up numa_mem percpu variable for on-line cpus. During
3666 * boot, only the boot cpu should be on-line; we'll init the
3667 * secondary cpus' numa_mem as they come on-line. During
3668 * node/memory hotplug, we'll fixup all on-line cpus.
3670 if (cpu_online(cpu))
3671 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3679 * Called with zonelists_mutex held always
3680 * unless system_state == SYSTEM_BOOTING.
3682 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3684 set_zonelist_order();
3686 if (system_state == SYSTEM_BOOTING) {
3687 __build_all_zonelists(NULL);
3688 mminit_verify_zonelist();
3689 cpuset_init_current_mems_allowed();
3691 /* we have to stop all cpus to guarantee there is no user
3693 #ifdef CONFIG_MEMORY_HOTPLUG
3695 setup_zone_pageset(zone);
3697 stop_machine(__build_all_zonelists, pgdat, NULL);
3698 /* cpuset refresh routine should be here */
3700 vm_total_pages = nr_free_pagecache_pages();
3702 * Disable grouping by mobility if the number of pages in the
3703 * system is too low to allow the mechanism to work. It would be
3704 * more accurate, but expensive to check per-zone. This check is
3705 * made on memory-hotadd so a system can start with mobility
3706 * disabled and enable it later
3708 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3709 page_group_by_mobility_disabled = 1;
3711 page_group_by_mobility_disabled = 0;
3713 printk("Built %i zonelists in %s order, mobility grouping %s. "
3714 "Total pages: %ld\n",
3716 zonelist_order_name[current_zonelist_order],
3717 page_group_by_mobility_disabled ? "off" : "on",
3720 printk("Policy zone: %s\n", zone_names[policy_zone]);
3725 * Helper functions to size the waitqueue hash table.
3726 * Essentially these want to choose hash table sizes sufficiently
3727 * large so that collisions trying to wait on pages are rare.
3728 * But in fact, the number of active page waitqueues on typical
3729 * systems is ridiculously low, less than 200. So this is even
3730 * conservative, even though it seems large.
3732 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3733 * waitqueues, i.e. the size of the waitq table given the number of pages.
3735 #define PAGES_PER_WAITQUEUE 256
3737 #ifndef CONFIG_MEMORY_HOTPLUG
3738 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3740 unsigned long size = 1;
3742 pages /= PAGES_PER_WAITQUEUE;
3744 while (size < pages)
3748 * Once we have dozens or even hundreds of threads sleeping
3749 * on IO we've got bigger problems than wait queue collision.
3750 * Limit the size of the wait table to a reasonable size.
3752 size = min(size, 4096UL);
3754 return max(size, 4UL);
3758 * A zone's size might be changed by hot-add, so it is not possible to determine
3759 * a suitable size for its wait_table. So we use the maximum size now.
3761 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3763 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3764 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3765 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3767 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3768 * or more by the traditional way. (See above). It equals:
3770 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3771 * ia64(16K page size) : = ( 8G + 4M)byte.
3772 * powerpc (64K page size) : = (32G +16M)byte.
3774 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3781 * This is an integer logarithm so that shifts can be used later
3782 * to extract the more random high bits from the multiplicative
3783 * hash function before the remainder is taken.
3785 static inline unsigned long wait_table_bits(unsigned long size)
3790 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3793 * Check if a pageblock contains reserved pages
3795 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3799 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3800 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3807 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3808 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3809 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3810 * higher will lead to a bigger reserve which will get freed as contiguous
3811 * blocks as reclaim kicks in
3813 static void setup_zone_migrate_reserve(struct zone *zone)
3815 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3817 unsigned long block_migratetype;
3821 * Get the start pfn, end pfn and the number of blocks to reserve
3822 * We have to be careful to be aligned to pageblock_nr_pages to
3823 * make sure that we always check pfn_valid for the first page in
3826 start_pfn = zone->zone_start_pfn;
3827 end_pfn = zone_end_pfn(zone);
3828 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3829 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3833 * Reserve blocks are generally in place to help high-order atomic
3834 * allocations that are short-lived. A min_free_kbytes value that
3835 * would result in more than 2 reserve blocks for atomic allocations
3836 * is assumed to be in place to help anti-fragmentation for the
3837 * future allocation of hugepages at runtime.
3839 reserve = min(2, reserve);
3841 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3842 if (!pfn_valid(pfn))
3844 page = pfn_to_page(pfn);
3846 /* Watch out for overlapping nodes */
3847 if (page_to_nid(page) != zone_to_nid(zone))
3850 block_migratetype = get_pageblock_migratetype(page);
3852 /* Only test what is necessary when the reserves are not met */
3855 * Blocks with reserved pages will never free, skip
3858 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3859 if (pageblock_is_reserved(pfn, block_end_pfn))
3862 /* If this block is reserved, account for it */
3863 if (block_migratetype == MIGRATE_RESERVE) {
3868 /* Suitable for reserving if this block is movable */
3869 if (block_migratetype == MIGRATE_MOVABLE) {
3870 set_pageblock_migratetype(page,
3872 move_freepages_block(zone, page,
3880 * If the reserve is met and this is a previous reserved block,
3883 if (block_migratetype == MIGRATE_RESERVE) {
3884 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3885 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3891 * Initially all pages are reserved - free ones are freed
3892 * up by free_all_bootmem() once the early boot process is
3893 * done. Non-atomic initialization, single-pass.
3895 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3896 unsigned long start_pfn, enum memmap_context context)
3899 unsigned long end_pfn = start_pfn + size;
3903 if (highest_memmap_pfn < end_pfn - 1)
3904 highest_memmap_pfn = end_pfn - 1;
3906 z = &NODE_DATA(nid)->node_zones[zone];
3907 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3909 * There can be holes in boot-time mem_map[]s
3910 * handed to this function. They do not
3911 * exist on hotplugged memory.
3913 if (context == MEMMAP_EARLY) {
3914 if (!early_pfn_valid(pfn))
3916 if (!early_pfn_in_nid(pfn, nid))
3919 page = pfn_to_page(pfn);
3920 set_page_links(page, zone, nid, pfn);
3921 mminit_verify_page_links(page, zone, nid, pfn);
3922 init_page_count(page);
3923 page_mapcount_reset(page);
3924 page_nid_reset_last(page);
3925 SetPageReserved(page);
3927 * Mark the block movable so that blocks are reserved for
3928 * movable at startup. This will force kernel allocations
3929 * to reserve their blocks rather than leaking throughout
3930 * the address space during boot when many long-lived
3931 * kernel allocations are made. Later some blocks near
3932 * the start are marked MIGRATE_RESERVE by
3933 * setup_zone_migrate_reserve()
3935 * bitmap is created for zone's valid pfn range. but memmap
3936 * can be created for invalid pages (for alignment)
3937 * check here not to call set_pageblock_migratetype() against
3940 if ((z->zone_start_pfn <= pfn)
3941 && (pfn < zone_end_pfn(z))
3942 && !(pfn & (pageblock_nr_pages - 1)))
3943 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3945 INIT_LIST_HEAD(&page->lru);
3946 #ifdef WANT_PAGE_VIRTUAL
3947 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3948 if (!is_highmem_idx(zone))
3949 set_page_address(page, __va(pfn << PAGE_SHIFT));
3954 static void __meminit zone_init_free_lists(struct zone *zone)
3957 for_each_migratetype_order(order, t) {
3958 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3959 zone->free_area[order].nr_free = 0;
3963 #ifndef __HAVE_ARCH_MEMMAP_INIT
3964 #define memmap_init(size, nid, zone, start_pfn) \
3965 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3968 static int __meminit zone_batchsize(struct zone *zone)
3974 * The per-cpu-pages pools are set to around 1000th of the
3975 * size of the zone. But no more than 1/2 of a meg.
3977 * OK, so we don't know how big the cache is. So guess.
3979 batch = zone->managed_pages / 1024;
3980 if (batch * PAGE_SIZE > 512 * 1024)
3981 batch = (512 * 1024) / PAGE_SIZE;
3982 batch /= 4; /* We effectively *= 4 below */
3987 * Clamp the batch to a 2^n - 1 value. Having a power
3988 * of 2 value was found to be more likely to have
3989 * suboptimal cache aliasing properties in some cases.
3991 * For example if 2 tasks are alternately allocating
3992 * batches of pages, one task can end up with a lot
3993 * of pages of one half of the possible page colors
3994 * and the other with pages of the other colors.
3996 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4001 /* The deferral and batching of frees should be suppressed under NOMMU
4004 * The problem is that NOMMU needs to be able to allocate large chunks
4005 * of contiguous memory as there's no hardware page translation to
4006 * assemble apparent contiguous memory from discontiguous pages.
4008 * Queueing large contiguous runs of pages for batching, however,
4009 * causes the pages to actually be freed in smaller chunks. As there
4010 * can be a significant delay between the individual batches being
4011 * recycled, this leads to the once large chunks of space being
4012 * fragmented and becoming unavailable for high-order allocations.
4018 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4020 struct per_cpu_pages *pcp;
4023 memset(p, 0, sizeof(*p));
4027 pcp->high = 6 * batch;
4028 pcp->batch = max(1UL, 1 * batch);
4029 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4030 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4034 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4035 * to the value high for the pageset p.
4038 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4041 struct per_cpu_pages *pcp;
4045 pcp->batch = max(1UL, high/4);
4046 if ((high/4) > (PAGE_SHIFT * 8))
4047 pcp->batch = PAGE_SHIFT * 8;
4050 static void __meminit setup_zone_pageset(struct zone *zone)
4054 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4056 for_each_possible_cpu(cpu) {
4057 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4059 setup_pageset(pcp, zone_batchsize(zone));
4061 if (percpu_pagelist_fraction)
4062 setup_pagelist_highmark(pcp,
4063 (zone->managed_pages /
4064 percpu_pagelist_fraction));
4069 * Allocate per cpu pagesets and initialize them.
4070 * Before this call only boot pagesets were available.
4072 void __init setup_per_cpu_pageset(void)
4076 for_each_populated_zone(zone)
4077 setup_zone_pageset(zone);
4080 static noinline __init_refok
4081 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4084 struct pglist_data *pgdat = zone->zone_pgdat;
4088 * The per-page waitqueue mechanism uses hashed waitqueues
4091 zone->wait_table_hash_nr_entries =
4092 wait_table_hash_nr_entries(zone_size_pages);
4093 zone->wait_table_bits =
4094 wait_table_bits(zone->wait_table_hash_nr_entries);
4095 alloc_size = zone->wait_table_hash_nr_entries
4096 * sizeof(wait_queue_head_t);
4098 if (!slab_is_available()) {
4099 zone->wait_table = (wait_queue_head_t *)
4100 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4103 * This case means that a zone whose size was 0 gets new memory
4104 * via memory hot-add.
4105 * But it may be the case that a new node was hot-added. In
4106 * this case vmalloc() will not be able to use this new node's
4107 * memory - this wait_table must be initialized to use this new
4108 * node itself as well.
4109 * To use this new node's memory, further consideration will be
4112 zone->wait_table = vmalloc(alloc_size);
4114 if (!zone->wait_table)
4117 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4118 init_waitqueue_head(zone->wait_table + i);
4123 static __meminit void zone_pcp_init(struct zone *zone)
4126 * per cpu subsystem is not up at this point. The following code
4127 * relies on the ability of the linker to provide the
4128 * offset of a (static) per cpu variable into the per cpu area.
4130 zone->pageset = &boot_pageset;
4132 if (zone->present_pages)
4133 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4134 zone->name, zone->present_pages,
4135 zone_batchsize(zone));
4138 int __meminit init_currently_empty_zone(struct zone *zone,
4139 unsigned long zone_start_pfn,
4141 enum memmap_context context)
4143 struct pglist_data *pgdat = zone->zone_pgdat;
4145 ret = zone_wait_table_init(zone, size);
4148 pgdat->nr_zones = zone_idx(zone) + 1;
4150 zone->zone_start_pfn = zone_start_pfn;
4152 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4153 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4155 (unsigned long)zone_idx(zone),
4156 zone_start_pfn, (zone_start_pfn + size));
4158 zone_init_free_lists(zone);
4163 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4164 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4166 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4167 * Architectures may implement their own version but if add_active_range()
4168 * was used and there are no special requirements, this is a convenient
4171 int __meminit __early_pfn_to_nid(unsigned long pfn)
4173 unsigned long start_pfn, end_pfn;
4176 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4177 if (start_pfn <= pfn && pfn < end_pfn)
4179 /* This is a memory hole */
4182 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4184 int __meminit early_pfn_to_nid(unsigned long pfn)
4188 nid = __early_pfn_to_nid(pfn);
4191 /* just returns 0 */
4195 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4196 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4200 nid = __early_pfn_to_nid(pfn);
4201 if (nid >= 0 && nid != node)
4208 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4209 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4210 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4212 * If an architecture guarantees that all ranges registered with
4213 * add_active_ranges() contain no holes and may be freed, this
4214 * this function may be used instead of calling free_bootmem() manually.
4216 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4218 unsigned long start_pfn, end_pfn;
4221 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4222 start_pfn = min(start_pfn, max_low_pfn);
4223 end_pfn = min(end_pfn, max_low_pfn);
4225 if (start_pfn < end_pfn)
4226 free_bootmem_node(NODE_DATA(this_nid),
4227 PFN_PHYS(start_pfn),
4228 (end_pfn - start_pfn) << PAGE_SHIFT);
4233 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4234 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4236 * If an architecture guarantees that all ranges registered with
4237 * add_active_ranges() contain no holes and may be freed, this
4238 * function may be used instead of calling memory_present() manually.
4240 void __init sparse_memory_present_with_active_regions(int nid)
4242 unsigned long start_pfn, end_pfn;
4245 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4246 memory_present(this_nid, start_pfn, end_pfn);
4250 * get_pfn_range_for_nid - Return the start and end page frames for a node
4251 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4252 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4253 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4255 * It returns the start and end page frame of a node based on information
4256 * provided by an arch calling add_active_range(). If called for a node
4257 * with no available memory, a warning is printed and the start and end
4260 void __meminit get_pfn_range_for_nid(unsigned int nid,
4261 unsigned long *start_pfn, unsigned long *end_pfn)
4263 unsigned long this_start_pfn, this_end_pfn;
4269 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4270 *start_pfn = min(*start_pfn, this_start_pfn);
4271 *end_pfn = max(*end_pfn, this_end_pfn);
4274 if (*start_pfn == -1UL)
4279 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4280 * assumption is made that zones within a node are ordered in monotonic
4281 * increasing memory addresses so that the "highest" populated zone is used
4283 static void __init find_usable_zone_for_movable(void)
4286 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4287 if (zone_index == ZONE_MOVABLE)
4290 if (arch_zone_highest_possible_pfn[zone_index] >
4291 arch_zone_lowest_possible_pfn[zone_index])
4295 VM_BUG_ON(zone_index == -1);
4296 movable_zone = zone_index;
4300 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4301 * because it is sized independent of architecture. Unlike the other zones,
4302 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4303 * in each node depending on the size of each node and how evenly kernelcore
4304 * is distributed. This helper function adjusts the zone ranges
4305 * provided by the architecture for a given node by using the end of the
4306 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4307 * zones within a node are in order of monotonic increases memory addresses
4309 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4310 unsigned long zone_type,
4311 unsigned long node_start_pfn,
4312 unsigned long node_end_pfn,
4313 unsigned long *zone_start_pfn,
4314 unsigned long *zone_end_pfn)
4316 /* Only adjust if ZONE_MOVABLE is on this node */
4317 if (zone_movable_pfn[nid]) {
4318 /* Size ZONE_MOVABLE */
4319 if (zone_type == ZONE_MOVABLE) {
4320 *zone_start_pfn = zone_movable_pfn[nid];
4321 *zone_end_pfn = min(node_end_pfn,
4322 arch_zone_highest_possible_pfn[movable_zone]);
4324 /* Adjust for ZONE_MOVABLE starting within this range */
4325 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4326 *zone_end_pfn > zone_movable_pfn[nid]) {
4327 *zone_end_pfn = zone_movable_pfn[nid];
4329 /* Check if this whole range is within ZONE_MOVABLE */
4330 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4331 *zone_start_pfn = *zone_end_pfn;
4336 * Return the number of pages a zone spans in a node, including holes
4337 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4339 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4340 unsigned long zone_type,
4341 unsigned long *ignored)
4343 unsigned long node_start_pfn, node_end_pfn;
4344 unsigned long zone_start_pfn, zone_end_pfn;
4346 /* Get the start and end of the node and zone */
4347 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4348 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4349 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4350 adjust_zone_range_for_zone_movable(nid, zone_type,
4351 node_start_pfn, node_end_pfn,
4352 &zone_start_pfn, &zone_end_pfn);
4354 /* Check that this node has pages within the zone's required range */
4355 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4358 /* Move the zone boundaries inside the node if necessary */
4359 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4360 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4362 /* Return the spanned pages */
4363 return zone_end_pfn - zone_start_pfn;
4367 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4368 * then all holes in the requested range will be accounted for.
4370 unsigned long __meminit __absent_pages_in_range(int nid,
4371 unsigned long range_start_pfn,
4372 unsigned long range_end_pfn)
4374 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4375 unsigned long start_pfn, end_pfn;
4378 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4379 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4380 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4381 nr_absent -= end_pfn - start_pfn;
4387 * absent_pages_in_range - Return number of page frames in holes within a range
4388 * @start_pfn: The start PFN to start searching for holes
4389 * @end_pfn: The end PFN to stop searching for holes
4391 * It returns the number of pages frames in memory holes within a range.
4393 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4394 unsigned long end_pfn)
4396 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4399 /* Return the number of page frames in holes in a zone on a node */
4400 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4401 unsigned long zone_type,
4402 unsigned long *ignored)
4404 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4405 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4406 unsigned long node_start_pfn, node_end_pfn;
4407 unsigned long zone_start_pfn, zone_end_pfn;
4409 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4410 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4411 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4413 adjust_zone_range_for_zone_movable(nid, zone_type,
4414 node_start_pfn, node_end_pfn,
4415 &zone_start_pfn, &zone_end_pfn);
4416 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4419 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4420 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4421 unsigned long zone_type,
4422 unsigned long *zones_size)
4424 return zones_size[zone_type];
4427 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4428 unsigned long zone_type,
4429 unsigned long *zholes_size)
4434 return zholes_size[zone_type];
4437 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4439 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4440 unsigned long *zones_size, unsigned long *zholes_size)
4442 unsigned long realtotalpages, totalpages = 0;
4445 for (i = 0; i < MAX_NR_ZONES; i++)
4446 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4448 pgdat->node_spanned_pages = totalpages;
4450 realtotalpages = totalpages;
4451 for (i = 0; i < MAX_NR_ZONES; i++)
4453 zone_absent_pages_in_node(pgdat->node_id, i,
4455 pgdat->node_present_pages = realtotalpages;
4456 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4460 #ifndef CONFIG_SPARSEMEM
4462 * Calculate the size of the zone->blockflags rounded to an unsigned long
4463 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4464 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4465 * round what is now in bits to nearest long in bits, then return it in
4468 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4470 unsigned long usemapsize;
4472 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4473 usemapsize = roundup(zonesize, pageblock_nr_pages);
4474 usemapsize = usemapsize >> pageblock_order;
4475 usemapsize *= NR_PAGEBLOCK_BITS;
4476 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4478 return usemapsize / 8;
4481 static void __init setup_usemap(struct pglist_data *pgdat,
4483 unsigned long zone_start_pfn,
4484 unsigned long zonesize)
4486 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4487 zone->pageblock_flags = NULL;
4489 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4493 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4494 unsigned long zone_start_pfn, unsigned long zonesize) {}
4495 #endif /* CONFIG_SPARSEMEM */
4497 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4499 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4500 void __init set_pageblock_order(void)
4504 /* Check that pageblock_nr_pages has not already been setup */
4505 if (pageblock_order)
4508 if (HPAGE_SHIFT > PAGE_SHIFT)
4509 order = HUGETLB_PAGE_ORDER;
4511 order = MAX_ORDER - 1;
4514 * Assume the largest contiguous order of interest is a huge page.
4515 * This value may be variable depending on boot parameters on IA64 and
4518 pageblock_order = order;
4520 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4523 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4524 * is unused as pageblock_order is set at compile-time. See
4525 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4528 void __init set_pageblock_order(void)
4532 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4534 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4535 unsigned long present_pages)
4537 unsigned long pages = spanned_pages;
4540 * Provide a more accurate estimation if there are holes within
4541 * the zone and SPARSEMEM is in use. If there are holes within the
4542 * zone, each populated memory region may cost us one or two extra
4543 * memmap pages due to alignment because memmap pages for each
4544 * populated regions may not naturally algined on page boundary.
4545 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4547 if (spanned_pages > present_pages + (present_pages >> 4) &&
4548 IS_ENABLED(CONFIG_SPARSEMEM))
4549 pages = present_pages;
4551 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4555 * Set up the zone data structures:
4556 * - mark all pages reserved
4557 * - mark all memory queues empty
4558 * - clear the memory bitmaps
4560 * NOTE: pgdat should get zeroed by caller.
4562 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4563 unsigned long *zones_size, unsigned long *zholes_size)
4566 int nid = pgdat->node_id;
4567 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4570 pgdat_resize_init(pgdat);
4571 #ifdef CONFIG_NUMA_BALANCING
4572 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4573 pgdat->numabalancing_migrate_nr_pages = 0;
4574 pgdat->numabalancing_migrate_next_window = jiffies;
4576 init_waitqueue_head(&pgdat->kswapd_wait);
4577 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4578 pgdat_page_cgroup_init(pgdat);
4580 for (j = 0; j < MAX_NR_ZONES; j++) {
4581 struct zone *zone = pgdat->node_zones + j;
4582 unsigned long size, realsize, freesize, memmap_pages;
4584 size = zone_spanned_pages_in_node(nid, j, zones_size);
4585 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4589 * Adjust freesize so that it accounts for how much memory
4590 * is used by this zone for memmap. This affects the watermark
4591 * and per-cpu initialisations
4593 memmap_pages = calc_memmap_size(size, realsize);
4594 if (freesize >= memmap_pages) {
4595 freesize -= memmap_pages;
4598 " %s zone: %lu pages used for memmap\n",
4599 zone_names[j], memmap_pages);
4602 " %s zone: %lu pages exceeds freesize %lu\n",
4603 zone_names[j], memmap_pages, freesize);
4605 /* Account for reserved pages */
4606 if (j == 0 && freesize > dma_reserve) {
4607 freesize -= dma_reserve;
4608 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4609 zone_names[0], dma_reserve);
4612 if (!is_highmem_idx(j))
4613 nr_kernel_pages += freesize;
4614 /* Charge for highmem memmap if there are enough kernel pages */
4615 else if (nr_kernel_pages > memmap_pages * 2)
4616 nr_kernel_pages -= memmap_pages;
4617 nr_all_pages += freesize;
4619 zone->spanned_pages = size;
4620 zone->present_pages = realsize;
4622 * Set an approximate value for lowmem here, it will be adjusted
4623 * when the bootmem allocator frees pages into the buddy system.
4624 * And all highmem pages will be managed by the buddy system.
4626 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4629 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4631 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4633 zone->name = zone_names[j];
4634 spin_lock_init(&zone->lock);
4635 spin_lock_init(&zone->lru_lock);
4636 zone_seqlock_init(zone);
4637 zone->zone_pgdat = pgdat;
4639 zone_pcp_init(zone);
4640 lruvec_init(&zone->lruvec);
4644 set_pageblock_order();
4645 setup_usemap(pgdat, zone, zone_start_pfn, size);
4646 ret = init_currently_empty_zone(zone, zone_start_pfn,
4647 size, MEMMAP_EARLY);
4649 memmap_init(size, nid, j, zone_start_pfn);
4650 zone_start_pfn += size;
4654 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4656 /* Skip empty nodes */
4657 if (!pgdat->node_spanned_pages)
4660 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4661 /* ia64 gets its own node_mem_map, before this, without bootmem */
4662 if (!pgdat->node_mem_map) {
4663 unsigned long size, start, end;
4667 * The zone's endpoints aren't required to be MAX_ORDER
4668 * aligned but the node_mem_map endpoints must be in order
4669 * for the buddy allocator to function correctly.
4671 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4672 end = pgdat_end_pfn(pgdat);
4673 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4674 size = (end - start) * sizeof(struct page);
4675 map = alloc_remap(pgdat->node_id, size);
4677 map = alloc_bootmem_node_nopanic(pgdat, size);
4678 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4680 #ifndef CONFIG_NEED_MULTIPLE_NODES
4682 * With no DISCONTIG, the global mem_map is just set as node 0's
4684 if (pgdat == NODE_DATA(0)) {
4685 mem_map = NODE_DATA(0)->node_mem_map;
4686 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4687 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4688 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4689 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4692 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4695 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4696 unsigned long node_start_pfn, unsigned long *zholes_size)
4698 pg_data_t *pgdat = NODE_DATA(nid);
4700 /* pg_data_t should be reset to zero when it's allocated */
4701 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4703 pgdat->node_id = nid;
4704 pgdat->node_start_pfn = node_start_pfn;
4705 init_zone_allows_reclaim(nid);
4706 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4708 alloc_node_mem_map(pgdat);
4709 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4710 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4711 nid, (unsigned long)pgdat,
4712 (unsigned long)pgdat->node_mem_map);
4715 free_area_init_core(pgdat, zones_size, zholes_size);
4718 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4720 #if MAX_NUMNODES > 1
4722 * Figure out the number of possible node ids.
4724 static void __init setup_nr_node_ids(void)
4727 unsigned int highest = 0;
4729 for_each_node_mask(node, node_possible_map)
4731 nr_node_ids = highest + 1;
4734 static inline void setup_nr_node_ids(void)
4740 * node_map_pfn_alignment - determine the maximum internode alignment
4742 * This function should be called after node map is populated and sorted.
4743 * It calculates the maximum power of two alignment which can distinguish
4746 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4747 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4748 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4749 * shifted, 1GiB is enough and this function will indicate so.
4751 * This is used to test whether pfn -> nid mapping of the chosen memory
4752 * model has fine enough granularity to avoid incorrect mapping for the
4753 * populated node map.
4755 * Returns the determined alignment in pfn's. 0 if there is no alignment
4756 * requirement (single node).
4758 unsigned long __init node_map_pfn_alignment(void)
4760 unsigned long accl_mask = 0, last_end = 0;
4761 unsigned long start, end, mask;
4765 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4766 if (!start || last_nid < 0 || last_nid == nid) {
4773 * Start with a mask granular enough to pin-point to the
4774 * start pfn and tick off bits one-by-one until it becomes
4775 * too coarse to separate the current node from the last.
4777 mask = ~((1 << __ffs(start)) - 1);
4778 while (mask && last_end <= (start & (mask << 1)))
4781 /* accumulate all internode masks */
4785 /* convert mask to number of pages */
4786 return ~accl_mask + 1;
4789 /* Find the lowest pfn for a node */
4790 static unsigned long __init find_min_pfn_for_node(int nid)
4792 unsigned long min_pfn = ULONG_MAX;
4793 unsigned long start_pfn;
4796 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4797 min_pfn = min(min_pfn, start_pfn);
4799 if (min_pfn == ULONG_MAX) {
4801 "Could not find start_pfn for node %d\n", nid);
4809 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4811 * It returns the minimum PFN based on information provided via
4812 * add_active_range().
4814 unsigned long __init find_min_pfn_with_active_regions(void)
4816 return find_min_pfn_for_node(MAX_NUMNODES);
4820 * early_calculate_totalpages()
4821 * Sum pages in active regions for movable zone.
4822 * Populate N_MEMORY for calculating usable_nodes.
4824 static unsigned long __init early_calculate_totalpages(void)
4826 unsigned long totalpages = 0;
4827 unsigned long start_pfn, end_pfn;
4830 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4831 unsigned long pages = end_pfn - start_pfn;
4833 totalpages += pages;
4835 node_set_state(nid, N_MEMORY);
4841 * Find the PFN the Movable zone begins in each node. Kernel memory
4842 * is spread evenly between nodes as long as the nodes have enough
4843 * memory. When they don't, some nodes will have more kernelcore than
4846 static void __init find_zone_movable_pfns_for_nodes(void)
4849 unsigned long usable_startpfn;
4850 unsigned long kernelcore_node, kernelcore_remaining;
4851 /* save the state before borrow the nodemask */
4852 nodemask_t saved_node_state = node_states[N_MEMORY];
4853 unsigned long totalpages = early_calculate_totalpages();
4854 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4857 * If movablecore was specified, calculate what size of
4858 * kernelcore that corresponds so that memory usable for
4859 * any allocation type is evenly spread. If both kernelcore
4860 * and movablecore are specified, then the value of kernelcore
4861 * will be used for required_kernelcore if it's greater than
4862 * what movablecore would have allowed.
4864 if (required_movablecore) {
4865 unsigned long corepages;
4868 * Round-up so that ZONE_MOVABLE is at least as large as what
4869 * was requested by the user
4871 required_movablecore =
4872 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4873 corepages = totalpages - required_movablecore;
4875 required_kernelcore = max(required_kernelcore, corepages);
4878 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4879 if (!required_kernelcore)
4882 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4883 find_usable_zone_for_movable();
4884 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4887 /* Spread kernelcore memory as evenly as possible throughout nodes */
4888 kernelcore_node = required_kernelcore / usable_nodes;
4889 for_each_node_state(nid, N_MEMORY) {
4890 unsigned long start_pfn, end_pfn;
4893 * Recalculate kernelcore_node if the division per node
4894 * now exceeds what is necessary to satisfy the requested
4895 * amount of memory for the kernel
4897 if (required_kernelcore < kernelcore_node)
4898 kernelcore_node = required_kernelcore / usable_nodes;
4901 * As the map is walked, we track how much memory is usable
4902 * by the kernel using kernelcore_remaining. When it is
4903 * 0, the rest of the node is usable by ZONE_MOVABLE
4905 kernelcore_remaining = kernelcore_node;
4907 /* Go through each range of PFNs within this node */
4908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4909 unsigned long size_pages;
4911 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4912 if (start_pfn >= end_pfn)
4915 /* Account for what is only usable for kernelcore */
4916 if (start_pfn < usable_startpfn) {
4917 unsigned long kernel_pages;
4918 kernel_pages = min(end_pfn, usable_startpfn)
4921 kernelcore_remaining -= min(kernel_pages,
4922 kernelcore_remaining);
4923 required_kernelcore -= min(kernel_pages,
4924 required_kernelcore);
4926 /* Continue if range is now fully accounted */
4927 if (end_pfn <= usable_startpfn) {
4930 * Push zone_movable_pfn to the end so
4931 * that if we have to rebalance
4932 * kernelcore across nodes, we will
4933 * not double account here
4935 zone_movable_pfn[nid] = end_pfn;
4938 start_pfn = usable_startpfn;
4942 * The usable PFN range for ZONE_MOVABLE is from
4943 * start_pfn->end_pfn. Calculate size_pages as the
4944 * number of pages used as kernelcore
4946 size_pages = end_pfn - start_pfn;
4947 if (size_pages > kernelcore_remaining)
4948 size_pages = kernelcore_remaining;
4949 zone_movable_pfn[nid] = start_pfn + size_pages;
4952 * Some kernelcore has been met, update counts and
4953 * break if the kernelcore for this node has been
4956 required_kernelcore -= min(required_kernelcore,
4958 kernelcore_remaining -= size_pages;
4959 if (!kernelcore_remaining)
4965 * If there is still required_kernelcore, we do another pass with one
4966 * less node in the count. This will push zone_movable_pfn[nid] further
4967 * along on the nodes that still have memory until kernelcore is
4971 if (usable_nodes && required_kernelcore > usable_nodes)
4974 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4975 for (nid = 0; nid < MAX_NUMNODES; nid++)
4976 zone_movable_pfn[nid] =
4977 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4980 /* restore the node_state */
4981 node_states[N_MEMORY] = saved_node_state;
4984 /* Any regular or high memory on that node ? */
4985 static void check_for_memory(pg_data_t *pgdat, int nid)
4987 enum zone_type zone_type;
4989 if (N_MEMORY == N_NORMAL_MEMORY)
4992 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4993 struct zone *zone = &pgdat->node_zones[zone_type];
4994 if (zone->present_pages) {
4995 node_set_state(nid, N_HIGH_MEMORY);
4996 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4997 zone_type <= ZONE_NORMAL)
4998 node_set_state(nid, N_NORMAL_MEMORY);
5005 * free_area_init_nodes - Initialise all pg_data_t and zone data
5006 * @max_zone_pfn: an array of max PFNs for each zone
5008 * This will call free_area_init_node() for each active node in the system.
5009 * Using the page ranges provided by add_active_range(), the size of each
5010 * zone in each node and their holes is calculated. If the maximum PFN
5011 * between two adjacent zones match, it is assumed that the zone is empty.
5012 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5013 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5014 * starts where the previous one ended. For example, ZONE_DMA32 starts
5015 * at arch_max_dma_pfn.
5017 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5019 unsigned long start_pfn, end_pfn;
5022 /* Record where the zone boundaries are */
5023 memset(arch_zone_lowest_possible_pfn, 0,
5024 sizeof(arch_zone_lowest_possible_pfn));
5025 memset(arch_zone_highest_possible_pfn, 0,
5026 sizeof(arch_zone_highest_possible_pfn));
5027 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5028 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5029 for (i = 1; i < MAX_NR_ZONES; i++) {
5030 if (i == ZONE_MOVABLE)
5032 arch_zone_lowest_possible_pfn[i] =
5033 arch_zone_highest_possible_pfn[i-1];
5034 arch_zone_highest_possible_pfn[i] =
5035 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5037 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5038 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5040 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5041 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5042 find_zone_movable_pfns_for_nodes();
5044 /* Print out the zone ranges */
5045 printk("Zone ranges:\n");
5046 for (i = 0; i < MAX_NR_ZONES; i++) {
5047 if (i == ZONE_MOVABLE)
5049 printk(KERN_CONT " %-8s ", zone_names[i]);
5050 if (arch_zone_lowest_possible_pfn[i] ==
5051 arch_zone_highest_possible_pfn[i])
5052 printk(KERN_CONT "empty\n");
5054 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5055 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5056 (arch_zone_highest_possible_pfn[i]
5057 << PAGE_SHIFT) - 1);
5060 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5061 printk("Movable zone start for each node\n");
5062 for (i = 0; i < MAX_NUMNODES; i++) {
5063 if (zone_movable_pfn[i])
5064 printk(" Node %d: %#010lx\n", i,
5065 zone_movable_pfn[i] << PAGE_SHIFT);
5068 /* Print out the early node map */
5069 printk("Early memory node ranges\n");
5070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5071 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5072 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5074 /* Initialise every node */
5075 mminit_verify_pageflags_layout();
5076 setup_nr_node_ids();
5077 for_each_online_node(nid) {
5078 pg_data_t *pgdat = NODE_DATA(nid);
5079 free_area_init_node(nid, NULL,
5080 find_min_pfn_for_node(nid), NULL);
5082 /* Any memory on that node */
5083 if (pgdat->node_present_pages)
5084 node_set_state(nid, N_MEMORY);
5085 check_for_memory(pgdat, nid);
5089 static int __init cmdline_parse_core(char *p, unsigned long *core)
5091 unsigned long long coremem;
5095 coremem = memparse(p, &p);
5096 *core = coremem >> PAGE_SHIFT;
5098 /* Paranoid check that UL is enough for the coremem value */
5099 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5105 * kernelcore=size sets the amount of memory for use for allocations that
5106 * cannot be reclaimed or migrated.
5108 static int __init cmdline_parse_kernelcore(char *p)
5110 return cmdline_parse_core(p, &required_kernelcore);
5114 * movablecore=size sets the amount of memory for use for allocations that
5115 * can be reclaimed or migrated.
5117 static int __init cmdline_parse_movablecore(char *p)
5119 return cmdline_parse_core(p, &required_movablecore);
5122 early_param("kernelcore", cmdline_parse_kernelcore);
5123 early_param("movablecore", cmdline_parse_movablecore);
5125 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5127 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5128 int poison, char *s)
5130 unsigned long pages, pos;
5132 pos = start = PAGE_ALIGN(start);
5134 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5136 memset((void *)pos, poison, PAGE_SIZE);
5137 free_reserved_page(virt_to_page(pos));
5141 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5142 s, pages << (PAGE_SHIFT - 10), start, end);
5147 #ifdef CONFIG_HIGHMEM
5148 void free_highmem_page(struct page *page)
5150 __free_reserved_page(page);
5157 * set_dma_reserve - set the specified number of pages reserved in the first zone
5158 * @new_dma_reserve: The number of pages to mark reserved
5160 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5161 * In the DMA zone, a significant percentage may be consumed by kernel image
5162 * and other unfreeable allocations which can skew the watermarks badly. This
5163 * function may optionally be used to account for unfreeable pages in the
5164 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5165 * smaller per-cpu batchsize.
5167 void __init set_dma_reserve(unsigned long new_dma_reserve)
5169 dma_reserve = new_dma_reserve;
5172 void __init free_area_init(unsigned long *zones_size)
5174 free_area_init_node(0, zones_size,
5175 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5178 static int page_alloc_cpu_notify(struct notifier_block *self,
5179 unsigned long action, void *hcpu)
5181 int cpu = (unsigned long)hcpu;
5183 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5184 lru_add_drain_cpu(cpu);
5188 * Spill the event counters of the dead processor
5189 * into the current processors event counters.
5190 * This artificially elevates the count of the current
5193 vm_events_fold_cpu(cpu);
5196 * Zero the differential counters of the dead processor
5197 * so that the vm statistics are consistent.
5199 * This is only okay since the processor is dead and cannot
5200 * race with what we are doing.
5202 refresh_cpu_vm_stats(cpu);
5207 void __init page_alloc_init(void)
5209 hotcpu_notifier(page_alloc_cpu_notify, 0);
5213 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5214 * or min_free_kbytes changes.
5216 static void calculate_totalreserve_pages(void)
5218 struct pglist_data *pgdat;
5219 unsigned long reserve_pages = 0;
5220 enum zone_type i, j;
5222 for_each_online_pgdat(pgdat) {
5223 for (i = 0; i < MAX_NR_ZONES; i++) {
5224 struct zone *zone = pgdat->node_zones + i;
5225 unsigned long max = 0;
5227 /* Find valid and maximum lowmem_reserve in the zone */
5228 for (j = i; j < MAX_NR_ZONES; j++) {
5229 if (zone->lowmem_reserve[j] > max)
5230 max = zone->lowmem_reserve[j];
5233 /* we treat the high watermark as reserved pages. */
5234 max += high_wmark_pages(zone);
5236 if (max > zone->managed_pages)
5237 max = zone->managed_pages;
5238 reserve_pages += max;
5240 * Lowmem reserves are not available to
5241 * GFP_HIGHUSER page cache allocations and
5242 * kswapd tries to balance zones to their high
5243 * watermark. As a result, neither should be
5244 * regarded as dirtyable memory, to prevent a
5245 * situation where reclaim has to clean pages
5246 * in order to balance the zones.
5248 zone->dirty_balance_reserve = max;
5251 dirty_balance_reserve = reserve_pages;
5252 totalreserve_pages = reserve_pages;
5256 * setup_per_zone_lowmem_reserve - called whenever
5257 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5258 * has a correct pages reserved value, so an adequate number of
5259 * pages are left in the zone after a successful __alloc_pages().
5261 static void setup_per_zone_lowmem_reserve(void)
5263 struct pglist_data *pgdat;
5264 enum zone_type j, idx;
5266 for_each_online_pgdat(pgdat) {
5267 for (j = 0; j < MAX_NR_ZONES; j++) {
5268 struct zone *zone = pgdat->node_zones + j;
5269 unsigned long managed_pages = zone->managed_pages;
5271 zone->lowmem_reserve[j] = 0;
5275 struct zone *lower_zone;
5279 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5280 sysctl_lowmem_reserve_ratio[idx] = 1;
5282 lower_zone = pgdat->node_zones + idx;
5283 lower_zone->lowmem_reserve[j] = managed_pages /
5284 sysctl_lowmem_reserve_ratio[idx];
5285 managed_pages += lower_zone->managed_pages;
5290 /* update totalreserve_pages */
5291 calculate_totalreserve_pages();
5294 static void __setup_per_zone_wmarks(void)
5296 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5297 unsigned long lowmem_pages = 0;
5299 unsigned long flags;
5301 /* Calculate total number of !ZONE_HIGHMEM pages */
5302 for_each_zone(zone) {
5303 if (!is_highmem(zone))
5304 lowmem_pages += zone->managed_pages;
5307 for_each_zone(zone) {
5310 spin_lock_irqsave(&zone->lock, flags);
5311 tmp = (u64)pages_min * zone->managed_pages;
5312 do_div(tmp, lowmem_pages);
5313 if (is_highmem(zone)) {
5315 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5316 * need highmem pages, so cap pages_min to a small
5319 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5320 * deltas controls asynch page reclaim, and so should
5321 * not be capped for highmem.
5323 unsigned long min_pages;
5325 min_pages = zone->managed_pages / 1024;
5326 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5327 zone->watermark[WMARK_MIN] = min_pages;
5330 * If it's a lowmem zone, reserve a number of pages
5331 * proportionate to the zone's size.
5333 zone->watermark[WMARK_MIN] = tmp;
5336 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5337 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5339 setup_zone_migrate_reserve(zone);
5340 spin_unlock_irqrestore(&zone->lock, flags);
5343 /* update totalreserve_pages */
5344 calculate_totalreserve_pages();
5348 * setup_per_zone_wmarks - called when min_free_kbytes changes
5349 * or when memory is hot-{added|removed}
5351 * Ensures that the watermark[min,low,high] values for each zone are set
5352 * correctly with respect to min_free_kbytes.
5354 void setup_per_zone_wmarks(void)
5356 mutex_lock(&zonelists_mutex);
5357 __setup_per_zone_wmarks();
5358 mutex_unlock(&zonelists_mutex);
5362 * The inactive anon list should be small enough that the VM never has to
5363 * do too much work, but large enough that each inactive page has a chance
5364 * to be referenced again before it is swapped out.
5366 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5367 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5368 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5369 * the anonymous pages are kept on the inactive list.
5372 * memory ratio inactive anon
5373 * -------------------------------------
5382 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5384 unsigned int gb, ratio;
5386 /* Zone size in gigabytes */
5387 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5389 ratio = int_sqrt(10 * gb);
5393 zone->inactive_ratio = ratio;
5396 static void __meminit setup_per_zone_inactive_ratio(void)
5401 calculate_zone_inactive_ratio(zone);
5405 * Initialise min_free_kbytes.
5407 * For small machines we want it small (128k min). For large machines
5408 * we want it large (64MB max). But it is not linear, because network
5409 * bandwidth does not increase linearly with machine size. We use
5411 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5412 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5428 int __meminit init_per_zone_wmark_min(void)
5430 unsigned long lowmem_kbytes;
5432 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5434 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5435 if (min_free_kbytes < 128)
5436 min_free_kbytes = 128;
5437 if (min_free_kbytes > 65536)
5438 min_free_kbytes = 65536;
5439 setup_per_zone_wmarks();
5440 refresh_zone_stat_thresholds();
5441 setup_per_zone_lowmem_reserve();
5442 setup_per_zone_inactive_ratio();
5445 module_init(init_per_zone_wmark_min)
5448 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5449 * that we can call two helper functions whenever min_free_kbytes
5452 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5453 void __user *buffer, size_t *length, loff_t *ppos)
5455 proc_dointvec(table, write, buffer, length, ppos);
5457 setup_per_zone_wmarks();
5462 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5463 void __user *buffer, size_t *length, loff_t *ppos)
5468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5473 zone->min_unmapped_pages = (zone->managed_pages *
5474 sysctl_min_unmapped_ratio) / 100;
5478 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5479 void __user *buffer, size_t *length, loff_t *ppos)
5484 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5489 zone->min_slab_pages = (zone->managed_pages *
5490 sysctl_min_slab_ratio) / 100;
5496 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5497 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5498 * whenever sysctl_lowmem_reserve_ratio changes.
5500 * The reserve ratio obviously has absolutely no relation with the
5501 * minimum watermarks. The lowmem reserve ratio can only make sense
5502 * if in function of the boot time zone sizes.
5504 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5505 void __user *buffer, size_t *length, loff_t *ppos)
5507 proc_dointvec_minmax(table, write, buffer, length, ppos);
5508 setup_per_zone_lowmem_reserve();
5513 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5514 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5515 * can have before it gets flushed back to buddy allocator.
5518 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5519 void __user *buffer, size_t *length, loff_t *ppos)
5525 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5526 if (!write || (ret < 0))
5528 for_each_populated_zone(zone) {
5529 for_each_possible_cpu(cpu) {
5531 high = zone->managed_pages / percpu_pagelist_fraction;
5532 setup_pagelist_highmark(
5533 per_cpu_ptr(zone->pageset, cpu), high);
5539 int hashdist = HASHDIST_DEFAULT;
5542 static int __init set_hashdist(char *str)
5546 hashdist = simple_strtoul(str, &str, 0);
5549 __setup("hashdist=", set_hashdist);
5553 * allocate a large system hash table from bootmem
5554 * - it is assumed that the hash table must contain an exact power-of-2
5555 * quantity of entries
5556 * - limit is the number of hash buckets, not the total allocation size
5558 void *__init alloc_large_system_hash(const char *tablename,
5559 unsigned long bucketsize,
5560 unsigned long numentries,
5563 unsigned int *_hash_shift,
5564 unsigned int *_hash_mask,
5565 unsigned long low_limit,
5566 unsigned long high_limit)
5568 unsigned long long max = high_limit;
5569 unsigned long log2qty, size;
5572 /* allow the kernel cmdline to have a say */
5574 /* round applicable memory size up to nearest megabyte */
5575 numentries = nr_kernel_pages;
5576 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5577 numentries >>= 20 - PAGE_SHIFT;
5578 numentries <<= 20 - PAGE_SHIFT;
5580 /* limit to 1 bucket per 2^scale bytes of low memory */
5581 if (scale > PAGE_SHIFT)
5582 numentries >>= (scale - PAGE_SHIFT);
5584 numentries <<= (PAGE_SHIFT - scale);
5586 /* Make sure we've got at least a 0-order allocation.. */
5587 if (unlikely(flags & HASH_SMALL)) {
5588 /* Makes no sense without HASH_EARLY */
5589 WARN_ON(!(flags & HASH_EARLY));
5590 if (!(numentries >> *_hash_shift)) {
5591 numentries = 1UL << *_hash_shift;
5592 BUG_ON(!numentries);
5594 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5595 numentries = PAGE_SIZE / bucketsize;
5597 numentries = roundup_pow_of_two(numentries);
5599 /* limit allocation size to 1/16 total memory by default */
5601 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5602 do_div(max, bucketsize);
5604 max = min(max, 0x80000000ULL);
5606 if (numentries < low_limit)
5607 numentries = low_limit;
5608 if (numentries > max)
5611 log2qty = ilog2(numentries);
5614 size = bucketsize << log2qty;
5615 if (flags & HASH_EARLY)
5616 table = alloc_bootmem_nopanic(size);
5618 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5621 * If bucketsize is not a power-of-two, we may free
5622 * some pages at the end of hash table which
5623 * alloc_pages_exact() automatically does
5625 if (get_order(size) < MAX_ORDER) {
5626 table = alloc_pages_exact(size, GFP_ATOMIC);
5627 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5630 } while (!table && size > PAGE_SIZE && --log2qty);
5633 panic("Failed to allocate %s hash table\n", tablename);
5635 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5638 ilog2(size) - PAGE_SHIFT,
5642 *_hash_shift = log2qty;
5644 *_hash_mask = (1 << log2qty) - 1;
5649 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5650 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5653 #ifdef CONFIG_SPARSEMEM
5654 return __pfn_to_section(pfn)->pageblock_flags;
5656 return zone->pageblock_flags;
5657 #endif /* CONFIG_SPARSEMEM */
5660 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5662 #ifdef CONFIG_SPARSEMEM
5663 pfn &= (PAGES_PER_SECTION-1);
5664 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5666 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5667 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5668 #endif /* CONFIG_SPARSEMEM */
5672 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5673 * @page: The page within the block of interest
5674 * @start_bitidx: The first bit of interest to retrieve
5675 * @end_bitidx: The last bit of interest
5676 * returns pageblock_bits flags
5678 unsigned long get_pageblock_flags_group(struct page *page,
5679 int start_bitidx, int end_bitidx)
5682 unsigned long *bitmap;
5683 unsigned long pfn, bitidx;
5684 unsigned long flags = 0;
5685 unsigned long value = 1;
5687 zone = page_zone(page);
5688 pfn = page_to_pfn(page);
5689 bitmap = get_pageblock_bitmap(zone, pfn);
5690 bitidx = pfn_to_bitidx(zone, pfn);
5692 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5693 if (test_bit(bitidx + start_bitidx, bitmap))
5700 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5701 * @page: The page within the block of interest
5702 * @start_bitidx: The first bit of interest
5703 * @end_bitidx: The last bit of interest
5704 * @flags: The flags to set
5706 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5707 int start_bitidx, int end_bitidx)
5710 unsigned long *bitmap;
5711 unsigned long pfn, bitidx;
5712 unsigned long value = 1;
5714 zone = page_zone(page);
5715 pfn = page_to_pfn(page);
5716 bitmap = get_pageblock_bitmap(zone, pfn);
5717 bitidx = pfn_to_bitidx(zone, pfn);
5718 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5720 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5722 __set_bit(bitidx + start_bitidx, bitmap);
5724 __clear_bit(bitidx + start_bitidx, bitmap);
5728 * This function checks whether pageblock includes unmovable pages or not.
5729 * If @count is not zero, it is okay to include less @count unmovable pages
5731 * PageLRU check wihtout isolation or lru_lock could race so that
5732 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5733 * expect this function should be exact.
5735 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5736 bool skip_hwpoisoned_pages)
5738 unsigned long pfn, iter, found;
5742 * For avoiding noise data, lru_add_drain_all() should be called
5743 * If ZONE_MOVABLE, the zone never contains unmovable pages
5745 if (zone_idx(zone) == ZONE_MOVABLE)
5747 mt = get_pageblock_migratetype(page);
5748 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5751 pfn = page_to_pfn(page);
5752 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5753 unsigned long check = pfn + iter;
5755 if (!pfn_valid_within(check))
5758 page = pfn_to_page(check);
5760 * We can't use page_count without pin a page
5761 * because another CPU can free compound page.
5762 * This check already skips compound tails of THP
5763 * because their page->_count is zero at all time.
5765 if (!atomic_read(&page->_count)) {
5766 if (PageBuddy(page))
5767 iter += (1 << page_order(page)) - 1;
5772 * The HWPoisoned page may be not in buddy system, and
5773 * page_count() is not 0.
5775 if (skip_hwpoisoned_pages && PageHWPoison(page))
5781 * If there are RECLAIMABLE pages, we need to check it.
5782 * But now, memory offline itself doesn't call shrink_slab()
5783 * and it still to be fixed.
5786 * If the page is not RAM, page_count()should be 0.
5787 * we don't need more check. This is an _used_ not-movable page.
5789 * The problematic thing here is PG_reserved pages. PG_reserved
5790 * is set to both of a memory hole page and a _used_ kernel
5799 bool is_pageblock_removable_nolock(struct page *page)
5805 * We have to be careful here because we are iterating over memory
5806 * sections which are not zone aware so we might end up outside of
5807 * the zone but still within the section.
5808 * We have to take care about the node as well. If the node is offline
5809 * its NODE_DATA will be NULL - see page_zone.
5811 if (!node_online(page_to_nid(page)))
5814 zone = page_zone(page);
5815 pfn = page_to_pfn(page);
5816 if (!zone_spans_pfn(zone, pfn))
5819 return !has_unmovable_pages(zone, page, 0, true);
5824 static unsigned long pfn_max_align_down(unsigned long pfn)
5826 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5827 pageblock_nr_pages) - 1);
5830 static unsigned long pfn_max_align_up(unsigned long pfn)
5832 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5833 pageblock_nr_pages));
5836 /* [start, end) must belong to a single zone. */
5837 static int __alloc_contig_migrate_range(struct compact_control *cc,
5838 unsigned long start, unsigned long end)
5840 /* This function is based on compact_zone() from compaction.c. */
5841 unsigned long nr_reclaimed;
5842 unsigned long pfn = start;
5843 unsigned int tries = 0;
5848 while (pfn < end || !list_empty(&cc->migratepages)) {
5849 if (fatal_signal_pending(current)) {
5854 if (list_empty(&cc->migratepages)) {
5855 cc->nr_migratepages = 0;
5856 pfn = isolate_migratepages_range(cc->zone, cc,
5863 } else if (++tries == 5) {
5864 ret = ret < 0 ? ret : -EBUSY;
5868 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5870 cc->nr_migratepages -= nr_reclaimed;
5872 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5873 0, MIGRATE_SYNC, MR_CMA);
5876 putback_movable_pages(&cc->migratepages);
5883 * alloc_contig_range() -- tries to allocate given range of pages
5884 * @start: start PFN to allocate
5885 * @end: one-past-the-last PFN to allocate
5886 * @migratetype: migratetype of the underlaying pageblocks (either
5887 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5888 * in range must have the same migratetype and it must
5889 * be either of the two.
5891 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5892 * aligned, however it's the caller's responsibility to guarantee that
5893 * we are the only thread that changes migrate type of pageblocks the
5896 * The PFN range must belong to a single zone.
5898 * Returns zero on success or negative error code. On success all
5899 * pages which PFN is in [start, end) are allocated for the caller and
5900 * need to be freed with free_contig_range().
5902 int alloc_contig_range(unsigned long start, unsigned long end,
5903 unsigned migratetype)
5905 unsigned long outer_start, outer_end;
5908 struct compact_control cc = {
5909 .nr_migratepages = 0,
5911 .zone = page_zone(pfn_to_page(start)),
5913 .ignore_skip_hint = true,
5915 INIT_LIST_HEAD(&cc.migratepages);
5918 * What we do here is we mark all pageblocks in range as
5919 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5920 * have different sizes, and due to the way page allocator
5921 * work, we align the range to biggest of the two pages so
5922 * that page allocator won't try to merge buddies from
5923 * different pageblocks and change MIGRATE_ISOLATE to some
5924 * other migration type.
5926 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5927 * migrate the pages from an unaligned range (ie. pages that
5928 * we are interested in). This will put all the pages in
5929 * range back to page allocator as MIGRATE_ISOLATE.
5931 * When this is done, we take the pages in range from page
5932 * allocator removing them from the buddy system. This way
5933 * page allocator will never consider using them.
5935 * This lets us mark the pageblocks back as
5936 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5937 * aligned range but not in the unaligned, original range are
5938 * put back to page allocator so that buddy can use them.
5941 ret = start_isolate_page_range(pfn_max_align_down(start),
5942 pfn_max_align_up(end), migratetype,
5947 ret = __alloc_contig_migrate_range(&cc, start, end);
5952 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5953 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5954 * more, all pages in [start, end) are free in page allocator.
5955 * What we are going to do is to allocate all pages from
5956 * [start, end) (that is remove them from page allocator).
5958 * The only problem is that pages at the beginning and at the
5959 * end of interesting range may be not aligned with pages that
5960 * page allocator holds, ie. they can be part of higher order
5961 * pages. Because of this, we reserve the bigger range and
5962 * once this is done free the pages we are not interested in.
5964 * We don't have to hold zone->lock here because the pages are
5965 * isolated thus they won't get removed from buddy.
5968 lru_add_drain_all();
5972 outer_start = start;
5973 while (!PageBuddy(pfn_to_page(outer_start))) {
5974 if (++order >= MAX_ORDER) {
5978 outer_start &= ~0UL << order;
5981 /* Make sure the range is really isolated. */
5982 if (test_pages_isolated(outer_start, end, false)) {
5983 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5990 /* Grab isolated pages from freelists. */
5991 outer_end = isolate_freepages_range(&cc, outer_start, end);
5997 /* Free head and tail (if any) */
5998 if (start != outer_start)
5999 free_contig_range(outer_start, start - outer_start);
6000 if (end != outer_end)
6001 free_contig_range(end, outer_end - end);
6004 undo_isolate_page_range(pfn_max_align_down(start),
6005 pfn_max_align_up(end), migratetype);
6009 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6011 unsigned int count = 0;
6013 for (; nr_pages--; pfn++) {
6014 struct page *page = pfn_to_page(pfn);
6016 count += page_count(page) != 1;
6019 WARN(count != 0, "%d pages are still in use!\n", count);
6023 #ifdef CONFIG_MEMORY_HOTPLUG
6024 static int __meminit __zone_pcp_update(void *data)
6026 struct zone *zone = data;
6028 unsigned long batch = zone_batchsize(zone), flags;
6030 for_each_possible_cpu(cpu) {
6031 struct per_cpu_pageset *pset;
6032 struct per_cpu_pages *pcp;
6034 pset = per_cpu_ptr(zone->pageset, cpu);
6037 local_irq_save(flags);
6039 free_pcppages_bulk(zone, pcp->count, pcp);
6040 drain_zonestat(zone, pset);
6041 setup_pageset(pset, batch);
6042 local_irq_restore(flags);
6047 void __meminit zone_pcp_update(struct zone *zone)
6049 stop_machine(__zone_pcp_update, zone, NULL);
6053 void zone_pcp_reset(struct zone *zone)
6055 unsigned long flags;
6057 struct per_cpu_pageset *pset;
6059 /* avoid races with drain_pages() */
6060 local_irq_save(flags);
6061 if (zone->pageset != &boot_pageset) {
6062 for_each_online_cpu(cpu) {
6063 pset = per_cpu_ptr(zone->pageset, cpu);
6064 drain_zonestat(zone, pset);
6066 free_percpu(zone->pageset);
6067 zone->pageset = &boot_pageset;
6069 local_irq_restore(flags);
6072 #ifdef CONFIG_MEMORY_HOTREMOVE
6074 * All pages in the range must be isolated before calling this.
6077 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6083 unsigned long flags;
6084 /* find the first valid pfn */
6085 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6090 zone = page_zone(pfn_to_page(pfn));
6091 spin_lock_irqsave(&zone->lock, flags);
6093 while (pfn < end_pfn) {
6094 if (!pfn_valid(pfn)) {
6098 page = pfn_to_page(pfn);
6100 * The HWPoisoned page may be not in buddy system, and
6101 * page_count() is not 0.
6103 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6105 SetPageReserved(page);
6109 BUG_ON(page_count(page));
6110 BUG_ON(!PageBuddy(page));
6111 order = page_order(page);
6112 #ifdef CONFIG_DEBUG_VM
6113 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6114 pfn, 1 << order, end_pfn);
6116 list_del(&page->lru);
6117 rmv_page_order(page);
6118 zone->free_area[order].nr_free--;
6119 for (i = 0; i < (1 << order); i++)
6120 SetPageReserved((page+i));
6121 pfn += (1 << order);
6123 spin_unlock_irqrestore(&zone->lock, flags);
6127 #ifdef CONFIG_MEMORY_FAILURE
6128 bool is_free_buddy_page(struct page *page)
6130 struct zone *zone = page_zone(page);
6131 unsigned long pfn = page_to_pfn(page);
6132 unsigned long flags;
6135 spin_lock_irqsave(&zone->lock, flags);
6136 for (order = 0; order < MAX_ORDER; order++) {
6137 struct page *page_head = page - (pfn & ((1 << order) - 1));
6139 if (PageBuddy(page_head) && page_order(page_head) >= order)
6142 spin_unlock_irqrestore(&zone->lock, flags);
6144 return order < MAX_ORDER;
6148 static const struct trace_print_flags pageflag_names[] = {
6149 {1UL << PG_locked, "locked" },
6150 {1UL << PG_error, "error" },
6151 {1UL << PG_referenced, "referenced" },
6152 {1UL << PG_uptodate, "uptodate" },
6153 {1UL << PG_dirty, "dirty" },
6154 {1UL << PG_lru, "lru" },
6155 {1UL << PG_active, "active" },
6156 {1UL << PG_slab, "slab" },
6157 {1UL << PG_owner_priv_1, "owner_priv_1" },
6158 {1UL << PG_arch_1, "arch_1" },
6159 {1UL << PG_reserved, "reserved" },
6160 {1UL << PG_private, "private" },
6161 {1UL << PG_private_2, "private_2" },
6162 {1UL << PG_writeback, "writeback" },
6163 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6164 {1UL << PG_head, "head" },
6165 {1UL << PG_tail, "tail" },
6167 {1UL << PG_compound, "compound" },
6169 {1UL << PG_swapcache, "swapcache" },
6170 {1UL << PG_mappedtodisk, "mappedtodisk" },
6171 {1UL << PG_reclaim, "reclaim" },
6172 {1UL << PG_swapbacked, "swapbacked" },
6173 {1UL << PG_unevictable, "unevictable" },
6175 {1UL << PG_mlocked, "mlocked" },
6177 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6178 {1UL << PG_uncached, "uncached" },
6180 #ifdef CONFIG_MEMORY_FAILURE
6181 {1UL << PG_hwpoison, "hwpoison" },
6183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6184 {1UL << PG_compound_lock, "compound_lock" },
6188 static void dump_page_flags(unsigned long flags)
6190 const char *delim = "";
6194 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6196 printk(KERN_ALERT "page flags: %#lx(", flags);
6198 /* remove zone id */
6199 flags &= (1UL << NR_PAGEFLAGS) - 1;
6201 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6203 mask = pageflag_names[i].mask;
6204 if ((flags & mask) != mask)
6208 printk("%s%s", delim, pageflag_names[i].name);
6212 /* check for left over flags */
6214 printk("%s%#lx", delim, flags);
6219 void dump_page(struct page *page)
6222 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6223 page, atomic_read(&page->_count), page_mapcount(page),
6224 page->mapping, page->index);
6225 dump_page_flags(page->flags);
6226 mem_cgroup_print_bad_page(page);