1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
164 #define pcpu_spin_lock(type, member, ptr) \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
177 _ret = this_cpu_ptr(ptr); \
178 spin_lock_irqsave(&_ret->member, flags); \
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
186 _ret = this_cpu_ptr(ptr); \
187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
194 #define pcpu_spin_unlock(member, ptr) \
196 spin_unlock(&ptr->member); \
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
202 spin_unlock_irqrestore(&ptr->member, flags); \
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr) \
208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
210 #define pcp_spin_lock_irqsave(ptr, flags) \
211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
213 #define pcp_spin_trylock_irqsave(ptr, flags) \
214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
216 #define pcp_spin_unlock(ptr) \
217 pcpu_spin_unlock(lock, ptr)
219 #define pcp_spin_unlock_irqrestore(ptr, flags) \
220 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233 * defined in <linux/topology.h>.
235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
239 static DEFINE_MUTEX(pcpu_drain_mutex);
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
247 * Array of node states.
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 [N_POSSIBLE] = NODE_MASK_ALL,
251 [N_ONLINE] = { { [0] = 1UL } },
253 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 [N_HIGH_MEMORY] = { { [0] = 1UL } },
257 [N_MEMORY] = { { [0] = 1UL } },
258 [N_CPU] = { { [0] = 1UL } },
261 EXPORT_SYMBOL(node_states);
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
276 static bool _init_on_alloc_enabled_early __read_mostly
277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
281 return kstrtobool(buf, &_init_on_alloc_enabled_early);
283 early_param("init_on_alloc", early_init_on_alloc);
285 static bool _init_on_free_enabled_early __read_mostly
286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
289 return kstrtobool(buf, &_init_on_free_enabled_early);
291 early_param("init_on_free", early_init_on_free);
294 * A cached value of the page's pageblock's migratetype, used when the page is
295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297 * Also the migratetype set in the page does not necessarily match the pcplist
298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299 * other index - this ensures that it will be put on the correct CMA freelist.
301 static inline int get_pcppage_migratetype(struct page *page)
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
308 page->index = migratetype;
311 #ifdef CONFIG_PM_SLEEP
313 * The following functions are used by the suspend/hibernate code to temporarily
314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315 * while devices are suspended. To avoid races with the suspend/hibernate code,
316 * they should always be called with system_transition_mutex held
317 * (gfp_allowed_mask also should only be modified with system_transition_mutex
318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319 * with that modification).
322 static gfp_t saved_gfp_mask;
324 void pm_restore_gfp_mask(void)
326 WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 if (saved_gfp_mask) {
328 gfp_allowed_mask = saved_gfp_mask;
333 void pm_restrict_gfp_mask(void)
335 WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 WARN_ON(saved_gfp_mask);
337 saved_gfp_mask = gfp_allowed_mask;
338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
341 bool pm_suspended_storage(void)
343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
347 #endif /* CONFIG_PM_SLEEP */
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
353 static void __free_pages_ok(struct page *page, unsigned int order,
357 * results with 256, 32 in the lowmem_reserve sysctl:
358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359 * 1G machine -> (16M dma, 784M normal, 224M high)
360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
364 * TBD: should special case ZONE_DMA32 machines here - in those we normally
365 * don't need any ZONE_NORMAL reservation
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
371 #ifdef CONFIG_ZONE_DMA32
375 #ifdef CONFIG_HIGHMEM
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
385 #ifdef CONFIG_ZONE_DMA32
389 #ifdef CONFIG_HIGHMEM
393 #ifdef CONFIG_ZONE_DEVICE
398 const char * const migratetype_names[MIGRATE_TYPES] = {
406 #ifdef CONFIG_MEMORY_ISOLATION
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 [NULL_COMPOUND_DTOR] = NULL,
413 [COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 [HUGETLB_PAGE_DTOR] = free_huge_page,
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
442 EXPORT_SYMBOL(movable_zone);
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
451 int page_group_by_mobility_disabled __read_mostly;
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
455 * During boot we initialize deferred pages on-demand, as needed, but once
456 * page_alloc_init_late() has finished, the deferred pages are all initialized,
457 * and we can permanently disable that path.
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
461 static inline bool deferred_pages_enabled(void)
463 return static_branch_unlikely(&deferred_pages);
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
469 int nid = early_pfn_to_nid(pfn);
471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
478 * Returns true when the remaining initialisation should be deferred until
479 * later in the boot cycle when it can be parallelised.
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
484 static unsigned long prev_end_pfn, nr_initialised;
486 if (early_page_ext_enabled())
489 * prev_end_pfn static that contains the end of previous zone
490 * No need to protect because called very early in boot before smp_init.
492 if (prev_end_pfn != end_pfn) {
493 prev_end_pfn = end_pfn;
497 /* Always populate low zones for address-constrained allocations */
498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
504 * We start only with one section of pages, more pages are added as
505 * needed until the rest of deferred pages are initialized.
508 if ((nr_initialised > PAGES_PER_SECTION) &&
509 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 NODE_DATA(nid)->first_deferred_pfn = pfn;
516 static inline bool deferred_pages_enabled(void)
521 static inline bool early_page_uninitialised(unsigned long pfn)
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
536 #ifdef CONFIG_SPARSEMEM
537 return section_to_usemap(__pfn_to_section(pfn));
539 return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
545 #ifdef CONFIG_SPARSEMEM
546 pfn &= (PAGES_PER_SECTION-1);
548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
558 unsigned long *bitmap;
559 unsigned long bitidx, word_bitidx;
562 bitmap = get_pageblock_bitmap(page, pfn);
563 bitidx = pfn_to_bitidx(page, pfn);
564 word_bitidx = bitidx / BITS_PER_LONG;
565 bitidx &= (BITS_PER_LONG-1);
567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 * a consistent read of the memory array, so that results, even though
569 * racy, are not corrupted.
571 word = READ_ONCE(bitmap[word_bitidx]);
572 return (word >> bitidx) & mask;
576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @pfn: The target page frame number
579 * @mask: mask of bits that the caller is interested in
581 * Return: pageblock_bits flags
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 unsigned long pfn, unsigned long mask)
586 return __get_pfnblock_flags_mask(page, pfn, mask);
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597 * @page: The page within the block of interest
598 * @flags: The flags to set
599 * @pfn: The target page frame number
600 * @mask: mask of bits that the caller is interested in
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
606 unsigned long *bitmap;
607 unsigned long bitidx, word_bitidx;
610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
613 bitmap = get_pageblock_bitmap(page, pfn);
614 bitidx = pfn_to_bitidx(page, pfn);
615 word_bitidx = bitidx / BITS_PER_LONG;
616 bitidx &= (BITS_PER_LONG-1);
618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
623 word = READ_ONCE(bitmap[word_bitidx]);
625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
628 void set_pageblock_migratetype(struct page *page, int migratetype)
630 if (unlikely(page_group_by_mobility_disabled &&
631 migratetype < MIGRATE_PCPTYPES))
632 migratetype = MIGRATE_UNMOVABLE;
634 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 page_to_pfn(page), MIGRATETYPE_MASK);
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
643 unsigned long pfn = page_to_pfn(page);
644 unsigned long sp, start_pfn;
647 seq = zone_span_seqbegin(zone);
648 start_pfn = zone->zone_start_pfn;
649 sp = zone->spanned_pages;
650 if (!zone_spans_pfn(zone, pfn))
652 } while (zone_span_seqretry(zone, seq));
655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 pfn, zone_to_nid(zone), zone->name,
657 start_pfn, start_pfn + sp);
662 static int page_is_consistent(struct zone *zone, struct page *page)
664 if (zone != page_zone(page))
670 * Temporary debugging check for pages not lying within a given zone.
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
674 if (page_outside_zone_boundaries(zone, page))
676 if (!page_is_consistent(zone, page))
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
688 static void bad_page(struct page *page, const char *reason)
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
705 "BUG: Bad page state: %lu messages suppressed\n",
712 resume = jiffies + 60 * HZ;
714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
715 current->comm, page_to_pfn(page));
716 dump_page(page, reason);
721 /* Leave bad fields for debug, except PageBuddy could make trouble */
722 page_mapcount_reset(page); /* remove PageBuddy */
723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
726 static inline unsigned int order_to_pindex(int migratetype, int order)
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 VM_BUG_ON(order != pageblock_order);
733 return NR_LOWORDER_PCP_LISTS;
736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
739 return (MIGRATE_PCPTYPES * base) + migratetype;
742 static inline int pindex_to_order(unsigned int pindex)
744 int order = pindex / MIGRATE_PCPTYPES;
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 if (pindex == NR_LOWORDER_PCP_LISTS)
748 order = pageblock_order;
750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
756 static inline bool pcp_allowed_order(unsigned int order)
758 if (order <= PAGE_ALLOC_COSTLY_ORDER)
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 if (order == pageblock_order)
767 static inline void free_the_page(struct page *page, unsigned int order)
769 if (pcp_allowed_order(order)) /* Via pcp? */
770 free_unref_page(page, order);
772 __free_pages_ok(page, order, FPI_NONE);
776 * Higher-order pages are called "compound pages". They are structured thusly:
778 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
783 * The first tail page's ->compound_dtor holds the offset in array of compound
784 * page destructors. See compound_page_dtors.
786 * The first tail page's ->compound_order holds the order of allocation.
787 * This usage means that zero-order pages may not be compound.
790 void free_compound_page(struct page *page)
792 mem_cgroup_uncharge(page_folio(page));
793 free_the_page(page, compound_order(page));
796 static void prep_compound_head(struct page *page, unsigned int order)
798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 set_compound_order(page, order);
800 atomic_set(compound_mapcount_ptr(page), -1);
801 atomic_set(compound_pincount_ptr(page), 0);
804 static void prep_compound_tail(struct page *head, int tail_idx)
806 struct page *p = head + tail_idx;
808 p->mapping = TAIL_MAPPING;
809 set_compound_head(p, head);
812 void prep_compound_page(struct page *page, unsigned int order)
815 int nr_pages = 1 << order;
818 for (i = 1; i < nr_pages; i++)
819 prep_compound_tail(page, i);
821 prep_compound_head(page, order);
824 void destroy_large_folio(struct folio *folio)
826 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
828 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 compound_page_dtors[dtor](&folio->page);
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
835 bool _debug_pagealloc_enabled_early __read_mostly
836 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
843 static int __init early_debug_pagealloc(char *buf)
845 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
847 early_param("debug_pagealloc", early_debug_pagealloc);
849 static int __init debug_guardpage_minorder_setup(char *buf)
853 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
854 pr_err("Bad debug_guardpage_minorder value\n");
857 _debug_guardpage_minorder = res;
858 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 unsigned int order, int migratetype)
866 if (!debug_guardpage_enabled())
869 if (order >= debug_guardpage_minorder())
872 __SetPageGuard(page);
873 INIT_LIST_HEAD(&page->buddy_list);
874 set_page_private(page, order);
875 /* Guard pages are not available for any usage */
876 if (!is_migrate_isolate(migratetype))
877 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
882 static inline void clear_page_guard(struct zone *zone, struct page *page,
883 unsigned int order, int migratetype)
885 if (!debug_guardpage_enabled())
888 __ClearPageGuard(page);
890 set_page_private(page, 0);
891 if (!is_migrate_isolate(migratetype))
892 __mod_zone_freepage_state(zone, (1 << order), migratetype);
895 static inline bool set_page_guard(struct zone *zone, struct page *page,
896 unsigned int order, int migratetype) { return false; }
897 static inline void clear_page_guard(struct zone *zone, struct page *page,
898 unsigned int order, int migratetype) {}
902 * Enable static keys related to various memory debugging and hardening options.
903 * Some override others, and depend on early params that are evaluated in the
904 * order of appearance. So we need to first gather the full picture of what was
905 * enabled, and then make decisions.
907 void __init init_mem_debugging_and_hardening(void)
909 bool page_poisoning_requested = false;
911 #ifdef CONFIG_PAGE_POISONING
913 * Page poisoning is debug page alloc for some arches. If
914 * either of those options are enabled, enable poisoning.
916 if (page_poisoning_enabled() ||
917 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
918 debug_pagealloc_enabled())) {
919 static_branch_enable(&_page_poisoning_enabled);
920 page_poisoning_requested = true;
924 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
925 page_poisoning_requested) {
926 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
927 "will take precedence over init_on_alloc and init_on_free\n");
928 _init_on_alloc_enabled_early = false;
929 _init_on_free_enabled_early = false;
932 if (_init_on_alloc_enabled_early)
933 static_branch_enable(&init_on_alloc);
935 static_branch_disable(&init_on_alloc);
937 if (_init_on_free_enabled_early)
938 static_branch_enable(&init_on_free);
940 static_branch_disable(&init_on_free);
942 if (IS_ENABLED(CONFIG_KMSAN) &&
943 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
944 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
946 #ifdef CONFIG_DEBUG_PAGEALLOC
947 if (!debug_pagealloc_enabled())
950 static_branch_enable(&_debug_pagealloc_enabled);
952 if (!debug_guardpage_minorder())
955 static_branch_enable(&_debug_guardpage_enabled);
959 static inline void set_buddy_order(struct page *page, unsigned int order)
961 set_page_private(page, order);
962 __SetPageBuddy(page);
965 #ifdef CONFIG_COMPACTION
966 static inline struct capture_control *task_capc(struct zone *zone)
968 struct capture_control *capc = current->capture_control;
970 return unlikely(capc) &&
971 !(current->flags & PF_KTHREAD) &&
973 capc->cc->zone == zone ? capc : NULL;
977 compaction_capture(struct capture_control *capc, struct page *page,
978 int order, int migratetype)
980 if (!capc || order != capc->cc->order)
983 /* Do not accidentally pollute CMA or isolated regions*/
984 if (is_migrate_cma(migratetype) ||
985 is_migrate_isolate(migratetype))
989 * Do not let lower order allocations pollute a movable pageblock.
990 * This might let an unmovable request use a reclaimable pageblock
991 * and vice-versa but no more than normal fallback logic which can
992 * have trouble finding a high-order free page.
994 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
1002 static inline struct capture_control *task_capc(struct zone *zone)
1008 compaction_capture(struct capture_control *capc, struct page *page,
1009 int order, int migratetype)
1013 #endif /* CONFIG_COMPACTION */
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list(struct page *page, struct zone *zone,
1017 unsigned int order, int migratetype)
1019 struct free_area *area = &zone->free_area[order];
1021 list_add(&page->buddy_list, &area->free_list[migratetype]);
1025 /* Used for pages not on another list */
1026 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1027 unsigned int order, int migratetype)
1029 struct free_area *area = &zone->free_area[order];
1031 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1036 * Used for pages which are on another list. Move the pages to the tail
1037 * of the list - so the moved pages won't immediately be considered for
1038 * allocation again (e.g., optimization for memory onlining).
1040 static inline void move_to_free_list(struct page *page, struct zone *zone,
1041 unsigned int order, int migratetype)
1043 struct free_area *area = &zone->free_area[order];
1045 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1048 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1051 /* clear reported state and update reported page count */
1052 if (page_reported(page))
1053 __ClearPageReported(page);
1055 list_del(&page->buddy_list);
1056 __ClearPageBuddy(page);
1057 set_page_private(page, 0);
1058 zone->free_area[order].nr_free--;
1062 * If this is not the largest possible page, check if the buddy
1063 * of the next-highest order is free. If it is, it's possible
1064 * that pages are being freed that will coalesce soon. In case,
1065 * that is happening, add the free page to the tail of the list
1066 * so it's less likely to be used soon and more likely to be merged
1067 * as a higher order page
1070 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1071 struct page *page, unsigned int order)
1073 unsigned long higher_page_pfn;
1074 struct page *higher_page;
1076 if (order >= MAX_ORDER - 2)
1079 higher_page_pfn = buddy_pfn & pfn;
1080 higher_page = page + (higher_page_pfn - pfn);
1082 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1087 * Freeing function for a buddy system allocator.
1089 * The concept of a buddy system is to maintain direct-mapped table
1090 * (containing bit values) for memory blocks of various "orders".
1091 * The bottom level table contains the map for the smallest allocatable
1092 * units of memory (here, pages), and each level above it describes
1093 * pairs of units from the levels below, hence, "buddies".
1094 * At a high level, all that happens here is marking the table entry
1095 * at the bottom level available, and propagating the changes upward
1096 * as necessary, plus some accounting needed to play nicely with other
1097 * parts of the VM system.
1098 * At each level, we keep a list of pages, which are heads of continuous
1099 * free pages of length of (1 << order) and marked with PageBuddy.
1100 * Page's order is recorded in page_private(page) field.
1101 * So when we are allocating or freeing one, we can derive the state of the
1102 * other. That is, if we allocate a small block, and both were
1103 * free, the remainder of the region must be split into blocks.
1104 * If a block is freed, and its buddy is also free, then this
1105 * triggers coalescing into a block of larger size.
1110 static inline void __free_one_page(struct page *page,
1112 struct zone *zone, unsigned int order,
1113 int migratetype, fpi_t fpi_flags)
1115 struct capture_control *capc = task_capc(zone);
1116 unsigned long buddy_pfn = 0;
1117 unsigned long combined_pfn;
1121 VM_BUG_ON(!zone_is_initialized(zone));
1122 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1124 VM_BUG_ON(migratetype == -1);
1125 if (likely(!is_migrate_isolate(migratetype)))
1126 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1128 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1129 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1131 while (order < MAX_ORDER - 1) {
1132 if (compaction_capture(capc, page, order, migratetype)) {
1133 __mod_zone_freepage_state(zone, -(1 << order),
1138 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1142 if (unlikely(order >= pageblock_order)) {
1144 * We want to prevent merge between freepages on pageblock
1145 * without fallbacks and normal pageblock. Without this,
1146 * pageblock isolation could cause incorrect freepage or CMA
1147 * accounting or HIGHATOMIC accounting.
1149 int buddy_mt = get_pageblock_migratetype(buddy);
1151 if (migratetype != buddy_mt
1152 && (!migratetype_is_mergeable(migratetype) ||
1153 !migratetype_is_mergeable(buddy_mt)))
1158 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1159 * merge with it and move up one order.
1161 if (page_is_guard(buddy))
1162 clear_page_guard(zone, buddy, order, migratetype);
1164 del_page_from_free_list(buddy, zone, order);
1165 combined_pfn = buddy_pfn & pfn;
1166 page = page + (combined_pfn - pfn);
1172 set_buddy_order(page, order);
1174 if (fpi_flags & FPI_TO_TAIL)
1176 else if (is_shuffle_order(order))
1177 to_tail = shuffle_pick_tail();
1179 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1182 add_to_free_list_tail(page, zone, order, migratetype);
1184 add_to_free_list(page, zone, order, migratetype);
1186 /* Notify page reporting subsystem of freed page */
1187 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1188 page_reporting_notify_free(order);
1192 * split_free_page() -- split a free page at split_pfn_offset
1193 * @free_page: the original free page
1194 * @order: the order of the page
1195 * @split_pfn_offset: split offset within the page
1197 * Return -ENOENT if the free page is changed, otherwise 0
1199 * It is used when the free page crosses two pageblocks with different migratetypes
1200 * at split_pfn_offset within the page. The split free page will be put into
1201 * separate migratetype lists afterwards. Otherwise, the function achieves
1204 int split_free_page(struct page *free_page,
1205 unsigned int order, unsigned long split_pfn_offset)
1207 struct zone *zone = page_zone(free_page);
1208 unsigned long free_page_pfn = page_to_pfn(free_page);
1210 unsigned long flags;
1211 int free_page_order;
1215 if (split_pfn_offset == 0)
1218 spin_lock_irqsave(&zone->lock, flags);
1220 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1225 mt = get_pageblock_migratetype(free_page);
1226 if (likely(!is_migrate_isolate(mt)))
1227 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1229 del_page_from_free_list(free_page, zone, order);
1230 for (pfn = free_page_pfn;
1231 pfn < free_page_pfn + (1UL << order);) {
1232 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1234 free_page_order = min_t(unsigned int,
1235 pfn ? __ffs(pfn) : order,
1236 __fls(split_pfn_offset));
1237 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1239 pfn += 1UL << free_page_order;
1240 split_pfn_offset -= (1UL << free_page_order);
1241 /* we have done the first part, now switch to second part */
1242 if (split_pfn_offset == 0)
1243 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1246 spin_unlock_irqrestore(&zone->lock, flags);
1250 * A bad page could be due to a number of fields. Instead of multiple branches,
1251 * try and check multiple fields with one check. The caller must do a detailed
1252 * check if necessary.
1254 static inline bool page_expected_state(struct page *page,
1255 unsigned long check_flags)
1257 if (unlikely(atomic_read(&page->_mapcount) != -1))
1260 if (unlikely((unsigned long)page->mapping |
1261 page_ref_count(page) |
1265 (page->flags & check_flags)))
1271 static const char *page_bad_reason(struct page *page, unsigned long flags)
1273 const char *bad_reason = NULL;
1275 if (unlikely(atomic_read(&page->_mapcount) != -1))
1276 bad_reason = "nonzero mapcount";
1277 if (unlikely(page->mapping != NULL))
1278 bad_reason = "non-NULL mapping";
1279 if (unlikely(page_ref_count(page) != 0))
1280 bad_reason = "nonzero _refcount";
1281 if (unlikely(page->flags & flags)) {
1282 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1283 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1285 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1288 if (unlikely(page->memcg_data))
1289 bad_reason = "page still charged to cgroup";
1294 static void free_page_is_bad_report(struct page *page)
1297 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1300 static inline bool free_page_is_bad(struct page *page)
1302 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1305 /* Something has gone sideways, find it */
1306 free_page_is_bad_report(page);
1310 static int free_tail_pages_check(struct page *head_page, struct page *page)
1315 * We rely page->lru.next never has bit 0 set, unless the page
1316 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1318 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1320 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1324 switch (page - head_page) {
1326 /* the first tail page: ->mapping may be compound_mapcount() */
1327 if (unlikely(compound_mapcount(page))) {
1328 bad_page(page, "nonzero compound_mapcount");
1334 * the second tail page: ->mapping is
1335 * deferred_list.next -- ignore value.
1339 if (page->mapping != TAIL_MAPPING) {
1340 bad_page(page, "corrupted mapping in tail page");
1345 if (unlikely(!PageTail(page))) {
1346 bad_page(page, "PageTail not set");
1349 if (unlikely(compound_head(page) != head_page)) {
1350 bad_page(page, "compound_head not consistent");
1355 page->mapping = NULL;
1356 clear_compound_head(page);
1361 * Skip KASAN memory poisoning when either:
1363 * 1. Deferred memory initialization has not yet completed,
1364 * see the explanation below.
1365 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1366 * see the comment next to it.
1367 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1368 * see the comment next to it.
1370 * Poisoning pages during deferred memory init will greatly lengthen the
1371 * process and cause problem in large memory systems as the deferred pages
1372 * initialization is done with interrupt disabled.
1374 * Assuming that there will be no reference to those newly initialized
1375 * pages before they are ever allocated, this should have no effect on
1376 * KASAN memory tracking as the poison will be properly inserted at page
1377 * allocation time. The only corner case is when pages are allocated by
1378 * on-demand allocation and then freed again before the deferred pages
1379 * initialization is done, but this is not likely to happen.
1381 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1383 return deferred_pages_enabled() ||
1384 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1385 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1386 PageSkipKASanPoison(page);
1389 static void kernel_init_pages(struct page *page, int numpages)
1393 /* s390's use of memset() could override KASAN redzones. */
1394 kasan_disable_current();
1395 for (i = 0; i < numpages; i++)
1396 clear_highpage_kasan_tagged(page + i);
1397 kasan_enable_current();
1400 static __always_inline bool free_pages_prepare(struct page *page,
1401 unsigned int order, bool check_free, fpi_t fpi_flags)
1404 bool init = want_init_on_free();
1406 VM_BUG_ON_PAGE(PageTail(page), page);
1408 trace_mm_page_free(page, order);
1409 kmsan_free_page(page, order);
1411 if (unlikely(PageHWPoison(page)) && !order) {
1413 * Do not let hwpoison pages hit pcplists/buddy
1414 * Untie memcg state and reset page's owner
1416 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1417 __memcg_kmem_uncharge_page(page, order);
1418 reset_page_owner(page, order);
1419 page_table_check_free(page, order);
1424 * Check tail pages before head page information is cleared to
1425 * avoid checking PageCompound for order-0 pages.
1427 if (unlikely(order)) {
1428 bool compound = PageCompound(page);
1431 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1434 ClearPageDoubleMap(page);
1435 ClearPageHasHWPoisoned(page);
1437 for (i = 1; i < (1 << order); i++) {
1439 bad += free_tail_pages_check(page, page + i);
1440 if (unlikely(free_page_is_bad(page + i))) {
1444 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1447 if (PageMappingFlags(page))
1448 page->mapping = NULL;
1449 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1450 __memcg_kmem_uncharge_page(page, order);
1451 if (check_free && free_page_is_bad(page))
1456 page_cpupid_reset_last(page);
1457 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1458 reset_page_owner(page, order);
1459 page_table_check_free(page, order);
1461 if (!PageHighMem(page)) {
1462 debug_check_no_locks_freed(page_address(page),
1463 PAGE_SIZE << order);
1464 debug_check_no_obj_freed(page_address(page),
1465 PAGE_SIZE << order);
1468 kernel_poison_pages(page, 1 << order);
1471 * As memory initialization might be integrated into KASAN,
1472 * KASAN poisoning and memory initialization code must be
1473 * kept together to avoid discrepancies in behavior.
1475 * With hardware tag-based KASAN, memory tags must be set before the
1476 * page becomes unavailable via debug_pagealloc or arch_free_page.
1478 if (!should_skip_kasan_poison(page, fpi_flags)) {
1479 kasan_poison_pages(page, order, init);
1481 /* Memory is already initialized if KASAN did it internally. */
1482 if (kasan_has_integrated_init())
1486 kernel_init_pages(page, 1 << order);
1489 * arch_free_page() can make the page's contents inaccessible. s390
1490 * does this. So nothing which can access the page's contents should
1491 * happen after this.
1493 arch_free_page(page, order);
1495 debug_pagealloc_unmap_pages(page, 1 << order);
1500 #ifdef CONFIG_DEBUG_VM
1502 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1503 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1504 * moved from pcp lists to free lists.
1506 static bool free_pcp_prepare(struct page *page, unsigned int order)
1508 return free_pages_prepare(page, order, true, FPI_NONE);
1511 /* return true if this page has an inappropriate state */
1512 static bool bulkfree_pcp_prepare(struct page *page)
1514 if (debug_pagealloc_enabled_static())
1515 return free_page_is_bad(page);
1521 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1522 * moving from pcp lists to free list in order to reduce overhead. With
1523 * debug_pagealloc enabled, they are checked also immediately when being freed
1526 static bool free_pcp_prepare(struct page *page, unsigned int order)
1528 if (debug_pagealloc_enabled_static())
1529 return free_pages_prepare(page, order, true, FPI_NONE);
1531 return free_pages_prepare(page, order, false, FPI_NONE);
1534 static bool bulkfree_pcp_prepare(struct page *page)
1536 return free_page_is_bad(page);
1538 #endif /* CONFIG_DEBUG_VM */
1541 * Frees a number of pages from the PCP lists
1542 * Assumes all pages on list are in same zone.
1543 * count is the number of pages to free.
1545 static void free_pcppages_bulk(struct zone *zone, int count,
1546 struct per_cpu_pages *pcp,
1550 int max_pindex = NR_PCP_LISTS - 1;
1552 bool isolated_pageblocks;
1556 * Ensure proper count is passed which otherwise would stuck in the
1557 * below while (list_empty(list)) loop.
1559 count = min(pcp->count, count);
1561 /* Ensure requested pindex is drained first. */
1562 pindex = pindex - 1;
1564 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1565 spin_lock(&zone->lock);
1566 isolated_pageblocks = has_isolate_pageblock(zone);
1569 struct list_head *list;
1572 /* Remove pages from lists in a round-robin fashion. */
1574 if (++pindex > max_pindex)
1575 pindex = min_pindex;
1576 list = &pcp->lists[pindex];
1577 if (!list_empty(list))
1580 if (pindex == max_pindex)
1582 if (pindex == min_pindex)
1586 order = pindex_to_order(pindex);
1587 nr_pages = 1 << order;
1591 page = list_last_entry(list, struct page, pcp_list);
1592 mt = get_pcppage_migratetype(page);
1594 /* must delete to avoid corrupting pcp list */
1595 list_del(&page->pcp_list);
1597 pcp->count -= nr_pages;
1599 if (bulkfree_pcp_prepare(page))
1602 /* MIGRATE_ISOLATE page should not go to pcplists */
1603 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1604 /* Pageblock could have been isolated meanwhile */
1605 if (unlikely(isolated_pageblocks))
1606 mt = get_pageblock_migratetype(page);
1608 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1609 trace_mm_page_pcpu_drain(page, order, mt);
1610 } while (count > 0 && !list_empty(list));
1613 spin_unlock(&zone->lock);
1616 static void free_one_page(struct zone *zone,
1617 struct page *page, unsigned long pfn,
1619 int migratetype, fpi_t fpi_flags)
1621 unsigned long flags;
1623 spin_lock_irqsave(&zone->lock, flags);
1624 if (unlikely(has_isolate_pageblock(zone) ||
1625 is_migrate_isolate(migratetype))) {
1626 migratetype = get_pfnblock_migratetype(page, pfn);
1628 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1629 spin_unlock_irqrestore(&zone->lock, flags);
1632 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1633 unsigned long zone, int nid)
1635 mm_zero_struct_page(page);
1636 set_page_links(page, zone, nid, pfn);
1637 init_page_count(page);
1638 page_mapcount_reset(page);
1639 page_cpupid_reset_last(page);
1640 page_kasan_tag_reset(page);
1642 INIT_LIST_HEAD(&page->lru);
1643 #ifdef WANT_PAGE_VIRTUAL
1644 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1645 if (!is_highmem_idx(zone))
1646 set_page_address(page, __va(pfn << PAGE_SHIFT));
1650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1651 static void __meminit init_reserved_page(unsigned long pfn)
1656 if (!early_page_uninitialised(pfn))
1659 nid = early_pfn_to_nid(pfn);
1660 pgdat = NODE_DATA(nid);
1662 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1663 struct zone *zone = &pgdat->node_zones[zid];
1665 if (zone_spans_pfn(zone, pfn))
1668 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1671 static inline void init_reserved_page(unsigned long pfn)
1674 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1677 * Initialised pages do not have PageReserved set. This function is
1678 * called for each range allocated by the bootmem allocator and
1679 * marks the pages PageReserved. The remaining valid pages are later
1680 * sent to the buddy page allocator.
1682 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1684 unsigned long start_pfn = PFN_DOWN(start);
1685 unsigned long end_pfn = PFN_UP(end);
1687 for (; start_pfn < end_pfn; start_pfn++) {
1688 if (pfn_valid(start_pfn)) {
1689 struct page *page = pfn_to_page(start_pfn);
1691 init_reserved_page(start_pfn);
1693 /* Avoid false-positive PageTail() */
1694 INIT_LIST_HEAD(&page->lru);
1697 * no need for atomic set_bit because the struct
1698 * page is not visible yet so nobody should
1701 __SetPageReserved(page);
1706 static void __free_pages_ok(struct page *page, unsigned int order,
1709 unsigned long flags;
1711 unsigned long pfn = page_to_pfn(page);
1712 struct zone *zone = page_zone(page);
1714 if (!free_pages_prepare(page, order, true, fpi_flags))
1717 migratetype = get_pfnblock_migratetype(page, pfn);
1719 spin_lock_irqsave(&zone->lock, flags);
1720 if (unlikely(has_isolate_pageblock(zone) ||
1721 is_migrate_isolate(migratetype))) {
1722 migratetype = get_pfnblock_migratetype(page, pfn);
1724 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 spin_unlock_irqrestore(&zone->lock, flags);
1727 __count_vm_events(PGFREE, 1 << order);
1730 void __free_pages_core(struct page *page, unsigned int order)
1732 unsigned int nr_pages = 1 << order;
1733 struct page *p = page;
1737 * When initializing the memmap, __init_single_page() sets the refcount
1738 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 * refcount of all involved pages to 0.
1742 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1744 __ClearPageReserved(p);
1745 set_page_count(p, 0);
1747 __ClearPageReserved(p);
1748 set_page_count(p, 0);
1750 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1753 * Bypass PCP and place fresh pages right to the tail, primarily
1754 * relevant for memory onlining.
1756 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1762 * During memory init memblocks map pfns to nids. The search is expensive and
1763 * this caches recent lookups. The implementation of __early_pfn_to_nid
1764 * treats start/end as pfns.
1766 struct mminit_pfnnid_cache {
1767 unsigned long last_start;
1768 unsigned long last_end;
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 struct mminit_pfnnid_cache *state)
1780 unsigned long start_pfn, end_pfn;
1783 if (state->last_start <= pfn && pfn < state->last_end)
1784 return state->last_nid;
1786 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 if (nid != NUMA_NO_NODE) {
1788 state->last_start = start_pfn;
1789 state->last_end = end_pfn;
1790 state->last_nid = nid;
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1798 static DEFINE_SPINLOCK(early_pfn_lock);
1801 spin_lock(&early_pfn_lock);
1802 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1804 nid = first_online_node;
1805 spin_unlock(&early_pfn_lock);
1809 #endif /* CONFIG_NUMA */
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1814 if (early_page_uninitialised(pfn))
1816 if (!kmsan_memblock_free_pages(page, order)) {
1817 /* KMSAN will take care of these pages. */
1820 __free_pages_core(page, order);
1824 * Check that the whole (or subset of) a pageblock given by the interval of
1825 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826 * with the migration of free compaction scanner.
1828 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1830 * It's possible on some configurations to have a setup like node0 node1 node0
1831 * i.e. it's possible that all pages within a zones range of pages do not
1832 * belong to a single zone. We assume that a border between node0 and node1
1833 * can occur within a single pageblock, but not a node0 node1 node0
1834 * interleaving within a single pageblock. It is therefore sufficient to check
1835 * the first and last page of a pageblock and avoid checking each individual
1836 * page in a pageblock.
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 unsigned long end_pfn, struct zone *zone)
1841 struct page *start_page;
1842 struct page *end_page;
1844 /* end_pfn is one past the range we are checking */
1847 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1850 start_page = pfn_to_online_page(start_pfn);
1854 if (page_zone(start_page) != zone)
1857 end_page = pfn_to_page(end_pfn);
1859 /* This gives a shorter code than deriving page_zone(end_page) */
1860 if (page_zone_id(start_page) != page_zone_id(end_page))
1866 void set_zone_contiguous(struct zone *zone)
1868 unsigned long block_start_pfn = zone->zone_start_pfn;
1869 unsigned long block_end_pfn;
1871 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 for (; block_start_pfn < zone_end_pfn(zone);
1873 block_start_pfn = block_end_pfn,
1874 block_end_pfn += pageblock_nr_pages) {
1876 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1878 if (!__pageblock_pfn_to_page(block_start_pfn,
1879 block_end_pfn, zone))
1884 /* We confirm that there is no hole */
1885 zone->contiguous = true;
1888 void clear_zone_contiguous(struct zone *zone)
1890 zone->contiguous = false;
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 unsigned long nr_pages)
1903 page = pfn_to_page(pfn);
1905 /* Free a large naturally-aligned chunk if possible */
1906 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 __free_pages_core(page, pageblock_order);
1912 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 if (pageblock_aligned(pfn))
1914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 __free_pages_core(page, 0);
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1923 static inline void __init pgdat_init_report_one_done(void)
1925 if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 complete(&pgdat_init_all_done_comp);
1930 * Returns true if page needs to be initialized or freed to buddy allocator.
1932 * First we check if pfn is valid on architectures where it is possible to have
1933 * holes within pageblock_nr_pages. On systems where it is not possible, this
1934 * function is optimized out.
1936 * Then, we check if a current large page is valid by only checking the validity
1939 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1941 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1947 * Free pages to buddy allocator. Try to free aligned pages in
1948 * pageblock_nr_pages sizes.
1950 static void __init deferred_free_pages(unsigned long pfn,
1951 unsigned long end_pfn)
1953 unsigned long nr_free = 0;
1955 for (; pfn < end_pfn; pfn++) {
1956 if (!deferred_pfn_valid(pfn)) {
1957 deferred_free_range(pfn - nr_free, nr_free);
1959 } else if (pageblock_aligned(pfn)) {
1960 deferred_free_range(pfn - nr_free, nr_free);
1966 /* Free the last block of pages to allocator */
1967 deferred_free_range(pfn - nr_free, nr_free);
1971 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1972 * by performing it only once every pageblock_nr_pages.
1973 * Return number of pages initialized.
1975 static unsigned long __init deferred_init_pages(struct zone *zone,
1977 unsigned long end_pfn)
1979 int nid = zone_to_nid(zone);
1980 unsigned long nr_pages = 0;
1981 int zid = zone_idx(zone);
1982 struct page *page = NULL;
1984 for (; pfn < end_pfn; pfn++) {
1985 if (!deferred_pfn_valid(pfn)) {
1988 } else if (!page || pageblock_aligned(pfn)) {
1989 page = pfn_to_page(pfn);
1993 __init_single_page(page, pfn, zid, nid);
2000 * This function is meant to pre-load the iterator for the zone init.
2001 * Specifically it walks through the ranges until we are caught up to the
2002 * first_init_pfn value and exits there. If we never encounter the value we
2003 * return false indicating there are no valid ranges left.
2006 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2007 unsigned long *spfn, unsigned long *epfn,
2008 unsigned long first_init_pfn)
2013 * Start out by walking through the ranges in this zone that have
2014 * already been initialized. We don't need to do anything with them
2015 * so we just need to flush them out of the system.
2017 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2018 if (*epfn <= first_init_pfn)
2020 if (*spfn < first_init_pfn)
2021 *spfn = first_init_pfn;
2030 * Initialize and free pages. We do it in two loops: first we initialize
2031 * struct page, then free to buddy allocator, because while we are
2032 * freeing pages we can access pages that are ahead (computing buddy
2033 * page in __free_one_page()).
2035 * In order to try and keep some memory in the cache we have the loop
2036 * broken along max page order boundaries. This way we will not cause
2037 * any issues with the buddy page computation.
2039 static unsigned long __init
2040 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2041 unsigned long *end_pfn)
2043 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2044 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2045 unsigned long nr_pages = 0;
2048 /* First we loop through and initialize the page values */
2049 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2052 if (mo_pfn <= *start_pfn)
2055 t = min(mo_pfn, *end_pfn);
2056 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2058 if (mo_pfn < *end_pfn) {
2059 *start_pfn = mo_pfn;
2064 /* Reset values and now loop through freeing pages as needed */
2067 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2073 t = min(mo_pfn, epfn);
2074 deferred_free_pages(spfn, t);
2084 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2087 unsigned long spfn, epfn;
2088 struct zone *zone = arg;
2091 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2094 * Initialize and free pages in MAX_ORDER sized increments so that we
2095 * can avoid introducing any issues with the buddy allocator.
2097 while (spfn < end_pfn) {
2098 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2103 /* An arch may override for more concurrency. */
2105 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2110 /* Initialise remaining memory on a node */
2111 static int __init deferred_init_memmap(void *data)
2113 pg_data_t *pgdat = data;
2114 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2115 unsigned long spfn = 0, epfn = 0;
2116 unsigned long first_init_pfn, flags;
2117 unsigned long start = jiffies;
2119 int zid, max_threads;
2122 /* Bind memory initialisation thread to a local node if possible */
2123 if (!cpumask_empty(cpumask))
2124 set_cpus_allowed_ptr(current, cpumask);
2126 pgdat_resize_lock(pgdat, &flags);
2127 first_init_pfn = pgdat->first_deferred_pfn;
2128 if (first_init_pfn == ULONG_MAX) {
2129 pgdat_resize_unlock(pgdat, &flags);
2130 pgdat_init_report_one_done();
2134 /* Sanity check boundaries */
2135 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2136 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2137 pgdat->first_deferred_pfn = ULONG_MAX;
2140 * Once we unlock here, the zone cannot be grown anymore, thus if an
2141 * interrupt thread must allocate this early in boot, zone must be
2142 * pre-grown prior to start of deferred page initialization.
2144 pgdat_resize_unlock(pgdat, &flags);
2146 /* Only the highest zone is deferred so find it */
2147 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2148 zone = pgdat->node_zones + zid;
2149 if (first_init_pfn < zone_end_pfn(zone))
2153 /* If the zone is empty somebody else may have cleared out the zone */
2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2158 max_threads = deferred_page_init_max_threads(cpumask);
2160 while (spfn < epfn) {
2161 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2162 struct padata_mt_job job = {
2163 .thread_fn = deferred_init_memmap_chunk,
2166 .size = epfn_align - spfn,
2167 .align = PAGES_PER_SECTION,
2168 .min_chunk = PAGES_PER_SECTION,
2169 .max_threads = max_threads,
2172 padata_do_multithreaded(&job);
2173 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2177 /* Sanity check that the next zone really is unpopulated */
2178 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2180 pr_info("node %d deferred pages initialised in %ums\n",
2181 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2183 pgdat_init_report_one_done();
2188 * If this zone has deferred pages, try to grow it by initializing enough
2189 * deferred pages to satisfy the allocation specified by order, rounded up to
2190 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2191 * of SECTION_SIZE bytes by initializing struct pages in increments of
2192 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2194 * Return true when zone was grown, otherwise return false. We return true even
2195 * when we grow less than requested, to let the caller decide if there are
2196 * enough pages to satisfy the allocation.
2198 * Note: We use noinline because this function is needed only during boot, and
2199 * it is called from a __ref function _deferred_grow_zone. This way we are
2200 * making sure that it is not inlined into permanent text section.
2202 static noinline bool __init
2203 deferred_grow_zone(struct zone *zone, unsigned int order)
2205 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2206 pg_data_t *pgdat = zone->zone_pgdat;
2207 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2208 unsigned long spfn, epfn, flags;
2209 unsigned long nr_pages = 0;
2212 /* Only the last zone may have deferred pages */
2213 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2216 pgdat_resize_lock(pgdat, &flags);
2219 * If someone grew this zone while we were waiting for spinlock, return
2220 * true, as there might be enough pages already.
2222 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2223 pgdat_resize_unlock(pgdat, &flags);
2227 /* If the zone is empty somebody else may have cleared out the zone */
2228 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2229 first_deferred_pfn)) {
2230 pgdat->first_deferred_pfn = ULONG_MAX;
2231 pgdat_resize_unlock(pgdat, &flags);
2232 /* Retry only once. */
2233 return first_deferred_pfn != ULONG_MAX;
2237 * Initialize and free pages in MAX_ORDER sized increments so
2238 * that we can avoid introducing any issues with the buddy
2241 while (spfn < epfn) {
2242 /* update our first deferred PFN for this section */
2243 first_deferred_pfn = spfn;
2245 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2246 touch_nmi_watchdog();
2248 /* We should only stop along section boundaries */
2249 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2252 /* If our quota has been met we can stop here */
2253 if (nr_pages >= nr_pages_needed)
2257 pgdat->first_deferred_pfn = spfn;
2258 pgdat_resize_unlock(pgdat, &flags);
2260 return nr_pages > 0;
2264 * deferred_grow_zone() is __init, but it is called from
2265 * get_page_from_freelist() during early boot until deferred_pages permanently
2266 * disables this call. This is why we have refdata wrapper to avoid warning,
2267 * and to ensure that the function body gets unloaded.
2270 _deferred_grow_zone(struct zone *zone, unsigned int order)
2272 return deferred_grow_zone(zone, order);
2275 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2277 void __init page_alloc_init_late(void)
2282 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2284 /* There will be num_node_state(N_MEMORY) threads */
2285 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2286 for_each_node_state(nid, N_MEMORY) {
2287 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2290 /* Block until all are initialised */
2291 wait_for_completion(&pgdat_init_all_done_comp);
2294 * We initialized the rest of the deferred pages. Permanently disable
2295 * on-demand struct page initialization.
2297 static_branch_disable(&deferred_pages);
2299 /* Reinit limits that are based on free pages after the kernel is up */
2300 files_maxfiles_init();
2305 /* Discard memblock private memory */
2308 for_each_node_state(nid, N_MEMORY)
2309 shuffle_free_memory(NODE_DATA(nid));
2311 for_each_populated_zone(zone)
2312 set_zone_contiguous(zone);
2316 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2317 void __init init_cma_reserved_pageblock(struct page *page)
2319 unsigned i = pageblock_nr_pages;
2320 struct page *p = page;
2323 __ClearPageReserved(p);
2324 set_page_count(p, 0);
2327 set_pageblock_migratetype(page, MIGRATE_CMA);
2328 set_page_refcounted(page);
2329 __free_pages(page, pageblock_order);
2331 adjust_managed_page_count(page, pageblock_nr_pages);
2332 page_zone(page)->cma_pages += pageblock_nr_pages;
2337 * The order of subdivision here is critical for the IO subsystem.
2338 * Please do not alter this order without good reasons and regression
2339 * testing. Specifically, as large blocks of memory are subdivided,
2340 * the order in which smaller blocks are delivered depends on the order
2341 * they're subdivided in this function. This is the primary factor
2342 * influencing the order in which pages are delivered to the IO
2343 * subsystem according to empirical testing, and this is also justified
2344 * by considering the behavior of a buddy system containing a single
2345 * large block of memory acted on by a series of small allocations.
2346 * This behavior is a critical factor in sglist merging's success.
2350 static inline void expand(struct zone *zone, struct page *page,
2351 int low, int high, int migratetype)
2353 unsigned long size = 1 << high;
2355 while (high > low) {
2358 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2361 * Mark as guard pages (or page), that will allow to
2362 * merge back to allocator when buddy will be freed.
2363 * Corresponding page table entries will not be touched,
2364 * pages will stay not present in virtual address space
2366 if (set_page_guard(zone, &page[size], high, migratetype))
2369 add_to_free_list(&page[size], zone, high, migratetype);
2370 set_buddy_order(&page[size], high);
2374 static void check_new_page_bad(struct page *page)
2376 if (unlikely(page->flags & __PG_HWPOISON)) {
2377 /* Don't complain about hwpoisoned pages */
2378 page_mapcount_reset(page); /* remove PageBuddy */
2383 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2387 * This page is about to be returned from the page allocator
2389 static inline int check_new_page(struct page *page)
2391 if (likely(page_expected_state(page,
2392 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2395 check_new_page_bad(page);
2399 static bool check_new_pages(struct page *page, unsigned int order)
2402 for (i = 0; i < (1 << order); i++) {
2403 struct page *p = page + i;
2405 if (unlikely(check_new_page(p)))
2412 #ifdef CONFIG_DEBUG_VM
2414 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2415 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2416 * also checked when pcp lists are refilled from the free lists.
2418 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2420 if (debug_pagealloc_enabled_static())
2421 return check_new_pages(page, order);
2426 static inline bool check_new_pcp(struct page *page, unsigned int order)
2428 return check_new_pages(page, order);
2432 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2433 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2434 * enabled, they are also checked when being allocated from the pcp lists.
2436 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2438 return check_new_pages(page, order);
2440 static inline bool check_new_pcp(struct page *page, unsigned int order)
2442 if (debug_pagealloc_enabled_static())
2443 return check_new_pages(page, order);
2447 #endif /* CONFIG_DEBUG_VM */
2449 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2451 /* Don't skip if a software KASAN mode is enabled. */
2452 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2453 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2456 /* Skip, if hardware tag-based KASAN is not enabled. */
2457 if (!kasan_hw_tags_enabled())
2461 * With hardware tag-based KASAN enabled, skip if this has been
2462 * requested via __GFP_SKIP_KASAN_UNPOISON.
2464 return flags & __GFP_SKIP_KASAN_UNPOISON;
2467 static inline bool should_skip_init(gfp_t flags)
2469 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2470 if (!kasan_hw_tags_enabled())
2473 /* For hardware tag-based KASAN, skip if requested. */
2474 return (flags & __GFP_SKIP_ZERO);
2477 inline void post_alloc_hook(struct page *page, unsigned int order,
2480 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2481 !should_skip_init(gfp_flags);
2482 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2485 set_page_private(page, 0);
2486 set_page_refcounted(page);
2488 arch_alloc_page(page, order);
2489 debug_pagealloc_map_pages(page, 1 << order);
2492 * Page unpoisoning must happen before memory initialization.
2493 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2494 * allocations and the page unpoisoning code will complain.
2496 kernel_unpoison_pages(page, 1 << order);
2499 * As memory initialization might be integrated into KASAN,
2500 * KASAN unpoisoning and memory initializion code must be
2501 * kept together to avoid discrepancies in behavior.
2505 * If memory tags should be zeroed (which happens only when memory
2506 * should be initialized as well).
2509 /* Initialize both memory and tags. */
2510 for (i = 0; i != 1 << order; ++i)
2511 tag_clear_highpage(page + i);
2513 /* Note that memory is already initialized by the loop above. */
2516 if (!should_skip_kasan_unpoison(gfp_flags)) {
2517 /* Unpoison shadow memory or set memory tags. */
2518 kasan_unpoison_pages(page, order, init);
2520 /* Note that memory is already initialized by KASAN. */
2521 if (kasan_has_integrated_init())
2524 /* Ensure page_address() dereferencing does not fault. */
2525 for (i = 0; i != 1 << order; ++i)
2526 page_kasan_tag_reset(page + i);
2528 /* If memory is still not initialized, do it now. */
2530 kernel_init_pages(page, 1 << order);
2531 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2532 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2533 SetPageSkipKASanPoison(page);
2535 set_page_owner(page, order, gfp_flags);
2536 page_table_check_alloc(page, order);
2539 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2540 unsigned int alloc_flags)
2542 post_alloc_hook(page, order, gfp_flags);
2544 if (order && (gfp_flags & __GFP_COMP))
2545 prep_compound_page(page, order);
2548 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2549 * allocate the page. The expectation is that the caller is taking
2550 * steps that will free more memory. The caller should avoid the page
2551 * being used for !PFMEMALLOC purposes.
2553 if (alloc_flags & ALLOC_NO_WATERMARKS)
2554 set_page_pfmemalloc(page);
2556 clear_page_pfmemalloc(page);
2560 * Go through the free lists for the given migratetype and remove
2561 * the smallest available page from the freelists
2563 static __always_inline
2564 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2567 unsigned int current_order;
2568 struct free_area *area;
2571 /* Find a page of the appropriate size in the preferred list */
2572 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2573 area = &(zone->free_area[current_order]);
2574 page = get_page_from_free_area(area, migratetype);
2577 del_page_from_free_list(page, zone, current_order);
2578 expand(zone, page, order, current_order, migratetype);
2579 set_pcppage_migratetype(page, migratetype);
2580 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2581 pcp_allowed_order(order) &&
2582 migratetype < MIGRATE_PCPTYPES);
2591 * This array describes the order lists are fallen back to when
2592 * the free lists for the desirable migrate type are depleted
2594 * The other migratetypes do not have fallbacks.
2596 static int fallbacks[MIGRATE_TYPES][3] = {
2597 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2598 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2599 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2603 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2606 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2609 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2610 unsigned int order) { return NULL; }
2614 * Move the free pages in a range to the freelist tail of the requested type.
2615 * Note that start_page and end_pages are not aligned on a pageblock
2616 * boundary. If alignment is required, use move_freepages_block()
2618 static int move_freepages(struct zone *zone,
2619 unsigned long start_pfn, unsigned long end_pfn,
2620 int migratetype, int *num_movable)
2625 int pages_moved = 0;
2627 for (pfn = start_pfn; pfn <= end_pfn;) {
2628 page = pfn_to_page(pfn);
2629 if (!PageBuddy(page)) {
2631 * We assume that pages that could be isolated for
2632 * migration are movable. But we don't actually try
2633 * isolating, as that would be expensive.
2636 (PageLRU(page) || __PageMovable(page)))
2642 /* Make sure we are not inadvertently changing nodes */
2643 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2644 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2646 order = buddy_order(page);
2647 move_to_free_list(page, zone, order, migratetype);
2649 pages_moved += 1 << order;
2655 int move_freepages_block(struct zone *zone, struct page *page,
2656 int migratetype, int *num_movable)
2658 unsigned long start_pfn, end_pfn, pfn;
2663 pfn = page_to_pfn(page);
2664 start_pfn = pageblock_start_pfn(pfn);
2665 end_pfn = pageblock_end_pfn(pfn) - 1;
2667 /* Do not cross zone boundaries */
2668 if (!zone_spans_pfn(zone, start_pfn))
2670 if (!zone_spans_pfn(zone, end_pfn))
2673 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2677 static void change_pageblock_range(struct page *pageblock_page,
2678 int start_order, int migratetype)
2680 int nr_pageblocks = 1 << (start_order - pageblock_order);
2682 while (nr_pageblocks--) {
2683 set_pageblock_migratetype(pageblock_page, migratetype);
2684 pageblock_page += pageblock_nr_pages;
2689 * When we are falling back to another migratetype during allocation, try to
2690 * steal extra free pages from the same pageblocks to satisfy further
2691 * allocations, instead of polluting multiple pageblocks.
2693 * If we are stealing a relatively large buddy page, it is likely there will
2694 * be more free pages in the pageblock, so try to steal them all. For
2695 * reclaimable and unmovable allocations, we steal regardless of page size,
2696 * as fragmentation caused by those allocations polluting movable pageblocks
2697 * is worse than movable allocations stealing from unmovable and reclaimable
2700 static bool can_steal_fallback(unsigned int order, int start_mt)
2703 * Leaving this order check is intended, although there is
2704 * relaxed order check in next check. The reason is that
2705 * we can actually steal whole pageblock if this condition met,
2706 * but, below check doesn't guarantee it and that is just heuristic
2707 * so could be changed anytime.
2709 if (order >= pageblock_order)
2712 if (order >= pageblock_order / 2 ||
2713 start_mt == MIGRATE_RECLAIMABLE ||
2714 start_mt == MIGRATE_UNMOVABLE ||
2715 page_group_by_mobility_disabled)
2721 static inline bool boost_watermark(struct zone *zone)
2723 unsigned long max_boost;
2725 if (!watermark_boost_factor)
2728 * Don't bother in zones that are unlikely to produce results.
2729 * On small machines, including kdump capture kernels running
2730 * in a small area, boosting the watermark can cause an out of
2731 * memory situation immediately.
2733 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2736 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2737 watermark_boost_factor, 10000);
2740 * high watermark may be uninitialised if fragmentation occurs
2741 * very early in boot so do not boost. We do not fall
2742 * through and boost by pageblock_nr_pages as failing
2743 * allocations that early means that reclaim is not going
2744 * to help and it may even be impossible to reclaim the
2745 * boosted watermark resulting in a hang.
2750 max_boost = max(pageblock_nr_pages, max_boost);
2752 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2759 * This function implements actual steal behaviour. If order is large enough,
2760 * we can steal whole pageblock. If not, we first move freepages in this
2761 * pageblock to our migratetype and determine how many already-allocated pages
2762 * are there in the pageblock with a compatible migratetype. If at least half
2763 * of pages are free or compatible, we can change migratetype of the pageblock
2764 * itself, so pages freed in the future will be put on the correct free list.
2766 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2767 unsigned int alloc_flags, int start_type, bool whole_block)
2769 unsigned int current_order = buddy_order(page);
2770 int free_pages, movable_pages, alike_pages;
2773 old_block_type = get_pageblock_migratetype(page);
2776 * This can happen due to races and we want to prevent broken
2777 * highatomic accounting.
2779 if (is_migrate_highatomic(old_block_type))
2782 /* Take ownership for orders >= pageblock_order */
2783 if (current_order >= pageblock_order) {
2784 change_pageblock_range(page, current_order, start_type);
2789 * Boost watermarks to increase reclaim pressure to reduce the
2790 * likelihood of future fallbacks. Wake kswapd now as the node
2791 * may be balanced overall and kswapd will not wake naturally.
2793 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2794 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2796 /* We are not allowed to try stealing from the whole block */
2800 free_pages = move_freepages_block(zone, page, start_type,
2803 * Determine how many pages are compatible with our allocation.
2804 * For movable allocation, it's the number of movable pages which
2805 * we just obtained. For other types it's a bit more tricky.
2807 if (start_type == MIGRATE_MOVABLE) {
2808 alike_pages = movable_pages;
2811 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2812 * to MOVABLE pageblock, consider all non-movable pages as
2813 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2814 * vice versa, be conservative since we can't distinguish the
2815 * exact migratetype of non-movable pages.
2817 if (old_block_type == MIGRATE_MOVABLE)
2818 alike_pages = pageblock_nr_pages
2819 - (free_pages + movable_pages);
2824 /* moving whole block can fail due to zone boundary conditions */
2829 * If a sufficient number of pages in the block are either free or of
2830 * comparable migratability as our allocation, claim the whole block.
2832 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2833 page_group_by_mobility_disabled)
2834 set_pageblock_migratetype(page, start_type);
2839 move_to_free_list(page, zone, current_order, start_type);
2843 * Check whether there is a suitable fallback freepage with requested order.
2844 * If only_stealable is true, this function returns fallback_mt only if
2845 * we can steal other freepages all together. This would help to reduce
2846 * fragmentation due to mixed migratetype pages in one pageblock.
2848 int find_suitable_fallback(struct free_area *area, unsigned int order,
2849 int migratetype, bool only_stealable, bool *can_steal)
2854 if (area->nr_free == 0)
2859 fallback_mt = fallbacks[migratetype][i];
2860 if (fallback_mt == MIGRATE_TYPES)
2863 if (free_area_empty(area, fallback_mt))
2866 if (can_steal_fallback(order, migratetype))
2869 if (!only_stealable)
2880 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2881 * there are no empty page blocks that contain a page with a suitable order
2883 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2884 unsigned int alloc_order)
2887 unsigned long max_managed, flags;
2890 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2891 * Check is race-prone but harmless.
2893 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2894 if (zone->nr_reserved_highatomic >= max_managed)
2897 spin_lock_irqsave(&zone->lock, flags);
2899 /* Recheck the nr_reserved_highatomic limit under the lock */
2900 if (zone->nr_reserved_highatomic >= max_managed)
2904 mt = get_pageblock_migratetype(page);
2905 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2906 if (migratetype_is_mergeable(mt)) {
2907 zone->nr_reserved_highatomic += pageblock_nr_pages;
2908 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2909 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2913 spin_unlock_irqrestore(&zone->lock, flags);
2917 * Used when an allocation is about to fail under memory pressure. This
2918 * potentially hurts the reliability of high-order allocations when under
2919 * intense memory pressure but failed atomic allocations should be easier
2920 * to recover from than an OOM.
2922 * If @force is true, try to unreserve a pageblock even though highatomic
2923 * pageblock is exhausted.
2925 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2928 struct zonelist *zonelist = ac->zonelist;
2929 unsigned long flags;
2936 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2939 * Preserve at least one pageblock unless memory pressure
2942 if (!force && zone->nr_reserved_highatomic <=
2946 spin_lock_irqsave(&zone->lock, flags);
2947 for (order = 0; order < MAX_ORDER; order++) {
2948 struct free_area *area = &(zone->free_area[order]);
2950 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2955 * In page freeing path, migratetype change is racy so
2956 * we can counter several free pages in a pageblock
2957 * in this loop although we changed the pageblock type
2958 * from highatomic to ac->migratetype. So we should
2959 * adjust the count once.
2961 if (is_migrate_highatomic_page(page)) {
2963 * It should never happen but changes to
2964 * locking could inadvertently allow a per-cpu
2965 * drain to add pages to MIGRATE_HIGHATOMIC
2966 * while unreserving so be safe and watch for
2969 zone->nr_reserved_highatomic -= min(
2971 zone->nr_reserved_highatomic);
2975 * Convert to ac->migratetype and avoid the normal
2976 * pageblock stealing heuristics. Minimally, the caller
2977 * is doing the work and needs the pages. More
2978 * importantly, if the block was always converted to
2979 * MIGRATE_UNMOVABLE or another type then the number
2980 * of pageblocks that cannot be completely freed
2983 set_pageblock_migratetype(page, ac->migratetype);
2984 ret = move_freepages_block(zone, page, ac->migratetype,
2987 spin_unlock_irqrestore(&zone->lock, flags);
2991 spin_unlock_irqrestore(&zone->lock, flags);
2998 * Try finding a free buddy page on the fallback list and put it on the free
2999 * list of requested migratetype, possibly along with other pages from the same
3000 * block, depending on fragmentation avoidance heuristics. Returns true if
3001 * fallback was found so that __rmqueue_smallest() can grab it.
3003 * The use of signed ints for order and current_order is a deliberate
3004 * deviation from the rest of this file, to make the for loop
3005 * condition simpler.
3007 static __always_inline bool
3008 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3009 unsigned int alloc_flags)
3011 struct free_area *area;
3013 int min_order = order;
3019 * Do not steal pages from freelists belonging to other pageblocks
3020 * i.e. orders < pageblock_order. If there are no local zones free,
3021 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3023 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3024 min_order = pageblock_order;
3027 * Find the largest available free page in the other list. This roughly
3028 * approximates finding the pageblock with the most free pages, which
3029 * would be too costly to do exactly.
3031 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3033 area = &(zone->free_area[current_order]);
3034 fallback_mt = find_suitable_fallback(area, current_order,
3035 start_migratetype, false, &can_steal);
3036 if (fallback_mt == -1)
3040 * We cannot steal all free pages from the pageblock and the
3041 * requested migratetype is movable. In that case it's better to
3042 * steal and split the smallest available page instead of the
3043 * largest available page, because even if the next movable
3044 * allocation falls back into a different pageblock than this
3045 * one, it won't cause permanent fragmentation.
3047 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3048 && current_order > order)
3057 for (current_order = order; current_order < MAX_ORDER;
3059 area = &(zone->free_area[current_order]);
3060 fallback_mt = find_suitable_fallback(area, current_order,
3061 start_migratetype, false, &can_steal);
3062 if (fallback_mt != -1)
3067 * This should not happen - we already found a suitable fallback
3068 * when looking for the largest page.
3070 VM_BUG_ON(current_order == MAX_ORDER);
3073 page = get_page_from_free_area(area, fallback_mt);
3075 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3078 trace_mm_page_alloc_extfrag(page, order, current_order,
3079 start_migratetype, fallback_mt);
3086 * Do the hard work of removing an element from the buddy allocator.
3087 * Call me with the zone->lock already held.
3089 static __always_inline struct page *
3090 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3091 unsigned int alloc_flags)
3095 if (IS_ENABLED(CONFIG_CMA)) {
3097 * Balance movable allocations between regular and CMA areas by
3098 * allocating from CMA when over half of the zone's free memory
3099 * is in the CMA area.
3101 if (alloc_flags & ALLOC_CMA &&
3102 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3103 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3104 page = __rmqueue_cma_fallback(zone, order);
3110 page = __rmqueue_smallest(zone, order, migratetype);
3111 if (unlikely(!page)) {
3112 if (alloc_flags & ALLOC_CMA)
3113 page = __rmqueue_cma_fallback(zone, order);
3115 if (!page && __rmqueue_fallback(zone, order, migratetype,
3123 * Obtain a specified number of elements from the buddy allocator, all under
3124 * a single hold of the lock, for efficiency. Add them to the supplied list.
3125 * Returns the number of new pages which were placed at *list.
3127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3128 unsigned long count, struct list_head *list,
3129 int migratetype, unsigned int alloc_flags)
3131 int i, allocated = 0;
3133 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3134 spin_lock(&zone->lock);
3135 for (i = 0; i < count; ++i) {
3136 struct page *page = __rmqueue(zone, order, migratetype,
3138 if (unlikely(page == NULL))
3141 if (unlikely(check_pcp_refill(page, order)))
3145 * Split buddy pages returned by expand() are received here in
3146 * physical page order. The page is added to the tail of
3147 * caller's list. From the callers perspective, the linked list
3148 * is ordered by page number under some conditions. This is
3149 * useful for IO devices that can forward direction from the
3150 * head, thus also in the physical page order. This is useful
3151 * for IO devices that can merge IO requests if the physical
3152 * pages are ordered properly.
3154 list_add_tail(&page->pcp_list, list);
3156 if (is_migrate_cma(get_pcppage_migratetype(page)))
3157 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3162 * i pages were removed from the buddy list even if some leak due
3163 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3164 * on i. Do not confuse with 'allocated' which is the number of
3165 * pages added to the pcp list.
3167 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3168 spin_unlock(&zone->lock);
3174 * Called from the vmstat counter updater to drain pagesets of this
3175 * currently executing processor on remote nodes after they have
3178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3180 int to_drain, batch;
3182 batch = READ_ONCE(pcp->batch);
3183 to_drain = min(pcp->count, batch);
3185 unsigned long flags;
3188 * free_pcppages_bulk expects IRQs disabled for zone->lock
3189 * so even though pcp->lock is not intended to be IRQ-safe,
3190 * it's needed in this context.
3192 spin_lock_irqsave(&pcp->lock, flags);
3193 free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 spin_unlock_irqrestore(&pcp->lock, flags);
3200 * Drain pcplists of the indicated processor and zone.
3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3204 struct per_cpu_pages *pcp;
3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3208 unsigned long flags;
3210 /* See drain_zone_pages on why this is disabling IRQs */
3211 spin_lock_irqsave(&pcp->lock, flags);
3212 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3213 spin_unlock_irqrestore(&pcp->lock, flags);
3218 * Drain pcplists of all zones on the indicated processor.
3220 static void drain_pages(unsigned int cpu)
3224 for_each_populated_zone(zone) {
3225 drain_pages_zone(cpu, zone);
3230 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3232 void drain_local_pages(struct zone *zone)
3234 int cpu = smp_processor_id();
3237 drain_pages_zone(cpu, zone);
3243 * The implementation of drain_all_pages(), exposing an extra parameter to
3244 * drain on all cpus.
3246 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3247 * not empty. The check for non-emptiness can however race with a free to
3248 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3249 * that need the guarantee that every CPU has drained can disable the
3250 * optimizing racy check.
3252 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3257 * Allocate in the BSS so we won't require allocation in
3258 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3260 static cpumask_t cpus_with_pcps;
3263 * Do not drain if one is already in progress unless it's specific to
3264 * a zone. Such callers are primarily CMA and memory hotplug and need
3265 * the drain to be complete when the call returns.
3267 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3270 mutex_lock(&pcpu_drain_mutex);
3274 * We don't care about racing with CPU hotplug event
3275 * as offline notification will cause the notified
3276 * cpu to drain that CPU pcps and on_each_cpu_mask
3277 * disables preemption as part of its processing
3279 for_each_online_cpu(cpu) {
3280 struct per_cpu_pages *pcp;
3282 bool has_pcps = false;
3284 if (force_all_cpus) {
3286 * The pcp.count check is racy, some callers need a
3287 * guarantee that no cpu is missed.
3291 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3295 for_each_populated_zone(z) {
3296 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3305 cpumask_set_cpu(cpu, &cpus_with_pcps);
3307 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3310 for_each_cpu(cpu, &cpus_with_pcps) {
3312 drain_pages_zone(cpu, zone);
3317 mutex_unlock(&pcpu_drain_mutex);
3321 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3323 * When zone parameter is non-NULL, spill just the single zone's pages.
3325 void drain_all_pages(struct zone *zone)
3327 __drain_all_pages(zone, false);
3330 #ifdef CONFIG_HIBERNATION
3333 * Touch the watchdog for every WD_PAGE_COUNT pages.
3335 #define WD_PAGE_COUNT (128*1024)
3337 void mark_free_pages(struct zone *zone)
3339 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3340 unsigned long flags;
3341 unsigned int order, t;
3344 if (zone_is_empty(zone))
3347 spin_lock_irqsave(&zone->lock, flags);
3349 max_zone_pfn = zone_end_pfn(zone);
3350 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3351 if (pfn_valid(pfn)) {
3352 page = pfn_to_page(pfn);
3354 if (!--page_count) {
3355 touch_nmi_watchdog();
3356 page_count = WD_PAGE_COUNT;
3359 if (page_zone(page) != zone)
3362 if (!swsusp_page_is_forbidden(page))
3363 swsusp_unset_page_free(page);
3366 for_each_migratetype_order(order, t) {
3367 list_for_each_entry(page,
3368 &zone->free_area[order].free_list[t], buddy_list) {
3371 pfn = page_to_pfn(page);
3372 for (i = 0; i < (1UL << order); i++) {
3373 if (!--page_count) {
3374 touch_nmi_watchdog();
3375 page_count = WD_PAGE_COUNT;
3377 swsusp_set_page_free(pfn_to_page(pfn + i));
3381 spin_unlock_irqrestore(&zone->lock, flags);
3383 #endif /* CONFIG_PM */
3385 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3390 if (!free_pcp_prepare(page, order))
3393 migratetype = get_pfnblock_migratetype(page, pfn);
3394 set_pcppage_migratetype(page, migratetype);
3398 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3401 int min_nr_free, max_nr_free;
3403 /* Free everything if batch freeing high-order pages. */
3404 if (unlikely(free_high))
3407 /* Check for PCP disabled or boot pageset */
3408 if (unlikely(high < batch))
3411 /* Leave at least pcp->batch pages on the list */
3412 min_nr_free = batch;
3413 max_nr_free = high - batch;
3416 * Double the number of pages freed each time there is subsequent
3417 * freeing of pages without any allocation.
3419 batch <<= pcp->free_factor;
3420 if (batch < max_nr_free)
3422 batch = clamp(batch, min_nr_free, max_nr_free);
3427 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3430 int high = READ_ONCE(pcp->high);
3432 if (unlikely(!high || free_high))
3435 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3439 * If reclaim is active, limit the number of pages that can be
3440 * stored on pcp lists
3442 return min(READ_ONCE(pcp->batch) << 2, high);
3445 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3446 struct page *page, int migratetype,
3453 __count_vm_event(PGFREE);
3454 pindex = order_to_pindex(migratetype, order);
3455 list_add(&page->pcp_list, &pcp->lists[pindex]);
3456 pcp->count += 1 << order;
3459 * As high-order pages other than THP's stored on PCP can contribute
3460 * to fragmentation, limit the number stored when PCP is heavily
3461 * freeing without allocation. The remainder after bulk freeing
3462 * stops will be drained from vmstat refresh context.
3464 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3466 high = nr_pcp_high(pcp, zone, free_high);
3467 if (pcp->count >= high) {
3468 int batch = READ_ONCE(pcp->batch);
3470 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3477 void free_unref_page(struct page *page, unsigned int order)
3479 unsigned long flags;
3480 unsigned long __maybe_unused UP_flags;
3481 struct per_cpu_pages *pcp;
3483 unsigned long pfn = page_to_pfn(page);
3486 if (!free_unref_page_prepare(page, pfn, order))
3490 * We only track unmovable, reclaimable and movable on pcp lists.
3491 * Place ISOLATE pages on the isolated list because they are being
3492 * offlined but treat HIGHATOMIC as movable pages so we can get those
3493 * areas back if necessary. Otherwise, we may have to free
3494 * excessively into the page allocator
3496 migratetype = get_pcppage_migratetype(page);
3497 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3498 if (unlikely(is_migrate_isolate(migratetype))) {
3499 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3502 migratetype = MIGRATE_MOVABLE;
3505 zone = page_zone(page);
3506 pcp_trylock_prepare(UP_flags);
3507 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3509 free_unref_page_commit(zone, pcp, page, migratetype, order);
3510 pcp_spin_unlock_irqrestore(pcp, flags);
3512 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3514 pcp_trylock_finish(UP_flags);
3518 * Free a list of 0-order pages
3520 void free_unref_page_list(struct list_head *list)
3522 struct page *page, *next;
3523 struct per_cpu_pages *pcp = NULL;
3524 struct zone *locked_zone = NULL;
3525 unsigned long flags;
3526 int batch_count = 0;
3529 /* Prepare pages for freeing */
3530 list_for_each_entry_safe(page, next, list, lru) {
3531 unsigned long pfn = page_to_pfn(page);
3532 if (!free_unref_page_prepare(page, pfn, 0)) {
3533 list_del(&page->lru);
3538 * Free isolated pages directly to the allocator, see
3539 * comment in free_unref_page.
3541 migratetype = get_pcppage_migratetype(page);
3542 if (unlikely(is_migrate_isolate(migratetype))) {
3543 list_del(&page->lru);
3544 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3549 list_for_each_entry_safe(page, next, list, lru) {
3550 struct zone *zone = page_zone(page);
3552 /* Different zone, different pcp lock. */
3553 if (zone != locked_zone) {
3555 pcp_spin_unlock_irqrestore(pcp, flags);
3558 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3562 * Non-isolated types over MIGRATE_PCPTYPES get added
3563 * to the MIGRATE_MOVABLE pcp list.
3565 migratetype = get_pcppage_migratetype(page);
3566 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3567 migratetype = MIGRATE_MOVABLE;
3569 trace_mm_page_free_batched(page);
3570 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3573 * Guard against excessive IRQ disabled times when we get
3574 * a large list of pages to free.
3576 if (++batch_count == SWAP_CLUSTER_MAX) {
3577 pcp_spin_unlock_irqrestore(pcp, flags);
3579 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3584 pcp_spin_unlock_irqrestore(pcp, flags);
3588 * split_page takes a non-compound higher-order page, and splits it into
3589 * n (1<<order) sub-pages: page[0..n]
3590 * Each sub-page must be freed individually.
3592 * Note: this is probably too low level an operation for use in drivers.
3593 * Please consult with lkml before using this in your driver.
3595 void split_page(struct page *page, unsigned int order)
3599 VM_BUG_ON_PAGE(PageCompound(page), page);
3600 VM_BUG_ON_PAGE(!page_count(page), page);
3602 for (i = 1; i < (1 << order); i++)
3603 set_page_refcounted(page + i);
3604 split_page_owner(page, 1 << order);
3605 split_page_memcg(page, 1 << order);
3607 EXPORT_SYMBOL_GPL(split_page);
3609 int __isolate_free_page(struct page *page, unsigned int order)
3611 struct zone *zone = page_zone(page);
3612 int mt = get_pageblock_migratetype(page);
3614 if (!is_migrate_isolate(mt)) {
3615 unsigned long watermark;
3617 * Obey watermarks as if the page was being allocated. We can
3618 * emulate a high-order watermark check with a raised order-0
3619 * watermark, because we already know our high-order page
3622 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3623 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3626 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3629 del_page_from_free_list(page, zone, order);
3632 * Set the pageblock if the isolated page is at least half of a
3635 if (order >= pageblock_order - 1) {
3636 struct page *endpage = page + (1 << order) - 1;
3637 for (; page < endpage; page += pageblock_nr_pages) {
3638 int mt = get_pageblock_migratetype(page);
3640 * Only change normal pageblocks (i.e., they can merge
3643 if (migratetype_is_mergeable(mt))
3644 set_pageblock_migratetype(page,
3649 return 1UL << order;
3653 * __putback_isolated_page - Return a now-isolated page back where we got it
3654 * @page: Page that was isolated
3655 * @order: Order of the isolated page
3656 * @mt: The page's pageblock's migratetype
3658 * This function is meant to return a page pulled from the free lists via
3659 * __isolate_free_page back to the free lists they were pulled from.
3661 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3663 struct zone *zone = page_zone(page);
3665 /* zone lock should be held when this function is called */
3666 lockdep_assert_held(&zone->lock);
3668 /* Return isolated page to tail of freelist. */
3669 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3670 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3674 * Update NUMA hit/miss statistics
3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3680 enum numa_stat_item local_stat = NUMA_LOCAL;
3682 /* skip numa counters update if numa stats is disabled */
3683 if (!static_branch_likely(&vm_numa_stat_key))
3686 if (zone_to_nid(z) != numa_node_id())
3687 local_stat = NUMA_OTHER;
3689 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3690 __count_numa_events(z, NUMA_HIT, nr_account);
3692 __count_numa_events(z, NUMA_MISS, nr_account);
3693 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3695 __count_numa_events(z, local_stat, nr_account);
3699 static __always_inline
3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3701 unsigned int order, unsigned int alloc_flags,
3705 unsigned long flags;
3709 spin_lock_irqsave(&zone->lock, flags);
3711 * order-0 request can reach here when the pcplist is skipped
3712 * due to non-CMA allocation context. HIGHATOMIC area is
3713 * reserved for high-order atomic allocation, so order-0
3714 * request should skip it.
3716 if (order > 0 && alloc_flags & ALLOC_HARDER)
3717 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3719 page = __rmqueue(zone, order, migratetype, alloc_flags);
3721 spin_unlock_irqrestore(&zone->lock, flags);
3725 __mod_zone_freepage_state(zone, -(1 << order),
3726 get_pcppage_migratetype(page));
3727 spin_unlock_irqrestore(&zone->lock, flags);
3728 } while (check_new_pages(page, order));
3730 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3731 zone_statistics(preferred_zone, zone, 1);
3736 /* Remove page from the per-cpu list, caller must protect the list */
3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3740 unsigned int alloc_flags,
3741 struct per_cpu_pages *pcp,
3742 struct list_head *list)
3747 if (list_empty(list)) {
3748 int batch = READ_ONCE(pcp->batch);
3752 * Scale batch relative to order if batch implies
3753 * free pages can be stored on the PCP. Batch can
3754 * be 1 for small zones or for boot pagesets which
3755 * should never store free pages as the pages may
3756 * belong to arbitrary zones.
3759 batch = max(batch >> order, 2);
3760 alloced = rmqueue_bulk(zone, order,
3762 migratetype, alloc_flags);
3764 pcp->count += alloced << order;
3765 if (unlikely(list_empty(list)))
3769 page = list_first_entry(list, struct page, pcp_list);
3770 list_del(&page->pcp_list);
3771 pcp->count -= 1 << order;
3772 } while (check_new_pcp(page, order));
3777 /* Lock and remove page from the per-cpu list */
3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3779 struct zone *zone, unsigned int order,
3780 int migratetype, unsigned int alloc_flags)
3782 struct per_cpu_pages *pcp;
3783 struct list_head *list;
3785 unsigned long flags;
3786 unsigned long __maybe_unused UP_flags;
3789 * spin_trylock may fail due to a parallel drain. In the future, the
3790 * trylock will also protect against IRQ reentrancy.
3792 pcp_trylock_prepare(UP_flags);
3793 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3795 pcp_trylock_finish(UP_flags);
3800 * On allocation, reduce the number of pages that are batch freed.
3801 * See nr_pcp_free() where free_factor is increased for subsequent
3804 pcp->free_factor >>= 1;
3805 list = &pcp->lists[order_to_pindex(migratetype, order)];
3806 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3807 pcp_spin_unlock_irqrestore(pcp, flags);
3808 pcp_trylock_finish(UP_flags);
3810 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3811 zone_statistics(preferred_zone, zone, 1);
3817 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3821 * Do not instrument rmqueue() with KMSAN. This function may call
3822 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3823 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3824 * may call rmqueue() again, which will result in a deadlock.
3826 __no_sanitize_memory
3828 struct page *rmqueue(struct zone *preferred_zone,
3829 struct zone *zone, unsigned int order,
3830 gfp_t gfp_flags, unsigned int alloc_flags,
3836 * We most definitely don't want callers attempting to
3837 * allocate greater than order-1 page units with __GFP_NOFAIL.
3839 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3841 if (likely(pcp_allowed_order(order))) {
3843 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3844 * we need to skip it when CMA area isn't allowed.
3846 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3847 migratetype != MIGRATE_MOVABLE) {
3848 page = rmqueue_pcplist(preferred_zone, zone, order,
3849 migratetype, alloc_flags);
3855 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3859 /* Separate test+clear to avoid unnecessary atomics */
3860 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3861 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3862 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3865 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3869 #ifdef CONFIG_FAIL_PAGE_ALLOC
3872 struct fault_attr attr;
3874 bool ignore_gfp_highmem;
3875 bool ignore_gfp_reclaim;
3877 } fail_page_alloc = {
3878 .attr = FAULT_ATTR_INITIALIZER,
3879 .ignore_gfp_reclaim = true,
3880 .ignore_gfp_highmem = true,
3884 static int __init setup_fail_page_alloc(char *str)
3886 return setup_fault_attr(&fail_page_alloc.attr, str);
3888 __setup("fail_page_alloc=", setup_fail_page_alloc);
3890 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3892 if (order < fail_page_alloc.min_order)
3894 if (gfp_mask & __GFP_NOFAIL)
3896 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3898 if (fail_page_alloc.ignore_gfp_reclaim &&
3899 (gfp_mask & __GFP_DIRECT_RECLAIM))
3902 if (gfp_mask & __GFP_NOWARN)
3903 fail_page_alloc.attr.no_warn = true;
3905 return should_fail(&fail_page_alloc.attr, 1 << order);
3908 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3910 static int __init fail_page_alloc_debugfs(void)
3912 umode_t mode = S_IFREG | 0600;
3915 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3916 &fail_page_alloc.attr);
3918 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3919 &fail_page_alloc.ignore_gfp_reclaim);
3920 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3921 &fail_page_alloc.ignore_gfp_highmem);
3922 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3927 late_initcall(fail_page_alloc_debugfs);
3929 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3931 #else /* CONFIG_FAIL_PAGE_ALLOC */
3933 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3938 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3940 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3942 return __should_fail_alloc_page(gfp_mask, order);
3944 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3946 static inline long __zone_watermark_unusable_free(struct zone *z,
3947 unsigned int order, unsigned int alloc_flags)
3949 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3950 long unusable_free = (1 << order) - 1;
3953 * If the caller does not have rights to ALLOC_HARDER then subtract
3954 * the high-atomic reserves. This will over-estimate the size of the
3955 * atomic reserve but it avoids a search.
3957 if (likely(!alloc_harder))
3958 unusable_free += z->nr_reserved_highatomic;
3961 /* If allocation can't use CMA areas don't use free CMA pages */
3962 if (!(alloc_flags & ALLOC_CMA))
3963 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3966 return unusable_free;
3970 * Return true if free base pages are above 'mark'. For high-order checks it
3971 * will return true of the order-0 watermark is reached and there is at least
3972 * one free page of a suitable size. Checking now avoids taking the zone lock
3973 * to check in the allocation paths if no pages are free.
3975 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3976 int highest_zoneidx, unsigned int alloc_flags,
3981 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3983 /* free_pages may go negative - that's OK */
3984 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3986 if (alloc_flags & ALLOC_HIGH)
3989 if (unlikely(alloc_harder)) {
3991 * OOM victims can try even harder than normal ALLOC_HARDER
3992 * users on the grounds that it's definitely going to be in
3993 * the exit path shortly and free memory. Any allocation it
3994 * makes during the free path will be small and short-lived.
3996 if (alloc_flags & ALLOC_OOM)
4003 * Check watermarks for an order-0 allocation request. If these
4004 * are not met, then a high-order request also cannot go ahead
4005 * even if a suitable page happened to be free.
4007 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4010 /* If this is an order-0 request then the watermark is fine */
4014 /* For a high-order request, check at least one suitable page is free */
4015 for (o = order; o < MAX_ORDER; o++) {
4016 struct free_area *area = &z->free_area[o];
4022 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4023 if (!free_area_empty(area, mt))
4028 if ((alloc_flags & ALLOC_CMA) &&
4029 !free_area_empty(area, MIGRATE_CMA)) {
4033 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4039 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4040 int highest_zoneidx, unsigned int alloc_flags)
4042 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4043 zone_page_state(z, NR_FREE_PAGES));
4046 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4047 unsigned long mark, int highest_zoneidx,
4048 unsigned int alloc_flags, gfp_t gfp_mask)
4052 free_pages = zone_page_state(z, NR_FREE_PAGES);
4055 * Fast check for order-0 only. If this fails then the reserves
4056 * need to be calculated.
4062 usable_free = free_pages;
4063 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4065 /* reserved may over estimate high-atomic reserves. */
4066 usable_free -= min(usable_free, reserved);
4067 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4071 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4075 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4076 * when checking the min watermark. The min watermark is the
4077 * point where boosting is ignored so that kswapd is woken up
4078 * when below the low watermark.
4080 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4081 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4082 mark = z->_watermark[WMARK_MIN];
4083 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4084 alloc_flags, free_pages);
4090 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4091 unsigned long mark, int highest_zoneidx)
4093 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4095 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4096 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4098 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4103 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4107 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4108 node_reclaim_distance;
4110 #else /* CONFIG_NUMA */
4111 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4115 #endif /* CONFIG_NUMA */
4118 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4119 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4120 * premature use of a lower zone may cause lowmem pressure problems that
4121 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4122 * probably too small. It only makes sense to spread allocations to avoid
4123 * fragmentation between the Normal and DMA32 zones.
4125 static inline unsigned int
4126 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4128 unsigned int alloc_flags;
4131 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4134 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4136 #ifdef CONFIG_ZONE_DMA32
4140 if (zone_idx(zone) != ZONE_NORMAL)
4144 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4145 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4146 * on UMA that if Normal is populated then so is DMA32.
4148 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4149 if (nr_online_nodes > 1 && !populated_zone(--zone))
4152 alloc_flags |= ALLOC_NOFRAGMENT;
4153 #endif /* CONFIG_ZONE_DMA32 */
4157 /* Must be called after current_gfp_context() which can change gfp_mask */
4158 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4159 unsigned int alloc_flags)
4162 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4163 alloc_flags |= ALLOC_CMA;
4169 * get_page_from_freelist goes through the zonelist trying to allocate
4172 static struct page *
4173 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4174 const struct alloc_context *ac)
4178 struct pglist_data *last_pgdat = NULL;
4179 bool last_pgdat_dirty_ok = false;
4184 * Scan zonelist, looking for a zone with enough free.
4185 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4187 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4188 z = ac->preferred_zoneref;
4189 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4194 if (cpusets_enabled() &&
4195 (alloc_flags & ALLOC_CPUSET) &&
4196 !__cpuset_zone_allowed(zone, gfp_mask))
4199 * When allocating a page cache page for writing, we
4200 * want to get it from a node that is within its dirty
4201 * limit, such that no single node holds more than its
4202 * proportional share of globally allowed dirty pages.
4203 * The dirty limits take into account the node's
4204 * lowmem reserves and high watermark so that kswapd
4205 * should be able to balance it without having to
4206 * write pages from its LRU list.
4208 * XXX: For now, allow allocations to potentially
4209 * exceed the per-node dirty limit in the slowpath
4210 * (spread_dirty_pages unset) before going into reclaim,
4211 * which is important when on a NUMA setup the allowed
4212 * nodes are together not big enough to reach the
4213 * global limit. The proper fix for these situations
4214 * will require awareness of nodes in the
4215 * dirty-throttling and the flusher threads.
4217 if (ac->spread_dirty_pages) {
4218 if (last_pgdat != zone->zone_pgdat) {
4219 last_pgdat = zone->zone_pgdat;
4220 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4223 if (!last_pgdat_dirty_ok)
4227 if (no_fallback && nr_online_nodes > 1 &&
4228 zone != ac->preferred_zoneref->zone) {
4232 * If moving to a remote node, retry but allow
4233 * fragmenting fallbacks. Locality is more important
4234 * than fragmentation avoidance.
4236 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4237 if (zone_to_nid(zone) != local_nid) {
4238 alloc_flags &= ~ALLOC_NOFRAGMENT;
4243 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4244 if (!zone_watermark_fast(zone, order, mark,
4245 ac->highest_zoneidx, alloc_flags,
4249 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4251 * Watermark failed for this zone, but see if we can
4252 * grow this zone if it contains deferred pages.
4254 if (static_branch_unlikely(&deferred_pages)) {
4255 if (_deferred_grow_zone(zone, order))
4259 /* Checked here to keep the fast path fast */
4260 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4261 if (alloc_flags & ALLOC_NO_WATERMARKS)
4264 if (!node_reclaim_enabled() ||
4265 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4268 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4270 case NODE_RECLAIM_NOSCAN:
4273 case NODE_RECLAIM_FULL:
4274 /* scanned but unreclaimable */
4277 /* did we reclaim enough */
4278 if (zone_watermark_ok(zone, order, mark,
4279 ac->highest_zoneidx, alloc_flags))
4287 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4288 gfp_mask, alloc_flags, ac->migratetype);
4290 prep_new_page(page, order, gfp_mask, alloc_flags);
4293 * If this is a high-order atomic allocation then check
4294 * if the pageblock should be reserved for the future
4296 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4297 reserve_highatomic_pageblock(page, zone, order);
4301 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4302 /* Try again if zone has deferred pages */
4303 if (static_branch_unlikely(&deferred_pages)) {
4304 if (_deferred_grow_zone(zone, order))
4312 * It's possible on a UMA machine to get through all zones that are
4313 * fragmented. If avoiding fragmentation, reset and try again.
4316 alloc_flags &= ~ALLOC_NOFRAGMENT;
4323 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4325 unsigned int filter = SHOW_MEM_FILTER_NODES;
4328 * This documents exceptions given to allocations in certain
4329 * contexts that are allowed to allocate outside current's set
4332 if (!(gfp_mask & __GFP_NOMEMALLOC))
4333 if (tsk_is_oom_victim(current) ||
4334 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4335 filter &= ~SHOW_MEM_FILTER_NODES;
4336 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4337 filter &= ~SHOW_MEM_FILTER_NODES;
4339 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4342 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4344 struct va_format vaf;
4346 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4348 if ((gfp_mask & __GFP_NOWARN) ||
4349 !__ratelimit(&nopage_rs) ||
4350 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4353 va_start(args, fmt);
4356 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4357 current->comm, &vaf, gfp_mask, &gfp_mask,
4358 nodemask_pr_args(nodemask));
4361 cpuset_print_current_mems_allowed();
4364 warn_alloc_show_mem(gfp_mask, nodemask);
4367 static inline struct page *
4368 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4369 unsigned int alloc_flags,
4370 const struct alloc_context *ac)
4374 page = get_page_from_freelist(gfp_mask, order,
4375 alloc_flags|ALLOC_CPUSET, ac);
4377 * fallback to ignore cpuset restriction if our nodes
4381 page = get_page_from_freelist(gfp_mask, order,
4387 static inline struct page *
4388 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4389 const struct alloc_context *ac, unsigned long *did_some_progress)
4391 struct oom_control oc = {
4392 .zonelist = ac->zonelist,
4393 .nodemask = ac->nodemask,
4395 .gfp_mask = gfp_mask,
4400 *did_some_progress = 0;
4403 * Acquire the oom lock. If that fails, somebody else is
4404 * making progress for us.
4406 if (!mutex_trylock(&oom_lock)) {
4407 *did_some_progress = 1;
4408 schedule_timeout_uninterruptible(1);
4413 * Go through the zonelist yet one more time, keep very high watermark
4414 * here, this is only to catch a parallel oom killing, we must fail if
4415 * we're still under heavy pressure. But make sure that this reclaim
4416 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4417 * allocation which will never fail due to oom_lock already held.
4419 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4420 ~__GFP_DIRECT_RECLAIM, order,
4421 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4425 /* Coredumps can quickly deplete all memory reserves */
4426 if (current->flags & PF_DUMPCORE)
4428 /* The OOM killer will not help higher order allocs */
4429 if (order > PAGE_ALLOC_COSTLY_ORDER)
4432 * We have already exhausted all our reclaim opportunities without any
4433 * success so it is time to admit defeat. We will skip the OOM killer
4434 * because it is very likely that the caller has a more reasonable
4435 * fallback than shooting a random task.
4437 * The OOM killer may not free memory on a specific node.
4439 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4441 /* The OOM killer does not needlessly kill tasks for lowmem */
4442 if (ac->highest_zoneidx < ZONE_NORMAL)
4444 if (pm_suspended_storage())
4447 * XXX: GFP_NOFS allocations should rather fail than rely on
4448 * other request to make a forward progress.
4449 * We are in an unfortunate situation where out_of_memory cannot
4450 * do much for this context but let's try it to at least get
4451 * access to memory reserved if the current task is killed (see
4452 * out_of_memory). Once filesystems are ready to handle allocation
4453 * failures more gracefully we should just bail out here.
4456 /* Exhausted what can be done so it's blame time */
4457 if (out_of_memory(&oc) ||
4458 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4459 *did_some_progress = 1;
4462 * Help non-failing allocations by giving them access to memory
4465 if (gfp_mask & __GFP_NOFAIL)
4466 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4467 ALLOC_NO_WATERMARKS, ac);
4470 mutex_unlock(&oom_lock);
4475 * Maximum number of compaction retries with a progress before OOM
4476 * killer is consider as the only way to move forward.
4478 #define MAX_COMPACT_RETRIES 16
4480 #ifdef CONFIG_COMPACTION
4481 /* Try memory compaction for high-order allocations before reclaim */
4482 static struct page *
4483 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4484 unsigned int alloc_flags, const struct alloc_context *ac,
4485 enum compact_priority prio, enum compact_result *compact_result)
4487 struct page *page = NULL;
4488 unsigned long pflags;
4489 unsigned int noreclaim_flag;
4494 psi_memstall_enter(&pflags);
4495 delayacct_compact_start();
4496 noreclaim_flag = memalloc_noreclaim_save();
4498 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4501 memalloc_noreclaim_restore(noreclaim_flag);
4502 psi_memstall_leave(&pflags);
4503 delayacct_compact_end();
4505 if (*compact_result == COMPACT_SKIPPED)
4508 * At least in one zone compaction wasn't deferred or skipped, so let's
4509 * count a compaction stall
4511 count_vm_event(COMPACTSTALL);
4513 /* Prep a captured page if available */
4515 prep_new_page(page, order, gfp_mask, alloc_flags);
4517 /* Try get a page from the freelist if available */
4519 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4522 struct zone *zone = page_zone(page);
4524 zone->compact_blockskip_flush = false;
4525 compaction_defer_reset(zone, order, true);
4526 count_vm_event(COMPACTSUCCESS);
4531 * It's bad if compaction run occurs and fails. The most likely reason
4532 * is that pages exist, but not enough to satisfy watermarks.
4534 count_vm_event(COMPACTFAIL);
4542 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4543 enum compact_result compact_result,
4544 enum compact_priority *compact_priority,
4545 int *compaction_retries)
4547 int max_retries = MAX_COMPACT_RETRIES;
4550 int retries = *compaction_retries;
4551 enum compact_priority priority = *compact_priority;
4556 if (fatal_signal_pending(current))
4559 if (compaction_made_progress(compact_result))
4560 (*compaction_retries)++;
4563 * compaction considers all the zone as desperately out of memory
4564 * so it doesn't really make much sense to retry except when the
4565 * failure could be caused by insufficient priority
4567 if (compaction_failed(compact_result))
4568 goto check_priority;
4571 * compaction was skipped because there are not enough order-0 pages
4572 * to work with, so we retry only if it looks like reclaim can help.
4574 if (compaction_needs_reclaim(compact_result)) {
4575 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4580 * make sure the compaction wasn't deferred or didn't bail out early
4581 * due to locks contention before we declare that we should give up.
4582 * But the next retry should use a higher priority if allowed, so
4583 * we don't just keep bailing out endlessly.
4585 if (compaction_withdrawn(compact_result)) {
4586 goto check_priority;
4590 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4591 * costly ones because they are de facto nofail and invoke OOM
4592 * killer to move on while costly can fail and users are ready
4593 * to cope with that. 1/4 retries is rather arbitrary but we
4594 * would need much more detailed feedback from compaction to
4595 * make a better decision.
4597 if (order > PAGE_ALLOC_COSTLY_ORDER)
4599 if (*compaction_retries <= max_retries) {
4605 * Make sure there are attempts at the highest priority if we exhausted
4606 * all retries or failed at the lower priorities.
4609 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4610 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4612 if (*compact_priority > min_priority) {
4613 (*compact_priority)--;
4614 *compaction_retries = 0;
4618 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4622 static inline struct page *
4623 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4624 unsigned int alloc_flags, const struct alloc_context *ac,
4625 enum compact_priority prio, enum compact_result *compact_result)
4627 *compact_result = COMPACT_SKIPPED;
4632 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4633 enum compact_result compact_result,
4634 enum compact_priority *compact_priority,
4635 int *compaction_retries)
4640 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4644 * There are setups with compaction disabled which would prefer to loop
4645 * inside the allocator rather than hit the oom killer prematurely.
4646 * Let's give them a good hope and keep retrying while the order-0
4647 * watermarks are OK.
4649 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4650 ac->highest_zoneidx, ac->nodemask) {
4651 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4652 ac->highest_zoneidx, alloc_flags))
4657 #endif /* CONFIG_COMPACTION */
4659 #ifdef CONFIG_LOCKDEP
4660 static struct lockdep_map __fs_reclaim_map =
4661 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4663 static bool __need_reclaim(gfp_t gfp_mask)
4665 /* no reclaim without waiting on it */
4666 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4669 /* this guy won't enter reclaim */
4670 if (current->flags & PF_MEMALLOC)
4673 if (gfp_mask & __GFP_NOLOCKDEP)
4679 void __fs_reclaim_acquire(unsigned long ip)
4681 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4684 void __fs_reclaim_release(unsigned long ip)
4686 lock_release(&__fs_reclaim_map, ip);
4689 void fs_reclaim_acquire(gfp_t gfp_mask)
4691 gfp_mask = current_gfp_context(gfp_mask);
4693 if (__need_reclaim(gfp_mask)) {
4694 if (gfp_mask & __GFP_FS)
4695 __fs_reclaim_acquire(_RET_IP_);
4697 #ifdef CONFIG_MMU_NOTIFIER
4698 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4699 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4704 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4706 void fs_reclaim_release(gfp_t gfp_mask)
4708 gfp_mask = current_gfp_context(gfp_mask);
4710 if (__need_reclaim(gfp_mask)) {
4711 if (gfp_mask & __GFP_FS)
4712 __fs_reclaim_release(_RET_IP_);
4715 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4719 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4720 * have been rebuilt so allocation retries. Reader side does not lock and
4721 * retries the allocation if zonelist changes. Writer side is protected by the
4722 * embedded spin_lock.
4724 static DEFINE_SEQLOCK(zonelist_update_seq);
4726 static unsigned int zonelist_iter_begin(void)
4728 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4729 return read_seqbegin(&zonelist_update_seq);
4734 static unsigned int check_retry_zonelist(unsigned int seq)
4736 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4737 return read_seqretry(&zonelist_update_seq, seq);
4742 /* Perform direct synchronous page reclaim */
4743 static unsigned long
4744 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4745 const struct alloc_context *ac)
4747 unsigned int noreclaim_flag;
4748 unsigned long progress;
4752 /* We now go into synchronous reclaim */
4753 cpuset_memory_pressure_bump();
4754 fs_reclaim_acquire(gfp_mask);
4755 noreclaim_flag = memalloc_noreclaim_save();
4757 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4760 memalloc_noreclaim_restore(noreclaim_flag);
4761 fs_reclaim_release(gfp_mask);
4768 /* The really slow allocator path where we enter direct reclaim */
4769 static inline struct page *
4770 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4771 unsigned int alloc_flags, const struct alloc_context *ac,
4772 unsigned long *did_some_progress)
4774 struct page *page = NULL;
4775 unsigned long pflags;
4776 bool drained = false;
4778 psi_memstall_enter(&pflags);
4779 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4780 if (unlikely(!(*did_some_progress)))
4784 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4787 * If an allocation failed after direct reclaim, it could be because
4788 * pages are pinned on the per-cpu lists or in high alloc reserves.
4789 * Shrink them and try again
4791 if (!page && !drained) {
4792 unreserve_highatomic_pageblock(ac, false);
4793 drain_all_pages(NULL);
4798 psi_memstall_leave(&pflags);
4803 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4804 const struct alloc_context *ac)
4808 pg_data_t *last_pgdat = NULL;
4809 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4811 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4813 if (!managed_zone(zone))
4815 if (last_pgdat != zone->zone_pgdat) {
4816 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4817 last_pgdat = zone->zone_pgdat;
4822 static inline unsigned int
4823 gfp_to_alloc_flags(gfp_t gfp_mask)
4825 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4828 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4829 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4830 * to save two branches.
4832 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4833 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4836 * The caller may dip into page reserves a bit more if the caller
4837 * cannot run direct reclaim, or if the caller has realtime scheduling
4838 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4839 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4841 alloc_flags |= (__force int)
4842 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4844 if (gfp_mask & __GFP_ATOMIC) {
4846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4847 * if it can't schedule.
4849 if (!(gfp_mask & __GFP_NOMEMALLOC))
4850 alloc_flags |= ALLOC_HARDER;
4852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4853 * comment for __cpuset_node_allowed().
4855 alloc_flags &= ~ALLOC_CPUSET;
4856 } else if (unlikely(rt_task(current)) && in_task())
4857 alloc_flags |= ALLOC_HARDER;
4859 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4864 static bool oom_reserves_allowed(struct task_struct *tsk)
4866 if (!tsk_is_oom_victim(tsk))
4870 * !MMU doesn't have oom reaper so give access to memory reserves
4871 * only to the thread with TIF_MEMDIE set
4873 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4880 * Distinguish requests which really need access to full memory
4881 * reserves from oom victims which can live with a portion of it
4883 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4885 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4887 if (gfp_mask & __GFP_MEMALLOC)
4888 return ALLOC_NO_WATERMARKS;
4889 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4890 return ALLOC_NO_WATERMARKS;
4891 if (!in_interrupt()) {
4892 if (current->flags & PF_MEMALLOC)
4893 return ALLOC_NO_WATERMARKS;
4894 else if (oom_reserves_allowed(current))
4901 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4903 return !!__gfp_pfmemalloc_flags(gfp_mask);
4907 * Checks whether it makes sense to retry the reclaim to make a forward progress
4908 * for the given allocation request.
4910 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4911 * without success, or when we couldn't even meet the watermark if we
4912 * reclaimed all remaining pages on the LRU lists.
4914 * Returns true if a retry is viable or false to enter the oom path.
4917 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4918 struct alloc_context *ac, int alloc_flags,
4919 bool did_some_progress, int *no_progress_loops)
4926 * Costly allocations might have made a progress but this doesn't mean
4927 * their order will become available due to high fragmentation so
4928 * always increment the no progress counter for them
4930 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4931 *no_progress_loops = 0;
4933 (*no_progress_loops)++;
4936 * Make sure we converge to OOM if we cannot make any progress
4937 * several times in the row.
4939 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4940 /* Before OOM, exhaust highatomic_reserve */
4941 return unreserve_highatomic_pageblock(ac, true);
4945 * Keep reclaiming pages while there is a chance this will lead
4946 * somewhere. If none of the target zones can satisfy our allocation
4947 * request even if all reclaimable pages are considered then we are
4948 * screwed and have to go OOM.
4950 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4951 ac->highest_zoneidx, ac->nodemask) {
4952 unsigned long available;
4953 unsigned long reclaimable;
4954 unsigned long min_wmark = min_wmark_pages(zone);
4957 available = reclaimable = zone_reclaimable_pages(zone);
4958 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4961 * Would the allocation succeed if we reclaimed all
4962 * reclaimable pages?
4964 wmark = __zone_watermark_ok(zone, order, min_wmark,
4965 ac->highest_zoneidx, alloc_flags, available);
4966 trace_reclaim_retry_zone(z, order, reclaimable,
4967 available, min_wmark, *no_progress_loops, wmark);
4975 * Memory allocation/reclaim might be called from a WQ context and the
4976 * current implementation of the WQ concurrency control doesn't
4977 * recognize that a particular WQ is congested if the worker thread is
4978 * looping without ever sleeping. Therefore we have to do a short sleep
4979 * here rather than calling cond_resched().
4981 if (current->flags & PF_WQ_WORKER)
4982 schedule_timeout_uninterruptible(1);
4989 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4992 * It's possible that cpuset's mems_allowed and the nodemask from
4993 * mempolicy don't intersect. This should be normally dealt with by
4994 * policy_nodemask(), but it's possible to race with cpuset update in
4995 * such a way the check therein was true, and then it became false
4996 * before we got our cpuset_mems_cookie here.
4997 * This assumes that for all allocations, ac->nodemask can come only
4998 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4999 * when it does not intersect with the cpuset restrictions) or the
5000 * caller can deal with a violated nodemask.
5002 if (cpusets_enabled() && ac->nodemask &&
5003 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5004 ac->nodemask = NULL;
5009 * When updating a task's mems_allowed or mempolicy nodemask, it is
5010 * possible to race with parallel threads in such a way that our
5011 * allocation can fail while the mask is being updated. If we are about
5012 * to fail, check if the cpuset changed during allocation and if so,
5015 if (read_mems_allowed_retry(cpuset_mems_cookie))
5021 static inline struct page *
5022 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5023 struct alloc_context *ac)
5025 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5026 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5027 struct page *page = NULL;
5028 unsigned int alloc_flags;
5029 unsigned long did_some_progress;
5030 enum compact_priority compact_priority;
5031 enum compact_result compact_result;
5032 int compaction_retries;
5033 int no_progress_loops;
5034 unsigned int cpuset_mems_cookie;
5035 unsigned int zonelist_iter_cookie;
5039 * We also sanity check to catch abuse of atomic reserves being used by
5040 * callers that are not in atomic context.
5042 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5043 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5044 gfp_mask &= ~__GFP_ATOMIC;
5047 compaction_retries = 0;
5048 no_progress_loops = 0;
5049 compact_priority = DEF_COMPACT_PRIORITY;
5050 cpuset_mems_cookie = read_mems_allowed_begin();
5051 zonelist_iter_cookie = zonelist_iter_begin();
5054 * The fast path uses conservative alloc_flags to succeed only until
5055 * kswapd needs to be woken up, and to avoid the cost of setting up
5056 * alloc_flags precisely. So we do that now.
5058 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5061 * We need to recalculate the starting point for the zonelist iterator
5062 * because we might have used different nodemask in the fast path, or
5063 * there was a cpuset modification and we are retrying - otherwise we
5064 * could end up iterating over non-eligible zones endlessly.
5066 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5067 ac->highest_zoneidx, ac->nodemask);
5068 if (!ac->preferred_zoneref->zone)
5072 * Check for insane configurations where the cpuset doesn't contain
5073 * any suitable zone to satisfy the request - e.g. non-movable
5074 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5076 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5077 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5078 ac->highest_zoneidx,
5079 &cpuset_current_mems_allowed);
5084 if (alloc_flags & ALLOC_KSWAPD)
5085 wake_all_kswapds(order, gfp_mask, ac);
5088 * The adjusted alloc_flags might result in immediate success, so try
5091 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5096 * For costly allocations, try direct compaction first, as it's likely
5097 * that we have enough base pages and don't need to reclaim. For non-
5098 * movable high-order allocations, do that as well, as compaction will
5099 * try prevent permanent fragmentation by migrating from blocks of the
5101 * Don't try this for allocations that are allowed to ignore
5102 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5104 if (can_direct_reclaim &&
5106 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5107 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5108 page = __alloc_pages_direct_compact(gfp_mask, order,
5110 INIT_COMPACT_PRIORITY,
5116 * Checks for costly allocations with __GFP_NORETRY, which
5117 * includes some THP page fault allocations
5119 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5121 * If allocating entire pageblock(s) and compaction
5122 * failed because all zones are below low watermarks
5123 * or is prohibited because it recently failed at this
5124 * order, fail immediately unless the allocator has
5125 * requested compaction and reclaim retry.
5128 * - potentially very expensive because zones are far
5129 * below their low watermarks or this is part of very
5130 * bursty high order allocations,
5131 * - not guaranteed to help because isolate_freepages()
5132 * may not iterate over freed pages as part of its
5134 * - unlikely to make entire pageblocks free on its
5137 if (compact_result == COMPACT_SKIPPED ||
5138 compact_result == COMPACT_DEFERRED)
5142 * Looks like reclaim/compaction is worth trying, but
5143 * sync compaction could be very expensive, so keep
5144 * using async compaction.
5146 compact_priority = INIT_COMPACT_PRIORITY;
5151 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5152 if (alloc_flags & ALLOC_KSWAPD)
5153 wake_all_kswapds(order, gfp_mask, ac);
5155 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5157 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5158 (alloc_flags & ALLOC_KSWAPD);
5161 * Reset the nodemask and zonelist iterators if memory policies can be
5162 * ignored. These allocations are high priority and system rather than
5165 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5166 ac->nodemask = NULL;
5167 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5168 ac->highest_zoneidx, ac->nodemask);
5171 /* Attempt with potentially adjusted zonelist and alloc_flags */
5172 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5176 /* Caller is not willing to reclaim, we can't balance anything */
5177 if (!can_direct_reclaim)
5180 /* Avoid recursion of direct reclaim */
5181 if (current->flags & PF_MEMALLOC)
5184 /* Try direct reclaim and then allocating */
5185 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5186 &did_some_progress);
5190 /* Try direct compaction and then allocating */
5191 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5192 compact_priority, &compact_result);
5196 /* Do not loop if specifically requested */
5197 if (gfp_mask & __GFP_NORETRY)
5201 * Do not retry costly high order allocations unless they are
5202 * __GFP_RETRY_MAYFAIL
5204 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5207 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5208 did_some_progress > 0, &no_progress_loops))
5212 * It doesn't make any sense to retry for the compaction if the order-0
5213 * reclaim is not able to make any progress because the current
5214 * implementation of the compaction depends on the sufficient amount
5215 * of free memory (see __compaction_suitable)
5217 if (did_some_progress > 0 &&
5218 should_compact_retry(ac, order, alloc_flags,
5219 compact_result, &compact_priority,
5220 &compaction_retries))
5225 * Deal with possible cpuset update races or zonelist updates to avoid
5226 * a unnecessary OOM kill.
5228 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5229 check_retry_zonelist(zonelist_iter_cookie))
5232 /* Reclaim has failed us, start killing things */
5233 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5237 /* Avoid allocations with no watermarks from looping endlessly */
5238 if (tsk_is_oom_victim(current) &&
5239 (alloc_flags & ALLOC_OOM ||
5240 (gfp_mask & __GFP_NOMEMALLOC)))
5243 /* Retry as long as the OOM killer is making progress */
5244 if (did_some_progress) {
5245 no_progress_loops = 0;
5251 * Deal with possible cpuset update races or zonelist updates to avoid
5252 * a unnecessary OOM kill.
5254 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5255 check_retry_zonelist(zonelist_iter_cookie))
5259 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5262 if (gfp_mask & __GFP_NOFAIL) {
5264 * All existing users of the __GFP_NOFAIL are blockable, so warn
5265 * of any new users that actually require GFP_NOWAIT
5267 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5271 * PF_MEMALLOC request from this context is rather bizarre
5272 * because we cannot reclaim anything and only can loop waiting
5273 * for somebody to do a work for us
5275 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5278 * non failing costly orders are a hard requirement which we
5279 * are not prepared for much so let's warn about these users
5280 * so that we can identify them and convert them to something
5283 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5286 * Help non-failing allocations by giving them access to memory
5287 * reserves but do not use ALLOC_NO_WATERMARKS because this
5288 * could deplete whole memory reserves which would just make
5289 * the situation worse
5291 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5299 warn_alloc(gfp_mask, ac->nodemask,
5300 "page allocation failure: order:%u", order);
5305 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5306 int preferred_nid, nodemask_t *nodemask,
5307 struct alloc_context *ac, gfp_t *alloc_gfp,
5308 unsigned int *alloc_flags)
5310 ac->highest_zoneidx = gfp_zone(gfp_mask);
5311 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5312 ac->nodemask = nodemask;
5313 ac->migratetype = gfp_migratetype(gfp_mask);
5315 if (cpusets_enabled()) {
5316 *alloc_gfp |= __GFP_HARDWALL;
5318 * When we are in the interrupt context, it is irrelevant
5319 * to the current task context. It means that any node ok.
5321 if (in_task() && !ac->nodemask)
5322 ac->nodemask = &cpuset_current_mems_allowed;
5324 *alloc_flags |= ALLOC_CPUSET;
5327 might_alloc(gfp_mask);
5329 if (should_fail_alloc_page(gfp_mask, order))
5332 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5334 /* Dirty zone balancing only done in the fast path */
5335 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5338 * The preferred zone is used for statistics but crucially it is
5339 * also used as the starting point for the zonelist iterator. It
5340 * may get reset for allocations that ignore memory policies.
5342 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5343 ac->highest_zoneidx, ac->nodemask);
5349 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5350 * @gfp: GFP flags for the allocation
5351 * @preferred_nid: The preferred NUMA node ID to allocate from
5352 * @nodemask: Set of nodes to allocate from, may be NULL
5353 * @nr_pages: The number of pages desired on the list or array
5354 * @page_list: Optional list to store the allocated pages
5355 * @page_array: Optional array to store the pages
5357 * This is a batched version of the page allocator that attempts to
5358 * allocate nr_pages quickly. Pages are added to page_list if page_list
5359 * is not NULL, otherwise it is assumed that the page_array is valid.
5361 * For lists, nr_pages is the number of pages that should be allocated.
5363 * For arrays, only NULL elements are populated with pages and nr_pages
5364 * is the maximum number of pages that will be stored in the array.
5366 * Returns the number of pages on the list or array.
5368 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5369 nodemask_t *nodemask, int nr_pages,
5370 struct list_head *page_list,
5371 struct page **page_array)
5374 unsigned long flags;
5375 unsigned long __maybe_unused UP_flags;
5378 struct per_cpu_pages *pcp;
5379 struct list_head *pcp_list;
5380 struct alloc_context ac;
5382 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5383 int nr_populated = 0, nr_account = 0;
5386 * Skip populated array elements to determine if any pages need
5387 * to be allocated before disabling IRQs.
5389 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5392 /* No pages requested? */
5393 if (unlikely(nr_pages <= 0))
5396 /* Already populated array? */
5397 if (unlikely(page_array && nr_pages - nr_populated == 0))
5400 /* Bulk allocator does not support memcg accounting. */
5401 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5404 /* Use the single page allocator for one page. */
5405 if (nr_pages - nr_populated == 1)
5408 #ifdef CONFIG_PAGE_OWNER
5410 * PAGE_OWNER may recurse into the allocator to allocate space to
5411 * save the stack with pagesets.lock held. Releasing/reacquiring
5412 * removes much of the performance benefit of bulk allocation so
5413 * force the caller to allocate one page at a time as it'll have
5414 * similar performance to added complexity to the bulk allocator.
5416 if (static_branch_unlikely(&page_owner_inited))
5420 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5421 gfp &= gfp_allowed_mask;
5423 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5427 /* Find an allowed local zone that meets the low watermark. */
5428 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5431 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5432 !__cpuset_zone_allowed(zone, gfp)) {
5436 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5437 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5441 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5442 if (zone_watermark_fast(zone, 0, mark,
5443 zonelist_zone_idx(ac.preferred_zoneref),
5444 alloc_flags, gfp)) {
5450 * If there are no allowed local zones that meets the watermarks then
5451 * try to allocate a single page and reclaim if necessary.
5453 if (unlikely(!zone))
5456 /* Is a parallel drain in progress? */
5457 pcp_trylock_prepare(UP_flags);
5458 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5462 /* Attempt the batch allocation */
5463 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5464 while (nr_populated < nr_pages) {
5466 /* Skip existing pages */
5467 if (page_array && page_array[nr_populated]) {
5472 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5474 if (unlikely(!page)) {
5475 /* Try and allocate at least one page */
5477 pcp_spin_unlock_irqrestore(pcp, flags);
5484 prep_new_page(page, 0, gfp, 0);
5486 list_add(&page->lru, page_list);
5488 page_array[nr_populated] = page;
5492 pcp_spin_unlock_irqrestore(pcp, flags);
5493 pcp_trylock_finish(UP_flags);
5495 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5496 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5499 return nr_populated;
5502 pcp_trylock_finish(UP_flags);
5505 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5508 list_add(&page->lru, page_list);
5510 page_array[nr_populated] = page;
5516 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5519 * This is the 'heart' of the zoned buddy allocator.
5521 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5522 nodemask_t *nodemask)
5525 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5526 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5527 struct alloc_context ac = { };
5530 * There are several places where we assume that the order value is sane
5531 * so bail out early if the request is out of bound.
5533 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5536 gfp &= gfp_allowed_mask;
5538 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5539 * resp. GFP_NOIO which has to be inherited for all allocation requests
5540 * from a particular context which has been marked by
5541 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5542 * movable zones are not used during allocation.
5544 gfp = current_gfp_context(gfp);
5546 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5547 &alloc_gfp, &alloc_flags))
5551 * Forbid the first pass from falling back to types that fragment
5552 * memory until all local zones are considered.
5554 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5556 /* First allocation attempt */
5557 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5562 ac.spread_dirty_pages = false;
5565 * Restore the original nodemask if it was potentially replaced with
5566 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5568 ac.nodemask = nodemask;
5570 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5573 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5574 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5575 __free_pages(page, order);
5579 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5580 kmsan_alloc_page(page, order, alloc_gfp);
5584 EXPORT_SYMBOL(__alloc_pages);
5586 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5587 nodemask_t *nodemask)
5589 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5590 preferred_nid, nodemask);
5592 if (page && order > 1)
5593 prep_transhuge_page(page);
5594 return (struct folio *)page;
5596 EXPORT_SYMBOL(__folio_alloc);
5599 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5600 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5601 * you need to access high mem.
5603 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5607 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5610 return (unsigned long) page_address(page);
5612 EXPORT_SYMBOL(__get_free_pages);
5614 unsigned long get_zeroed_page(gfp_t gfp_mask)
5616 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5618 EXPORT_SYMBOL(get_zeroed_page);
5621 * __free_pages - Free pages allocated with alloc_pages().
5622 * @page: The page pointer returned from alloc_pages().
5623 * @order: The order of the allocation.
5625 * This function can free multi-page allocations that are not compound
5626 * pages. It does not check that the @order passed in matches that of
5627 * the allocation, so it is easy to leak memory. Freeing more memory
5628 * than was allocated will probably emit a warning.
5630 * If the last reference to this page is speculative, it will be released
5631 * by put_page() which only frees the first page of a non-compound
5632 * allocation. To prevent the remaining pages from being leaked, we free
5633 * the subsequent pages here. If you want to use the page's reference
5634 * count to decide when to free the allocation, you should allocate a
5635 * compound page, and use put_page() instead of __free_pages().
5637 * Context: May be called in interrupt context or while holding a normal
5638 * spinlock, but not in NMI context or while holding a raw spinlock.
5640 void __free_pages(struct page *page, unsigned int order)
5642 if (put_page_testzero(page))
5643 free_the_page(page, order);
5644 else if (!PageHead(page))
5646 free_the_page(page + (1 << order), order);
5648 EXPORT_SYMBOL(__free_pages);
5650 void free_pages(unsigned long addr, unsigned int order)
5653 VM_BUG_ON(!virt_addr_valid((void *)addr));
5654 __free_pages(virt_to_page((void *)addr), order);
5658 EXPORT_SYMBOL(free_pages);
5662 * An arbitrary-length arbitrary-offset area of memory which resides
5663 * within a 0 or higher order page. Multiple fragments within that page
5664 * are individually refcounted, in the page's reference counter.
5666 * The page_frag functions below provide a simple allocation framework for
5667 * page fragments. This is used by the network stack and network device
5668 * drivers to provide a backing region of memory for use as either an
5669 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5671 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5674 struct page *page = NULL;
5675 gfp_t gfp = gfp_mask;
5677 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5678 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5680 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5681 PAGE_FRAG_CACHE_MAX_ORDER);
5682 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5684 if (unlikely(!page))
5685 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5687 nc->va = page ? page_address(page) : NULL;
5692 void __page_frag_cache_drain(struct page *page, unsigned int count)
5694 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5696 if (page_ref_sub_and_test(page, count))
5697 free_the_page(page, compound_order(page));
5699 EXPORT_SYMBOL(__page_frag_cache_drain);
5701 void *page_frag_alloc_align(struct page_frag_cache *nc,
5702 unsigned int fragsz, gfp_t gfp_mask,
5703 unsigned int align_mask)
5705 unsigned int size = PAGE_SIZE;
5709 if (unlikely(!nc->va)) {
5711 page = __page_frag_cache_refill(nc, gfp_mask);
5715 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5716 /* if size can vary use size else just use PAGE_SIZE */
5719 /* Even if we own the page, we do not use atomic_set().
5720 * This would break get_page_unless_zero() users.
5722 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5724 /* reset page count bias and offset to start of new frag */
5725 nc->pfmemalloc = page_is_pfmemalloc(page);
5726 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5730 offset = nc->offset - fragsz;
5731 if (unlikely(offset < 0)) {
5732 page = virt_to_page(nc->va);
5734 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5737 if (unlikely(nc->pfmemalloc)) {
5738 free_the_page(page, compound_order(page));
5742 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5743 /* if size can vary use size else just use PAGE_SIZE */
5746 /* OK, page count is 0, we can safely set it */
5747 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5749 /* reset page count bias and offset to start of new frag */
5750 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5751 offset = size - fragsz;
5752 if (unlikely(offset < 0)) {
5754 * The caller is trying to allocate a fragment
5755 * with fragsz > PAGE_SIZE but the cache isn't big
5756 * enough to satisfy the request, this may
5757 * happen in low memory conditions.
5758 * We don't release the cache page because
5759 * it could make memory pressure worse
5760 * so we simply return NULL here.
5767 offset &= align_mask;
5768 nc->offset = offset;
5770 return nc->va + offset;
5772 EXPORT_SYMBOL(page_frag_alloc_align);
5775 * Frees a page fragment allocated out of either a compound or order 0 page.
5777 void page_frag_free(void *addr)
5779 struct page *page = virt_to_head_page(addr);
5781 if (unlikely(put_page_testzero(page)))
5782 free_the_page(page, compound_order(page));
5784 EXPORT_SYMBOL(page_frag_free);
5786 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5790 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5791 unsigned long used = addr + PAGE_ALIGN(size);
5793 split_page(virt_to_page((void *)addr), order);
5794 while (used < alloc_end) {
5799 return (void *)addr;
5803 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5804 * @size: the number of bytes to allocate
5805 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5807 * This function is similar to alloc_pages(), except that it allocates the
5808 * minimum number of pages to satisfy the request. alloc_pages() can only
5809 * allocate memory in power-of-two pages.
5811 * This function is also limited by MAX_ORDER.
5813 * Memory allocated by this function must be released by free_pages_exact().
5815 * Return: pointer to the allocated area or %NULL in case of error.
5817 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5819 unsigned int order = get_order(size);
5822 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5823 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5825 addr = __get_free_pages(gfp_mask, order);
5826 return make_alloc_exact(addr, order, size);
5828 EXPORT_SYMBOL(alloc_pages_exact);
5831 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5833 * @nid: the preferred node ID where memory should be allocated
5834 * @size: the number of bytes to allocate
5835 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5837 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5840 * Return: pointer to the allocated area or %NULL in case of error.
5842 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5844 unsigned int order = get_order(size);
5847 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5848 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5850 p = alloc_pages_node(nid, gfp_mask, order);
5853 return make_alloc_exact((unsigned long)page_address(p), order, size);
5857 * free_pages_exact - release memory allocated via alloc_pages_exact()
5858 * @virt: the value returned by alloc_pages_exact.
5859 * @size: size of allocation, same value as passed to alloc_pages_exact().
5861 * Release the memory allocated by a previous call to alloc_pages_exact.
5863 void free_pages_exact(void *virt, size_t size)
5865 unsigned long addr = (unsigned long)virt;
5866 unsigned long end = addr + PAGE_ALIGN(size);
5868 while (addr < end) {
5873 EXPORT_SYMBOL(free_pages_exact);
5876 * nr_free_zone_pages - count number of pages beyond high watermark
5877 * @offset: The zone index of the highest zone
5879 * nr_free_zone_pages() counts the number of pages which are beyond the
5880 * high watermark within all zones at or below a given zone index. For each
5881 * zone, the number of pages is calculated as:
5883 * nr_free_zone_pages = managed_pages - high_pages
5885 * Return: number of pages beyond high watermark.
5887 static unsigned long nr_free_zone_pages(int offset)
5892 /* Just pick one node, since fallback list is circular */
5893 unsigned long sum = 0;
5895 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5897 for_each_zone_zonelist(zone, z, zonelist, offset) {
5898 unsigned long size = zone_managed_pages(zone);
5899 unsigned long high = high_wmark_pages(zone);
5908 * nr_free_buffer_pages - count number of pages beyond high watermark
5910 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5911 * watermark within ZONE_DMA and ZONE_NORMAL.
5913 * Return: number of pages beyond high watermark within ZONE_DMA and
5916 unsigned long nr_free_buffer_pages(void)
5918 return nr_free_zone_pages(gfp_zone(GFP_USER));
5920 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5922 static inline void show_node(struct zone *zone)
5924 if (IS_ENABLED(CONFIG_NUMA))
5925 printk("Node %d ", zone_to_nid(zone));
5928 long si_mem_available(void)
5931 unsigned long pagecache;
5932 unsigned long wmark_low = 0;
5933 unsigned long pages[NR_LRU_LISTS];
5934 unsigned long reclaimable;
5938 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5939 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5942 wmark_low += low_wmark_pages(zone);
5945 * Estimate the amount of memory available for userspace allocations,
5946 * without causing swapping or OOM.
5948 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5951 * Not all the page cache can be freed, otherwise the system will
5952 * start swapping or thrashing. Assume at least half of the page
5953 * cache, or the low watermark worth of cache, needs to stay.
5955 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5956 pagecache -= min(pagecache / 2, wmark_low);
5957 available += pagecache;
5960 * Part of the reclaimable slab and other kernel memory consists of
5961 * items that are in use, and cannot be freed. Cap this estimate at the
5964 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5965 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5966 available += reclaimable - min(reclaimable / 2, wmark_low);
5972 EXPORT_SYMBOL_GPL(si_mem_available);
5974 void si_meminfo(struct sysinfo *val)
5976 val->totalram = totalram_pages();
5977 val->sharedram = global_node_page_state(NR_SHMEM);
5978 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5979 val->bufferram = nr_blockdev_pages();
5980 val->totalhigh = totalhigh_pages();
5981 val->freehigh = nr_free_highpages();
5982 val->mem_unit = PAGE_SIZE;
5985 EXPORT_SYMBOL(si_meminfo);
5988 void si_meminfo_node(struct sysinfo *val, int nid)
5990 int zone_type; /* needs to be signed */
5991 unsigned long managed_pages = 0;
5992 unsigned long managed_highpages = 0;
5993 unsigned long free_highpages = 0;
5994 pg_data_t *pgdat = NODE_DATA(nid);
5996 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5997 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5998 val->totalram = managed_pages;
5999 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6000 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6001 #ifdef CONFIG_HIGHMEM
6002 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6003 struct zone *zone = &pgdat->node_zones[zone_type];
6005 if (is_highmem(zone)) {
6006 managed_highpages += zone_managed_pages(zone);
6007 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6010 val->totalhigh = managed_highpages;
6011 val->freehigh = free_highpages;
6013 val->totalhigh = managed_highpages;
6014 val->freehigh = free_highpages;
6016 val->mem_unit = PAGE_SIZE;
6021 * Determine whether the node should be displayed or not, depending on whether
6022 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6024 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6026 if (!(flags & SHOW_MEM_FILTER_NODES))
6030 * no node mask - aka implicit memory numa policy. Do not bother with
6031 * the synchronization - read_mems_allowed_begin - because we do not
6032 * have to be precise here.
6035 nodemask = &cpuset_current_mems_allowed;
6037 return !node_isset(nid, *nodemask);
6040 #define K(x) ((x) << (PAGE_SHIFT-10))
6042 static void show_migration_types(unsigned char type)
6044 static const char types[MIGRATE_TYPES] = {
6045 [MIGRATE_UNMOVABLE] = 'U',
6046 [MIGRATE_MOVABLE] = 'M',
6047 [MIGRATE_RECLAIMABLE] = 'E',
6048 [MIGRATE_HIGHATOMIC] = 'H',
6050 [MIGRATE_CMA] = 'C',
6052 #ifdef CONFIG_MEMORY_ISOLATION
6053 [MIGRATE_ISOLATE] = 'I',
6056 char tmp[MIGRATE_TYPES + 1];
6060 for (i = 0; i < MIGRATE_TYPES; i++) {
6061 if (type & (1 << i))
6066 printk(KERN_CONT "(%s) ", tmp);
6069 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6072 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6073 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6079 * Show free area list (used inside shift_scroll-lock stuff)
6080 * We also calculate the percentage fragmentation. We do this by counting the
6081 * memory on each free list with the exception of the first item on the list.
6084 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6087 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6089 unsigned long free_pcp = 0;
6094 for_each_populated_zone(zone) {
6095 if (zone_idx(zone) > max_zone_idx)
6097 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6100 for_each_online_cpu(cpu)
6101 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6104 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6105 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6106 " unevictable:%lu dirty:%lu writeback:%lu\n"
6107 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6108 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6109 " kernel_misc_reclaimable:%lu\n"
6110 " free:%lu free_pcp:%lu free_cma:%lu\n",
6111 global_node_page_state(NR_ACTIVE_ANON),
6112 global_node_page_state(NR_INACTIVE_ANON),
6113 global_node_page_state(NR_ISOLATED_ANON),
6114 global_node_page_state(NR_ACTIVE_FILE),
6115 global_node_page_state(NR_INACTIVE_FILE),
6116 global_node_page_state(NR_ISOLATED_FILE),
6117 global_node_page_state(NR_UNEVICTABLE),
6118 global_node_page_state(NR_FILE_DIRTY),
6119 global_node_page_state(NR_WRITEBACK),
6120 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6121 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6122 global_node_page_state(NR_FILE_MAPPED),
6123 global_node_page_state(NR_SHMEM),
6124 global_node_page_state(NR_PAGETABLE),
6125 global_zone_page_state(NR_BOUNCE),
6126 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6127 global_zone_page_state(NR_FREE_PAGES),
6129 global_zone_page_state(NR_FREE_CMA_PAGES));
6131 for_each_online_pgdat(pgdat) {
6132 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6134 if (!node_has_managed_zones(pgdat, max_zone_idx))
6138 " active_anon:%lukB"
6139 " inactive_anon:%lukB"
6140 " active_file:%lukB"
6141 " inactive_file:%lukB"
6142 " unevictable:%lukB"
6143 " isolated(anon):%lukB"
6144 " isolated(file):%lukB"
6149 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6151 " shmem_pmdmapped: %lukB"
6154 " writeback_tmp:%lukB"
6155 " kernel_stack:%lukB"
6156 #ifdef CONFIG_SHADOW_CALL_STACK
6157 " shadow_call_stack:%lukB"
6160 " all_unreclaimable? %s"
6163 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6164 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6165 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6166 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6167 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6168 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6169 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6170 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6171 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6172 K(node_page_state(pgdat, NR_WRITEBACK)),
6173 K(node_page_state(pgdat, NR_SHMEM)),
6174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6175 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6176 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6177 K(node_page_state(pgdat, NR_ANON_THPS)),
6179 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6180 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6181 #ifdef CONFIG_SHADOW_CALL_STACK
6182 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6184 K(node_page_state(pgdat, NR_PAGETABLE)),
6185 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6189 for_each_populated_zone(zone) {
6192 if (zone_idx(zone) > max_zone_idx)
6194 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6198 for_each_online_cpu(cpu)
6199 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6209 " reserved_highatomic:%luKB"
6210 " active_anon:%lukB"
6211 " inactive_anon:%lukB"
6212 " active_file:%lukB"
6213 " inactive_file:%lukB"
6214 " unevictable:%lukB"
6215 " writepending:%lukB"
6225 K(zone_page_state(zone, NR_FREE_PAGES)),
6226 K(zone->watermark_boost),
6227 K(min_wmark_pages(zone)),
6228 K(low_wmark_pages(zone)),
6229 K(high_wmark_pages(zone)),
6230 K(zone->nr_reserved_highatomic),
6231 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6232 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6233 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6234 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6235 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6236 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6237 K(zone->present_pages),
6238 K(zone_managed_pages(zone)),
6239 K(zone_page_state(zone, NR_MLOCK)),
6240 K(zone_page_state(zone, NR_BOUNCE)),
6242 K(this_cpu_read(zone->per_cpu_pageset->count)),
6243 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6244 printk("lowmem_reserve[]:");
6245 for (i = 0; i < MAX_NR_ZONES; i++)
6246 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6247 printk(KERN_CONT "\n");
6250 for_each_populated_zone(zone) {
6252 unsigned long nr[MAX_ORDER], flags, total = 0;
6253 unsigned char types[MAX_ORDER];
6255 if (zone_idx(zone) > max_zone_idx)
6257 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6260 printk(KERN_CONT "%s: ", zone->name);
6262 spin_lock_irqsave(&zone->lock, flags);
6263 for (order = 0; order < MAX_ORDER; order++) {
6264 struct free_area *area = &zone->free_area[order];
6267 nr[order] = area->nr_free;
6268 total += nr[order] << order;
6271 for (type = 0; type < MIGRATE_TYPES; type++) {
6272 if (!free_area_empty(area, type))
6273 types[order] |= 1 << type;
6276 spin_unlock_irqrestore(&zone->lock, flags);
6277 for (order = 0; order < MAX_ORDER; order++) {
6278 printk(KERN_CONT "%lu*%lukB ",
6279 nr[order], K(1UL) << order);
6281 show_migration_types(types[order]);
6283 printk(KERN_CONT "= %lukB\n", K(total));
6286 for_each_online_node(nid) {
6287 if (show_mem_node_skip(filter, nid, nodemask))
6289 hugetlb_show_meminfo_node(nid);
6292 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6294 show_swap_cache_info();
6297 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6299 zoneref->zone = zone;
6300 zoneref->zone_idx = zone_idx(zone);
6304 * Builds allocation fallback zone lists.
6306 * Add all populated zones of a node to the zonelist.
6308 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6311 enum zone_type zone_type = MAX_NR_ZONES;
6316 zone = pgdat->node_zones + zone_type;
6317 if (populated_zone(zone)) {
6318 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6319 check_highest_zone(zone_type);
6321 } while (zone_type);
6328 static int __parse_numa_zonelist_order(char *s)
6331 * We used to support different zonelists modes but they turned
6332 * out to be just not useful. Let's keep the warning in place
6333 * if somebody still use the cmd line parameter so that we do
6334 * not fail it silently
6336 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6337 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6343 char numa_zonelist_order[] = "Node";
6346 * sysctl handler for numa_zonelist_order
6348 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6349 void *buffer, size_t *length, loff_t *ppos)
6352 return __parse_numa_zonelist_order(buffer);
6353 return proc_dostring(table, write, buffer, length, ppos);
6357 static int node_load[MAX_NUMNODES];
6360 * find_next_best_node - find the next node that should appear in a given node's fallback list
6361 * @node: node whose fallback list we're appending
6362 * @used_node_mask: nodemask_t of already used nodes
6364 * We use a number of factors to determine which is the next node that should
6365 * appear on a given node's fallback list. The node should not have appeared
6366 * already in @node's fallback list, and it should be the next closest node
6367 * according to the distance array (which contains arbitrary distance values
6368 * from each node to each node in the system), and should also prefer nodes
6369 * with no CPUs, since presumably they'll have very little allocation pressure
6370 * on them otherwise.
6372 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6374 int find_next_best_node(int node, nodemask_t *used_node_mask)
6377 int min_val = INT_MAX;
6378 int best_node = NUMA_NO_NODE;
6380 /* Use the local node if we haven't already */
6381 if (!node_isset(node, *used_node_mask)) {
6382 node_set(node, *used_node_mask);
6386 for_each_node_state(n, N_MEMORY) {
6388 /* Don't want a node to appear more than once */
6389 if (node_isset(n, *used_node_mask))
6392 /* Use the distance array to find the distance */
6393 val = node_distance(node, n);
6395 /* Penalize nodes under us ("prefer the next node") */
6398 /* Give preference to headless and unused nodes */
6399 if (!cpumask_empty(cpumask_of_node(n)))
6400 val += PENALTY_FOR_NODE_WITH_CPUS;
6402 /* Slight preference for less loaded node */
6403 val *= MAX_NUMNODES;
6404 val += node_load[n];
6406 if (val < min_val) {
6413 node_set(best_node, *used_node_mask);
6420 * Build zonelists ordered by node and zones within node.
6421 * This results in maximum locality--normal zone overflows into local
6422 * DMA zone, if any--but risks exhausting DMA zone.
6424 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6427 struct zoneref *zonerefs;
6430 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6432 for (i = 0; i < nr_nodes; i++) {
6435 pg_data_t *node = NODE_DATA(node_order[i]);
6437 nr_zones = build_zonerefs_node(node, zonerefs);
6438 zonerefs += nr_zones;
6440 zonerefs->zone = NULL;
6441 zonerefs->zone_idx = 0;
6445 * Build gfp_thisnode zonelists
6447 static void build_thisnode_zonelists(pg_data_t *pgdat)
6449 struct zoneref *zonerefs;
6452 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6453 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6454 zonerefs += nr_zones;
6455 zonerefs->zone = NULL;
6456 zonerefs->zone_idx = 0;
6460 * Build zonelists ordered by zone and nodes within zones.
6461 * This results in conserving DMA zone[s] until all Normal memory is
6462 * exhausted, but results in overflowing to remote node while memory
6463 * may still exist in local DMA zone.
6466 static void build_zonelists(pg_data_t *pgdat)
6468 static int node_order[MAX_NUMNODES];
6469 int node, nr_nodes = 0;
6470 nodemask_t used_mask = NODE_MASK_NONE;
6471 int local_node, prev_node;
6473 /* NUMA-aware ordering of nodes */
6474 local_node = pgdat->node_id;
6475 prev_node = local_node;
6477 memset(node_order, 0, sizeof(node_order));
6478 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6480 * We don't want to pressure a particular node.
6481 * So adding penalty to the first node in same
6482 * distance group to make it round-robin.
6484 if (node_distance(local_node, node) !=
6485 node_distance(local_node, prev_node))
6486 node_load[node] += 1;
6488 node_order[nr_nodes++] = node;
6492 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6493 build_thisnode_zonelists(pgdat);
6494 pr_info("Fallback order for Node %d: ", local_node);
6495 for (node = 0; node < nr_nodes; node++)
6496 pr_cont("%d ", node_order[node]);
6500 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6502 * Return node id of node used for "local" allocations.
6503 * I.e., first node id of first zone in arg node's generic zonelist.
6504 * Used for initializing percpu 'numa_mem', which is used primarily
6505 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6507 int local_memory_node(int node)
6511 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6512 gfp_zone(GFP_KERNEL),
6514 return zone_to_nid(z->zone);
6518 static void setup_min_unmapped_ratio(void);
6519 static void setup_min_slab_ratio(void);
6520 #else /* CONFIG_NUMA */
6522 static void build_zonelists(pg_data_t *pgdat)
6524 int node, local_node;
6525 struct zoneref *zonerefs;
6528 local_node = pgdat->node_id;
6530 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6531 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6532 zonerefs += nr_zones;
6535 * Now we build the zonelist so that it contains the zones
6536 * of all the other nodes.
6537 * We don't want to pressure a particular node, so when
6538 * building the zones for node N, we make sure that the
6539 * zones coming right after the local ones are those from
6540 * node N+1 (modulo N)
6542 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6543 if (!node_online(node))
6545 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6546 zonerefs += nr_zones;
6548 for (node = 0; node < local_node; node++) {
6549 if (!node_online(node))
6551 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6552 zonerefs += nr_zones;
6555 zonerefs->zone = NULL;
6556 zonerefs->zone_idx = 0;
6559 #endif /* CONFIG_NUMA */
6562 * Boot pageset table. One per cpu which is going to be used for all
6563 * zones and all nodes. The parameters will be set in such a way
6564 * that an item put on a list will immediately be handed over to
6565 * the buddy list. This is safe since pageset manipulation is done
6566 * with interrupts disabled.
6568 * The boot_pagesets must be kept even after bootup is complete for
6569 * unused processors and/or zones. They do play a role for bootstrapping
6570 * hotplugged processors.
6572 * zoneinfo_show() and maybe other functions do
6573 * not check if the processor is online before following the pageset pointer.
6574 * Other parts of the kernel may not check if the zone is available.
6576 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6577 /* These effectively disable the pcplists in the boot pageset completely */
6578 #define BOOT_PAGESET_HIGH 0
6579 #define BOOT_PAGESET_BATCH 1
6580 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6581 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6582 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6584 static void __build_all_zonelists(void *data)
6587 int __maybe_unused cpu;
6588 pg_data_t *self = data;
6590 write_seqlock(&zonelist_update_seq);
6593 memset(node_load, 0, sizeof(node_load));
6597 * This node is hotadded and no memory is yet present. So just
6598 * building zonelists is fine - no need to touch other nodes.
6600 if (self && !node_online(self->node_id)) {
6601 build_zonelists(self);
6604 * All possible nodes have pgdat preallocated
6607 for_each_node(nid) {
6608 pg_data_t *pgdat = NODE_DATA(nid);
6610 build_zonelists(pgdat);
6613 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6615 * We now know the "local memory node" for each node--
6616 * i.e., the node of the first zone in the generic zonelist.
6617 * Set up numa_mem percpu variable for on-line cpus. During
6618 * boot, only the boot cpu should be on-line; we'll init the
6619 * secondary cpus' numa_mem as they come on-line. During
6620 * node/memory hotplug, we'll fixup all on-line cpus.
6622 for_each_online_cpu(cpu)
6623 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6627 write_sequnlock(&zonelist_update_seq);
6630 static noinline void __init
6631 build_all_zonelists_init(void)
6635 __build_all_zonelists(NULL);
6638 * Initialize the boot_pagesets that are going to be used
6639 * for bootstrapping processors. The real pagesets for
6640 * each zone will be allocated later when the per cpu
6641 * allocator is available.
6643 * boot_pagesets are used also for bootstrapping offline
6644 * cpus if the system is already booted because the pagesets
6645 * are needed to initialize allocators on a specific cpu too.
6646 * F.e. the percpu allocator needs the page allocator which
6647 * needs the percpu allocator in order to allocate its pagesets
6648 * (a chicken-egg dilemma).
6650 for_each_possible_cpu(cpu)
6651 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6653 mminit_verify_zonelist();
6654 cpuset_init_current_mems_allowed();
6658 * unless system_state == SYSTEM_BOOTING.
6660 * __ref due to call of __init annotated helper build_all_zonelists_init
6661 * [protected by SYSTEM_BOOTING].
6663 void __ref build_all_zonelists(pg_data_t *pgdat)
6665 unsigned long vm_total_pages;
6667 if (system_state == SYSTEM_BOOTING) {
6668 build_all_zonelists_init();
6670 __build_all_zonelists(pgdat);
6671 /* cpuset refresh routine should be here */
6673 /* Get the number of free pages beyond high watermark in all zones. */
6674 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6676 * Disable grouping by mobility if the number of pages in the
6677 * system is too low to allow the mechanism to work. It would be
6678 * more accurate, but expensive to check per-zone. This check is
6679 * made on memory-hotadd so a system can start with mobility
6680 * disabled and enable it later
6682 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6683 page_group_by_mobility_disabled = 1;
6685 page_group_by_mobility_disabled = 0;
6687 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6689 page_group_by_mobility_disabled ? "off" : "on",
6692 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6696 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6697 static bool __meminit
6698 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6700 static struct memblock_region *r;
6702 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6703 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6704 for_each_mem_region(r) {
6705 if (*pfn < memblock_region_memory_end_pfn(r))
6709 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6710 memblock_is_mirror(r)) {
6711 *pfn = memblock_region_memory_end_pfn(r);
6719 * Initially all pages are reserved - free ones are freed
6720 * up by memblock_free_all() once the early boot process is
6721 * done. Non-atomic initialization, single-pass.
6723 * All aligned pageblocks are initialized to the specified migratetype
6724 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6725 * zone stats (e.g., nr_isolate_pageblock) are touched.
6727 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6728 unsigned long start_pfn, unsigned long zone_end_pfn,
6729 enum meminit_context context,
6730 struct vmem_altmap *altmap, int migratetype)
6732 unsigned long pfn, end_pfn = start_pfn + size;
6735 if (highest_memmap_pfn < end_pfn - 1)
6736 highest_memmap_pfn = end_pfn - 1;
6738 #ifdef CONFIG_ZONE_DEVICE
6740 * Honor reservation requested by the driver for this ZONE_DEVICE
6741 * memory. We limit the total number of pages to initialize to just
6742 * those that might contain the memory mapping. We will defer the
6743 * ZONE_DEVICE page initialization until after we have released
6746 if (zone == ZONE_DEVICE) {
6750 if (start_pfn == altmap->base_pfn)
6751 start_pfn += altmap->reserve;
6752 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6756 for (pfn = start_pfn; pfn < end_pfn; ) {
6758 * There can be holes in boot-time mem_map[]s handed to this
6759 * function. They do not exist on hotplugged memory.
6761 if (context == MEMINIT_EARLY) {
6762 if (overlap_memmap_init(zone, &pfn))
6764 if (defer_init(nid, pfn, zone_end_pfn))
6768 page = pfn_to_page(pfn);
6769 __init_single_page(page, pfn, zone, nid);
6770 if (context == MEMINIT_HOTPLUG)
6771 __SetPageReserved(page);
6774 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6775 * such that unmovable allocations won't be scattered all
6776 * over the place during system boot.
6778 if (pageblock_aligned(pfn)) {
6779 set_pageblock_migratetype(page, migratetype);
6786 #ifdef CONFIG_ZONE_DEVICE
6787 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6788 unsigned long zone_idx, int nid,
6789 struct dev_pagemap *pgmap)
6792 __init_single_page(page, pfn, zone_idx, nid);
6795 * Mark page reserved as it will need to wait for onlining
6796 * phase for it to be fully associated with a zone.
6798 * We can use the non-atomic __set_bit operation for setting
6799 * the flag as we are still initializing the pages.
6801 __SetPageReserved(page);
6804 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6805 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6806 * ever freed or placed on a driver-private list.
6808 page->pgmap = pgmap;
6809 page->zone_device_data = NULL;
6812 * Mark the block movable so that blocks are reserved for
6813 * movable at startup. This will force kernel allocations
6814 * to reserve their blocks rather than leaking throughout
6815 * the address space during boot when many long-lived
6816 * kernel allocations are made.
6818 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6819 * because this is done early in section_activate()
6821 if (pageblock_aligned(pfn)) {
6822 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6828 * With compound page geometry and when struct pages are stored in ram most
6829 * tail pages are reused. Consequently, the amount of unique struct pages to
6830 * initialize is a lot smaller that the total amount of struct pages being
6831 * mapped. This is a paired / mild layering violation with explicit knowledge
6832 * of how the sparse_vmemmap internals handle compound pages in the lack
6833 * of an altmap. See vmemmap_populate_compound_pages().
6835 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6836 unsigned long nr_pages)
6838 return is_power_of_2(sizeof(struct page)) &&
6839 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6842 static void __ref memmap_init_compound(struct page *head,
6843 unsigned long head_pfn,
6844 unsigned long zone_idx, int nid,
6845 struct dev_pagemap *pgmap,
6846 unsigned long nr_pages)
6848 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6849 unsigned int order = pgmap->vmemmap_shift;
6851 __SetPageHead(head);
6852 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6853 struct page *page = pfn_to_page(pfn);
6855 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6856 prep_compound_tail(head, pfn - head_pfn);
6857 set_page_count(page, 0);
6860 * The first tail page stores compound_mapcount_ptr() and
6861 * compound_order() and the second tail page stores
6862 * compound_pincount_ptr(). Call prep_compound_head() after
6863 * the first and second tail pages have been initialized to
6864 * not have the data overwritten.
6866 if (pfn == head_pfn + 2)
6867 prep_compound_head(head, order);
6871 void __ref memmap_init_zone_device(struct zone *zone,
6872 unsigned long start_pfn,
6873 unsigned long nr_pages,
6874 struct dev_pagemap *pgmap)
6876 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6877 struct pglist_data *pgdat = zone->zone_pgdat;
6878 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6879 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6880 unsigned long zone_idx = zone_idx(zone);
6881 unsigned long start = jiffies;
6882 int nid = pgdat->node_id;
6884 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6888 * The call to memmap_init should have already taken care
6889 * of the pages reserved for the memmap, so we can just jump to
6890 * the end of that region and start processing the device pages.
6893 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6894 nr_pages = end_pfn - start_pfn;
6897 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6898 struct page *page = pfn_to_page(pfn);
6900 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6902 if (pfns_per_compound == 1)
6905 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6906 compound_nr_pages(altmap, pfns_per_compound));
6909 pr_info("%s initialised %lu pages in %ums\n", __func__,
6910 nr_pages, jiffies_to_msecs(jiffies - start));
6914 static void __meminit zone_init_free_lists(struct zone *zone)
6916 unsigned int order, t;
6917 for_each_migratetype_order(order, t) {
6918 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6919 zone->free_area[order].nr_free = 0;
6924 * Only struct pages that correspond to ranges defined by memblock.memory
6925 * are zeroed and initialized by going through __init_single_page() during
6926 * memmap_init_zone_range().
6928 * But, there could be struct pages that correspond to holes in
6929 * memblock.memory. This can happen because of the following reasons:
6930 * - physical memory bank size is not necessarily the exact multiple of the
6931 * arbitrary section size
6932 * - early reserved memory may not be listed in memblock.memory
6933 * - memory layouts defined with memmap= kernel parameter may not align
6934 * nicely with memmap sections
6936 * Explicitly initialize those struct pages so that:
6937 * - PG_Reserved is set
6938 * - zone and node links point to zone and node that span the page if the
6939 * hole is in the middle of a zone
6940 * - zone and node links point to adjacent zone/node if the hole falls on
6941 * the zone boundary; the pages in such holes will be prepended to the
6942 * zone/node above the hole except for the trailing pages in the last
6943 * section that will be appended to the zone/node below.
6945 static void __init init_unavailable_range(unsigned long spfn,
6952 for (pfn = spfn; pfn < epfn; pfn++) {
6953 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6954 pfn = pageblock_end_pfn(pfn) - 1;
6957 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6958 __SetPageReserved(pfn_to_page(pfn));
6963 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6964 node, zone_names[zone], pgcnt);
6967 static void __init memmap_init_zone_range(struct zone *zone,
6968 unsigned long start_pfn,
6969 unsigned long end_pfn,
6970 unsigned long *hole_pfn)
6972 unsigned long zone_start_pfn = zone->zone_start_pfn;
6973 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6974 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6976 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6977 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6979 if (start_pfn >= end_pfn)
6982 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6983 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6985 if (*hole_pfn < start_pfn)
6986 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6988 *hole_pfn = end_pfn;
6991 static void __init memmap_init(void)
6993 unsigned long start_pfn, end_pfn;
6994 unsigned long hole_pfn = 0;
6995 int i, j, zone_id = 0, nid;
6997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6998 struct pglist_data *node = NODE_DATA(nid);
7000 for (j = 0; j < MAX_NR_ZONES; j++) {
7001 struct zone *zone = node->node_zones + j;
7003 if (!populated_zone(zone))
7006 memmap_init_zone_range(zone, start_pfn, end_pfn,
7012 #ifdef CONFIG_SPARSEMEM
7014 * Initialize the memory map for hole in the range [memory_end,
7016 * Append the pages in this hole to the highest zone in the last
7018 * The call to init_unavailable_range() is outside the ifdef to
7019 * silence the compiler warining about zone_id set but not used;
7020 * for FLATMEM it is a nop anyway
7022 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7023 if (hole_pfn < end_pfn)
7025 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7028 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7029 phys_addr_t min_addr, int nid, bool exact_nid)
7034 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7035 MEMBLOCK_ALLOC_ACCESSIBLE,
7038 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7039 MEMBLOCK_ALLOC_ACCESSIBLE,
7042 if (ptr && size > 0)
7043 page_init_poison(ptr, size);
7048 static int zone_batchsize(struct zone *zone)
7054 * The number of pages to batch allocate is either ~0.1%
7055 * of the zone or 1MB, whichever is smaller. The batch
7056 * size is striking a balance between allocation latency
7057 * and zone lock contention.
7059 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7060 batch /= 4; /* We effectively *= 4 below */
7065 * Clamp the batch to a 2^n - 1 value. Having a power
7066 * of 2 value was found to be more likely to have
7067 * suboptimal cache aliasing properties in some cases.
7069 * For example if 2 tasks are alternately allocating
7070 * batches of pages, one task can end up with a lot
7071 * of pages of one half of the possible page colors
7072 * and the other with pages of the other colors.
7074 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7079 /* The deferral and batching of frees should be suppressed under NOMMU
7082 * The problem is that NOMMU needs to be able to allocate large chunks
7083 * of contiguous memory as there's no hardware page translation to
7084 * assemble apparent contiguous memory from discontiguous pages.
7086 * Queueing large contiguous runs of pages for batching, however,
7087 * causes the pages to actually be freed in smaller chunks. As there
7088 * can be a significant delay between the individual batches being
7089 * recycled, this leads to the once large chunks of space being
7090 * fragmented and becoming unavailable for high-order allocations.
7096 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7101 unsigned long total_pages;
7103 if (!percpu_pagelist_high_fraction) {
7105 * By default, the high value of the pcp is based on the zone
7106 * low watermark so that if they are full then background
7107 * reclaim will not be started prematurely.
7109 total_pages = low_wmark_pages(zone);
7112 * If percpu_pagelist_high_fraction is configured, the high
7113 * value is based on a fraction of the managed pages in the
7116 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7120 * Split the high value across all online CPUs local to the zone. Note
7121 * that early in boot that CPUs may not be online yet and that during
7122 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7123 * onlined. For memory nodes that have no CPUs, split pcp->high across
7124 * all online CPUs to mitigate the risk that reclaim is triggered
7125 * prematurely due to pages stored on pcp lists.
7127 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7129 nr_split_cpus = num_online_cpus();
7130 high = total_pages / nr_split_cpus;
7133 * Ensure high is at least batch*4. The multiple is based on the
7134 * historical relationship between high and batch.
7136 high = max(high, batch << 2);
7145 * pcp->high and pcp->batch values are related and generally batch is lower
7146 * than high. They are also related to pcp->count such that count is lower
7147 * than high, and as soon as it reaches high, the pcplist is flushed.
7149 * However, guaranteeing these relations at all times would require e.g. write
7150 * barriers here but also careful usage of read barriers at the read side, and
7151 * thus be prone to error and bad for performance. Thus the update only prevents
7152 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7153 * can cope with those fields changing asynchronously, and fully trust only the
7154 * pcp->count field on the local CPU with interrupts disabled.
7156 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7157 * outside of boot time (or some other assurance that no concurrent updaters
7160 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7161 unsigned long batch)
7163 WRITE_ONCE(pcp->batch, batch);
7164 WRITE_ONCE(pcp->high, high);
7167 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7171 memset(pcp, 0, sizeof(*pcp));
7172 memset(pzstats, 0, sizeof(*pzstats));
7174 spin_lock_init(&pcp->lock);
7175 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7176 INIT_LIST_HEAD(&pcp->lists[pindex]);
7179 * Set batch and high values safe for a boot pageset. A true percpu
7180 * pageset's initialization will update them subsequently. Here we don't
7181 * need to be as careful as pageset_update() as nobody can access the
7184 pcp->high = BOOT_PAGESET_HIGH;
7185 pcp->batch = BOOT_PAGESET_BATCH;
7186 pcp->free_factor = 0;
7189 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7190 unsigned long batch)
7192 struct per_cpu_pages *pcp;
7195 for_each_possible_cpu(cpu) {
7196 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7197 pageset_update(pcp, high, batch);
7202 * Calculate and set new high and batch values for all per-cpu pagesets of a
7203 * zone based on the zone's size.
7205 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7207 int new_high, new_batch;
7209 new_batch = max(1, zone_batchsize(zone));
7210 new_high = zone_highsize(zone, new_batch, cpu_online);
7212 if (zone->pageset_high == new_high &&
7213 zone->pageset_batch == new_batch)
7216 zone->pageset_high = new_high;
7217 zone->pageset_batch = new_batch;
7219 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7222 void __meminit setup_zone_pageset(struct zone *zone)
7226 /* Size may be 0 on !SMP && !NUMA */
7227 if (sizeof(struct per_cpu_zonestat) > 0)
7228 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7230 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7231 for_each_possible_cpu(cpu) {
7232 struct per_cpu_pages *pcp;
7233 struct per_cpu_zonestat *pzstats;
7235 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7236 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7237 per_cpu_pages_init(pcp, pzstats);
7240 zone_set_pageset_high_and_batch(zone, 0);
7244 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7245 * page high values need to be recalculated.
7247 static void zone_pcp_update(struct zone *zone, int cpu_online)
7249 mutex_lock(&pcp_batch_high_lock);
7250 zone_set_pageset_high_and_batch(zone, cpu_online);
7251 mutex_unlock(&pcp_batch_high_lock);
7255 * Allocate per cpu pagesets and initialize them.
7256 * Before this call only boot pagesets were available.
7258 void __init setup_per_cpu_pageset(void)
7260 struct pglist_data *pgdat;
7262 int __maybe_unused cpu;
7264 for_each_populated_zone(zone)
7265 setup_zone_pageset(zone);
7269 * Unpopulated zones continue using the boot pagesets.
7270 * The numa stats for these pagesets need to be reset.
7271 * Otherwise, they will end up skewing the stats of
7272 * the nodes these zones are associated with.
7274 for_each_possible_cpu(cpu) {
7275 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7276 memset(pzstats->vm_numa_event, 0,
7277 sizeof(pzstats->vm_numa_event));
7281 for_each_online_pgdat(pgdat)
7282 pgdat->per_cpu_nodestats =
7283 alloc_percpu(struct per_cpu_nodestat);
7286 static __meminit void zone_pcp_init(struct zone *zone)
7289 * per cpu subsystem is not up at this point. The following code
7290 * relies on the ability of the linker to provide the
7291 * offset of a (static) per cpu variable into the per cpu area.
7293 zone->per_cpu_pageset = &boot_pageset;
7294 zone->per_cpu_zonestats = &boot_zonestats;
7295 zone->pageset_high = BOOT_PAGESET_HIGH;
7296 zone->pageset_batch = BOOT_PAGESET_BATCH;
7298 if (populated_zone(zone))
7299 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7300 zone->present_pages, zone_batchsize(zone));
7303 void __meminit init_currently_empty_zone(struct zone *zone,
7304 unsigned long zone_start_pfn,
7307 struct pglist_data *pgdat = zone->zone_pgdat;
7308 int zone_idx = zone_idx(zone) + 1;
7310 if (zone_idx > pgdat->nr_zones)
7311 pgdat->nr_zones = zone_idx;
7313 zone->zone_start_pfn = zone_start_pfn;
7315 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7316 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7318 (unsigned long)zone_idx(zone),
7319 zone_start_pfn, (zone_start_pfn + size));
7321 zone_init_free_lists(zone);
7322 zone->initialized = 1;
7326 * get_pfn_range_for_nid - Return the start and end page frames for a node
7327 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7328 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7329 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7331 * It returns the start and end page frame of a node based on information
7332 * provided by memblock_set_node(). If called for a node
7333 * with no available memory, a warning is printed and the start and end
7336 void __init get_pfn_range_for_nid(unsigned int nid,
7337 unsigned long *start_pfn, unsigned long *end_pfn)
7339 unsigned long this_start_pfn, this_end_pfn;
7345 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7346 *start_pfn = min(*start_pfn, this_start_pfn);
7347 *end_pfn = max(*end_pfn, this_end_pfn);
7350 if (*start_pfn == -1UL)
7355 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7356 * assumption is made that zones within a node are ordered in monotonic
7357 * increasing memory addresses so that the "highest" populated zone is used
7359 static void __init find_usable_zone_for_movable(void)
7362 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7363 if (zone_index == ZONE_MOVABLE)
7366 if (arch_zone_highest_possible_pfn[zone_index] >
7367 arch_zone_lowest_possible_pfn[zone_index])
7371 VM_BUG_ON(zone_index == -1);
7372 movable_zone = zone_index;
7376 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7377 * because it is sized independent of architecture. Unlike the other zones,
7378 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7379 * in each node depending on the size of each node and how evenly kernelcore
7380 * is distributed. This helper function adjusts the zone ranges
7381 * provided by the architecture for a given node by using the end of the
7382 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7383 * zones within a node are in order of monotonic increases memory addresses
7385 static void __init adjust_zone_range_for_zone_movable(int nid,
7386 unsigned long zone_type,
7387 unsigned long node_start_pfn,
7388 unsigned long node_end_pfn,
7389 unsigned long *zone_start_pfn,
7390 unsigned long *zone_end_pfn)
7392 /* Only adjust if ZONE_MOVABLE is on this node */
7393 if (zone_movable_pfn[nid]) {
7394 /* Size ZONE_MOVABLE */
7395 if (zone_type == ZONE_MOVABLE) {
7396 *zone_start_pfn = zone_movable_pfn[nid];
7397 *zone_end_pfn = min(node_end_pfn,
7398 arch_zone_highest_possible_pfn[movable_zone]);
7400 /* Adjust for ZONE_MOVABLE starting within this range */
7401 } else if (!mirrored_kernelcore &&
7402 *zone_start_pfn < zone_movable_pfn[nid] &&
7403 *zone_end_pfn > zone_movable_pfn[nid]) {
7404 *zone_end_pfn = zone_movable_pfn[nid];
7406 /* Check if this whole range is within ZONE_MOVABLE */
7407 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7408 *zone_start_pfn = *zone_end_pfn;
7413 * Return the number of pages a zone spans in a node, including holes
7414 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7416 static unsigned long __init zone_spanned_pages_in_node(int nid,
7417 unsigned long zone_type,
7418 unsigned long node_start_pfn,
7419 unsigned long node_end_pfn,
7420 unsigned long *zone_start_pfn,
7421 unsigned long *zone_end_pfn)
7423 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7424 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7425 /* When hotadd a new node from cpu_up(), the node should be empty */
7426 if (!node_start_pfn && !node_end_pfn)
7429 /* Get the start and end of the zone */
7430 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7431 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7432 adjust_zone_range_for_zone_movable(nid, zone_type,
7433 node_start_pfn, node_end_pfn,
7434 zone_start_pfn, zone_end_pfn);
7436 /* Check that this node has pages within the zone's required range */
7437 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7440 /* Move the zone boundaries inside the node if necessary */
7441 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7442 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7444 /* Return the spanned pages */
7445 return *zone_end_pfn - *zone_start_pfn;
7449 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7450 * then all holes in the requested range will be accounted for.
7452 unsigned long __init __absent_pages_in_range(int nid,
7453 unsigned long range_start_pfn,
7454 unsigned long range_end_pfn)
7456 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7457 unsigned long start_pfn, end_pfn;
7460 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7461 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7462 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7463 nr_absent -= end_pfn - start_pfn;
7469 * absent_pages_in_range - Return number of page frames in holes within a range
7470 * @start_pfn: The start PFN to start searching for holes
7471 * @end_pfn: The end PFN to stop searching for holes
7473 * Return: the number of pages frames in memory holes within a range.
7475 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7476 unsigned long end_pfn)
7478 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7481 /* Return the number of page frames in holes in a zone on a node */
7482 static unsigned long __init zone_absent_pages_in_node(int nid,
7483 unsigned long zone_type,
7484 unsigned long node_start_pfn,
7485 unsigned long node_end_pfn)
7487 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7488 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7489 unsigned long zone_start_pfn, zone_end_pfn;
7490 unsigned long nr_absent;
7492 /* When hotadd a new node from cpu_up(), the node should be empty */
7493 if (!node_start_pfn && !node_end_pfn)
7496 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7497 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7499 adjust_zone_range_for_zone_movable(nid, zone_type,
7500 node_start_pfn, node_end_pfn,
7501 &zone_start_pfn, &zone_end_pfn);
7502 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7505 * ZONE_MOVABLE handling.
7506 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7509 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7510 unsigned long start_pfn, end_pfn;
7511 struct memblock_region *r;
7513 for_each_mem_region(r) {
7514 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7515 zone_start_pfn, zone_end_pfn);
7516 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7517 zone_start_pfn, zone_end_pfn);
7519 if (zone_type == ZONE_MOVABLE &&
7520 memblock_is_mirror(r))
7521 nr_absent += end_pfn - start_pfn;
7523 if (zone_type == ZONE_NORMAL &&
7524 !memblock_is_mirror(r))
7525 nr_absent += end_pfn - start_pfn;
7532 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7533 unsigned long node_start_pfn,
7534 unsigned long node_end_pfn)
7536 unsigned long realtotalpages = 0, totalpages = 0;
7539 for (i = 0; i < MAX_NR_ZONES; i++) {
7540 struct zone *zone = pgdat->node_zones + i;
7541 unsigned long zone_start_pfn, zone_end_pfn;
7542 unsigned long spanned, absent;
7543 unsigned long size, real_size;
7545 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7550 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7555 real_size = size - absent;
7558 zone->zone_start_pfn = zone_start_pfn;
7560 zone->zone_start_pfn = 0;
7561 zone->spanned_pages = size;
7562 zone->present_pages = real_size;
7563 #if defined(CONFIG_MEMORY_HOTPLUG)
7564 zone->present_early_pages = real_size;
7568 realtotalpages += real_size;
7571 pgdat->node_spanned_pages = totalpages;
7572 pgdat->node_present_pages = realtotalpages;
7573 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7576 #ifndef CONFIG_SPARSEMEM
7578 * Calculate the size of the zone->blockflags rounded to an unsigned long
7579 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7580 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7581 * round what is now in bits to nearest long in bits, then return it in
7584 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7586 unsigned long usemapsize;
7588 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7589 usemapsize = roundup(zonesize, pageblock_nr_pages);
7590 usemapsize = usemapsize >> pageblock_order;
7591 usemapsize *= NR_PAGEBLOCK_BITS;
7592 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7594 return usemapsize / 8;
7597 static void __ref setup_usemap(struct zone *zone)
7599 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7600 zone->spanned_pages);
7601 zone->pageblock_flags = NULL;
7603 zone->pageblock_flags =
7604 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7606 if (!zone->pageblock_flags)
7607 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7608 usemapsize, zone->name, zone_to_nid(zone));
7612 static inline void setup_usemap(struct zone *zone) {}
7613 #endif /* CONFIG_SPARSEMEM */
7615 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7617 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7618 void __init set_pageblock_order(void)
7620 unsigned int order = MAX_ORDER - 1;
7622 /* Check that pageblock_nr_pages has not already been setup */
7623 if (pageblock_order)
7626 /* Don't let pageblocks exceed the maximum allocation granularity. */
7627 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7628 order = HUGETLB_PAGE_ORDER;
7631 * Assume the largest contiguous order of interest is a huge page.
7632 * This value may be variable depending on boot parameters on IA64 and
7635 pageblock_order = order;
7637 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7640 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7641 * is unused as pageblock_order is set at compile-time. See
7642 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7645 void __init set_pageblock_order(void)
7649 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7651 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7652 unsigned long present_pages)
7654 unsigned long pages = spanned_pages;
7657 * Provide a more accurate estimation if there are holes within
7658 * the zone and SPARSEMEM is in use. If there are holes within the
7659 * zone, each populated memory region may cost us one or two extra
7660 * memmap pages due to alignment because memmap pages for each
7661 * populated regions may not be naturally aligned on page boundary.
7662 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7664 if (spanned_pages > present_pages + (present_pages >> 4) &&
7665 IS_ENABLED(CONFIG_SPARSEMEM))
7666 pages = present_pages;
7668 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7672 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7674 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7676 spin_lock_init(&ds_queue->split_queue_lock);
7677 INIT_LIST_HEAD(&ds_queue->split_queue);
7678 ds_queue->split_queue_len = 0;
7681 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7684 #ifdef CONFIG_COMPACTION
7685 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7687 init_waitqueue_head(&pgdat->kcompactd_wait);
7690 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7693 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7697 pgdat_resize_init(pgdat);
7698 pgdat_kswapd_lock_init(pgdat);
7700 pgdat_init_split_queue(pgdat);
7701 pgdat_init_kcompactd(pgdat);
7703 init_waitqueue_head(&pgdat->kswapd_wait);
7704 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7706 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7707 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7709 pgdat_page_ext_init(pgdat);
7710 lruvec_init(&pgdat->__lruvec);
7713 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7714 unsigned long remaining_pages)
7716 atomic_long_set(&zone->managed_pages, remaining_pages);
7717 zone_set_nid(zone, nid);
7718 zone->name = zone_names[idx];
7719 zone->zone_pgdat = NODE_DATA(nid);
7720 spin_lock_init(&zone->lock);
7721 zone_seqlock_init(zone);
7722 zone_pcp_init(zone);
7726 * Set up the zone data structures
7727 * - init pgdat internals
7728 * - init all zones belonging to this node
7730 * NOTE: this function is only called during memory hotplug
7732 #ifdef CONFIG_MEMORY_HOTPLUG
7733 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7735 int nid = pgdat->node_id;
7739 pgdat_init_internals(pgdat);
7741 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7742 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7745 * Reset the nr_zones, order and highest_zoneidx before reuse.
7746 * Note that kswapd will init kswapd_highest_zoneidx properly
7747 * when it starts in the near future.
7749 pgdat->nr_zones = 0;
7750 pgdat->kswapd_order = 0;
7751 pgdat->kswapd_highest_zoneidx = 0;
7752 pgdat->node_start_pfn = 0;
7753 for_each_online_cpu(cpu) {
7754 struct per_cpu_nodestat *p;
7756 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7757 memset(p, 0, sizeof(*p));
7760 for (z = 0; z < MAX_NR_ZONES; z++)
7761 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7766 * Set up the zone data structures:
7767 * - mark all pages reserved
7768 * - mark all memory queues empty
7769 * - clear the memory bitmaps
7771 * NOTE: pgdat should get zeroed by caller.
7772 * NOTE: this function is only called during early init.
7774 static void __init free_area_init_core(struct pglist_data *pgdat)
7777 int nid = pgdat->node_id;
7779 pgdat_init_internals(pgdat);
7780 pgdat->per_cpu_nodestats = &boot_nodestats;
7782 for (j = 0; j < MAX_NR_ZONES; j++) {
7783 struct zone *zone = pgdat->node_zones + j;
7784 unsigned long size, freesize, memmap_pages;
7786 size = zone->spanned_pages;
7787 freesize = zone->present_pages;
7790 * Adjust freesize so that it accounts for how much memory
7791 * is used by this zone for memmap. This affects the watermark
7792 * and per-cpu initialisations
7794 memmap_pages = calc_memmap_size(size, freesize);
7795 if (!is_highmem_idx(j)) {
7796 if (freesize >= memmap_pages) {
7797 freesize -= memmap_pages;
7799 pr_debug(" %s zone: %lu pages used for memmap\n",
7800 zone_names[j], memmap_pages);
7802 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7803 zone_names[j], memmap_pages, freesize);
7806 /* Account for reserved pages */
7807 if (j == 0 && freesize > dma_reserve) {
7808 freesize -= dma_reserve;
7809 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7812 if (!is_highmem_idx(j))
7813 nr_kernel_pages += freesize;
7814 /* Charge for highmem memmap if there are enough kernel pages */
7815 else if (nr_kernel_pages > memmap_pages * 2)
7816 nr_kernel_pages -= memmap_pages;
7817 nr_all_pages += freesize;
7820 * Set an approximate value for lowmem here, it will be adjusted
7821 * when the bootmem allocator frees pages into the buddy system.
7822 * And all highmem pages will be managed by the buddy system.
7824 zone_init_internals(zone, j, nid, freesize);
7829 set_pageblock_order();
7831 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7835 #ifdef CONFIG_FLATMEM
7836 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7838 unsigned long __maybe_unused start = 0;
7839 unsigned long __maybe_unused offset = 0;
7841 /* Skip empty nodes */
7842 if (!pgdat->node_spanned_pages)
7845 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7846 offset = pgdat->node_start_pfn - start;
7847 /* ia64 gets its own node_mem_map, before this, without bootmem */
7848 if (!pgdat->node_mem_map) {
7849 unsigned long size, end;
7853 * The zone's endpoints aren't required to be MAX_ORDER
7854 * aligned but the node_mem_map endpoints must be in order
7855 * for the buddy allocator to function correctly.
7857 end = pgdat_end_pfn(pgdat);
7858 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7859 size = (end - start) * sizeof(struct page);
7860 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7861 pgdat->node_id, false);
7863 panic("Failed to allocate %ld bytes for node %d memory map\n",
7864 size, pgdat->node_id);
7865 pgdat->node_mem_map = map + offset;
7867 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7868 __func__, pgdat->node_id, (unsigned long)pgdat,
7869 (unsigned long)pgdat->node_mem_map);
7872 * With no DISCONTIG, the global mem_map is just set as node 0's
7874 if (pgdat == NODE_DATA(0)) {
7875 mem_map = NODE_DATA(0)->node_mem_map;
7876 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7882 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7883 #endif /* CONFIG_FLATMEM */
7885 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7886 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7888 pgdat->first_deferred_pfn = ULONG_MAX;
7891 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7894 static void __init free_area_init_node(int nid)
7896 pg_data_t *pgdat = NODE_DATA(nid);
7897 unsigned long start_pfn = 0;
7898 unsigned long end_pfn = 0;
7900 /* pg_data_t should be reset to zero when it's allocated */
7901 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7903 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7905 pgdat->node_id = nid;
7906 pgdat->node_start_pfn = start_pfn;
7907 pgdat->per_cpu_nodestats = NULL;
7909 if (start_pfn != end_pfn) {
7910 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7911 (u64)start_pfn << PAGE_SHIFT,
7912 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7914 pr_info("Initmem setup node %d as memoryless\n", nid);
7917 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7919 alloc_node_mem_map(pgdat);
7920 pgdat_set_deferred_range(pgdat);
7922 free_area_init_core(pgdat);
7925 static void __init free_area_init_memoryless_node(int nid)
7927 free_area_init_node(nid);
7930 #if MAX_NUMNODES > 1
7932 * Figure out the number of possible node ids.
7934 void __init setup_nr_node_ids(void)
7936 unsigned int highest;
7938 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7939 nr_node_ids = highest + 1;
7944 * node_map_pfn_alignment - determine the maximum internode alignment
7946 * This function should be called after node map is populated and sorted.
7947 * It calculates the maximum power of two alignment which can distinguish
7950 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7951 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7952 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7953 * shifted, 1GiB is enough and this function will indicate so.
7955 * This is used to test whether pfn -> nid mapping of the chosen memory
7956 * model has fine enough granularity to avoid incorrect mapping for the
7957 * populated node map.
7959 * Return: the determined alignment in pfn's. 0 if there is no alignment
7960 * requirement (single node).
7962 unsigned long __init node_map_pfn_alignment(void)
7964 unsigned long accl_mask = 0, last_end = 0;
7965 unsigned long start, end, mask;
7966 int last_nid = NUMA_NO_NODE;
7969 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7970 if (!start || last_nid < 0 || last_nid == nid) {
7977 * Start with a mask granular enough to pin-point to the
7978 * start pfn and tick off bits one-by-one until it becomes
7979 * too coarse to separate the current node from the last.
7981 mask = ~((1 << __ffs(start)) - 1);
7982 while (mask && last_end <= (start & (mask << 1)))
7985 /* accumulate all internode masks */
7989 /* convert mask to number of pages */
7990 return ~accl_mask + 1;
7994 * early_calculate_totalpages()
7995 * Sum pages in active regions for movable zone.
7996 * Populate N_MEMORY for calculating usable_nodes.
7998 static unsigned long __init early_calculate_totalpages(void)
8000 unsigned long totalpages = 0;
8001 unsigned long start_pfn, end_pfn;
8004 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8005 unsigned long pages = end_pfn - start_pfn;
8007 totalpages += pages;
8009 node_set_state(nid, N_MEMORY);
8015 * Find the PFN the Movable zone begins in each node. Kernel memory
8016 * is spread evenly between nodes as long as the nodes have enough
8017 * memory. When they don't, some nodes will have more kernelcore than
8020 static void __init find_zone_movable_pfns_for_nodes(void)
8023 unsigned long usable_startpfn;
8024 unsigned long kernelcore_node, kernelcore_remaining;
8025 /* save the state before borrow the nodemask */
8026 nodemask_t saved_node_state = node_states[N_MEMORY];
8027 unsigned long totalpages = early_calculate_totalpages();
8028 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8029 struct memblock_region *r;
8031 /* Need to find movable_zone earlier when movable_node is specified. */
8032 find_usable_zone_for_movable();
8035 * If movable_node is specified, ignore kernelcore and movablecore
8038 if (movable_node_is_enabled()) {
8039 for_each_mem_region(r) {
8040 if (!memblock_is_hotpluggable(r))
8043 nid = memblock_get_region_node(r);
8045 usable_startpfn = PFN_DOWN(r->base);
8046 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8047 min(usable_startpfn, zone_movable_pfn[nid]) :
8055 * If kernelcore=mirror is specified, ignore movablecore option
8057 if (mirrored_kernelcore) {
8058 bool mem_below_4gb_not_mirrored = false;
8060 for_each_mem_region(r) {
8061 if (memblock_is_mirror(r))
8064 nid = memblock_get_region_node(r);
8066 usable_startpfn = memblock_region_memory_base_pfn(r);
8068 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8069 mem_below_4gb_not_mirrored = true;
8073 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8074 min(usable_startpfn, zone_movable_pfn[nid]) :
8078 if (mem_below_4gb_not_mirrored)
8079 pr_warn("This configuration results in unmirrored kernel memory.\n");
8085 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8086 * amount of necessary memory.
8088 if (required_kernelcore_percent)
8089 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8091 if (required_movablecore_percent)
8092 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8096 * If movablecore= was specified, calculate what size of
8097 * kernelcore that corresponds so that memory usable for
8098 * any allocation type is evenly spread. If both kernelcore
8099 * and movablecore are specified, then the value of kernelcore
8100 * will be used for required_kernelcore if it's greater than
8101 * what movablecore would have allowed.
8103 if (required_movablecore) {
8104 unsigned long corepages;
8107 * Round-up so that ZONE_MOVABLE is at least as large as what
8108 * was requested by the user
8110 required_movablecore =
8111 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8112 required_movablecore = min(totalpages, required_movablecore);
8113 corepages = totalpages - required_movablecore;
8115 required_kernelcore = max(required_kernelcore, corepages);
8119 * If kernelcore was not specified or kernelcore size is larger
8120 * than totalpages, there is no ZONE_MOVABLE.
8122 if (!required_kernelcore || required_kernelcore >= totalpages)
8125 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8126 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8129 /* Spread kernelcore memory as evenly as possible throughout nodes */
8130 kernelcore_node = required_kernelcore / usable_nodes;
8131 for_each_node_state(nid, N_MEMORY) {
8132 unsigned long start_pfn, end_pfn;
8135 * Recalculate kernelcore_node if the division per node
8136 * now exceeds what is necessary to satisfy the requested
8137 * amount of memory for the kernel
8139 if (required_kernelcore < kernelcore_node)
8140 kernelcore_node = required_kernelcore / usable_nodes;
8143 * As the map is walked, we track how much memory is usable
8144 * by the kernel using kernelcore_remaining. When it is
8145 * 0, the rest of the node is usable by ZONE_MOVABLE
8147 kernelcore_remaining = kernelcore_node;
8149 /* Go through each range of PFNs within this node */
8150 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8151 unsigned long size_pages;
8153 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8154 if (start_pfn >= end_pfn)
8157 /* Account for what is only usable for kernelcore */
8158 if (start_pfn < usable_startpfn) {
8159 unsigned long kernel_pages;
8160 kernel_pages = min(end_pfn, usable_startpfn)
8163 kernelcore_remaining -= min(kernel_pages,
8164 kernelcore_remaining);
8165 required_kernelcore -= min(kernel_pages,
8166 required_kernelcore);
8168 /* Continue if range is now fully accounted */
8169 if (end_pfn <= usable_startpfn) {
8172 * Push zone_movable_pfn to the end so
8173 * that if we have to rebalance
8174 * kernelcore across nodes, we will
8175 * not double account here
8177 zone_movable_pfn[nid] = end_pfn;
8180 start_pfn = usable_startpfn;
8184 * The usable PFN range for ZONE_MOVABLE is from
8185 * start_pfn->end_pfn. Calculate size_pages as the
8186 * number of pages used as kernelcore
8188 size_pages = end_pfn - start_pfn;
8189 if (size_pages > kernelcore_remaining)
8190 size_pages = kernelcore_remaining;
8191 zone_movable_pfn[nid] = start_pfn + size_pages;
8194 * Some kernelcore has been met, update counts and
8195 * break if the kernelcore for this node has been
8198 required_kernelcore -= min(required_kernelcore,
8200 kernelcore_remaining -= size_pages;
8201 if (!kernelcore_remaining)
8207 * If there is still required_kernelcore, we do another pass with one
8208 * less node in the count. This will push zone_movable_pfn[nid] further
8209 * along on the nodes that still have memory until kernelcore is
8213 if (usable_nodes && required_kernelcore > usable_nodes)
8217 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8218 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8219 unsigned long start_pfn, end_pfn;
8221 zone_movable_pfn[nid] =
8222 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8224 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8225 if (zone_movable_pfn[nid] >= end_pfn)
8226 zone_movable_pfn[nid] = 0;
8230 /* restore the node_state */
8231 node_states[N_MEMORY] = saved_node_state;
8234 /* Any regular or high memory on that node ? */
8235 static void check_for_memory(pg_data_t *pgdat, int nid)
8237 enum zone_type zone_type;
8239 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8240 struct zone *zone = &pgdat->node_zones[zone_type];
8241 if (populated_zone(zone)) {
8242 if (IS_ENABLED(CONFIG_HIGHMEM))
8243 node_set_state(nid, N_HIGH_MEMORY);
8244 if (zone_type <= ZONE_NORMAL)
8245 node_set_state(nid, N_NORMAL_MEMORY);
8252 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8253 * such cases we allow max_zone_pfn sorted in the descending order
8255 bool __weak arch_has_descending_max_zone_pfns(void)
8261 * free_area_init - Initialise all pg_data_t and zone data
8262 * @max_zone_pfn: an array of max PFNs for each zone
8264 * This will call free_area_init_node() for each active node in the system.
8265 * Using the page ranges provided by memblock_set_node(), the size of each
8266 * zone in each node and their holes is calculated. If the maximum PFN
8267 * between two adjacent zones match, it is assumed that the zone is empty.
8268 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8269 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8270 * starts where the previous one ended. For example, ZONE_DMA32 starts
8271 * at arch_max_dma_pfn.
8273 void __init free_area_init(unsigned long *max_zone_pfn)
8275 unsigned long start_pfn, end_pfn;
8279 /* Record where the zone boundaries are */
8280 memset(arch_zone_lowest_possible_pfn, 0,
8281 sizeof(arch_zone_lowest_possible_pfn));
8282 memset(arch_zone_highest_possible_pfn, 0,
8283 sizeof(arch_zone_highest_possible_pfn));
8285 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8286 descending = arch_has_descending_max_zone_pfns();
8288 for (i = 0; i < MAX_NR_ZONES; i++) {
8290 zone = MAX_NR_ZONES - i - 1;
8294 if (zone == ZONE_MOVABLE)
8297 end_pfn = max(max_zone_pfn[zone], start_pfn);
8298 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8299 arch_zone_highest_possible_pfn[zone] = end_pfn;
8301 start_pfn = end_pfn;
8304 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8305 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8306 find_zone_movable_pfns_for_nodes();
8308 /* Print out the zone ranges */
8309 pr_info("Zone ranges:\n");
8310 for (i = 0; i < MAX_NR_ZONES; i++) {
8311 if (i == ZONE_MOVABLE)
8313 pr_info(" %-8s ", zone_names[i]);
8314 if (arch_zone_lowest_possible_pfn[i] ==
8315 arch_zone_highest_possible_pfn[i])
8318 pr_cont("[mem %#018Lx-%#018Lx]\n",
8319 (u64)arch_zone_lowest_possible_pfn[i]
8321 ((u64)arch_zone_highest_possible_pfn[i]
8322 << PAGE_SHIFT) - 1);
8325 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8326 pr_info("Movable zone start for each node\n");
8327 for (i = 0; i < MAX_NUMNODES; i++) {
8328 if (zone_movable_pfn[i])
8329 pr_info(" Node %d: %#018Lx\n", i,
8330 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8334 * Print out the early node map, and initialize the
8335 * subsection-map relative to active online memory ranges to
8336 * enable future "sub-section" extensions of the memory map.
8338 pr_info("Early memory node ranges\n");
8339 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8340 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8341 (u64)start_pfn << PAGE_SHIFT,
8342 ((u64)end_pfn << PAGE_SHIFT) - 1);
8343 subsection_map_init(start_pfn, end_pfn - start_pfn);
8346 /* Initialise every node */
8347 mminit_verify_pageflags_layout();
8348 setup_nr_node_ids();
8349 for_each_node(nid) {
8352 if (!node_online(nid)) {
8353 pr_info("Initializing node %d as memoryless\n", nid);
8355 /* Allocator not initialized yet */
8356 pgdat = arch_alloc_nodedata(nid);
8358 pr_err("Cannot allocate %zuB for node %d.\n",
8359 sizeof(*pgdat), nid);
8362 arch_refresh_nodedata(nid, pgdat);
8363 free_area_init_memoryless_node(nid);
8366 * We do not want to confuse userspace by sysfs
8367 * files/directories for node without any memory
8368 * attached to it, so this node is not marked as
8369 * N_MEMORY and not marked online so that no sysfs
8370 * hierarchy will be created via register_one_node for
8371 * it. The pgdat will get fully initialized by
8372 * hotadd_init_pgdat() when memory is hotplugged into
8378 pgdat = NODE_DATA(nid);
8379 free_area_init_node(nid);
8381 /* Any memory on that node */
8382 if (pgdat->node_present_pages)
8383 node_set_state(nid, N_MEMORY);
8384 check_for_memory(pgdat, nid);
8390 static int __init cmdline_parse_core(char *p, unsigned long *core,
8391 unsigned long *percent)
8393 unsigned long long coremem;
8399 /* Value may be a percentage of total memory, otherwise bytes */
8400 coremem = simple_strtoull(p, &endptr, 0);
8401 if (*endptr == '%') {
8402 /* Paranoid check for percent values greater than 100 */
8403 WARN_ON(coremem > 100);
8407 coremem = memparse(p, &p);
8408 /* Paranoid check that UL is enough for the coremem value */
8409 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8411 *core = coremem >> PAGE_SHIFT;
8418 * kernelcore=size sets the amount of memory for use for allocations that
8419 * cannot be reclaimed or migrated.
8421 static int __init cmdline_parse_kernelcore(char *p)
8423 /* parse kernelcore=mirror */
8424 if (parse_option_str(p, "mirror")) {
8425 mirrored_kernelcore = true;
8429 return cmdline_parse_core(p, &required_kernelcore,
8430 &required_kernelcore_percent);
8434 * movablecore=size sets the amount of memory for use for allocations that
8435 * can be reclaimed or migrated.
8437 static int __init cmdline_parse_movablecore(char *p)
8439 return cmdline_parse_core(p, &required_movablecore,
8440 &required_movablecore_percent);
8443 early_param("kernelcore", cmdline_parse_kernelcore);
8444 early_param("movablecore", cmdline_parse_movablecore);
8446 void adjust_managed_page_count(struct page *page, long count)
8448 atomic_long_add(count, &page_zone(page)->managed_pages);
8449 totalram_pages_add(count);
8450 #ifdef CONFIG_HIGHMEM
8451 if (PageHighMem(page))
8452 totalhigh_pages_add(count);
8455 EXPORT_SYMBOL(adjust_managed_page_count);
8457 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8460 unsigned long pages = 0;
8462 start = (void *)PAGE_ALIGN((unsigned long)start);
8463 end = (void *)((unsigned long)end & PAGE_MASK);
8464 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8465 struct page *page = virt_to_page(pos);
8466 void *direct_map_addr;
8469 * 'direct_map_addr' might be different from 'pos'
8470 * because some architectures' virt_to_page()
8471 * work with aliases. Getting the direct map
8472 * address ensures that we get a _writeable_
8473 * alias for the memset().
8475 direct_map_addr = page_address(page);
8477 * Perform a kasan-unchecked memset() since this memory
8478 * has not been initialized.
8480 direct_map_addr = kasan_reset_tag(direct_map_addr);
8481 if ((unsigned int)poison <= 0xFF)
8482 memset(direct_map_addr, poison, PAGE_SIZE);
8484 free_reserved_page(page);
8488 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8493 void __init mem_init_print_info(void)
8495 unsigned long physpages, codesize, datasize, rosize, bss_size;
8496 unsigned long init_code_size, init_data_size;
8498 physpages = get_num_physpages();
8499 codesize = _etext - _stext;
8500 datasize = _edata - _sdata;
8501 rosize = __end_rodata - __start_rodata;
8502 bss_size = __bss_stop - __bss_start;
8503 init_data_size = __init_end - __init_begin;
8504 init_code_size = _einittext - _sinittext;
8507 * Detect special cases and adjust section sizes accordingly:
8508 * 1) .init.* may be embedded into .data sections
8509 * 2) .init.text.* may be out of [__init_begin, __init_end],
8510 * please refer to arch/tile/kernel/vmlinux.lds.S.
8511 * 3) .rodata.* may be embedded into .text or .data sections.
8513 #define adj_init_size(start, end, size, pos, adj) \
8515 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8519 adj_init_size(__init_begin, __init_end, init_data_size,
8520 _sinittext, init_code_size);
8521 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8522 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8523 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8524 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8526 #undef adj_init_size
8528 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8529 #ifdef CONFIG_HIGHMEM
8533 K(nr_free_pages()), K(physpages),
8534 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8535 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8536 K(physpages - totalram_pages() - totalcma_pages),
8538 #ifdef CONFIG_HIGHMEM
8539 , K(totalhigh_pages())
8545 * set_dma_reserve - set the specified number of pages reserved in the first zone
8546 * @new_dma_reserve: The number of pages to mark reserved
8548 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8549 * In the DMA zone, a significant percentage may be consumed by kernel image
8550 * and other unfreeable allocations which can skew the watermarks badly. This
8551 * function may optionally be used to account for unfreeable pages in the
8552 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8553 * smaller per-cpu batchsize.
8555 void __init set_dma_reserve(unsigned long new_dma_reserve)
8557 dma_reserve = new_dma_reserve;
8560 static int page_alloc_cpu_dead(unsigned int cpu)
8564 lru_add_drain_cpu(cpu);
8565 mlock_page_drain_remote(cpu);
8569 * Spill the event counters of the dead processor
8570 * into the current processors event counters.
8571 * This artificially elevates the count of the current
8574 vm_events_fold_cpu(cpu);
8577 * Zero the differential counters of the dead processor
8578 * so that the vm statistics are consistent.
8580 * This is only okay since the processor is dead and cannot
8581 * race with what we are doing.
8583 cpu_vm_stats_fold(cpu);
8585 for_each_populated_zone(zone)
8586 zone_pcp_update(zone, 0);
8591 static int page_alloc_cpu_online(unsigned int cpu)
8595 for_each_populated_zone(zone)
8596 zone_pcp_update(zone, 1);
8601 int hashdist = HASHDIST_DEFAULT;
8603 static int __init set_hashdist(char *str)
8607 hashdist = simple_strtoul(str, &str, 0);
8610 __setup("hashdist=", set_hashdist);
8613 void __init page_alloc_init(void)
8618 if (num_node_state(N_MEMORY) == 1)
8622 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8623 "mm/page_alloc:pcp",
8624 page_alloc_cpu_online,
8625 page_alloc_cpu_dead);
8630 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8631 * or min_free_kbytes changes.
8633 static void calculate_totalreserve_pages(void)
8635 struct pglist_data *pgdat;
8636 unsigned long reserve_pages = 0;
8637 enum zone_type i, j;
8639 for_each_online_pgdat(pgdat) {
8641 pgdat->totalreserve_pages = 0;
8643 for (i = 0; i < MAX_NR_ZONES; i++) {
8644 struct zone *zone = pgdat->node_zones + i;
8646 unsigned long managed_pages = zone_managed_pages(zone);
8648 /* Find valid and maximum lowmem_reserve in the zone */
8649 for (j = i; j < MAX_NR_ZONES; j++) {
8650 if (zone->lowmem_reserve[j] > max)
8651 max = zone->lowmem_reserve[j];
8654 /* we treat the high watermark as reserved pages. */
8655 max += high_wmark_pages(zone);
8657 if (max > managed_pages)
8658 max = managed_pages;
8660 pgdat->totalreserve_pages += max;
8662 reserve_pages += max;
8665 totalreserve_pages = reserve_pages;
8669 * setup_per_zone_lowmem_reserve - called whenever
8670 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8671 * has a correct pages reserved value, so an adequate number of
8672 * pages are left in the zone after a successful __alloc_pages().
8674 static void setup_per_zone_lowmem_reserve(void)
8676 struct pglist_data *pgdat;
8677 enum zone_type i, j;
8679 for_each_online_pgdat(pgdat) {
8680 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8681 struct zone *zone = &pgdat->node_zones[i];
8682 int ratio = sysctl_lowmem_reserve_ratio[i];
8683 bool clear = !ratio || !zone_managed_pages(zone);
8684 unsigned long managed_pages = 0;
8686 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8687 struct zone *upper_zone = &pgdat->node_zones[j];
8689 managed_pages += zone_managed_pages(upper_zone);
8692 zone->lowmem_reserve[j] = 0;
8694 zone->lowmem_reserve[j] = managed_pages / ratio;
8699 /* update totalreserve_pages */
8700 calculate_totalreserve_pages();
8703 static void __setup_per_zone_wmarks(void)
8705 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8706 unsigned long lowmem_pages = 0;
8708 unsigned long flags;
8710 /* Calculate total number of !ZONE_HIGHMEM pages */
8711 for_each_zone(zone) {
8712 if (!is_highmem(zone))
8713 lowmem_pages += zone_managed_pages(zone);
8716 for_each_zone(zone) {
8719 spin_lock_irqsave(&zone->lock, flags);
8720 tmp = (u64)pages_min * zone_managed_pages(zone);
8721 do_div(tmp, lowmem_pages);
8722 if (is_highmem(zone)) {
8724 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8725 * need highmem pages, so cap pages_min to a small
8728 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8729 * deltas control async page reclaim, and so should
8730 * not be capped for highmem.
8732 unsigned long min_pages;
8734 min_pages = zone_managed_pages(zone) / 1024;
8735 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8736 zone->_watermark[WMARK_MIN] = min_pages;
8739 * If it's a lowmem zone, reserve a number of pages
8740 * proportionate to the zone's size.
8742 zone->_watermark[WMARK_MIN] = tmp;
8746 * Set the kswapd watermarks distance according to the
8747 * scale factor in proportion to available memory, but
8748 * ensure a minimum size on small systems.
8750 tmp = max_t(u64, tmp >> 2,
8751 mult_frac(zone_managed_pages(zone),
8752 watermark_scale_factor, 10000));
8754 zone->watermark_boost = 0;
8755 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8756 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8757 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8759 spin_unlock_irqrestore(&zone->lock, flags);
8762 /* update totalreserve_pages */
8763 calculate_totalreserve_pages();
8767 * setup_per_zone_wmarks - called when min_free_kbytes changes
8768 * or when memory is hot-{added|removed}
8770 * Ensures that the watermark[min,low,high] values for each zone are set
8771 * correctly with respect to min_free_kbytes.
8773 void setup_per_zone_wmarks(void)
8776 static DEFINE_SPINLOCK(lock);
8779 __setup_per_zone_wmarks();
8783 * The watermark size have changed so update the pcpu batch
8784 * and high limits or the limits may be inappropriate.
8787 zone_pcp_update(zone, 0);
8791 * Initialise min_free_kbytes.
8793 * For small machines we want it small (128k min). For large machines
8794 * we want it large (256MB max). But it is not linear, because network
8795 * bandwidth does not increase linearly with machine size. We use
8797 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8798 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8814 void calculate_min_free_kbytes(void)
8816 unsigned long lowmem_kbytes;
8817 int new_min_free_kbytes;
8819 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8820 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8822 if (new_min_free_kbytes > user_min_free_kbytes)
8823 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8825 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8826 new_min_free_kbytes, user_min_free_kbytes);
8830 int __meminit init_per_zone_wmark_min(void)
8832 calculate_min_free_kbytes();
8833 setup_per_zone_wmarks();
8834 refresh_zone_stat_thresholds();
8835 setup_per_zone_lowmem_reserve();
8838 setup_min_unmapped_ratio();
8839 setup_min_slab_ratio();
8842 khugepaged_min_free_kbytes_update();
8846 postcore_initcall(init_per_zone_wmark_min)
8849 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8850 * that we can call two helper functions whenever min_free_kbytes
8853 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8854 void *buffer, size_t *length, loff_t *ppos)
8858 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8863 user_min_free_kbytes = min_free_kbytes;
8864 setup_per_zone_wmarks();
8869 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8870 void *buffer, size_t *length, loff_t *ppos)
8874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8879 setup_per_zone_wmarks();
8885 static void setup_min_unmapped_ratio(void)
8890 for_each_online_pgdat(pgdat)
8891 pgdat->min_unmapped_pages = 0;
8894 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8895 sysctl_min_unmapped_ratio) / 100;
8899 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8900 void *buffer, size_t *length, loff_t *ppos)
8904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8908 setup_min_unmapped_ratio();
8913 static void setup_min_slab_ratio(void)
8918 for_each_online_pgdat(pgdat)
8919 pgdat->min_slab_pages = 0;
8922 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8923 sysctl_min_slab_ratio) / 100;
8926 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8927 void *buffer, size_t *length, loff_t *ppos)
8931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8935 setup_min_slab_ratio();
8942 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8943 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8944 * whenever sysctl_lowmem_reserve_ratio changes.
8946 * The reserve ratio obviously has absolutely no relation with the
8947 * minimum watermarks. The lowmem reserve ratio can only make sense
8948 * if in function of the boot time zone sizes.
8950 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8951 void *buffer, size_t *length, loff_t *ppos)
8955 proc_dointvec_minmax(table, write, buffer, length, ppos);
8957 for (i = 0; i < MAX_NR_ZONES; i++) {
8958 if (sysctl_lowmem_reserve_ratio[i] < 1)
8959 sysctl_lowmem_reserve_ratio[i] = 0;
8962 setup_per_zone_lowmem_reserve();
8967 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8968 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8969 * pagelist can have before it gets flushed back to buddy allocator.
8971 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8972 int write, void *buffer, size_t *length, loff_t *ppos)
8975 int old_percpu_pagelist_high_fraction;
8978 mutex_lock(&pcp_batch_high_lock);
8979 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8981 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8982 if (!write || ret < 0)
8985 /* Sanity checking to avoid pcp imbalance */
8986 if (percpu_pagelist_high_fraction &&
8987 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8988 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8994 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8997 for_each_populated_zone(zone)
8998 zone_set_pageset_high_and_batch(zone, 0);
9000 mutex_unlock(&pcp_batch_high_lock);
9004 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9006 * Returns the number of pages that arch has reserved but
9007 * is not known to alloc_large_system_hash().
9009 static unsigned long __init arch_reserved_kernel_pages(void)
9016 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9017 * machines. As memory size is increased the scale is also increased but at
9018 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9019 * quadruples the scale is increased by one, which means the size of hash table
9020 * only doubles, instead of quadrupling as well.
9021 * Because 32-bit systems cannot have large physical memory, where this scaling
9022 * makes sense, it is disabled on such platforms.
9024 #if __BITS_PER_LONG > 32
9025 #define ADAPT_SCALE_BASE (64ul << 30)
9026 #define ADAPT_SCALE_SHIFT 2
9027 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9031 * allocate a large system hash table from bootmem
9032 * - it is assumed that the hash table must contain an exact power-of-2
9033 * quantity of entries
9034 * - limit is the number of hash buckets, not the total allocation size
9036 void *__init alloc_large_system_hash(const char *tablename,
9037 unsigned long bucketsize,
9038 unsigned long numentries,
9041 unsigned int *_hash_shift,
9042 unsigned int *_hash_mask,
9043 unsigned long low_limit,
9044 unsigned long high_limit)
9046 unsigned long long max = high_limit;
9047 unsigned long log2qty, size;
9053 /* allow the kernel cmdline to have a say */
9055 /* round applicable memory size up to nearest megabyte */
9056 numentries = nr_kernel_pages;
9057 numentries -= arch_reserved_kernel_pages();
9059 /* It isn't necessary when PAGE_SIZE >= 1MB */
9060 if (PAGE_SIZE < SZ_1M)
9061 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9063 #if __BITS_PER_LONG > 32
9065 unsigned long adapt;
9067 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9068 adapt <<= ADAPT_SCALE_SHIFT)
9073 /* limit to 1 bucket per 2^scale bytes of low memory */
9074 if (scale > PAGE_SHIFT)
9075 numentries >>= (scale - PAGE_SHIFT);
9077 numentries <<= (PAGE_SHIFT - scale);
9079 /* Make sure we've got at least a 0-order allocation.. */
9080 if (unlikely(flags & HASH_SMALL)) {
9081 /* Makes no sense without HASH_EARLY */
9082 WARN_ON(!(flags & HASH_EARLY));
9083 if (!(numentries >> *_hash_shift)) {
9084 numentries = 1UL << *_hash_shift;
9085 BUG_ON(!numentries);
9087 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9088 numentries = PAGE_SIZE / bucketsize;
9090 numentries = roundup_pow_of_two(numentries);
9092 /* limit allocation size to 1/16 total memory by default */
9094 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9095 do_div(max, bucketsize);
9097 max = min(max, 0x80000000ULL);
9099 if (numentries < low_limit)
9100 numentries = low_limit;
9101 if (numentries > max)
9104 log2qty = ilog2(numentries);
9106 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9109 size = bucketsize << log2qty;
9110 if (flags & HASH_EARLY) {
9111 if (flags & HASH_ZERO)
9112 table = memblock_alloc(size, SMP_CACHE_BYTES);
9114 table = memblock_alloc_raw(size,
9116 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9117 table = vmalloc_huge(size, gfp_flags);
9120 huge = is_vm_area_hugepages(table);
9123 * If bucketsize is not a power-of-two, we may free
9124 * some pages at the end of hash table which
9125 * alloc_pages_exact() automatically does
9127 table = alloc_pages_exact(size, gfp_flags);
9128 kmemleak_alloc(table, size, 1, gfp_flags);
9130 } while (!table && size > PAGE_SIZE && --log2qty);
9133 panic("Failed to allocate %s hash table\n", tablename);
9135 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9136 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9137 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9140 *_hash_shift = log2qty;
9142 *_hash_mask = (1 << log2qty) - 1;
9147 #ifdef CONFIG_CONTIG_ALLOC
9148 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9149 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9150 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9151 static void alloc_contig_dump_pages(struct list_head *page_list)
9153 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9155 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9159 list_for_each_entry(page, page_list, lru)
9160 dump_page(page, "migration failure");
9164 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9169 /* [start, end) must belong to a single zone. */
9170 int __alloc_contig_migrate_range(struct compact_control *cc,
9171 unsigned long start, unsigned long end)
9173 /* This function is based on compact_zone() from compaction.c. */
9174 unsigned int nr_reclaimed;
9175 unsigned long pfn = start;
9176 unsigned int tries = 0;
9178 struct migration_target_control mtc = {
9179 .nid = zone_to_nid(cc->zone),
9180 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9183 lru_cache_disable();
9185 while (pfn < end || !list_empty(&cc->migratepages)) {
9186 if (fatal_signal_pending(current)) {
9191 if (list_empty(&cc->migratepages)) {
9192 cc->nr_migratepages = 0;
9193 ret = isolate_migratepages_range(cc, pfn, end);
9194 if (ret && ret != -EAGAIN)
9196 pfn = cc->migrate_pfn;
9198 } else if (++tries == 5) {
9203 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9205 cc->nr_migratepages -= nr_reclaimed;
9207 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9208 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9211 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9212 * to retry again over this error, so do the same here.
9220 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9221 alloc_contig_dump_pages(&cc->migratepages);
9222 putback_movable_pages(&cc->migratepages);
9229 * alloc_contig_range() -- tries to allocate given range of pages
9230 * @start: start PFN to allocate
9231 * @end: one-past-the-last PFN to allocate
9232 * @migratetype: migratetype of the underlying pageblocks (either
9233 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9234 * in range must have the same migratetype and it must
9235 * be either of the two.
9236 * @gfp_mask: GFP mask to use during compaction
9238 * The PFN range does not have to be pageblock aligned. The PFN range must
9239 * belong to a single zone.
9241 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9242 * pageblocks in the range. Once isolated, the pageblocks should not
9243 * be modified by others.
9245 * Return: zero on success or negative error code. On success all
9246 * pages which PFN is in [start, end) are allocated for the caller and
9247 * need to be freed with free_contig_range().
9249 int alloc_contig_range(unsigned long start, unsigned long end,
9250 unsigned migratetype, gfp_t gfp_mask)
9252 unsigned long outer_start, outer_end;
9256 struct compact_control cc = {
9257 .nr_migratepages = 0,
9259 .zone = page_zone(pfn_to_page(start)),
9260 .mode = MIGRATE_SYNC,
9261 .ignore_skip_hint = true,
9262 .no_set_skip_hint = true,
9263 .gfp_mask = current_gfp_context(gfp_mask),
9264 .alloc_contig = true,
9266 INIT_LIST_HEAD(&cc.migratepages);
9269 * What we do here is we mark all pageblocks in range as
9270 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9271 * have different sizes, and due to the way page allocator
9272 * work, start_isolate_page_range() has special handlings for this.
9274 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9275 * migrate the pages from an unaligned range (ie. pages that
9276 * we are interested in). This will put all the pages in
9277 * range back to page allocator as MIGRATE_ISOLATE.
9279 * When this is done, we take the pages in range from page
9280 * allocator removing them from the buddy system. This way
9281 * page allocator will never consider using them.
9283 * This lets us mark the pageblocks back as
9284 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9285 * aligned range but not in the unaligned, original range are
9286 * put back to page allocator so that buddy can use them.
9289 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9293 drain_all_pages(cc.zone);
9296 * In case of -EBUSY, we'd like to know which page causes problem.
9297 * So, just fall through. test_pages_isolated() has a tracepoint
9298 * which will report the busy page.
9300 * It is possible that busy pages could become available before
9301 * the call to test_pages_isolated, and the range will actually be
9302 * allocated. So, if we fall through be sure to clear ret so that
9303 * -EBUSY is not accidentally used or returned to caller.
9305 ret = __alloc_contig_migrate_range(&cc, start, end);
9306 if (ret && ret != -EBUSY)
9311 * Pages from [start, end) are within a pageblock_nr_pages
9312 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9313 * more, all pages in [start, end) are free in page allocator.
9314 * What we are going to do is to allocate all pages from
9315 * [start, end) (that is remove them from page allocator).
9317 * The only problem is that pages at the beginning and at the
9318 * end of interesting range may be not aligned with pages that
9319 * page allocator holds, ie. they can be part of higher order
9320 * pages. Because of this, we reserve the bigger range and
9321 * once this is done free the pages we are not interested in.
9323 * We don't have to hold zone->lock here because the pages are
9324 * isolated thus they won't get removed from buddy.
9328 outer_start = start;
9329 while (!PageBuddy(pfn_to_page(outer_start))) {
9330 if (++order >= MAX_ORDER) {
9331 outer_start = start;
9334 outer_start &= ~0UL << order;
9337 if (outer_start != start) {
9338 order = buddy_order(pfn_to_page(outer_start));
9341 * outer_start page could be small order buddy page and
9342 * it doesn't include start page. Adjust outer_start
9343 * in this case to report failed page properly
9344 * on tracepoint in test_pages_isolated()
9346 if (outer_start + (1UL << order) <= start)
9347 outer_start = start;
9350 /* Make sure the range is really isolated. */
9351 if (test_pages_isolated(outer_start, end, 0)) {
9356 /* Grab isolated pages from freelists. */
9357 outer_end = isolate_freepages_range(&cc, outer_start, end);
9363 /* Free head and tail (if any) */
9364 if (start != outer_start)
9365 free_contig_range(outer_start, start - outer_start);
9366 if (end != outer_end)
9367 free_contig_range(end, outer_end - end);
9370 undo_isolate_page_range(start, end, migratetype);
9373 EXPORT_SYMBOL(alloc_contig_range);
9375 static int __alloc_contig_pages(unsigned long start_pfn,
9376 unsigned long nr_pages, gfp_t gfp_mask)
9378 unsigned long end_pfn = start_pfn + nr_pages;
9380 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9384 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9385 unsigned long nr_pages)
9387 unsigned long i, end_pfn = start_pfn + nr_pages;
9390 for (i = start_pfn; i < end_pfn; i++) {
9391 page = pfn_to_online_page(i);
9395 if (page_zone(page) != z)
9398 if (PageReserved(page))
9404 static bool zone_spans_last_pfn(const struct zone *zone,
9405 unsigned long start_pfn, unsigned long nr_pages)
9407 unsigned long last_pfn = start_pfn + nr_pages - 1;
9409 return zone_spans_pfn(zone, last_pfn);
9413 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9414 * @nr_pages: Number of contiguous pages to allocate
9415 * @gfp_mask: GFP mask to limit search and used during compaction
9417 * @nodemask: Mask for other possible nodes
9419 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9420 * on an applicable zonelist to find a contiguous pfn range which can then be
9421 * tried for allocation with alloc_contig_range(). This routine is intended
9422 * for allocation requests which can not be fulfilled with the buddy allocator.
9424 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9425 * power of two, then allocated range is also guaranteed to be aligned to same
9426 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9428 * Allocated pages can be freed with free_contig_range() or by manually calling
9429 * __free_page() on each allocated page.
9431 * Return: pointer to contiguous pages on success, or NULL if not successful.
9433 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9434 int nid, nodemask_t *nodemask)
9436 unsigned long ret, pfn, flags;
9437 struct zonelist *zonelist;
9441 zonelist = node_zonelist(nid, gfp_mask);
9442 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9443 gfp_zone(gfp_mask), nodemask) {
9444 spin_lock_irqsave(&zone->lock, flags);
9446 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9447 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9448 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9450 * We release the zone lock here because
9451 * alloc_contig_range() will also lock the zone
9452 * at some point. If there's an allocation
9453 * spinning on this lock, it may win the race
9454 * and cause alloc_contig_range() to fail...
9456 spin_unlock_irqrestore(&zone->lock, flags);
9457 ret = __alloc_contig_pages(pfn, nr_pages,
9460 return pfn_to_page(pfn);
9461 spin_lock_irqsave(&zone->lock, flags);
9465 spin_unlock_irqrestore(&zone->lock, flags);
9469 #endif /* CONFIG_CONTIG_ALLOC */
9471 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9473 unsigned long count = 0;
9475 for (; nr_pages--; pfn++) {
9476 struct page *page = pfn_to_page(pfn);
9478 count += page_count(page) != 1;
9481 WARN(count != 0, "%lu pages are still in use!\n", count);
9483 EXPORT_SYMBOL(free_contig_range);
9486 * Effectively disable pcplists for the zone by setting the high limit to 0
9487 * and draining all cpus. A concurrent page freeing on another CPU that's about
9488 * to put the page on pcplist will either finish before the drain and the page
9489 * will be drained, or observe the new high limit and skip the pcplist.
9491 * Must be paired with a call to zone_pcp_enable().
9493 void zone_pcp_disable(struct zone *zone)
9495 mutex_lock(&pcp_batch_high_lock);
9496 __zone_set_pageset_high_and_batch(zone, 0, 1);
9497 __drain_all_pages(zone, true);
9500 void zone_pcp_enable(struct zone *zone)
9502 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9503 mutex_unlock(&pcp_batch_high_lock);
9506 void zone_pcp_reset(struct zone *zone)
9509 struct per_cpu_zonestat *pzstats;
9511 if (zone->per_cpu_pageset != &boot_pageset) {
9512 for_each_online_cpu(cpu) {
9513 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9514 drain_zonestat(zone, pzstats);
9516 free_percpu(zone->per_cpu_pageset);
9517 zone->per_cpu_pageset = &boot_pageset;
9518 if (zone->per_cpu_zonestats != &boot_zonestats) {
9519 free_percpu(zone->per_cpu_zonestats);
9520 zone->per_cpu_zonestats = &boot_zonestats;
9525 #ifdef CONFIG_MEMORY_HOTREMOVE
9527 * All pages in the range must be in a single zone, must not contain holes,
9528 * must span full sections, and must be isolated before calling this function.
9530 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9532 unsigned long pfn = start_pfn;
9536 unsigned long flags;
9538 offline_mem_sections(pfn, end_pfn);
9539 zone = page_zone(pfn_to_page(pfn));
9540 spin_lock_irqsave(&zone->lock, flags);
9541 while (pfn < end_pfn) {
9542 page = pfn_to_page(pfn);
9544 * The HWPoisoned page may be not in buddy system, and
9545 * page_count() is not 0.
9547 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9552 * At this point all remaining PageOffline() pages have a
9553 * reference count of 0 and can simply be skipped.
9555 if (PageOffline(page)) {
9556 BUG_ON(page_count(page));
9557 BUG_ON(PageBuddy(page));
9562 BUG_ON(page_count(page));
9563 BUG_ON(!PageBuddy(page));
9564 order = buddy_order(page);
9565 del_page_from_free_list(page, zone, order);
9566 pfn += (1 << order);
9568 spin_unlock_irqrestore(&zone->lock, flags);
9573 * This function returns a stable result only if called under zone lock.
9575 bool is_free_buddy_page(struct page *page)
9577 unsigned long pfn = page_to_pfn(page);
9580 for (order = 0; order < MAX_ORDER; order++) {
9581 struct page *page_head = page - (pfn & ((1 << order) - 1));
9583 if (PageBuddy(page_head) &&
9584 buddy_order_unsafe(page_head) >= order)
9588 return order < MAX_ORDER;
9590 EXPORT_SYMBOL(is_free_buddy_page);
9592 #ifdef CONFIG_MEMORY_FAILURE
9594 * Break down a higher-order page in sub-pages, and keep our target out of
9597 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9598 struct page *target, int low, int high,
9601 unsigned long size = 1 << high;
9602 struct page *current_buddy, *next_page;
9604 while (high > low) {
9608 if (target >= &page[size]) {
9609 next_page = page + size;
9610 current_buddy = page;
9613 current_buddy = page + size;
9616 if (set_page_guard(zone, current_buddy, high, migratetype))
9619 if (current_buddy != target) {
9620 add_to_free_list(current_buddy, zone, high, migratetype);
9621 set_buddy_order(current_buddy, high);
9628 * Take a page that will be marked as poisoned off the buddy allocator.
9630 bool take_page_off_buddy(struct page *page)
9632 struct zone *zone = page_zone(page);
9633 unsigned long pfn = page_to_pfn(page);
9634 unsigned long flags;
9638 spin_lock_irqsave(&zone->lock, flags);
9639 for (order = 0; order < MAX_ORDER; order++) {
9640 struct page *page_head = page - (pfn & ((1 << order) - 1));
9641 int page_order = buddy_order(page_head);
9643 if (PageBuddy(page_head) && page_order >= order) {
9644 unsigned long pfn_head = page_to_pfn(page_head);
9645 int migratetype = get_pfnblock_migratetype(page_head,
9648 del_page_from_free_list(page_head, zone, page_order);
9649 break_down_buddy_pages(zone, page_head, page, 0,
9650 page_order, migratetype);
9651 SetPageHWPoisonTakenOff(page);
9652 if (!is_migrate_isolate(migratetype))
9653 __mod_zone_freepage_state(zone, -1, migratetype);
9657 if (page_count(page_head) > 0)
9660 spin_unlock_irqrestore(&zone->lock, flags);
9665 * Cancel takeoff done by take_page_off_buddy().
9667 bool put_page_back_buddy(struct page *page)
9669 struct zone *zone = page_zone(page);
9670 unsigned long pfn = page_to_pfn(page);
9671 unsigned long flags;
9672 int migratetype = get_pfnblock_migratetype(page, pfn);
9675 spin_lock_irqsave(&zone->lock, flags);
9676 if (put_page_testzero(page)) {
9677 ClearPageHWPoisonTakenOff(page);
9678 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9679 if (TestClearPageHWPoison(page)) {
9683 spin_unlock_irqrestore(&zone->lock, flags);
9689 #ifdef CONFIG_ZONE_DMA
9690 bool has_managed_dma(void)
9692 struct pglist_data *pgdat;
9694 for_each_online_pgdat(pgdat) {
9695 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9697 if (managed_zone(zone))
9702 #endif /* CONFIG_ZONE_DMA */