2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
96 [N_CPU] = { { [0] = 1UL } },
99 EXPORT_SYMBOL(node_states);
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
109 unsigned long dirty_balance_reserve __read_mostly;
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114 #ifdef CONFIG_PM_SLEEP
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
124 static gfp_t saved_gfp_mask;
126 void pm_restore_gfp_mask(void)
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
135 void pm_restrict_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
143 bool pm_suspended_storage(void)
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
149 #endif /* CONFIG_PM_SLEEP */
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
155 static void __free_pages_ok(struct page *page, unsigned int order);
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
172 #ifdef CONFIG_ZONE_DMA32
175 #ifdef CONFIG_HIGHMEM
181 EXPORT_SYMBOL(totalram_pages);
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
187 #ifdef CONFIG_ZONE_DMA32
191 #ifdef CONFIG_HIGHMEM
197 int min_free_kbytes = 1024;
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
222 int page_group_by_mobility_disabled __read_mostly;
224 void set_pageblock_migratetype(struct page *page, int migratetype)
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
234 bool oom_killer_disabled __read_mostly;
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 unsigned long pfn = page_to_pfn(page);
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 else if (pfn < zone->zone_start_pfn)
249 } while (zone_span_seqretry(zone, seq));
254 static int page_is_consistent(struct zone *zone, struct page *page)
256 if (!pfn_valid_within(page_to_pfn(page)))
258 if (zone != page_zone(page))
264 * Temporary debugging check for pages not lying within a given zone.
266 static int bad_range(struct zone *zone, struct page *page)
268 if (page_outside_zone_boundaries(zone, page))
270 if (!page_is_consistent(zone, page))
276 static inline int bad_range(struct zone *zone, struct page *page)
282 static void bad_page(struct page *page)
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
305 "BUG: Bad page state: %lu messages suppressed\n",
312 resume = jiffies + 60 * HZ;
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
327 * Higher-order pages are called "compound pages". They are structured thusly:
329 * The first PAGE_SIZE page is called the "head page".
331 * The remaining PAGE_SIZE pages are called "tail pages".
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
341 static void free_compound_page(struct page *page)
343 __free_pages_ok(page, compound_order(page));
346 void prep_compound_page(struct page *page, unsigned long order)
349 int nr_pages = 1 << order;
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
357 set_page_count(p, 0);
358 p->first_page = page;
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
366 int nr_pages = 1 << order;
369 if (unlikely(compound_order(page) != order)) {
374 __ClearPageHead(page);
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
405 static int __init debug_guardpage_minorder_setup(char *buf)
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419 static inline void set_page_guard_flag(struct page *page)
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
424 static inline void clear_page_guard_flag(struct page *page)
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
433 static inline void set_page_order(struct page *page, int order)
435 set_page_private(page, order);
436 __SetPageBuddy(page);
439 static inline void rmv_page_order(struct page *page)
441 __ClearPageBuddy(page);
442 set_page_private(page, 0);
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
452 * For example, if the starting buddy (buddy2) is #8 its order
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
465 return page_idx ^ (1 << order);
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
479 * For recording page's order, we use page_private(page).
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
484 if (!pfn_valid_within(page_to_pfn(buddy)))
487 if (page_zone_id(page) != page_zone_id(buddy))
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
495 if (PageBuddy(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
503 * Freeing function for a buddy system allocator.
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516 * order is recorded in page_private(page) field.
517 * So when we are allocating or freeing one, we can derive the state of the
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
520 * If a block is freed, and its buddy is also free, then this
521 * triggers coalescing into a block of larger size.
526 static inline void __free_one_page(struct page *page,
527 struct zone *zone, unsigned int order,
530 unsigned long page_idx;
531 unsigned long combined_idx;
532 unsigned long uninitialized_var(buddy_idx);
535 if (unlikely(PageCompound(page)))
536 if (unlikely(destroy_compound_page(page, order)))
539 VM_BUG_ON(migratetype == -1);
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543 VM_BUG_ON(page_idx & ((1 << order) - 1));
544 VM_BUG_ON(bad_range(zone, page));
546 while (order < MAX_ORDER-1) {
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
549 if (!page_is_buddy(page, buddy, order))
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
558 __mod_zone_freepage_state(zone, 1 << order,
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
565 combined_idx = buddy_idx & page_idx;
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
570 set_page_order(page, order);
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 struct page *higher_page, *higher_buddy;
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 higher_buddy = higher_page + (buddy_idx - combined_idx);
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595 zone->free_area[order].nr_free++;
598 static inline int free_pages_check(struct page *page)
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
602 (atomic_read(&page->_count) != 0) |
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
608 reset_page_last_nid(page);
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
615 * Frees a number of pages from the PCP lists
616 * Assumes all pages on list are in same zone, and of same order.
617 * count is the number of pages to free.
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
632 spin_lock(&zone->lock);
633 zone->all_unreclaimable = 0;
634 zone->pages_scanned = 0;
638 struct list_head *list;
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
649 if (++migratetype == MIGRATE_PCPTYPES)
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
659 int mt; /* migratetype of the to-be-freed page */
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
664 mt = get_freepage_migratetype(page);
665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 } while (--to_free && --batch_free && !list_empty(list));
675 spin_unlock(&zone->lock);
678 static void free_one_page(struct zone *zone, struct page *page, int order,
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
691 static bool free_pages_prepare(struct page *page, unsigned int order)
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
717 static void __free_pages_ok(struct page *page, unsigned int order)
722 if (!free_pages_prepare(page, order))
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
742 unsigned int nr_pages = 1 << order;
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
749 if (loop + 1 < nr_pages)
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
755 page_zone(page)->managed_pages += 1 << order;
756 set_page_refcounted(page);
757 __free_pages(page, order);
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
776 #ifdef CONFIG_HIGHMEM
777 if (PageHighMem(page))
778 totalhigh_pages += pageblock_nr_pages;
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
797 static inline void expand(struct zone *zone, struct page *page,
798 int low, int high, struct free_area *area,
801 unsigned long size = 1 << high;
807 VM_BUG_ON(bad_range(zone, &page[size]));
809 #ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
821 __mod_zone_freepage_state(zone, -(1 << high),
826 list_add(&page[size].lru, &area->free_list[migratetype]);
828 set_page_order(&page[size], high);
833 * This page is about to be returned from the page allocator
835 static inline int check_new_page(struct page *page)
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
839 (atomic_read(&page->_count) != 0) |
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
848 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
858 set_page_private(page, 0);
859 set_page_refcounted(page);
861 arch_alloc_page(page, order);
862 kernel_map_pages(page, 1 << order, 1);
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
878 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
881 unsigned int current_order;
882 struct free_area * area;
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
891 page = list_entry(area->free_list[migratetype].next,
893 list_del(&page->lru);
894 rmv_page_order(page);
896 expand(zone, page, order, current_order, area, migratetype);
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
908 static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
922 * Move the free pages in a range to the free lists of the requested type.
923 * Note that start_page and end_pages are not aligned on a pageblock
924 * boundary. If alignment is required, use move_freepages_block()
926 int move_freepages(struct zone *zone,
927 struct page *start_page, struct page *end_page,
934 #ifndef CONFIG_HOLES_IN_ZONE
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
940 * grouping pages by mobility
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
945 for (page = start_page; page <= end_page;) {
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949 if (!pfn_valid_within(page_to_pfn(page))) {
954 if (!PageBuddy(page)) {
959 order = page_order(page);
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
962 set_freepage_migratetype(page, migratetype);
964 pages_moved += 1 << order;
970 int move_freepages_block(struct zone *zone, struct page *page,
973 unsigned long start_pfn, end_pfn;
974 struct page *start_page, *end_page;
976 start_pfn = page_to_pfn(page);
977 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
978 start_page = pfn_to_page(start_pfn);
979 end_page = start_page + pageblock_nr_pages - 1;
980 end_pfn = start_pfn + pageblock_nr_pages - 1;
982 /* Do not cross zone boundaries */
983 if (start_pfn < zone->zone_start_pfn)
985 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
988 return move_freepages(zone, start_page, end_page, migratetype);
991 static void change_pageblock_range(struct page *pageblock_page,
992 int start_order, int migratetype)
994 int nr_pageblocks = 1 << (start_order - pageblock_order);
996 while (nr_pageblocks--) {
997 set_pageblock_migratetype(pageblock_page, migratetype);
998 pageblock_page += pageblock_nr_pages;
1002 /* Remove an element from the buddy allocator from the fallback list */
1003 static inline struct page *
1004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1006 struct free_area * area;
1011 /* Find the largest possible block of pages in the other list */
1012 for (current_order = MAX_ORDER-1; current_order >= order;
1015 migratetype = fallbacks[start_migratetype][i];
1017 /* MIGRATE_RESERVE handled later if necessary */
1018 if (migratetype == MIGRATE_RESERVE)
1021 area = &(zone->free_area[current_order]);
1022 if (list_empty(&area->free_list[migratetype]))
1025 page = list_entry(area->free_list[migratetype].next,
1030 * If breaking a large block of pages, move all free
1031 * pages to the preferred allocation list. If falling
1032 * back for a reclaimable kernel allocation, be more
1033 * aggressive about taking ownership of free pages
1035 * On the other hand, never change migration
1036 * type of MIGRATE_CMA pageblocks nor move CMA
1037 * pages on different free lists. We don't
1038 * want unmovable pages to be allocated from
1039 * MIGRATE_CMA areas.
1041 if (!is_migrate_cma(migratetype) &&
1042 (unlikely(current_order >= pageblock_order / 2) ||
1043 start_migratetype == MIGRATE_RECLAIMABLE ||
1044 page_group_by_mobility_disabled)) {
1046 pages = move_freepages_block(zone, page,
1049 /* Claim the whole block if over half of it is free */
1050 if (pages >= (1 << (pageblock_order-1)) ||
1051 page_group_by_mobility_disabled)
1052 set_pageblock_migratetype(page,
1055 migratetype = start_migratetype;
1058 /* Remove the page from the freelists */
1059 list_del(&page->lru);
1060 rmv_page_order(page);
1062 /* Take ownership for orders >= pageblock_order */
1063 if (current_order >= pageblock_order &&
1064 !is_migrate_cma(migratetype))
1065 change_pageblock_range(page, current_order,
1068 expand(zone, page, order, current_order, area,
1069 is_migrate_cma(migratetype)
1070 ? migratetype : start_migratetype);
1072 trace_mm_page_alloc_extfrag(page, order, current_order,
1073 start_migratetype, migratetype);
1083 * Do the hard work of removing an element from the buddy allocator.
1084 * Call me with the zone->lock already held.
1086 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1092 page = __rmqueue_smallest(zone, order, migratetype);
1094 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1095 page = __rmqueue_fallback(zone, order, migratetype);
1098 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1099 * is used because __rmqueue_smallest is an inline function
1100 * and we want just one call site
1103 migratetype = MIGRATE_RESERVE;
1108 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1113 * Obtain a specified number of elements from the buddy allocator, all under
1114 * a single hold of the lock, for efficiency. Add them to the supplied list.
1115 * Returns the number of new pages which were placed at *list.
1117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1118 unsigned long count, struct list_head *list,
1119 int migratetype, int cold)
1121 int mt = migratetype, i;
1123 spin_lock(&zone->lock);
1124 for (i = 0; i < count; ++i) {
1125 struct page *page = __rmqueue(zone, order, migratetype);
1126 if (unlikely(page == NULL))
1130 * Split buddy pages returned by expand() are received here
1131 * in physical page order. The page is added to the callers and
1132 * list and the list head then moves forward. From the callers
1133 * perspective, the linked list is ordered by page number in
1134 * some conditions. This is useful for IO devices that can
1135 * merge IO requests if the physical pages are ordered
1138 if (likely(cold == 0))
1139 list_add(&page->lru, list);
1141 list_add_tail(&page->lru, list);
1142 if (IS_ENABLED(CONFIG_CMA)) {
1143 mt = get_pageblock_migratetype(page);
1144 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1147 set_freepage_migratetype(page, mt);
1149 if (is_migrate_cma(mt))
1150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1154 spin_unlock(&zone->lock);
1160 * Called from the vmstat counter updater to drain pagesets of this
1161 * currently executing processor on remote nodes after they have
1164 * Note that this function must be called with the thread pinned to
1165 * a single processor.
1167 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1169 unsigned long flags;
1172 local_irq_save(flags);
1173 if (pcp->count >= pcp->batch)
1174 to_drain = pcp->batch;
1176 to_drain = pcp->count;
1178 free_pcppages_bulk(zone, to_drain, pcp);
1179 pcp->count -= to_drain;
1181 local_irq_restore(flags);
1186 * Drain pages of the indicated processor.
1188 * The processor must either be the current processor and the
1189 * thread pinned to the current processor or a processor that
1192 static void drain_pages(unsigned int cpu)
1194 unsigned long flags;
1197 for_each_populated_zone(zone) {
1198 struct per_cpu_pageset *pset;
1199 struct per_cpu_pages *pcp;
1201 local_irq_save(flags);
1202 pset = per_cpu_ptr(zone->pageset, cpu);
1206 free_pcppages_bulk(zone, pcp->count, pcp);
1209 local_irq_restore(flags);
1214 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216 void drain_local_pages(void *arg)
1218 drain_pages(smp_processor_id());
1222 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224 * Note that this code is protected against sending an IPI to an offline
1225 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1226 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1227 * nothing keeps CPUs from showing up after we populated the cpumask and
1228 * before the call to on_each_cpu_mask().
1230 void drain_all_pages(void)
1233 struct per_cpu_pageset *pcp;
1237 * Allocate in the BSS so we wont require allocation in
1238 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 static cpumask_t cpus_with_pcps;
1243 * We don't care about racing with CPU hotplug event
1244 * as offline notification will cause the notified
1245 * cpu to drain that CPU pcps and on_each_cpu_mask
1246 * disables preemption as part of its processing
1248 for_each_online_cpu(cpu) {
1249 bool has_pcps = false;
1250 for_each_populated_zone(zone) {
1251 pcp = per_cpu_ptr(zone->pageset, cpu);
1252 if (pcp->pcp.count) {
1258 cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1265 #ifdef CONFIG_HIBERNATION
1267 void mark_free_pages(struct zone *zone)
1269 unsigned long pfn, max_zone_pfn;
1270 unsigned long flags;
1272 struct list_head *curr;
1274 if (!zone->spanned_pages)
1277 spin_lock_irqsave(&zone->lock, flags);
1279 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1280 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1281 if (pfn_valid(pfn)) {
1282 struct page *page = pfn_to_page(pfn);
1284 if (!swsusp_page_is_forbidden(page))
1285 swsusp_unset_page_free(page);
1288 for_each_migratetype_order(order, t) {
1289 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1292 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1293 for (i = 0; i < (1UL << order); i++)
1294 swsusp_set_page_free(pfn_to_page(pfn + i));
1297 spin_unlock_irqrestore(&zone->lock, flags);
1299 #endif /* CONFIG_PM */
1302 * Free a 0-order page
1303 * cold == 1 ? free a cold page : free a hot page
1305 void free_hot_cold_page(struct page *page, int cold)
1307 struct zone *zone = page_zone(page);
1308 struct per_cpu_pages *pcp;
1309 unsigned long flags;
1312 if (!free_pages_prepare(page, 0))
1315 migratetype = get_pageblock_migratetype(page);
1316 set_freepage_migratetype(page, migratetype);
1317 local_irq_save(flags);
1318 __count_vm_event(PGFREE);
1321 * We only track unmovable, reclaimable and movable on pcp lists.
1322 * Free ISOLATE pages back to the allocator because they are being
1323 * offlined but treat RESERVE as movable pages so we can get those
1324 * areas back if necessary. Otherwise, we may have to free
1325 * excessively into the page allocator
1327 if (migratetype >= MIGRATE_PCPTYPES) {
1328 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1329 free_one_page(zone, page, 0, migratetype);
1332 migratetype = MIGRATE_MOVABLE;
1335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1337 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1339 list_add(&page->lru, &pcp->lists[migratetype]);
1341 if (pcp->count >= pcp->high) {
1342 free_pcppages_bulk(zone, pcp->batch, pcp);
1343 pcp->count -= pcp->batch;
1347 local_irq_restore(flags);
1351 * Free a list of 0-order pages
1353 void free_hot_cold_page_list(struct list_head *list, int cold)
1355 struct page *page, *next;
1357 list_for_each_entry_safe(page, next, list, lru) {
1358 trace_mm_page_free_batched(page, cold);
1359 free_hot_cold_page(page, cold);
1364 * split_page takes a non-compound higher-order page, and splits it into
1365 * n (1<<order) sub-pages: page[0..n]
1366 * Each sub-page must be freed individually.
1368 * Note: this is probably too low level an operation for use in drivers.
1369 * Please consult with lkml before using this in your driver.
1371 void split_page(struct page *page, unsigned int order)
1375 VM_BUG_ON(PageCompound(page));
1376 VM_BUG_ON(!page_count(page));
1378 #ifdef CONFIG_KMEMCHECK
1380 * Split shadow pages too, because free(page[0]) would
1381 * otherwise free the whole shadow.
1383 if (kmemcheck_page_is_tracked(page))
1384 split_page(virt_to_page(page[0].shadow), order);
1387 for (i = 1; i < (1 << order); i++)
1388 set_page_refcounted(page + i);
1391 static int __isolate_free_page(struct page *page, unsigned int order)
1393 unsigned long watermark;
1397 BUG_ON(!PageBuddy(page));
1399 zone = page_zone(page);
1400 mt = get_pageblock_migratetype(page);
1402 if (mt != MIGRATE_ISOLATE) {
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1408 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1411 /* Remove page from free list */
1412 list_del(&page->lru);
1413 zone->free_area[order].nr_free--;
1414 rmv_page_order(page);
1416 /* Set the pageblock if the isolated page is at least a pageblock */
1417 if (order >= pageblock_order - 1) {
1418 struct page *endpage = page + (1 << order) - 1;
1419 for (; page < endpage; page += pageblock_nr_pages) {
1420 int mt = get_pageblock_migratetype(page);
1421 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1422 set_pageblock_migratetype(page,
1427 return 1UL << order;
1431 * Similar to split_page except the page is already free. As this is only
1432 * being used for migration, the migratetype of the block also changes.
1433 * As this is called with interrupts disabled, the caller is responsible
1434 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1437 * Note: this is probably too low level an operation for use in drivers.
1438 * Please consult with lkml before using this in your driver.
1440 int split_free_page(struct page *page)
1445 order = page_order(page);
1447 nr_pages = __isolate_free_page(page, order);
1451 /* Split into individual pages */
1452 set_page_refcounted(page);
1453 split_page(page, order);
1458 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1459 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1463 struct page *buffered_rmqueue(struct zone *preferred_zone,
1464 struct zone *zone, int order, gfp_t gfp_flags,
1467 unsigned long flags;
1469 int cold = !!(gfp_flags & __GFP_COLD);
1472 if (likely(order == 0)) {
1473 struct per_cpu_pages *pcp;
1474 struct list_head *list;
1476 local_irq_save(flags);
1477 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1478 list = &pcp->lists[migratetype];
1479 if (list_empty(list)) {
1480 pcp->count += rmqueue_bulk(zone, 0,
1483 if (unlikely(list_empty(list)))
1488 page = list_entry(list->prev, struct page, lru);
1490 page = list_entry(list->next, struct page, lru);
1492 list_del(&page->lru);
1495 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1497 * __GFP_NOFAIL is not to be used in new code.
1499 * All __GFP_NOFAIL callers should be fixed so that they
1500 * properly detect and handle allocation failures.
1502 * We most definitely don't want callers attempting to
1503 * allocate greater than order-1 page units with
1506 WARN_ON_ONCE(order > 1);
1508 spin_lock_irqsave(&zone->lock, flags);
1509 page = __rmqueue(zone, order, migratetype);
1510 spin_unlock(&zone->lock);
1513 __mod_zone_freepage_state(zone, -(1 << order),
1514 get_pageblock_migratetype(page));
1517 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1518 zone_statistics(preferred_zone, zone, gfp_flags);
1519 local_irq_restore(flags);
1521 VM_BUG_ON(bad_range(zone, page));
1522 if (prep_new_page(page, order, gfp_flags))
1527 local_irq_restore(flags);
1531 #ifdef CONFIG_FAIL_PAGE_ALLOC
1534 struct fault_attr attr;
1536 u32 ignore_gfp_highmem;
1537 u32 ignore_gfp_wait;
1539 } fail_page_alloc = {
1540 .attr = FAULT_ATTR_INITIALIZER,
1541 .ignore_gfp_wait = 1,
1542 .ignore_gfp_highmem = 1,
1546 static int __init setup_fail_page_alloc(char *str)
1548 return setup_fault_attr(&fail_page_alloc.attr, str);
1550 __setup("fail_page_alloc=", setup_fail_page_alloc);
1552 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1554 if (order < fail_page_alloc.min_order)
1556 if (gfp_mask & __GFP_NOFAIL)
1558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1560 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1563 return should_fail(&fail_page_alloc.attr, 1 << order);
1566 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1568 static int __init fail_page_alloc_debugfs(void)
1570 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1573 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1574 &fail_page_alloc.attr);
1576 return PTR_ERR(dir);
1578 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1579 &fail_page_alloc.ignore_gfp_wait))
1581 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1582 &fail_page_alloc.ignore_gfp_highmem))
1584 if (!debugfs_create_u32("min-order", mode, dir,
1585 &fail_page_alloc.min_order))
1590 debugfs_remove_recursive(dir);
1595 late_initcall(fail_page_alloc_debugfs);
1597 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1599 #else /* CONFIG_FAIL_PAGE_ALLOC */
1601 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1606 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1609 * Return true if free pages are above 'mark'. This takes into account the order
1610 * of the allocation.
1612 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1613 int classzone_idx, int alloc_flags, long free_pages)
1615 /* free_pages my go negative - that's OK */
1617 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1620 free_pages -= (1 << order) - 1;
1621 if (alloc_flags & ALLOC_HIGH)
1623 if (alloc_flags & ALLOC_HARDER)
1626 /* If allocation can't use CMA areas don't use free CMA pages */
1627 if (!(alloc_flags & ALLOC_CMA))
1628 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1630 if (free_pages <= min + lowmem_reserve)
1632 for (o = 0; o < order; o++) {
1633 /* At the next order, this order's pages become unavailable */
1634 free_pages -= z->free_area[o].nr_free << o;
1636 /* Require fewer higher order pages to be free */
1639 if (free_pages <= min)
1645 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1646 int classzone_idx, int alloc_flags)
1648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1649 zone_page_state(z, NR_FREE_PAGES));
1652 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1653 int classzone_idx, int alloc_flags)
1655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1667 * skip over zones that are not allowed by the cpuset, or that have
1668 * been recently (in last second) found to be nearly full. See further
1669 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1670 * that have to skip over a lot of full or unallowed zones.
1672 * If the zonelist cache is present in the passed in zonelist, then
1673 * returns a pointer to the allowed node mask (either the current
1674 * tasks mems_allowed, or node_states[N_MEMORY].)
1676 * If the zonelist cache is not available for this zonelist, does
1677 * nothing and returns NULL.
1679 * If the fullzones BITMAP in the zonelist cache is stale (more than
1680 * a second since last zap'd) then we zap it out (clear its bits.)
1682 * We hold off even calling zlc_setup, until after we've checked the
1683 * first zone in the zonelist, on the theory that most allocations will
1684 * be satisfied from that first zone, so best to examine that zone as
1685 * quickly as we can.
1687 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1689 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1690 nodemask_t *allowednodes; /* zonelist_cache approximation */
1692 zlc = zonelist->zlcache_ptr;
1696 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1697 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1698 zlc->last_full_zap = jiffies;
1701 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1702 &cpuset_current_mems_allowed :
1703 &node_states[N_MEMORY];
1704 return allowednodes;
1708 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1709 * if it is worth looking at further for free memory:
1710 * 1) Check that the zone isn't thought to be full (doesn't have its
1711 * bit set in the zonelist_cache fullzones BITMAP).
1712 * 2) Check that the zones node (obtained from the zonelist_cache
1713 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1714 * Return true (non-zero) if zone is worth looking at further, or
1715 * else return false (zero) if it is not.
1717 * This check -ignores- the distinction between various watermarks,
1718 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1719 * found to be full for any variation of these watermarks, it will
1720 * be considered full for up to one second by all requests, unless
1721 * we are so low on memory on all allowed nodes that we are forced
1722 * into the second scan of the zonelist.
1724 * In the second scan we ignore this zonelist cache and exactly
1725 * apply the watermarks to all zones, even it is slower to do so.
1726 * We are low on memory in the second scan, and should leave no stone
1727 * unturned looking for a free page.
1729 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1730 nodemask_t *allowednodes)
1732 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1733 int i; /* index of *z in zonelist zones */
1734 int n; /* node that zone *z is on */
1736 zlc = zonelist->zlcache_ptr;
1740 i = z - zonelist->_zonerefs;
1743 /* This zone is worth trying if it is allowed but not full */
1744 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1748 * Given 'z' scanning a zonelist, set the corresponding bit in
1749 * zlc->fullzones, so that subsequent attempts to allocate a page
1750 * from that zone don't waste time re-examining it.
1752 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 int i; /* index of *z in zonelist zones */
1757 zlc = zonelist->zlcache_ptr;
1761 i = z - zonelist->_zonerefs;
1763 set_bit(i, zlc->fullzones);
1767 * clear all zones full, called after direct reclaim makes progress so that
1768 * a zone that was recently full is not skipped over for up to a second
1770 static void zlc_clear_zones_full(struct zonelist *zonelist)
1772 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1774 zlc = zonelist->zlcache_ptr;
1778 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1781 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1783 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1786 static void __paginginit init_zone_allows_reclaim(int nid)
1790 for_each_online_node(i)
1791 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1792 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1794 zone_reclaim_mode = 1;
1797 #else /* CONFIG_NUMA */
1799 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1804 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1805 nodemask_t *allowednodes)
1810 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1814 static void zlc_clear_zones_full(struct zonelist *zonelist)
1818 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 static inline void init_zone_allows_reclaim(int nid)
1826 #endif /* CONFIG_NUMA */
1829 * get_page_from_freelist goes through the zonelist trying to allocate
1832 static struct page *
1833 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1834 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1835 struct zone *preferred_zone, int migratetype)
1838 struct page *page = NULL;
1841 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1842 int zlc_active = 0; /* set if using zonelist_cache */
1843 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1845 classzone_idx = zone_idx(preferred_zone);
1848 * Scan zonelist, looking for a zone with enough free.
1849 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1851 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1852 high_zoneidx, nodemask) {
1853 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1854 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1856 if ((alloc_flags & ALLOC_CPUSET) &&
1857 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1860 * When allocating a page cache page for writing, we
1861 * want to get it from a zone that is within its dirty
1862 * limit, such that no single zone holds more than its
1863 * proportional share of globally allowed dirty pages.
1864 * The dirty limits take into account the zone's
1865 * lowmem reserves and high watermark so that kswapd
1866 * should be able to balance it without having to
1867 * write pages from its LRU list.
1869 * This may look like it could increase pressure on
1870 * lower zones by failing allocations in higher zones
1871 * before they are full. But the pages that do spill
1872 * over are limited as the lower zones are protected
1873 * by this very same mechanism. It should not become
1874 * a practical burden to them.
1876 * XXX: For now, allow allocations to potentially
1877 * exceed the per-zone dirty limit in the slowpath
1878 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1879 * which is important when on a NUMA setup the allowed
1880 * zones are together not big enough to reach the
1881 * global limit. The proper fix for these situations
1882 * will require awareness of zones in the
1883 * dirty-throttling and the flusher threads.
1885 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1886 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1887 goto this_zone_full;
1889 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1890 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1894 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1895 if (zone_watermark_ok(zone, order, mark,
1896 classzone_idx, alloc_flags))
1899 if (IS_ENABLED(CONFIG_NUMA) &&
1900 !did_zlc_setup && nr_online_nodes > 1) {
1902 * we do zlc_setup if there are multiple nodes
1903 * and before considering the first zone allowed
1906 allowednodes = zlc_setup(zonelist, alloc_flags);
1911 if (zone_reclaim_mode == 0 ||
1912 !zone_allows_reclaim(preferred_zone, zone))
1913 goto this_zone_full;
1916 * As we may have just activated ZLC, check if the first
1917 * eligible zone has failed zone_reclaim recently.
1919 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1920 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1923 ret = zone_reclaim(zone, gfp_mask, order);
1925 case ZONE_RECLAIM_NOSCAN:
1928 case ZONE_RECLAIM_FULL:
1929 /* scanned but unreclaimable */
1932 /* did we reclaim enough */
1933 if (!zone_watermark_ok(zone, order, mark,
1934 classzone_idx, alloc_flags))
1935 goto this_zone_full;
1940 page = buffered_rmqueue(preferred_zone, zone, order,
1941 gfp_mask, migratetype);
1945 if (IS_ENABLED(CONFIG_NUMA))
1946 zlc_mark_zone_full(zonelist, z);
1949 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1950 /* Disable zlc cache for second zonelist scan */
1957 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1958 * necessary to allocate the page. The expectation is
1959 * that the caller is taking steps that will free more
1960 * memory. The caller should avoid the page being used
1961 * for !PFMEMALLOC purposes.
1963 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1969 * Large machines with many possible nodes should not always dump per-node
1970 * meminfo in irq context.
1972 static inline bool should_suppress_show_mem(void)
1977 ret = in_interrupt();
1982 static DEFINE_RATELIMIT_STATE(nopage_rs,
1983 DEFAULT_RATELIMIT_INTERVAL,
1984 DEFAULT_RATELIMIT_BURST);
1986 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1988 unsigned int filter = SHOW_MEM_FILTER_NODES;
1990 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1991 debug_guardpage_minorder() > 0)
1995 * This documents exceptions given to allocations in certain
1996 * contexts that are allowed to allocate outside current's set
1999 if (!(gfp_mask & __GFP_NOMEMALLOC))
2000 if (test_thread_flag(TIF_MEMDIE) ||
2001 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2002 filter &= ~SHOW_MEM_FILTER_NODES;
2003 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2004 filter &= ~SHOW_MEM_FILTER_NODES;
2007 struct va_format vaf;
2010 va_start(args, fmt);
2015 pr_warn("%pV", &vaf);
2020 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2021 current->comm, order, gfp_mask);
2024 if (!should_suppress_show_mem())
2029 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2030 unsigned long did_some_progress,
2031 unsigned long pages_reclaimed)
2033 /* Do not loop if specifically requested */
2034 if (gfp_mask & __GFP_NORETRY)
2037 /* Always retry if specifically requested */
2038 if (gfp_mask & __GFP_NOFAIL)
2042 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2043 * making forward progress without invoking OOM. Suspend also disables
2044 * storage devices so kswapd will not help. Bail if we are suspending.
2046 if (!did_some_progress && pm_suspended_storage())
2050 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2051 * means __GFP_NOFAIL, but that may not be true in other
2054 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2058 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2059 * specified, then we retry until we no longer reclaim any pages
2060 * (above), or we've reclaimed an order of pages at least as
2061 * large as the allocation's order. In both cases, if the
2062 * allocation still fails, we stop retrying.
2064 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2070 static inline struct page *
2071 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2072 struct zonelist *zonelist, enum zone_type high_zoneidx,
2073 nodemask_t *nodemask, struct zone *preferred_zone,
2078 /* Acquire the OOM killer lock for the zones in zonelist */
2079 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2080 schedule_timeout_uninterruptible(1);
2085 * Go through the zonelist yet one more time, keep very high watermark
2086 * here, this is only to catch a parallel oom killing, we must fail if
2087 * we're still under heavy pressure.
2089 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2090 order, zonelist, high_zoneidx,
2091 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2092 preferred_zone, migratetype);
2096 if (!(gfp_mask & __GFP_NOFAIL)) {
2097 /* The OOM killer will not help higher order allocs */
2098 if (order > PAGE_ALLOC_COSTLY_ORDER)
2100 /* The OOM killer does not needlessly kill tasks for lowmem */
2101 if (high_zoneidx < ZONE_NORMAL)
2104 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2105 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2106 * The caller should handle page allocation failure by itself if
2107 * it specifies __GFP_THISNODE.
2108 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2110 if (gfp_mask & __GFP_THISNODE)
2113 /* Exhausted what can be done so it's blamo time */
2114 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2117 clear_zonelist_oom(zonelist, gfp_mask);
2121 #ifdef CONFIG_COMPACTION
2122 /* Try memory compaction for high-order allocations before reclaim */
2123 static struct page *
2124 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2127 int migratetype, bool sync_migration,
2128 bool *contended_compaction, bool *deferred_compaction,
2129 unsigned long *did_some_progress)
2134 if (compaction_deferred(preferred_zone, order)) {
2135 *deferred_compaction = true;
2139 current->flags |= PF_MEMALLOC;
2140 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2141 nodemask, sync_migration,
2142 contended_compaction);
2143 current->flags &= ~PF_MEMALLOC;
2145 if (*did_some_progress != COMPACT_SKIPPED) {
2148 /* Page migration frees to the PCP lists but we want merging */
2149 drain_pages(get_cpu());
2152 page = get_page_from_freelist(gfp_mask, nodemask,
2153 order, zonelist, high_zoneidx,
2154 alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 preferred_zone, migratetype);
2157 preferred_zone->compact_blockskip_flush = false;
2158 preferred_zone->compact_considered = 0;
2159 preferred_zone->compact_defer_shift = 0;
2160 if (order >= preferred_zone->compact_order_failed)
2161 preferred_zone->compact_order_failed = order + 1;
2162 count_vm_event(COMPACTSUCCESS);
2167 * It's bad if compaction run occurs and fails.
2168 * The most likely reason is that pages exist,
2169 * but not enough to satisfy watermarks.
2171 count_vm_event(COMPACTFAIL);
2174 * As async compaction considers a subset of pageblocks, only
2175 * defer if the failure was a sync compaction failure.
2178 defer_compaction(preferred_zone, order);
2186 static inline struct page *
2187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2188 struct zonelist *zonelist, enum zone_type high_zoneidx,
2189 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2190 int migratetype, bool sync_migration,
2191 bool *contended_compaction, bool *deferred_compaction,
2192 unsigned long *did_some_progress)
2196 #endif /* CONFIG_COMPACTION */
2198 /* Perform direct synchronous page reclaim */
2200 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2201 nodemask_t *nodemask)
2203 struct reclaim_state reclaim_state;
2208 /* We now go into synchronous reclaim */
2209 cpuset_memory_pressure_bump();
2210 current->flags |= PF_MEMALLOC;
2211 lockdep_set_current_reclaim_state(gfp_mask);
2212 reclaim_state.reclaimed_slab = 0;
2213 current->reclaim_state = &reclaim_state;
2215 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2217 current->reclaim_state = NULL;
2218 lockdep_clear_current_reclaim_state();
2219 current->flags &= ~PF_MEMALLOC;
2226 /* The really slow allocator path where we enter direct reclaim */
2227 static inline struct page *
2228 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2229 struct zonelist *zonelist, enum zone_type high_zoneidx,
2230 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2231 int migratetype, unsigned long *did_some_progress)
2233 struct page *page = NULL;
2234 bool drained = false;
2236 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2238 if (unlikely(!(*did_some_progress)))
2241 /* After successful reclaim, reconsider all zones for allocation */
2242 if (IS_ENABLED(CONFIG_NUMA))
2243 zlc_clear_zones_full(zonelist);
2246 page = get_page_from_freelist(gfp_mask, nodemask, order,
2247 zonelist, high_zoneidx,
2248 alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 preferred_zone, migratetype);
2252 * If an allocation failed after direct reclaim, it could be because
2253 * pages are pinned on the per-cpu lists. Drain them and try again
2255 if (!page && !drained) {
2265 * This is called in the allocator slow-path if the allocation request is of
2266 * sufficient urgency to ignore watermarks and take other desperate measures
2268 static inline struct page *
2269 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2270 struct zonelist *zonelist, enum zone_type high_zoneidx,
2271 nodemask_t *nodemask, struct zone *preferred_zone,
2277 page = get_page_from_freelist(gfp_mask, nodemask, order,
2278 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2279 preferred_zone, migratetype);
2281 if (!page && gfp_mask & __GFP_NOFAIL)
2282 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2283 } while (!page && (gfp_mask & __GFP_NOFAIL));
2289 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2290 enum zone_type high_zoneidx,
2291 enum zone_type classzone_idx)
2296 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2297 wakeup_kswapd(zone, order, classzone_idx);
2301 gfp_to_alloc_flags(gfp_t gfp_mask)
2303 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2304 const gfp_t wait = gfp_mask & __GFP_WAIT;
2306 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2307 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2310 * The caller may dip into page reserves a bit more if the caller
2311 * cannot run direct reclaim, or if the caller has realtime scheduling
2312 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2313 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2315 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2319 * Not worth trying to allocate harder for
2320 * __GFP_NOMEMALLOC even if it can't schedule.
2322 if (!(gfp_mask & __GFP_NOMEMALLOC))
2323 alloc_flags |= ALLOC_HARDER;
2325 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2326 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2328 alloc_flags &= ~ALLOC_CPUSET;
2329 } else if (unlikely(rt_task(current)) && !in_interrupt())
2330 alloc_flags |= ALLOC_HARDER;
2332 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2333 if (gfp_mask & __GFP_MEMALLOC)
2334 alloc_flags |= ALLOC_NO_WATERMARKS;
2335 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2336 alloc_flags |= ALLOC_NO_WATERMARKS;
2337 else if (!in_interrupt() &&
2338 ((current->flags & PF_MEMALLOC) ||
2339 unlikely(test_thread_flag(TIF_MEMDIE))))
2340 alloc_flags |= ALLOC_NO_WATERMARKS;
2343 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2344 alloc_flags |= ALLOC_CMA;
2349 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2351 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2354 static inline struct page *
2355 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2356 struct zonelist *zonelist, enum zone_type high_zoneidx,
2357 nodemask_t *nodemask, struct zone *preferred_zone,
2360 const gfp_t wait = gfp_mask & __GFP_WAIT;
2361 struct page *page = NULL;
2363 unsigned long pages_reclaimed = 0;
2364 unsigned long did_some_progress;
2365 bool sync_migration = false;
2366 bool deferred_compaction = false;
2367 bool contended_compaction = false;
2370 * In the slowpath, we sanity check order to avoid ever trying to
2371 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2372 * be using allocators in order of preference for an area that is
2375 if (order >= MAX_ORDER) {
2376 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2381 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2382 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2383 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2384 * using a larger set of nodes after it has established that the
2385 * allowed per node queues are empty and that nodes are
2388 if (IS_ENABLED(CONFIG_NUMA) &&
2389 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2393 if (!(gfp_mask & __GFP_NO_KSWAPD))
2394 wake_all_kswapd(order, zonelist, high_zoneidx,
2395 zone_idx(preferred_zone));
2398 * OK, we're below the kswapd watermark and have kicked background
2399 * reclaim. Now things get more complex, so set up alloc_flags according
2400 * to how we want to proceed.
2402 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2405 * Find the true preferred zone if the allocation is unconstrained by
2408 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2409 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2413 /* This is the last chance, in general, before the goto nopage. */
2414 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2415 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2416 preferred_zone, migratetype);
2420 /* Allocate without watermarks if the context allows */
2421 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2423 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2424 * the allocation is high priority and these type of
2425 * allocations are system rather than user orientated
2427 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2429 page = __alloc_pages_high_priority(gfp_mask, order,
2430 zonelist, high_zoneidx, nodemask,
2431 preferred_zone, migratetype);
2437 /* Atomic allocations - we can't balance anything */
2441 /* Avoid recursion of direct reclaim */
2442 if (current->flags & PF_MEMALLOC)
2445 /* Avoid allocations with no watermarks from looping endlessly */
2446 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2450 * Try direct compaction. The first pass is asynchronous. Subsequent
2451 * attempts after direct reclaim are synchronous
2453 page = __alloc_pages_direct_compact(gfp_mask, order,
2454 zonelist, high_zoneidx,
2456 alloc_flags, preferred_zone,
2457 migratetype, sync_migration,
2458 &contended_compaction,
2459 &deferred_compaction,
2460 &did_some_progress);
2463 sync_migration = true;
2466 * If compaction is deferred for high-order allocations, it is because
2467 * sync compaction recently failed. In this is the case and the caller
2468 * requested a movable allocation that does not heavily disrupt the
2469 * system then fail the allocation instead of entering direct reclaim.
2471 if ((deferred_compaction || contended_compaction) &&
2472 (gfp_mask & __GFP_NO_KSWAPD))
2475 /* Try direct reclaim and then allocating */
2476 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2477 zonelist, high_zoneidx,
2479 alloc_flags, preferred_zone,
2480 migratetype, &did_some_progress);
2485 * If we failed to make any progress reclaiming, then we are
2486 * running out of options and have to consider going OOM
2488 if (!did_some_progress) {
2489 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2490 if (oom_killer_disabled)
2492 /* Coredumps can quickly deplete all memory reserves */
2493 if ((current->flags & PF_DUMPCORE) &&
2494 !(gfp_mask & __GFP_NOFAIL))
2496 page = __alloc_pages_may_oom(gfp_mask, order,
2497 zonelist, high_zoneidx,
2498 nodemask, preferred_zone,
2503 if (!(gfp_mask & __GFP_NOFAIL)) {
2505 * The oom killer is not called for high-order
2506 * allocations that may fail, so if no progress
2507 * is being made, there are no other options and
2508 * retrying is unlikely to help.
2510 if (order > PAGE_ALLOC_COSTLY_ORDER)
2513 * The oom killer is not called for lowmem
2514 * allocations to prevent needlessly killing
2517 if (high_zoneidx < ZONE_NORMAL)
2525 /* Check if we should retry the allocation */
2526 pages_reclaimed += did_some_progress;
2527 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2529 /* Wait for some write requests to complete then retry */
2530 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2534 * High-order allocations do not necessarily loop after
2535 * direct reclaim and reclaim/compaction depends on compaction
2536 * being called after reclaim so call directly if necessary
2538 page = __alloc_pages_direct_compact(gfp_mask, order,
2539 zonelist, high_zoneidx,
2541 alloc_flags, preferred_zone,
2542 migratetype, sync_migration,
2543 &contended_compaction,
2544 &deferred_compaction,
2545 &did_some_progress);
2551 warn_alloc_failed(gfp_mask, order, NULL);
2554 if (kmemcheck_enabled)
2555 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2561 * This is the 'heart' of the zoned buddy allocator.
2564 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2565 struct zonelist *zonelist, nodemask_t *nodemask)
2567 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2568 struct zone *preferred_zone;
2569 struct page *page = NULL;
2570 int migratetype = allocflags_to_migratetype(gfp_mask);
2571 unsigned int cpuset_mems_cookie;
2572 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2573 struct mem_cgroup *memcg = NULL;
2575 gfp_mask &= gfp_allowed_mask;
2577 lockdep_trace_alloc(gfp_mask);
2579 might_sleep_if(gfp_mask & __GFP_WAIT);
2581 if (should_fail_alloc_page(gfp_mask, order))
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2589 if (unlikely(!zonelist->_zonerefs->zone))
2593 * Will only have any effect when __GFP_KMEMCG is set. This is
2594 * verified in the (always inline) callee
2596 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2600 cpuset_mems_cookie = get_mems_allowed();
2602 /* The preferred zone is used for statistics later */
2603 first_zones_zonelist(zonelist, high_zoneidx,
2604 nodemask ? : &cpuset_current_mems_allowed,
2606 if (!preferred_zone)
2610 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2611 alloc_flags |= ALLOC_CMA;
2613 /* First allocation attempt */
2614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2615 zonelist, high_zoneidx, alloc_flags,
2616 preferred_zone, migratetype);
2617 if (unlikely(!page))
2618 page = __alloc_pages_slowpath(gfp_mask, order,
2619 zonelist, high_zoneidx, nodemask,
2620 preferred_zone, migratetype);
2622 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2626 * When updating a task's mems_allowed, it is possible to race with
2627 * parallel threads in such a way that an allocation can fail while
2628 * the mask is being updated. If a page allocation is about to fail,
2629 * check if the cpuset changed during allocation and if so, retry.
2631 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2634 memcg_kmem_commit_charge(page, memcg, order);
2638 EXPORT_SYMBOL(__alloc_pages_nodemask);
2641 * Common helper functions.
2643 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2648 * __get_free_pages() returns a 32-bit address, which cannot represent
2651 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2653 page = alloc_pages(gfp_mask, order);
2656 return (unsigned long) page_address(page);
2658 EXPORT_SYMBOL(__get_free_pages);
2660 unsigned long get_zeroed_page(gfp_t gfp_mask)
2662 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2664 EXPORT_SYMBOL(get_zeroed_page);
2666 void __free_pages(struct page *page, unsigned int order)
2668 if (put_page_testzero(page)) {
2670 free_hot_cold_page(page, 0);
2672 __free_pages_ok(page, order);
2676 EXPORT_SYMBOL(__free_pages);
2678 void free_pages(unsigned long addr, unsigned int order)
2681 VM_BUG_ON(!virt_addr_valid((void *)addr));
2682 __free_pages(virt_to_page((void *)addr), order);
2686 EXPORT_SYMBOL(free_pages);
2689 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2690 * pages allocated with __GFP_KMEMCG.
2692 * Those pages are accounted to a particular memcg, embedded in the
2693 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2694 * for that information only to find out that it is NULL for users who have no
2695 * interest in that whatsoever, we provide these functions.
2697 * The caller knows better which flags it relies on.
2699 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2701 memcg_kmem_uncharge_pages(page, order);
2702 __free_pages(page, order);
2705 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2708 VM_BUG_ON(!virt_addr_valid((void *)addr));
2709 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2713 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2716 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2717 unsigned long used = addr + PAGE_ALIGN(size);
2719 split_page(virt_to_page((void *)addr), order);
2720 while (used < alloc_end) {
2725 return (void *)addr;
2729 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2730 * @size: the number of bytes to allocate
2731 * @gfp_mask: GFP flags for the allocation
2733 * This function is similar to alloc_pages(), except that it allocates the
2734 * minimum number of pages to satisfy the request. alloc_pages() can only
2735 * allocate memory in power-of-two pages.
2737 * This function is also limited by MAX_ORDER.
2739 * Memory allocated by this function must be released by free_pages_exact().
2741 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2743 unsigned int order = get_order(size);
2746 addr = __get_free_pages(gfp_mask, order);
2747 return make_alloc_exact(addr, order, size);
2749 EXPORT_SYMBOL(alloc_pages_exact);
2752 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2754 * @nid: the preferred node ID where memory should be allocated
2755 * @size: the number of bytes to allocate
2756 * @gfp_mask: GFP flags for the allocation
2758 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2760 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2763 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2765 unsigned order = get_order(size);
2766 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2769 return make_alloc_exact((unsigned long)page_address(p), order, size);
2771 EXPORT_SYMBOL(alloc_pages_exact_nid);
2774 * free_pages_exact - release memory allocated via alloc_pages_exact()
2775 * @virt: the value returned by alloc_pages_exact.
2776 * @size: size of allocation, same value as passed to alloc_pages_exact().
2778 * Release the memory allocated by a previous call to alloc_pages_exact.
2780 void free_pages_exact(void *virt, size_t size)
2782 unsigned long addr = (unsigned long)virt;
2783 unsigned long end = addr + PAGE_ALIGN(size);
2785 while (addr < end) {
2790 EXPORT_SYMBOL(free_pages_exact);
2792 static unsigned int nr_free_zone_pages(int offset)
2797 /* Just pick one node, since fallback list is circular */
2798 unsigned int sum = 0;
2800 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2802 for_each_zone_zonelist(zone, z, zonelist, offset) {
2803 unsigned long size = zone->present_pages;
2804 unsigned long high = high_wmark_pages(zone);
2813 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2815 unsigned int nr_free_buffer_pages(void)
2817 return nr_free_zone_pages(gfp_zone(GFP_USER));
2819 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2822 * Amount of free RAM allocatable within all zones
2824 unsigned int nr_free_pagecache_pages(void)
2826 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2829 static inline void show_node(struct zone *zone)
2831 if (IS_ENABLED(CONFIG_NUMA))
2832 printk("Node %d ", zone_to_nid(zone));
2835 void si_meminfo(struct sysinfo *val)
2837 val->totalram = totalram_pages;
2839 val->freeram = global_page_state(NR_FREE_PAGES);
2840 val->bufferram = nr_blockdev_pages();
2841 val->totalhigh = totalhigh_pages;
2842 val->freehigh = nr_free_highpages();
2843 val->mem_unit = PAGE_SIZE;
2846 EXPORT_SYMBOL(si_meminfo);
2849 void si_meminfo_node(struct sysinfo *val, int nid)
2851 pg_data_t *pgdat = NODE_DATA(nid);
2853 val->totalram = pgdat->node_present_pages;
2854 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2855 #ifdef CONFIG_HIGHMEM
2856 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2857 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2863 val->mem_unit = PAGE_SIZE;
2868 * Determine whether the node should be displayed or not, depending on whether
2869 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2871 bool skip_free_areas_node(unsigned int flags, int nid)
2874 unsigned int cpuset_mems_cookie;
2876 if (!(flags & SHOW_MEM_FILTER_NODES))
2880 cpuset_mems_cookie = get_mems_allowed();
2881 ret = !node_isset(nid, cpuset_current_mems_allowed);
2882 } while (!put_mems_allowed(cpuset_mems_cookie));
2887 #define K(x) ((x) << (PAGE_SHIFT-10))
2889 static void show_migration_types(unsigned char type)
2891 static const char types[MIGRATE_TYPES] = {
2892 [MIGRATE_UNMOVABLE] = 'U',
2893 [MIGRATE_RECLAIMABLE] = 'E',
2894 [MIGRATE_MOVABLE] = 'M',
2895 [MIGRATE_RESERVE] = 'R',
2897 [MIGRATE_CMA] = 'C',
2899 [MIGRATE_ISOLATE] = 'I',
2901 char tmp[MIGRATE_TYPES + 1];
2905 for (i = 0; i < MIGRATE_TYPES; i++) {
2906 if (type & (1 << i))
2911 printk("(%s) ", tmp);
2915 * Show free area list (used inside shift_scroll-lock stuff)
2916 * We also calculate the percentage fragmentation. We do this by counting the
2917 * memory on each free list with the exception of the first item on the list.
2918 * Suppresses nodes that are not allowed by current's cpuset if
2919 * SHOW_MEM_FILTER_NODES is passed.
2921 void show_free_areas(unsigned int filter)
2926 for_each_populated_zone(zone) {
2927 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2930 printk("%s per-cpu:\n", zone->name);
2932 for_each_online_cpu(cpu) {
2933 struct per_cpu_pageset *pageset;
2935 pageset = per_cpu_ptr(zone->pageset, cpu);
2937 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2938 cpu, pageset->pcp.high,
2939 pageset->pcp.batch, pageset->pcp.count);
2943 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2944 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2946 " dirty:%lu writeback:%lu unstable:%lu\n"
2947 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2948 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2950 global_page_state(NR_ACTIVE_ANON),
2951 global_page_state(NR_INACTIVE_ANON),
2952 global_page_state(NR_ISOLATED_ANON),
2953 global_page_state(NR_ACTIVE_FILE),
2954 global_page_state(NR_INACTIVE_FILE),
2955 global_page_state(NR_ISOLATED_FILE),
2956 global_page_state(NR_UNEVICTABLE),
2957 global_page_state(NR_FILE_DIRTY),
2958 global_page_state(NR_WRITEBACK),
2959 global_page_state(NR_UNSTABLE_NFS),
2960 global_page_state(NR_FREE_PAGES),
2961 global_page_state(NR_SLAB_RECLAIMABLE),
2962 global_page_state(NR_SLAB_UNRECLAIMABLE),
2963 global_page_state(NR_FILE_MAPPED),
2964 global_page_state(NR_SHMEM),
2965 global_page_state(NR_PAGETABLE),
2966 global_page_state(NR_BOUNCE),
2967 global_page_state(NR_FREE_CMA_PAGES));
2969 for_each_populated_zone(zone) {
2972 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2980 " active_anon:%lukB"
2981 " inactive_anon:%lukB"
2982 " active_file:%lukB"
2983 " inactive_file:%lukB"
2984 " unevictable:%lukB"
2985 " isolated(anon):%lukB"
2986 " isolated(file):%lukB"
2994 " slab_reclaimable:%lukB"
2995 " slab_unreclaimable:%lukB"
2996 " kernel_stack:%lukB"
3001 " writeback_tmp:%lukB"
3002 " pages_scanned:%lu"
3003 " all_unreclaimable? %s"
3006 K(zone_page_state(zone, NR_FREE_PAGES)),
3007 K(min_wmark_pages(zone)),
3008 K(low_wmark_pages(zone)),
3009 K(high_wmark_pages(zone)),
3010 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3011 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3012 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3013 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3014 K(zone_page_state(zone, NR_UNEVICTABLE)),
3015 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3016 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3017 K(zone->present_pages),
3018 K(zone->managed_pages),
3019 K(zone_page_state(zone, NR_MLOCK)),
3020 K(zone_page_state(zone, NR_FILE_DIRTY)),
3021 K(zone_page_state(zone, NR_WRITEBACK)),
3022 K(zone_page_state(zone, NR_FILE_MAPPED)),
3023 K(zone_page_state(zone, NR_SHMEM)),
3024 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3025 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3026 zone_page_state(zone, NR_KERNEL_STACK) *
3028 K(zone_page_state(zone, NR_PAGETABLE)),
3029 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3030 K(zone_page_state(zone, NR_BOUNCE)),
3031 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3032 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3033 zone->pages_scanned,
3034 (zone->all_unreclaimable ? "yes" : "no")
3036 printk("lowmem_reserve[]:");
3037 for (i = 0; i < MAX_NR_ZONES; i++)
3038 printk(" %lu", zone->lowmem_reserve[i]);
3042 for_each_populated_zone(zone) {
3043 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3044 unsigned char types[MAX_ORDER];
3046 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3049 printk("%s: ", zone->name);
3051 spin_lock_irqsave(&zone->lock, flags);
3052 for (order = 0; order < MAX_ORDER; order++) {
3053 struct free_area *area = &zone->free_area[order];
3056 nr[order] = area->nr_free;
3057 total += nr[order] << order;
3060 for (type = 0; type < MIGRATE_TYPES; type++) {
3061 if (!list_empty(&area->free_list[type]))
3062 types[order] |= 1 << type;
3065 spin_unlock_irqrestore(&zone->lock, flags);
3066 for (order = 0; order < MAX_ORDER; order++) {
3067 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3069 show_migration_types(types[order]);
3071 printk("= %lukB\n", K(total));
3074 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3076 show_swap_cache_info();
3079 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3081 zoneref->zone = zone;
3082 zoneref->zone_idx = zone_idx(zone);
3086 * Builds allocation fallback zone lists.
3088 * Add all populated zones of a node to the zonelist.
3090 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3091 int nr_zones, enum zone_type zone_type)
3095 BUG_ON(zone_type >= MAX_NR_ZONES);
3100 zone = pgdat->node_zones + zone_type;
3101 if (populated_zone(zone)) {
3102 zoneref_set_zone(zone,
3103 &zonelist->_zonerefs[nr_zones++]);
3104 check_highest_zone(zone_type);
3107 } while (zone_type);
3114 * 0 = automatic detection of better ordering.
3115 * 1 = order by ([node] distance, -zonetype)
3116 * 2 = order by (-zonetype, [node] distance)
3118 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3119 * the same zonelist. So only NUMA can configure this param.
3121 #define ZONELIST_ORDER_DEFAULT 0
3122 #define ZONELIST_ORDER_NODE 1
3123 #define ZONELIST_ORDER_ZONE 2
3125 /* zonelist order in the kernel.
3126 * set_zonelist_order() will set this to NODE or ZONE.
3128 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3133 /* The value user specified ....changed by config */
3134 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3135 /* string for sysctl */
3136 #define NUMA_ZONELIST_ORDER_LEN 16
3137 char numa_zonelist_order[16] = "default";
3140 * interface for configure zonelist ordering.
3141 * command line option "numa_zonelist_order"
3142 * = "[dD]efault - default, automatic configuration.
3143 * = "[nN]ode - order by node locality, then by zone within node
3144 * = "[zZ]one - order by zone, then by locality within zone
3147 static int __parse_numa_zonelist_order(char *s)
3149 if (*s == 'd' || *s == 'D') {
3150 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3151 } else if (*s == 'n' || *s == 'N') {
3152 user_zonelist_order = ZONELIST_ORDER_NODE;
3153 } else if (*s == 'z' || *s == 'Z') {
3154 user_zonelist_order = ZONELIST_ORDER_ZONE;
3157 "Ignoring invalid numa_zonelist_order value: "
3164 static __init int setup_numa_zonelist_order(char *s)
3171 ret = __parse_numa_zonelist_order(s);
3173 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3177 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3180 * sysctl handler for numa_zonelist_order
3182 int numa_zonelist_order_handler(ctl_table *table, int write,
3183 void __user *buffer, size_t *length,
3186 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3188 static DEFINE_MUTEX(zl_order_mutex);
3190 mutex_lock(&zl_order_mutex);
3192 strcpy(saved_string, (char*)table->data);
3193 ret = proc_dostring(table, write, buffer, length, ppos);
3197 int oldval = user_zonelist_order;
3198 if (__parse_numa_zonelist_order((char*)table->data)) {
3200 * bogus value. restore saved string
3202 strncpy((char*)table->data, saved_string,
3203 NUMA_ZONELIST_ORDER_LEN);
3204 user_zonelist_order = oldval;
3205 } else if (oldval != user_zonelist_order) {
3206 mutex_lock(&zonelists_mutex);
3207 build_all_zonelists(NULL, NULL);
3208 mutex_unlock(&zonelists_mutex);
3212 mutex_unlock(&zl_order_mutex);
3217 #define MAX_NODE_LOAD (nr_online_nodes)
3218 static int node_load[MAX_NUMNODES];
3221 * find_next_best_node - find the next node that should appear in a given node's fallback list
3222 * @node: node whose fallback list we're appending
3223 * @used_node_mask: nodemask_t of already used nodes
3225 * We use a number of factors to determine which is the next node that should
3226 * appear on a given node's fallback list. The node should not have appeared
3227 * already in @node's fallback list, and it should be the next closest node
3228 * according to the distance array (which contains arbitrary distance values
3229 * from each node to each node in the system), and should also prefer nodes
3230 * with no CPUs, since presumably they'll have very little allocation pressure
3231 * on them otherwise.
3232 * It returns -1 if no node is found.
3234 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3237 int min_val = INT_MAX;
3239 const struct cpumask *tmp = cpumask_of_node(0);
3241 /* Use the local node if we haven't already */
3242 if (!node_isset(node, *used_node_mask)) {
3243 node_set(node, *used_node_mask);
3247 for_each_node_state(n, N_MEMORY) {
3249 /* Don't want a node to appear more than once */
3250 if (node_isset(n, *used_node_mask))
3253 /* Use the distance array to find the distance */
3254 val = node_distance(node, n);
3256 /* Penalize nodes under us ("prefer the next node") */
3259 /* Give preference to headless and unused nodes */
3260 tmp = cpumask_of_node(n);
3261 if (!cpumask_empty(tmp))
3262 val += PENALTY_FOR_NODE_WITH_CPUS;
3264 /* Slight preference for less loaded node */
3265 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3266 val += node_load[n];
3268 if (val < min_val) {
3275 node_set(best_node, *used_node_mask);
3282 * Build zonelists ordered by node and zones within node.
3283 * This results in maximum locality--normal zone overflows into local
3284 * DMA zone, if any--but risks exhausting DMA zone.
3286 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3289 struct zonelist *zonelist;
3291 zonelist = &pgdat->node_zonelists[0];
3292 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3294 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3296 zonelist->_zonerefs[j].zone = NULL;
3297 zonelist->_zonerefs[j].zone_idx = 0;
3301 * Build gfp_thisnode zonelists
3303 static void build_thisnode_zonelists(pg_data_t *pgdat)
3306 struct zonelist *zonelist;
3308 zonelist = &pgdat->node_zonelists[1];
3309 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3310 zonelist->_zonerefs[j].zone = NULL;
3311 zonelist->_zonerefs[j].zone_idx = 0;
3315 * Build zonelists ordered by zone and nodes within zones.
3316 * This results in conserving DMA zone[s] until all Normal memory is
3317 * exhausted, but results in overflowing to remote node while memory
3318 * may still exist in local DMA zone.
3320 static int node_order[MAX_NUMNODES];
3322 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3325 int zone_type; /* needs to be signed */
3327 struct zonelist *zonelist;
3329 zonelist = &pgdat->node_zonelists[0];
3331 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3332 for (j = 0; j < nr_nodes; j++) {
3333 node = node_order[j];
3334 z = &NODE_DATA(node)->node_zones[zone_type];
3335 if (populated_zone(z)) {
3337 &zonelist->_zonerefs[pos++]);
3338 check_highest_zone(zone_type);
3342 zonelist->_zonerefs[pos].zone = NULL;
3343 zonelist->_zonerefs[pos].zone_idx = 0;
3346 static int default_zonelist_order(void)
3349 unsigned long low_kmem_size,total_size;
3353 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3354 * If they are really small and used heavily, the system can fall
3355 * into OOM very easily.
3356 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3358 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3361 for_each_online_node(nid) {
3362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3363 z = &NODE_DATA(nid)->node_zones[zone_type];
3364 if (populated_zone(z)) {
3365 if (zone_type < ZONE_NORMAL)
3366 low_kmem_size += z->present_pages;
3367 total_size += z->present_pages;
3368 } else if (zone_type == ZONE_NORMAL) {
3370 * If any node has only lowmem, then node order
3371 * is preferred to allow kernel allocations
3372 * locally; otherwise, they can easily infringe
3373 * on other nodes when there is an abundance of
3374 * lowmem available to allocate from.
3376 return ZONELIST_ORDER_NODE;
3380 if (!low_kmem_size || /* there are no DMA area. */
3381 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3382 return ZONELIST_ORDER_NODE;
3384 * look into each node's config.
3385 * If there is a node whose DMA/DMA32 memory is very big area on
3386 * local memory, NODE_ORDER may be suitable.
3388 average_size = total_size /
3389 (nodes_weight(node_states[N_MEMORY]) + 1);
3390 for_each_online_node(nid) {
3393 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3394 z = &NODE_DATA(nid)->node_zones[zone_type];
3395 if (populated_zone(z)) {
3396 if (zone_type < ZONE_NORMAL)
3397 low_kmem_size += z->present_pages;
3398 total_size += z->present_pages;
3401 if (low_kmem_size &&
3402 total_size > average_size && /* ignore small node */
3403 low_kmem_size > total_size * 70/100)
3404 return ZONELIST_ORDER_NODE;
3406 return ZONELIST_ORDER_ZONE;
3409 static void set_zonelist_order(void)
3411 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3412 current_zonelist_order = default_zonelist_order();
3414 current_zonelist_order = user_zonelist_order;
3417 static void build_zonelists(pg_data_t *pgdat)
3421 nodemask_t used_mask;
3422 int local_node, prev_node;
3423 struct zonelist *zonelist;
3424 int order = current_zonelist_order;
3426 /* initialize zonelists */
3427 for (i = 0; i < MAX_ZONELISTS; i++) {
3428 zonelist = pgdat->node_zonelists + i;
3429 zonelist->_zonerefs[0].zone = NULL;
3430 zonelist->_zonerefs[0].zone_idx = 0;
3433 /* NUMA-aware ordering of nodes */
3434 local_node = pgdat->node_id;
3435 load = nr_online_nodes;
3436 prev_node = local_node;
3437 nodes_clear(used_mask);
3439 memset(node_order, 0, sizeof(node_order));
3442 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3444 * We don't want to pressure a particular node.
3445 * So adding penalty to the first node in same
3446 * distance group to make it round-robin.
3448 if (node_distance(local_node, node) !=
3449 node_distance(local_node, prev_node))
3450 node_load[node] = load;
3454 if (order == ZONELIST_ORDER_NODE)
3455 build_zonelists_in_node_order(pgdat, node);
3457 node_order[j++] = node; /* remember order */
3460 if (order == ZONELIST_ORDER_ZONE) {
3461 /* calculate node order -- i.e., DMA last! */
3462 build_zonelists_in_zone_order(pgdat, j);
3465 build_thisnode_zonelists(pgdat);
3468 /* Construct the zonelist performance cache - see further mmzone.h */
3469 static void build_zonelist_cache(pg_data_t *pgdat)
3471 struct zonelist *zonelist;
3472 struct zonelist_cache *zlc;
3475 zonelist = &pgdat->node_zonelists[0];
3476 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3477 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3478 for (z = zonelist->_zonerefs; z->zone; z++)
3479 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3482 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3484 * Return node id of node used for "local" allocations.
3485 * I.e., first node id of first zone in arg node's generic zonelist.
3486 * Used for initializing percpu 'numa_mem', which is used primarily
3487 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3489 int local_memory_node(int node)
3493 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3494 gfp_zone(GFP_KERNEL),
3501 #else /* CONFIG_NUMA */
3503 static void set_zonelist_order(void)
3505 current_zonelist_order = ZONELIST_ORDER_ZONE;
3508 static void build_zonelists(pg_data_t *pgdat)
3510 int node, local_node;
3512 struct zonelist *zonelist;
3514 local_node = pgdat->node_id;
3516 zonelist = &pgdat->node_zonelists[0];
3517 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3520 * Now we build the zonelist so that it contains the zones
3521 * of all the other nodes.
3522 * We don't want to pressure a particular node, so when
3523 * building the zones for node N, we make sure that the
3524 * zones coming right after the local ones are those from
3525 * node N+1 (modulo N)
3527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3528 if (!node_online(node))
3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3533 for (node = 0; node < local_node; node++) {
3534 if (!node_online(node))
3536 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3540 zonelist->_zonerefs[j].zone = NULL;
3541 zonelist->_zonerefs[j].zone_idx = 0;
3544 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3545 static void build_zonelist_cache(pg_data_t *pgdat)
3547 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3550 #endif /* CONFIG_NUMA */
3553 * Boot pageset table. One per cpu which is going to be used for all
3554 * zones and all nodes. The parameters will be set in such a way
3555 * that an item put on a list will immediately be handed over to
3556 * the buddy list. This is safe since pageset manipulation is done
3557 * with interrupts disabled.
3559 * The boot_pagesets must be kept even after bootup is complete for
3560 * unused processors and/or zones. They do play a role for bootstrapping
3561 * hotplugged processors.
3563 * zoneinfo_show() and maybe other functions do
3564 * not check if the processor is online before following the pageset pointer.
3565 * Other parts of the kernel may not check if the zone is available.
3567 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3568 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3569 static void setup_zone_pageset(struct zone *zone);
3572 * Global mutex to protect against size modification of zonelists
3573 * as well as to serialize pageset setup for the new populated zone.
3575 DEFINE_MUTEX(zonelists_mutex);
3577 /* return values int ....just for stop_machine() */
3578 static int __build_all_zonelists(void *data)
3582 pg_data_t *self = data;
3585 memset(node_load, 0, sizeof(node_load));
3588 if (self && !node_online(self->node_id)) {
3589 build_zonelists(self);
3590 build_zonelist_cache(self);
3593 for_each_online_node(nid) {
3594 pg_data_t *pgdat = NODE_DATA(nid);
3596 build_zonelists(pgdat);
3597 build_zonelist_cache(pgdat);
3601 * Initialize the boot_pagesets that are going to be used
3602 * for bootstrapping processors. The real pagesets for
3603 * each zone will be allocated later when the per cpu
3604 * allocator is available.
3606 * boot_pagesets are used also for bootstrapping offline
3607 * cpus if the system is already booted because the pagesets
3608 * are needed to initialize allocators on a specific cpu too.
3609 * F.e. the percpu allocator needs the page allocator which
3610 * needs the percpu allocator in order to allocate its pagesets
3611 * (a chicken-egg dilemma).
3613 for_each_possible_cpu(cpu) {
3614 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3618 * We now know the "local memory node" for each node--
3619 * i.e., the node of the first zone in the generic zonelist.
3620 * Set up numa_mem percpu variable for on-line cpus. During
3621 * boot, only the boot cpu should be on-line; we'll init the
3622 * secondary cpus' numa_mem as they come on-line. During
3623 * node/memory hotplug, we'll fixup all on-line cpus.
3625 if (cpu_online(cpu))
3626 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3634 * Called with zonelists_mutex held always
3635 * unless system_state == SYSTEM_BOOTING.
3637 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3639 set_zonelist_order();
3641 if (system_state == SYSTEM_BOOTING) {
3642 __build_all_zonelists(NULL);
3643 mminit_verify_zonelist();
3644 cpuset_init_current_mems_allowed();
3646 /* we have to stop all cpus to guarantee there is no user
3648 #ifdef CONFIG_MEMORY_HOTPLUG
3650 setup_zone_pageset(zone);
3652 stop_machine(__build_all_zonelists, pgdat, NULL);
3653 /* cpuset refresh routine should be here */
3655 vm_total_pages = nr_free_pagecache_pages();
3657 * Disable grouping by mobility if the number of pages in the
3658 * system is too low to allow the mechanism to work. It would be
3659 * more accurate, but expensive to check per-zone. This check is
3660 * made on memory-hotadd so a system can start with mobility
3661 * disabled and enable it later
3663 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3664 page_group_by_mobility_disabled = 1;
3666 page_group_by_mobility_disabled = 0;
3668 printk("Built %i zonelists in %s order, mobility grouping %s. "
3669 "Total pages: %ld\n",
3671 zonelist_order_name[current_zonelist_order],
3672 page_group_by_mobility_disabled ? "off" : "on",
3675 printk("Policy zone: %s\n", zone_names[policy_zone]);
3680 * Helper functions to size the waitqueue hash table.
3681 * Essentially these want to choose hash table sizes sufficiently
3682 * large so that collisions trying to wait on pages are rare.
3683 * But in fact, the number of active page waitqueues on typical
3684 * systems is ridiculously low, less than 200. So this is even
3685 * conservative, even though it seems large.
3687 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3688 * waitqueues, i.e. the size of the waitq table given the number of pages.
3690 #define PAGES_PER_WAITQUEUE 256
3692 #ifndef CONFIG_MEMORY_HOTPLUG
3693 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3695 unsigned long size = 1;
3697 pages /= PAGES_PER_WAITQUEUE;
3699 while (size < pages)
3703 * Once we have dozens or even hundreds of threads sleeping
3704 * on IO we've got bigger problems than wait queue collision.
3705 * Limit the size of the wait table to a reasonable size.
3707 size = min(size, 4096UL);
3709 return max(size, 4UL);
3713 * A zone's size might be changed by hot-add, so it is not possible to determine
3714 * a suitable size for its wait_table. So we use the maximum size now.
3716 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3718 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3719 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3720 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3722 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3723 * or more by the traditional way. (See above). It equals:
3725 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3726 * ia64(16K page size) : = ( 8G + 4M)byte.
3727 * powerpc (64K page size) : = (32G +16M)byte.
3729 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3736 * This is an integer logarithm so that shifts can be used later
3737 * to extract the more random high bits from the multiplicative
3738 * hash function before the remainder is taken.
3740 static inline unsigned long wait_table_bits(unsigned long size)
3745 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3748 * Check if a pageblock contains reserved pages
3750 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3754 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3755 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3762 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3763 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3764 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3765 * higher will lead to a bigger reserve which will get freed as contiguous
3766 * blocks as reclaim kicks in
3768 static void setup_zone_migrate_reserve(struct zone *zone)
3770 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3772 unsigned long block_migratetype;
3776 * Get the start pfn, end pfn and the number of blocks to reserve
3777 * We have to be careful to be aligned to pageblock_nr_pages to
3778 * make sure that we always check pfn_valid for the first page in
3781 start_pfn = zone->zone_start_pfn;
3782 end_pfn = start_pfn + zone->spanned_pages;
3783 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3784 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3788 * Reserve blocks are generally in place to help high-order atomic
3789 * allocations that are short-lived. A min_free_kbytes value that
3790 * would result in more than 2 reserve blocks for atomic allocations
3791 * is assumed to be in place to help anti-fragmentation for the
3792 * future allocation of hugepages at runtime.
3794 reserve = min(2, reserve);
3796 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3797 if (!pfn_valid(pfn))
3799 page = pfn_to_page(pfn);
3801 /* Watch out for overlapping nodes */
3802 if (page_to_nid(page) != zone_to_nid(zone))
3805 block_migratetype = get_pageblock_migratetype(page);
3807 /* Only test what is necessary when the reserves are not met */
3810 * Blocks with reserved pages will never free, skip
3813 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3814 if (pageblock_is_reserved(pfn, block_end_pfn))
3817 /* If this block is reserved, account for it */
3818 if (block_migratetype == MIGRATE_RESERVE) {
3823 /* Suitable for reserving if this block is movable */
3824 if (block_migratetype == MIGRATE_MOVABLE) {
3825 set_pageblock_migratetype(page,
3827 move_freepages_block(zone, page,
3835 * If the reserve is met and this is a previous reserved block,
3838 if (block_migratetype == MIGRATE_RESERVE) {
3839 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3840 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3846 * Initially all pages are reserved - free ones are freed
3847 * up by free_all_bootmem() once the early boot process is
3848 * done. Non-atomic initialization, single-pass.
3850 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3851 unsigned long start_pfn, enum memmap_context context)
3854 unsigned long end_pfn = start_pfn + size;
3858 if (highest_memmap_pfn < end_pfn - 1)
3859 highest_memmap_pfn = end_pfn - 1;
3861 z = &NODE_DATA(nid)->node_zones[zone];
3862 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3864 * There can be holes in boot-time mem_map[]s
3865 * handed to this function. They do not
3866 * exist on hotplugged memory.
3868 if (context == MEMMAP_EARLY) {
3869 if (!early_pfn_valid(pfn))
3871 if (!early_pfn_in_nid(pfn, nid))
3874 page = pfn_to_page(pfn);
3875 set_page_links(page, zone, nid, pfn);
3876 mminit_verify_page_links(page, zone, nid, pfn);
3877 init_page_count(page);
3878 reset_page_mapcount(page);
3879 reset_page_last_nid(page);
3880 SetPageReserved(page);
3882 * Mark the block movable so that blocks are reserved for
3883 * movable at startup. This will force kernel allocations
3884 * to reserve their blocks rather than leaking throughout
3885 * the address space during boot when many long-lived
3886 * kernel allocations are made. Later some blocks near
3887 * the start are marked MIGRATE_RESERVE by
3888 * setup_zone_migrate_reserve()
3890 * bitmap is created for zone's valid pfn range. but memmap
3891 * can be created for invalid pages (for alignment)
3892 * check here not to call set_pageblock_migratetype() against
3895 if ((z->zone_start_pfn <= pfn)
3896 && (pfn < z->zone_start_pfn + z->spanned_pages)
3897 && !(pfn & (pageblock_nr_pages - 1)))
3898 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3900 INIT_LIST_HEAD(&page->lru);
3901 #ifdef WANT_PAGE_VIRTUAL
3902 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3903 if (!is_highmem_idx(zone))
3904 set_page_address(page, __va(pfn << PAGE_SHIFT));
3909 static void __meminit zone_init_free_lists(struct zone *zone)
3912 for_each_migratetype_order(order, t) {
3913 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3914 zone->free_area[order].nr_free = 0;
3918 #ifndef __HAVE_ARCH_MEMMAP_INIT
3919 #define memmap_init(size, nid, zone, start_pfn) \
3920 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3923 static int __meminit zone_batchsize(struct zone *zone)
3929 * The per-cpu-pages pools are set to around 1000th of the
3930 * size of the zone. But no more than 1/2 of a meg.
3932 * OK, so we don't know how big the cache is. So guess.
3934 batch = zone->present_pages / 1024;
3935 if (batch * PAGE_SIZE > 512 * 1024)
3936 batch = (512 * 1024) / PAGE_SIZE;
3937 batch /= 4; /* We effectively *= 4 below */
3942 * Clamp the batch to a 2^n - 1 value. Having a power
3943 * of 2 value was found to be more likely to have
3944 * suboptimal cache aliasing properties in some cases.
3946 * For example if 2 tasks are alternately allocating
3947 * batches of pages, one task can end up with a lot
3948 * of pages of one half of the possible page colors
3949 * and the other with pages of the other colors.
3951 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3956 /* The deferral and batching of frees should be suppressed under NOMMU
3959 * The problem is that NOMMU needs to be able to allocate large chunks
3960 * of contiguous memory as there's no hardware page translation to
3961 * assemble apparent contiguous memory from discontiguous pages.
3963 * Queueing large contiguous runs of pages for batching, however,
3964 * causes the pages to actually be freed in smaller chunks. As there
3965 * can be a significant delay between the individual batches being
3966 * recycled, this leads to the once large chunks of space being
3967 * fragmented and becoming unavailable for high-order allocations.
3973 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3975 struct per_cpu_pages *pcp;
3978 memset(p, 0, sizeof(*p));
3982 pcp->high = 6 * batch;
3983 pcp->batch = max(1UL, 1 * batch);
3984 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3985 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3989 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3990 * to the value high for the pageset p.
3993 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3996 struct per_cpu_pages *pcp;
4000 pcp->batch = max(1UL, high/4);
4001 if ((high/4) > (PAGE_SHIFT * 8))
4002 pcp->batch = PAGE_SHIFT * 8;
4005 static void __meminit setup_zone_pageset(struct zone *zone)
4009 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4011 for_each_possible_cpu(cpu) {
4012 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4014 setup_pageset(pcp, zone_batchsize(zone));
4016 if (percpu_pagelist_fraction)
4017 setup_pagelist_highmark(pcp,
4018 (zone->present_pages /
4019 percpu_pagelist_fraction));
4024 * Allocate per cpu pagesets and initialize them.
4025 * Before this call only boot pagesets were available.
4027 void __init setup_per_cpu_pageset(void)
4031 for_each_populated_zone(zone)
4032 setup_zone_pageset(zone);
4035 static noinline __init_refok
4036 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4039 struct pglist_data *pgdat = zone->zone_pgdat;
4043 * The per-page waitqueue mechanism uses hashed waitqueues
4046 zone->wait_table_hash_nr_entries =
4047 wait_table_hash_nr_entries(zone_size_pages);
4048 zone->wait_table_bits =
4049 wait_table_bits(zone->wait_table_hash_nr_entries);
4050 alloc_size = zone->wait_table_hash_nr_entries
4051 * sizeof(wait_queue_head_t);
4053 if (!slab_is_available()) {
4054 zone->wait_table = (wait_queue_head_t *)
4055 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4058 * This case means that a zone whose size was 0 gets new memory
4059 * via memory hot-add.
4060 * But it may be the case that a new node was hot-added. In
4061 * this case vmalloc() will not be able to use this new node's
4062 * memory - this wait_table must be initialized to use this new
4063 * node itself as well.
4064 * To use this new node's memory, further consideration will be
4067 zone->wait_table = vmalloc(alloc_size);
4069 if (!zone->wait_table)
4072 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4073 init_waitqueue_head(zone->wait_table + i);
4078 static __meminit void zone_pcp_init(struct zone *zone)
4081 * per cpu subsystem is not up at this point. The following code
4082 * relies on the ability of the linker to provide the
4083 * offset of a (static) per cpu variable into the per cpu area.
4085 zone->pageset = &boot_pageset;
4087 if (zone->present_pages)
4088 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4089 zone->name, zone->present_pages,
4090 zone_batchsize(zone));
4093 int __meminit init_currently_empty_zone(struct zone *zone,
4094 unsigned long zone_start_pfn,
4096 enum memmap_context context)
4098 struct pglist_data *pgdat = zone->zone_pgdat;
4100 ret = zone_wait_table_init(zone, size);
4103 pgdat->nr_zones = zone_idx(zone) + 1;
4105 zone->zone_start_pfn = zone_start_pfn;
4107 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4108 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4110 (unsigned long)zone_idx(zone),
4111 zone_start_pfn, (zone_start_pfn + size));
4113 zone_init_free_lists(zone);
4118 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4119 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4121 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4122 * Architectures may implement their own version but if add_active_range()
4123 * was used and there are no special requirements, this is a convenient
4126 int __meminit __early_pfn_to_nid(unsigned long pfn)
4128 unsigned long start_pfn, end_pfn;
4131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4132 if (start_pfn <= pfn && pfn < end_pfn)
4134 /* This is a memory hole */
4137 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4139 int __meminit early_pfn_to_nid(unsigned long pfn)
4143 nid = __early_pfn_to_nid(pfn);
4146 /* just returns 0 */
4150 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4151 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4155 nid = __early_pfn_to_nid(pfn);
4156 if (nid >= 0 && nid != node)
4163 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4164 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4165 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4167 * If an architecture guarantees that all ranges registered with
4168 * add_active_ranges() contain no holes and may be freed, this
4169 * this function may be used instead of calling free_bootmem() manually.
4171 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4173 unsigned long start_pfn, end_pfn;
4176 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4177 start_pfn = min(start_pfn, max_low_pfn);
4178 end_pfn = min(end_pfn, max_low_pfn);
4180 if (start_pfn < end_pfn)
4181 free_bootmem_node(NODE_DATA(this_nid),
4182 PFN_PHYS(start_pfn),
4183 (end_pfn - start_pfn) << PAGE_SHIFT);
4188 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4189 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4191 * If an architecture guarantees that all ranges registered with
4192 * add_active_ranges() contain no holes and may be freed, this
4193 * function may be used instead of calling memory_present() manually.
4195 void __init sparse_memory_present_with_active_regions(int nid)
4197 unsigned long start_pfn, end_pfn;
4200 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4201 memory_present(this_nid, start_pfn, end_pfn);
4205 * get_pfn_range_for_nid - Return the start and end page frames for a node
4206 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4207 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4208 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4210 * It returns the start and end page frame of a node based on information
4211 * provided by an arch calling add_active_range(). If called for a node
4212 * with no available memory, a warning is printed and the start and end
4215 void __meminit get_pfn_range_for_nid(unsigned int nid,
4216 unsigned long *start_pfn, unsigned long *end_pfn)
4218 unsigned long this_start_pfn, this_end_pfn;
4224 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4225 *start_pfn = min(*start_pfn, this_start_pfn);
4226 *end_pfn = max(*end_pfn, this_end_pfn);
4229 if (*start_pfn == -1UL)
4234 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4235 * assumption is made that zones within a node are ordered in monotonic
4236 * increasing memory addresses so that the "highest" populated zone is used
4238 static void __init find_usable_zone_for_movable(void)
4241 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4242 if (zone_index == ZONE_MOVABLE)
4245 if (arch_zone_highest_possible_pfn[zone_index] >
4246 arch_zone_lowest_possible_pfn[zone_index])
4250 VM_BUG_ON(zone_index == -1);
4251 movable_zone = zone_index;
4255 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4256 * because it is sized independent of architecture. Unlike the other zones,
4257 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4258 * in each node depending on the size of each node and how evenly kernelcore
4259 * is distributed. This helper function adjusts the zone ranges
4260 * provided by the architecture for a given node by using the end of the
4261 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4262 * zones within a node are in order of monotonic increases memory addresses
4264 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4265 unsigned long zone_type,
4266 unsigned long node_start_pfn,
4267 unsigned long node_end_pfn,
4268 unsigned long *zone_start_pfn,
4269 unsigned long *zone_end_pfn)
4271 /* Only adjust if ZONE_MOVABLE is on this node */
4272 if (zone_movable_pfn[nid]) {
4273 /* Size ZONE_MOVABLE */
4274 if (zone_type == ZONE_MOVABLE) {
4275 *zone_start_pfn = zone_movable_pfn[nid];
4276 *zone_end_pfn = min(node_end_pfn,
4277 arch_zone_highest_possible_pfn[movable_zone]);
4279 /* Adjust for ZONE_MOVABLE starting within this range */
4280 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4281 *zone_end_pfn > zone_movable_pfn[nid]) {
4282 *zone_end_pfn = zone_movable_pfn[nid];
4284 /* Check if this whole range is within ZONE_MOVABLE */
4285 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4286 *zone_start_pfn = *zone_end_pfn;
4291 * Return the number of pages a zone spans in a node, including holes
4292 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4294 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4295 unsigned long zone_type,
4296 unsigned long *ignored)
4298 unsigned long node_start_pfn, node_end_pfn;
4299 unsigned long zone_start_pfn, zone_end_pfn;
4301 /* Get the start and end of the node and zone */
4302 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4303 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4304 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4305 adjust_zone_range_for_zone_movable(nid, zone_type,
4306 node_start_pfn, node_end_pfn,
4307 &zone_start_pfn, &zone_end_pfn);
4309 /* Check that this node has pages within the zone's required range */
4310 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4313 /* Move the zone boundaries inside the node if necessary */
4314 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4315 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4317 /* Return the spanned pages */
4318 return zone_end_pfn - zone_start_pfn;
4322 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4323 * then all holes in the requested range will be accounted for.
4325 unsigned long __meminit __absent_pages_in_range(int nid,
4326 unsigned long range_start_pfn,
4327 unsigned long range_end_pfn)
4329 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4330 unsigned long start_pfn, end_pfn;
4333 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4334 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4335 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4336 nr_absent -= end_pfn - start_pfn;
4342 * absent_pages_in_range - Return number of page frames in holes within a range
4343 * @start_pfn: The start PFN to start searching for holes
4344 * @end_pfn: The end PFN to stop searching for holes
4346 * It returns the number of pages frames in memory holes within a range.
4348 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4349 unsigned long end_pfn)
4351 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4354 /* Return the number of page frames in holes in a zone on a node */
4355 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4356 unsigned long zone_type,
4357 unsigned long *ignored)
4359 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4360 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4361 unsigned long node_start_pfn, node_end_pfn;
4362 unsigned long zone_start_pfn, zone_end_pfn;
4364 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4365 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4366 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4368 adjust_zone_range_for_zone_movable(nid, zone_type,
4369 node_start_pfn, node_end_pfn,
4370 &zone_start_pfn, &zone_end_pfn);
4371 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4374 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4375 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4376 unsigned long zone_type,
4377 unsigned long *zones_size)
4379 return zones_size[zone_type];
4382 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4383 unsigned long zone_type,
4384 unsigned long *zholes_size)
4389 return zholes_size[zone_type];
4392 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4394 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4395 unsigned long *zones_size, unsigned long *zholes_size)
4397 unsigned long realtotalpages, totalpages = 0;
4400 for (i = 0; i < MAX_NR_ZONES; i++)
4401 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4403 pgdat->node_spanned_pages = totalpages;
4405 realtotalpages = totalpages;
4406 for (i = 0; i < MAX_NR_ZONES; i++)
4408 zone_absent_pages_in_node(pgdat->node_id, i,
4410 pgdat->node_present_pages = realtotalpages;
4411 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4415 #ifndef CONFIG_SPARSEMEM
4417 * Calculate the size of the zone->blockflags rounded to an unsigned long
4418 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4419 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4420 * round what is now in bits to nearest long in bits, then return it in
4423 static unsigned long __init usemap_size(unsigned long zonesize)
4425 unsigned long usemapsize;
4427 usemapsize = roundup(zonesize, pageblock_nr_pages);
4428 usemapsize = usemapsize >> pageblock_order;
4429 usemapsize *= NR_PAGEBLOCK_BITS;
4430 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4432 return usemapsize / 8;
4435 static void __init setup_usemap(struct pglist_data *pgdat,
4436 struct zone *zone, unsigned long zonesize)
4438 unsigned long usemapsize = usemap_size(zonesize);
4439 zone->pageblock_flags = NULL;
4441 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4445 static inline void setup_usemap(struct pglist_data *pgdat,
4446 struct zone *zone, unsigned long zonesize) {}
4447 #endif /* CONFIG_SPARSEMEM */
4449 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4451 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4452 void __init set_pageblock_order(void)
4456 /* Check that pageblock_nr_pages has not already been setup */
4457 if (pageblock_order)
4460 if (HPAGE_SHIFT > PAGE_SHIFT)
4461 order = HUGETLB_PAGE_ORDER;
4463 order = MAX_ORDER - 1;
4466 * Assume the largest contiguous order of interest is a huge page.
4467 * This value may be variable depending on boot parameters on IA64 and
4470 pageblock_order = order;
4472 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4475 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4476 * is unused as pageblock_order is set at compile-time. See
4477 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4480 void __init set_pageblock_order(void)
4484 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4486 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4487 unsigned long present_pages)
4489 unsigned long pages = spanned_pages;
4492 * Provide a more accurate estimation if there are holes within
4493 * the zone and SPARSEMEM is in use. If there are holes within the
4494 * zone, each populated memory region may cost us one or two extra
4495 * memmap pages due to alignment because memmap pages for each
4496 * populated regions may not naturally algined on page boundary.
4497 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4499 if (spanned_pages > present_pages + (present_pages >> 4) &&
4500 IS_ENABLED(CONFIG_SPARSEMEM))
4501 pages = present_pages;
4503 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4507 * Set up the zone data structures:
4508 * - mark all pages reserved
4509 * - mark all memory queues empty
4510 * - clear the memory bitmaps
4512 * NOTE: pgdat should get zeroed by caller.
4514 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4515 unsigned long *zones_size, unsigned long *zholes_size)
4518 int nid = pgdat->node_id;
4519 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4522 pgdat_resize_init(pgdat);
4523 #ifdef CONFIG_NUMA_BALANCING
4524 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4525 pgdat->numabalancing_migrate_nr_pages = 0;
4526 pgdat->numabalancing_migrate_next_window = jiffies;
4528 init_waitqueue_head(&pgdat->kswapd_wait);
4529 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4530 pgdat_page_cgroup_init(pgdat);
4532 for (j = 0; j < MAX_NR_ZONES; j++) {
4533 struct zone *zone = pgdat->node_zones + j;
4534 unsigned long size, realsize, freesize, memmap_pages;
4536 size = zone_spanned_pages_in_node(nid, j, zones_size);
4537 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4541 * Adjust freesize so that it accounts for how much memory
4542 * is used by this zone for memmap. This affects the watermark
4543 * and per-cpu initialisations
4545 memmap_pages = calc_memmap_size(size, realsize);
4546 if (freesize >= memmap_pages) {
4547 freesize -= memmap_pages;
4550 " %s zone: %lu pages used for memmap\n",
4551 zone_names[j], memmap_pages);
4554 " %s zone: %lu pages exceeds freesize %lu\n",
4555 zone_names[j], memmap_pages, freesize);
4557 /* Account for reserved pages */
4558 if (j == 0 && freesize > dma_reserve) {
4559 freesize -= dma_reserve;
4560 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4561 zone_names[0], dma_reserve);
4564 if (!is_highmem_idx(j))
4565 nr_kernel_pages += freesize;
4566 /* Charge for highmem memmap if there are enough kernel pages */
4567 else if (nr_kernel_pages > memmap_pages * 2)
4568 nr_kernel_pages -= memmap_pages;
4569 nr_all_pages += freesize;
4571 zone->spanned_pages = size;
4572 zone->present_pages = freesize;
4574 * Set an approximate value for lowmem here, it will be adjusted
4575 * when the bootmem allocator frees pages into the buddy system.
4576 * And all highmem pages will be managed by the buddy system.
4578 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4581 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4583 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4585 zone->name = zone_names[j];
4586 spin_lock_init(&zone->lock);
4587 spin_lock_init(&zone->lru_lock);
4588 zone_seqlock_init(zone);
4589 zone->zone_pgdat = pgdat;
4591 zone_pcp_init(zone);
4592 lruvec_init(&zone->lruvec);
4596 set_pageblock_order();
4597 setup_usemap(pgdat, zone, size);
4598 ret = init_currently_empty_zone(zone, zone_start_pfn,
4599 size, MEMMAP_EARLY);
4601 memmap_init(size, nid, j, zone_start_pfn);
4602 zone_start_pfn += size;
4606 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4608 /* Skip empty nodes */
4609 if (!pgdat->node_spanned_pages)
4612 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4613 /* ia64 gets its own node_mem_map, before this, without bootmem */
4614 if (!pgdat->node_mem_map) {
4615 unsigned long size, start, end;
4619 * The zone's endpoints aren't required to be MAX_ORDER
4620 * aligned but the node_mem_map endpoints must be in order
4621 * for the buddy allocator to function correctly.
4623 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4624 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4625 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4626 size = (end - start) * sizeof(struct page);
4627 map = alloc_remap(pgdat->node_id, size);
4629 map = alloc_bootmem_node_nopanic(pgdat, size);
4630 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4632 #ifndef CONFIG_NEED_MULTIPLE_NODES
4634 * With no DISCONTIG, the global mem_map is just set as node 0's
4636 if (pgdat == NODE_DATA(0)) {
4637 mem_map = NODE_DATA(0)->node_mem_map;
4638 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4639 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4640 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4641 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4644 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4647 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4648 unsigned long node_start_pfn, unsigned long *zholes_size)
4650 pg_data_t *pgdat = NODE_DATA(nid);
4652 /* pg_data_t should be reset to zero when it's allocated */
4653 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4655 pgdat->node_id = nid;
4656 pgdat->node_start_pfn = node_start_pfn;
4657 init_zone_allows_reclaim(nid);
4658 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4660 alloc_node_mem_map(pgdat);
4661 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4662 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4663 nid, (unsigned long)pgdat,
4664 (unsigned long)pgdat->node_mem_map);
4667 free_area_init_core(pgdat, zones_size, zholes_size);
4670 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4672 #if MAX_NUMNODES > 1
4674 * Figure out the number of possible node ids.
4676 static void __init setup_nr_node_ids(void)
4679 unsigned int highest = 0;
4681 for_each_node_mask(node, node_possible_map)
4683 nr_node_ids = highest + 1;
4686 static inline void setup_nr_node_ids(void)
4692 * node_map_pfn_alignment - determine the maximum internode alignment
4694 * This function should be called after node map is populated and sorted.
4695 * It calculates the maximum power of two alignment which can distinguish
4698 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4699 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4700 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4701 * shifted, 1GiB is enough and this function will indicate so.
4703 * This is used to test whether pfn -> nid mapping of the chosen memory
4704 * model has fine enough granularity to avoid incorrect mapping for the
4705 * populated node map.
4707 * Returns the determined alignment in pfn's. 0 if there is no alignment
4708 * requirement (single node).
4710 unsigned long __init node_map_pfn_alignment(void)
4712 unsigned long accl_mask = 0, last_end = 0;
4713 unsigned long start, end, mask;
4717 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4718 if (!start || last_nid < 0 || last_nid == nid) {
4725 * Start with a mask granular enough to pin-point to the
4726 * start pfn and tick off bits one-by-one until it becomes
4727 * too coarse to separate the current node from the last.
4729 mask = ~((1 << __ffs(start)) - 1);
4730 while (mask && last_end <= (start & (mask << 1)))
4733 /* accumulate all internode masks */
4737 /* convert mask to number of pages */
4738 return ~accl_mask + 1;
4741 /* Find the lowest pfn for a node */
4742 static unsigned long __init find_min_pfn_for_node(int nid)
4744 unsigned long min_pfn = ULONG_MAX;
4745 unsigned long start_pfn;
4748 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4749 min_pfn = min(min_pfn, start_pfn);
4751 if (min_pfn == ULONG_MAX) {
4753 "Could not find start_pfn for node %d\n", nid);
4761 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4763 * It returns the minimum PFN based on information provided via
4764 * add_active_range().
4766 unsigned long __init find_min_pfn_with_active_regions(void)
4768 return find_min_pfn_for_node(MAX_NUMNODES);
4772 * early_calculate_totalpages()
4773 * Sum pages in active regions for movable zone.
4774 * Populate N_MEMORY for calculating usable_nodes.
4776 static unsigned long __init early_calculate_totalpages(void)
4778 unsigned long totalpages = 0;
4779 unsigned long start_pfn, end_pfn;
4782 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4783 unsigned long pages = end_pfn - start_pfn;
4785 totalpages += pages;
4787 node_set_state(nid, N_MEMORY);
4793 * Find the PFN the Movable zone begins in each node. Kernel memory
4794 * is spread evenly between nodes as long as the nodes have enough
4795 * memory. When they don't, some nodes will have more kernelcore than
4798 static void __init find_zone_movable_pfns_for_nodes(void)
4801 unsigned long usable_startpfn;
4802 unsigned long kernelcore_node, kernelcore_remaining;
4803 /* save the state before borrow the nodemask */
4804 nodemask_t saved_node_state = node_states[N_MEMORY];
4805 unsigned long totalpages = early_calculate_totalpages();
4806 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4809 * If movablecore was specified, calculate what size of
4810 * kernelcore that corresponds so that memory usable for
4811 * any allocation type is evenly spread. If both kernelcore
4812 * and movablecore are specified, then the value of kernelcore
4813 * will be used for required_kernelcore if it's greater than
4814 * what movablecore would have allowed.
4816 if (required_movablecore) {
4817 unsigned long corepages;
4820 * Round-up so that ZONE_MOVABLE is at least as large as what
4821 * was requested by the user
4823 required_movablecore =
4824 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4825 corepages = totalpages - required_movablecore;
4827 required_kernelcore = max(required_kernelcore, corepages);
4830 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4831 if (!required_kernelcore)
4834 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4835 find_usable_zone_for_movable();
4836 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4839 /* Spread kernelcore memory as evenly as possible throughout nodes */
4840 kernelcore_node = required_kernelcore / usable_nodes;
4841 for_each_node_state(nid, N_MEMORY) {
4842 unsigned long start_pfn, end_pfn;
4845 * Recalculate kernelcore_node if the division per node
4846 * now exceeds what is necessary to satisfy the requested
4847 * amount of memory for the kernel
4849 if (required_kernelcore < kernelcore_node)
4850 kernelcore_node = required_kernelcore / usable_nodes;
4853 * As the map is walked, we track how much memory is usable
4854 * by the kernel using kernelcore_remaining. When it is
4855 * 0, the rest of the node is usable by ZONE_MOVABLE
4857 kernelcore_remaining = kernelcore_node;
4859 /* Go through each range of PFNs within this node */
4860 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4861 unsigned long size_pages;
4863 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4864 if (start_pfn >= end_pfn)
4867 /* Account for what is only usable for kernelcore */
4868 if (start_pfn < usable_startpfn) {
4869 unsigned long kernel_pages;
4870 kernel_pages = min(end_pfn, usable_startpfn)
4873 kernelcore_remaining -= min(kernel_pages,
4874 kernelcore_remaining);
4875 required_kernelcore -= min(kernel_pages,
4876 required_kernelcore);
4878 /* Continue if range is now fully accounted */
4879 if (end_pfn <= usable_startpfn) {
4882 * Push zone_movable_pfn to the end so
4883 * that if we have to rebalance
4884 * kernelcore across nodes, we will
4885 * not double account here
4887 zone_movable_pfn[nid] = end_pfn;
4890 start_pfn = usable_startpfn;
4894 * The usable PFN range for ZONE_MOVABLE is from
4895 * start_pfn->end_pfn. Calculate size_pages as the
4896 * number of pages used as kernelcore
4898 size_pages = end_pfn - start_pfn;
4899 if (size_pages > kernelcore_remaining)
4900 size_pages = kernelcore_remaining;
4901 zone_movable_pfn[nid] = start_pfn + size_pages;
4904 * Some kernelcore has been met, update counts and
4905 * break if the kernelcore for this node has been
4908 required_kernelcore -= min(required_kernelcore,
4910 kernelcore_remaining -= size_pages;
4911 if (!kernelcore_remaining)
4917 * If there is still required_kernelcore, we do another pass with one
4918 * less node in the count. This will push zone_movable_pfn[nid] further
4919 * along on the nodes that still have memory until kernelcore is
4923 if (usable_nodes && required_kernelcore > usable_nodes)
4926 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4927 for (nid = 0; nid < MAX_NUMNODES; nid++)
4928 zone_movable_pfn[nid] =
4929 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4932 /* restore the node_state */
4933 node_states[N_MEMORY] = saved_node_state;
4936 /* Any regular or high memory on that node ? */
4937 static void check_for_memory(pg_data_t *pgdat, int nid)
4939 enum zone_type zone_type;
4941 if (N_MEMORY == N_NORMAL_MEMORY)
4944 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4945 struct zone *zone = &pgdat->node_zones[zone_type];
4946 if (zone->present_pages) {
4947 node_set_state(nid, N_HIGH_MEMORY);
4948 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4949 zone_type <= ZONE_NORMAL)
4950 node_set_state(nid, N_NORMAL_MEMORY);
4957 * free_area_init_nodes - Initialise all pg_data_t and zone data
4958 * @max_zone_pfn: an array of max PFNs for each zone
4960 * This will call free_area_init_node() for each active node in the system.
4961 * Using the page ranges provided by add_active_range(), the size of each
4962 * zone in each node and their holes is calculated. If the maximum PFN
4963 * between two adjacent zones match, it is assumed that the zone is empty.
4964 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4965 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4966 * starts where the previous one ended. For example, ZONE_DMA32 starts
4967 * at arch_max_dma_pfn.
4969 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4971 unsigned long start_pfn, end_pfn;
4974 /* Record where the zone boundaries are */
4975 memset(arch_zone_lowest_possible_pfn, 0,
4976 sizeof(arch_zone_lowest_possible_pfn));
4977 memset(arch_zone_highest_possible_pfn, 0,
4978 sizeof(arch_zone_highest_possible_pfn));
4979 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4980 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4981 for (i = 1; i < MAX_NR_ZONES; i++) {
4982 if (i == ZONE_MOVABLE)
4984 arch_zone_lowest_possible_pfn[i] =
4985 arch_zone_highest_possible_pfn[i-1];
4986 arch_zone_highest_possible_pfn[i] =
4987 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4989 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4990 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4994 find_zone_movable_pfns_for_nodes();
4996 /* Print out the zone ranges */
4997 printk("Zone ranges:\n");
4998 for (i = 0; i < MAX_NR_ZONES; i++) {
4999 if (i == ZONE_MOVABLE)
5001 printk(KERN_CONT " %-8s ", zone_names[i]);
5002 if (arch_zone_lowest_possible_pfn[i] ==
5003 arch_zone_highest_possible_pfn[i])
5004 printk(KERN_CONT "empty\n");
5006 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5007 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5008 (arch_zone_highest_possible_pfn[i]
5009 << PAGE_SHIFT) - 1);
5012 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5013 printk("Movable zone start for each node\n");
5014 for (i = 0; i < MAX_NUMNODES; i++) {
5015 if (zone_movable_pfn[i])
5016 printk(" Node %d: %#010lx\n", i,
5017 zone_movable_pfn[i] << PAGE_SHIFT);
5020 /* Print out the early node map */
5021 printk("Early memory node ranges\n");
5022 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5023 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5024 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5026 /* Initialise every node */
5027 mminit_verify_pageflags_layout();
5028 setup_nr_node_ids();
5029 for_each_online_node(nid) {
5030 pg_data_t *pgdat = NODE_DATA(nid);
5031 free_area_init_node(nid, NULL,
5032 find_min_pfn_for_node(nid), NULL);
5034 /* Any memory on that node */
5035 if (pgdat->node_present_pages)
5036 node_set_state(nid, N_MEMORY);
5037 check_for_memory(pgdat, nid);
5041 static int __init cmdline_parse_core(char *p, unsigned long *core)
5043 unsigned long long coremem;
5047 coremem = memparse(p, &p);
5048 *core = coremem >> PAGE_SHIFT;
5050 /* Paranoid check that UL is enough for the coremem value */
5051 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5057 * kernelcore=size sets the amount of memory for use for allocations that
5058 * cannot be reclaimed or migrated.
5060 static int __init cmdline_parse_kernelcore(char *p)
5062 return cmdline_parse_core(p, &required_kernelcore);
5066 * movablecore=size sets the amount of memory for use for allocations that
5067 * can be reclaimed or migrated.
5069 static int __init cmdline_parse_movablecore(char *p)
5071 return cmdline_parse_core(p, &required_movablecore);
5074 early_param("kernelcore", cmdline_parse_kernelcore);
5075 early_param("movablecore", cmdline_parse_movablecore);
5077 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5080 * set_dma_reserve - set the specified number of pages reserved in the first zone
5081 * @new_dma_reserve: The number of pages to mark reserved
5083 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5084 * In the DMA zone, a significant percentage may be consumed by kernel image
5085 * and other unfreeable allocations which can skew the watermarks badly. This
5086 * function may optionally be used to account for unfreeable pages in the
5087 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5088 * smaller per-cpu batchsize.
5090 void __init set_dma_reserve(unsigned long new_dma_reserve)
5092 dma_reserve = new_dma_reserve;
5095 void __init free_area_init(unsigned long *zones_size)
5097 free_area_init_node(0, zones_size,
5098 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5101 static int page_alloc_cpu_notify(struct notifier_block *self,
5102 unsigned long action, void *hcpu)
5104 int cpu = (unsigned long)hcpu;
5106 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5107 lru_add_drain_cpu(cpu);
5111 * Spill the event counters of the dead processor
5112 * into the current processors event counters.
5113 * This artificially elevates the count of the current
5116 vm_events_fold_cpu(cpu);
5119 * Zero the differential counters of the dead processor
5120 * so that the vm statistics are consistent.
5122 * This is only okay since the processor is dead and cannot
5123 * race with what we are doing.
5125 refresh_cpu_vm_stats(cpu);
5130 void __init page_alloc_init(void)
5132 hotcpu_notifier(page_alloc_cpu_notify, 0);
5136 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5137 * or min_free_kbytes changes.
5139 static void calculate_totalreserve_pages(void)
5141 struct pglist_data *pgdat;
5142 unsigned long reserve_pages = 0;
5143 enum zone_type i, j;
5145 for_each_online_pgdat(pgdat) {
5146 for (i = 0; i < MAX_NR_ZONES; i++) {
5147 struct zone *zone = pgdat->node_zones + i;
5148 unsigned long max = 0;
5150 /* Find valid and maximum lowmem_reserve in the zone */
5151 for (j = i; j < MAX_NR_ZONES; j++) {
5152 if (zone->lowmem_reserve[j] > max)
5153 max = zone->lowmem_reserve[j];
5156 /* we treat the high watermark as reserved pages. */
5157 max += high_wmark_pages(zone);
5159 if (max > zone->present_pages)
5160 max = zone->present_pages;
5161 reserve_pages += max;
5163 * Lowmem reserves are not available to
5164 * GFP_HIGHUSER page cache allocations and
5165 * kswapd tries to balance zones to their high
5166 * watermark. As a result, neither should be
5167 * regarded as dirtyable memory, to prevent a
5168 * situation where reclaim has to clean pages
5169 * in order to balance the zones.
5171 zone->dirty_balance_reserve = max;
5174 dirty_balance_reserve = reserve_pages;
5175 totalreserve_pages = reserve_pages;
5179 * setup_per_zone_lowmem_reserve - called whenever
5180 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5181 * has a correct pages reserved value, so an adequate number of
5182 * pages are left in the zone after a successful __alloc_pages().
5184 static void setup_per_zone_lowmem_reserve(void)
5186 struct pglist_data *pgdat;
5187 enum zone_type j, idx;
5189 for_each_online_pgdat(pgdat) {
5190 for (j = 0; j < MAX_NR_ZONES; j++) {
5191 struct zone *zone = pgdat->node_zones + j;
5192 unsigned long present_pages = zone->present_pages;
5194 zone->lowmem_reserve[j] = 0;
5198 struct zone *lower_zone;
5202 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5203 sysctl_lowmem_reserve_ratio[idx] = 1;
5205 lower_zone = pgdat->node_zones + idx;
5206 lower_zone->lowmem_reserve[j] = present_pages /
5207 sysctl_lowmem_reserve_ratio[idx];
5208 present_pages += lower_zone->present_pages;
5213 /* update totalreserve_pages */
5214 calculate_totalreserve_pages();
5217 static void __setup_per_zone_wmarks(void)
5219 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5220 unsigned long lowmem_pages = 0;
5222 unsigned long flags;
5224 /* Calculate total number of !ZONE_HIGHMEM pages */
5225 for_each_zone(zone) {
5226 if (!is_highmem(zone))
5227 lowmem_pages += zone->present_pages;
5230 for_each_zone(zone) {
5233 spin_lock_irqsave(&zone->lock, flags);
5234 tmp = (u64)pages_min * zone->present_pages;
5235 do_div(tmp, lowmem_pages);
5236 if (is_highmem(zone)) {
5238 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5239 * need highmem pages, so cap pages_min to a small
5242 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5243 * deltas controls asynch page reclaim, and so should
5244 * not be capped for highmem.
5248 min_pages = zone->present_pages / 1024;
5249 if (min_pages < SWAP_CLUSTER_MAX)
5250 min_pages = SWAP_CLUSTER_MAX;
5251 if (min_pages > 128)
5253 zone->watermark[WMARK_MIN] = min_pages;
5256 * If it's a lowmem zone, reserve a number of pages
5257 * proportionate to the zone's size.
5259 zone->watermark[WMARK_MIN] = tmp;
5262 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5263 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5265 setup_zone_migrate_reserve(zone);
5266 spin_unlock_irqrestore(&zone->lock, flags);
5269 /* update totalreserve_pages */
5270 calculate_totalreserve_pages();
5274 * setup_per_zone_wmarks - called when min_free_kbytes changes
5275 * or when memory is hot-{added|removed}
5277 * Ensures that the watermark[min,low,high] values for each zone are set
5278 * correctly with respect to min_free_kbytes.
5280 void setup_per_zone_wmarks(void)
5282 mutex_lock(&zonelists_mutex);
5283 __setup_per_zone_wmarks();
5284 mutex_unlock(&zonelists_mutex);
5288 * The inactive anon list should be small enough that the VM never has to
5289 * do too much work, but large enough that each inactive page has a chance
5290 * to be referenced again before it is swapped out.
5292 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5293 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5294 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5295 * the anonymous pages are kept on the inactive list.
5298 * memory ratio inactive anon
5299 * -------------------------------------
5308 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5310 unsigned int gb, ratio;
5312 /* Zone size in gigabytes */
5313 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5315 ratio = int_sqrt(10 * gb);
5319 zone->inactive_ratio = ratio;
5322 static void __meminit setup_per_zone_inactive_ratio(void)
5327 calculate_zone_inactive_ratio(zone);
5331 * Initialise min_free_kbytes.
5333 * For small machines we want it small (128k min). For large machines
5334 * we want it large (64MB max). But it is not linear, because network
5335 * bandwidth does not increase linearly with machine size. We use
5337 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5338 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5354 int __meminit init_per_zone_wmark_min(void)
5356 unsigned long lowmem_kbytes;
5358 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5360 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5361 if (min_free_kbytes < 128)
5362 min_free_kbytes = 128;
5363 if (min_free_kbytes > 65536)
5364 min_free_kbytes = 65536;
5365 setup_per_zone_wmarks();
5366 refresh_zone_stat_thresholds();
5367 setup_per_zone_lowmem_reserve();
5368 setup_per_zone_inactive_ratio();
5371 module_init(init_per_zone_wmark_min)
5374 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5375 * that we can call two helper functions whenever min_free_kbytes
5378 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5379 void __user *buffer, size_t *length, loff_t *ppos)
5381 proc_dointvec(table, write, buffer, length, ppos);
5383 setup_per_zone_wmarks();
5388 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5389 void __user *buffer, size_t *length, loff_t *ppos)
5394 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5399 zone->min_unmapped_pages = (zone->present_pages *
5400 sysctl_min_unmapped_ratio) / 100;
5404 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5405 void __user *buffer, size_t *length, loff_t *ppos)
5410 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5415 zone->min_slab_pages = (zone->present_pages *
5416 sysctl_min_slab_ratio) / 100;
5422 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5423 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5424 * whenever sysctl_lowmem_reserve_ratio changes.
5426 * The reserve ratio obviously has absolutely no relation with the
5427 * minimum watermarks. The lowmem reserve ratio can only make sense
5428 * if in function of the boot time zone sizes.
5430 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5431 void __user *buffer, size_t *length, loff_t *ppos)
5433 proc_dointvec_minmax(table, write, buffer, length, ppos);
5434 setup_per_zone_lowmem_reserve();
5439 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5440 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5441 * can have before it gets flushed back to buddy allocator.
5444 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5445 void __user *buffer, size_t *length, loff_t *ppos)
5451 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5452 if (!write || (ret < 0))
5454 for_each_populated_zone(zone) {
5455 for_each_possible_cpu(cpu) {
5457 high = zone->present_pages / percpu_pagelist_fraction;
5458 setup_pagelist_highmark(
5459 per_cpu_ptr(zone->pageset, cpu), high);
5465 int hashdist = HASHDIST_DEFAULT;
5468 static int __init set_hashdist(char *str)
5472 hashdist = simple_strtoul(str, &str, 0);
5475 __setup("hashdist=", set_hashdist);
5479 * allocate a large system hash table from bootmem
5480 * - it is assumed that the hash table must contain an exact power-of-2
5481 * quantity of entries
5482 * - limit is the number of hash buckets, not the total allocation size
5484 void *__init alloc_large_system_hash(const char *tablename,
5485 unsigned long bucketsize,
5486 unsigned long numentries,
5489 unsigned int *_hash_shift,
5490 unsigned int *_hash_mask,
5491 unsigned long low_limit,
5492 unsigned long high_limit)
5494 unsigned long long max = high_limit;
5495 unsigned long log2qty, size;
5498 /* allow the kernel cmdline to have a say */
5500 /* round applicable memory size up to nearest megabyte */
5501 numentries = nr_kernel_pages;
5502 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5503 numentries >>= 20 - PAGE_SHIFT;
5504 numentries <<= 20 - PAGE_SHIFT;
5506 /* limit to 1 bucket per 2^scale bytes of low memory */
5507 if (scale > PAGE_SHIFT)
5508 numentries >>= (scale - PAGE_SHIFT);
5510 numentries <<= (PAGE_SHIFT - scale);
5512 /* Make sure we've got at least a 0-order allocation.. */
5513 if (unlikely(flags & HASH_SMALL)) {
5514 /* Makes no sense without HASH_EARLY */
5515 WARN_ON(!(flags & HASH_EARLY));
5516 if (!(numentries >> *_hash_shift)) {
5517 numentries = 1UL << *_hash_shift;
5518 BUG_ON(!numentries);
5520 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5521 numentries = PAGE_SIZE / bucketsize;
5523 numentries = roundup_pow_of_two(numentries);
5525 /* limit allocation size to 1/16 total memory by default */
5527 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5528 do_div(max, bucketsize);
5530 max = min(max, 0x80000000ULL);
5532 if (numentries < low_limit)
5533 numentries = low_limit;
5534 if (numentries > max)
5537 log2qty = ilog2(numentries);
5540 size = bucketsize << log2qty;
5541 if (flags & HASH_EARLY)
5542 table = alloc_bootmem_nopanic(size);
5544 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5547 * If bucketsize is not a power-of-two, we may free
5548 * some pages at the end of hash table which
5549 * alloc_pages_exact() automatically does
5551 if (get_order(size) < MAX_ORDER) {
5552 table = alloc_pages_exact(size, GFP_ATOMIC);
5553 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5556 } while (!table && size > PAGE_SIZE && --log2qty);
5559 panic("Failed to allocate %s hash table\n", tablename);
5561 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5564 ilog2(size) - PAGE_SHIFT,
5568 *_hash_shift = log2qty;
5570 *_hash_mask = (1 << log2qty) - 1;
5575 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5576 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5579 #ifdef CONFIG_SPARSEMEM
5580 return __pfn_to_section(pfn)->pageblock_flags;
5582 return zone->pageblock_flags;
5583 #endif /* CONFIG_SPARSEMEM */
5586 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5588 #ifdef CONFIG_SPARSEMEM
5589 pfn &= (PAGES_PER_SECTION-1);
5590 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5592 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5593 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5594 #endif /* CONFIG_SPARSEMEM */
5598 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5599 * @page: The page within the block of interest
5600 * @start_bitidx: The first bit of interest to retrieve
5601 * @end_bitidx: The last bit of interest
5602 * returns pageblock_bits flags
5604 unsigned long get_pageblock_flags_group(struct page *page,
5605 int start_bitidx, int end_bitidx)
5608 unsigned long *bitmap;
5609 unsigned long pfn, bitidx;
5610 unsigned long flags = 0;
5611 unsigned long value = 1;
5613 zone = page_zone(page);
5614 pfn = page_to_pfn(page);
5615 bitmap = get_pageblock_bitmap(zone, pfn);
5616 bitidx = pfn_to_bitidx(zone, pfn);
5618 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5619 if (test_bit(bitidx + start_bitidx, bitmap))
5626 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5627 * @page: The page within the block of interest
5628 * @start_bitidx: The first bit of interest
5629 * @end_bitidx: The last bit of interest
5630 * @flags: The flags to set
5632 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5633 int start_bitidx, int end_bitidx)
5636 unsigned long *bitmap;
5637 unsigned long pfn, bitidx;
5638 unsigned long value = 1;
5640 zone = page_zone(page);
5641 pfn = page_to_pfn(page);
5642 bitmap = get_pageblock_bitmap(zone, pfn);
5643 bitidx = pfn_to_bitidx(zone, pfn);
5644 VM_BUG_ON(pfn < zone->zone_start_pfn);
5645 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5647 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5649 __set_bit(bitidx + start_bitidx, bitmap);
5651 __clear_bit(bitidx + start_bitidx, bitmap);
5655 * This function checks whether pageblock includes unmovable pages or not.
5656 * If @count is not zero, it is okay to include less @count unmovable pages
5658 * PageLRU check wihtout isolation or lru_lock could race so that
5659 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5660 * expect this function should be exact.
5662 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5663 bool skip_hwpoisoned_pages)
5665 unsigned long pfn, iter, found;
5669 * For avoiding noise data, lru_add_drain_all() should be called
5670 * If ZONE_MOVABLE, the zone never contains unmovable pages
5672 if (zone_idx(zone) == ZONE_MOVABLE)
5674 mt = get_pageblock_migratetype(page);
5675 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5678 pfn = page_to_pfn(page);
5679 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5680 unsigned long check = pfn + iter;
5682 if (!pfn_valid_within(check))
5685 page = pfn_to_page(check);
5687 * We can't use page_count without pin a page
5688 * because another CPU can free compound page.
5689 * This check already skips compound tails of THP
5690 * because their page->_count is zero at all time.
5692 if (!atomic_read(&page->_count)) {
5693 if (PageBuddy(page))
5694 iter += (1 << page_order(page)) - 1;
5699 * The HWPoisoned page may be not in buddy system, and
5700 * page_count() is not 0.
5702 if (skip_hwpoisoned_pages && PageHWPoison(page))
5708 * If there are RECLAIMABLE pages, we need to check it.
5709 * But now, memory offline itself doesn't call shrink_slab()
5710 * and it still to be fixed.
5713 * If the page is not RAM, page_count()should be 0.
5714 * we don't need more check. This is an _used_ not-movable page.
5716 * The problematic thing here is PG_reserved pages. PG_reserved
5717 * is set to both of a memory hole page and a _used_ kernel
5726 bool is_pageblock_removable_nolock(struct page *page)
5732 * We have to be careful here because we are iterating over memory
5733 * sections which are not zone aware so we might end up outside of
5734 * the zone but still within the section.
5735 * We have to take care about the node as well. If the node is offline
5736 * its NODE_DATA will be NULL - see page_zone.
5738 if (!node_online(page_to_nid(page)))
5741 zone = page_zone(page);
5742 pfn = page_to_pfn(page);
5743 if (zone->zone_start_pfn > pfn ||
5744 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5747 return !has_unmovable_pages(zone, page, 0, true);
5752 static unsigned long pfn_max_align_down(unsigned long pfn)
5754 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5755 pageblock_nr_pages) - 1);
5758 static unsigned long pfn_max_align_up(unsigned long pfn)
5760 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5761 pageblock_nr_pages));
5764 /* [start, end) must belong to a single zone. */
5765 static int __alloc_contig_migrate_range(struct compact_control *cc,
5766 unsigned long start, unsigned long end)
5768 /* This function is based on compact_zone() from compaction.c. */
5769 unsigned long nr_reclaimed;
5770 unsigned long pfn = start;
5771 unsigned int tries = 0;
5776 while (pfn < end || !list_empty(&cc->migratepages)) {
5777 if (fatal_signal_pending(current)) {
5782 if (list_empty(&cc->migratepages)) {
5783 cc->nr_migratepages = 0;
5784 pfn = isolate_migratepages_range(cc->zone, cc,
5791 } else if (++tries == 5) {
5792 ret = ret < 0 ? ret : -EBUSY;
5796 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5798 cc->nr_migratepages -= nr_reclaimed;
5800 ret = migrate_pages(&cc->migratepages,
5801 alloc_migrate_target,
5802 0, false, MIGRATE_SYNC,
5806 putback_movable_pages(&cc->migratepages);
5807 return ret > 0 ? 0 : ret;
5811 * alloc_contig_range() -- tries to allocate given range of pages
5812 * @start: start PFN to allocate
5813 * @end: one-past-the-last PFN to allocate
5814 * @migratetype: migratetype of the underlaying pageblocks (either
5815 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5816 * in range must have the same migratetype and it must
5817 * be either of the two.
5819 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5820 * aligned, however it's the caller's responsibility to guarantee that
5821 * we are the only thread that changes migrate type of pageblocks the
5824 * The PFN range must belong to a single zone.
5826 * Returns zero on success or negative error code. On success all
5827 * pages which PFN is in [start, end) are allocated for the caller and
5828 * need to be freed with free_contig_range().
5830 int alloc_contig_range(unsigned long start, unsigned long end,
5831 unsigned migratetype)
5833 unsigned long outer_start, outer_end;
5836 struct compact_control cc = {
5837 .nr_migratepages = 0,
5839 .zone = page_zone(pfn_to_page(start)),
5841 .ignore_skip_hint = true,
5843 INIT_LIST_HEAD(&cc.migratepages);
5846 * What we do here is we mark all pageblocks in range as
5847 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5848 * have different sizes, and due to the way page allocator
5849 * work, we align the range to biggest of the two pages so
5850 * that page allocator won't try to merge buddies from
5851 * different pageblocks and change MIGRATE_ISOLATE to some
5852 * other migration type.
5854 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5855 * migrate the pages from an unaligned range (ie. pages that
5856 * we are interested in). This will put all the pages in
5857 * range back to page allocator as MIGRATE_ISOLATE.
5859 * When this is done, we take the pages in range from page
5860 * allocator removing them from the buddy system. This way
5861 * page allocator will never consider using them.
5863 * This lets us mark the pageblocks back as
5864 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5865 * aligned range but not in the unaligned, original range are
5866 * put back to page allocator so that buddy can use them.
5869 ret = start_isolate_page_range(pfn_max_align_down(start),
5870 pfn_max_align_up(end), migratetype,
5875 ret = __alloc_contig_migrate_range(&cc, start, end);
5880 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5881 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5882 * more, all pages in [start, end) are free in page allocator.
5883 * What we are going to do is to allocate all pages from
5884 * [start, end) (that is remove them from page allocator).
5886 * The only problem is that pages at the beginning and at the
5887 * end of interesting range may be not aligned with pages that
5888 * page allocator holds, ie. they can be part of higher order
5889 * pages. Because of this, we reserve the bigger range and
5890 * once this is done free the pages we are not interested in.
5892 * We don't have to hold zone->lock here because the pages are
5893 * isolated thus they won't get removed from buddy.
5896 lru_add_drain_all();
5900 outer_start = start;
5901 while (!PageBuddy(pfn_to_page(outer_start))) {
5902 if (++order >= MAX_ORDER) {
5906 outer_start &= ~0UL << order;
5909 /* Make sure the range is really isolated. */
5910 if (test_pages_isolated(outer_start, end, false)) {
5911 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5918 /* Grab isolated pages from freelists. */
5919 outer_end = isolate_freepages_range(&cc, outer_start, end);
5925 /* Free head and tail (if any) */
5926 if (start != outer_start)
5927 free_contig_range(outer_start, start - outer_start);
5928 if (end != outer_end)
5929 free_contig_range(end, outer_end - end);
5932 undo_isolate_page_range(pfn_max_align_down(start),
5933 pfn_max_align_up(end), migratetype);
5937 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5939 unsigned int count = 0;
5941 for (; nr_pages--; pfn++) {
5942 struct page *page = pfn_to_page(pfn);
5944 count += page_count(page) != 1;
5947 WARN(count != 0, "%d pages are still in use!\n", count);
5951 #ifdef CONFIG_MEMORY_HOTPLUG
5952 static int __meminit __zone_pcp_update(void *data)
5954 struct zone *zone = data;
5956 unsigned long batch = zone_batchsize(zone), flags;
5958 for_each_possible_cpu(cpu) {
5959 struct per_cpu_pageset *pset;
5960 struct per_cpu_pages *pcp;
5962 pset = per_cpu_ptr(zone->pageset, cpu);
5965 local_irq_save(flags);
5967 free_pcppages_bulk(zone, pcp->count, pcp);
5968 drain_zonestat(zone, pset);
5969 setup_pageset(pset, batch);
5970 local_irq_restore(flags);
5975 void __meminit zone_pcp_update(struct zone *zone)
5977 stop_machine(__zone_pcp_update, zone, NULL);
5981 void zone_pcp_reset(struct zone *zone)
5983 unsigned long flags;
5985 struct per_cpu_pageset *pset;
5987 /* avoid races with drain_pages() */
5988 local_irq_save(flags);
5989 if (zone->pageset != &boot_pageset) {
5990 for_each_online_cpu(cpu) {
5991 pset = per_cpu_ptr(zone->pageset, cpu);
5992 drain_zonestat(zone, pset);
5994 free_percpu(zone->pageset);
5995 zone->pageset = &boot_pageset;
5997 local_irq_restore(flags);
6000 #ifdef CONFIG_MEMORY_HOTREMOVE
6002 * All pages in the range must be isolated before calling this.
6005 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6011 unsigned long flags;
6012 /* find the first valid pfn */
6013 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6018 zone = page_zone(pfn_to_page(pfn));
6019 spin_lock_irqsave(&zone->lock, flags);
6021 while (pfn < end_pfn) {
6022 if (!pfn_valid(pfn)) {
6026 page = pfn_to_page(pfn);
6028 * The HWPoisoned page may be not in buddy system, and
6029 * page_count() is not 0.
6031 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6033 SetPageReserved(page);
6037 BUG_ON(page_count(page));
6038 BUG_ON(!PageBuddy(page));
6039 order = page_order(page);
6040 #ifdef CONFIG_DEBUG_VM
6041 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6042 pfn, 1 << order, end_pfn);
6044 list_del(&page->lru);
6045 rmv_page_order(page);
6046 zone->free_area[order].nr_free--;
6047 for (i = 0; i < (1 << order); i++)
6048 SetPageReserved((page+i));
6049 pfn += (1 << order);
6051 spin_unlock_irqrestore(&zone->lock, flags);
6055 #ifdef CONFIG_MEMORY_FAILURE
6056 bool is_free_buddy_page(struct page *page)
6058 struct zone *zone = page_zone(page);
6059 unsigned long pfn = page_to_pfn(page);
6060 unsigned long flags;
6063 spin_lock_irqsave(&zone->lock, flags);
6064 for (order = 0; order < MAX_ORDER; order++) {
6065 struct page *page_head = page - (pfn & ((1 << order) - 1));
6067 if (PageBuddy(page_head) && page_order(page_head) >= order)
6070 spin_unlock_irqrestore(&zone->lock, flags);
6072 return order < MAX_ORDER;
6076 static const struct trace_print_flags pageflag_names[] = {
6077 {1UL << PG_locked, "locked" },
6078 {1UL << PG_error, "error" },
6079 {1UL << PG_referenced, "referenced" },
6080 {1UL << PG_uptodate, "uptodate" },
6081 {1UL << PG_dirty, "dirty" },
6082 {1UL << PG_lru, "lru" },
6083 {1UL << PG_active, "active" },
6084 {1UL << PG_slab, "slab" },
6085 {1UL << PG_owner_priv_1, "owner_priv_1" },
6086 {1UL << PG_arch_1, "arch_1" },
6087 {1UL << PG_reserved, "reserved" },
6088 {1UL << PG_private, "private" },
6089 {1UL << PG_private_2, "private_2" },
6090 {1UL << PG_writeback, "writeback" },
6091 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6092 {1UL << PG_head, "head" },
6093 {1UL << PG_tail, "tail" },
6095 {1UL << PG_compound, "compound" },
6097 {1UL << PG_swapcache, "swapcache" },
6098 {1UL << PG_mappedtodisk, "mappedtodisk" },
6099 {1UL << PG_reclaim, "reclaim" },
6100 {1UL << PG_swapbacked, "swapbacked" },
6101 {1UL << PG_unevictable, "unevictable" },
6103 {1UL << PG_mlocked, "mlocked" },
6105 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6106 {1UL << PG_uncached, "uncached" },
6108 #ifdef CONFIG_MEMORY_FAILURE
6109 {1UL << PG_hwpoison, "hwpoison" },
6111 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6112 {1UL << PG_compound_lock, "compound_lock" },
6116 static void dump_page_flags(unsigned long flags)
6118 const char *delim = "";
6122 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6124 printk(KERN_ALERT "page flags: %#lx(", flags);
6126 /* remove zone id */
6127 flags &= (1UL << NR_PAGEFLAGS) - 1;
6129 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6131 mask = pageflag_names[i].mask;
6132 if ((flags & mask) != mask)
6136 printk("%s%s", delim, pageflag_names[i].name);
6140 /* check for left over flags */
6142 printk("%s%#lx", delim, flags);
6147 void dump_page(struct page *page)
6150 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6151 page, atomic_read(&page->_count), page_mapcount(page),
6152 page->mapping, page->index);
6153 dump_page_flags(page->flags);
6154 mem_cgroup_print_bad_page(page);