2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
106 * Array of node states.
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page *page)
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 page->index = migratetype;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
162 static gfp_t saved_gfp_mask;
164 void pm_restore_gfp_mask(void)
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
173 void pm_restrict_gfp_mask(void)
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 bool pm_suspended_storage(void)
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 #endif /* CONFIG_PM_SLEEP */
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
193 static void __free_pages_ok(struct page *page, unsigned int order);
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
210 #ifdef CONFIG_ZONE_DMA32
213 #ifdef CONFIG_HIGHMEM
219 EXPORT_SYMBOL(totalram_pages);
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
225 #ifdef CONFIG_ZONE_DMA32
229 #ifdef CONFIG_HIGHMEM
233 #ifdef CONFIG_ZONE_DEVICE
238 char * const migratetype_names[MIGRATE_TYPES] = {
246 #ifdef CONFIG_MEMORY_ISOLATION
251 compound_page_dtor * const compound_page_dtors[] = {
254 #ifdef CONFIG_HUGETLB_PAGE
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
290 int page_group_by_mobility_disabled __read_mostly;
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
295 pgdat->first_deferred_pfn = ULONG_MAX;
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
301 int nid = early_pfn_to_nid(pfn);
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
317 unsigned long max_initialise;
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
330 if ((*nr_initialised > max_initialise) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
343 static inline bool early_page_uninitialised(unsigned long pfn)
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
363 return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369 #ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
385 * Return: pageblock_bits flags
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long end_bitidx,
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long end_bitidx,
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
448 word = READ_ONCE(bitmap[word_bitidx]);
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
457 void set_pageblock_migratetype(struct page *page, int migratetype)
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
461 migratetype = MIGRATE_UNMOVABLE;
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
472 unsigned long pfn = page_to_pfn(page);
473 unsigned long sp, start_pfn;
476 seq = zone_span_seqbegin(zone);
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
479 if (!zone_spans_pfn(zone, pfn))
481 } while (zone_span_seqretry(zone, seq));
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
491 static int page_is_consistent(struct zone *zone, struct page *page)
493 if (!pfn_valid_within(page_to_pfn(page)))
495 if (zone != page_zone(page))
501 * Temporary debugging check for pages not lying within a given zone.
503 static int bad_range(struct zone *zone, struct page *page)
505 if (page_outside_zone_boundaries(zone, page))
507 if (!page_is_consistent(zone, page))
513 static inline int bad_range(struct zone *zone, struct page *page)
519 static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
537 "BUG: Bad page state: %lu messages suppressed\n",
544 resume = jiffies + 60 * HZ;
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current->comm, page_to_pfn(page));
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
553 dump_page_owner(page);
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
564 * Higher-order pages are called "compound pages". They are structured thusly:
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
578 void free_compound_page(struct page *page)
580 __free_pages_ok(page, compound_order(page));
583 void prep_compound_page(struct page *page, unsigned int order)
586 int nr_pages = 1 << order;
588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 set_compound_order(page, order);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
593 set_page_count(p, 0);
594 p->mapping = TAIL_MAPPING;
595 set_compound_head(p, page);
597 atomic_set(compound_mapcount_ptr(page), -1);
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
607 static int __init early_debug_pagealloc(char *buf)
611 return kstrtobool(buf, &_debug_pagealloc_enabled);
613 early_param("debug_pagealloc", early_debug_pagealloc);
615 static bool need_debug_guardpage(void)
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
621 if (!debug_guardpage_minorder())
627 static void init_debug_guardpage(void)
629 if (!debug_pagealloc_enabled())
632 if (!debug_guardpage_minorder())
635 _debug_guardpage_enabled = true;
638 struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
643 static int __init debug_guardpage_minorder_setup(char *buf)
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
651 _debug_guardpage_minorder = res;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 unsigned int order, int migratetype)
660 struct page_ext *page_ext;
662 if (!debug_guardpage_enabled())
665 if (order >= debug_guardpage_minorder())
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
685 struct page_ext *page_ext;
687 if (!debug_guardpage_enabled())
690 page_ext = lookup_page_ext(page);
691 if (unlikely(!page_ext))
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
708 static inline void set_page_order(struct page *page, unsigned int order)
710 set_page_private(page, order);
711 __SetPageBuddy(page);
714 static inline void rmv_page_order(struct page *page)
716 __ClearPageBuddy(page);
717 set_page_private(page, 0);
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
733 * For recording page's order, we use page_private(page).
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
738 if (page_is_guard(buddy) && page_order(buddy) == order) {
739 if (page_zone_id(page) != page_zone_id(buddy))
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
747 if (PageBuddy(buddy) && page_order(buddy) == order) {
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
753 if (page_zone_id(page) != page_zone_id(buddy))
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764 * Freeing function for a buddy system allocator.
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
788 static inline void __free_one_page(struct page *page,
790 struct zone *zone, unsigned int order,
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
796 unsigned int max_order;
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
800 VM_BUG_ON(!zone_is_initialized(zone));
801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
803 VM_BUG_ON(migratetype == -1);
804 if (likely(!is_migrate_isolate(migratetype)))
805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
811 while (order < max_order - 1) {
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
815 if (!pfn_valid_within(buddy_pfn))
817 if (!page_is_buddy(page, buddy, order))
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
823 if (page_is_guard(buddy)) {
824 clear_page_guard(zone, buddy, order, migratetype);
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
841 * We don't want to hit this code for the more frequent
844 if (unlikely(has_isolate_pageblock(zone))) {
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
849 buddy_mt = get_pageblock_migratetype(buddy);
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
857 goto continue_merging;
861 set_page_order(page, order);
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 struct page *higher_page, *higher_buddy;
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
887 zone->free_area[order].nr_free++;
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
895 static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
904 (unsigned long)page->mem_cgroup |
906 (page->flags & check_flags)))
912 static void free_pages_check_bad(struct page *page)
914 const char *bad_reason;
915 unsigned long bad_flags;
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
924 if (unlikely(page_ref_count(page) != 0))
925 bad_reason = "nonzero _refcount";
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
934 bad_page(page, bad_reason, bad_flags);
937 static inline int free_pages_check(struct page *page)
939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
961 switch (page - head_page) {
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
992 page->mapping = NULL;
993 clear_compound_head(page);
997 static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1018 ClearPageDoubleMap(page);
1019 for (i = 1; i < (1 << order); i++) {
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 if (PageMappingFlags(page))
1030 page->mapping = NULL;
1031 if (memcg_kmem_enabled() && PageKmemcg(page))
1032 memcg_kmem_uncharge(page, order);
1034 bad += free_pages_check(page);
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
1044 PAGE_SIZE << order);
1045 debug_check_no_obj_freed(page_address(page),
1046 PAGE_SIZE << order);
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
1051 kasan_free_pages(page, order);
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1059 return free_pages_prepare(page, 0, true);
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1067 static bool free_pcp_prepare(struct page *page)
1069 return free_pages_prepare(page, 0, false);
1072 static bool bulkfree_pcp_prepare(struct page *page)
1074 return free_pages_check(page);
1076 #endif /* CONFIG_DEBUG_VM */
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1092 int migratetype = 0;
1094 bool isolated_pageblocks;
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1101 struct list_head *list;
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1112 if (++migratetype == MIGRATE_PCPTYPES)
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1122 int mt; /* migratetype of the to-be-freed page */
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1135 if (bulkfree_pcp_prepare(page))
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1142 spin_unlock(&zone->lock);
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1150 spin_lock(&zone->lock);
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1187 if (!early_page_uninitialised(pfn))
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 __init_single_pfn(pfn, zid, nid);
1202 static inline void init_reserved_page(unsigned long pfn)
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1222 init_reserved_page(start_pfn);
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1227 SetPageReserved(page);
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1234 unsigned long flags;
1236 unsigned long pfn = page_to_pfn(page);
1238 if (!free_pages_prepare(page, order, true))
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1323 if (early_page_uninitialised(pfn))
1325 return __free_pages_boot_core(page, order);
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1348 struct page *start_page;
1349 struct page *end_page;
1351 /* end_pfn is one past the range we are checking */
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 start_page = pfn_to_page(start_pfn);
1359 if (page_zone(start_page) != zone)
1362 end_page = pfn_to_page(end_pfn);
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 void set_zone_contiguous(struct zone *zone)
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1392 void clear_zone_contiguous(struct zone *zone)
1394 zone->contiguous = false;
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1425 static inline void __init pgdat_init_report_one_done(void)
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1510 page = pfn_to_page(pfn);
1515 VM_BUG_ON(page_zone(page) != zone);
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1527 /* Where possible, batch up pages for a single free */
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1550 pgdat_init_report_one_done();
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1555 void __init page_alloc_init_late(void)
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1628 unsigned long size = 1 << high;
1630 while (high > low) {
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1647 set_page_order(&page[size], high);
1651 static void check_new_page_bad(struct page *page)
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1677 bad_page(page, bad_reason, bad_flags);
1681 * This page is about to be returned from the page allocator
1683 static inline int check_new_page(struct page *page)
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1689 check_new_page_bad(page);
1693 static inline bool free_pages_prezeroed(void)
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled();
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1705 static bool check_new_pcp(struct page *page)
1707 return check_new_page(page);
1710 static bool check_pcp_refill(struct page *page)
1712 return check_new_page(page);
1714 static bool check_new_pcp(struct page *page)
1718 #endif /* CONFIG_DEBUG_VM */
1720 static bool check_new_pages(struct page *page, unsigned int order)
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1726 if (unlikely(check_new_page(p)))
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1751 post_alloc_hook(page, order, gfp_flags);
1753 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 for (i = 0; i < (1 << order); i++)
1755 clear_highpage(page + i);
1757 if (order && (gfp_flags & __GFP_COMP))
1758 prep_compound_page(page, order);
1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1766 if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 set_page_pfmemalloc(page);
1769 clear_page_pfmemalloc(page);
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1780 unsigned int current_order;
1781 struct free_area *area;
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 area = &(zone->free_area[current_order]);
1787 page = list_first_entry_or_null(&area->free_list[migratetype],
1791 list_del(&page->lru);
1792 rmv_page_order(page);
1794 expand(zone, page, order, current_order, area, migratetype);
1795 set_pcppage_migratetype(page, migratetype);
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1812 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order) { return NULL; }
1831 * Move the free pages in a range to the free lists of the requested type.
1832 * Note that start_page and end_pages are not aligned on a pageblock
1833 * boundary. If alignment is required, use move_freepages_block()
1835 static int move_freepages(struct zone *zone,
1836 struct page *start_page, struct page *end_page,
1837 int migratetype, int *num_movable)
1841 int pages_moved = 0;
1843 #ifndef CONFIG_HOLES_IN_ZONE
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
1849 * grouping pages by mobility
1851 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1857 for (page = start_page; page <= end_page;) {
1858 if (!pfn_valid_within(page_to_pfn(page))) {
1863 /* Make sure we are not inadvertently changing nodes */
1864 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1866 if (!PageBuddy(page)) {
1868 * We assume that pages that could be isolated for
1869 * migration are movable. But we don't actually try
1870 * isolating, as that would be expensive.
1873 (PageLRU(page) || __PageMovable(page)))
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1884 pages_moved += 1 << order;
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype, int *num_movable)
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1905 if (!zone_spans_pfn(zone, end_pfn))
1908 return move_freepages(zone, start_page, end_page, migratetype,
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 int start_order, int migratetype)
1915 int nr_pageblocks = 1 << (start_order - pageblock_order);
1917 while (nr_pageblocks--) {
1918 set_pageblock_migratetype(pageblock_page, migratetype);
1919 pageblock_page += pageblock_nr_pages;
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1944 if (order >= pageblock_order)
1947 if (order >= pageblock_order / 2 ||
1948 start_mt == MIGRATE_RECLAIMABLE ||
1949 start_mt == MIGRATE_UNMOVABLE ||
1950 page_group_by_mobility_disabled)
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
1959 * pageblock to our migratetype and determine how many already-allocated pages
1960 * are there in the pageblock with a compatible migratetype. If at least half
1961 * of pages are free or compatible, we can change migratetype of the pageblock
1962 * itself, so pages freed in the future will be put on the correct free list.
1964 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965 int start_type, bool whole_block)
1967 unsigned int current_order = page_order(page);
1968 struct free_area *area;
1969 int free_pages, movable_pages, alike_pages;
1972 old_block_type = get_pageblock_migratetype(page);
1975 * This can happen due to races and we want to prevent broken
1976 * highatomic accounting.
1978 if (is_migrate_highatomic(old_block_type))
1981 /* Take ownership for orders >= pageblock_order */
1982 if (current_order >= pageblock_order) {
1983 change_pageblock_range(page, current_order, start_type);
1987 /* We are not allowed to try stealing from the whole block */
1991 free_pages = move_freepages_block(zone, page, start_type,
1994 * Determine how many pages are compatible with our allocation.
1995 * For movable allocation, it's the number of movable pages which
1996 * we just obtained. For other types it's a bit more tricky.
1998 if (start_type == MIGRATE_MOVABLE) {
1999 alike_pages = movable_pages;
2002 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 * to MOVABLE pageblock, consider all non-movable pages as
2004 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 * vice versa, be conservative since we can't distinguish the
2006 * exact migratetype of non-movable pages.
2008 if (old_block_type == MIGRATE_MOVABLE)
2009 alike_pages = pageblock_nr_pages
2010 - (free_pages + movable_pages);
2015 /* moving whole block can fail due to zone boundary conditions */
2020 * If a sufficient number of pages in the block are either free or of
2021 * comparable migratability as our allocation, claim the whole block.
2023 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 page_group_by_mobility_disabled)
2025 set_pageblock_migratetype(page, start_type);
2030 area = &zone->free_area[current_order];
2031 list_move(&page->lru, &area->free_list[start_type]);
2035 * Check whether there is a suitable fallback freepage with requested order.
2036 * If only_stealable is true, this function returns fallback_mt only if
2037 * we can steal other freepages all together. This would help to reduce
2038 * fragmentation due to mixed migratetype pages in one pageblock.
2040 int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 int migratetype, bool only_stealable, bool *can_steal)
2046 if (area->nr_free == 0)
2051 fallback_mt = fallbacks[migratetype][i];
2052 if (fallback_mt == MIGRATE_TYPES)
2055 if (list_empty(&area->free_list[fallback_mt]))
2058 if (can_steal_fallback(order, migratetype))
2061 if (!only_stealable)
2072 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073 * there are no empty page blocks that contain a page with a suitable order
2075 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 unsigned int alloc_order)
2079 unsigned long max_managed, flags;
2082 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 * Check is race-prone but harmless.
2085 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 if (zone->nr_reserved_highatomic >= max_managed)
2089 spin_lock_irqsave(&zone->lock, flags);
2091 /* Recheck the nr_reserved_highatomic limit under the lock */
2092 if (zone->nr_reserved_highatomic >= max_managed)
2096 mt = get_pageblock_migratetype(page);
2097 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 && !is_migrate_cma(mt)) {
2099 zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2105 spin_unlock_irqrestore(&zone->lock, flags);
2109 * Used when an allocation is about to fail under memory pressure. This
2110 * potentially hurts the reliability of high-order allocations when under
2111 * intense memory pressure but failed atomic allocations should be easier
2112 * to recover from than an OOM.
2114 * If @force is true, try to unreserve a pageblock even though highatomic
2115 * pageblock is exhausted.
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2120 struct zonelist *zonelist = ac->zonelist;
2121 unsigned long flags;
2128 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2131 * Preserve at least one pageblock unless memory pressure
2134 if (!force && zone->nr_reserved_highatomic <=
2138 spin_lock_irqsave(&zone->lock, flags);
2139 for (order = 0; order < MAX_ORDER; order++) {
2140 struct free_area *area = &(zone->free_area[order]);
2142 page = list_first_entry_or_null(
2143 &area->free_list[MIGRATE_HIGHATOMIC],
2149 * In page freeing path, migratetype change is racy so
2150 * we can counter several free pages in a pageblock
2151 * in this loop althoug we changed the pageblock type
2152 * from highatomic to ac->migratetype. So we should
2153 * adjust the count once.
2155 if (is_migrate_highatomic_page(page)) {
2157 * It should never happen but changes to
2158 * locking could inadvertently allow a per-cpu
2159 * drain to add pages to MIGRATE_HIGHATOMIC
2160 * while unreserving so be safe and watch for
2163 zone->nr_reserved_highatomic -= min(
2165 zone->nr_reserved_highatomic);
2169 * Convert to ac->migratetype and avoid the normal
2170 * pageblock stealing heuristics. Minimally, the caller
2171 * is doing the work and needs the pages. More
2172 * importantly, if the block was always converted to
2173 * MIGRATE_UNMOVABLE or another type then the number
2174 * of pageblocks that cannot be completely freed
2177 set_pageblock_migratetype(page, ac->migratetype);
2178 ret = move_freepages_block(zone, page, ac->migratetype,
2181 spin_unlock_irqrestore(&zone->lock, flags);
2185 spin_unlock_irqrestore(&zone->lock, flags);
2192 * Try finding a free buddy page on the fallback list and put it on the free
2193 * list of requested migratetype, possibly along with other pages from the same
2194 * block, depending on fragmentation avoidance heuristics. Returns true if
2195 * fallback was found so that __rmqueue_smallest() can grab it.
2198 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2200 struct free_area *area;
2201 unsigned int current_order;
2206 /* Find the largest possible block of pages in the other list */
2207 for (current_order = MAX_ORDER-1;
2208 current_order >= order && current_order <= MAX_ORDER-1;
2210 area = &(zone->free_area[current_order]);
2211 fallback_mt = find_suitable_fallback(area, current_order,
2212 start_migratetype, false, &can_steal);
2213 if (fallback_mt == -1)
2216 page = list_first_entry(&area->free_list[fallback_mt],
2219 steal_suitable_fallback(zone, page, start_migratetype,
2222 trace_mm_page_alloc_extfrag(page, order, current_order,
2223 start_migratetype, fallback_mt);
2232 * Do the hard work of removing an element from the buddy allocator.
2233 * Call me with the zone->lock already held.
2235 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2241 page = __rmqueue_smallest(zone, order, migratetype);
2242 if (unlikely(!page)) {
2243 if (migratetype == MIGRATE_MOVABLE)
2244 page = __rmqueue_cma_fallback(zone, order);
2246 if (!page && __rmqueue_fallback(zone, order, migratetype))
2250 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2255 * Obtain a specified number of elements from the buddy allocator, all under
2256 * a single hold of the lock, for efficiency. Add them to the supplied list.
2257 * Returns the number of new pages which were placed at *list.
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 unsigned long count, struct list_head *list,
2261 int migratetype, bool cold)
2265 spin_lock(&zone->lock);
2266 for (i = 0; i < count; ++i) {
2267 struct page *page = __rmqueue(zone, order, migratetype);
2268 if (unlikely(page == NULL))
2271 if (unlikely(check_pcp_refill(page)))
2275 * Split buddy pages returned by expand() are received here
2276 * in physical page order. The page is added to the callers and
2277 * list and the list head then moves forward. From the callers
2278 * perspective, the linked list is ordered by page number in
2279 * some conditions. This is useful for IO devices that can
2280 * merge IO requests if the physical pages are ordered
2284 list_add(&page->lru, list);
2286 list_add_tail(&page->lru, list);
2289 if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2295 * i pages were removed from the buddy list even if some leak due
2296 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 * on i. Do not confuse with 'alloced' which is the number of
2298 * pages added to the pcp list.
2300 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301 spin_unlock(&zone->lock);
2307 * Called from the vmstat counter updater to drain pagesets of this
2308 * currently executing processor on remote nodes after they have
2311 * Note that this function must be called with the thread pinned to
2312 * a single processor.
2314 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2316 unsigned long flags;
2317 int to_drain, batch;
2319 local_irq_save(flags);
2320 batch = READ_ONCE(pcp->batch);
2321 to_drain = min(pcp->count, batch);
2323 free_pcppages_bulk(zone, to_drain, pcp);
2324 pcp->count -= to_drain;
2326 local_irq_restore(flags);
2331 * Drain pcplists of the indicated processor and zone.
2333 * The processor must either be the current processor and the
2334 * thread pinned to the current processor or a processor that
2337 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2339 unsigned long flags;
2340 struct per_cpu_pageset *pset;
2341 struct per_cpu_pages *pcp;
2343 local_irq_save(flags);
2344 pset = per_cpu_ptr(zone->pageset, cpu);
2348 free_pcppages_bulk(zone, pcp->count, pcp);
2351 local_irq_restore(flags);
2355 * Drain pcplists of all zones on the indicated processor.
2357 * The processor must either be the current processor and the
2358 * thread pinned to the current processor or a processor that
2361 static void drain_pages(unsigned int cpu)
2365 for_each_populated_zone(zone) {
2366 drain_pages_zone(cpu, zone);
2371 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2373 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374 * the single zone's pages.
2376 void drain_local_pages(struct zone *zone)
2378 int cpu = smp_processor_id();
2381 drain_pages_zone(cpu, zone);
2386 static void drain_local_pages_wq(struct work_struct *work)
2389 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 * we can race with cpu offline when the WQ can move this from
2391 * a cpu pinned worker to an unbound one. We can operate on a different
2392 * cpu which is allright but we also have to make sure to not move to
2396 drain_local_pages(NULL);
2401 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2403 * When zone parameter is non-NULL, spill just the single zone's pages.
2405 * Note that this can be extremely slow as the draining happens in a workqueue.
2407 void drain_all_pages(struct zone *zone)
2412 * Allocate in the BSS so we wont require allocation in
2413 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2415 static cpumask_t cpus_with_pcps;
2418 * Make sure nobody triggers this path before mm_percpu_wq is fully
2421 if (WARN_ON_ONCE(!mm_percpu_wq))
2424 /* Workqueues cannot recurse */
2425 if (current->flags & PF_WQ_WORKER)
2429 * Do not drain if one is already in progress unless it's specific to
2430 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 * the drain to be complete when the call returns.
2433 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2436 mutex_lock(&pcpu_drain_mutex);
2440 * We don't care about racing with CPU hotplug event
2441 * as offline notification will cause the notified
2442 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 * disables preemption as part of its processing
2445 for_each_online_cpu(cpu) {
2446 struct per_cpu_pageset *pcp;
2448 bool has_pcps = false;
2451 pcp = per_cpu_ptr(zone->pageset, cpu);
2455 for_each_populated_zone(z) {
2456 pcp = per_cpu_ptr(z->pageset, cpu);
2457 if (pcp->pcp.count) {
2465 cpumask_set_cpu(cpu, &cpus_with_pcps);
2467 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2470 for_each_cpu(cpu, &cpus_with_pcps) {
2471 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 INIT_WORK(work, drain_local_pages_wq);
2473 queue_work_on(cpu, mm_percpu_wq, work);
2475 for_each_cpu(cpu, &cpus_with_pcps)
2476 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2478 mutex_unlock(&pcpu_drain_mutex);
2481 #ifdef CONFIG_HIBERNATION
2483 void mark_free_pages(struct zone *zone)
2485 unsigned long pfn, max_zone_pfn;
2486 unsigned long flags;
2487 unsigned int order, t;
2490 if (zone_is_empty(zone))
2493 spin_lock_irqsave(&zone->lock, flags);
2495 max_zone_pfn = zone_end_pfn(zone);
2496 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 if (pfn_valid(pfn)) {
2498 page = pfn_to_page(pfn);
2500 if (page_zone(page) != zone)
2503 if (!swsusp_page_is_forbidden(page))
2504 swsusp_unset_page_free(page);
2507 for_each_migratetype_order(order, t) {
2508 list_for_each_entry(page,
2509 &zone->free_area[order].free_list[t], lru) {
2512 pfn = page_to_pfn(page);
2513 for (i = 0; i < (1UL << order); i++)
2514 swsusp_set_page_free(pfn_to_page(pfn + i));
2517 spin_unlock_irqrestore(&zone->lock, flags);
2519 #endif /* CONFIG_PM */
2522 * Free a 0-order page
2523 * cold == true ? free a cold page : free a hot page
2525 void free_hot_cold_page(struct page *page, bool cold)
2527 struct zone *zone = page_zone(page);
2528 struct per_cpu_pages *pcp;
2529 unsigned long flags;
2530 unsigned long pfn = page_to_pfn(page);
2533 if (!free_pcp_prepare(page))
2536 migratetype = get_pfnblock_migratetype(page, pfn);
2537 set_pcppage_migratetype(page, migratetype);
2538 local_irq_save(flags);
2539 __count_vm_event(PGFREE);
2542 * We only track unmovable, reclaimable and movable on pcp lists.
2543 * Free ISOLATE pages back to the allocator because they are being
2544 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 * areas back if necessary. Otherwise, we may have to free
2546 * excessively into the page allocator
2548 if (migratetype >= MIGRATE_PCPTYPES) {
2549 if (unlikely(is_migrate_isolate(migratetype))) {
2550 free_one_page(zone, page, pfn, 0, migratetype);
2553 migratetype = MIGRATE_MOVABLE;
2556 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2558 list_add(&page->lru, &pcp->lists[migratetype]);
2560 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2562 if (pcp->count >= pcp->high) {
2563 unsigned long batch = READ_ONCE(pcp->batch);
2564 free_pcppages_bulk(zone, batch, pcp);
2565 pcp->count -= batch;
2569 local_irq_restore(flags);
2573 * Free a list of 0-order pages
2575 void free_hot_cold_page_list(struct list_head *list, bool cold)
2577 struct page *page, *next;
2579 list_for_each_entry_safe(page, next, list, lru) {
2580 trace_mm_page_free_batched(page, cold);
2581 free_hot_cold_page(page, cold);
2586 * split_page takes a non-compound higher-order page, and splits it into
2587 * n (1<<order) sub-pages: page[0..n]
2588 * Each sub-page must be freed individually.
2590 * Note: this is probably too low level an operation for use in drivers.
2591 * Please consult with lkml before using this in your driver.
2593 void split_page(struct page *page, unsigned int order)
2597 VM_BUG_ON_PAGE(PageCompound(page), page);
2598 VM_BUG_ON_PAGE(!page_count(page), page);
2600 #ifdef CONFIG_KMEMCHECK
2602 * Split shadow pages too, because free(page[0]) would
2603 * otherwise free the whole shadow.
2605 if (kmemcheck_page_is_tracked(page))
2606 split_page(virt_to_page(page[0].shadow), order);
2609 for (i = 1; i < (1 << order); i++)
2610 set_page_refcounted(page + i);
2611 split_page_owner(page, order);
2613 EXPORT_SYMBOL_GPL(split_page);
2615 int __isolate_free_page(struct page *page, unsigned int order)
2617 unsigned long watermark;
2621 BUG_ON(!PageBuddy(page));
2623 zone = page_zone(page);
2624 mt = get_pageblock_migratetype(page);
2626 if (!is_migrate_isolate(mt)) {
2628 * Obey watermarks as if the page was being allocated. We can
2629 * emulate a high-order watermark check with a raised order-0
2630 * watermark, because we already know our high-order page
2633 watermark = min_wmark_pages(zone) + (1UL << order);
2634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2640 /* Remove page from free list */
2641 list_del(&page->lru);
2642 zone->free_area[order].nr_free--;
2643 rmv_page_order(page);
2646 * Set the pageblock if the isolated page is at least half of a
2649 if (order >= pageblock_order - 1) {
2650 struct page *endpage = page + (1 << order) - 1;
2651 for (; page < endpage; page += pageblock_nr_pages) {
2652 int mt = get_pageblock_migratetype(page);
2653 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654 && !is_migrate_highatomic(mt))
2655 set_pageblock_migratetype(page,
2661 return 1UL << order;
2665 * Update NUMA hit/miss statistics
2667 * Must be called with interrupts disabled.
2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2672 enum zone_stat_item local_stat = NUMA_LOCAL;
2674 if (z->node != numa_node_id())
2675 local_stat = NUMA_OTHER;
2677 if (z->node == preferred_zone->node)
2678 __inc_zone_state(z, NUMA_HIT);
2680 __inc_zone_state(z, NUMA_MISS);
2681 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2683 __inc_zone_state(z, local_stat);
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 bool cold, struct per_cpu_pages *pcp,
2690 struct list_head *list)
2695 if (list_empty(list)) {
2696 pcp->count += rmqueue_bulk(zone, 0,
2699 if (unlikely(list_empty(list)))
2704 page = list_last_entry(list, struct page, lru);
2706 page = list_first_entry(list, struct page, lru);
2708 list_del(&page->lru);
2710 } while (check_new_pcp(page));
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 struct zone *zone, unsigned int order,
2718 gfp_t gfp_flags, int migratetype)
2720 struct per_cpu_pages *pcp;
2721 struct list_head *list;
2722 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2724 unsigned long flags;
2726 local_irq_save(flags);
2727 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 list = &pcp->lists[migratetype];
2729 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2734 local_irq_restore(flags);
2739 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2742 struct page *rmqueue(struct zone *preferred_zone,
2743 struct zone *zone, unsigned int order,
2744 gfp_t gfp_flags, unsigned int alloc_flags,
2747 unsigned long flags;
2750 if (likely(order == 0)) {
2751 page = rmqueue_pcplist(preferred_zone, zone, order,
2752 gfp_flags, migratetype);
2757 * We most definitely don't want callers attempting to
2758 * allocate greater than order-1 page units with __GFP_NOFAIL.
2760 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 spin_lock_irqsave(&zone->lock, flags);
2765 if (alloc_flags & ALLOC_HARDER) {
2766 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2768 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2771 page = __rmqueue(zone, order, migratetype);
2772 } while (page && check_new_pages(page, order));
2773 spin_unlock(&zone->lock);
2776 __mod_zone_freepage_state(zone, -(1 << order),
2777 get_pcppage_migratetype(page));
2779 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 zone_statistics(preferred_zone, zone);
2781 local_irq_restore(flags);
2784 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2788 local_irq_restore(flags);
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2795 struct fault_attr attr;
2797 bool ignore_gfp_highmem;
2798 bool ignore_gfp_reclaim;
2800 } fail_page_alloc = {
2801 .attr = FAULT_ATTR_INITIALIZER,
2802 .ignore_gfp_reclaim = true,
2803 .ignore_gfp_highmem = true,
2807 static int __init setup_fail_page_alloc(char *str)
2809 return setup_fault_attr(&fail_page_alloc.attr, str);
2811 __setup("fail_page_alloc=", setup_fail_page_alloc);
2813 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2815 if (order < fail_page_alloc.min_order)
2817 if (gfp_mask & __GFP_NOFAIL)
2819 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2821 if (fail_page_alloc.ignore_gfp_reclaim &&
2822 (gfp_mask & __GFP_DIRECT_RECLAIM))
2825 return should_fail(&fail_page_alloc.attr, 1 << order);
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2830 static int __init fail_page_alloc_debugfs(void)
2832 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2835 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 &fail_page_alloc.attr);
2838 return PTR_ERR(dir);
2840 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841 &fail_page_alloc.ignore_gfp_reclaim))
2843 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 &fail_page_alloc.ignore_gfp_highmem))
2846 if (!debugfs_create_u32("min-order", mode, dir,
2847 &fail_page_alloc.min_order))
2852 debugfs_remove_recursive(dir);
2857 late_initcall(fail_page_alloc_debugfs);
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2871 * Return true if free base pages are above 'mark'. For high-order checks it
2872 * will return true of the order-0 watermark is reached and there is at least
2873 * one free page of a suitable size. Checking now avoids taking the zone lock
2874 * to check in the allocation paths if no pages are free.
2876 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 int classzone_idx, unsigned int alloc_flags,
2882 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2884 /* free_pages may go negative - that's OK */
2885 free_pages -= (1 << order) - 1;
2887 if (alloc_flags & ALLOC_HIGH)
2891 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 * the high-atomic reserves. This will over-estimate the size of the
2893 * atomic reserve but it avoids a search.
2895 if (likely(!alloc_harder))
2896 free_pages -= z->nr_reserved_highatomic;
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags & ALLOC_CMA))
2903 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2907 * Check watermarks for an order-0 allocation request. If these
2908 * are not met, then a high-order request also cannot go ahead
2909 * even if a suitable page happened to be free.
2911 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2914 /* If this is an order-0 request then the watermark is fine */
2918 /* For a high-order request, check at least one suitable page is free */
2919 for (o = order; o < MAX_ORDER; o++) {
2920 struct free_area *area = &z->free_area[o];
2929 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 if (!list_empty(&area->free_list[mt]))
2935 if ((alloc_flags & ALLOC_CMA) &&
2936 !list_empty(&area->free_list[MIGRATE_CMA])) {
2944 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945 int classzone_idx, unsigned int alloc_flags)
2947 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 zone_page_state(z, NR_FREE_PAGES));
2951 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2954 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2958 /* If allocation can't use CMA areas don't use free CMA pages */
2959 if (!(alloc_flags & ALLOC_CMA))
2960 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2964 * Fast check for order-0 only. If this fails then the reserves
2965 * need to be calculated. There is a corner case where the check
2966 * passes but only the high-order atomic reserve are free. If
2967 * the caller is !atomic then it'll uselessly search the free
2968 * list. That corner case is then slower but it is harmless.
2970 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2973 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2977 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978 unsigned long mark, int classzone_idx)
2980 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2982 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2985 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2992 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2995 #else /* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3000 #endif /* CONFIG_NUMA */
3003 * get_page_from_freelist goes through the zonelist trying to allocate
3006 static struct page *
3007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 const struct alloc_context *ac)
3010 struct zoneref *z = ac->preferred_zoneref;
3012 struct pglist_data *last_pgdat_dirty_limit = NULL;
3015 * Scan zonelist, looking for a zone with enough free.
3016 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3018 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3023 if (cpusets_enabled() &&
3024 (alloc_flags & ALLOC_CPUSET) &&
3025 !__cpuset_zone_allowed(zone, gfp_mask))
3028 * When allocating a page cache page for writing, we
3029 * want to get it from a node that is within its dirty
3030 * limit, such that no single node holds more than its
3031 * proportional share of globally allowed dirty pages.
3032 * The dirty limits take into account the node's
3033 * lowmem reserves and high watermark so that kswapd
3034 * should be able to balance it without having to
3035 * write pages from its LRU list.
3037 * XXX: For now, allow allocations to potentially
3038 * exceed the per-node dirty limit in the slowpath
3039 * (spread_dirty_pages unset) before going into reclaim,
3040 * which is important when on a NUMA setup the allowed
3041 * nodes are together not big enough to reach the
3042 * global limit. The proper fix for these situations
3043 * will require awareness of nodes in the
3044 * dirty-throttling and the flusher threads.
3046 if (ac->spread_dirty_pages) {
3047 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3050 if (!node_dirty_ok(zone->zone_pgdat)) {
3051 last_pgdat_dirty_limit = zone->zone_pgdat;
3056 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057 if (!zone_watermark_fast(zone, order, mark,
3058 ac_classzone_idx(ac), alloc_flags)) {
3061 /* Checked here to keep the fast path fast */
3062 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 if (alloc_flags & ALLOC_NO_WATERMARKS)
3066 if (node_reclaim_mode == 0 ||
3067 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3070 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3072 case NODE_RECLAIM_NOSCAN:
3075 case NODE_RECLAIM_FULL:
3076 /* scanned but unreclaimable */
3079 /* did we reclaim enough */
3080 if (zone_watermark_ok(zone, order, mark,
3081 ac_classzone_idx(ac), alloc_flags))
3089 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090 gfp_mask, alloc_flags, ac->migratetype);
3092 prep_new_page(page, order, gfp_mask, alloc_flags);
3095 * If this is a high-order atomic allocation then check
3096 * if the pageblock should be reserved for the future
3098 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 reserve_highatomic_pageblock(page, zone, order);
3109 * Large machines with many possible nodes should not always dump per-node
3110 * meminfo in irq context.
3112 static inline bool should_suppress_show_mem(void)
3117 ret = in_interrupt();
3122 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3124 unsigned int filter = SHOW_MEM_FILTER_NODES;
3125 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3127 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3131 * This documents exceptions given to allocations in certain
3132 * contexts that are allowed to allocate outside current's set
3135 if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 if (test_thread_flag(TIF_MEMDIE) ||
3137 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 filter &= ~SHOW_MEM_FILTER_NODES;
3139 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 filter &= ~SHOW_MEM_FILTER_NODES;
3142 show_mem(filter, nodemask);
3145 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3147 struct va_format vaf;
3149 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 DEFAULT_RATELIMIT_BURST);
3152 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3155 pr_warn("%s: ", current->comm);
3157 va_start(args, fmt);
3160 pr_cont("%pV", &vaf);
3163 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3165 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3167 pr_cont("(null)\n");
3169 cpuset_print_current_mems_allowed();
3172 warn_alloc_show_mem(gfp_mask, nodemask);
3175 static inline struct page *
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 unsigned int alloc_flags,
3178 const struct alloc_context *ac)
3182 page = get_page_from_freelist(gfp_mask, order,
3183 alloc_flags|ALLOC_CPUSET, ac);
3185 * fallback to ignore cpuset restriction if our nodes
3189 page = get_page_from_freelist(gfp_mask, order,
3195 static inline struct page *
3196 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197 const struct alloc_context *ac, unsigned long *did_some_progress)
3199 struct oom_control oc = {
3200 .zonelist = ac->zonelist,
3201 .nodemask = ac->nodemask,
3203 .gfp_mask = gfp_mask,
3208 *did_some_progress = 0;
3211 * Acquire the oom lock. If that fails, somebody else is
3212 * making progress for us.
3214 if (!mutex_trylock(&oom_lock)) {
3215 *did_some_progress = 1;
3216 schedule_timeout_uninterruptible(1);
3221 * Go through the zonelist yet one more time, keep very high watermark
3222 * here, this is only to catch a parallel oom killing, we must fail if
3223 * we're still under heavy pressure.
3225 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3230 /* Coredumps can quickly deplete all memory reserves */
3231 if (current->flags & PF_DUMPCORE)
3233 /* The OOM killer will not help higher order allocs */
3234 if (order > PAGE_ALLOC_COSTLY_ORDER)
3236 /* The OOM killer does not needlessly kill tasks for lowmem */
3237 if (ac->high_zoneidx < ZONE_NORMAL)
3239 if (pm_suspended_storage())
3242 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 * other request to make a forward progress.
3244 * We are in an unfortunate situation where out_of_memory cannot
3245 * do much for this context but let's try it to at least get
3246 * access to memory reserved if the current task is killed (see
3247 * out_of_memory). Once filesystems are ready to handle allocation
3248 * failures more gracefully we should just bail out here.
3251 /* The OOM killer may not free memory on a specific node */
3252 if (gfp_mask & __GFP_THISNODE)
3255 /* Exhausted what can be done so it's blamo time */
3256 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257 *did_some_progress = 1;
3260 * Help non-failing allocations by giving them access to memory
3263 if (gfp_mask & __GFP_NOFAIL)
3264 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 ALLOC_NO_WATERMARKS, ac);
3268 mutex_unlock(&oom_lock);
3273 * Maximum number of compaction retries wit a progress before OOM
3274 * killer is consider as the only way to move forward.
3276 #define MAX_COMPACT_RETRIES 16
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page *
3281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282 unsigned int alloc_flags, const struct alloc_context *ac,
3283 enum compact_priority prio, enum compact_result *compact_result)
3290 current->flags |= PF_MEMALLOC;
3291 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3293 current->flags &= ~PF_MEMALLOC;
3295 if (*compact_result <= COMPACT_INACTIVE)
3299 * At least in one zone compaction wasn't deferred or skipped, so let's
3300 * count a compaction stall
3302 count_vm_event(COMPACTSTALL);
3304 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3307 struct zone *zone = page_zone(page);
3309 zone->compact_blockskip_flush = false;
3310 compaction_defer_reset(zone, order, true);
3311 count_vm_event(COMPACTSUCCESS);
3316 * It's bad if compaction run occurs and fails. The most likely reason
3317 * is that pages exist, but not enough to satisfy watermarks.
3319 count_vm_event(COMPACTFAIL);
3327 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3328 enum compact_result compact_result,
3329 enum compact_priority *compact_priority,
3330 int *compaction_retries)
3332 int max_retries = MAX_COMPACT_RETRIES;
3335 int retries = *compaction_retries;
3336 enum compact_priority priority = *compact_priority;
3341 if (compaction_made_progress(compact_result))
3342 (*compaction_retries)++;
3345 * compaction considers all the zone as desperately out of memory
3346 * so it doesn't really make much sense to retry except when the
3347 * failure could be caused by insufficient priority
3349 if (compaction_failed(compact_result))
3350 goto check_priority;
3353 * make sure the compaction wasn't deferred or didn't bail out early
3354 * due to locks contention before we declare that we should give up.
3355 * But do not retry if the given zonelist is not suitable for
3358 if (compaction_withdrawn(compact_result)) {
3359 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3364 * !costly requests are much more important than __GFP_REPEAT
3365 * costly ones because they are de facto nofail and invoke OOM
3366 * killer to move on while costly can fail and users are ready
3367 * to cope with that. 1/4 retries is rather arbitrary but we
3368 * would need much more detailed feedback from compaction to
3369 * make a better decision.
3371 if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 if (*compaction_retries <= max_retries) {
3379 * Make sure there are attempts at the highest priority if we exhausted
3380 * all retries or failed at the lower priorities.
3383 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3384 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3386 if (*compact_priority > min_priority) {
3387 (*compact_priority)--;
3388 *compaction_retries = 0;
3392 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3396 static inline struct page *
3397 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3398 unsigned int alloc_flags, const struct alloc_context *ac,
3399 enum compact_priority prio, enum compact_result *compact_result)
3401 *compact_result = COMPACT_SKIPPED;
3406 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3407 enum compact_result compact_result,
3408 enum compact_priority *compact_priority,
3409 int *compaction_retries)
3414 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3418 * There are setups with compaction disabled which would prefer to loop
3419 * inside the allocator rather than hit the oom killer prematurely.
3420 * Let's give them a good hope and keep retrying while the order-0
3421 * watermarks are OK.
3423 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3425 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3426 ac_classzone_idx(ac), alloc_flags))
3431 #endif /* CONFIG_COMPACTION */
3433 /* Perform direct synchronous page reclaim */
3435 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3436 const struct alloc_context *ac)
3438 struct reclaim_state reclaim_state;
3443 /* We now go into synchronous reclaim */
3444 cpuset_memory_pressure_bump();
3445 current->flags |= PF_MEMALLOC;
3446 lockdep_set_current_reclaim_state(gfp_mask);
3447 reclaim_state.reclaimed_slab = 0;
3448 current->reclaim_state = &reclaim_state;
3450 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3453 current->reclaim_state = NULL;
3454 lockdep_clear_current_reclaim_state();
3455 current->flags &= ~PF_MEMALLOC;
3462 /* The really slow allocator path where we enter direct reclaim */
3463 static inline struct page *
3464 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3465 unsigned int alloc_flags, const struct alloc_context *ac,
3466 unsigned long *did_some_progress)
3468 struct page *page = NULL;
3469 bool drained = false;
3471 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3472 if (unlikely(!(*did_some_progress)))
3476 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3479 * If an allocation failed after direct reclaim, it could be because
3480 * pages are pinned on the per-cpu lists or in high alloc reserves.
3481 * Shrink them them and try again
3483 if (!page && !drained) {
3484 unreserve_highatomic_pageblock(ac, false);
3485 drain_all_pages(NULL);
3493 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3497 pg_data_t *last_pgdat = NULL;
3499 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3500 ac->high_zoneidx, ac->nodemask) {
3501 if (last_pgdat != zone->zone_pgdat)
3502 wakeup_kswapd(zone, order, ac->high_zoneidx);
3503 last_pgdat = zone->zone_pgdat;
3507 static inline unsigned int
3508 gfp_to_alloc_flags(gfp_t gfp_mask)
3510 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3512 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3513 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3516 * The caller may dip into page reserves a bit more if the caller
3517 * cannot run direct reclaim, or if the caller has realtime scheduling
3518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3519 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3521 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3523 if (gfp_mask & __GFP_ATOMIC) {
3525 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3526 * if it can't schedule.
3528 if (!(gfp_mask & __GFP_NOMEMALLOC))
3529 alloc_flags |= ALLOC_HARDER;
3531 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3532 * comment for __cpuset_node_allowed().
3534 alloc_flags &= ~ALLOC_CPUSET;
3535 } else if (unlikely(rt_task(current)) && !in_interrupt())
3536 alloc_flags |= ALLOC_HARDER;
3539 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3540 alloc_flags |= ALLOC_CMA;
3545 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3547 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3550 if (gfp_mask & __GFP_MEMALLOC)
3552 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3554 if (!in_interrupt() &&
3555 ((current->flags & PF_MEMALLOC) ||
3556 unlikely(test_thread_flag(TIF_MEMDIE))))
3563 * Checks whether it makes sense to retry the reclaim to make a forward progress
3564 * for the given allocation request.
3566 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3567 * without success, or when we couldn't even meet the watermark if we
3568 * reclaimed all remaining pages on the LRU lists.
3570 * Returns true if a retry is viable or false to enter the oom path.
3573 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3574 struct alloc_context *ac, int alloc_flags,
3575 bool did_some_progress, int *no_progress_loops)
3581 * Costly allocations might have made a progress but this doesn't mean
3582 * their order will become available due to high fragmentation so
3583 * always increment the no progress counter for them
3585 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3586 *no_progress_loops = 0;
3588 (*no_progress_loops)++;
3591 * Make sure we converge to OOM if we cannot make any progress
3592 * several times in the row.
3594 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3595 /* Before OOM, exhaust highatomic_reserve */
3596 return unreserve_highatomic_pageblock(ac, true);
3600 * Keep reclaiming pages while there is a chance this will lead
3601 * somewhere. If none of the target zones can satisfy our allocation
3602 * request even if all reclaimable pages are considered then we are
3603 * screwed and have to go OOM.
3605 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3607 unsigned long available;
3608 unsigned long reclaimable;
3609 unsigned long min_wmark = min_wmark_pages(zone);
3612 available = reclaimable = zone_reclaimable_pages(zone);
3613 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3616 * Would the allocation succeed if we reclaimed all
3617 * reclaimable pages?
3619 wmark = __zone_watermark_ok(zone, order, min_wmark,
3620 ac_classzone_idx(ac), alloc_flags, available);
3621 trace_reclaim_retry_zone(z, order, reclaimable,
3622 available, min_wmark, *no_progress_loops, wmark);
3625 * If we didn't make any progress and have a lot of
3626 * dirty + writeback pages then we should wait for
3627 * an IO to complete to slow down the reclaim and
3628 * prevent from pre mature OOM
3630 if (!did_some_progress) {
3631 unsigned long write_pending;
3633 write_pending = zone_page_state_snapshot(zone,
3634 NR_ZONE_WRITE_PENDING);
3636 if (2 * write_pending > reclaimable) {
3637 congestion_wait(BLK_RW_ASYNC, HZ/10);
3643 * Memory allocation/reclaim might be called from a WQ
3644 * context and the current implementation of the WQ
3645 * concurrency control doesn't recognize that
3646 * a particular WQ is congested if the worker thread is
3647 * looping without ever sleeping. Therefore we have to
3648 * do a short sleep here rather than calling
3651 if (current->flags & PF_WQ_WORKER)
3652 schedule_timeout_uninterruptible(1);
3663 static inline struct page *
3664 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3665 struct alloc_context *ac)
3667 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3668 struct page *page = NULL;
3669 unsigned int alloc_flags;
3670 unsigned long did_some_progress;
3671 enum compact_priority compact_priority;
3672 enum compact_result compact_result;
3673 int compaction_retries;
3674 int no_progress_loops;
3675 unsigned long alloc_start = jiffies;
3676 unsigned int stall_timeout = 10 * HZ;
3677 unsigned int cpuset_mems_cookie;
3680 * In the slowpath, we sanity check order to avoid ever trying to
3681 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3682 * be using allocators in order of preference for an area that is
3685 if (order >= MAX_ORDER) {
3686 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3691 * We also sanity check to catch abuse of atomic reserves being used by
3692 * callers that are not in atomic context.
3694 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3695 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3696 gfp_mask &= ~__GFP_ATOMIC;
3699 compaction_retries = 0;
3700 no_progress_loops = 0;
3701 compact_priority = DEF_COMPACT_PRIORITY;
3702 cpuset_mems_cookie = read_mems_allowed_begin();
3705 * The fast path uses conservative alloc_flags to succeed only until
3706 * kswapd needs to be woken up, and to avoid the cost of setting up
3707 * alloc_flags precisely. So we do that now.
3709 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3712 * We need to recalculate the starting point for the zonelist iterator
3713 * because we might have used different nodemask in the fast path, or
3714 * there was a cpuset modification and we are retrying - otherwise we
3715 * could end up iterating over non-eligible zones endlessly.
3717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3718 ac->high_zoneidx, ac->nodemask);
3719 if (!ac->preferred_zoneref->zone)
3722 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3723 wake_all_kswapds(order, ac);
3726 * The adjusted alloc_flags might result in immediate success, so try
3729 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3734 * For costly allocations, try direct compaction first, as it's likely
3735 * that we have enough base pages and don't need to reclaim. Don't try
3736 * that for allocations that are allowed to ignore watermarks, as the
3737 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3739 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3740 !gfp_pfmemalloc_allowed(gfp_mask)) {
3741 page = __alloc_pages_direct_compact(gfp_mask, order,
3743 INIT_COMPACT_PRIORITY,
3749 * Checks for costly allocations with __GFP_NORETRY, which
3750 * includes THP page fault allocations
3752 if (gfp_mask & __GFP_NORETRY) {
3754 * If compaction is deferred for high-order allocations,
3755 * it is because sync compaction recently failed. If
3756 * this is the case and the caller requested a THP
3757 * allocation, we do not want to heavily disrupt the
3758 * system, so we fail the allocation instead of entering
3761 if (compact_result == COMPACT_DEFERRED)
3765 * Looks like reclaim/compaction is worth trying, but
3766 * sync compaction could be very expensive, so keep
3767 * using async compaction.
3769 compact_priority = INIT_COMPACT_PRIORITY;
3774 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3775 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3776 wake_all_kswapds(order, ac);
3778 if (gfp_pfmemalloc_allowed(gfp_mask))
3779 alloc_flags = ALLOC_NO_WATERMARKS;
3782 * Reset the zonelist iterators if memory policies can be ignored.
3783 * These allocations are high priority and system rather than user
3786 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3787 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3788 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3789 ac->high_zoneidx, ac->nodemask);
3792 /* Attempt with potentially adjusted zonelist and alloc_flags */
3793 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3797 /* Caller is not willing to reclaim, we can't balance anything */
3798 if (!can_direct_reclaim)
3801 /* Make sure we know about allocations which stall for too long */
3802 if (time_after(jiffies, alloc_start + stall_timeout)) {
3803 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3804 "page allocation stalls for %ums, order:%u",
3805 jiffies_to_msecs(jiffies-alloc_start), order);
3806 stall_timeout += 10 * HZ;
3809 /* Avoid recursion of direct reclaim */
3810 if (current->flags & PF_MEMALLOC)
3813 /* Try direct reclaim and then allocating */
3814 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3815 &did_some_progress);
3819 /* Try direct compaction and then allocating */
3820 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3821 compact_priority, &compact_result);
3825 /* Do not loop if specifically requested */
3826 if (gfp_mask & __GFP_NORETRY)
3830 * Do not retry costly high order allocations unless they are
3833 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3836 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3837 did_some_progress > 0, &no_progress_loops))
3841 * It doesn't make any sense to retry for the compaction if the order-0
3842 * reclaim is not able to make any progress because the current
3843 * implementation of the compaction depends on the sufficient amount
3844 * of free memory (see __compaction_suitable)
3846 if (did_some_progress > 0 &&
3847 should_compact_retry(ac, order, alloc_flags,
3848 compact_result, &compact_priority,
3849 &compaction_retries))
3853 * It's possible we raced with cpuset update so the OOM would be
3854 * premature (see below the nopage: label for full explanation).
3856 if (read_mems_allowed_retry(cpuset_mems_cookie))
3859 /* Reclaim has failed us, start killing things */
3860 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3864 /* Avoid allocations with no watermarks from looping endlessly */
3865 if (test_thread_flag(TIF_MEMDIE))
3868 /* Retry as long as the OOM killer is making progress */
3869 if (did_some_progress) {
3870 no_progress_loops = 0;
3876 * When updating a task's mems_allowed or mempolicy nodemask, it is
3877 * possible to race with parallel threads in such a way that our
3878 * allocation can fail while the mask is being updated. If we are about
3879 * to fail, check if the cpuset changed during allocation and if so,
3882 if (read_mems_allowed_retry(cpuset_mems_cookie))
3886 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3889 if (gfp_mask & __GFP_NOFAIL) {
3891 * All existing users of the __GFP_NOFAIL are blockable, so warn
3892 * of any new users that actually require GFP_NOWAIT
3894 if (WARN_ON_ONCE(!can_direct_reclaim))
3898 * PF_MEMALLOC request from this context is rather bizarre
3899 * because we cannot reclaim anything and only can loop waiting
3900 * for somebody to do a work for us
3902 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3905 * non failing costly orders are a hard requirement which we
3906 * are not prepared for much so let's warn about these users
3907 * so that we can identify them and convert them to something
3910 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3913 * Help non-failing allocations by giving them access to memory
3914 * reserves but do not use ALLOC_NO_WATERMARKS because this
3915 * could deplete whole memory reserves which would just make
3916 * the situation worse
3918 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3926 warn_alloc(gfp_mask, ac->nodemask,
3927 "page allocation failure: order:%u", order);
3932 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3933 struct zonelist *zonelist, nodemask_t *nodemask,
3934 struct alloc_context *ac, gfp_t *alloc_mask,
3935 unsigned int *alloc_flags)
3937 ac->high_zoneidx = gfp_zone(gfp_mask);
3938 ac->zonelist = zonelist;
3939 ac->nodemask = nodemask;
3940 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3942 if (cpusets_enabled()) {
3943 *alloc_mask |= __GFP_HARDWALL;
3945 ac->nodemask = &cpuset_current_mems_allowed;
3947 *alloc_flags |= ALLOC_CPUSET;
3950 lockdep_trace_alloc(gfp_mask);
3952 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3954 if (should_fail_alloc_page(gfp_mask, order))
3957 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3958 *alloc_flags |= ALLOC_CMA;
3963 /* Determine whether to spread dirty pages and what the first usable zone */
3964 static inline void finalise_ac(gfp_t gfp_mask,
3965 unsigned int order, struct alloc_context *ac)
3967 /* Dirty zone balancing only done in the fast path */
3968 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3971 * The preferred zone is used for statistics but crucially it is
3972 * also used as the starting point for the zonelist iterator. It
3973 * may get reset for allocations that ignore memory policies.
3975 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3976 ac->high_zoneidx, ac->nodemask);
3980 * This is the 'heart' of the zoned buddy allocator.
3983 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3984 struct zonelist *zonelist, nodemask_t *nodemask)
3987 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3988 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3989 struct alloc_context ac = { };
3991 gfp_mask &= gfp_allowed_mask;
3992 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3995 finalise_ac(gfp_mask, order, &ac);
3997 /* First allocation attempt */
3998 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4003 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4004 * resp. GFP_NOIO which has to be inherited for all allocation requests
4005 * from a particular context which has been marked by
4006 * memalloc_no{fs,io}_{save,restore}.
4008 alloc_mask = current_gfp_context(gfp_mask);
4009 ac.spread_dirty_pages = false;
4012 * Restore the original nodemask if it was potentially replaced with
4013 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4015 if (unlikely(ac.nodemask != nodemask))
4016 ac.nodemask = nodemask;
4018 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4021 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4022 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4023 __free_pages(page, order);
4027 if (kmemcheck_enabled && page)
4028 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4030 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4034 EXPORT_SYMBOL(__alloc_pages_nodemask);
4037 * Common helper functions.
4039 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4044 * __get_free_pages() returns a 32-bit address, which cannot represent
4047 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4049 page = alloc_pages(gfp_mask, order);
4052 return (unsigned long) page_address(page);
4054 EXPORT_SYMBOL(__get_free_pages);
4056 unsigned long get_zeroed_page(gfp_t gfp_mask)
4058 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4060 EXPORT_SYMBOL(get_zeroed_page);
4062 void __free_pages(struct page *page, unsigned int order)
4064 if (put_page_testzero(page)) {
4066 free_hot_cold_page(page, false);
4068 __free_pages_ok(page, order);
4072 EXPORT_SYMBOL(__free_pages);
4074 void free_pages(unsigned long addr, unsigned int order)
4077 VM_BUG_ON(!virt_addr_valid((void *)addr));
4078 __free_pages(virt_to_page((void *)addr), order);
4082 EXPORT_SYMBOL(free_pages);
4086 * An arbitrary-length arbitrary-offset area of memory which resides
4087 * within a 0 or higher order page. Multiple fragments within that page
4088 * are individually refcounted, in the page's reference counter.
4090 * The page_frag functions below provide a simple allocation framework for
4091 * page fragments. This is used by the network stack and network device
4092 * drivers to provide a backing region of memory for use as either an
4093 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4095 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4098 struct page *page = NULL;
4099 gfp_t gfp = gfp_mask;
4101 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4102 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4104 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4105 PAGE_FRAG_CACHE_MAX_ORDER);
4106 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4108 if (unlikely(!page))
4109 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4111 nc->va = page ? page_address(page) : NULL;
4116 void __page_frag_cache_drain(struct page *page, unsigned int count)
4118 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4120 if (page_ref_sub_and_test(page, count)) {
4121 unsigned int order = compound_order(page);
4124 free_hot_cold_page(page, false);
4126 __free_pages_ok(page, order);
4129 EXPORT_SYMBOL(__page_frag_cache_drain);
4131 void *page_frag_alloc(struct page_frag_cache *nc,
4132 unsigned int fragsz, gfp_t gfp_mask)
4134 unsigned int size = PAGE_SIZE;
4138 if (unlikely(!nc->va)) {
4140 page = __page_frag_cache_refill(nc, gfp_mask);
4144 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4145 /* if size can vary use size else just use PAGE_SIZE */
4148 /* Even if we own the page, we do not use atomic_set().
4149 * This would break get_page_unless_zero() users.
4151 page_ref_add(page, size - 1);
4153 /* reset page count bias and offset to start of new frag */
4154 nc->pfmemalloc = page_is_pfmemalloc(page);
4155 nc->pagecnt_bias = size;
4159 offset = nc->offset - fragsz;
4160 if (unlikely(offset < 0)) {
4161 page = virt_to_page(nc->va);
4163 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4166 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4167 /* if size can vary use size else just use PAGE_SIZE */
4170 /* OK, page count is 0, we can safely set it */
4171 set_page_count(page, size);
4173 /* reset page count bias and offset to start of new frag */
4174 nc->pagecnt_bias = size;
4175 offset = size - fragsz;
4179 nc->offset = offset;
4181 return nc->va + offset;
4183 EXPORT_SYMBOL(page_frag_alloc);
4186 * Frees a page fragment allocated out of either a compound or order 0 page.
4188 void page_frag_free(void *addr)
4190 struct page *page = virt_to_head_page(addr);
4192 if (unlikely(put_page_testzero(page)))
4193 __free_pages_ok(page, compound_order(page));
4195 EXPORT_SYMBOL(page_frag_free);
4197 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4201 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4202 unsigned long used = addr + PAGE_ALIGN(size);
4204 split_page(virt_to_page((void *)addr), order);
4205 while (used < alloc_end) {
4210 return (void *)addr;
4214 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4215 * @size: the number of bytes to allocate
4216 * @gfp_mask: GFP flags for the allocation
4218 * This function is similar to alloc_pages(), except that it allocates the
4219 * minimum number of pages to satisfy the request. alloc_pages() can only
4220 * allocate memory in power-of-two pages.
4222 * This function is also limited by MAX_ORDER.
4224 * Memory allocated by this function must be released by free_pages_exact().
4226 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4228 unsigned int order = get_order(size);
4231 addr = __get_free_pages(gfp_mask, order);
4232 return make_alloc_exact(addr, order, size);
4234 EXPORT_SYMBOL(alloc_pages_exact);
4237 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4239 * @nid: the preferred node ID where memory should be allocated
4240 * @size: the number of bytes to allocate
4241 * @gfp_mask: GFP flags for the allocation
4243 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4246 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4248 unsigned int order = get_order(size);
4249 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4252 return make_alloc_exact((unsigned long)page_address(p), order, size);
4256 * free_pages_exact - release memory allocated via alloc_pages_exact()
4257 * @virt: the value returned by alloc_pages_exact.
4258 * @size: size of allocation, same value as passed to alloc_pages_exact().
4260 * Release the memory allocated by a previous call to alloc_pages_exact.
4262 void free_pages_exact(void *virt, size_t size)
4264 unsigned long addr = (unsigned long)virt;
4265 unsigned long end = addr + PAGE_ALIGN(size);
4267 while (addr < end) {
4272 EXPORT_SYMBOL(free_pages_exact);
4275 * nr_free_zone_pages - count number of pages beyond high watermark
4276 * @offset: The zone index of the highest zone
4278 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4279 * high watermark within all zones at or below a given zone index. For each
4280 * zone, the number of pages is calculated as:
4282 * nr_free_zone_pages = managed_pages - high_pages
4284 static unsigned long nr_free_zone_pages(int offset)
4289 /* Just pick one node, since fallback list is circular */
4290 unsigned long sum = 0;
4292 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4294 for_each_zone_zonelist(zone, z, zonelist, offset) {
4295 unsigned long size = zone->managed_pages;
4296 unsigned long high = high_wmark_pages(zone);
4305 * nr_free_buffer_pages - count number of pages beyond high watermark
4307 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4308 * watermark within ZONE_DMA and ZONE_NORMAL.
4310 unsigned long nr_free_buffer_pages(void)
4312 return nr_free_zone_pages(gfp_zone(GFP_USER));
4314 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4317 * nr_free_pagecache_pages - count number of pages beyond high watermark
4319 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4320 * high watermark within all zones.
4322 unsigned long nr_free_pagecache_pages(void)
4324 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4327 static inline void show_node(struct zone *zone)
4329 if (IS_ENABLED(CONFIG_NUMA))
4330 printk("Node %d ", zone_to_nid(zone));
4333 long si_mem_available(void)
4336 unsigned long pagecache;
4337 unsigned long wmark_low = 0;
4338 unsigned long pages[NR_LRU_LISTS];
4342 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4343 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4346 wmark_low += zone->watermark[WMARK_LOW];
4349 * Estimate the amount of memory available for userspace allocations,
4350 * without causing swapping.
4352 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4355 * Not all the page cache can be freed, otherwise the system will
4356 * start swapping. Assume at least half of the page cache, or the
4357 * low watermark worth of cache, needs to stay.
4359 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4360 pagecache -= min(pagecache / 2, wmark_low);
4361 available += pagecache;
4364 * Part of the reclaimable slab consists of items that are in use,
4365 * and cannot be freed. Cap this estimate at the low watermark.
4367 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4368 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4374 EXPORT_SYMBOL_GPL(si_mem_available);
4376 void si_meminfo(struct sysinfo *val)
4378 val->totalram = totalram_pages;
4379 val->sharedram = global_node_page_state(NR_SHMEM);
4380 val->freeram = global_page_state(NR_FREE_PAGES);
4381 val->bufferram = nr_blockdev_pages();
4382 val->totalhigh = totalhigh_pages;
4383 val->freehigh = nr_free_highpages();
4384 val->mem_unit = PAGE_SIZE;
4387 EXPORT_SYMBOL(si_meminfo);
4390 void si_meminfo_node(struct sysinfo *val, int nid)
4392 int zone_type; /* needs to be signed */
4393 unsigned long managed_pages = 0;
4394 unsigned long managed_highpages = 0;
4395 unsigned long free_highpages = 0;
4396 pg_data_t *pgdat = NODE_DATA(nid);
4398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4399 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4400 val->totalram = managed_pages;
4401 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4402 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4403 #ifdef CONFIG_HIGHMEM
4404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4405 struct zone *zone = &pgdat->node_zones[zone_type];
4407 if (is_highmem(zone)) {
4408 managed_highpages += zone->managed_pages;
4409 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4412 val->totalhigh = managed_highpages;
4413 val->freehigh = free_highpages;
4415 val->totalhigh = managed_highpages;
4416 val->freehigh = free_highpages;
4418 val->mem_unit = PAGE_SIZE;
4423 * Determine whether the node should be displayed or not, depending on whether
4424 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4426 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4428 if (!(flags & SHOW_MEM_FILTER_NODES))
4432 * no node mask - aka implicit memory numa policy. Do not bother with
4433 * the synchronization - read_mems_allowed_begin - because we do not
4434 * have to be precise here.
4437 nodemask = &cpuset_current_mems_allowed;
4439 return !node_isset(nid, *nodemask);
4442 #define K(x) ((x) << (PAGE_SHIFT-10))
4444 static void show_migration_types(unsigned char type)
4446 static const char types[MIGRATE_TYPES] = {
4447 [MIGRATE_UNMOVABLE] = 'U',
4448 [MIGRATE_MOVABLE] = 'M',
4449 [MIGRATE_RECLAIMABLE] = 'E',
4450 [MIGRATE_HIGHATOMIC] = 'H',
4452 [MIGRATE_CMA] = 'C',
4454 #ifdef CONFIG_MEMORY_ISOLATION
4455 [MIGRATE_ISOLATE] = 'I',
4458 char tmp[MIGRATE_TYPES + 1];
4462 for (i = 0; i < MIGRATE_TYPES; i++) {
4463 if (type & (1 << i))
4468 printk(KERN_CONT "(%s) ", tmp);
4472 * Show free area list (used inside shift_scroll-lock stuff)
4473 * We also calculate the percentage fragmentation. We do this by counting the
4474 * memory on each free list with the exception of the first item on the list.
4477 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4480 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4482 unsigned long free_pcp = 0;
4487 for_each_populated_zone(zone) {
4488 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4491 for_each_online_cpu(cpu)
4492 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4495 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4496 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4497 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4498 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4499 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4500 " free:%lu free_pcp:%lu free_cma:%lu\n",
4501 global_node_page_state(NR_ACTIVE_ANON),
4502 global_node_page_state(NR_INACTIVE_ANON),
4503 global_node_page_state(NR_ISOLATED_ANON),
4504 global_node_page_state(NR_ACTIVE_FILE),
4505 global_node_page_state(NR_INACTIVE_FILE),
4506 global_node_page_state(NR_ISOLATED_FILE),
4507 global_node_page_state(NR_UNEVICTABLE),
4508 global_node_page_state(NR_FILE_DIRTY),
4509 global_node_page_state(NR_WRITEBACK),
4510 global_node_page_state(NR_UNSTABLE_NFS),
4511 global_page_state(NR_SLAB_RECLAIMABLE),
4512 global_page_state(NR_SLAB_UNRECLAIMABLE),
4513 global_node_page_state(NR_FILE_MAPPED),
4514 global_node_page_state(NR_SHMEM),
4515 global_page_state(NR_PAGETABLE),
4516 global_page_state(NR_BOUNCE),
4517 global_page_state(NR_FREE_PAGES),
4519 global_page_state(NR_FREE_CMA_PAGES));
4521 for_each_online_pgdat(pgdat) {
4522 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4526 " active_anon:%lukB"
4527 " inactive_anon:%lukB"
4528 " active_file:%lukB"
4529 " inactive_file:%lukB"
4530 " unevictable:%lukB"
4531 " isolated(anon):%lukB"
4532 " isolated(file):%lukB"
4537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4539 " shmem_pmdmapped: %lukB"
4542 " writeback_tmp:%lukB"
4544 " all_unreclaimable? %s"
4547 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4548 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4549 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4550 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4551 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4552 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4553 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4554 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4555 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4556 K(node_page_state(pgdat, NR_WRITEBACK)),
4557 K(node_page_state(pgdat, NR_SHMEM)),
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4560 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4562 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4564 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4565 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4566 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4570 for_each_populated_zone(zone) {
4573 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4577 for_each_online_cpu(cpu)
4578 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4587 " active_anon:%lukB"
4588 " inactive_anon:%lukB"
4589 " active_file:%lukB"
4590 " inactive_file:%lukB"
4591 " unevictable:%lukB"
4592 " writepending:%lukB"
4596 " slab_reclaimable:%lukB"
4597 " slab_unreclaimable:%lukB"
4598 " kernel_stack:%lukB"
4606 K(zone_page_state(zone, NR_FREE_PAGES)),
4607 K(min_wmark_pages(zone)),
4608 K(low_wmark_pages(zone)),
4609 K(high_wmark_pages(zone)),
4610 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4611 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4612 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4613 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4614 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4615 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4616 K(zone->present_pages),
4617 K(zone->managed_pages),
4618 K(zone_page_state(zone, NR_MLOCK)),
4619 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4620 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4621 zone_page_state(zone, NR_KERNEL_STACK_KB),
4622 K(zone_page_state(zone, NR_PAGETABLE)),
4623 K(zone_page_state(zone, NR_BOUNCE)),
4625 K(this_cpu_read(zone->pageset->pcp.count)),
4626 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4627 printk("lowmem_reserve[]:");
4628 for (i = 0; i < MAX_NR_ZONES; i++)
4629 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4630 printk(KERN_CONT "\n");
4633 for_each_populated_zone(zone) {
4635 unsigned long nr[MAX_ORDER], flags, total = 0;
4636 unsigned char types[MAX_ORDER];
4638 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4641 printk(KERN_CONT "%s: ", zone->name);
4643 spin_lock_irqsave(&zone->lock, flags);
4644 for (order = 0; order < MAX_ORDER; order++) {
4645 struct free_area *area = &zone->free_area[order];
4648 nr[order] = area->nr_free;
4649 total += nr[order] << order;
4652 for (type = 0; type < MIGRATE_TYPES; type++) {
4653 if (!list_empty(&area->free_list[type]))
4654 types[order] |= 1 << type;
4657 spin_unlock_irqrestore(&zone->lock, flags);
4658 for (order = 0; order < MAX_ORDER; order++) {
4659 printk(KERN_CONT "%lu*%lukB ",
4660 nr[order], K(1UL) << order);
4662 show_migration_types(types[order]);
4664 printk(KERN_CONT "= %lukB\n", K(total));
4667 hugetlb_show_meminfo();
4669 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4671 show_swap_cache_info();
4674 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4676 zoneref->zone = zone;
4677 zoneref->zone_idx = zone_idx(zone);
4681 * Builds allocation fallback zone lists.
4683 * Add all populated zones of a node to the zonelist.
4685 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4689 enum zone_type zone_type = MAX_NR_ZONES;
4693 zone = pgdat->node_zones + zone_type;
4694 if (managed_zone(zone)) {
4695 zoneref_set_zone(zone,
4696 &zonelist->_zonerefs[nr_zones++]);
4697 check_highest_zone(zone_type);
4699 } while (zone_type);
4707 * 0 = automatic detection of better ordering.
4708 * 1 = order by ([node] distance, -zonetype)
4709 * 2 = order by (-zonetype, [node] distance)
4711 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4712 * the same zonelist. So only NUMA can configure this param.
4714 #define ZONELIST_ORDER_DEFAULT 0
4715 #define ZONELIST_ORDER_NODE 1
4716 #define ZONELIST_ORDER_ZONE 2
4718 /* zonelist order in the kernel.
4719 * set_zonelist_order() will set this to NODE or ZONE.
4721 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4722 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4726 /* The value user specified ....changed by config */
4727 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4728 /* string for sysctl */
4729 #define NUMA_ZONELIST_ORDER_LEN 16
4730 char numa_zonelist_order[16] = "default";
4733 * interface for configure zonelist ordering.
4734 * command line option "numa_zonelist_order"
4735 * = "[dD]efault - default, automatic configuration.
4736 * = "[nN]ode - order by node locality, then by zone within node
4737 * = "[zZ]one - order by zone, then by locality within zone
4740 static int __parse_numa_zonelist_order(char *s)
4742 if (*s == 'd' || *s == 'D') {
4743 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4744 } else if (*s == 'n' || *s == 'N') {
4745 user_zonelist_order = ZONELIST_ORDER_NODE;
4746 } else if (*s == 'z' || *s == 'Z') {
4747 user_zonelist_order = ZONELIST_ORDER_ZONE;
4749 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4755 static __init int setup_numa_zonelist_order(char *s)
4762 ret = __parse_numa_zonelist_order(s);
4764 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4768 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4771 * sysctl handler for numa_zonelist_order
4773 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4774 void __user *buffer, size_t *length,
4777 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4779 static DEFINE_MUTEX(zl_order_mutex);
4781 mutex_lock(&zl_order_mutex);
4783 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4787 strcpy(saved_string, (char *)table->data);
4789 ret = proc_dostring(table, write, buffer, length, ppos);
4793 int oldval = user_zonelist_order;
4795 ret = __parse_numa_zonelist_order((char *)table->data);
4798 * bogus value. restore saved string
4800 strncpy((char *)table->data, saved_string,
4801 NUMA_ZONELIST_ORDER_LEN);
4802 user_zonelist_order = oldval;
4803 } else if (oldval != user_zonelist_order) {
4804 mutex_lock(&zonelists_mutex);
4805 build_all_zonelists(NULL, NULL);
4806 mutex_unlock(&zonelists_mutex);
4810 mutex_unlock(&zl_order_mutex);
4815 #define MAX_NODE_LOAD (nr_online_nodes)
4816 static int node_load[MAX_NUMNODES];
4819 * find_next_best_node - find the next node that should appear in a given node's fallback list
4820 * @node: node whose fallback list we're appending
4821 * @used_node_mask: nodemask_t of already used nodes
4823 * We use a number of factors to determine which is the next node that should
4824 * appear on a given node's fallback list. The node should not have appeared
4825 * already in @node's fallback list, and it should be the next closest node
4826 * according to the distance array (which contains arbitrary distance values
4827 * from each node to each node in the system), and should also prefer nodes
4828 * with no CPUs, since presumably they'll have very little allocation pressure
4829 * on them otherwise.
4830 * It returns -1 if no node is found.
4832 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4835 int min_val = INT_MAX;
4836 int best_node = NUMA_NO_NODE;
4837 const struct cpumask *tmp = cpumask_of_node(0);
4839 /* Use the local node if we haven't already */
4840 if (!node_isset(node, *used_node_mask)) {
4841 node_set(node, *used_node_mask);
4845 for_each_node_state(n, N_MEMORY) {
4847 /* Don't want a node to appear more than once */
4848 if (node_isset(n, *used_node_mask))
4851 /* Use the distance array to find the distance */
4852 val = node_distance(node, n);
4854 /* Penalize nodes under us ("prefer the next node") */
4857 /* Give preference to headless and unused nodes */
4858 tmp = cpumask_of_node(n);
4859 if (!cpumask_empty(tmp))
4860 val += PENALTY_FOR_NODE_WITH_CPUS;
4862 /* Slight preference for less loaded node */
4863 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4864 val += node_load[n];
4866 if (val < min_val) {
4873 node_set(best_node, *used_node_mask);
4880 * Build zonelists ordered by node and zones within node.
4881 * This results in maximum locality--normal zone overflows into local
4882 * DMA zone, if any--but risks exhausting DMA zone.
4884 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4887 struct zonelist *zonelist;
4889 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4890 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4892 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4893 zonelist->_zonerefs[j].zone = NULL;
4894 zonelist->_zonerefs[j].zone_idx = 0;
4898 * Build gfp_thisnode zonelists
4900 static void build_thisnode_zonelists(pg_data_t *pgdat)
4903 struct zonelist *zonelist;
4905 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4906 j = build_zonelists_node(pgdat, zonelist, 0);
4907 zonelist->_zonerefs[j].zone = NULL;
4908 zonelist->_zonerefs[j].zone_idx = 0;
4912 * Build zonelists ordered by zone and nodes within zones.
4913 * This results in conserving DMA zone[s] until all Normal memory is
4914 * exhausted, but results in overflowing to remote node while memory
4915 * may still exist in local DMA zone.
4917 static int node_order[MAX_NUMNODES];
4919 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4922 int zone_type; /* needs to be signed */
4924 struct zonelist *zonelist;
4926 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4928 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4929 for (j = 0; j < nr_nodes; j++) {
4930 node = node_order[j];
4931 z = &NODE_DATA(node)->node_zones[zone_type];
4932 if (managed_zone(z)) {
4934 &zonelist->_zonerefs[pos++]);
4935 check_highest_zone(zone_type);
4939 zonelist->_zonerefs[pos].zone = NULL;
4940 zonelist->_zonerefs[pos].zone_idx = 0;
4943 #if defined(CONFIG_64BIT)
4945 * Devices that require DMA32/DMA are relatively rare and do not justify a
4946 * penalty to every machine in case the specialised case applies. Default
4947 * to Node-ordering on 64-bit NUMA machines
4949 static int default_zonelist_order(void)
4951 return ZONELIST_ORDER_NODE;
4955 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4956 * by the kernel. If processes running on node 0 deplete the low memory zone
4957 * then reclaim will occur more frequency increasing stalls and potentially
4958 * be easier to OOM if a large percentage of the zone is under writeback or
4959 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4960 * Hence, default to zone ordering on 32-bit.
4962 static int default_zonelist_order(void)
4964 return ZONELIST_ORDER_ZONE;
4966 #endif /* CONFIG_64BIT */
4968 static void set_zonelist_order(void)
4970 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4971 current_zonelist_order = default_zonelist_order();
4973 current_zonelist_order = user_zonelist_order;
4976 static void build_zonelists(pg_data_t *pgdat)
4979 nodemask_t used_mask;
4980 int local_node, prev_node;
4981 struct zonelist *zonelist;
4982 unsigned int order = current_zonelist_order;
4984 /* initialize zonelists */
4985 for (i = 0; i < MAX_ZONELISTS; i++) {
4986 zonelist = pgdat->node_zonelists + i;
4987 zonelist->_zonerefs[0].zone = NULL;
4988 zonelist->_zonerefs[0].zone_idx = 0;
4991 /* NUMA-aware ordering of nodes */
4992 local_node = pgdat->node_id;
4993 load = nr_online_nodes;
4994 prev_node = local_node;
4995 nodes_clear(used_mask);
4997 memset(node_order, 0, sizeof(node_order));
5000 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5002 * We don't want to pressure a particular node.
5003 * So adding penalty to the first node in same
5004 * distance group to make it round-robin.
5006 if (node_distance(local_node, node) !=
5007 node_distance(local_node, prev_node))
5008 node_load[node] = load;
5012 if (order == ZONELIST_ORDER_NODE)
5013 build_zonelists_in_node_order(pgdat, node);
5015 node_order[i++] = node; /* remember order */
5018 if (order == ZONELIST_ORDER_ZONE) {
5019 /* calculate node order -- i.e., DMA last! */
5020 build_zonelists_in_zone_order(pgdat, i);
5023 build_thisnode_zonelists(pgdat);
5026 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5028 * Return node id of node used for "local" allocations.
5029 * I.e., first node id of first zone in arg node's generic zonelist.
5030 * Used for initializing percpu 'numa_mem', which is used primarily
5031 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5033 int local_memory_node(int node)
5037 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5038 gfp_zone(GFP_KERNEL),
5040 return z->zone->node;
5044 static void setup_min_unmapped_ratio(void);
5045 static void setup_min_slab_ratio(void);
5046 #else /* CONFIG_NUMA */
5048 static void set_zonelist_order(void)
5050 current_zonelist_order = ZONELIST_ORDER_ZONE;
5053 static void build_zonelists(pg_data_t *pgdat)
5055 int node, local_node;
5057 struct zonelist *zonelist;
5059 local_node = pgdat->node_id;
5061 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5062 j = build_zonelists_node(pgdat, zonelist, 0);
5065 * Now we build the zonelist so that it contains the zones
5066 * of all the other nodes.
5067 * We don't want to pressure a particular node, so when
5068 * building the zones for node N, we make sure that the
5069 * zones coming right after the local ones are those from
5070 * node N+1 (modulo N)
5072 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5073 if (!node_online(node))
5075 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5077 for (node = 0; node < local_node; node++) {
5078 if (!node_online(node))
5080 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5083 zonelist->_zonerefs[j].zone = NULL;
5084 zonelist->_zonerefs[j].zone_idx = 0;
5087 #endif /* CONFIG_NUMA */
5090 * Boot pageset table. One per cpu which is going to be used for all
5091 * zones and all nodes. The parameters will be set in such a way
5092 * that an item put on a list will immediately be handed over to
5093 * the buddy list. This is safe since pageset manipulation is done
5094 * with interrupts disabled.
5096 * The boot_pagesets must be kept even after bootup is complete for
5097 * unused processors and/or zones. They do play a role for bootstrapping
5098 * hotplugged processors.
5100 * zoneinfo_show() and maybe other functions do
5101 * not check if the processor is online before following the pageset pointer.
5102 * Other parts of the kernel may not check if the zone is available.
5104 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5105 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5106 static void setup_zone_pageset(struct zone *zone);
5109 * Global mutex to protect against size modification of zonelists
5110 * as well as to serialize pageset setup for the new populated zone.
5112 DEFINE_MUTEX(zonelists_mutex);
5114 /* return values int ....just for stop_machine() */
5115 static int __build_all_zonelists(void *data)
5119 pg_data_t *self = data;
5122 memset(node_load, 0, sizeof(node_load));
5125 if (self && !node_online(self->node_id)) {
5126 build_zonelists(self);
5129 for_each_online_node(nid) {
5130 pg_data_t *pgdat = NODE_DATA(nid);
5132 build_zonelists(pgdat);
5136 * Initialize the boot_pagesets that are going to be used
5137 * for bootstrapping processors. The real pagesets for
5138 * each zone will be allocated later when the per cpu
5139 * allocator is available.
5141 * boot_pagesets are used also for bootstrapping offline
5142 * cpus if the system is already booted because the pagesets
5143 * are needed to initialize allocators on a specific cpu too.
5144 * F.e. the percpu allocator needs the page allocator which
5145 * needs the percpu allocator in order to allocate its pagesets
5146 * (a chicken-egg dilemma).
5148 for_each_possible_cpu(cpu) {
5149 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5153 * We now know the "local memory node" for each node--
5154 * i.e., the node of the first zone in the generic zonelist.
5155 * Set up numa_mem percpu variable for on-line cpus. During
5156 * boot, only the boot cpu should be on-line; we'll init the
5157 * secondary cpus' numa_mem as they come on-line. During
5158 * node/memory hotplug, we'll fixup all on-line cpus.
5160 if (cpu_online(cpu))
5161 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5168 static noinline void __init
5169 build_all_zonelists_init(void)
5171 __build_all_zonelists(NULL);
5172 mminit_verify_zonelist();
5173 cpuset_init_current_mems_allowed();
5177 * Called with zonelists_mutex held always
5178 * unless system_state == SYSTEM_BOOTING.
5180 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5181 * [we're only called with non-NULL zone through __meminit paths] and
5182 * (2) call of __init annotated helper build_all_zonelists_init
5183 * [protected by SYSTEM_BOOTING].
5185 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5187 set_zonelist_order();
5189 if (system_state == SYSTEM_BOOTING) {
5190 build_all_zonelists_init();
5192 #ifdef CONFIG_MEMORY_HOTPLUG
5194 setup_zone_pageset(zone);
5196 /* we have to stop all cpus to guarantee there is no user
5198 stop_machine(__build_all_zonelists, pgdat, NULL);
5199 /* cpuset refresh routine should be here */
5201 vm_total_pages = nr_free_pagecache_pages();
5203 * Disable grouping by mobility if the number of pages in the
5204 * system is too low to allow the mechanism to work. It would be
5205 * more accurate, but expensive to check per-zone. This check is
5206 * made on memory-hotadd so a system can start with mobility
5207 * disabled and enable it later
5209 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5210 page_group_by_mobility_disabled = 1;
5212 page_group_by_mobility_disabled = 0;
5214 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5216 zonelist_order_name[current_zonelist_order],
5217 page_group_by_mobility_disabled ? "off" : "on",
5220 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5225 * Initially all pages are reserved - free ones are freed
5226 * up by free_all_bootmem() once the early boot process is
5227 * done. Non-atomic initialization, single-pass.
5229 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5230 unsigned long start_pfn, enum memmap_context context)
5232 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5233 unsigned long end_pfn = start_pfn + size;
5234 pg_data_t *pgdat = NODE_DATA(nid);
5236 unsigned long nr_initialised = 0;
5237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5238 struct memblock_region *r = NULL, *tmp;
5241 if (highest_memmap_pfn < end_pfn - 1)
5242 highest_memmap_pfn = end_pfn - 1;
5245 * Honor reservation requested by the driver for this ZONE_DEVICE
5248 if (altmap && start_pfn == altmap->base_pfn)
5249 start_pfn += altmap->reserve;
5251 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5253 * There can be holes in boot-time mem_map[]s handed to this
5254 * function. They do not exist on hotplugged memory.
5256 if (context != MEMMAP_EARLY)
5259 if (!early_pfn_valid(pfn)) {
5260 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5262 * Skip to the pfn preceding the next valid one (or
5263 * end_pfn), such that we hit a valid pfn (or end_pfn)
5264 * on our next iteration of the loop.
5266 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5270 if (!early_pfn_in_nid(pfn, nid))
5272 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5275 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5277 * Check given memblock attribute by firmware which can affect
5278 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5279 * mirrored, it's an overlapped memmap init. skip it.
5281 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5282 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5283 for_each_memblock(memory, tmp)
5284 if (pfn < memblock_region_memory_end_pfn(tmp))
5288 if (pfn >= memblock_region_memory_base_pfn(r) &&
5289 memblock_is_mirror(r)) {
5290 /* already initialized as NORMAL */
5291 pfn = memblock_region_memory_end_pfn(r);
5299 * Mark the block movable so that blocks are reserved for
5300 * movable at startup. This will force kernel allocations
5301 * to reserve their blocks rather than leaking throughout
5302 * the address space during boot when many long-lived
5303 * kernel allocations are made.
5305 * bitmap is created for zone's valid pfn range. but memmap
5306 * can be created for invalid pages (for alignment)
5307 * check here not to call set_pageblock_migratetype() against
5310 if (!(pfn & (pageblock_nr_pages - 1))) {
5311 struct page *page = pfn_to_page(pfn);
5313 __init_single_page(page, pfn, zone, nid);
5314 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5316 __init_single_pfn(pfn, zone, nid);
5321 static void __meminit zone_init_free_lists(struct zone *zone)
5323 unsigned int order, t;
5324 for_each_migratetype_order(order, t) {
5325 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5326 zone->free_area[order].nr_free = 0;
5330 #ifndef __HAVE_ARCH_MEMMAP_INIT
5331 #define memmap_init(size, nid, zone, start_pfn) \
5332 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5335 static int zone_batchsize(struct zone *zone)
5341 * The per-cpu-pages pools are set to around 1000th of the
5342 * size of the zone. But no more than 1/2 of a meg.
5344 * OK, so we don't know how big the cache is. So guess.
5346 batch = zone->managed_pages / 1024;
5347 if (batch * PAGE_SIZE > 512 * 1024)
5348 batch = (512 * 1024) / PAGE_SIZE;
5349 batch /= 4; /* We effectively *= 4 below */
5354 * Clamp the batch to a 2^n - 1 value. Having a power
5355 * of 2 value was found to be more likely to have
5356 * suboptimal cache aliasing properties in some cases.
5358 * For example if 2 tasks are alternately allocating
5359 * batches of pages, one task can end up with a lot
5360 * of pages of one half of the possible page colors
5361 * and the other with pages of the other colors.
5363 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5368 /* The deferral and batching of frees should be suppressed under NOMMU
5371 * The problem is that NOMMU needs to be able to allocate large chunks
5372 * of contiguous memory as there's no hardware page translation to
5373 * assemble apparent contiguous memory from discontiguous pages.
5375 * Queueing large contiguous runs of pages for batching, however,
5376 * causes the pages to actually be freed in smaller chunks. As there
5377 * can be a significant delay between the individual batches being
5378 * recycled, this leads to the once large chunks of space being
5379 * fragmented and becoming unavailable for high-order allocations.
5386 * pcp->high and pcp->batch values are related and dependent on one another:
5387 * ->batch must never be higher then ->high.
5388 * The following function updates them in a safe manner without read side
5391 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5392 * those fields changing asynchronously (acording the the above rule).
5394 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5395 * outside of boot time (or some other assurance that no concurrent updaters
5398 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5399 unsigned long batch)
5401 /* start with a fail safe value for batch */
5405 /* Update high, then batch, in order */
5412 /* a companion to pageset_set_high() */
5413 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5415 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5418 static void pageset_init(struct per_cpu_pageset *p)
5420 struct per_cpu_pages *pcp;
5423 memset(p, 0, sizeof(*p));
5427 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5428 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5431 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5434 pageset_set_batch(p, batch);
5438 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5439 * to the value high for the pageset p.
5441 static void pageset_set_high(struct per_cpu_pageset *p,
5444 unsigned long batch = max(1UL, high / 4);
5445 if ((high / 4) > (PAGE_SHIFT * 8))
5446 batch = PAGE_SHIFT * 8;
5448 pageset_update(&p->pcp, high, batch);
5451 static void pageset_set_high_and_batch(struct zone *zone,
5452 struct per_cpu_pageset *pcp)
5454 if (percpu_pagelist_fraction)
5455 pageset_set_high(pcp,
5456 (zone->managed_pages /
5457 percpu_pagelist_fraction));
5459 pageset_set_batch(pcp, zone_batchsize(zone));
5462 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5464 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5467 pageset_set_high_and_batch(zone, pcp);
5470 static void __meminit setup_zone_pageset(struct zone *zone)
5473 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5474 for_each_possible_cpu(cpu)
5475 zone_pageset_init(zone, cpu);
5479 * Allocate per cpu pagesets and initialize them.
5480 * Before this call only boot pagesets were available.
5482 void __init setup_per_cpu_pageset(void)
5484 struct pglist_data *pgdat;
5487 for_each_populated_zone(zone)
5488 setup_zone_pageset(zone);
5490 for_each_online_pgdat(pgdat)
5491 pgdat->per_cpu_nodestats =
5492 alloc_percpu(struct per_cpu_nodestat);
5495 static __meminit void zone_pcp_init(struct zone *zone)
5498 * per cpu subsystem is not up at this point. The following code
5499 * relies on the ability of the linker to provide the
5500 * offset of a (static) per cpu variable into the per cpu area.
5502 zone->pageset = &boot_pageset;
5504 if (populated_zone(zone))
5505 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5506 zone->name, zone->present_pages,
5507 zone_batchsize(zone));
5510 int __meminit init_currently_empty_zone(struct zone *zone,
5511 unsigned long zone_start_pfn,
5514 struct pglist_data *pgdat = zone->zone_pgdat;
5516 pgdat->nr_zones = zone_idx(zone) + 1;
5518 zone->zone_start_pfn = zone_start_pfn;
5520 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5521 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5523 (unsigned long)zone_idx(zone),
5524 zone_start_pfn, (zone_start_pfn + size));
5526 zone_init_free_lists(zone);
5527 zone->initialized = 1;
5532 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5536 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5538 int __meminit __early_pfn_to_nid(unsigned long pfn,
5539 struct mminit_pfnnid_cache *state)
5541 unsigned long start_pfn, end_pfn;
5544 if (state->last_start <= pfn && pfn < state->last_end)
5545 return state->last_nid;
5547 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5549 state->last_start = start_pfn;
5550 state->last_end = end_pfn;
5551 state->last_nid = nid;
5556 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5559 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5560 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5561 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5563 * If an architecture guarantees that all ranges registered contain no holes
5564 * and may be freed, this this function may be used instead of calling
5565 * memblock_free_early_nid() manually.
5567 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5569 unsigned long start_pfn, end_pfn;
5572 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5573 start_pfn = min(start_pfn, max_low_pfn);
5574 end_pfn = min(end_pfn, max_low_pfn);
5576 if (start_pfn < end_pfn)
5577 memblock_free_early_nid(PFN_PHYS(start_pfn),
5578 (end_pfn - start_pfn) << PAGE_SHIFT,
5584 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5585 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5587 * If an architecture guarantees that all ranges registered contain no holes and may
5588 * be freed, this function may be used instead of calling memory_present() manually.
5590 void __init sparse_memory_present_with_active_regions(int nid)
5592 unsigned long start_pfn, end_pfn;
5595 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5596 memory_present(this_nid, start_pfn, end_pfn);
5600 * get_pfn_range_for_nid - Return the start and end page frames for a node
5601 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5602 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5603 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5605 * It returns the start and end page frame of a node based on information
5606 * provided by memblock_set_node(). If called for a node
5607 * with no available memory, a warning is printed and the start and end
5610 void __meminit get_pfn_range_for_nid(unsigned int nid,
5611 unsigned long *start_pfn, unsigned long *end_pfn)
5613 unsigned long this_start_pfn, this_end_pfn;
5619 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5620 *start_pfn = min(*start_pfn, this_start_pfn);
5621 *end_pfn = max(*end_pfn, this_end_pfn);
5624 if (*start_pfn == -1UL)
5629 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5630 * assumption is made that zones within a node are ordered in monotonic
5631 * increasing memory addresses so that the "highest" populated zone is used
5633 static void __init find_usable_zone_for_movable(void)
5636 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5637 if (zone_index == ZONE_MOVABLE)
5640 if (arch_zone_highest_possible_pfn[zone_index] >
5641 arch_zone_lowest_possible_pfn[zone_index])
5645 VM_BUG_ON(zone_index == -1);
5646 movable_zone = zone_index;
5650 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5651 * because it is sized independent of architecture. Unlike the other zones,
5652 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5653 * in each node depending on the size of each node and how evenly kernelcore
5654 * is distributed. This helper function adjusts the zone ranges
5655 * provided by the architecture for a given node by using the end of the
5656 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5657 * zones within a node are in order of monotonic increases memory addresses
5659 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5660 unsigned long zone_type,
5661 unsigned long node_start_pfn,
5662 unsigned long node_end_pfn,
5663 unsigned long *zone_start_pfn,
5664 unsigned long *zone_end_pfn)
5666 /* Only adjust if ZONE_MOVABLE is on this node */
5667 if (zone_movable_pfn[nid]) {
5668 /* Size ZONE_MOVABLE */
5669 if (zone_type == ZONE_MOVABLE) {
5670 *zone_start_pfn = zone_movable_pfn[nid];
5671 *zone_end_pfn = min(node_end_pfn,
5672 arch_zone_highest_possible_pfn[movable_zone]);
5674 /* Adjust for ZONE_MOVABLE starting within this range */
5675 } else if (!mirrored_kernelcore &&
5676 *zone_start_pfn < zone_movable_pfn[nid] &&
5677 *zone_end_pfn > zone_movable_pfn[nid]) {
5678 *zone_end_pfn = zone_movable_pfn[nid];
5680 /* Check if this whole range is within ZONE_MOVABLE */
5681 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5682 *zone_start_pfn = *zone_end_pfn;
5687 * Return the number of pages a zone spans in a node, including holes
5688 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5690 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5691 unsigned long zone_type,
5692 unsigned long node_start_pfn,
5693 unsigned long node_end_pfn,
5694 unsigned long *zone_start_pfn,
5695 unsigned long *zone_end_pfn,
5696 unsigned long *ignored)
5698 /* When hotadd a new node from cpu_up(), the node should be empty */
5699 if (!node_start_pfn && !node_end_pfn)
5702 /* Get the start and end of the zone */
5703 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5704 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5705 adjust_zone_range_for_zone_movable(nid, zone_type,
5706 node_start_pfn, node_end_pfn,
5707 zone_start_pfn, zone_end_pfn);
5709 /* Check that this node has pages within the zone's required range */
5710 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5713 /* Move the zone boundaries inside the node if necessary */
5714 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5715 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5717 /* Return the spanned pages */
5718 return *zone_end_pfn - *zone_start_pfn;
5722 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5723 * then all holes in the requested range will be accounted for.
5725 unsigned long __meminit __absent_pages_in_range(int nid,
5726 unsigned long range_start_pfn,
5727 unsigned long range_end_pfn)
5729 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5730 unsigned long start_pfn, end_pfn;
5733 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5734 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5735 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5736 nr_absent -= end_pfn - start_pfn;
5742 * absent_pages_in_range - Return number of page frames in holes within a range
5743 * @start_pfn: The start PFN to start searching for holes
5744 * @end_pfn: The end PFN to stop searching for holes
5746 * It returns the number of pages frames in memory holes within a range.
5748 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5749 unsigned long end_pfn)
5751 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5754 /* Return the number of page frames in holes in a zone on a node */
5755 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5756 unsigned long zone_type,
5757 unsigned long node_start_pfn,
5758 unsigned long node_end_pfn,
5759 unsigned long *ignored)
5761 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5762 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5763 unsigned long zone_start_pfn, zone_end_pfn;
5764 unsigned long nr_absent;
5766 /* When hotadd a new node from cpu_up(), the node should be empty */
5767 if (!node_start_pfn && !node_end_pfn)
5770 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5771 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5773 adjust_zone_range_for_zone_movable(nid, zone_type,
5774 node_start_pfn, node_end_pfn,
5775 &zone_start_pfn, &zone_end_pfn);
5776 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5779 * ZONE_MOVABLE handling.
5780 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5783 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5784 unsigned long start_pfn, end_pfn;
5785 struct memblock_region *r;
5787 for_each_memblock(memory, r) {
5788 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5789 zone_start_pfn, zone_end_pfn);
5790 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5791 zone_start_pfn, zone_end_pfn);
5793 if (zone_type == ZONE_MOVABLE &&
5794 memblock_is_mirror(r))
5795 nr_absent += end_pfn - start_pfn;
5797 if (zone_type == ZONE_NORMAL &&
5798 !memblock_is_mirror(r))
5799 nr_absent += end_pfn - start_pfn;
5806 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5807 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5808 unsigned long zone_type,
5809 unsigned long node_start_pfn,
5810 unsigned long node_end_pfn,
5811 unsigned long *zone_start_pfn,
5812 unsigned long *zone_end_pfn,
5813 unsigned long *zones_size)
5817 *zone_start_pfn = node_start_pfn;
5818 for (zone = 0; zone < zone_type; zone++)
5819 *zone_start_pfn += zones_size[zone];
5821 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5823 return zones_size[zone_type];
5826 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5827 unsigned long zone_type,
5828 unsigned long node_start_pfn,
5829 unsigned long node_end_pfn,
5830 unsigned long *zholes_size)
5835 return zholes_size[zone_type];
5838 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5840 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5841 unsigned long node_start_pfn,
5842 unsigned long node_end_pfn,
5843 unsigned long *zones_size,
5844 unsigned long *zholes_size)
5846 unsigned long realtotalpages = 0, totalpages = 0;
5849 for (i = 0; i < MAX_NR_ZONES; i++) {
5850 struct zone *zone = pgdat->node_zones + i;
5851 unsigned long zone_start_pfn, zone_end_pfn;
5852 unsigned long size, real_size;
5854 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5860 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5861 node_start_pfn, node_end_pfn,
5864 zone->zone_start_pfn = zone_start_pfn;
5866 zone->zone_start_pfn = 0;
5867 zone->spanned_pages = size;
5868 zone->present_pages = real_size;
5871 realtotalpages += real_size;
5874 pgdat->node_spanned_pages = totalpages;
5875 pgdat->node_present_pages = realtotalpages;
5876 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5880 #ifndef CONFIG_SPARSEMEM
5882 * Calculate the size of the zone->blockflags rounded to an unsigned long
5883 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5884 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5885 * round what is now in bits to nearest long in bits, then return it in
5888 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5890 unsigned long usemapsize;
5892 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5893 usemapsize = roundup(zonesize, pageblock_nr_pages);
5894 usemapsize = usemapsize >> pageblock_order;
5895 usemapsize *= NR_PAGEBLOCK_BITS;
5896 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5898 return usemapsize / 8;
5901 static void __init setup_usemap(struct pglist_data *pgdat,
5903 unsigned long zone_start_pfn,
5904 unsigned long zonesize)
5906 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5907 zone->pageblock_flags = NULL;
5909 zone->pageblock_flags =
5910 memblock_virt_alloc_node_nopanic(usemapsize,
5914 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5915 unsigned long zone_start_pfn, unsigned long zonesize) {}
5916 #endif /* CONFIG_SPARSEMEM */
5918 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5920 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5921 void __paginginit set_pageblock_order(void)
5925 /* Check that pageblock_nr_pages has not already been setup */
5926 if (pageblock_order)
5929 if (HPAGE_SHIFT > PAGE_SHIFT)
5930 order = HUGETLB_PAGE_ORDER;
5932 order = MAX_ORDER - 1;
5935 * Assume the largest contiguous order of interest is a huge page.
5936 * This value may be variable depending on boot parameters on IA64 and
5939 pageblock_order = order;
5941 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5944 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5945 * is unused as pageblock_order is set at compile-time. See
5946 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5949 void __paginginit set_pageblock_order(void)
5953 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5955 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5956 unsigned long present_pages)
5958 unsigned long pages = spanned_pages;
5961 * Provide a more accurate estimation if there are holes within
5962 * the zone and SPARSEMEM is in use. If there are holes within the
5963 * zone, each populated memory region may cost us one or two extra
5964 * memmap pages due to alignment because memmap pages for each
5965 * populated regions may not be naturally aligned on page boundary.
5966 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5968 if (spanned_pages > present_pages + (present_pages >> 4) &&
5969 IS_ENABLED(CONFIG_SPARSEMEM))
5970 pages = present_pages;
5972 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5976 * Set up the zone data structures:
5977 * - mark all pages reserved
5978 * - mark all memory queues empty
5979 * - clear the memory bitmaps
5981 * NOTE: pgdat should get zeroed by caller.
5983 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5986 int nid = pgdat->node_id;
5989 pgdat_resize_init(pgdat);
5990 #ifdef CONFIG_NUMA_BALANCING
5991 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5992 pgdat->numabalancing_migrate_nr_pages = 0;
5993 pgdat->numabalancing_migrate_next_window = jiffies;
5995 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5996 spin_lock_init(&pgdat->split_queue_lock);
5997 INIT_LIST_HEAD(&pgdat->split_queue);
5998 pgdat->split_queue_len = 0;
6000 init_waitqueue_head(&pgdat->kswapd_wait);
6001 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6002 #ifdef CONFIG_COMPACTION
6003 init_waitqueue_head(&pgdat->kcompactd_wait);
6005 pgdat_page_ext_init(pgdat);
6006 spin_lock_init(&pgdat->lru_lock);
6007 lruvec_init(node_lruvec(pgdat));
6009 for (j = 0; j < MAX_NR_ZONES; j++) {
6010 struct zone *zone = pgdat->node_zones + j;
6011 unsigned long size, realsize, freesize, memmap_pages;
6012 unsigned long zone_start_pfn = zone->zone_start_pfn;
6014 size = zone->spanned_pages;
6015 realsize = freesize = zone->present_pages;
6018 * Adjust freesize so that it accounts for how much memory
6019 * is used by this zone for memmap. This affects the watermark
6020 * and per-cpu initialisations
6022 memmap_pages = calc_memmap_size(size, realsize);
6023 if (!is_highmem_idx(j)) {
6024 if (freesize >= memmap_pages) {
6025 freesize -= memmap_pages;
6028 " %s zone: %lu pages used for memmap\n",
6029 zone_names[j], memmap_pages);
6031 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6032 zone_names[j], memmap_pages, freesize);
6035 /* Account for reserved pages */
6036 if (j == 0 && freesize > dma_reserve) {
6037 freesize -= dma_reserve;
6038 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6039 zone_names[0], dma_reserve);
6042 if (!is_highmem_idx(j))
6043 nr_kernel_pages += freesize;
6044 /* Charge for highmem memmap if there are enough kernel pages */
6045 else if (nr_kernel_pages > memmap_pages * 2)
6046 nr_kernel_pages -= memmap_pages;
6047 nr_all_pages += freesize;
6050 * Set an approximate value for lowmem here, it will be adjusted
6051 * when the bootmem allocator frees pages into the buddy system.
6052 * And all highmem pages will be managed by the buddy system.
6054 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6058 zone->name = zone_names[j];
6059 zone->zone_pgdat = pgdat;
6060 spin_lock_init(&zone->lock);
6061 zone_seqlock_init(zone);
6062 zone_pcp_init(zone);
6067 set_pageblock_order();
6068 setup_usemap(pgdat, zone, zone_start_pfn, size);
6069 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6071 memmap_init(size, nid, j, zone_start_pfn);
6075 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6077 unsigned long __maybe_unused start = 0;
6078 unsigned long __maybe_unused offset = 0;
6080 /* Skip empty nodes */
6081 if (!pgdat->node_spanned_pages)
6084 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6085 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6086 offset = pgdat->node_start_pfn - start;
6087 /* ia64 gets its own node_mem_map, before this, without bootmem */
6088 if (!pgdat->node_mem_map) {
6089 unsigned long size, end;
6093 * The zone's endpoints aren't required to be MAX_ORDER
6094 * aligned but the node_mem_map endpoints must be in order
6095 * for the buddy allocator to function correctly.
6097 end = pgdat_end_pfn(pgdat);
6098 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6099 size = (end - start) * sizeof(struct page);
6100 map = alloc_remap(pgdat->node_id, size);
6102 map = memblock_virt_alloc_node_nopanic(size,
6104 pgdat->node_mem_map = map + offset;
6106 #ifndef CONFIG_NEED_MULTIPLE_NODES
6108 * With no DISCONTIG, the global mem_map is just set as node 0's
6110 if (pgdat == NODE_DATA(0)) {
6111 mem_map = NODE_DATA(0)->node_mem_map;
6112 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6113 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6115 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6118 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6121 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6122 unsigned long node_start_pfn, unsigned long *zholes_size)
6124 pg_data_t *pgdat = NODE_DATA(nid);
6125 unsigned long start_pfn = 0;
6126 unsigned long end_pfn = 0;
6128 /* pg_data_t should be reset to zero when it's allocated */
6129 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6131 reset_deferred_meminit(pgdat);
6132 pgdat->node_id = nid;
6133 pgdat->node_start_pfn = node_start_pfn;
6134 pgdat->per_cpu_nodestats = NULL;
6135 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6136 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6137 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6138 (u64)start_pfn << PAGE_SHIFT,
6139 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6141 start_pfn = node_start_pfn;
6143 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6144 zones_size, zholes_size);
6146 alloc_node_mem_map(pgdat);
6147 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6148 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6149 nid, (unsigned long)pgdat,
6150 (unsigned long)pgdat->node_mem_map);
6153 free_area_init_core(pgdat);
6156 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6158 #if MAX_NUMNODES > 1
6160 * Figure out the number of possible node ids.
6162 void __init setup_nr_node_ids(void)
6164 unsigned int highest;
6166 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6167 nr_node_ids = highest + 1;
6172 * node_map_pfn_alignment - determine the maximum internode alignment
6174 * This function should be called after node map is populated and sorted.
6175 * It calculates the maximum power of two alignment which can distinguish
6178 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6179 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6180 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6181 * shifted, 1GiB is enough and this function will indicate so.
6183 * This is used to test whether pfn -> nid mapping of the chosen memory
6184 * model has fine enough granularity to avoid incorrect mapping for the
6185 * populated node map.
6187 * Returns the determined alignment in pfn's. 0 if there is no alignment
6188 * requirement (single node).
6190 unsigned long __init node_map_pfn_alignment(void)
6192 unsigned long accl_mask = 0, last_end = 0;
6193 unsigned long start, end, mask;
6197 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6198 if (!start || last_nid < 0 || last_nid == nid) {
6205 * Start with a mask granular enough to pin-point to the
6206 * start pfn and tick off bits one-by-one until it becomes
6207 * too coarse to separate the current node from the last.
6209 mask = ~((1 << __ffs(start)) - 1);
6210 while (mask && last_end <= (start & (mask << 1)))
6213 /* accumulate all internode masks */
6217 /* convert mask to number of pages */
6218 return ~accl_mask + 1;
6221 /* Find the lowest pfn for a node */
6222 static unsigned long __init find_min_pfn_for_node(int nid)
6224 unsigned long min_pfn = ULONG_MAX;
6225 unsigned long start_pfn;
6228 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6229 min_pfn = min(min_pfn, start_pfn);
6231 if (min_pfn == ULONG_MAX) {
6232 pr_warn("Could not find start_pfn for node %d\n", nid);
6240 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6242 * It returns the minimum PFN based on information provided via
6243 * memblock_set_node().
6245 unsigned long __init find_min_pfn_with_active_regions(void)
6247 return find_min_pfn_for_node(MAX_NUMNODES);
6251 * early_calculate_totalpages()
6252 * Sum pages in active regions for movable zone.
6253 * Populate N_MEMORY for calculating usable_nodes.
6255 static unsigned long __init early_calculate_totalpages(void)
6257 unsigned long totalpages = 0;
6258 unsigned long start_pfn, end_pfn;
6261 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6262 unsigned long pages = end_pfn - start_pfn;
6264 totalpages += pages;
6266 node_set_state(nid, N_MEMORY);
6272 * Find the PFN the Movable zone begins in each node. Kernel memory
6273 * is spread evenly between nodes as long as the nodes have enough
6274 * memory. When they don't, some nodes will have more kernelcore than
6277 static void __init find_zone_movable_pfns_for_nodes(void)
6280 unsigned long usable_startpfn;
6281 unsigned long kernelcore_node, kernelcore_remaining;
6282 /* save the state before borrow the nodemask */
6283 nodemask_t saved_node_state = node_states[N_MEMORY];
6284 unsigned long totalpages = early_calculate_totalpages();
6285 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6286 struct memblock_region *r;
6288 /* Need to find movable_zone earlier when movable_node is specified. */
6289 find_usable_zone_for_movable();
6292 * If movable_node is specified, ignore kernelcore and movablecore
6295 if (movable_node_is_enabled()) {
6296 for_each_memblock(memory, r) {
6297 if (!memblock_is_hotpluggable(r))
6302 usable_startpfn = PFN_DOWN(r->base);
6303 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6304 min(usable_startpfn, zone_movable_pfn[nid]) :
6312 * If kernelcore=mirror is specified, ignore movablecore option
6314 if (mirrored_kernelcore) {
6315 bool mem_below_4gb_not_mirrored = false;
6317 for_each_memblock(memory, r) {
6318 if (memblock_is_mirror(r))
6323 usable_startpfn = memblock_region_memory_base_pfn(r);
6325 if (usable_startpfn < 0x100000) {
6326 mem_below_4gb_not_mirrored = true;
6330 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6331 min(usable_startpfn, zone_movable_pfn[nid]) :
6335 if (mem_below_4gb_not_mirrored)
6336 pr_warn("This configuration results in unmirrored kernel memory.");
6342 * If movablecore=nn[KMG] was specified, calculate what size of
6343 * kernelcore that corresponds so that memory usable for
6344 * any allocation type is evenly spread. If both kernelcore
6345 * and movablecore are specified, then the value of kernelcore
6346 * will be used for required_kernelcore if it's greater than
6347 * what movablecore would have allowed.
6349 if (required_movablecore) {
6350 unsigned long corepages;
6353 * Round-up so that ZONE_MOVABLE is at least as large as what
6354 * was requested by the user
6356 required_movablecore =
6357 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6358 required_movablecore = min(totalpages, required_movablecore);
6359 corepages = totalpages - required_movablecore;
6361 required_kernelcore = max(required_kernelcore, corepages);
6365 * If kernelcore was not specified or kernelcore size is larger
6366 * than totalpages, there is no ZONE_MOVABLE.
6368 if (!required_kernelcore || required_kernelcore >= totalpages)
6371 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6372 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6375 /* Spread kernelcore memory as evenly as possible throughout nodes */
6376 kernelcore_node = required_kernelcore / usable_nodes;
6377 for_each_node_state(nid, N_MEMORY) {
6378 unsigned long start_pfn, end_pfn;
6381 * Recalculate kernelcore_node if the division per node
6382 * now exceeds what is necessary to satisfy the requested
6383 * amount of memory for the kernel
6385 if (required_kernelcore < kernelcore_node)
6386 kernelcore_node = required_kernelcore / usable_nodes;
6389 * As the map is walked, we track how much memory is usable
6390 * by the kernel using kernelcore_remaining. When it is
6391 * 0, the rest of the node is usable by ZONE_MOVABLE
6393 kernelcore_remaining = kernelcore_node;
6395 /* Go through each range of PFNs within this node */
6396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6397 unsigned long size_pages;
6399 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6400 if (start_pfn >= end_pfn)
6403 /* Account for what is only usable for kernelcore */
6404 if (start_pfn < usable_startpfn) {
6405 unsigned long kernel_pages;
6406 kernel_pages = min(end_pfn, usable_startpfn)
6409 kernelcore_remaining -= min(kernel_pages,
6410 kernelcore_remaining);
6411 required_kernelcore -= min(kernel_pages,
6412 required_kernelcore);
6414 /* Continue if range is now fully accounted */
6415 if (end_pfn <= usable_startpfn) {
6418 * Push zone_movable_pfn to the end so
6419 * that if we have to rebalance
6420 * kernelcore across nodes, we will
6421 * not double account here
6423 zone_movable_pfn[nid] = end_pfn;
6426 start_pfn = usable_startpfn;
6430 * The usable PFN range for ZONE_MOVABLE is from
6431 * start_pfn->end_pfn. Calculate size_pages as the
6432 * number of pages used as kernelcore
6434 size_pages = end_pfn - start_pfn;
6435 if (size_pages > kernelcore_remaining)
6436 size_pages = kernelcore_remaining;
6437 zone_movable_pfn[nid] = start_pfn + size_pages;
6440 * Some kernelcore has been met, update counts and
6441 * break if the kernelcore for this node has been
6444 required_kernelcore -= min(required_kernelcore,
6446 kernelcore_remaining -= size_pages;
6447 if (!kernelcore_remaining)
6453 * If there is still required_kernelcore, we do another pass with one
6454 * less node in the count. This will push zone_movable_pfn[nid] further
6455 * along on the nodes that still have memory until kernelcore is
6459 if (usable_nodes && required_kernelcore > usable_nodes)
6463 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6464 for (nid = 0; nid < MAX_NUMNODES; nid++)
6465 zone_movable_pfn[nid] =
6466 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6469 /* restore the node_state */
6470 node_states[N_MEMORY] = saved_node_state;
6473 /* Any regular or high memory on that node ? */
6474 static void check_for_memory(pg_data_t *pgdat, int nid)
6476 enum zone_type zone_type;
6478 if (N_MEMORY == N_NORMAL_MEMORY)
6481 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6482 struct zone *zone = &pgdat->node_zones[zone_type];
6483 if (populated_zone(zone)) {
6484 node_set_state(nid, N_HIGH_MEMORY);
6485 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6486 zone_type <= ZONE_NORMAL)
6487 node_set_state(nid, N_NORMAL_MEMORY);
6494 * free_area_init_nodes - Initialise all pg_data_t and zone data
6495 * @max_zone_pfn: an array of max PFNs for each zone
6497 * This will call free_area_init_node() for each active node in the system.
6498 * Using the page ranges provided by memblock_set_node(), the size of each
6499 * zone in each node and their holes is calculated. If the maximum PFN
6500 * between two adjacent zones match, it is assumed that the zone is empty.
6501 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6502 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6503 * starts where the previous one ended. For example, ZONE_DMA32 starts
6504 * at arch_max_dma_pfn.
6506 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6508 unsigned long start_pfn, end_pfn;
6511 /* Record where the zone boundaries are */
6512 memset(arch_zone_lowest_possible_pfn, 0,
6513 sizeof(arch_zone_lowest_possible_pfn));
6514 memset(arch_zone_highest_possible_pfn, 0,
6515 sizeof(arch_zone_highest_possible_pfn));
6517 start_pfn = find_min_pfn_with_active_regions();
6519 for (i = 0; i < MAX_NR_ZONES; i++) {
6520 if (i == ZONE_MOVABLE)
6523 end_pfn = max(max_zone_pfn[i], start_pfn);
6524 arch_zone_lowest_possible_pfn[i] = start_pfn;
6525 arch_zone_highest_possible_pfn[i] = end_pfn;
6527 start_pfn = end_pfn;
6530 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6531 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6532 find_zone_movable_pfns_for_nodes();
6534 /* Print out the zone ranges */
6535 pr_info("Zone ranges:\n");
6536 for (i = 0; i < MAX_NR_ZONES; i++) {
6537 if (i == ZONE_MOVABLE)
6539 pr_info(" %-8s ", zone_names[i]);
6540 if (arch_zone_lowest_possible_pfn[i] ==
6541 arch_zone_highest_possible_pfn[i])
6544 pr_cont("[mem %#018Lx-%#018Lx]\n",
6545 (u64)arch_zone_lowest_possible_pfn[i]
6547 ((u64)arch_zone_highest_possible_pfn[i]
6548 << PAGE_SHIFT) - 1);
6551 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6552 pr_info("Movable zone start for each node\n");
6553 for (i = 0; i < MAX_NUMNODES; i++) {
6554 if (zone_movable_pfn[i])
6555 pr_info(" Node %d: %#018Lx\n", i,
6556 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6559 /* Print out the early node map */
6560 pr_info("Early memory node ranges\n");
6561 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6562 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6563 (u64)start_pfn << PAGE_SHIFT,
6564 ((u64)end_pfn << PAGE_SHIFT) - 1);
6566 /* Initialise every node */
6567 mminit_verify_pageflags_layout();
6568 setup_nr_node_ids();
6569 for_each_online_node(nid) {
6570 pg_data_t *pgdat = NODE_DATA(nid);
6571 free_area_init_node(nid, NULL,
6572 find_min_pfn_for_node(nid), NULL);
6574 /* Any memory on that node */
6575 if (pgdat->node_present_pages)
6576 node_set_state(nid, N_MEMORY);
6577 check_for_memory(pgdat, nid);
6581 static int __init cmdline_parse_core(char *p, unsigned long *core)
6583 unsigned long long coremem;
6587 coremem = memparse(p, &p);
6588 *core = coremem >> PAGE_SHIFT;
6590 /* Paranoid check that UL is enough for the coremem value */
6591 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6597 * kernelcore=size sets the amount of memory for use for allocations that
6598 * cannot be reclaimed or migrated.
6600 static int __init cmdline_parse_kernelcore(char *p)
6602 /* parse kernelcore=mirror */
6603 if (parse_option_str(p, "mirror")) {
6604 mirrored_kernelcore = true;
6608 return cmdline_parse_core(p, &required_kernelcore);
6612 * movablecore=size sets the amount of memory for use for allocations that
6613 * can be reclaimed or migrated.
6615 static int __init cmdline_parse_movablecore(char *p)
6617 return cmdline_parse_core(p, &required_movablecore);
6620 early_param("kernelcore", cmdline_parse_kernelcore);
6621 early_param("movablecore", cmdline_parse_movablecore);
6623 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6625 void adjust_managed_page_count(struct page *page, long count)
6627 spin_lock(&managed_page_count_lock);
6628 page_zone(page)->managed_pages += count;
6629 totalram_pages += count;
6630 #ifdef CONFIG_HIGHMEM
6631 if (PageHighMem(page))
6632 totalhigh_pages += count;
6634 spin_unlock(&managed_page_count_lock);
6636 EXPORT_SYMBOL(adjust_managed_page_count);
6638 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6641 unsigned long pages = 0;
6643 start = (void *)PAGE_ALIGN((unsigned long)start);
6644 end = (void *)((unsigned long)end & PAGE_MASK);
6645 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6646 if ((unsigned int)poison <= 0xFF)
6647 memset(pos, poison, PAGE_SIZE);
6648 free_reserved_page(virt_to_page(pos));
6652 pr_info("Freeing %s memory: %ldK\n",
6653 s, pages << (PAGE_SHIFT - 10));
6657 EXPORT_SYMBOL(free_reserved_area);
6659 #ifdef CONFIG_HIGHMEM
6660 void free_highmem_page(struct page *page)
6662 __free_reserved_page(page);
6664 page_zone(page)->managed_pages++;
6670 void __init mem_init_print_info(const char *str)
6672 unsigned long physpages, codesize, datasize, rosize, bss_size;
6673 unsigned long init_code_size, init_data_size;
6675 physpages = get_num_physpages();
6676 codesize = _etext - _stext;
6677 datasize = _edata - _sdata;
6678 rosize = __end_rodata - __start_rodata;
6679 bss_size = __bss_stop - __bss_start;
6680 init_data_size = __init_end - __init_begin;
6681 init_code_size = _einittext - _sinittext;
6684 * Detect special cases and adjust section sizes accordingly:
6685 * 1) .init.* may be embedded into .data sections
6686 * 2) .init.text.* may be out of [__init_begin, __init_end],
6687 * please refer to arch/tile/kernel/vmlinux.lds.S.
6688 * 3) .rodata.* may be embedded into .text or .data sections.
6690 #define adj_init_size(start, end, size, pos, adj) \
6692 if (start <= pos && pos < end && size > adj) \
6696 adj_init_size(__init_begin, __init_end, init_data_size,
6697 _sinittext, init_code_size);
6698 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6699 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6700 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6701 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6703 #undef adj_init_size
6705 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6706 #ifdef CONFIG_HIGHMEM
6710 nr_free_pages() << (PAGE_SHIFT - 10),
6711 physpages << (PAGE_SHIFT - 10),
6712 codesize >> 10, datasize >> 10, rosize >> 10,
6713 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6714 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6715 totalcma_pages << (PAGE_SHIFT - 10),
6716 #ifdef CONFIG_HIGHMEM
6717 totalhigh_pages << (PAGE_SHIFT - 10),
6719 str ? ", " : "", str ? str : "");
6723 * set_dma_reserve - set the specified number of pages reserved in the first zone
6724 * @new_dma_reserve: The number of pages to mark reserved
6726 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6727 * In the DMA zone, a significant percentage may be consumed by kernel image
6728 * and other unfreeable allocations which can skew the watermarks badly. This
6729 * function may optionally be used to account for unfreeable pages in the
6730 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6731 * smaller per-cpu batchsize.
6733 void __init set_dma_reserve(unsigned long new_dma_reserve)
6735 dma_reserve = new_dma_reserve;
6738 void __init free_area_init(unsigned long *zones_size)
6740 free_area_init_node(0, zones_size,
6741 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6744 static int page_alloc_cpu_dead(unsigned int cpu)
6747 lru_add_drain_cpu(cpu);
6751 * Spill the event counters of the dead processor
6752 * into the current processors event counters.
6753 * This artificially elevates the count of the current
6756 vm_events_fold_cpu(cpu);
6759 * Zero the differential counters of the dead processor
6760 * so that the vm statistics are consistent.
6762 * This is only okay since the processor is dead and cannot
6763 * race with what we are doing.
6765 cpu_vm_stats_fold(cpu);
6769 void __init page_alloc_init(void)
6773 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6774 "mm/page_alloc:dead", NULL,
6775 page_alloc_cpu_dead);
6780 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6781 * or min_free_kbytes changes.
6783 static void calculate_totalreserve_pages(void)
6785 struct pglist_data *pgdat;
6786 unsigned long reserve_pages = 0;
6787 enum zone_type i, j;
6789 for_each_online_pgdat(pgdat) {
6791 pgdat->totalreserve_pages = 0;
6793 for (i = 0; i < MAX_NR_ZONES; i++) {
6794 struct zone *zone = pgdat->node_zones + i;
6797 /* Find valid and maximum lowmem_reserve in the zone */
6798 for (j = i; j < MAX_NR_ZONES; j++) {
6799 if (zone->lowmem_reserve[j] > max)
6800 max = zone->lowmem_reserve[j];
6803 /* we treat the high watermark as reserved pages. */
6804 max += high_wmark_pages(zone);
6806 if (max > zone->managed_pages)
6807 max = zone->managed_pages;
6809 pgdat->totalreserve_pages += max;
6811 reserve_pages += max;
6814 totalreserve_pages = reserve_pages;
6818 * setup_per_zone_lowmem_reserve - called whenever
6819 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6820 * has a correct pages reserved value, so an adequate number of
6821 * pages are left in the zone after a successful __alloc_pages().
6823 static void setup_per_zone_lowmem_reserve(void)
6825 struct pglist_data *pgdat;
6826 enum zone_type j, idx;
6828 for_each_online_pgdat(pgdat) {
6829 for (j = 0; j < MAX_NR_ZONES; j++) {
6830 struct zone *zone = pgdat->node_zones + j;
6831 unsigned long managed_pages = zone->managed_pages;
6833 zone->lowmem_reserve[j] = 0;
6837 struct zone *lower_zone;
6841 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6842 sysctl_lowmem_reserve_ratio[idx] = 1;
6844 lower_zone = pgdat->node_zones + idx;
6845 lower_zone->lowmem_reserve[j] = managed_pages /
6846 sysctl_lowmem_reserve_ratio[idx];
6847 managed_pages += lower_zone->managed_pages;
6852 /* update totalreserve_pages */
6853 calculate_totalreserve_pages();
6856 static void __setup_per_zone_wmarks(void)
6858 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6859 unsigned long lowmem_pages = 0;
6861 unsigned long flags;
6863 /* Calculate total number of !ZONE_HIGHMEM pages */
6864 for_each_zone(zone) {
6865 if (!is_highmem(zone))
6866 lowmem_pages += zone->managed_pages;
6869 for_each_zone(zone) {
6872 spin_lock_irqsave(&zone->lock, flags);
6873 tmp = (u64)pages_min * zone->managed_pages;
6874 do_div(tmp, lowmem_pages);
6875 if (is_highmem(zone)) {
6877 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6878 * need highmem pages, so cap pages_min to a small
6881 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6882 * deltas control asynch page reclaim, and so should
6883 * not be capped for highmem.
6885 unsigned long min_pages;
6887 min_pages = zone->managed_pages / 1024;
6888 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6889 zone->watermark[WMARK_MIN] = min_pages;
6892 * If it's a lowmem zone, reserve a number of pages
6893 * proportionate to the zone's size.
6895 zone->watermark[WMARK_MIN] = tmp;
6899 * Set the kswapd watermarks distance according to the
6900 * scale factor in proportion to available memory, but
6901 * ensure a minimum size on small systems.
6903 tmp = max_t(u64, tmp >> 2,
6904 mult_frac(zone->managed_pages,
6905 watermark_scale_factor, 10000));
6907 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6908 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6910 spin_unlock_irqrestore(&zone->lock, flags);
6913 /* update totalreserve_pages */
6914 calculate_totalreserve_pages();
6918 * setup_per_zone_wmarks - called when min_free_kbytes changes
6919 * or when memory is hot-{added|removed}
6921 * Ensures that the watermark[min,low,high] values for each zone are set
6922 * correctly with respect to min_free_kbytes.
6924 void setup_per_zone_wmarks(void)
6926 mutex_lock(&zonelists_mutex);
6927 __setup_per_zone_wmarks();
6928 mutex_unlock(&zonelists_mutex);
6932 * Initialise min_free_kbytes.
6934 * For small machines we want it small (128k min). For large machines
6935 * we want it large (64MB max). But it is not linear, because network
6936 * bandwidth does not increase linearly with machine size. We use
6938 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6939 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6955 int __meminit init_per_zone_wmark_min(void)
6957 unsigned long lowmem_kbytes;
6958 int new_min_free_kbytes;
6960 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6961 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6963 if (new_min_free_kbytes > user_min_free_kbytes) {
6964 min_free_kbytes = new_min_free_kbytes;
6965 if (min_free_kbytes < 128)
6966 min_free_kbytes = 128;
6967 if (min_free_kbytes > 65536)
6968 min_free_kbytes = 65536;
6970 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6971 new_min_free_kbytes, user_min_free_kbytes);
6973 setup_per_zone_wmarks();
6974 refresh_zone_stat_thresholds();
6975 setup_per_zone_lowmem_reserve();
6978 setup_min_unmapped_ratio();
6979 setup_min_slab_ratio();
6984 core_initcall(init_per_zone_wmark_min)
6987 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6988 * that we can call two helper functions whenever min_free_kbytes
6991 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6992 void __user *buffer, size_t *length, loff_t *ppos)
6996 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7001 user_min_free_kbytes = min_free_kbytes;
7002 setup_per_zone_wmarks();
7007 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7008 void __user *buffer, size_t *length, loff_t *ppos)
7012 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7017 setup_per_zone_wmarks();
7023 static void setup_min_unmapped_ratio(void)
7028 for_each_online_pgdat(pgdat)
7029 pgdat->min_unmapped_pages = 0;
7032 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7033 sysctl_min_unmapped_ratio) / 100;
7037 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7038 void __user *buffer, size_t *length, loff_t *ppos)
7042 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7046 setup_min_unmapped_ratio();
7051 static void setup_min_slab_ratio(void)
7056 for_each_online_pgdat(pgdat)
7057 pgdat->min_slab_pages = 0;
7060 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7061 sysctl_min_slab_ratio) / 100;
7064 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7065 void __user *buffer, size_t *length, loff_t *ppos)
7069 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7073 setup_min_slab_ratio();
7080 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7081 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7082 * whenever sysctl_lowmem_reserve_ratio changes.
7084 * The reserve ratio obviously has absolutely no relation with the
7085 * minimum watermarks. The lowmem reserve ratio can only make sense
7086 * if in function of the boot time zone sizes.
7088 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7089 void __user *buffer, size_t *length, loff_t *ppos)
7091 proc_dointvec_minmax(table, write, buffer, length, ppos);
7092 setup_per_zone_lowmem_reserve();
7097 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7098 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7099 * pagelist can have before it gets flushed back to buddy allocator.
7101 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7102 void __user *buffer, size_t *length, loff_t *ppos)
7105 int old_percpu_pagelist_fraction;
7108 mutex_lock(&pcp_batch_high_lock);
7109 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7111 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7112 if (!write || ret < 0)
7115 /* Sanity checking to avoid pcp imbalance */
7116 if (percpu_pagelist_fraction &&
7117 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7118 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7124 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7127 for_each_populated_zone(zone) {
7130 for_each_possible_cpu(cpu)
7131 pageset_set_high_and_batch(zone,
7132 per_cpu_ptr(zone->pageset, cpu));
7135 mutex_unlock(&pcp_batch_high_lock);
7140 int hashdist = HASHDIST_DEFAULT;
7142 static int __init set_hashdist(char *str)
7146 hashdist = simple_strtoul(str, &str, 0);
7149 __setup("hashdist=", set_hashdist);
7152 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7154 * Returns the number of pages that arch has reserved but
7155 * is not known to alloc_large_system_hash().
7157 static unsigned long __init arch_reserved_kernel_pages(void)
7164 * allocate a large system hash table from bootmem
7165 * - it is assumed that the hash table must contain an exact power-of-2
7166 * quantity of entries
7167 * - limit is the number of hash buckets, not the total allocation size
7169 void *__init alloc_large_system_hash(const char *tablename,
7170 unsigned long bucketsize,
7171 unsigned long numentries,
7174 unsigned int *_hash_shift,
7175 unsigned int *_hash_mask,
7176 unsigned long low_limit,
7177 unsigned long high_limit)
7179 unsigned long long max = high_limit;
7180 unsigned long log2qty, size;
7183 /* allow the kernel cmdline to have a say */
7185 /* round applicable memory size up to nearest megabyte */
7186 numentries = nr_kernel_pages;
7187 numentries -= arch_reserved_kernel_pages();
7189 /* It isn't necessary when PAGE_SIZE >= 1MB */
7190 if (PAGE_SHIFT < 20)
7191 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7193 /* limit to 1 bucket per 2^scale bytes of low memory */
7194 if (scale > PAGE_SHIFT)
7195 numentries >>= (scale - PAGE_SHIFT);
7197 numentries <<= (PAGE_SHIFT - scale);
7199 /* Make sure we've got at least a 0-order allocation.. */
7200 if (unlikely(flags & HASH_SMALL)) {
7201 /* Makes no sense without HASH_EARLY */
7202 WARN_ON(!(flags & HASH_EARLY));
7203 if (!(numentries >> *_hash_shift)) {
7204 numentries = 1UL << *_hash_shift;
7205 BUG_ON(!numentries);
7207 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7208 numentries = PAGE_SIZE / bucketsize;
7210 numentries = roundup_pow_of_two(numentries);
7212 /* limit allocation size to 1/16 total memory by default */
7214 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7215 do_div(max, bucketsize);
7217 max = min(max, 0x80000000ULL);
7219 if (numentries < low_limit)
7220 numentries = low_limit;
7221 if (numentries > max)
7224 log2qty = ilog2(numentries);
7227 size = bucketsize << log2qty;
7228 if (flags & HASH_EARLY)
7229 table = memblock_virt_alloc_nopanic(size, 0);
7231 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7234 * If bucketsize is not a power-of-two, we may free
7235 * some pages at the end of hash table which
7236 * alloc_pages_exact() automatically does
7238 if (get_order(size) < MAX_ORDER) {
7239 table = alloc_pages_exact(size, GFP_ATOMIC);
7240 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7243 } while (!table && size > PAGE_SIZE && --log2qty);
7246 panic("Failed to allocate %s hash table\n", tablename);
7248 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7249 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7252 *_hash_shift = log2qty;
7254 *_hash_mask = (1 << log2qty) - 1;
7260 * This function checks whether pageblock includes unmovable pages or not.
7261 * If @count is not zero, it is okay to include less @count unmovable pages
7263 * PageLRU check without isolation or lru_lock could race so that
7264 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7265 * check without lock_page also may miss some movable non-lru pages at
7266 * race condition. So you can't expect this function should be exact.
7268 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7269 bool skip_hwpoisoned_pages)
7271 unsigned long pfn, iter, found;
7275 * For avoiding noise data, lru_add_drain_all() should be called
7276 * If ZONE_MOVABLE, the zone never contains unmovable pages
7278 if (zone_idx(zone) == ZONE_MOVABLE)
7280 mt = get_pageblock_migratetype(page);
7281 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7284 pfn = page_to_pfn(page);
7285 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7286 unsigned long check = pfn + iter;
7288 if (!pfn_valid_within(check))
7291 page = pfn_to_page(check);
7294 * Hugepages are not in LRU lists, but they're movable.
7295 * We need not scan over tail pages bacause we don't
7296 * handle each tail page individually in migration.
7298 if (PageHuge(page)) {
7299 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7304 * We can't use page_count without pin a page
7305 * because another CPU can free compound page.
7306 * This check already skips compound tails of THP
7307 * because their page->_refcount is zero at all time.
7309 if (!page_ref_count(page)) {
7310 if (PageBuddy(page))
7311 iter += (1 << page_order(page)) - 1;
7316 * The HWPoisoned page may be not in buddy system, and
7317 * page_count() is not 0.
7319 if (skip_hwpoisoned_pages && PageHWPoison(page))
7322 if (__PageMovable(page))
7328 * If there are RECLAIMABLE pages, we need to check
7329 * it. But now, memory offline itself doesn't call
7330 * shrink_node_slabs() and it still to be fixed.
7333 * If the page is not RAM, page_count()should be 0.
7334 * we don't need more check. This is an _used_ not-movable page.
7336 * The problematic thing here is PG_reserved pages. PG_reserved
7337 * is set to both of a memory hole page and a _used_ kernel
7346 bool is_pageblock_removable_nolock(struct page *page)
7352 * We have to be careful here because we are iterating over memory
7353 * sections which are not zone aware so we might end up outside of
7354 * the zone but still within the section.
7355 * We have to take care about the node as well. If the node is offline
7356 * its NODE_DATA will be NULL - see page_zone.
7358 if (!node_online(page_to_nid(page)))
7361 zone = page_zone(page);
7362 pfn = page_to_pfn(page);
7363 if (!zone_spans_pfn(zone, pfn))
7366 return !has_unmovable_pages(zone, page, 0, true);
7369 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7371 static unsigned long pfn_max_align_down(unsigned long pfn)
7373 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7374 pageblock_nr_pages) - 1);
7377 static unsigned long pfn_max_align_up(unsigned long pfn)
7379 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7380 pageblock_nr_pages));
7383 /* [start, end) must belong to a single zone. */
7384 static int __alloc_contig_migrate_range(struct compact_control *cc,
7385 unsigned long start, unsigned long end)
7387 /* This function is based on compact_zone() from compaction.c. */
7388 unsigned long nr_reclaimed;
7389 unsigned long pfn = start;
7390 unsigned int tries = 0;
7395 while (pfn < end || !list_empty(&cc->migratepages)) {
7396 if (fatal_signal_pending(current)) {
7401 if (list_empty(&cc->migratepages)) {
7402 cc->nr_migratepages = 0;
7403 pfn = isolate_migratepages_range(cc, pfn, end);
7409 } else if (++tries == 5) {
7410 ret = ret < 0 ? ret : -EBUSY;
7414 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7416 cc->nr_migratepages -= nr_reclaimed;
7418 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7419 NULL, 0, cc->mode, MR_CMA);
7422 putback_movable_pages(&cc->migratepages);
7429 * alloc_contig_range() -- tries to allocate given range of pages
7430 * @start: start PFN to allocate
7431 * @end: one-past-the-last PFN to allocate
7432 * @migratetype: migratetype of the underlaying pageblocks (either
7433 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7434 * in range must have the same migratetype and it must
7435 * be either of the two.
7436 * @gfp_mask: GFP mask to use during compaction
7438 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7439 * aligned, however it's the caller's responsibility to guarantee that
7440 * we are the only thread that changes migrate type of pageblocks the
7443 * The PFN range must belong to a single zone.
7445 * Returns zero on success or negative error code. On success all
7446 * pages which PFN is in [start, end) are allocated for the caller and
7447 * need to be freed with free_contig_range().
7449 int alloc_contig_range(unsigned long start, unsigned long end,
7450 unsigned migratetype, gfp_t gfp_mask)
7452 unsigned long outer_start, outer_end;
7456 struct compact_control cc = {
7457 .nr_migratepages = 0,
7459 .zone = page_zone(pfn_to_page(start)),
7460 .mode = MIGRATE_SYNC,
7461 .ignore_skip_hint = true,
7462 .gfp_mask = current_gfp_context(gfp_mask),
7464 INIT_LIST_HEAD(&cc.migratepages);
7467 * What we do here is we mark all pageblocks in range as
7468 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7469 * have different sizes, and due to the way page allocator
7470 * work, we align the range to biggest of the two pages so
7471 * that page allocator won't try to merge buddies from
7472 * different pageblocks and change MIGRATE_ISOLATE to some
7473 * other migration type.
7475 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7476 * migrate the pages from an unaligned range (ie. pages that
7477 * we are interested in). This will put all the pages in
7478 * range back to page allocator as MIGRATE_ISOLATE.
7480 * When this is done, we take the pages in range from page
7481 * allocator removing them from the buddy system. This way
7482 * page allocator will never consider using them.
7484 * This lets us mark the pageblocks back as
7485 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7486 * aligned range but not in the unaligned, original range are
7487 * put back to page allocator so that buddy can use them.
7490 ret = start_isolate_page_range(pfn_max_align_down(start),
7491 pfn_max_align_up(end), migratetype,
7497 * In case of -EBUSY, we'd like to know which page causes problem.
7498 * So, just fall through. We will check it in test_pages_isolated().
7500 ret = __alloc_contig_migrate_range(&cc, start, end);
7501 if (ret && ret != -EBUSY)
7505 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7506 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7507 * more, all pages in [start, end) are free in page allocator.
7508 * What we are going to do is to allocate all pages from
7509 * [start, end) (that is remove them from page allocator).
7511 * The only problem is that pages at the beginning and at the
7512 * end of interesting range may be not aligned with pages that
7513 * page allocator holds, ie. they can be part of higher order
7514 * pages. Because of this, we reserve the bigger range and
7515 * once this is done free the pages we are not interested in.
7517 * We don't have to hold zone->lock here because the pages are
7518 * isolated thus they won't get removed from buddy.
7521 lru_add_drain_all();
7522 drain_all_pages(cc.zone);
7525 outer_start = start;
7526 while (!PageBuddy(pfn_to_page(outer_start))) {
7527 if (++order >= MAX_ORDER) {
7528 outer_start = start;
7531 outer_start &= ~0UL << order;
7534 if (outer_start != start) {
7535 order = page_order(pfn_to_page(outer_start));
7538 * outer_start page could be small order buddy page and
7539 * it doesn't include start page. Adjust outer_start
7540 * in this case to report failed page properly
7541 * on tracepoint in test_pages_isolated()
7543 if (outer_start + (1UL << order) <= start)
7544 outer_start = start;
7547 /* Make sure the range is really isolated. */
7548 if (test_pages_isolated(outer_start, end, false)) {
7549 pr_info("%s: [%lx, %lx) PFNs busy\n",
7550 __func__, outer_start, end);
7555 /* Grab isolated pages from freelists. */
7556 outer_end = isolate_freepages_range(&cc, outer_start, end);
7562 /* Free head and tail (if any) */
7563 if (start != outer_start)
7564 free_contig_range(outer_start, start - outer_start);
7565 if (end != outer_end)
7566 free_contig_range(end, outer_end - end);
7569 undo_isolate_page_range(pfn_max_align_down(start),
7570 pfn_max_align_up(end), migratetype);
7574 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7576 unsigned int count = 0;
7578 for (; nr_pages--; pfn++) {
7579 struct page *page = pfn_to_page(pfn);
7581 count += page_count(page) != 1;
7584 WARN(count != 0, "%d pages are still in use!\n", count);
7588 #ifdef CONFIG_MEMORY_HOTPLUG
7590 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7591 * page high values need to be recalulated.
7593 void __meminit zone_pcp_update(struct zone *zone)
7596 mutex_lock(&pcp_batch_high_lock);
7597 for_each_possible_cpu(cpu)
7598 pageset_set_high_and_batch(zone,
7599 per_cpu_ptr(zone->pageset, cpu));
7600 mutex_unlock(&pcp_batch_high_lock);
7604 void zone_pcp_reset(struct zone *zone)
7606 unsigned long flags;
7608 struct per_cpu_pageset *pset;
7610 /* avoid races with drain_pages() */
7611 local_irq_save(flags);
7612 if (zone->pageset != &boot_pageset) {
7613 for_each_online_cpu(cpu) {
7614 pset = per_cpu_ptr(zone->pageset, cpu);
7615 drain_zonestat(zone, pset);
7617 free_percpu(zone->pageset);
7618 zone->pageset = &boot_pageset;
7620 local_irq_restore(flags);
7623 #ifdef CONFIG_MEMORY_HOTREMOVE
7625 * All pages in the range must be in a single zone and isolated
7626 * before calling this.
7629 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7633 unsigned int order, i;
7635 unsigned long flags;
7636 /* find the first valid pfn */
7637 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7642 zone = page_zone(pfn_to_page(pfn));
7643 spin_lock_irqsave(&zone->lock, flags);
7645 while (pfn < end_pfn) {
7646 if (!pfn_valid(pfn)) {
7650 page = pfn_to_page(pfn);
7652 * The HWPoisoned page may be not in buddy system, and
7653 * page_count() is not 0.
7655 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7657 SetPageReserved(page);
7661 BUG_ON(page_count(page));
7662 BUG_ON(!PageBuddy(page));
7663 order = page_order(page);
7664 #ifdef CONFIG_DEBUG_VM
7665 pr_info("remove from free list %lx %d %lx\n",
7666 pfn, 1 << order, end_pfn);
7668 list_del(&page->lru);
7669 rmv_page_order(page);
7670 zone->free_area[order].nr_free--;
7671 for (i = 0; i < (1 << order); i++)
7672 SetPageReserved((page+i));
7673 pfn += (1 << order);
7675 spin_unlock_irqrestore(&zone->lock, flags);
7679 bool is_free_buddy_page(struct page *page)
7681 struct zone *zone = page_zone(page);
7682 unsigned long pfn = page_to_pfn(page);
7683 unsigned long flags;
7686 spin_lock_irqsave(&zone->lock, flags);
7687 for (order = 0; order < MAX_ORDER; order++) {
7688 struct page *page_head = page - (pfn & ((1 << order) - 1));
7690 if (PageBuddy(page_head) && page_order(page_head) >= order)
7693 spin_unlock_irqrestore(&zone->lock, flags);
7695 return order < MAX_ORDER;