1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
80 #include "page_reporting.h"
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION (8)
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
139 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
143 /* work_structs for global per-cpu drains */
146 struct work_struct work;
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
157 * Array of node states.
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
167 [N_MEMORY] = { { [0] = 1UL } },
168 [N_CPU] = { { [0] = 1UL } },
171 EXPORT_SYMBOL(node_states);
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
186 static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
193 early_param("init_on_alloc", early_init_on_alloc);
195 static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
199 return kstrtobool(buf, &_init_on_free_enabled_early);
201 early_param("init_on_free", early_init_on_free);
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
211 static inline int get_pcppage_migratetype(struct page *page)
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
218 page->index = migratetype;
221 #ifdef CONFIG_PM_SLEEP
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
232 static gfp_t saved_gfp_mask;
234 void pm_restore_gfp_mask(void)
236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
243 void pm_restrict_gfp_mask(void)
245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
251 bool pm_suspended_storage(void)
253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
257 #endif /* CONFIG_PM_SLEEP */
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
263 static void __free_pages_ok(struct page *page, unsigned int order,
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
281 #ifdef CONFIG_ZONE_DMA32
285 #ifdef CONFIG_HIGHMEM
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
295 #ifdef CONFIG_ZONE_DMA32
299 #ifdef CONFIG_HIGHMEM
303 #ifdef CONFIG_ZONE_DEVICE
308 const char * const migratetype_names[MIGRATE_TYPES] = {
316 #ifdef CONFIG_MEMORY_ISOLATION
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 [HUGETLB_PAGE_DTOR] = free_huge_page,
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
344 int watermark_boost_factor __read_mostly;
346 int watermark_boost_factor __read_mostly = 15000;
348 int watermark_scale_factor = 10;
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
365 EXPORT_SYMBOL(movable_zone);
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
374 int page_group_by_mobility_disabled __read_mostly;
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
385 * Calling kasan_poison_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
397 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
399 return static_branch_unlikely(&deferred_pages) ||
400 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
401 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
402 PageSkipKASanPoison(page);
405 /* Returns true if the struct page for the pfn is uninitialised */
406 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
408 int nid = early_pfn_to_nid(pfn);
410 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
417 * Returns true when the remaining initialisation should be deferred until
418 * later in the boot cycle when it can be parallelised.
420 static bool __meminit
421 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
423 static unsigned long prev_end_pfn, nr_initialised;
426 * prev_end_pfn static that contains the end of previous zone
427 * No need to protect because called very early in boot before smp_init.
429 if (prev_end_pfn != end_pfn) {
430 prev_end_pfn = end_pfn;
434 /* Always populate low zones for address-constrained allocations */
435 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
438 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
441 * We start only with one section of pages, more pages are added as
442 * needed until the rest of deferred pages are initialized.
445 if ((nr_initialised > PAGES_PER_SECTION) &&
446 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
447 NODE_DATA(nid)->first_deferred_pfn = pfn;
453 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
455 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
456 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
457 PageSkipKASanPoison(page);
460 static inline bool early_page_uninitialised(unsigned long pfn)
465 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 /* Return a pointer to the bitmap storing bits affecting a block of pages */
472 static inline unsigned long *get_pageblock_bitmap(struct page *page,
475 #ifdef CONFIG_SPARSEMEM
476 return section_to_usemap(__pfn_to_section(pfn));
478 return page_zone(page)->pageblock_flags;
479 #endif /* CONFIG_SPARSEMEM */
482 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
484 #ifdef CONFIG_SPARSEMEM
485 pfn &= (PAGES_PER_SECTION-1);
487 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
488 #endif /* CONFIG_SPARSEMEM */
489 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
492 static __always_inline
493 unsigned long __get_pfnblock_flags_mask(struct page *page,
497 unsigned long *bitmap;
498 unsigned long bitidx, word_bitidx;
501 bitmap = get_pageblock_bitmap(page, pfn);
502 bitidx = pfn_to_bitidx(page, pfn);
503 word_bitidx = bitidx / BITS_PER_LONG;
504 bitidx &= (BITS_PER_LONG-1);
506 word = bitmap[word_bitidx];
507 return (word >> bitidx) & mask;
511 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @pfn: The target page frame number
514 * @mask: mask of bits that the caller is interested in
516 * Return: pageblock_bits flags
518 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
521 return __get_pfnblock_flags_mask(page, pfn, mask);
524 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
526 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
530 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
531 * @page: The page within the block of interest
532 * @flags: The flags to set
533 * @pfn: The target page frame number
534 * @mask: mask of bits that the caller is interested in
536 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
540 unsigned long *bitmap;
541 unsigned long bitidx, word_bitidx;
542 unsigned long old_word, word;
544 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
545 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
547 bitmap = get_pageblock_bitmap(page, pfn);
548 bitidx = pfn_to_bitidx(page, pfn);
549 word_bitidx = bitidx / BITS_PER_LONG;
550 bitidx &= (BITS_PER_LONG-1);
552 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
557 word = READ_ONCE(bitmap[word_bitidx]);
559 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
560 if (word == old_word)
566 void set_pageblock_migratetype(struct page *page, int migratetype)
568 if (unlikely(page_group_by_mobility_disabled &&
569 migratetype < MIGRATE_PCPTYPES))
570 migratetype = MIGRATE_UNMOVABLE;
572 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
573 page_to_pfn(page), MIGRATETYPE_MASK);
576 #ifdef CONFIG_DEBUG_VM
577 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
581 unsigned long pfn = page_to_pfn(page);
582 unsigned long sp, start_pfn;
585 seq = zone_span_seqbegin(zone);
586 start_pfn = zone->zone_start_pfn;
587 sp = zone->spanned_pages;
588 if (!zone_spans_pfn(zone, pfn))
590 } while (zone_span_seqretry(zone, seq));
593 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
594 pfn, zone_to_nid(zone), zone->name,
595 start_pfn, start_pfn + sp);
600 static int page_is_consistent(struct zone *zone, struct page *page)
602 if (!pfn_valid_within(page_to_pfn(page)))
604 if (zone != page_zone(page))
610 * Temporary debugging check for pages not lying within a given zone.
612 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
614 if (page_outside_zone_boundaries(zone, page))
616 if (!page_is_consistent(zone, page))
622 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 static void bad_page(struct page *page, const char *reason)
630 static unsigned long resume;
631 static unsigned long nr_shown;
632 static unsigned long nr_unshown;
635 * Allow a burst of 60 reports, then keep quiet for that minute;
636 * or allow a steady drip of one report per second.
638 if (nr_shown == 60) {
639 if (time_before(jiffies, resume)) {
645 "BUG: Bad page state: %lu messages suppressed\n",
652 resume = jiffies + 60 * HZ;
654 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
655 current->comm, page_to_pfn(page));
656 __dump_page(page, reason);
657 dump_page_owner(page);
662 /* Leave bad fields for debug, except PageBuddy could make trouble */
663 page_mapcount_reset(page); /* remove PageBuddy */
664 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
668 * Higher-order pages are called "compound pages". They are structured thusly:
670 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
672 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
673 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
675 * The first tail page's ->compound_dtor holds the offset in array of compound
676 * page destructors. See compound_page_dtors.
678 * The first tail page's ->compound_order holds the order of allocation.
679 * This usage means that zero-order pages may not be compound.
682 void free_compound_page(struct page *page)
684 mem_cgroup_uncharge(page);
685 __free_pages_ok(page, compound_order(page), FPI_NONE);
688 void prep_compound_page(struct page *page, unsigned int order)
691 int nr_pages = 1 << order;
694 for (i = 1; i < nr_pages; i++) {
695 struct page *p = page + i;
696 set_page_count(p, 0);
697 p->mapping = TAIL_MAPPING;
698 set_compound_head(p, page);
701 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
702 set_compound_order(page, order);
703 atomic_set(compound_mapcount_ptr(page), -1);
704 if (hpage_pincount_available(page))
705 atomic_set(compound_pincount_ptr(page), 0);
708 #ifdef CONFIG_DEBUG_PAGEALLOC
709 unsigned int _debug_guardpage_minorder;
711 bool _debug_pagealloc_enabled_early __read_mostly
712 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
713 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
714 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
715 EXPORT_SYMBOL(_debug_pagealloc_enabled);
717 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
719 static int __init early_debug_pagealloc(char *buf)
721 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
723 early_param("debug_pagealloc", early_debug_pagealloc);
725 static int __init debug_guardpage_minorder_setup(char *buf)
729 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
730 pr_err("Bad debug_guardpage_minorder value\n");
733 _debug_guardpage_minorder = res;
734 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
737 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739 static inline bool set_page_guard(struct zone *zone, struct page *page,
740 unsigned int order, int migratetype)
742 if (!debug_guardpage_enabled())
745 if (order >= debug_guardpage_minorder())
748 __SetPageGuard(page);
749 INIT_LIST_HEAD(&page->lru);
750 set_page_private(page, order);
751 /* Guard pages are not available for any usage */
752 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype)
760 if (!debug_guardpage_enabled())
763 __ClearPageGuard(page);
765 set_page_private(page, 0);
766 if (!is_migrate_isolate(migratetype))
767 __mod_zone_freepage_state(zone, (1 << order), migratetype);
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 unsigned int order, int migratetype) {}
777 * Enable static keys related to various memory debugging and hardening options.
778 * Some override others, and depend on early params that are evaluated in the
779 * order of appearance. So we need to first gather the full picture of what was
780 * enabled, and then make decisions.
782 void init_mem_debugging_and_hardening(void)
784 bool page_poisoning_requested = false;
786 #ifdef CONFIG_PAGE_POISONING
788 * Page poisoning is debug page alloc for some arches. If
789 * either of those options are enabled, enable poisoning.
791 if (page_poisoning_enabled() ||
792 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
793 debug_pagealloc_enabled())) {
794 static_branch_enable(&_page_poisoning_enabled);
795 page_poisoning_requested = true;
799 if (_init_on_alloc_enabled_early) {
800 if (page_poisoning_requested)
801 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
802 "will take precedence over init_on_alloc\n");
804 static_branch_enable(&init_on_alloc);
806 if (_init_on_free_enabled_early) {
807 if (page_poisoning_requested)
808 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
809 "will take precedence over init_on_free\n");
811 static_branch_enable(&init_on_free);
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 if (!debug_pagealloc_enabled())
818 static_branch_enable(&_debug_pagealloc_enabled);
820 if (!debug_guardpage_minorder())
823 static_branch_enable(&_debug_guardpage_enabled);
827 static inline void set_buddy_order(struct page *page, unsigned int order)
829 set_page_private(page, order);
830 __SetPageBuddy(page);
834 * This function checks whether a page is free && is the buddy
835 * we can coalesce a page and its buddy if
836 * (a) the buddy is not in a hole (check before calling!) &&
837 * (b) the buddy is in the buddy system &&
838 * (c) a page and its buddy have the same order &&
839 * (d) a page and its buddy are in the same zone.
841 * For recording whether a page is in the buddy system, we set PageBuddy.
842 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
844 * For recording page's order, we use page_private(page).
846 static inline bool page_is_buddy(struct page *page, struct page *buddy,
849 if (!page_is_guard(buddy) && !PageBuddy(buddy))
852 if (buddy_order(buddy) != order)
856 * zone check is done late to avoid uselessly calculating
857 * zone/node ids for pages that could never merge.
859 if (page_zone_id(page) != page_zone_id(buddy))
862 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
867 #ifdef CONFIG_COMPACTION
868 static inline struct capture_control *task_capc(struct zone *zone)
870 struct capture_control *capc = current->capture_control;
872 return unlikely(capc) &&
873 !(current->flags & PF_KTHREAD) &&
875 capc->cc->zone == zone ? capc : NULL;
879 compaction_capture(struct capture_control *capc, struct page *page,
880 int order, int migratetype)
882 if (!capc || order != capc->cc->order)
885 /* Do not accidentally pollute CMA or isolated regions*/
886 if (is_migrate_cma(migratetype) ||
887 is_migrate_isolate(migratetype))
891 * Do not let lower order allocations pollute a movable pageblock.
892 * This might let an unmovable request use a reclaimable pageblock
893 * and vice-versa but no more than normal fallback logic which can
894 * have trouble finding a high-order free page.
896 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
904 static inline struct capture_control *task_capc(struct zone *zone)
910 compaction_capture(struct capture_control *capc, struct page *page,
911 int order, int migratetype)
915 #endif /* CONFIG_COMPACTION */
917 /* Used for pages not on another list */
918 static inline void add_to_free_list(struct page *page, struct zone *zone,
919 unsigned int order, int migratetype)
921 struct free_area *area = &zone->free_area[order];
923 list_add(&page->lru, &area->free_list[migratetype]);
927 /* Used for pages not on another list */
928 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
929 unsigned int order, int migratetype)
931 struct free_area *area = &zone->free_area[order];
933 list_add_tail(&page->lru, &area->free_list[migratetype]);
938 * Used for pages which are on another list. Move the pages to the tail
939 * of the list - so the moved pages won't immediately be considered for
940 * allocation again (e.g., optimization for memory onlining).
942 static inline void move_to_free_list(struct page *page, struct zone *zone,
943 unsigned int order, int migratetype)
945 struct free_area *area = &zone->free_area[order];
947 list_move_tail(&page->lru, &area->free_list[migratetype]);
950 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
953 /* clear reported state and update reported page count */
954 if (page_reported(page))
955 __ClearPageReported(page);
957 list_del(&page->lru);
958 __ClearPageBuddy(page);
959 set_page_private(page, 0);
960 zone->free_area[order].nr_free--;
964 * If this is not the largest possible page, check if the buddy
965 * of the next-highest order is free. If it is, it's possible
966 * that pages are being freed that will coalesce soon. In case,
967 * that is happening, add the free page to the tail of the list
968 * so it's less likely to be used soon and more likely to be merged
969 * as a higher order page
972 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
973 struct page *page, unsigned int order)
975 struct page *higher_page, *higher_buddy;
976 unsigned long combined_pfn;
978 if (order >= MAX_ORDER - 2)
981 if (!pfn_valid_within(buddy_pfn))
984 combined_pfn = buddy_pfn & pfn;
985 higher_page = page + (combined_pfn - pfn);
986 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
987 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
989 return pfn_valid_within(buddy_pfn) &&
990 page_is_buddy(higher_page, higher_buddy, order + 1);
994 * Freeing function for a buddy system allocator.
996 * The concept of a buddy system is to maintain direct-mapped table
997 * (containing bit values) for memory blocks of various "orders".
998 * The bottom level table contains the map for the smallest allocatable
999 * units of memory (here, pages), and each level above it describes
1000 * pairs of units from the levels below, hence, "buddies".
1001 * At a high level, all that happens here is marking the table entry
1002 * at the bottom level available, and propagating the changes upward
1003 * as necessary, plus some accounting needed to play nicely with other
1004 * parts of the VM system.
1005 * At each level, we keep a list of pages, which are heads of continuous
1006 * free pages of length of (1 << order) and marked with PageBuddy.
1007 * Page's order is recorded in page_private(page) field.
1008 * So when we are allocating or freeing one, we can derive the state of the
1009 * other. That is, if we allocate a small block, and both were
1010 * free, the remainder of the region must be split into blocks.
1011 * If a block is freed, and its buddy is also free, then this
1012 * triggers coalescing into a block of larger size.
1017 static inline void __free_one_page(struct page *page,
1019 struct zone *zone, unsigned int order,
1020 int migratetype, fpi_t fpi_flags)
1022 struct capture_control *capc = task_capc(zone);
1023 unsigned long buddy_pfn;
1024 unsigned long combined_pfn;
1025 unsigned int max_order;
1029 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1031 VM_BUG_ON(!zone_is_initialized(zone));
1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1034 VM_BUG_ON(migratetype == -1);
1035 if (likely(!is_migrate_isolate(migratetype)))
1036 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1042 while (order < max_order) {
1043 if (compaction_capture(capc, page, order, migratetype)) {
1044 __mod_zone_freepage_state(zone, -(1 << order),
1048 buddy_pfn = __find_buddy_pfn(pfn, order);
1049 buddy = page + (buddy_pfn - pfn);
1051 if (!pfn_valid_within(buddy_pfn))
1053 if (!page_is_buddy(page, buddy, order))
1056 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1057 * merge with it and move up one order.
1059 if (page_is_guard(buddy))
1060 clear_page_guard(zone, buddy, order, migratetype);
1062 del_page_from_free_list(buddy, zone, order);
1063 combined_pfn = buddy_pfn & pfn;
1064 page = page + (combined_pfn - pfn);
1068 if (order < MAX_ORDER - 1) {
1069 /* If we are here, it means order is >= pageblock_order.
1070 * We want to prevent merge between freepages on isolate
1071 * pageblock and normal pageblock. Without this, pageblock
1072 * isolation could cause incorrect freepage or CMA accounting.
1074 * We don't want to hit this code for the more frequent
1075 * low-order merging.
1077 if (unlikely(has_isolate_pageblock(zone))) {
1080 buddy_pfn = __find_buddy_pfn(pfn, order);
1081 buddy = page + (buddy_pfn - pfn);
1082 buddy_mt = get_pageblock_migratetype(buddy);
1084 if (migratetype != buddy_mt
1085 && (is_migrate_isolate(migratetype) ||
1086 is_migrate_isolate(buddy_mt)))
1089 max_order = order + 1;
1090 goto continue_merging;
1094 set_buddy_order(page, order);
1096 if (fpi_flags & FPI_TO_TAIL)
1098 else if (is_shuffle_order(order))
1099 to_tail = shuffle_pick_tail();
1101 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1104 add_to_free_list_tail(page, zone, order, migratetype);
1106 add_to_free_list(page, zone, order, migratetype);
1108 /* Notify page reporting subsystem of freed page */
1109 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1110 page_reporting_notify_free(order);
1114 * A bad page could be due to a number of fields. Instead of multiple branches,
1115 * try and check multiple fields with one check. The caller must do a detailed
1116 * check if necessary.
1118 static inline bool page_expected_state(struct page *page,
1119 unsigned long check_flags)
1121 if (unlikely(atomic_read(&page->_mapcount) != -1))
1124 if (unlikely((unsigned long)page->mapping |
1125 page_ref_count(page) |
1129 (page->flags & check_flags)))
1135 static const char *page_bad_reason(struct page *page, unsigned long flags)
1137 const char *bad_reason = NULL;
1139 if (unlikely(atomic_read(&page->_mapcount) != -1))
1140 bad_reason = "nonzero mapcount";
1141 if (unlikely(page->mapping != NULL))
1142 bad_reason = "non-NULL mapping";
1143 if (unlikely(page_ref_count(page) != 0))
1144 bad_reason = "nonzero _refcount";
1145 if (unlikely(page->flags & flags)) {
1146 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1147 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1149 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1152 if (unlikely(page->memcg_data))
1153 bad_reason = "page still charged to cgroup";
1158 static void check_free_page_bad(struct page *page)
1161 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1164 static inline int check_free_page(struct page *page)
1166 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1169 /* Something has gone sideways, find it */
1170 check_free_page_bad(page);
1174 static int free_tail_pages_check(struct page *head_page, struct page *page)
1179 * We rely page->lru.next never has bit 0 set, unless the page
1180 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1182 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1184 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1188 switch (page - head_page) {
1190 /* the first tail page: ->mapping may be compound_mapcount() */
1191 if (unlikely(compound_mapcount(page))) {
1192 bad_page(page, "nonzero compound_mapcount");
1198 * the second tail page: ->mapping is
1199 * deferred_list.next -- ignore value.
1203 if (page->mapping != TAIL_MAPPING) {
1204 bad_page(page, "corrupted mapping in tail page");
1209 if (unlikely(!PageTail(page))) {
1210 bad_page(page, "PageTail not set");
1213 if (unlikely(compound_head(page) != head_page)) {
1214 bad_page(page, "compound_head not consistent");
1219 page->mapping = NULL;
1220 clear_compound_head(page);
1224 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1229 for (i = 0; i < numpages; i++)
1230 tag_clear_highpage(page + i);
1234 /* s390's use of memset() could override KASAN redzones. */
1235 kasan_disable_current();
1236 for (i = 0; i < numpages; i++) {
1237 u8 tag = page_kasan_tag(page + i);
1238 page_kasan_tag_reset(page + i);
1239 clear_highpage(page + i);
1240 page_kasan_tag_set(page + i, tag);
1242 kasan_enable_current();
1245 static __always_inline bool free_pages_prepare(struct page *page,
1246 unsigned int order, bool check_free, fpi_t fpi_flags)
1249 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1251 VM_BUG_ON_PAGE(PageTail(page), page);
1253 trace_mm_page_free(page, order);
1255 if (unlikely(PageHWPoison(page)) && !order) {
1257 * Do not let hwpoison pages hit pcplists/buddy
1258 * Untie memcg state and reset page's owner
1260 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1261 __memcg_kmem_uncharge_page(page, order);
1262 reset_page_owner(page, order);
1267 * Check tail pages before head page information is cleared to
1268 * avoid checking PageCompound for order-0 pages.
1270 if (unlikely(order)) {
1271 bool compound = PageCompound(page);
1274 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1277 ClearPageDoubleMap(page);
1278 for (i = 1; i < (1 << order); i++) {
1280 bad += free_tail_pages_check(page, page + i);
1281 if (unlikely(check_free_page(page + i))) {
1285 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1288 if (PageMappingFlags(page))
1289 page->mapping = NULL;
1290 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1291 __memcg_kmem_uncharge_page(page, order);
1293 bad += check_free_page(page);
1297 page_cpupid_reset_last(page);
1298 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1299 reset_page_owner(page, order);
1301 if (!PageHighMem(page)) {
1302 debug_check_no_locks_freed(page_address(page),
1303 PAGE_SIZE << order);
1304 debug_check_no_obj_freed(page_address(page),
1305 PAGE_SIZE << order);
1308 kernel_poison_pages(page, 1 << order);
1311 * As memory initialization might be integrated into KASAN,
1312 * kasan_free_pages and kernel_init_free_pages must be
1313 * kept together to avoid discrepancies in behavior.
1315 * With hardware tag-based KASAN, memory tags must be set before the
1316 * page becomes unavailable via debug_pagealloc or arch_free_page.
1318 if (kasan_has_integrated_init()) {
1319 if (!skip_kasan_poison)
1320 kasan_free_pages(page, order);
1322 bool init = want_init_on_free();
1325 kernel_init_free_pages(page, 1 << order, false);
1326 if (!skip_kasan_poison)
1327 kasan_poison_pages(page, order, init);
1331 * arch_free_page() can make the page's contents inaccessible. s390
1332 * does this. So nothing which can access the page's contents should
1333 * happen after this.
1335 arch_free_page(page, order);
1337 debug_pagealloc_unmap_pages(page, 1 << order);
1342 #ifdef CONFIG_DEBUG_VM
1344 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1345 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1346 * moved from pcp lists to free lists.
1348 static bool free_pcp_prepare(struct page *page)
1350 return free_pages_prepare(page, 0, true, FPI_NONE);
1353 static bool bulkfree_pcp_prepare(struct page *page)
1355 if (debug_pagealloc_enabled_static())
1356 return check_free_page(page);
1362 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1363 * moving from pcp lists to free list in order to reduce overhead. With
1364 * debug_pagealloc enabled, they are checked also immediately when being freed
1367 static bool free_pcp_prepare(struct page *page)
1369 if (debug_pagealloc_enabled_static())
1370 return free_pages_prepare(page, 0, true, FPI_NONE);
1372 return free_pages_prepare(page, 0, false, FPI_NONE);
1375 static bool bulkfree_pcp_prepare(struct page *page)
1377 return check_free_page(page);
1379 #endif /* CONFIG_DEBUG_VM */
1381 static inline void prefetch_buddy(struct page *page)
1383 unsigned long pfn = page_to_pfn(page);
1384 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1385 struct page *buddy = page + (buddy_pfn - pfn);
1391 * Frees a number of pages from the PCP lists
1392 * Assumes all pages on list are in same zone, and of same order.
1393 * count is the number of pages to free.
1395 * If the zone was previously in an "all pages pinned" state then look to
1396 * see if this freeing clears that state.
1398 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1399 * pinned" detection logic.
1401 static void free_pcppages_bulk(struct zone *zone, int count,
1402 struct per_cpu_pages *pcp)
1404 int migratetype = 0;
1406 int prefetch_nr = READ_ONCE(pcp->batch);
1407 bool isolated_pageblocks;
1408 struct page *page, *tmp;
1412 * Ensure proper count is passed which otherwise would stuck in the
1413 * below while (list_empty(list)) loop.
1415 count = min(pcp->count, count);
1417 struct list_head *list;
1420 * Remove pages from lists in a round-robin fashion. A
1421 * batch_free count is maintained that is incremented when an
1422 * empty list is encountered. This is so more pages are freed
1423 * off fuller lists instead of spinning excessively around empty
1428 if (++migratetype == MIGRATE_PCPTYPES)
1430 list = &pcp->lists[migratetype];
1431 } while (list_empty(list));
1433 /* This is the only non-empty list. Free them all. */
1434 if (batch_free == MIGRATE_PCPTYPES)
1438 page = list_last_entry(list, struct page, lru);
1439 /* must delete to avoid corrupting pcp list */
1440 list_del(&page->lru);
1443 if (bulkfree_pcp_prepare(page))
1446 list_add_tail(&page->lru, &head);
1449 * We are going to put the page back to the global
1450 * pool, prefetch its buddy to speed up later access
1451 * under zone->lock. It is believed the overhead of
1452 * an additional test and calculating buddy_pfn here
1453 * can be offset by reduced memory latency later. To
1454 * avoid excessive prefetching due to large count, only
1455 * prefetch buddy for the first pcp->batch nr of pages.
1458 prefetch_buddy(page);
1461 } while (--count && --batch_free && !list_empty(list));
1464 spin_lock(&zone->lock);
1465 isolated_pageblocks = has_isolate_pageblock(zone);
1468 * Use safe version since after __free_one_page(),
1469 * page->lru.next will not point to original list.
1471 list_for_each_entry_safe(page, tmp, &head, lru) {
1472 int mt = get_pcppage_migratetype(page);
1473 /* MIGRATE_ISOLATE page should not go to pcplists */
1474 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1475 /* Pageblock could have been isolated meanwhile */
1476 if (unlikely(isolated_pageblocks))
1477 mt = get_pageblock_migratetype(page);
1479 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1480 trace_mm_page_pcpu_drain(page, 0, mt);
1482 spin_unlock(&zone->lock);
1485 static void free_one_page(struct zone *zone,
1486 struct page *page, unsigned long pfn,
1488 int migratetype, fpi_t fpi_flags)
1490 spin_lock(&zone->lock);
1491 if (unlikely(has_isolate_pageblock(zone) ||
1492 is_migrate_isolate(migratetype))) {
1493 migratetype = get_pfnblock_migratetype(page, pfn);
1495 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1496 spin_unlock(&zone->lock);
1499 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1500 unsigned long zone, int nid)
1502 mm_zero_struct_page(page);
1503 set_page_links(page, zone, nid, pfn);
1504 init_page_count(page);
1505 page_mapcount_reset(page);
1506 page_cpupid_reset_last(page);
1507 page_kasan_tag_reset(page);
1509 INIT_LIST_HEAD(&page->lru);
1510 #ifdef WANT_PAGE_VIRTUAL
1511 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1512 if (!is_highmem_idx(zone))
1513 set_page_address(page, __va(pfn << PAGE_SHIFT));
1517 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1518 static void __meminit init_reserved_page(unsigned long pfn)
1523 if (!early_page_uninitialised(pfn))
1526 nid = early_pfn_to_nid(pfn);
1527 pgdat = NODE_DATA(nid);
1529 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1530 struct zone *zone = &pgdat->node_zones[zid];
1532 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1535 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1538 static inline void init_reserved_page(unsigned long pfn)
1541 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1544 * Initialised pages do not have PageReserved set. This function is
1545 * called for each range allocated by the bootmem allocator and
1546 * marks the pages PageReserved. The remaining valid pages are later
1547 * sent to the buddy page allocator.
1549 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1551 unsigned long start_pfn = PFN_DOWN(start);
1552 unsigned long end_pfn = PFN_UP(end);
1554 for (; start_pfn < end_pfn; start_pfn++) {
1555 if (pfn_valid(start_pfn)) {
1556 struct page *page = pfn_to_page(start_pfn);
1558 init_reserved_page(start_pfn);
1560 /* Avoid false-positive PageTail() */
1561 INIT_LIST_HEAD(&page->lru);
1564 * no need for atomic set_bit because the struct
1565 * page is not visible yet so nobody should
1568 __SetPageReserved(page);
1573 static void __free_pages_ok(struct page *page, unsigned int order,
1576 unsigned long flags;
1578 unsigned long pfn = page_to_pfn(page);
1580 if (!free_pages_prepare(page, order, true, fpi_flags))
1583 migratetype = get_pfnblock_migratetype(page, pfn);
1584 local_irq_save(flags);
1585 __count_vm_events(PGFREE, 1 << order);
1586 free_one_page(page_zone(page), page, pfn, order, migratetype,
1588 local_irq_restore(flags);
1591 void __free_pages_core(struct page *page, unsigned int order)
1593 unsigned int nr_pages = 1 << order;
1594 struct page *p = page;
1598 * When initializing the memmap, __init_single_page() sets the refcount
1599 * of all pages to 1 ("allocated"/"not free"). We have to set the
1600 * refcount of all involved pages to 0.
1603 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1605 __ClearPageReserved(p);
1606 set_page_count(p, 0);
1608 __ClearPageReserved(p);
1609 set_page_count(p, 0);
1611 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1614 * Bypass PCP and place fresh pages right to the tail, primarily
1615 * relevant for memory onlining.
1617 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1620 #ifdef CONFIG_NEED_MULTIPLE_NODES
1623 * During memory init memblocks map pfns to nids. The search is expensive and
1624 * this caches recent lookups. The implementation of __early_pfn_to_nid
1625 * treats start/end as pfns.
1627 struct mminit_pfnnid_cache {
1628 unsigned long last_start;
1629 unsigned long last_end;
1633 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1636 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1638 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1639 struct mminit_pfnnid_cache *state)
1641 unsigned long start_pfn, end_pfn;
1644 if (state->last_start <= pfn && pfn < state->last_end)
1645 return state->last_nid;
1647 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1648 if (nid != NUMA_NO_NODE) {
1649 state->last_start = start_pfn;
1650 state->last_end = end_pfn;
1651 state->last_nid = nid;
1657 int __meminit early_pfn_to_nid(unsigned long pfn)
1659 static DEFINE_SPINLOCK(early_pfn_lock);
1662 spin_lock(&early_pfn_lock);
1663 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1665 nid = first_online_node;
1666 spin_unlock(&early_pfn_lock);
1670 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1672 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1675 if (early_page_uninitialised(pfn))
1677 __free_pages_core(page, order);
1681 * Check that the whole (or subset of) a pageblock given by the interval of
1682 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1683 * with the migration of free compaction scanner. The scanners then need to
1684 * use only pfn_valid_within() check for arches that allow holes within
1687 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1689 * It's possible on some configurations to have a setup like node0 node1 node0
1690 * i.e. it's possible that all pages within a zones range of pages do not
1691 * belong to a single zone. We assume that a border between node0 and node1
1692 * can occur within a single pageblock, but not a node0 node1 node0
1693 * interleaving within a single pageblock. It is therefore sufficient to check
1694 * the first and last page of a pageblock and avoid checking each individual
1695 * page in a pageblock.
1697 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1698 unsigned long end_pfn, struct zone *zone)
1700 struct page *start_page;
1701 struct page *end_page;
1703 /* end_pfn is one past the range we are checking */
1706 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1709 start_page = pfn_to_online_page(start_pfn);
1713 if (page_zone(start_page) != zone)
1716 end_page = pfn_to_page(end_pfn);
1718 /* This gives a shorter code than deriving page_zone(end_page) */
1719 if (page_zone_id(start_page) != page_zone_id(end_page))
1725 void set_zone_contiguous(struct zone *zone)
1727 unsigned long block_start_pfn = zone->zone_start_pfn;
1728 unsigned long block_end_pfn;
1730 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1731 for (; block_start_pfn < zone_end_pfn(zone);
1732 block_start_pfn = block_end_pfn,
1733 block_end_pfn += pageblock_nr_pages) {
1735 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1737 if (!__pageblock_pfn_to_page(block_start_pfn,
1738 block_end_pfn, zone))
1743 /* We confirm that there is no hole */
1744 zone->contiguous = true;
1747 void clear_zone_contiguous(struct zone *zone)
1749 zone->contiguous = false;
1752 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1753 static void __init deferred_free_range(unsigned long pfn,
1754 unsigned long nr_pages)
1762 page = pfn_to_page(pfn);
1764 /* Free a large naturally-aligned chunk if possible */
1765 if (nr_pages == pageblock_nr_pages &&
1766 (pfn & (pageblock_nr_pages - 1)) == 0) {
1767 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1768 __free_pages_core(page, pageblock_order);
1772 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1773 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1774 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1775 __free_pages_core(page, 0);
1779 /* Completion tracking for deferred_init_memmap() threads */
1780 static atomic_t pgdat_init_n_undone __initdata;
1781 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1783 static inline void __init pgdat_init_report_one_done(void)
1785 if (atomic_dec_and_test(&pgdat_init_n_undone))
1786 complete(&pgdat_init_all_done_comp);
1790 * Returns true if page needs to be initialized or freed to buddy allocator.
1792 * First we check if pfn is valid on architectures where it is possible to have
1793 * holes within pageblock_nr_pages. On systems where it is not possible, this
1794 * function is optimized out.
1796 * Then, we check if a current large page is valid by only checking the validity
1799 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1801 if (!pfn_valid_within(pfn))
1803 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1809 * Free pages to buddy allocator. Try to free aligned pages in
1810 * pageblock_nr_pages sizes.
1812 static void __init deferred_free_pages(unsigned long pfn,
1813 unsigned long end_pfn)
1815 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1816 unsigned long nr_free = 0;
1818 for (; pfn < end_pfn; pfn++) {
1819 if (!deferred_pfn_valid(pfn)) {
1820 deferred_free_range(pfn - nr_free, nr_free);
1822 } else if (!(pfn & nr_pgmask)) {
1823 deferred_free_range(pfn - nr_free, nr_free);
1829 /* Free the last block of pages to allocator */
1830 deferred_free_range(pfn - nr_free, nr_free);
1834 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1835 * by performing it only once every pageblock_nr_pages.
1836 * Return number of pages initialized.
1838 static unsigned long __init deferred_init_pages(struct zone *zone,
1840 unsigned long end_pfn)
1842 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1843 int nid = zone_to_nid(zone);
1844 unsigned long nr_pages = 0;
1845 int zid = zone_idx(zone);
1846 struct page *page = NULL;
1848 for (; pfn < end_pfn; pfn++) {
1849 if (!deferred_pfn_valid(pfn)) {
1852 } else if (!page || !(pfn & nr_pgmask)) {
1853 page = pfn_to_page(pfn);
1857 __init_single_page(page, pfn, zid, nid);
1864 * This function is meant to pre-load the iterator for the zone init.
1865 * Specifically it walks through the ranges until we are caught up to the
1866 * first_init_pfn value and exits there. If we never encounter the value we
1867 * return false indicating there are no valid ranges left.
1870 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1871 unsigned long *spfn, unsigned long *epfn,
1872 unsigned long first_init_pfn)
1877 * Start out by walking through the ranges in this zone that have
1878 * already been initialized. We don't need to do anything with them
1879 * so we just need to flush them out of the system.
1881 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1882 if (*epfn <= first_init_pfn)
1884 if (*spfn < first_init_pfn)
1885 *spfn = first_init_pfn;
1894 * Initialize and free pages. We do it in two loops: first we initialize
1895 * struct page, then free to buddy allocator, because while we are
1896 * freeing pages we can access pages that are ahead (computing buddy
1897 * page in __free_one_page()).
1899 * In order to try and keep some memory in the cache we have the loop
1900 * broken along max page order boundaries. This way we will not cause
1901 * any issues with the buddy page computation.
1903 static unsigned long __init
1904 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1905 unsigned long *end_pfn)
1907 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1908 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1909 unsigned long nr_pages = 0;
1912 /* First we loop through and initialize the page values */
1913 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1916 if (mo_pfn <= *start_pfn)
1919 t = min(mo_pfn, *end_pfn);
1920 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1922 if (mo_pfn < *end_pfn) {
1923 *start_pfn = mo_pfn;
1928 /* Reset values and now loop through freeing pages as needed */
1931 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1937 t = min(mo_pfn, epfn);
1938 deferred_free_pages(spfn, t);
1948 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1951 unsigned long spfn, epfn;
1952 struct zone *zone = arg;
1955 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1958 * Initialize and free pages in MAX_ORDER sized increments so that we
1959 * can avoid introducing any issues with the buddy allocator.
1961 while (spfn < end_pfn) {
1962 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1967 /* An arch may override for more concurrency. */
1969 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1974 /* Initialise remaining memory on a node */
1975 static int __init deferred_init_memmap(void *data)
1977 pg_data_t *pgdat = data;
1978 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1979 unsigned long spfn = 0, epfn = 0;
1980 unsigned long first_init_pfn, flags;
1981 unsigned long start = jiffies;
1983 int zid, max_threads;
1986 /* Bind memory initialisation thread to a local node if possible */
1987 if (!cpumask_empty(cpumask))
1988 set_cpus_allowed_ptr(current, cpumask);
1990 pgdat_resize_lock(pgdat, &flags);
1991 first_init_pfn = pgdat->first_deferred_pfn;
1992 if (first_init_pfn == ULONG_MAX) {
1993 pgdat_resize_unlock(pgdat, &flags);
1994 pgdat_init_report_one_done();
1998 /* Sanity check boundaries */
1999 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2000 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2001 pgdat->first_deferred_pfn = ULONG_MAX;
2004 * Once we unlock here, the zone cannot be grown anymore, thus if an
2005 * interrupt thread must allocate this early in boot, zone must be
2006 * pre-grown prior to start of deferred page initialization.
2008 pgdat_resize_unlock(pgdat, &flags);
2010 /* Only the highest zone is deferred so find it */
2011 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2012 zone = pgdat->node_zones + zid;
2013 if (first_init_pfn < zone_end_pfn(zone))
2017 /* If the zone is empty somebody else may have cleared out the zone */
2018 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2022 max_threads = deferred_page_init_max_threads(cpumask);
2024 while (spfn < epfn) {
2025 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2026 struct padata_mt_job job = {
2027 .thread_fn = deferred_init_memmap_chunk,
2030 .size = epfn_align - spfn,
2031 .align = PAGES_PER_SECTION,
2032 .min_chunk = PAGES_PER_SECTION,
2033 .max_threads = max_threads,
2036 padata_do_multithreaded(&job);
2037 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2041 /* Sanity check that the next zone really is unpopulated */
2042 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2044 pr_info("node %d deferred pages initialised in %ums\n",
2045 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2047 pgdat_init_report_one_done();
2052 * If this zone has deferred pages, try to grow it by initializing enough
2053 * deferred pages to satisfy the allocation specified by order, rounded up to
2054 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2055 * of SECTION_SIZE bytes by initializing struct pages in increments of
2056 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2058 * Return true when zone was grown, otherwise return false. We return true even
2059 * when we grow less than requested, to let the caller decide if there are
2060 * enough pages to satisfy the allocation.
2062 * Note: We use noinline because this function is needed only during boot, and
2063 * it is called from a __ref function _deferred_grow_zone. This way we are
2064 * making sure that it is not inlined into permanent text section.
2066 static noinline bool __init
2067 deferred_grow_zone(struct zone *zone, unsigned int order)
2069 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2070 pg_data_t *pgdat = zone->zone_pgdat;
2071 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2072 unsigned long spfn, epfn, flags;
2073 unsigned long nr_pages = 0;
2076 /* Only the last zone may have deferred pages */
2077 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2080 pgdat_resize_lock(pgdat, &flags);
2083 * If someone grew this zone while we were waiting for spinlock, return
2084 * true, as there might be enough pages already.
2086 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2087 pgdat_resize_unlock(pgdat, &flags);
2091 /* If the zone is empty somebody else may have cleared out the zone */
2092 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093 first_deferred_pfn)) {
2094 pgdat->first_deferred_pfn = ULONG_MAX;
2095 pgdat_resize_unlock(pgdat, &flags);
2096 /* Retry only once. */
2097 return first_deferred_pfn != ULONG_MAX;
2101 * Initialize and free pages in MAX_ORDER sized increments so
2102 * that we can avoid introducing any issues with the buddy
2105 while (spfn < epfn) {
2106 /* update our first deferred PFN for this section */
2107 first_deferred_pfn = spfn;
2109 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2110 touch_nmi_watchdog();
2112 /* We should only stop along section boundaries */
2113 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2116 /* If our quota has been met we can stop here */
2117 if (nr_pages >= nr_pages_needed)
2121 pgdat->first_deferred_pfn = spfn;
2122 pgdat_resize_unlock(pgdat, &flags);
2124 return nr_pages > 0;
2128 * deferred_grow_zone() is __init, but it is called from
2129 * get_page_from_freelist() during early boot until deferred_pages permanently
2130 * disables this call. This is why we have refdata wrapper to avoid warning,
2131 * and to ensure that the function body gets unloaded.
2134 _deferred_grow_zone(struct zone *zone, unsigned int order)
2136 return deferred_grow_zone(zone, order);
2139 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2141 void __init page_alloc_init_late(void)
2146 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2148 /* There will be num_node_state(N_MEMORY) threads */
2149 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2150 for_each_node_state(nid, N_MEMORY) {
2151 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2154 /* Block until all are initialised */
2155 wait_for_completion(&pgdat_init_all_done_comp);
2158 * The number of managed pages has changed due to the initialisation
2159 * so the pcpu batch and high limits needs to be updated or the limits
2160 * will be artificially small.
2162 for_each_populated_zone(zone)
2163 zone_pcp_update(zone);
2166 * We initialized the rest of the deferred pages. Permanently disable
2167 * on-demand struct page initialization.
2169 static_branch_disable(&deferred_pages);
2171 /* Reinit limits that are based on free pages after the kernel is up */
2172 files_maxfiles_init();
2177 /* Discard memblock private memory */
2180 for_each_node_state(nid, N_MEMORY)
2181 shuffle_free_memory(NODE_DATA(nid));
2183 for_each_populated_zone(zone)
2184 set_zone_contiguous(zone);
2188 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2189 void __init init_cma_reserved_pageblock(struct page *page)
2191 unsigned i = pageblock_nr_pages;
2192 struct page *p = page;
2195 __ClearPageReserved(p);
2196 set_page_count(p, 0);
2199 set_pageblock_migratetype(page, MIGRATE_CMA);
2201 if (pageblock_order >= MAX_ORDER) {
2202 i = pageblock_nr_pages;
2205 set_page_refcounted(p);
2206 __free_pages(p, MAX_ORDER - 1);
2207 p += MAX_ORDER_NR_PAGES;
2208 } while (i -= MAX_ORDER_NR_PAGES);
2210 set_page_refcounted(page);
2211 __free_pages(page, pageblock_order);
2214 adjust_managed_page_count(page, pageblock_nr_pages);
2215 page_zone(page)->cma_pages += pageblock_nr_pages;
2220 * The order of subdivision here is critical for the IO subsystem.
2221 * Please do not alter this order without good reasons and regression
2222 * testing. Specifically, as large blocks of memory are subdivided,
2223 * the order in which smaller blocks are delivered depends on the order
2224 * they're subdivided in this function. This is the primary factor
2225 * influencing the order in which pages are delivered to the IO
2226 * subsystem according to empirical testing, and this is also justified
2227 * by considering the behavior of a buddy system containing a single
2228 * large block of memory acted on by a series of small allocations.
2229 * This behavior is a critical factor in sglist merging's success.
2233 static inline void expand(struct zone *zone, struct page *page,
2234 int low, int high, int migratetype)
2236 unsigned long size = 1 << high;
2238 while (high > low) {
2241 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2244 * Mark as guard pages (or page), that will allow to
2245 * merge back to allocator when buddy will be freed.
2246 * Corresponding page table entries will not be touched,
2247 * pages will stay not present in virtual address space
2249 if (set_page_guard(zone, &page[size], high, migratetype))
2252 add_to_free_list(&page[size], zone, high, migratetype);
2253 set_buddy_order(&page[size], high);
2257 static void check_new_page_bad(struct page *page)
2259 if (unlikely(page->flags & __PG_HWPOISON)) {
2260 /* Don't complain about hwpoisoned pages */
2261 page_mapcount_reset(page); /* remove PageBuddy */
2266 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2270 * This page is about to be returned from the page allocator
2272 static inline int check_new_page(struct page *page)
2274 if (likely(page_expected_state(page,
2275 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2278 check_new_page_bad(page);
2282 #ifdef CONFIG_DEBUG_VM
2284 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2285 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2286 * also checked when pcp lists are refilled from the free lists.
2288 static inline bool check_pcp_refill(struct page *page)
2290 if (debug_pagealloc_enabled_static())
2291 return check_new_page(page);
2296 static inline bool check_new_pcp(struct page *page)
2298 return check_new_page(page);
2302 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2303 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2304 * enabled, they are also checked when being allocated from the pcp lists.
2306 static inline bool check_pcp_refill(struct page *page)
2308 return check_new_page(page);
2310 static inline bool check_new_pcp(struct page *page)
2312 if (debug_pagealloc_enabled_static())
2313 return check_new_page(page);
2317 #endif /* CONFIG_DEBUG_VM */
2319 static bool check_new_pages(struct page *page, unsigned int order)
2322 for (i = 0; i < (1 << order); i++) {
2323 struct page *p = page + i;
2325 if (unlikely(check_new_page(p)))
2332 inline void post_alloc_hook(struct page *page, unsigned int order,
2335 set_page_private(page, 0);
2336 set_page_refcounted(page);
2338 arch_alloc_page(page, order);
2339 debug_pagealloc_map_pages(page, 1 << order);
2342 * Page unpoisoning must happen before memory initialization.
2343 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2344 * allocations and the page unpoisoning code will complain.
2346 kernel_unpoison_pages(page, 1 << order);
2349 * As memory initialization might be integrated into KASAN,
2350 * kasan_alloc_pages and kernel_init_free_pages must be
2351 * kept together to avoid discrepancies in behavior.
2353 if (kasan_has_integrated_init()) {
2354 kasan_alloc_pages(page, order, gfp_flags);
2356 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2358 kasan_unpoison_pages(page, order, init);
2360 kernel_init_free_pages(page, 1 << order,
2361 gfp_flags & __GFP_ZEROTAGS);
2364 set_page_owner(page, order, gfp_flags);
2367 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2368 unsigned int alloc_flags)
2370 post_alloc_hook(page, order, gfp_flags);
2372 if (order && (gfp_flags & __GFP_COMP))
2373 prep_compound_page(page, order);
2376 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2377 * allocate the page. The expectation is that the caller is taking
2378 * steps that will free more memory. The caller should avoid the page
2379 * being used for !PFMEMALLOC purposes.
2381 if (alloc_flags & ALLOC_NO_WATERMARKS)
2382 set_page_pfmemalloc(page);
2384 clear_page_pfmemalloc(page);
2388 * Go through the free lists for the given migratetype and remove
2389 * the smallest available page from the freelists
2391 static __always_inline
2392 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2395 unsigned int current_order;
2396 struct free_area *area;
2399 /* Find a page of the appropriate size in the preferred list */
2400 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2401 area = &(zone->free_area[current_order]);
2402 page = get_page_from_free_area(area, migratetype);
2405 del_page_from_free_list(page, zone, current_order);
2406 expand(zone, page, order, current_order, migratetype);
2407 set_pcppage_migratetype(page, migratetype);
2416 * This array describes the order lists are fallen back to when
2417 * the free lists for the desirable migrate type are depleted
2419 static int fallbacks[MIGRATE_TYPES][3] = {
2420 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2421 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2422 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2424 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2426 #ifdef CONFIG_MEMORY_ISOLATION
2427 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2432 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2435 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2438 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2439 unsigned int order) { return NULL; }
2443 * Move the free pages in a range to the freelist tail of the requested type.
2444 * Note that start_page and end_pages are not aligned on a pageblock
2445 * boundary. If alignment is required, use move_freepages_block()
2447 static int move_freepages(struct zone *zone,
2448 unsigned long start_pfn, unsigned long end_pfn,
2449 int migratetype, int *num_movable)
2454 int pages_moved = 0;
2456 for (pfn = start_pfn; pfn <= end_pfn;) {
2457 if (!pfn_valid_within(pfn)) {
2462 page = pfn_to_page(pfn);
2463 if (!PageBuddy(page)) {
2465 * We assume that pages that could be isolated for
2466 * migration are movable. But we don't actually try
2467 * isolating, as that would be expensive.
2470 (PageLRU(page) || __PageMovable(page)))
2476 /* Make sure we are not inadvertently changing nodes */
2477 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2478 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2480 order = buddy_order(page);
2481 move_to_free_list(page, zone, order, migratetype);
2483 pages_moved += 1 << order;
2489 int move_freepages_block(struct zone *zone, struct page *page,
2490 int migratetype, int *num_movable)
2492 unsigned long start_pfn, end_pfn, pfn;
2497 pfn = page_to_pfn(page);
2498 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2499 end_pfn = start_pfn + pageblock_nr_pages - 1;
2501 /* Do not cross zone boundaries */
2502 if (!zone_spans_pfn(zone, start_pfn))
2504 if (!zone_spans_pfn(zone, end_pfn))
2507 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2511 static void change_pageblock_range(struct page *pageblock_page,
2512 int start_order, int migratetype)
2514 int nr_pageblocks = 1 << (start_order - pageblock_order);
2516 while (nr_pageblocks--) {
2517 set_pageblock_migratetype(pageblock_page, migratetype);
2518 pageblock_page += pageblock_nr_pages;
2523 * When we are falling back to another migratetype during allocation, try to
2524 * steal extra free pages from the same pageblocks to satisfy further
2525 * allocations, instead of polluting multiple pageblocks.
2527 * If we are stealing a relatively large buddy page, it is likely there will
2528 * be more free pages in the pageblock, so try to steal them all. For
2529 * reclaimable and unmovable allocations, we steal regardless of page size,
2530 * as fragmentation caused by those allocations polluting movable pageblocks
2531 * is worse than movable allocations stealing from unmovable and reclaimable
2534 static bool can_steal_fallback(unsigned int order, int start_mt)
2537 * Leaving this order check is intended, although there is
2538 * relaxed order check in next check. The reason is that
2539 * we can actually steal whole pageblock if this condition met,
2540 * but, below check doesn't guarantee it and that is just heuristic
2541 * so could be changed anytime.
2543 if (order >= pageblock_order)
2546 if (order >= pageblock_order / 2 ||
2547 start_mt == MIGRATE_RECLAIMABLE ||
2548 start_mt == MIGRATE_UNMOVABLE ||
2549 page_group_by_mobility_disabled)
2555 static inline bool boost_watermark(struct zone *zone)
2557 unsigned long max_boost;
2559 if (!watermark_boost_factor)
2562 * Don't bother in zones that are unlikely to produce results.
2563 * On small machines, including kdump capture kernels running
2564 * in a small area, boosting the watermark can cause an out of
2565 * memory situation immediately.
2567 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2570 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2571 watermark_boost_factor, 10000);
2574 * high watermark may be uninitialised if fragmentation occurs
2575 * very early in boot so do not boost. We do not fall
2576 * through and boost by pageblock_nr_pages as failing
2577 * allocations that early means that reclaim is not going
2578 * to help and it may even be impossible to reclaim the
2579 * boosted watermark resulting in a hang.
2584 max_boost = max(pageblock_nr_pages, max_boost);
2586 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2593 * This function implements actual steal behaviour. If order is large enough,
2594 * we can steal whole pageblock. If not, we first move freepages in this
2595 * pageblock to our migratetype and determine how many already-allocated pages
2596 * are there in the pageblock with a compatible migratetype. If at least half
2597 * of pages are free or compatible, we can change migratetype of the pageblock
2598 * itself, so pages freed in the future will be put on the correct free list.
2600 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2601 unsigned int alloc_flags, int start_type, bool whole_block)
2603 unsigned int current_order = buddy_order(page);
2604 int free_pages, movable_pages, alike_pages;
2607 old_block_type = get_pageblock_migratetype(page);
2610 * This can happen due to races and we want to prevent broken
2611 * highatomic accounting.
2613 if (is_migrate_highatomic(old_block_type))
2616 /* Take ownership for orders >= pageblock_order */
2617 if (current_order >= pageblock_order) {
2618 change_pageblock_range(page, current_order, start_type);
2623 * Boost watermarks to increase reclaim pressure to reduce the
2624 * likelihood of future fallbacks. Wake kswapd now as the node
2625 * may be balanced overall and kswapd will not wake naturally.
2627 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2628 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2630 /* We are not allowed to try stealing from the whole block */
2634 free_pages = move_freepages_block(zone, page, start_type,
2637 * Determine how many pages are compatible with our allocation.
2638 * For movable allocation, it's the number of movable pages which
2639 * we just obtained. For other types it's a bit more tricky.
2641 if (start_type == MIGRATE_MOVABLE) {
2642 alike_pages = movable_pages;
2645 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2646 * to MOVABLE pageblock, consider all non-movable pages as
2647 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2648 * vice versa, be conservative since we can't distinguish the
2649 * exact migratetype of non-movable pages.
2651 if (old_block_type == MIGRATE_MOVABLE)
2652 alike_pages = pageblock_nr_pages
2653 - (free_pages + movable_pages);
2658 /* moving whole block can fail due to zone boundary conditions */
2663 * If a sufficient number of pages in the block are either free or of
2664 * comparable migratability as our allocation, claim the whole block.
2666 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2667 page_group_by_mobility_disabled)
2668 set_pageblock_migratetype(page, start_type);
2673 move_to_free_list(page, zone, current_order, start_type);
2677 * Check whether there is a suitable fallback freepage with requested order.
2678 * If only_stealable is true, this function returns fallback_mt only if
2679 * we can steal other freepages all together. This would help to reduce
2680 * fragmentation due to mixed migratetype pages in one pageblock.
2682 int find_suitable_fallback(struct free_area *area, unsigned int order,
2683 int migratetype, bool only_stealable, bool *can_steal)
2688 if (area->nr_free == 0)
2693 fallback_mt = fallbacks[migratetype][i];
2694 if (fallback_mt == MIGRATE_TYPES)
2697 if (free_area_empty(area, fallback_mt))
2700 if (can_steal_fallback(order, migratetype))
2703 if (!only_stealable)
2714 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2715 * there are no empty page blocks that contain a page with a suitable order
2717 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2718 unsigned int alloc_order)
2721 unsigned long max_managed, flags;
2724 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2725 * Check is race-prone but harmless.
2727 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2728 if (zone->nr_reserved_highatomic >= max_managed)
2731 spin_lock_irqsave(&zone->lock, flags);
2733 /* Recheck the nr_reserved_highatomic limit under the lock */
2734 if (zone->nr_reserved_highatomic >= max_managed)
2738 mt = get_pageblock_migratetype(page);
2739 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2740 && !is_migrate_cma(mt)) {
2741 zone->nr_reserved_highatomic += pageblock_nr_pages;
2742 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2743 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2747 spin_unlock_irqrestore(&zone->lock, flags);
2751 * Used when an allocation is about to fail under memory pressure. This
2752 * potentially hurts the reliability of high-order allocations when under
2753 * intense memory pressure but failed atomic allocations should be easier
2754 * to recover from than an OOM.
2756 * If @force is true, try to unreserve a pageblock even though highatomic
2757 * pageblock is exhausted.
2759 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2762 struct zonelist *zonelist = ac->zonelist;
2763 unsigned long flags;
2770 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2773 * Preserve at least one pageblock unless memory pressure
2776 if (!force && zone->nr_reserved_highatomic <=
2780 spin_lock_irqsave(&zone->lock, flags);
2781 for (order = 0; order < MAX_ORDER; order++) {
2782 struct free_area *area = &(zone->free_area[order]);
2784 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2789 * In page freeing path, migratetype change is racy so
2790 * we can counter several free pages in a pageblock
2791 * in this loop although we changed the pageblock type
2792 * from highatomic to ac->migratetype. So we should
2793 * adjust the count once.
2795 if (is_migrate_highatomic_page(page)) {
2797 * It should never happen but changes to
2798 * locking could inadvertently allow a per-cpu
2799 * drain to add pages to MIGRATE_HIGHATOMIC
2800 * while unreserving so be safe and watch for
2803 zone->nr_reserved_highatomic -= min(
2805 zone->nr_reserved_highatomic);
2809 * Convert to ac->migratetype and avoid the normal
2810 * pageblock stealing heuristics. Minimally, the caller
2811 * is doing the work and needs the pages. More
2812 * importantly, if the block was always converted to
2813 * MIGRATE_UNMOVABLE or another type then the number
2814 * of pageblocks that cannot be completely freed
2817 set_pageblock_migratetype(page, ac->migratetype);
2818 ret = move_freepages_block(zone, page, ac->migratetype,
2821 spin_unlock_irqrestore(&zone->lock, flags);
2825 spin_unlock_irqrestore(&zone->lock, flags);
2832 * Try finding a free buddy page on the fallback list and put it on the free
2833 * list of requested migratetype, possibly along with other pages from the same
2834 * block, depending on fragmentation avoidance heuristics. Returns true if
2835 * fallback was found so that __rmqueue_smallest() can grab it.
2837 * The use of signed ints for order and current_order is a deliberate
2838 * deviation from the rest of this file, to make the for loop
2839 * condition simpler.
2841 static __always_inline bool
2842 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2843 unsigned int alloc_flags)
2845 struct free_area *area;
2847 int min_order = order;
2853 * Do not steal pages from freelists belonging to other pageblocks
2854 * i.e. orders < pageblock_order. If there are no local zones free,
2855 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2857 if (alloc_flags & ALLOC_NOFRAGMENT)
2858 min_order = pageblock_order;
2861 * Find the largest available free page in the other list. This roughly
2862 * approximates finding the pageblock with the most free pages, which
2863 * would be too costly to do exactly.
2865 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2867 area = &(zone->free_area[current_order]);
2868 fallback_mt = find_suitable_fallback(area, current_order,
2869 start_migratetype, false, &can_steal);
2870 if (fallback_mt == -1)
2874 * We cannot steal all free pages from the pageblock and the
2875 * requested migratetype is movable. In that case it's better to
2876 * steal and split the smallest available page instead of the
2877 * largest available page, because even if the next movable
2878 * allocation falls back into a different pageblock than this
2879 * one, it won't cause permanent fragmentation.
2881 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2882 && current_order > order)
2891 for (current_order = order; current_order < MAX_ORDER;
2893 area = &(zone->free_area[current_order]);
2894 fallback_mt = find_suitable_fallback(area, current_order,
2895 start_migratetype, false, &can_steal);
2896 if (fallback_mt != -1)
2901 * This should not happen - we already found a suitable fallback
2902 * when looking for the largest page.
2904 VM_BUG_ON(current_order == MAX_ORDER);
2907 page = get_page_from_free_area(area, fallback_mt);
2909 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2912 trace_mm_page_alloc_extfrag(page, order, current_order,
2913 start_migratetype, fallback_mt);
2920 * Do the hard work of removing an element from the buddy allocator.
2921 * Call me with the zone->lock already held.
2923 static __always_inline struct page *
2924 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2925 unsigned int alloc_flags)
2929 if (IS_ENABLED(CONFIG_CMA)) {
2931 * Balance movable allocations between regular and CMA areas by
2932 * allocating from CMA when over half of the zone's free memory
2933 * is in the CMA area.
2935 if (alloc_flags & ALLOC_CMA &&
2936 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2937 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2938 page = __rmqueue_cma_fallback(zone, order);
2944 page = __rmqueue_smallest(zone, order, migratetype);
2945 if (unlikely(!page)) {
2946 if (alloc_flags & ALLOC_CMA)
2947 page = __rmqueue_cma_fallback(zone, order);
2949 if (!page && __rmqueue_fallback(zone, order, migratetype,
2955 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2960 * Obtain a specified number of elements from the buddy allocator, all under
2961 * a single hold of the lock, for efficiency. Add them to the supplied list.
2962 * Returns the number of new pages which were placed at *list.
2964 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2965 unsigned long count, struct list_head *list,
2966 int migratetype, unsigned int alloc_flags)
2968 int i, allocated = 0;
2970 spin_lock(&zone->lock);
2971 for (i = 0; i < count; ++i) {
2972 struct page *page = __rmqueue(zone, order, migratetype,
2974 if (unlikely(page == NULL))
2977 if (unlikely(check_pcp_refill(page)))
2981 * Split buddy pages returned by expand() are received here in
2982 * physical page order. The page is added to the tail of
2983 * caller's list. From the callers perspective, the linked list
2984 * is ordered by page number under some conditions. This is
2985 * useful for IO devices that can forward direction from the
2986 * head, thus also in the physical page order. This is useful
2987 * for IO devices that can merge IO requests if the physical
2988 * pages are ordered properly.
2990 list_add_tail(&page->lru, list);
2992 if (is_migrate_cma(get_pcppage_migratetype(page)))
2993 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2998 * i pages were removed from the buddy list even if some leak due
2999 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3000 * on i. Do not confuse with 'allocated' which is the number of
3001 * pages added to the pcp list.
3003 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3004 spin_unlock(&zone->lock);
3010 * Called from the vmstat counter updater to drain pagesets of this
3011 * currently executing processor on remote nodes after they have
3014 * Note that this function must be called with the thread pinned to
3015 * a single processor.
3017 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3019 unsigned long flags;
3020 int to_drain, batch;
3022 local_irq_save(flags);
3023 batch = READ_ONCE(pcp->batch);
3024 to_drain = min(pcp->count, batch);
3026 free_pcppages_bulk(zone, to_drain, pcp);
3027 local_irq_restore(flags);
3032 * Drain pcplists of the indicated processor and zone.
3034 * The processor must either be the current processor and the
3035 * thread pinned to the current processor or a processor that
3038 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3040 unsigned long flags;
3041 struct per_cpu_pageset *pset;
3042 struct per_cpu_pages *pcp;
3044 local_irq_save(flags);
3045 pset = per_cpu_ptr(zone->pageset, cpu);
3049 free_pcppages_bulk(zone, pcp->count, pcp);
3050 local_irq_restore(flags);
3054 * Drain pcplists of all zones on the indicated processor.
3056 * The processor must either be the current processor and the
3057 * thread pinned to the current processor or a processor that
3060 static void drain_pages(unsigned int cpu)
3064 for_each_populated_zone(zone) {
3065 drain_pages_zone(cpu, zone);
3070 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3072 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3073 * the single zone's pages.
3075 void drain_local_pages(struct zone *zone)
3077 int cpu = smp_processor_id();
3080 drain_pages_zone(cpu, zone);
3085 static void drain_local_pages_wq(struct work_struct *work)
3087 struct pcpu_drain *drain;
3089 drain = container_of(work, struct pcpu_drain, work);
3092 * drain_all_pages doesn't use proper cpu hotplug protection so
3093 * we can race with cpu offline when the WQ can move this from
3094 * a cpu pinned worker to an unbound one. We can operate on a different
3095 * cpu which is alright but we also have to make sure to not move to
3099 drain_local_pages(drain->zone);
3104 * The implementation of drain_all_pages(), exposing an extra parameter to
3105 * drain on all cpus.
3107 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3108 * not empty. The check for non-emptiness can however race with a free to
3109 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3110 * that need the guarantee that every CPU has drained can disable the
3111 * optimizing racy check.
3113 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3118 * Allocate in the BSS so we wont require allocation in
3119 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3121 static cpumask_t cpus_with_pcps;
3124 * Make sure nobody triggers this path before mm_percpu_wq is fully
3127 if (WARN_ON_ONCE(!mm_percpu_wq))
3131 * Do not drain if one is already in progress unless it's specific to
3132 * a zone. Such callers are primarily CMA and memory hotplug and need
3133 * the drain to be complete when the call returns.
3135 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3138 mutex_lock(&pcpu_drain_mutex);
3142 * We don't care about racing with CPU hotplug event
3143 * as offline notification will cause the notified
3144 * cpu to drain that CPU pcps and on_each_cpu_mask
3145 * disables preemption as part of its processing
3147 for_each_online_cpu(cpu) {
3148 struct per_cpu_pageset *pcp;
3150 bool has_pcps = false;
3152 if (force_all_cpus) {
3154 * The pcp.count check is racy, some callers need a
3155 * guarantee that no cpu is missed.
3159 pcp = per_cpu_ptr(zone->pageset, cpu);
3163 for_each_populated_zone(z) {
3164 pcp = per_cpu_ptr(z->pageset, cpu);
3165 if (pcp->pcp.count) {
3173 cpumask_set_cpu(cpu, &cpus_with_pcps);
3175 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3178 for_each_cpu(cpu, &cpus_with_pcps) {
3179 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3182 INIT_WORK(&drain->work, drain_local_pages_wq);
3183 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3185 for_each_cpu(cpu, &cpus_with_pcps)
3186 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3188 mutex_unlock(&pcpu_drain_mutex);
3192 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3194 * When zone parameter is non-NULL, spill just the single zone's pages.
3196 * Note that this can be extremely slow as the draining happens in a workqueue.
3198 void drain_all_pages(struct zone *zone)
3200 __drain_all_pages(zone, false);
3203 #ifdef CONFIG_HIBERNATION
3206 * Touch the watchdog for every WD_PAGE_COUNT pages.
3208 #define WD_PAGE_COUNT (128*1024)
3210 void mark_free_pages(struct zone *zone)
3212 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3213 unsigned long flags;
3214 unsigned int order, t;
3217 if (zone_is_empty(zone))
3220 spin_lock_irqsave(&zone->lock, flags);
3222 max_zone_pfn = zone_end_pfn(zone);
3223 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3224 if (pfn_valid(pfn)) {
3225 page = pfn_to_page(pfn);
3227 if (!--page_count) {
3228 touch_nmi_watchdog();
3229 page_count = WD_PAGE_COUNT;
3232 if (page_zone(page) != zone)
3235 if (!swsusp_page_is_forbidden(page))
3236 swsusp_unset_page_free(page);
3239 for_each_migratetype_order(order, t) {
3240 list_for_each_entry(page,
3241 &zone->free_area[order].free_list[t], lru) {
3244 pfn = page_to_pfn(page);
3245 for (i = 0; i < (1UL << order); i++) {
3246 if (!--page_count) {
3247 touch_nmi_watchdog();
3248 page_count = WD_PAGE_COUNT;
3250 swsusp_set_page_free(pfn_to_page(pfn + i));
3254 spin_unlock_irqrestore(&zone->lock, flags);
3256 #endif /* CONFIG_PM */
3258 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3262 if (!free_pcp_prepare(page))
3265 migratetype = get_pfnblock_migratetype(page, pfn);
3266 set_pcppage_migratetype(page, migratetype);
3270 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3272 struct zone *zone = page_zone(page);
3273 struct per_cpu_pages *pcp;
3276 migratetype = get_pcppage_migratetype(page);
3277 __count_vm_event(PGFREE);
3280 * We only track unmovable, reclaimable and movable on pcp lists.
3281 * Free ISOLATE pages back to the allocator because they are being
3282 * offlined but treat HIGHATOMIC as movable pages so we can get those
3283 * areas back if necessary. Otherwise, we may have to free
3284 * excessively into the page allocator
3286 if (migratetype >= MIGRATE_PCPTYPES) {
3287 if (unlikely(is_migrate_isolate(migratetype))) {
3288 free_one_page(zone, page, pfn, 0, migratetype,
3292 migratetype = MIGRATE_MOVABLE;
3295 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3296 list_add(&page->lru, &pcp->lists[migratetype]);
3298 if (pcp->count >= READ_ONCE(pcp->high))
3299 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3303 * Free a 0-order page
3305 void free_unref_page(struct page *page)
3307 unsigned long flags;
3308 unsigned long pfn = page_to_pfn(page);
3310 if (!free_unref_page_prepare(page, pfn))
3313 local_irq_save(flags);
3314 free_unref_page_commit(page, pfn);
3315 local_irq_restore(flags);
3319 * Free a list of 0-order pages
3321 void free_unref_page_list(struct list_head *list)
3323 struct page *page, *next;
3324 unsigned long flags, pfn;
3325 int batch_count = 0;
3327 /* Prepare pages for freeing */
3328 list_for_each_entry_safe(page, next, list, lru) {
3329 pfn = page_to_pfn(page);
3330 if (!free_unref_page_prepare(page, pfn))
3331 list_del(&page->lru);
3332 set_page_private(page, pfn);
3335 local_irq_save(flags);
3336 list_for_each_entry_safe(page, next, list, lru) {
3337 unsigned long pfn = page_private(page);
3339 set_page_private(page, 0);
3340 trace_mm_page_free_batched(page);
3341 free_unref_page_commit(page, pfn);
3344 * Guard against excessive IRQ disabled times when we get
3345 * a large list of pages to free.
3347 if (++batch_count == SWAP_CLUSTER_MAX) {
3348 local_irq_restore(flags);
3350 local_irq_save(flags);
3353 local_irq_restore(flags);
3357 * split_page takes a non-compound higher-order page, and splits it into
3358 * n (1<<order) sub-pages: page[0..n]
3359 * Each sub-page must be freed individually.
3361 * Note: this is probably too low level an operation for use in drivers.
3362 * Please consult with lkml before using this in your driver.
3364 void split_page(struct page *page, unsigned int order)
3368 VM_BUG_ON_PAGE(PageCompound(page), page);
3369 VM_BUG_ON_PAGE(!page_count(page), page);
3371 for (i = 1; i < (1 << order); i++)
3372 set_page_refcounted(page + i);
3373 split_page_owner(page, 1 << order);
3374 split_page_memcg(page, 1 << order);
3376 EXPORT_SYMBOL_GPL(split_page);
3378 int __isolate_free_page(struct page *page, unsigned int order)
3380 unsigned long watermark;
3384 BUG_ON(!PageBuddy(page));
3386 zone = page_zone(page);
3387 mt = get_pageblock_migratetype(page);
3389 if (!is_migrate_isolate(mt)) {
3391 * Obey watermarks as if the page was being allocated. We can
3392 * emulate a high-order watermark check with a raised order-0
3393 * watermark, because we already know our high-order page
3396 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3397 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3400 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3403 /* Remove page from free list */
3405 del_page_from_free_list(page, zone, order);
3408 * Set the pageblock if the isolated page is at least half of a
3411 if (order >= pageblock_order - 1) {
3412 struct page *endpage = page + (1 << order) - 1;
3413 for (; page < endpage; page += pageblock_nr_pages) {
3414 int mt = get_pageblock_migratetype(page);
3415 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3416 && !is_migrate_highatomic(mt))
3417 set_pageblock_migratetype(page,
3423 return 1UL << order;
3427 * __putback_isolated_page - Return a now-isolated page back where we got it
3428 * @page: Page that was isolated
3429 * @order: Order of the isolated page
3430 * @mt: The page's pageblock's migratetype
3432 * This function is meant to return a page pulled from the free lists via
3433 * __isolate_free_page back to the free lists they were pulled from.
3435 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3437 struct zone *zone = page_zone(page);
3439 /* zone lock should be held when this function is called */
3440 lockdep_assert_held(&zone->lock);
3442 /* Return isolated page to tail of freelist. */
3443 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3444 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3448 * Update NUMA hit/miss statistics
3450 * Must be called with interrupts disabled.
3452 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3455 enum numa_stat_item local_stat = NUMA_LOCAL;
3457 /* skip numa counters update if numa stats is disabled */
3458 if (!static_branch_likely(&vm_numa_stat_key))
3461 if (zone_to_nid(z) != numa_node_id())
3462 local_stat = NUMA_OTHER;
3464 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3465 __inc_numa_state(z, NUMA_HIT);
3467 __inc_numa_state(z, NUMA_MISS);
3468 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3470 __inc_numa_state(z, local_stat);
3474 /* Remove page from the per-cpu list, caller must protect the list */
3476 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3477 unsigned int alloc_flags,
3478 struct per_cpu_pages *pcp,
3479 struct list_head *list)
3484 if (list_empty(list)) {
3485 pcp->count += rmqueue_bulk(zone, 0,
3486 READ_ONCE(pcp->batch), list,
3487 migratetype, alloc_flags);
3488 if (unlikely(list_empty(list)))
3492 page = list_first_entry(list, struct page, lru);
3493 list_del(&page->lru);
3495 } while (check_new_pcp(page));
3500 /* Lock and remove page from the per-cpu list */
3501 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3502 struct zone *zone, gfp_t gfp_flags,
3503 int migratetype, unsigned int alloc_flags)
3505 struct per_cpu_pages *pcp;
3506 struct list_head *list;
3508 unsigned long flags;
3510 local_irq_save(flags);
3511 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3512 list = &pcp->lists[migratetype];
3513 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3515 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3516 zone_statistics(preferred_zone, zone);
3518 local_irq_restore(flags);
3523 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3526 struct page *rmqueue(struct zone *preferred_zone,
3527 struct zone *zone, unsigned int order,
3528 gfp_t gfp_flags, unsigned int alloc_flags,
3531 unsigned long flags;
3534 if (likely(order == 0)) {
3536 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3537 * we need to skip it when CMA area isn't allowed.
3539 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3540 migratetype != MIGRATE_MOVABLE) {
3541 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3542 migratetype, alloc_flags);
3548 * We most definitely don't want callers attempting to
3549 * allocate greater than order-1 page units with __GFP_NOFAIL.
3551 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3552 spin_lock_irqsave(&zone->lock, flags);
3557 * order-0 request can reach here when the pcplist is skipped
3558 * due to non-CMA allocation context. HIGHATOMIC area is
3559 * reserved for high-order atomic allocation, so order-0
3560 * request should skip it.
3562 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3563 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3565 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3568 page = __rmqueue(zone, order, migratetype, alloc_flags);
3569 } while (page && check_new_pages(page, order));
3570 spin_unlock(&zone->lock);
3573 __mod_zone_freepage_state(zone, -(1 << order),
3574 get_pcppage_migratetype(page));
3576 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3577 zone_statistics(preferred_zone, zone);
3578 local_irq_restore(flags);
3581 /* Separate test+clear to avoid unnecessary atomics */
3582 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3583 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3584 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3587 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3591 local_irq_restore(flags);
3595 #ifdef CONFIG_FAIL_PAGE_ALLOC
3598 struct fault_attr attr;
3600 bool ignore_gfp_highmem;
3601 bool ignore_gfp_reclaim;
3603 } fail_page_alloc = {
3604 .attr = FAULT_ATTR_INITIALIZER,
3605 .ignore_gfp_reclaim = true,
3606 .ignore_gfp_highmem = true,
3610 static int __init setup_fail_page_alloc(char *str)
3612 return setup_fault_attr(&fail_page_alloc.attr, str);
3614 __setup("fail_page_alloc=", setup_fail_page_alloc);
3616 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3618 if (order < fail_page_alloc.min_order)
3620 if (gfp_mask & __GFP_NOFAIL)
3622 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3624 if (fail_page_alloc.ignore_gfp_reclaim &&
3625 (gfp_mask & __GFP_DIRECT_RECLAIM))
3628 return should_fail(&fail_page_alloc.attr, 1 << order);
3631 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3633 static int __init fail_page_alloc_debugfs(void)
3635 umode_t mode = S_IFREG | 0600;
3638 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3639 &fail_page_alloc.attr);
3641 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3642 &fail_page_alloc.ignore_gfp_reclaim);
3643 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3644 &fail_page_alloc.ignore_gfp_highmem);
3645 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3650 late_initcall(fail_page_alloc_debugfs);
3652 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3654 #else /* CONFIG_FAIL_PAGE_ALLOC */
3656 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3661 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3663 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3665 return __should_fail_alloc_page(gfp_mask, order);
3667 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3669 static inline long __zone_watermark_unusable_free(struct zone *z,
3670 unsigned int order, unsigned int alloc_flags)
3672 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3673 long unusable_free = (1 << order) - 1;
3676 * If the caller does not have rights to ALLOC_HARDER then subtract
3677 * the high-atomic reserves. This will over-estimate the size of the
3678 * atomic reserve but it avoids a search.
3680 if (likely(!alloc_harder))
3681 unusable_free += z->nr_reserved_highatomic;
3684 /* If allocation can't use CMA areas don't use free CMA pages */
3685 if (!(alloc_flags & ALLOC_CMA))
3686 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3689 return unusable_free;
3693 * Return true if free base pages are above 'mark'. For high-order checks it
3694 * will return true of the order-0 watermark is reached and there is at least
3695 * one free page of a suitable size. Checking now avoids taking the zone lock
3696 * to check in the allocation paths if no pages are free.
3698 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3699 int highest_zoneidx, unsigned int alloc_flags,
3704 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3706 /* free_pages may go negative - that's OK */
3707 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3709 if (alloc_flags & ALLOC_HIGH)
3712 if (unlikely(alloc_harder)) {
3714 * OOM victims can try even harder than normal ALLOC_HARDER
3715 * users on the grounds that it's definitely going to be in
3716 * the exit path shortly and free memory. Any allocation it
3717 * makes during the free path will be small and short-lived.
3719 if (alloc_flags & ALLOC_OOM)
3726 * Check watermarks for an order-0 allocation request. If these
3727 * are not met, then a high-order request also cannot go ahead
3728 * even if a suitable page happened to be free.
3730 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3733 /* If this is an order-0 request then the watermark is fine */
3737 /* For a high-order request, check at least one suitable page is free */
3738 for (o = order; o < MAX_ORDER; o++) {
3739 struct free_area *area = &z->free_area[o];
3745 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3746 if (!free_area_empty(area, mt))
3751 if ((alloc_flags & ALLOC_CMA) &&
3752 !free_area_empty(area, MIGRATE_CMA)) {
3756 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3762 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3763 int highest_zoneidx, unsigned int alloc_flags)
3765 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3766 zone_page_state(z, NR_FREE_PAGES));
3769 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3770 unsigned long mark, int highest_zoneidx,
3771 unsigned int alloc_flags, gfp_t gfp_mask)
3775 free_pages = zone_page_state(z, NR_FREE_PAGES);
3778 * Fast check for order-0 only. If this fails then the reserves
3779 * need to be calculated.
3784 fast_free = free_pages;
3785 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3786 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3790 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3794 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3795 * when checking the min watermark. The min watermark is the
3796 * point where boosting is ignored so that kswapd is woken up
3797 * when below the low watermark.
3799 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3800 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3801 mark = z->_watermark[WMARK_MIN];
3802 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3803 alloc_flags, free_pages);
3809 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3810 unsigned long mark, int highest_zoneidx)
3812 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3814 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3815 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3817 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3824 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3825 node_reclaim_distance;
3827 #else /* CONFIG_NUMA */
3828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3832 #endif /* CONFIG_NUMA */
3835 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3836 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3837 * premature use of a lower zone may cause lowmem pressure problems that
3838 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3839 * probably too small. It only makes sense to spread allocations to avoid
3840 * fragmentation between the Normal and DMA32 zones.
3842 static inline unsigned int
3843 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3845 unsigned int alloc_flags;
3848 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3851 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3853 #ifdef CONFIG_ZONE_DMA32
3857 if (zone_idx(zone) != ZONE_NORMAL)
3861 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3862 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3863 * on UMA that if Normal is populated then so is DMA32.
3865 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3866 if (nr_online_nodes > 1 && !populated_zone(--zone))
3869 alloc_flags |= ALLOC_NOFRAGMENT;
3870 #endif /* CONFIG_ZONE_DMA32 */
3874 /* Must be called after current_gfp_context() which can change gfp_mask */
3875 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3876 unsigned int alloc_flags)
3879 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3880 alloc_flags |= ALLOC_CMA;
3886 * get_page_from_freelist goes through the zonelist trying to allocate
3889 static struct page *
3890 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3891 const struct alloc_context *ac)
3895 struct pglist_data *last_pgdat_dirty_limit = NULL;
3900 * Scan zonelist, looking for a zone with enough free.
3901 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3903 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3904 z = ac->preferred_zoneref;
3905 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3910 if (cpusets_enabled() &&
3911 (alloc_flags & ALLOC_CPUSET) &&
3912 !__cpuset_zone_allowed(zone, gfp_mask))
3915 * When allocating a page cache page for writing, we
3916 * want to get it from a node that is within its dirty
3917 * limit, such that no single node holds more than its
3918 * proportional share of globally allowed dirty pages.
3919 * The dirty limits take into account the node's
3920 * lowmem reserves and high watermark so that kswapd
3921 * should be able to balance it without having to
3922 * write pages from its LRU list.
3924 * XXX: For now, allow allocations to potentially
3925 * exceed the per-node dirty limit in the slowpath
3926 * (spread_dirty_pages unset) before going into reclaim,
3927 * which is important when on a NUMA setup the allowed
3928 * nodes are together not big enough to reach the
3929 * global limit. The proper fix for these situations
3930 * will require awareness of nodes in the
3931 * dirty-throttling and the flusher threads.
3933 if (ac->spread_dirty_pages) {
3934 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3937 if (!node_dirty_ok(zone->zone_pgdat)) {
3938 last_pgdat_dirty_limit = zone->zone_pgdat;
3943 if (no_fallback && nr_online_nodes > 1 &&
3944 zone != ac->preferred_zoneref->zone) {
3948 * If moving to a remote node, retry but allow
3949 * fragmenting fallbacks. Locality is more important
3950 * than fragmentation avoidance.
3952 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3953 if (zone_to_nid(zone) != local_nid) {
3954 alloc_flags &= ~ALLOC_NOFRAGMENT;
3959 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3960 if (!zone_watermark_fast(zone, order, mark,
3961 ac->highest_zoneidx, alloc_flags,
3965 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3967 * Watermark failed for this zone, but see if we can
3968 * grow this zone if it contains deferred pages.
3970 if (static_branch_unlikely(&deferred_pages)) {
3971 if (_deferred_grow_zone(zone, order))
3975 /* Checked here to keep the fast path fast */
3976 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3977 if (alloc_flags & ALLOC_NO_WATERMARKS)
3980 if (!node_reclaim_enabled() ||
3981 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3984 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3986 case NODE_RECLAIM_NOSCAN:
3989 case NODE_RECLAIM_FULL:
3990 /* scanned but unreclaimable */
3993 /* did we reclaim enough */
3994 if (zone_watermark_ok(zone, order, mark,
3995 ac->highest_zoneidx, alloc_flags))
4003 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4004 gfp_mask, alloc_flags, ac->migratetype);
4006 prep_new_page(page, order, gfp_mask, alloc_flags);
4009 * If this is a high-order atomic allocation then check
4010 * if the pageblock should be reserved for the future
4012 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4013 reserve_highatomic_pageblock(page, zone, order);
4017 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4018 /* Try again if zone has deferred pages */
4019 if (static_branch_unlikely(&deferred_pages)) {
4020 if (_deferred_grow_zone(zone, order))
4028 * It's possible on a UMA machine to get through all zones that are
4029 * fragmented. If avoiding fragmentation, reset and try again.
4032 alloc_flags &= ~ALLOC_NOFRAGMENT;
4039 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4041 unsigned int filter = SHOW_MEM_FILTER_NODES;
4044 * This documents exceptions given to allocations in certain
4045 * contexts that are allowed to allocate outside current's set
4048 if (!(gfp_mask & __GFP_NOMEMALLOC))
4049 if (tsk_is_oom_victim(current) ||
4050 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4051 filter &= ~SHOW_MEM_FILTER_NODES;
4052 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4053 filter &= ~SHOW_MEM_FILTER_NODES;
4055 show_mem(filter, nodemask);
4058 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4060 struct va_format vaf;
4062 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4067 va_start(args, fmt);
4070 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4071 current->comm, &vaf, gfp_mask, &gfp_mask,
4072 nodemask_pr_args(nodemask));
4075 cpuset_print_current_mems_allowed();
4078 warn_alloc_show_mem(gfp_mask, nodemask);
4081 static inline struct page *
4082 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4083 unsigned int alloc_flags,
4084 const struct alloc_context *ac)
4088 page = get_page_from_freelist(gfp_mask, order,
4089 alloc_flags|ALLOC_CPUSET, ac);
4091 * fallback to ignore cpuset restriction if our nodes
4095 page = get_page_from_freelist(gfp_mask, order,
4101 static inline struct page *
4102 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4103 const struct alloc_context *ac, unsigned long *did_some_progress)
4105 struct oom_control oc = {
4106 .zonelist = ac->zonelist,
4107 .nodemask = ac->nodemask,
4109 .gfp_mask = gfp_mask,
4114 *did_some_progress = 0;
4117 * Acquire the oom lock. If that fails, somebody else is
4118 * making progress for us.
4120 if (!mutex_trylock(&oom_lock)) {
4121 *did_some_progress = 1;
4122 schedule_timeout_uninterruptible(1);
4127 * Go through the zonelist yet one more time, keep very high watermark
4128 * here, this is only to catch a parallel oom killing, we must fail if
4129 * we're still under heavy pressure. But make sure that this reclaim
4130 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4131 * allocation which will never fail due to oom_lock already held.
4133 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4134 ~__GFP_DIRECT_RECLAIM, order,
4135 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4139 /* Coredumps can quickly deplete all memory reserves */
4140 if (current->flags & PF_DUMPCORE)
4142 /* The OOM killer will not help higher order allocs */
4143 if (order > PAGE_ALLOC_COSTLY_ORDER)
4146 * We have already exhausted all our reclaim opportunities without any
4147 * success so it is time to admit defeat. We will skip the OOM killer
4148 * because it is very likely that the caller has a more reasonable
4149 * fallback than shooting a random task.
4151 * The OOM killer may not free memory on a specific node.
4153 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4155 /* The OOM killer does not needlessly kill tasks for lowmem */
4156 if (ac->highest_zoneidx < ZONE_NORMAL)
4158 if (pm_suspended_storage())
4161 * XXX: GFP_NOFS allocations should rather fail than rely on
4162 * other request to make a forward progress.
4163 * We are in an unfortunate situation where out_of_memory cannot
4164 * do much for this context but let's try it to at least get
4165 * access to memory reserved if the current task is killed (see
4166 * out_of_memory). Once filesystems are ready to handle allocation
4167 * failures more gracefully we should just bail out here.
4170 /* Exhausted what can be done so it's blame time */
4171 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4172 *did_some_progress = 1;
4175 * Help non-failing allocations by giving them access to memory
4178 if (gfp_mask & __GFP_NOFAIL)
4179 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4180 ALLOC_NO_WATERMARKS, ac);
4183 mutex_unlock(&oom_lock);
4188 * Maximum number of compaction retries with a progress before OOM
4189 * killer is consider as the only way to move forward.
4191 #define MAX_COMPACT_RETRIES 16
4193 #ifdef CONFIG_COMPACTION
4194 /* Try memory compaction for high-order allocations before reclaim */
4195 static struct page *
4196 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4197 unsigned int alloc_flags, const struct alloc_context *ac,
4198 enum compact_priority prio, enum compact_result *compact_result)
4200 struct page *page = NULL;
4201 unsigned long pflags;
4202 unsigned int noreclaim_flag;
4207 psi_memstall_enter(&pflags);
4208 noreclaim_flag = memalloc_noreclaim_save();
4210 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4213 memalloc_noreclaim_restore(noreclaim_flag);
4214 psi_memstall_leave(&pflags);
4216 if (*compact_result == COMPACT_SKIPPED)
4219 * At least in one zone compaction wasn't deferred or skipped, so let's
4220 * count a compaction stall
4222 count_vm_event(COMPACTSTALL);
4224 /* Prep a captured page if available */
4226 prep_new_page(page, order, gfp_mask, alloc_flags);
4228 /* Try get a page from the freelist if available */
4230 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4233 struct zone *zone = page_zone(page);
4235 zone->compact_blockskip_flush = false;
4236 compaction_defer_reset(zone, order, true);
4237 count_vm_event(COMPACTSUCCESS);
4242 * It's bad if compaction run occurs and fails. The most likely reason
4243 * is that pages exist, but not enough to satisfy watermarks.
4245 count_vm_event(COMPACTFAIL);
4253 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4254 enum compact_result compact_result,
4255 enum compact_priority *compact_priority,
4256 int *compaction_retries)
4258 int max_retries = MAX_COMPACT_RETRIES;
4261 int retries = *compaction_retries;
4262 enum compact_priority priority = *compact_priority;
4267 if (compaction_made_progress(compact_result))
4268 (*compaction_retries)++;
4271 * compaction considers all the zone as desperately out of memory
4272 * so it doesn't really make much sense to retry except when the
4273 * failure could be caused by insufficient priority
4275 if (compaction_failed(compact_result))
4276 goto check_priority;
4279 * compaction was skipped because there are not enough order-0 pages
4280 * to work with, so we retry only if it looks like reclaim can help.
4282 if (compaction_needs_reclaim(compact_result)) {
4283 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4288 * make sure the compaction wasn't deferred or didn't bail out early
4289 * due to locks contention before we declare that we should give up.
4290 * But the next retry should use a higher priority if allowed, so
4291 * we don't just keep bailing out endlessly.
4293 if (compaction_withdrawn(compact_result)) {
4294 goto check_priority;
4298 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4299 * costly ones because they are de facto nofail and invoke OOM
4300 * killer to move on while costly can fail and users are ready
4301 * to cope with that. 1/4 retries is rather arbitrary but we
4302 * would need much more detailed feedback from compaction to
4303 * make a better decision.
4305 if (order > PAGE_ALLOC_COSTLY_ORDER)
4307 if (*compaction_retries <= max_retries) {
4313 * Make sure there are attempts at the highest priority if we exhausted
4314 * all retries or failed at the lower priorities.
4317 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4318 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4320 if (*compact_priority > min_priority) {
4321 (*compact_priority)--;
4322 *compaction_retries = 0;
4326 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4330 static inline struct page *
4331 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4332 unsigned int alloc_flags, const struct alloc_context *ac,
4333 enum compact_priority prio, enum compact_result *compact_result)
4335 *compact_result = COMPACT_SKIPPED;
4340 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4341 enum compact_result compact_result,
4342 enum compact_priority *compact_priority,
4343 int *compaction_retries)
4348 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4352 * There are setups with compaction disabled which would prefer to loop
4353 * inside the allocator rather than hit the oom killer prematurely.
4354 * Let's give them a good hope and keep retrying while the order-0
4355 * watermarks are OK.
4357 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4358 ac->highest_zoneidx, ac->nodemask) {
4359 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4360 ac->highest_zoneidx, alloc_flags))
4365 #endif /* CONFIG_COMPACTION */
4367 #ifdef CONFIG_LOCKDEP
4368 static struct lockdep_map __fs_reclaim_map =
4369 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4371 static bool __need_reclaim(gfp_t gfp_mask)
4373 /* no reclaim without waiting on it */
4374 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4377 /* this guy won't enter reclaim */
4378 if (current->flags & PF_MEMALLOC)
4381 if (gfp_mask & __GFP_NOLOCKDEP)
4387 void __fs_reclaim_acquire(void)
4389 lock_map_acquire(&__fs_reclaim_map);
4392 void __fs_reclaim_release(void)
4394 lock_map_release(&__fs_reclaim_map);
4397 void fs_reclaim_acquire(gfp_t gfp_mask)
4399 gfp_mask = current_gfp_context(gfp_mask);
4401 if (__need_reclaim(gfp_mask)) {
4402 if (gfp_mask & __GFP_FS)
4403 __fs_reclaim_acquire();
4405 #ifdef CONFIG_MMU_NOTIFIER
4406 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4407 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4412 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4414 void fs_reclaim_release(gfp_t gfp_mask)
4416 gfp_mask = current_gfp_context(gfp_mask);
4418 if (__need_reclaim(gfp_mask)) {
4419 if (gfp_mask & __GFP_FS)
4420 __fs_reclaim_release();
4423 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4426 /* Perform direct synchronous page reclaim */
4427 static unsigned long
4428 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4429 const struct alloc_context *ac)
4431 unsigned int noreclaim_flag;
4432 unsigned long pflags, progress;
4436 /* We now go into synchronous reclaim */
4437 cpuset_memory_pressure_bump();
4438 psi_memstall_enter(&pflags);
4439 fs_reclaim_acquire(gfp_mask);
4440 noreclaim_flag = memalloc_noreclaim_save();
4442 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4445 memalloc_noreclaim_restore(noreclaim_flag);
4446 fs_reclaim_release(gfp_mask);
4447 psi_memstall_leave(&pflags);
4454 /* The really slow allocator path where we enter direct reclaim */
4455 static inline struct page *
4456 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4457 unsigned int alloc_flags, const struct alloc_context *ac,
4458 unsigned long *did_some_progress)
4460 struct page *page = NULL;
4461 bool drained = false;
4463 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4464 if (unlikely(!(*did_some_progress)))
4468 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4471 * If an allocation failed after direct reclaim, it could be because
4472 * pages are pinned on the per-cpu lists or in high alloc reserves.
4473 * Shrink them and try again
4475 if (!page && !drained) {
4476 unreserve_highatomic_pageblock(ac, false);
4477 drain_all_pages(NULL);
4485 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4486 const struct alloc_context *ac)
4490 pg_data_t *last_pgdat = NULL;
4491 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4493 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4495 if (last_pgdat != zone->zone_pgdat)
4496 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4497 last_pgdat = zone->zone_pgdat;
4501 static inline unsigned int
4502 gfp_to_alloc_flags(gfp_t gfp_mask)
4504 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4507 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4508 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4509 * to save two branches.
4511 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4512 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4515 * The caller may dip into page reserves a bit more if the caller
4516 * cannot run direct reclaim, or if the caller has realtime scheduling
4517 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4518 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4520 alloc_flags |= (__force int)
4521 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4523 if (gfp_mask & __GFP_ATOMIC) {
4525 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4526 * if it can't schedule.
4528 if (!(gfp_mask & __GFP_NOMEMALLOC))
4529 alloc_flags |= ALLOC_HARDER;
4531 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4532 * comment for __cpuset_node_allowed().
4534 alloc_flags &= ~ALLOC_CPUSET;
4535 } else if (unlikely(rt_task(current)) && !in_interrupt())
4536 alloc_flags |= ALLOC_HARDER;
4538 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4543 static bool oom_reserves_allowed(struct task_struct *tsk)
4545 if (!tsk_is_oom_victim(tsk))
4549 * !MMU doesn't have oom reaper so give access to memory reserves
4550 * only to the thread with TIF_MEMDIE set
4552 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4559 * Distinguish requests which really need access to full memory
4560 * reserves from oom victims which can live with a portion of it
4562 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4564 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4566 if (gfp_mask & __GFP_MEMALLOC)
4567 return ALLOC_NO_WATERMARKS;
4568 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4569 return ALLOC_NO_WATERMARKS;
4570 if (!in_interrupt()) {
4571 if (current->flags & PF_MEMALLOC)
4572 return ALLOC_NO_WATERMARKS;
4573 else if (oom_reserves_allowed(current))
4580 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4582 return !!__gfp_pfmemalloc_flags(gfp_mask);
4586 * Checks whether it makes sense to retry the reclaim to make a forward progress
4587 * for the given allocation request.
4589 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4590 * without success, or when we couldn't even meet the watermark if we
4591 * reclaimed all remaining pages on the LRU lists.
4593 * Returns true if a retry is viable or false to enter the oom path.
4596 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4597 struct alloc_context *ac, int alloc_flags,
4598 bool did_some_progress, int *no_progress_loops)
4605 * Costly allocations might have made a progress but this doesn't mean
4606 * their order will become available due to high fragmentation so
4607 * always increment the no progress counter for them
4609 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4610 *no_progress_loops = 0;
4612 (*no_progress_loops)++;
4615 * Make sure we converge to OOM if we cannot make any progress
4616 * several times in the row.
4618 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4619 /* Before OOM, exhaust highatomic_reserve */
4620 return unreserve_highatomic_pageblock(ac, true);
4624 * Keep reclaiming pages while there is a chance this will lead
4625 * somewhere. If none of the target zones can satisfy our allocation
4626 * request even if all reclaimable pages are considered then we are
4627 * screwed and have to go OOM.
4629 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4630 ac->highest_zoneidx, ac->nodemask) {
4631 unsigned long available;
4632 unsigned long reclaimable;
4633 unsigned long min_wmark = min_wmark_pages(zone);
4636 available = reclaimable = zone_reclaimable_pages(zone);
4637 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4640 * Would the allocation succeed if we reclaimed all
4641 * reclaimable pages?
4643 wmark = __zone_watermark_ok(zone, order, min_wmark,
4644 ac->highest_zoneidx, alloc_flags, available);
4645 trace_reclaim_retry_zone(z, order, reclaimable,
4646 available, min_wmark, *no_progress_loops, wmark);
4649 * If we didn't make any progress and have a lot of
4650 * dirty + writeback pages then we should wait for
4651 * an IO to complete to slow down the reclaim and
4652 * prevent from pre mature OOM
4654 if (!did_some_progress) {
4655 unsigned long write_pending;
4657 write_pending = zone_page_state_snapshot(zone,
4658 NR_ZONE_WRITE_PENDING);
4660 if (2 * write_pending > reclaimable) {
4661 congestion_wait(BLK_RW_ASYNC, HZ/10);
4673 * Memory allocation/reclaim might be called from a WQ context and the
4674 * current implementation of the WQ concurrency control doesn't
4675 * recognize that a particular WQ is congested if the worker thread is
4676 * looping without ever sleeping. Therefore we have to do a short sleep
4677 * here rather than calling cond_resched().
4679 if (current->flags & PF_WQ_WORKER)
4680 schedule_timeout_uninterruptible(1);
4687 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4690 * It's possible that cpuset's mems_allowed and the nodemask from
4691 * mempolicy don't intersect. This should be normally dealt with by
4692 * policy_nodemask(), but it's possible to race with cpuset update in
4693 * such a way the check therein was true, and then it became false
4694 * before we got our cpuset_mems_cookie here.
4695 * This assumes that for all allocations, ac->nodemask can come only
4696 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4697 * when it does not intersect with the cpuset restrictions) or the
4698 * caller can deal with a violated nodemask.
4700 if (cpusets_enabled() && ac->nodemask &&
4701 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4702 ac->nodemask = NULL;
4707 * When updating a task's mems_allowed or mempolicy nodemask, it is
4708 * possible to race with parallel threads in such a way that our
4709 * allocation can fail while the mask is being updated. If we are about
4710 * to fail, check if the cpuset changed during allocation and if so,
4713 if (read_mems_allowed_retry(cpuset_mems_cookie))
4719 static inline struct page *
4720 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4721 struct alloc_context *ac)
4723 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4724 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4725 struct page *page = NULL;
4726 unsigned int alloc_flags;
4727 unsigned long did_some_progress;
4728 enum compact_priority compact_priority;
4729 enum compact_result compact_result;
4730 int compaction_retries;
4731 int no_progress_loops;
4732 unsigned int cpuset_mems_cookie;
4736 * We also sanity check to catch abuse of atomic reserves being used by
4737 * callers that are not in atomic context.
4739 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4740 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4741 gfp_mask &= ~__GFP_ATOMIC;
4744 compaction_retries = 0;
4745 no_progress_loops = 0;
4746 compact_priority = DEF_COMPACT_PRIORITY;
4747 cpuset_mems_cookie = read_mems_allowed_begin();
4750 * The fast path uses conservative alloc_flags to succeed only until
4751 * kswapd needs to be woken up, and to avoid the cost of setting up
4752 * alloc_flags precisely. So we do that now.
4754 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4757 * We need to recalculate the starting point for the zonelist iterator
4758 * because we might have used different nodemask in the fast path, or
4759 * there was a cpuset modification and we are retrying - otherwise we
4760 * could end up iterating over non-eligible zones endlessly.
4762 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4763 ac->highest_zoneidx, ac->nodemask);
4764 if (!ac->preferred_zoneref->zone)
4767 if (alloc_flags & ALLOC_KSWAPD)
4768 wake_all_kswapds(order, gfp_mask, ac);
4771 * The adjusted alloc_flags might result in immediate success, so try
4774 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4779 * For costly allocations, try direct compaction first, as it's likely
4780 * that we have enough base pages and don't need to reclaim. For non-
4781 * movable high-order allocations, do that as well, as compaction will
4782 * try prevent permanent fragmentation by migrating from blocks of the
4784 * Don't try this for allocations that are allowed to ignore
4785 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4787 if (can_direct_reclaim &&
4789 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4790 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4791 page = __alloc_pages_direct_compact(gfp_mask, order,
4793 INIT_COMPACT_PRIORITY,
4799 * Checks for costly allocations with __GFP_NORETRY, which
4800 * includes some THP page fault allocations
4802 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4804 * If allocating entire pageblock(s) and compaction
4805 * failed because all zones are below low watermarks
4806 * or is prohibited because it recently failed at this
4807 * order, fail immediately unless the allocator has
4808 * requested compaction and reclaim retry.
4811 * - potentially very expensive because zones are far
4812 * below their low watermarks or this is part of very
4813 * bursty high order allocations,
4814 * - not guaranteed to help because isolate_freepages()
4815 * may not iterate over freed pages as part of its
4817 * - unlikely to make entire pageblocks free on its
4820 if (compact_result == COMPACT_SKIPPED ||
4821 compact_result == COMPACT_DEFERRED)
4825 * Looks like reclaim/compaction is worth trying, but
4826 * sync compaction could be very expensive, so keep
4827 * using async compaction.
4829 compact_priority = INIT_COMPACT_PRIORITY;
4834 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4835 if (alloc_flags & ALLOC_KSWAPD)
4836 wake_all_kswapds(order, gfp_mask, ac);
4838 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4840 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4843 * Reset the nodemask and zonelist iterators if memory policies can be
4844 * ignored. These allocations are high priority and system rather than
4847 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4848 ac->nodemask = NULL;
4849 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4850 ac->highest_zoneidx, ac->nodemask);
4853 /* Attempt with potentially adjusted zonelist and alloc_flags */
4854 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4858 /* Caller is not willing to reclaim, we can't balance anything */
4859 if (!can_direct_reclaim)
4862 /* Avoid recursion of direct reclaim */
4863 if (current->flags & PF_MEMALLOC)
4866 /* Try direct reclaim and then allocating */
4867 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4868 &did_some_progress);
4872 /* Try direct compaction and then allocating */
4873 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4874 compact_priority, &compact_result);
4878 /* Do not loop if specifically requested */
4879 if (gfp_mask & __GFP_NORETRY)
4883 * Do not retry costly high order allocations unless they are
4884 * __GFP_RETRY_MAYFAIL
4886 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4889 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4890 did_some_progress > 0, &no_progress_loops))
4894 * It doesn't make any sense to retry for the compaction if the order-0
4895 * reclaim is not able to make any progress because the current
4896 * implementation of the compaction depends on the sufficient amount
4897 * of free memory (see __compaction_suitable)
4899 if (did_some_progress > 0 &&
4900 should_compact_retry(ac, order, alloc_flags,
4901 compact_result, &compact_priority,
4902 &compaction_retries))
4906 /* Deal with possible cpuset update races before we start OOM killing */
4907 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4910 /* Reclaim has failed us, start killing things */
4911 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4915 /* Avoid allocations with no watermarks from looping endlessly */
4916 if (tsk_is_oom_victim(current) &&
4917 (alloc_flags & ALLOC_OOM ||
4918 (gfp_mask & __GFP_NOMEMALLOC)))
4921 /* Retry as long as the OOM killer is making progress */
4922 if (did_some_progress) {
4923 no_progress_loops = 0;
4928 /* Deal with possible cpuset update races before we fail */
4929 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4933 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4936 if (gfp_mask & __GFP_NOFAIL) {
4938 * All existing users of the __GFP_NOFAIL are blockable, so warn
4939 * of any new users that actually require GFP_NOWAIT
4941 if (WARN_ON_ONCE(!can_direct_reclaim))
4945 * PF_MEMALLOC request from this context is rather bizarre
4946 * because we cannot reclaim anything and only can loop waiting
4947 * for somebody to do a work for us
4949 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4952 * non failing costly orders are a hard requirement which we
4953 * are not prepared for much so let's warn about these users
4954 * so that we can identify them and convert them to something
4957 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4960 * Help non-failing allocations by giving them access to memory
4961 * reserves but do not use ALLOC_NO_WATERMARKS because this
4962 * could deplete whole memory reserves which would just make
4963 * the situation worse
4965 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4973 warn_alloc(gfp_mask, ac->nodemask,
4974 "page allocation failure: order:%u", order);
4979 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4980 int preferred_nid, nodemask_t *nodemask,
4981 struct alloc_context *ac, gfp_t *alloc_gfp,
4982 unsigned int *alloc_flags)
4984 ac->highest_zoneidx = gfp_zone(gfp_mask);
4985 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4986 ac->nodemask = nodemask;
4987 ac->migratetype = gfp_migratetype(gfp_mask);
4989 if (cpusets_enabled()) {
4990 *alloc_gfp |= __GFP_HARDWALL;
4992 * When we are in the interrupt context, it is irrelevant
4993 * to the current task context. It means that any node ok.
4995 if (!in_interrupt() && !ac->nodemask)
4996 ac->nodemask = &cpuset_current_mems_allowed;
4998 *alloc_flags |= ALLOC_CPUSET;
5001 fs_reclaim_acquire(gfp_mask);
5002 fs_reclaim_release(gfp_mask);
5004 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5006 if (should_fail_alloc_page(gfp_mask, order))
5009 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5011 /* Dirty zone balancing only done in the fast path */
5012 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5015 * The preferred zone is used for statistics but crucially it is
5016 * also used as the starting point for the zonelist iterator. It
5017 * may get reset for allocations that ignore memory policies.
5019 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5020 ac->highest_zoneidx, ac->nodemask);
5026 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5027 * @gfp: GFP flags for the allocation
5028 * @preferred_nid: The preferred NUMA node ID to allocate from
5029 * @nodemask: Set of nodes to allocate from, may be NULL
5030 * @nr_pages: The number of pages desired on the list or array
5031 * @page_list: Optional list to store the allocated pages
5032 * @page_array: Optional array to store the pages
5034 * This is a batched version of the page allocator that attempts to
5035 * allocate nr_pages quickly. Pages are added to page_list if page_list
5036 * is not NULL, otherwise it is assumed that the page_array is valid.
5038 * For lists, nr_pages is the number of pages that should be allocated.
5040 * For arrays, only NULL elements are populated with pages and nr_pages
5041 * is the maximum number of pages that will be stored in the array.
5043 * Returns the number of pages on the list or array.
5045 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5046 nodemask_t *nodemask, int nr_pages,
5047 struct list_head *page_list,
5048 struct page **page_array)
5051 unsigned long flags;
5054 struct per_cpu_pages *pcp;
5055 struct list_head *pcp_list;
5056 struct alloc_context ac;
5058 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5059 int nr_populated = 0;
5061 if (unlikely(nr_pages <= 0))
5065 * Skip populated array elements to determine if any pages need
5066 * to be allocated before disabling IRQs.
5068 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5071 /* Already populated array? */
5072 if (unlikely(page_array && nr_pages - nr_populated == 0))
5073 return nr_populated;
5075 /* Use the single page allocator for one page. */
5076 if (nr_pages - nr_populated == 1)
5079 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5080 gfp &= gfp_allowed_mask;
5082 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5086 /* Find an allowed local zone that meets the low watermark. */
5087 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5090 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5091 !__cpuset_zone_allowed(zone, gfp)) {
5095 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5096 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5100 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5101 if (zone_watermark_fast(zone, 0, mark,
5102 zonelist_zone_idx(ac.preferred_zoneref),
5103 alloc_flags, gfp)) {
5109 * If there are no allowed local zones that meets the watermarks then
5110 * try to allocate a single page and reclaim if necessary.
5112 if (unlikely(!zone))
5115 /* Attempt the batch allocation */
5116 local_irq_save(flags);
5117 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5118 pcp_list = &pcp->lists[ac.migratetype];
5120 while (nr_populated < nr_pages) {
5122 /* Skip existing pages */
5123 if (page_array && page_array[nr_populated]) {
5128 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5130 if (unlikely(!page)) {
5131 /* Try and get at least one page */
5138 * Ideally this would be batched but the best way to do
5139 * that cheaply is to first convert zone_statistics to
5140 * be inaccurate per-cpu counter like vm_events to avoid
5141 * a RMW cycle then do the accounting with IRQs enabled.
5143 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5144 zone_statistics(ac.preferred_zoneref->zone, zone);
5146 prep_new_page(page, 0, gfp, 0);
5148 list_add(&page->lru, page_list);
5150 page_array[nr_populated] = page;
5154 local_irq_restore(flags);
5156 return nr_populated;
5159 local_irq_restore(flags);
5162 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5165 list_add(&page->lru, page_list);
5167 page_array[nr_populated] = page;
5171 return nr_populated;
5173 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5176 * This is the 'heart' of the zoned buddy allocator.
5178 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5179 nodemask_t *nodemask)
5182 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5183 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5184 struct alloc_context ac = { };
5187 * There are several places where we assume that the order value is sane
5188 * so bail out early if the request is out of bound.
5190 if (unlikely(order >= MAX_ORDER)) {
5191 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5195 gfp &= gfp_allowed_mask;
5197 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5198 * resp. GFP_NOIO which has to be inherited for all allocation requests
5199 * from a particular context which has been marked by
5200 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5201 * movable zones are not used during allocation.
5203 gfp = current_gfp_context(gfp);
5205 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5206 &alloc_gfp, &alloc_flags))
5210 * Forbid the first pass from falling back to types that fragment
5211 * memory until all local zones are considered.
5213 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5215 /* First allocation attempt */
5216 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5221 ac.spread_dirty_pages = false;
5224 * Restore the original nodemask if it was potentially replaced with
5225 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5227 ac.nodemask = nodemask;
5229 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5232 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5233 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5234 __free_pages(page, order);
5238 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5242 EXPORT_SYMBOL(__alloc_pages);
5245 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5246 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5247 * you need to access high mem.
5249 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5253 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5256 return (unsigned long) page_address(page);
5258 EXPORT_SYMBOL(__get_free_pages);
5260 unsigned long get_zeroed_page(gfp_t gfp_mask)
5262 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5264 EXPORT_SYMBOL(get_zeroed_page);
5266 static inline void free_the_page(struct page *page, unsigned int order)
5268 if (order == 0) /* Via pcp? */
5269 free_unref_page(page);
5271 __free_pages_ok(page, order, FPI_NONE);
5275 * __free_pages - Free pages allocated with alloc_pages().
5276 * @page: The page pointer returned from alloc_pages().
5277 * @order: The order of the allocation.
5279 * This function can free multi-page allocations that are not compound
5280 * pages. It does not check that the @order passed in matches that of
5281 * the allocation, so it is easy to leak memory. Freeing more memory
5282 * than was allocated will probably emit a warning.
5284 * If the last reference to this page is speculative, it will be released
5285 * by put_page() which only frees the first page of a non-compound
5286 * allocation. To prevent the remaining pages from being leaked, we free
5287 * the subsequent pages here. If you want to use the page's reference
5288 * count to decide when to free the allocation, you should allocate a
5289 * compound page, and use put_page() instead of __free_pages().
5291 * Context: May be called in interrupt context or while holding a normal
5292 * spinlock, but not in NMI context or while holding a raw spinlock.
5294 void __free_pages(struct page *page, unsigned int order)
5296 if (put_page_testzero(page))
5297 free_the_page(page, order);
5298 else if (!PageHead(page))
5300 free_the_page(page + (1 << order), order);
5302 EXPORT_SYMBOL(__free_pages);
5304 void free_pages(unsigned long addr, unsigned int order)
5307 VM_BUG_ON(!virt_addr_valid((void *)addr));
5308 __free_pages(virt_to_page((void *)addr), order);
5312 EXPORT_SYMBOL(free_pages);
5316 * An arbitrary-length arbitrary-offset area of memory which resides
5317 * within a 0 or higher order page. Multiple fragments within that page
5318 * are individually refcounted, in the page's reference counter.
5320 * The page_frag functions below provide a simple allocation framework for
5321 * page fragments. This is used by the network stack and network device
5322 * drivers to provide a backing region of memory for use as either an
5323 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5325 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5328 struct page *page = NULL;
5329 gfp_t gfp = gfp_mask;
5331 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5332 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5334 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5335 PAGE_FRAG_CACHE_MAX_ORDER);
5336 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5338 if (unlikely(!page))
5339 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5341 nc->va = page ? page_address(page) : NULL;
5346 void __page_frag_cache_drain(struct page *page, unsigned int count)
5348 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5350 if (page_ref_sub_and_test(page, count))
5351 free_the_page(page, compound_order(page));
5353 EXPORT_SYMBOL(__page_frag_cache_drain);
5355 void *page_frag_alloc_align(struct page_frag_cache *nc,
5356 unsigned int fragsz, gfp_t gfp_mask,
5357 unsigned int align_mask)
5359 unsigned int size = PAGE_SIZE;
5363 if (unlikely(!nc->va)) {
5365 page = __page_frag_cache_refill(nc, gfp_mask);
5369 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5370 /* if size can vary use size else just use PAGE_SIZE */
5373 /* Even if we own the page, we do not use atomic_set().
5374 * This would break get_page_unless_zero() users.
5376 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5378 /* reset page count bias and offset to start of new frag */
5379 nc->pfmemalloc = page_is_pfmemalloc(page);
5380 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5384 offset = nc->offset - fragsz;
5385 if (unlikely(offset < 0)) {
5386 page = virt_to_page(nc->va);
5388 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5391 if (unlikely(nc->pfmemalloc)) {
5392 free_the_page(page, compound_order(page));
5396 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5397 /* if size can vary use size else just use PAGE_SIZE */
5400 /* OK, page count is 0, we can safely set it */
5401 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5403 /* reset page count bias and offset to start of new frag */
5404 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5405 offset = size - fragsz;
5409 offset &= align_mask;
5410 nc->offset = offset;
5412 return nc->va + offset;
5414 EXPORT_SYMBOL(page_frag_alloc_align);
5417 * Frees a page fragment allocated out of either a compound or order 0 page.
5419 void page_frag_free(void *addr)
5421 struct page *page = virt_to_head_page(addr);
5423 if (unlikely(put_page_testzero(page)))
5424 free_the_page(page, compound_order(page));
5426 EXPORT_SYMBOL(page_frag_free);
5428 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5433 unsigned long used = addr + PAGE_ALIGN(size);
5435 split_page(virt_to_page((void *)addr), order);
5436 while (used < alloc_end) {
5441 return (void *)addr;
5445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5446 * @size: the number of bytes to allocate
5447 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5449 * This function is similar to alloc_pages(), except that it allocates the
5450 * minimum number of pages to satisfy the request. alloc_pages() can only
5451 * allocate memory in power-of-two pages.
5453 * This function is also limited by MAX_ORDER.
5455 * Memory allocated by this function must be released by free_pages_exact().
5457 * Return: pointer to the allocated area or %NULL in case of error.
5459 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5461 unsigned int order = get_order(size);
5464 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5465 gfp_mask &= ~__GFP_COMP;
5467 addr = __get_free_pages(gfp_mask, order);
5468 return make_alloc_exact(addr, order, size);
5470 EXPORT_SYMBOL(alloc_pages_exact);
5473 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5475 * @nid: the preferred node ID where memory should be allocated
5476 * @size: the number of bytes to allocate
5477 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5479 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5482 * Return: pointer to the allocated area or %NULL in case of error.
5484 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5486 unsigned int order = get_order(size);
5489 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5490 gfp_mask &= ~__GFP_COMP;
5492 p = alloc_pages_node(nid, gfp_mask, order);
5495 return make_alloc_exact((unsigned long)page_address(p), order, size);
5499 * free_pages_exact - release memory allocated via alloc_pages_exact()
5500 * @virt: the value returned by alloc_pages_exact.
5501 * @size: size of allocation, same value as passed to alloc_pages_exact().
5503 * Release the memory allocated by a previous call to alloc_pages_exact.
5505 void free_pages_exact(void *virt, size_t size)
5507 unsigned long addr = (unsigned long)virt;
5508 unsigned long end = addr + PAGE_ALIGN(size);
5510 while (addr < end) {
5515 EXPORT_SYMBOL(free_pages_exact);
5518 * nr_free_zone_pages - count number of pages beyond high watermark
5519 * @offset: The zone index of the highest zone
5521 * nr_free_zone_pages() counts the number of pages which are beyond the
5522 * high watermark within all zones at or below a given zone index. For each
5523 * zone, the number of pages is calculated as:
5525 * nr_free_zone_pages = managed_pages - high_pages
5527 * Return: number of pages beyond high watermark.
5529 static unsigned long nr_free_zone_pages(int offset)
5534 /* Just pick one node, since fallback list is circular */
5535 unsigned long sum = 0;
5537 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5539 for_each_zone_zonelist(zone, z, zonelist, offset) {
5540 unsigned long size = zone_managed_pages(zone);
5541 unsigned long high = high_wmark_pages(zone);
5550 * nr_free_buffer_pages - count number of pages beyond high watermark
5552 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5553 * watermark within ZONE_DMA and ZONE_NORMAL.
5555 * Return: number of pages beyond high watermark within ZONE_DMA and
5558 unsigned long nr_free_buffer_pages(void)
5560 return nr_free_zone_pages(gfp_zone(GFP_USER));
5562 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5564 static inline void show_node(struct zone *zone)
5566 if (IS_ENABLED(CONFIG_NUMA))
5567 printk("Node %d ", zone_to_nid(zone));
5570 long si_mem_available(void)
5573 unsigned long pagecache;
5574 unsigned long wmark_low = 0;
5575 unsigned long pages[NR_LRU_LISTS];
5576 unsigned long reclaimable;
5580 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5581 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5584 wmark_low += low_wmark_pages(zone);
5587 * Estimate the amount of memory available for userspace allocations,
5588 * without causing swapping.
5590 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5593 * Not all the page cache can be freed, otherwise the system will
5594 * start swapping. Assume at least half of the page cache, or the
5595 * low watermark worth of cache, needs to stay.
5597 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5598 pagecache -= min(pagecache / 2, wmark_low);
5599 available += pagecache;
5602 * Part of the reclaimable slab and other kernel memory consists of
5603 * items that are in use, and cannot be freed. Cap this estimate at the
5606 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5607 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5608 available += reclaimable - min(reclaimable / 2, wmark_low);
5614 EXPORT_SYMBOL_GPL(si_mem_available);
5616 void si_meminfo(struct sysinfo *val)
5618 val->totalram = totalram_pages();
5619 val->sharedram = global_node_page_state(NR_SHMEM);
5620 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5621 val->bufferram = nr_blockdev_pages();
5622 val->totalhigh = totalhigh_pages();
5623 val->freehigh = nr_free_highpages();
5624 val->mem_unit = PAGE_SIZE;
5627 EXPORT_SYMBOL(si_meminfo);
5630 void si_meminfo_node(struct sysinfo *val, int nid)
5632 int zone_type; /* needs to be signed */
5633 unsigned long managed_pages = 0;
5634 unsigned long managed_highpages = 0;
5635 unsigned long free_highpages = 0;
5636 pg_data_t *pgdat = NODE_DATA(nid);
5638 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5639 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5640 val->totalram = managed_pages;
5641 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5642 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5643 #ifdef CONFIG_HIGHMEM
5644 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5645 struct zone *zone = &pgdat->node_zones[zone_type];
5647 if (is_highmem(zone)) {
5648 managed_highpages += zone_managed_pages(zone);
5649 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5652 val->totalhigh = managed_highpages;
5653 val->freehigh = free_highpages;
5655 val->totalhigh = managed_highpages;
5656 val->freehigh = free_highpages;
5658 val->mem_unit = PAGE_SIZE;
5663 * Determine whether the node should be displayed or not, depending on whether
5664 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5666 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5668 if (!(flags & SHOW_MEM_FILTER_NODES))
5672 * no node mask - aka implicit memory numa policy. Do not bother with
5673 * the synchronization - read_mems_allowed_begin - because we do not
5674 * have to be precise here.
5677 nodemask = &cpuset_current_mems_allowed;
5679 return !node_isset(nid, *nodemask);
5682 #define K(x) ((x) << (PAGE_SHIFT-10))
5684 static void show_migration_types(unsigned char type)
5686 static const char types[MIGRATE_TYPES] = {
5687 [MIGRATE_UNMOVABLE] = 'U',
5688 [MIGRATE_MOVABLE] = 'M',
5689 [MIGRATE_RECLAIMABLE] = 'E',
5690 [MIGRATE_HIGHATOMIC] = 'H',
5692 [MIGRATE_CMA] = 'C',
5694 #ifdef CONFIG_MEMORY_ISOLATION
5695 [MIGRATE_ISOLATE] = 'I',
5698 char tmp[MIGRATE_TYPES + 1];
5702 for (i = 0; i < MIGRATE_TYPES; i++) {
5703 if (type & (1 << i))
5708 printk(KERN_CONT "(%s) ", tmp);
5712 * Show free area list (used inside shift_scroll-lock stuff)
5713 * We also calculate the percentage fragmentation. We do this by counting the
5714 * memory on each free list with the exception of the first item on the list.
5717 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5720 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5722 unsigned long free_pcp = 0;
5727 for_each_populated_zone(zone) {
5728 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5731 for_each_online_cpu(cpu)
5732 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5735 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5736 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5737 " unevictable:%lu dirty:%lu writeback:%lu\n"
5738 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5739 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5740 " free:%lu free_pcp:%lu free_cma:%lu\n",
5741 global_node_page_state(NR_ACTIVE_ANON),
5742 global_node_page_state(NR_INACTIVE_ANON),
5743 global_node_page_state(NR_ISOLATED_ANON),
5744 global_node_page_state(NR_ACTIVE_FILE),
5745 global_node_page_state(NR_INACTIVE_FILE),
5746 global_node_page_state(NR_ISOLATED_FILE),
5747 global_node_page_state(NR_UNEVICTABLE),
5748 global_node_page_state(NR_FILE_DIRTY),
5749 global_node_page_state(NR_WRITEBACK),
5750 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5751 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5752 global_node_page_state(NR_FILE_MAPPED),
5753 global_node_page_state(NR_SHMEM),
5754 global_node_page_state(NR_PAGETABLE),
5755 global_zone_page_state(NR_BOUNCE),
5756 global_zone_page_state(NR_FREE_PAGES),
5758 global_zone_page_state(NR_FREE_CMA_PAGES));
5760 for_each_online_pgdat(pgdat) {
5761 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5765 " active_anon:%lukB"
5766 " inactive_anon:%lukB"
5767 " active_file:%lukB"
5768 " inactive_file:%lukB"
5769 " unevictable:%lukB"
5770 " isolated(anon):%lukB"
5771 " isolated(file):%lukB"
5776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5778 " shmem_pmdmapped: %lukB"
5781 " writeback_tmp:%lukB"
5782 " kernel_stack:%lukB"
5783 #ifdef CONFIG_SHADOW_CALL_STACK
5784 " shadow_call_stack:%lukB"
5787 " all_unreclaimable? %s"
5790 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5791 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5792 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5793 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5794 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5795 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5796 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5797 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5798 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5799 K(node_page_state(pgdat, NR_WRITEBACK)),
5800 K(node_page_state(pgdat, NR_SHMEM)),
5801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5802 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5803 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5804 K(node_page_state(pgdat, NR_ANON_THPS)),
5806 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5807 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5808 #ifdef CONFIG_SHADOW_CALL_STACK
5809 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5811 K(node_page_state(pgdat, NR_PAGETABLE)),
5812 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5816 for_each_populated_zone(zone) {
5819 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5823 for_each_online_cpu(cpu)
5824 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5833 " reserved_highatomic:%luKB"
5834 " active_anon:%lukB"
5835 " inactive_anon:%lukB"
5836 " active_file:%lukB"
5837 " inactive_file:%lukB"
5838 " unevictable:%lukB"
5839 " writepending:%lukB"
5849 K(zone_page_state(zone, NR_FREE_PAGES)),
5850 K(min_wmark_pages(zone)),
5851 K(low_wmark_pages(zone)),
5852 K(high_wmark_pages(zone)),
5853 K(zone->nr_reserved_highatomic),
5854 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5855 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5856 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5857 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5858 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5859 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5860 K(zone->present_pages),
5861 K(zone_managed_pages(zone)),
5862 K(zone_page_state(zone, NR_MLOCK)),
5863 K(zone_page_state(zone, NR_BOUNCE)),
5865 K(this_cpu_read(zone->pageset->pcp.count)),
5866 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5867 printk("lowmem_reserve[]:");
5868 for (i = 0; i < MAX_NR_ZONES; i++)
5869 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5870 printk(KERN_CONT "\n");
5873 for_each_populated_zone(zone) {
5875 unsigned long nr[MAX_ORDER], flags, total = 0;
5876 unsigned char types[MAX_ORDER];
5878 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5881 printk(KERN_CONT "%s: ", zone->name);
5883 spin_lock_irqsave(&zone->lock, flags);
5884 for (order = 0; order < MAX_ORDER; order++) {
5885 struct free_area *area = &zone->free_area[order];
5888 nr[order] = area->nr_free;
5889 total += nr[order] << order;
5892 for (type = 0; type < MIGRATE_TYPES; type++) {
5893 if (!free_area_empty(area, type))
5894 types[order] |= 1 << type;
5897 spin_unlock_irqrestore(&zone->lock, flags);
5898 for (order = 0; order < MAX_ORDER; order++) {
5899 printk(KERN_CONT "%lu*%lukB ",
5900 nr[order], K(1UL) << order);
5902 show_migration_types(types[order]);
5904 printk(KERN_CONT "= %lukB\n", K(total));
5907 hugetlb_show_meminfo();
5909 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5911 show_swap_cache_info();
5914 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5916 zoneref->zone = zone;
5917 zoneref->zone_idx = zone_idx(zone);
5921 * Builds allocation fallback zone lists.
5923 * Add all populated zones of a node to the zonelist.
5925 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5928 enum zone_type zone_type = MAX_NR_ZONES;
5933 zone = pgdat->node_zones + zone_type;
5934 if (managed_zone(zone)) {
5935 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5936 check_highest_zone(zone_type);
5938 } while (zone_type);
5945 static int __parse_numa_zonelist_order(char *s)
5948 * We used to support different zonelists modes but they turned
5949 * out to be just not useful. Let's keep the warning in place
5950 * if somebody still use the cmd line parameter so that we do
5951 * not fail it silently
5953 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5954 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5960 char numa_zonelist_order[] = "Node";
5963 * sysctl handler for numa_zonelist_order
5965 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5966 void *buffer, size_t *length, loff_t *ppos)
5969 return __parse_numa_zonelist_order(buffer);
5970 return proc_dostring(table, write, buffer, length, ppos);
5974 #define MAX_NODE_LOAD (nr_online_nodes)
5975 static int node_load[MAX_NUMNODES];
5978 * find_next_best_node - find the next node that should appear in a given node's fallback list
5979 * @node: node whose fallback list we're appending
5980 * @used_node_mask: nodemask_t of already used nodes
5982 * We use a number of factors to determine which is the next node that should
5983 * appear on a given node's fallback list. The node should not have appeared
5984 * already in @node's fallback list, and it should be the next closest node
5985 * according to the distance array (which contains arbitrary distance values
5986 * from each node to each node in the system), and should also prefer nodes
5987 * with no CPUs, since presumably they'll have very little allocation pressure
5988 * on them otherwise.
5990 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5992 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5995 int min_val = INT_MAX;
5996 int best_node = NUMA_NO_NODE;
5998 /* Use the local node if we haven't already */
5999 if (!node_isset(node, *used_node_mask)) {
6000 node_set(node, *used_node_mask);
6004 for_each_node_state(n, N_MEMORY) {
6006 /* Don't want a node to appear more than once */
6007 if (node_isset(n, *used_node_mask))
6010 /* Use the distance array to find the distance */
6011 val = node_distance(node, n);
6013 /* Penalize nodes under us ("prefer the next node") */
6016 /* Give preference to headless and unused nodes */
6017 if (!cpumask_empty(cpumask_of_node(n)))
6018 val += PENALTY_FOR_NODE_WITH_CPUS;
6020 /* Slight preference for less loaded node */
6021 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6022 val += node_load[n];
6024 if (val < min_val) {
6031 node_set(best_node, *used_node_mask);
6038 * Build zonelists ordered by node and zones within node.
6039 * This results in maximum locality--normal zone overflows into local
6040 * DMA zone, if any--but risks exhausting DMA zone.
6042 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6045 struct zoneref *zonerefs;
6048 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6050 for (i = 0; i < nr_nodes; i++) {
6053 pg_data_t *node = NODE_DATA(node_order[i]);
6055 nr_zones = build_zonerefs_node(node, zonerefs);
6056 zonerefs += nr_zones;
6058 zonerefs->zone = NULL;
6059 zonerefs->zone_idx = 0;
6063 * Build gfp_thisnode zonelists
6065 static void build_thisnode_zonelists(pg_data_t *pgdat)
6067 struct zoneref *zonerefs;
6070 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6071 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6072 zonerefs += nr_zones;
6073 zonerefs->zone = NULL;
6074 zonerefs->zone_idx = 0;
6078 * Build zonelists ordered by zone and nodes within zones.
6079 * This results in conserving DMA zone[s] until all Normal memory is
6080 * exhausted, but results in overflowing to remote node while memory
6081 * may still exist in local DMA zone.
6084 static void build_zonelists(pg_data_t *pgdat)
6086 static int node_order[MAX_NUMNODES];
6087 int node, load, nr_nodes = 0;
6088 nodemask_t used_mask = NODE_MASK_NONE;
6089 int local_node, prev_node;
6091 /* NUMA-aware ordering of nodes */
6092 local_node = pgdat->node_id;
6093 load = nr_online_nodes;
6094 prev_node = local_node;
6096 memset(node_order, 0, sizeof(node_order));
6097 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6099 * We don't want to pressure a particular node.
6100 * So adding penalty to the first node in same
6101 * distance group to make it round-robin.
6103 if (node_distance(local_node, node) !=
6104 node_distance(local_node, prev_node))
6105 node_load[node] = load;
6107 node_order[nr_nodes++] = node;
6112 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6113 build_thisnode_zonelists(pgdat);
6116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6118 * Return node id of node used for "local" allocations.
6119 * I.e., first node id of first zone in arg node's generic zonelist.
6120 * Used for initializing percpu 'numa_mem', which is used primarily
6121 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6123 int local_memory_node(int node)
6127 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6128 gfp_zone(GFP_KERNEL),
6130 return zone_to_nid(z->zone);
6134 static void setup_min_unmapped_ratio(void);
6135 static void setup_min_slab_ratio(void);
6136 #else /* CONFIG_NUMA */
6138 static void build_zonelists(pg_data_t *pgdat)
6140 int node, local_node;
6141 struct zoneref *zonerefs;
6144 local_node = pgdat->node_id;
6146 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6147 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6148 zonerefs += nr_zones;
6151 * Now we build the zonelist so that it contains the zones
6152 * of all the other nodes.
6153 * We don't want to pressure a particular node, so when
6154 * building the zones for node N, we make sure that the
6155 * zones coming right after the local ones are those from
6156 * node N+1 (modulo N)
6158 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6159 if (!node_online(node))
6161 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6162 zonerefs += nr_zones;
6164 for (node = 0; node < local_node; node++) {
6165 if (!node_online(node))
6167 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6168 zonerefs += nr_zones;
6171 zonerefs->zone = NULL;
6172 zonerefs->zone_idx = 0;
6175 #endif /* CONFIG_NUMA */
6178 * Boot pageset table. One per cpu which is going to be used for all
6179 * zones and all nodes. The parameters will be set in such a way
6180 * that an item put on a list will immediately be handed over to
6181 * the buddy list. This is safe since pageset manipulation is done
6182 * with interrupts disabled.
6184 * The boot_pagesets must be kept even after bootup is complete for
6185 * unused processors and/or zones. They do play a role for bootstrapping
6186 * hotplugged processors.
6188 * zoneinfo_show() and maybe other functions do
6189 * not check if the processor is online before following the pageset pointer.
6190 * Other parts of the kernel may not check if the zone is available.
6192 static void pageset_init(struct per_cpu_pageset *p);
6193 /* These effectively disable the pcplists in the boot pageset completely */
6194 #define BOOT_PAGESET_HIGH 0
6195 #define BOOT_PAGESET_BATCH 1
6196 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6197 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6199 static void __build_all_zonelists(void *data)
6202 int __maybe_unused cpu;
6203 pg_data_t *self = data;
6204 static DEFINE_SPINLOCK(lock);
6209 memset(node_load, 0, sizeof(node_load));
6213 * This node is hotadded and no memory is yet present. So just
6214 * building zonelists is fine - no need to touch other nodes.
6216 if (self && !node_online(self->node_id)) {
6217 build_zonelists(self);
6219 for_each_online_node(nid) {
6220 pg_data_t *pgdat = NODE_DATA(nid);
6222 build_zonelists(pgdat);
6225 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6227 * We now know the "local memory node" for each node--
6228 * i.e., the node of the first zone in the generic zonelist.
6229 * Set up numa_mem percpu variable for on-line cpus. During
6230 * boot, only the boot cpu should be on-line; we'll init the
6231 * secondary cpus' numa_mem as they come on-line. During
6232 * node/memory hotplug, we'll fixup all on-line cpus.
6234 for_each_online_cpu(cpu)
6235 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6242 static noinline void __init
6243 build_all_zonelists_init(void)
6247 __build_all_zonelists(NULL);
6250 * Initialize the boot_pagesets that are going to be used
6251 * for bootstrapping processors. The real pagesets for
6252 * each zone will be allocated later when the per cpu
6253 * allocator is available.
6255 * boot_pagesets are used also for bootstrapping offline
6256 * cpus if the system is already booted because the pagesets
6257 * are needed to initialize allocators on a specific cpu too.
6258 * F.e. the percpu allocator needs the page allocator which
6259 * needs the percpu allocator in order to allocate its pagesets
6260 * (a chicken-egg dilemma).
6262 for_each_possible_cpu(cpu)
6263 pageset_init(&per_cpu(boot_pageset, cpu));
6265 mminit_verify_zonelist();
6266 cpuset_init_current_mems_allowed();
6270 * unless system_state == SYSTEM_BOOTING.
6272 * __ref due to call of __init annotated helper build_all_zonelists_init
6273 * [protected by SYSTEM_BOOTING].
6275 void __ref build_all_zonelists(pg_data_t *pgdat)
6277 unsigned long vm_total_pages;
6279 if (system_state == SYSTEM_BOOTING) {
6280 build_all_zonelists_init();
6282 __build_all_zonelists(pgdat);
6283 /* cpuset refresh routine should be here */
6285 /* Get the number of free pages beyond high watermark in all zones. */
6286 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6288 * Disable grouping by mobility if the number of pages in the
6289 * system is too low to allow the mechanism to work. It would be
6290 * more accurate, but expensive to check per-zone. This check is
6291 * made on memory-hotadd so a system can start with mobility
6292 * disabled and enable it later
6294 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6295 page_group_by_mobility_disabled = 1;
6297 page_group_by_mobility_disabled = 0;
6299 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6301 page_group_by_mobility_disabled ? "off" : "on",
6304 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6308 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6309 static bool __meminit
6310 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6312 static struct memblock_region *r;
6314 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6315 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6316 for_each_mem_region(r) {
6317 if (*pfn < memblock_region_memory_end_pfn(r))
6321 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6322 memblock_is_mirror(r)) {
6323 *pfn = memblock_region_memory_end_pfn(r);
6331 * Initially all pages are reserved - free ones are freed
6332 * up by memblock_free_all() once the early boot process is
6333 * done. Non-atomic initialization, single-pass.
6335 * All aligned pageblocks are initialized to the specified migratetype
6336 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6337 * zone stats (e.g., nr_isolate_pageblock) are touched.
6339 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6340 unsigned long start_pfn, unsigned long zone_end_pfn,
6341 enum meminit_context context,
6342 struct vmem_altmap *altmap, int migratetype)
6344 unsigned long pfn, end_pfn = start_pfn + size;
6347 if (highest_memmap_pfn < end_pfn - 1)
6348 highest_memmap_pfn = end_pfn - 1;
6350 #ifdef CONFIG_ZONE_DEVICE
6352 * Honor reservation requested by the driver for this ZONE_DEVICE
6353 * memory. We limit the total number of pages to initialize to just
6354 * those that might contain the memory mapping. We will defer the
6355 * ZONE_DEVICE page initialization until after we have released
6358 if (zone == ZONE_DEVICE) {
6362 if (start_pfn == altmap->base_pfn)
6363 start_pfn += altmap->reserve;
6364 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6368 for (pfn = start_pfn; pfn < end_pfn; ) {
6370 * There can be holes in boot-time mem_map[]s handed to this
6371 * function. They do not exist on hotplugged memory.
6373 if (context == MEMINIT_EARLY) {
6374 if (overlap_memmap_init(zone, &pfn))
6376 if (defer_init(nid, pfn, zone_end_pfn))
6380 page = pfn_to_page(pfn);
6381 __init_single_page(page, pfn, zone, nid);
6382 if (context == MEMINIT_HOTPLUG)
6383 __SetPageReserved(page);
6386 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6387 * such that unmovable allocations won't be scattered all
6388 * over the place during system boot.
6390 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6391 set_pageblock_migratetype(page, migratetype);
6398 #ifdef CONFIG_ZONE_DEVICE
6399 void __ref memmap_init_zone_device(struct zone *zone,
6400 unsigned long start_pfn,
6401 unsigned long nr_pages,
6402 struct dev_pagemap *pgmap)
6404 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6405 struct pglist_data *pgdat = zone->zone_pgdat;
6406 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6407 unsigned long zone_idx = zone_idx(zone);
6408 unsigned long start = jiffies;
6409 int nid = pgdat->node_id;
6411 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6415 * The call to memmap_init_zone should have already taken care
6416 * of the pages reserved for the memmap, so we can just jump to
6417 * the end of that region and start processing the device pages.
6420 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6421 nr_pages = end_pfn - start_pfn;
6424 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6425 struct page *page = pfn_to_page(pfn);
6427 __init_single_page(page, pfn, zone_idx, nid);
6430 * Mark page reserved as it will need to wait for onlining
6431 * phase for it to be fully associated with a zone.
6433 * We can use the non-atomic __set_bit operation for setting
6434 * the flag as we are still initializing the pages.
6436 __SetPageReserved(page);
6439 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6440 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6441 * ever freed or placed on a driver-private list.
6443 page->pgmap = pgmap;
6444 page->zone_device_data = NULL;
6447 * Mark the block movable so that blocks are reserved for
6448 * movable at startup. This will force kernel allocations
6449 * to reserve their blocks rather than leaking throughout
6450 * the address space during boot when many long-lived
6451 * kernel allocations are made.
6453 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6454 * because this is done early in section_activate()
6456 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6457 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6462 pr_info("%s initialised %lu pages in %ums\n", __func__,
6463 nr_pages, jiffies_to_msecs(jiffies - start));
6467 static void __meminit zone_init_free_lists(struct zone *zone)
6469 unsigned int order, t;
6470 for_each_migratetype_order(order, t) {
6471 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6472 zone->free_area[order].nr_free = 0;
6476 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6478 * Only struct pages that correspond to ranges defined by memblock.memory
6479 * are zeroed and initialized by going through __init_single_page() during
6480 * memmap_init_zone().
6482 * But, there could be struct pages that correspond to holes in
6483 * memblock.memory. This can happen because of the following reasons:
6484 * - physical memory bank size is not necessarily the exact multiple of the
6485 * arbitrary section size
6486 * - early reserved memory may not be listed in memblock.memory
6487 * - memory layouts defined with memmap= kernel parameter may not align
6488 * nicely with memmap sections
6490 * Explicitly initialize those struct pages so that:
6491 * - PG_Reserved is set
6492 * - zone and node links point to zone and node that span the page if the
6493 * hole is in the middle of a zone
6494 * - zone and node links point to adjacent zone/node if the hole falls on
6495 * the zone boundary; the pages in such holes will be prepended to the
6496 * zone/node above the hole except for the trailing pages in the last
6497 * section that will be appended to the zone/node below.
6499 static u64 __meminit init_unavailable_range(unsigned long spfn,
6506 for (pfn = spfn; pfn < epfn; pfn++) {
6507 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6508 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6509 + pageblock_nr_pages - 1;
6512 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6513 __SetPageReserved(pfn_to_page(pfn));
6520 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6527 void __meminit __weak memmap_init_zone(struct zone *zone)
6529 unsigned long zone_start_pfn = zone->zone_start_pfn;
6530 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6531 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6532 static unsigned long hole_pfn;
6533 unsigned long start_pfn, end_pfn;
6536 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6537 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6538 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6540 if (end_pfn > start_pfn)
6541 memmap_init_range(end_pfn - start_pfn, nid,
6542 zone_id, start_pfn, zone_end_pfn,
6543 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6545 if (hole_pfn < start_pfn)
6546 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6551 #ifdef CONFIG_SPARSEMEM
6553 * Initialize the hole in the range [zone_end_pfn, section_end].
6554 * If zone boundary falls in the middle of a section, this hole
6555 * will be re-initialized during the call to this function for the
6558 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6559 if (hole_pfn < end_pfn)
6560 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6565 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6569 static int zone_batchsize(struct zone *zone)
6575 * The per-cpu-pages pools are set to around 1000th of the
6578 batch = zone_managed_pages(zone) / 1024;
6579 /* But no more than a meg. */
6580 if (batch * PAGE_SIZE > 1024 * 1024)
6581 batch = (1024 * 1024) / PAGE_SIZE;
6582 batch /= 4; /* We effectively *= 4 below */
6587 * Clamp the batch to a 2^n - 1 value. Having a power
6588 * of 2 value was found to be more likely to have
6589 * suboptimal cache aliasing properties in some cases.
6591 * For example if 2 tasks are alternately allocating
6592 * batches of pages, one task can end up with a lot
6593 * of pages of one half of the possible page colors
6594 * and the other with pages of the other colors.
6596 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6601 /* The deferral and batching of frees should be suppressed under NOMMU
6604 * The problem is that NOMMU needs to be able to allocate large chunks
6605 * of contiguous memory as there's no hardware page translation to
6606 * assemble apparent contiguous memory from discontiguous pages.
6608 * Queueing large contiguous runs of pages for batching, however,
6609 * causes the pages to actually be freed in smaller chunks. As there
6610 * can be a significant delay between the individual batches being
6611 * recycled, this leads to the once large chunks of space being
6612 * fragmented and becoming unavailable for high-order allocations.
6619 * pcp->high and pcp->batch values are related and generally batch is lower
6620 * than high. They are also related to pcp->count such that count is lower
6621 * than high, and as soon as it reaches high, the pcplist is flushed.
6623 * However, guaranteeing these relations at all times would require e.g. write
6624 * barriers here but also careful usage of read barriers at the read side, and
6625 * thus be prone to error and bad for performance. Thus the update only prevents
6626 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6627 * can cope with those fields changing asynchronously, and fully trust only the
6628 * pcp->count field on the local CPU with interrupts disabled.
6630 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6631 * outside of boot time (or some other assurance that no concurrent updaters
6634 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6635 unsigned long batch)
6637 WRITE_ONCE(pcp->batch, batch);
6638 WRITE_ONCE(pcp->high, high);
6641 static void pageset_init(struct per_cpu_pageset *p)
6643 struct per_cpu_pages *pcp;
6646 memset(p, 0, sizeof(*p));
6649 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6650 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6653 * Set batch and high values safe for a boot pageset. A true percpu
6654 * pageset's initialization will update them subsequently. Here we don't
6655 * need to be as careful as pageset_update() as nobody can access the
6658 pcp->high = BOOT_PAGESET_HIGH;
6659 pcp->batch = BOOT_PAGESET_BATCH;
6662 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6663 unsigned long batch)
6665 struct per_cpu_pageset *p;
6668 for_each_possible_cpu(cpu) {
6669 p = per_cpu_ptr(zone->pageset, cpu);
6670 pageset_update(&p->pcp, high, batch);
6675 * Calculate and set new high and batch values for all per-cpu pagesets of a
6676 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6678 static void zone_set_pageset_high_and_batch(struct zone *zone)
6680 unsigned long new_high, new_batch;
6682 if (percpu_pagelist_fraction) {
6683 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6684 new_batch = max(1UL, new_high / 4);
6685 if ((new_high / 4) > (PAGE_SHIFT * 8))
6686 new_batch = PAGE_SHIFT * 8;
6688 new_batch = zone_batchsize(zone);
6689 new_high = 6 * new_batch;
6690 new_batch = max(1UL, 1 * new_batch);
6693 if (zone->pageset_high == new_high &&
6694 zone->pageset_batch == new_batch)
6697 zone->pageset_high = new_high;
6698 zone->pageset_batch = new_batch;
6700 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6703 void __meminit setup_zone_pageset(struct zone *zone)
6705 struct per_cpu_pageset *p;
6708 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6709 for_each_possible_cpu(cpu) {
6710 p = per_cpu_ptr(zone->pageset, cpu);
6714 zone_set_pageset_high_and_batch(zone);
6718 * Allocate per cpu pagesets and initialize them.
6719 * Before this call only boot pagesets were available.
6721 void __init setup_per_cpu_pageset(void)
6723 struct pglist_data *pgdat;
6725 int __maybe_unused cpu;
6727 for_each_populated_zone(zone)
6728 setup_zone_pageset(zone);
6732 * Unpopulated zones continue using the boot pagesets.
6733 * The numa stats for these pagesets need to be reset.
6734 * Otherwise, they will end up skewing the stats of
6735 * the nodes these zones are associated with.
6737 for_each_possible_cpu(cpu) {
6738 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6739 memset(pcp->vm_numa_stat_diff, 0,
6740 sizeof(pcp->vm_numa_stat_diff));
6744 for_each_online_pgdat(pgdat)
6745 pgdat->per_cpu_nodestats =
6746 alloc_percpu(struct per_cpu_nodestat);
6749 static __meminit void zone_pcp_init(struct zone *zone)
6752 * per cpu subsystem is not up at this point. The following code
6753 * relies on the ability of the linker to provide the
6754 * offset of a (static) per cpu variable into the per cpu area.
6756 zone->pageset = &boot_pageset;
6757 zone->pageset_high = BOOT_PAGESET_HIGH;
6758 zone->pageset_batch = BOOT_PAGESET_BATCH;
6760 if (populated_zone(zone))
6761 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6762 zone->name, zone->present_pages,
6763 zone_batchsize(zone));
6766 void __meminit init_currently_empty_zone(struct zone *zone,
6767 unsigned long zone_start_pfn,
6770 struct pglist_data *pgdat = zone->zone_pgdat;
6771 int zone_idx = zone_idx(zone) + 1;
6773 if (zone_idx > pgdat->nr_zones)
6774 pgdat->nr_zones = zone_idx;
6776 zone->zone_start_pfn = zone_start_pfn;
6778 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6779 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6781 (unsigned long)zone_idx(zone),
6782 zone_start_pfn, (zone_start_pfn + size));
6784 zone_init_free_lists(zone);
6785 zone->initialized = 1;
6789 * get_pfn_range_for_nid - Return the start and end page frames for a node
6790 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6791 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6792 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6794 * It returns the start and end page frame of a node based on information
6795 * provided by memblock_set_node(). If called for a node
6796 * with no available memory, a warning is printed and the start and end
6799 void __init get_pfn_range_for_nid(unsigned int nid,
6800 unsigned long *start_pfn, unsigned long *end_pfn)
6802 unsigned long this_start_pfn, this_end_pfn;
6808 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6809 *start_pfn = min(*start_pfn, this_start_pfn);
6810 *end_pfn = max(*end_pfn, this_end_pfn);
6813 if (*start_pfn == -1UL)
6818 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6819 * assumption is made that zones within a node are ordered in monotonic
6820 * increasing memory addresses so that the "highest" populated zone is used
6822 static void __init find_usable_zone_for_movable(void)
6825 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6826 if (zone_index == ZONE_MOVABLE)
6829 if (arch_zone_highest_possible_pfn[zone_index] >
6830 arch_zone_lowest_possible_pfn[zone_index])
6834 VM_BUG_ON(zone_index == -1);
6835 movable_zone = zone_index;
6839 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6840 * because it is sized independent of architecture. Unlike the other zones,
6841 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6842 * in each node depending on the size of each node and how evenly kernelcore
6843 * is distributed. This helper function adjusts the zone ranges
6844 * provided by the architecture for a given node by using the end of the
6845 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6846 * zones within a node are in order of monotonic increases memory addresses
6848 static void __init adjust_zone_range_for_zone_movable(int nid,
6849 unsigned long zone_type,
6850 unsigned long node_start_pfn,
6851 unsigned long node_end_pfn,
6852 unsigned long *zone_start_pfn,
6853 unsigned long *zone_end_pfn)
6855 /* Only adjust if ZONE_MOVABLE is on this node */
6856 if (zone_movable_pfn[nid]) {
6857 /* Size ZONE_MOVABLE */
6858 if (zone_type == ZONE_MOVABLE) {
6859 *zone_start_pfn = zone_movable_pfn[nid];
6860 *zone_end_pfn = min(node_end_pfn,
6861 arch_zone_highest_possible_pfn[movable_zone]);
6863 /* Adjust for ZONE_MOVABLE starting within this range */
6864 } else if (!mirrored_kernelcore &&
6865 *zone_start_pfn < zone_movable_pfn[nid] &&
6866 *zone_end_pfn > zone_movable_pfn[nid]) {
6867 *zone_end_pfn = zone_movable_pfn[nid];
6869 /* Check if this whole range is within ZONE_MOVABLE */
6870 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6871 *zone_start_pfn = *zone_end_pfn;
6876 * Return the number of pages a zone spans in a node, including holes
6877 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6879 static unsigned long __init zone_spanned_pages_in_node(int nid,
6880 unsigned long zone_type,
6881 unsigned long node_start_pfn,
6882 unsigned long node_end_pfn,
6883 unsigned long *zone_start_pfn,
6884 unsigned long *zone_end_pfn)
6886 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6887 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6888 /* When hotadd a new node from cpu_up(), the node should be empty */
6889 if (!node_start_pfn && !node_end_pfn)
6892 /* Get the start and end of the zone */
6893 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6894 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6895 adjust_zone_range_for_zone_movable(nid, zone_type,
6896 node_start_pfn, node_end_pfn,
6897 zone_start_pfn, zone_end_pfn);
6899 /* Check that this node has pages within the zone's required range */
6900 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6903 /* Move the zone boundaries inside the node if necessary */
6904 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6905 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6907 /* Return the spanned pages */
6908 return *zone_end_pfn - *zone_start_pfn;
6912 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6913 * then all holes in the requested range will be accounted for.
6915 unsigned long __init __absent_pages_in_range(int nid,
6916 unsigned long range_start_pfn,
6917 unsigned long range_end_pfn)
6919 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6920 unsigned long start_pfn, end_pfn;
6923 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6924 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6925 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6926 nr_absent -= end_pfn - start_pfn;
6932 * absent_pages_in_range - Return number of page frames in holes within a range
6933 * @start_pfn: The start PFN to start searching for holes
6934 * @end_pfn: The end PFN to stop searching for holes
6936 * Return: the number of pages frames in memory holes within a range.
6938 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6939 unsigned long end_pfn)
6941 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6944 /* Return the number of page frames in holes in a zone on a node */
6945 static unsigned long __init zone_absent_pages_in_node(int nid,
6946 unsigned long zone_type,
6947 unsigned long node_start_pfn,
6948 unsigned long node_end_pfn)
6950 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6951 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6952 unsigned long zone_start_pfn, zone_end_pfn;
6953 unsigned long nr_absent;
6955 /* When hotadd a new node from cpu_up(), the node should be empty */
6956 if (!node_start_pfn && !node_end_pfn)
6959 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6960 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6962 adjust_zone_range_for_zone_movable(nid, zone_type,
6963 node_start_pfn, node_end_pfn,
6964 &zone_start_pfn, &zone_end_pfn);
6965 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6968 * ZONE_MOVABLE handling.
6969 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6972 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6973 unsigned long start_pfn, end_pfn;
6974 struct memblock_region *r;
6976 for_each_mem_region(r) {
6977 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6978 zone_start_pfn, zone_end_pfn);
6979 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6980 zone_start_pfn, zone_end_pfn);
6982 if (zone_type == ZONE_MOVABLE &&
6983 memblock_is_mirror(r))
6984 nr_absent += end_pfn - start_pfn;
6986 if (zone_type == ZONE_NORMAL &&
6987 !memblock_is_mirror(r))
6988 nr_absent += end_pfn - start_pfn;
6995 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6996 unsigned long node_start_pfn,
6997 unsigned long node_end_pfn)
6999 unsigned long realtotalpages = 0, totalpages = 0;
7002 for (i = 0; i < MAX_NR_ZONES; i++) {
7003 struct zone *zone = pgdat->node_zones + i;
7004 unsigned long zone_start_pfn, zone_end_pfn;
7005 unsigned long spanned, absent;
7006 unsigned long size, real_size;
7008 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7013 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7018 real_size = size - absent;
7021 zone->zone_start_pfn = zone_start_pfn;
7023 zone->zone_start_pfn = 0;
7024 zone->spanned_pages = size;
7025 zone->present_pages = real_size;
7028 realtotalpages += real_size;
7031 pgdat->node_spanned_pages = totalpages;
7032 pgdat->node_present_pages = realtotalpages;
7033 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7037 #ifndef CONFIG_SPARSEMEM
7039 * Calculate the size of the zone->blockflags rounded to an unsigned long
7040 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7041 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7042 * round what is now in bits to nearest long in bits, then return it in
7045 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7047 unsigned long usemapsize;
7049 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7050 usemapsize = roundup(zonesize, pageblock_nr_pages);
7051 usemapsize = usemapsize >> pageblock_order;
7052 usemapsize *= NR_PAGEBLOCK_BITS;
7053 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7055 return usemapsize / 8;
7058 static void __ref setup_usemap(struct zone *zone)
7060 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7061 zone->spanned_pages);
7062 zone->pageblock_flags = NULL;
7064 zone->pageblock_flags =
7065 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7067 if (!zone->pageblock_flags)
7068 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7069 usemapsize, zone->name, zone_to_nid(zone));
7073 static inline void setup_usemap(struct zone *zone) {}
7074 #endif /* CONFIG_SPARSEMEM */
7076 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7078 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7079 void __init set_pageblock_order(void)
7083 /* Check that pageblock_nr_pages has not already been setup */
7084 if (pageblock_order)
7087 if (HPAGE_SHIFT > PAGE_SHIFT)
7088 order = HUGETLB_PAGE_ORDER;
7090 order = MAX_ORDER - 1;
7093 * Assume the largest contiguous order of interest is a huge page.
7094 * This value may be variable depending on boot parameters on IA64 and
7097 pageblock_order = order;
7099 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7102 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7103 * is unused as pageblock_order is set at compile-time. See
7104 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7107 void __init set_pageblock_order(void)
7111 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7113 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7114 unsigned long present_pages)
7116 unsigned long pages = spanned_pages;
7119 * Provide a more accurate estimation if there are holes within
7120 * the zone and SPARSEMEM is in use. If there are holes within the
7121 * zone, each populated memory region may cost us one or two extra
7122 * memmap pages due to alignment because memmap pages for each
7123 * populated regions may not be naturally aligned on page boundary.
7124 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7126 if (spanned_pages > present_pages + (present_pages >> 4) &&
7127 IS_ENABLED(CONFIG_SPARSEMEM))
7128 pages = present_pages;
7130 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7133 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7134 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7136 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7138 spin_lock_init(&ds_queue->split_queue_lock);
7139 INIT_LIST_HEAD(&ds_queue->split_queue);
7140 ds_queue->split_queue_len = 0;
7143 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7146 #ifdef CONFIG_COMPACTION
7147 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7149 init_waitqueue_head(&pgdat->kcompactd_wait);
7152 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7155 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7157 pgdat_resize_init(pgdat);
7159 pgdat_init_split_queue(pgdat);
7160 pgdat_init_kcompactd(pgdat);
7162 init_waitqueue_head(&pgdat->kswapd_wait);
7163 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7165 pgdat_page_ext_init(pgdat);
7166 lruvec_init(&pgdat->__lruvec);
7169 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7170 unsigned long remaining_pages)
7172 atomic_long_set(&zone->managed_pages, remaining_pages);
7173 zone_set_nid(zone, nid);
7174 zone->name = zone_names[idx];
7175 zone->zone_pgdat = NODE_DATA(nid);
7176 spin_lock_init(&zone->lock);
7177 zone_seqlock_init(zone);
7178 zone_pcp_init(zone);
7182 * Set up the zone data structures
7183 * - init pgdat internals
7184 * - init all zones belonging to this node
7186 * NOTE: this function is only called during memory hotplug
7188 #ifdef CONFIG_MEMORY_HOTPLUG
7189 void __ref free_area_init_core_hotplug(int nid)
7192 pg_data_t *pgdat = NODE_DATA(nid);
7194 pgdat_init_internals(pgdat);
7195 for (z = 0; z < MAX_NR_ZONES; z++)
7196 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7201 * Set up the zone data structures:
7202 * - mark all pages reserved
7203 * - mark all memory queues empty
7204 * - clear the memory bitmaps
7206 * NOTE: pgdat should get zeroed by caller.
7207 * NOTE: this function is only called during early init.
7209 static void __init free_area_init_core(struct pglist_data *pgdat)
7212 int nid = pgdat->node_id;
7214 pgdat_init_internals(pgdat);
7215 pgdat->per_cpu_nodestats = &boot_nodestats;
7217 for (j = 0; j < MAX_NR_ZONES; j++) {
7218 struct zone *zone = pgdat->node_zones + j;
7219 unsigned long size, freesize, memmap_pages;
7221 size = zone->spanned_pages;
7222 freesize = zone->present_pages;
7225 * Adjust freesize so that it accounts for how much memory
7226 * is used by this zone for memmap. This affects the watermark
7227 * and per-cpu initialisations
7229 memmap_pages = calc_memmap_size(size, freesize);
7230 if (!is_highmem_idx(j)) {
7231 if (freesize >= memmap_pages) {
7232 freesize -= memmap_pages;
7235 " %s zone: %lu pages used for memmap\n",
7236 zone_names[j], memmap_pages);
7238 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7239 zone_names[j], memmap_pages, freesize);
7242 /* Account for reserved pages */
7243 if (j == 0 && freesize > dma_reserve) {
7244 freesize -= dma_reserve;
7245 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7246 zone_names[0], dma_reserve);
7249 if (!is_highmem_idx(j))
7250 nr_kernel_pages += freesize;
7251 /* Charge for highmem memmap if there are enough kernel pages */
7252 else if (nr_kernel_pages > memmap_pages * 2)
7253 nr_kernel_pages -= memmap_pages;
7254 nr_all_pages += freesize;
7257 * Set an approximate value for lowmem here, it will be adjusted
7258 * when the bootmem allocator frees pages into the buddy system.
7259 * And all highmem pages will be managed by the buddy system.
7261 zone_init_internals(zone, j, nid, freesize);
7266 set_pageblock_order();
7268 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7269 memmap_init_zone(zone);
7273 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7274 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7276 unsigned long __maybe_unused start = 0;
7277 unsigned long __maybe_unused offset = 0;
7279 /* Skip empty nodes */
7280 if (!pgdat->node_spanned_pages)
7283 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7284 offset = pgdat->node_start_pfn - start;
7285 /* ia64 gets its own node_mem_map, before this, without bootmem */
7286 if (!pgdat->node_mem_map) {
7287 unsigned long size, end;
7291 * The zone's endpoints aren't required to be MAX_ORDER
7292 * aligned but the node_mem_map endpoints must be in order
7293 * for the buddy allocator to function correctly.
7295 end = pgdat_end_pfn(pgdat);
7296 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7297 size = (end - start) * sizeof(struct page);
7298 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7301 panic("Failed to allocate %ld bytes for node %d memory map\n",
7302 size, pgdat->node_id);
7303 pgdat->node_mem_map = map + offset;
7305 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7306 __func__, pgdat->node_id, (unsigned long)pgdat,
7307 (unsigned long)pgdat->node_mem_map);
7308 #ifndef CONFIG_NEED_MULTIPLE_NODES
7310 * With no DISCONTIG, the global mem_map is just set as node 0's
7312 if (pgdat == NODE_DATA(0)) {
7313 mem_map = NODE_DATA(0)->node_mem_map;
7314 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7320 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7321 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7323 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7324 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7326 pgdat->first_deferred_pfn = ULONG_MAX;
7329 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7332 static void __init free_area_init_node(int nid)
7334 pg_data_t *pgdat = NODE_DATA(nid);
7335 unsigned long start_pfn = 0;
7336 unsigned long end_pfn = 0;
7338 /* pg_data_t should be reset to zero when it's allocated */
7339 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7341 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7343 pgdat->node_id = nid;
7344 pgdat->node_start_pfn = start_pfn;
7345 pgdat->per_cpu_nodestats = NULL;
7347 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7348 (u64)start_pfn << PAGE_SHIFT,
7349 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7350 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7352 alloc_node_mem_map(pgdat);
7353 pgdat_set_deferred_range(pgdat);
7355 free_area_init_core(pgdat);
7358 void __init free_area_init_memoryless_node(int nid)
7360 free_area_init_node(nid);
7363 #if MAX_NUMNODES > 1
7365 * Figure out the number of possible node ids.
7367 void __init setup_nr_node_ids(void)
7369 unsigned int highest;
7371 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7372 nr_node_ids = highest + 1;
7377 * node_map_pfn_alignment - determine the maximum internode alignment
7379 * This function should be called after node map is populated and sorted.
7380 * It calculates the maximum power of two alignment which can distinguish
7383 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7384 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7385 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7386 * shifted, 1GiB is enough and this function will indicate so.
7388 * This is used to test whether pfn -> nid mapping of the chosen memory
7389 * model has fine enough granularity to avoid incorrect mapping for the
7390 * populated node map.
7392 * Return: the determined alignment in pfn's. 0 if there is no alignment
7393 * requirement (single node).
7395 unsigned long __init node_map_pfn_alignment(void)
7397 unsigned long accl_mask = 0, last_end = 0;
7398 unsigned long start, end, mask;
7399 int last_nid = NUMA_NO_NODE;
7402 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7403 if (!start || last_nid < 0 || last_nid == nid) {
7410 * Start with a mask granular enough to pin-point to the
7411 * start pfn and tick off bits one-by-one until it becomes
7412 * too coarse to separate the current node from the last.
7414 mask = ~((1 << __ffs(start)) - 1);
7415 while (mask && last_end <= (start & (mask << 1)))
7418 /* accumulate all internode masks */
7422 /* convert mask to number of pages */
7423 return ~accl_mask + 1;
7427 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7429 * Return: the minimum PFN based on information provided via
7430 * memblock_set_node().
7432 unsigned long __init find_min_pfn_with_active_regions(void)
7434 return PHYS_PFN(memblock_start_of_DRAM());
7438 * early_calculate_totalpages()
7439 * Sum pages in active regions for movable zone.
7440 * Populate N_MEMORY for calculating usable_nodes.
7442 static unsigned long __init early_calculate_totalpages(void)
7444 unsigned long totalpages = 0;
7445 unsigned long start_pfn, end_pfn;
7448 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7449 unsigned long pages = end_pfn - start_pfn;
7451 totalpages += pages;
7453 node_set_state(nid, N_MEMORY);
7459 * Find the PFN the Movable zone begins in each node. Kernel memory
7460 * is spread evenly between nodes as long as the nodes have enough
7461 * memory. When they don't, some nodes will have more kernelcore than
7464 static void __init find_zone_movable_pfns_for_nodes(void)
7467 unsigned long usable_startpfn;
7468 unsigned long kernelcore_node, kernelcore_remaining;
7469 /* save the state before borrow the nodemask */
7470 nodemask_t saved_node_state = node_states[N_MEMORY];
7471 unsigned long totalpages = early_calculate_totalpages();
7472 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7473 struct memblock_region *r;
7475 /* Need to find movable_zone earlier when movable_node is specified. */
7476 find_usable_zone_for_movable();
7479 * If movable_node is specified, ignore kernelcore and movablecore
7482 if (movable_node_is_enabled()) {
7483 for_each_mem_region(r) {
7484 if (!memblock_is_hotpluggable(r))
7487 nid = memblock_get_region_node(r);
7489 usable_startpfn = PFN_DOWN(r->base);
7490 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7491 min(usable_startpfn, zone_movable_pfn[nid]) :
7499 * If kernelcore=mirror is specified, ignore movablecore option
7501 if (mirrored_kernelcore) {
7502 bool mem_below_4gb_not_mirrored = false;
7504 for_each_mem_region(r) {
7505 if (memblock_is_mirror(r))
7508 nid = memblock_get_region_node(r);
7510 usable_startpfn = memblock_region_memory_base_pfn(r);
7512 if (usable_startpfn < 0x100000) {
7513 mem_below_4gb_not_mirrored = true;
7517 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7518 min(usable_startpfn, zone_movable_pfn[nid]) :
7522 if (mem_below_4gb_not_mirrored)
7523 pr_warn("This configuration results in unmirrored kernel memory.\n");
7529 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7530 * amount of necessary memory.
7532 if (required_kernelcore_percent)
7533 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7535 if (required_movablecore_percent)
7536 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7540 * If movablecore= was specified, calculate what size of
7541 * kernelcore that corresponds so that memory usable for
7542 * any allocation type is evenly spread. If both kernelcore
7543 * and movablecore are specified, then the value of kernelcore
7544 * will be used for required_kernelcore if it's greater than
7545 * what movablecore would have allowed.
7547 if (required_movablecore) {
7548 unsigned long corepages;
7551 * Round-up so that ZONE_MOVABLE is at least as large as what
7552 * was requested by the user
7554 required_movablecore =
7555 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7556 required_movablecore = min(totalpages, required_movablecore);
7557 corepages = totalpages - required_movablecore;
7559 required_kernelcore = max(required_kernelcore, corepages);
7563 * If kernelcore was not specified or kernelcore size is larger
7564 * than totalpages, there is no ZONE_MOVABLE.
7566 if (!required_kernelcore || required_kernelcore >= totalpages)
7569 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7570 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7573 /* Spread kernelcore memory as evenly as possible throughout nodes */
7574 kernelcore_node = required_kernelcore / usable_nodes;
7575 for_each_node_state(nid, N_MEMORY) {
7576 unsigned long start_pfn, end_pfn;
7579 * Recalculate kernelcore_node if the division per node
7580 * now exceeds what is necessary to satisfy the requested
7581 * amount of memory for the kernel
7583 if (required_kernelcore < kernelcore_node)
7584 kernelcore_node = required_kernelcore / usable_nodes;
7587 * As the map is walked, we track how much memory is usable
7588 * by the kernel using kernelcore_remaining. When it is
7589 * 0, the rest of the node is usable by ZONE_MOVABLE
7591 kernelcore_remaining = kernelcore_node;
7593 /* Go through each range of PFNs within this node */
7594 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7595 unsigned long size_pages;
7597 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7598 if (start_pfn >= end_pfn)
7601 /* Account for what is only usable for kernelcore */
7602 if (start_pfn < usable_startpfn) {
7603 unsigned long kernel_pages;
7604 kernel_pages = min(end_pfn, usable_startpfn)
7607 kernelcore_remaining -= min(kernel_pages,
7608 kernelcore_remaining);
7609 required_kernelcore -= min(kernel_pages,
7610 required_kernelcore);
7612 /* Continue if range is now fully accounted */
7613 if (end_pfn <= usable_startpfn) {
7616 * Push zone_movable_pfn to the end so
7617 * that if we have to rebalance
7618 * kernelcore across nodes, we will
7619 * not double account here
7621 zone_movable_pfn[nid] = end_pfn;
7624 start_pfn = usable_startpfn;
7628 * The usable PFN range for ZONE_MOVABLE is from
7629 * start_pfn->end_pfn. Calculate size_pages as the
7630 * number of pages used as kernelcore
7632 size_pages = end_pfn - start_pfn;
7633 if (size_pages > kernelcore_remaining)
7634 size_pages = kernelcore_remaining;
7635 zone_movable_pfn[nid] = start_pfn + size_pages;
7638 * Some kernelcore has been met, update counts and
7639 * break if the kernelcore for this node has been
7642 required_kernelcore -= min(required_kernelcore,
7644 kernelcore_remaining -= size_pages;
7645 if (!kernelcore_remaining)
7651 * If there is still required_kernelcore, we do another pass with one
7652 * less node in the count. This will push zone_movable_pfn[nid] further
7653 * along on the nodes that still have memory until kernelcore is
7657 if (usable_nodes && required_kernelcore > usable_nodes)
7661 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7662 for (nid = 0; nid < MAX_NUMNODES; nid++)
7663 zone_movable_pfn[nid] =
7664 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7667 /* restore the node_state */
7668 node_states[N_MEMORY] = saved_node_state;
7671 /* Any regular or high memory on that node ? */
7672 static void check_for_memory(pg_data_t *pgdat, int nid)
7674 enum zone_type zone_type;
7676 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7677 struct zone *zone = &pgdat->node_zones[zone_type];
7678 if (populated_zone(zone)) {
7679 if (IS_ENABLED(CONFIG_HIGHMEM))
7680 node_set_state(nid, N_HIGH_MEMORY);
7681 if (zone_type <= ZONE_NORMAL)
7682 node_set_state(nid, N_NORMAL_MEMORY);
7689 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7690 * such cases we allow max_zone_pfn sorted in the descending order
7692 bool __weak arch_has_descending_max_zone_pfns(void)
7698 * free_area_init - Initialise all pg_data_t and zone data
7699 * @max_zone_pfn: an array of max PFNs for each zone
7701 * This will call free_area_init_node() for each active node in the system.
7702 * Using the page ranges provided by memblock_set_node(), the size of each
7703 * zone in each node and their holes is calculated. If the maximum PFN
7704 * between two adjacent zones match, it is assumed that the zone is empty.
7705 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7706 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7707 * starts where the previous one ended. For example, ZONE_DMA32 starts
7708 * at arch_max_dma_pfn.
7710 void __init free_area_init(unsigned long *max_zone_pfn)
7712 unsigned long start_pfn, end_pfn;
7716 /* Record where the zone boundaries are */
7717 memset(arch_zone_lowest_possible_pfn, 0,
7718 sizeof(arch_zone_lowest_possible_pfn));
7719 memset(arch_zone_highest_possible_pfn, 0,
7720 sizeof(arch_zone_highest_possible_pfn));
7722 start_pfn = find_min_pfn_with_active_regions();
7723 descending = arch_has_descending_max_zone_pfns();
7725 for (i = 0; i < MAX_NR_ZONES; i++) {
7727 zone = MAX_NR_ZONES - i - 1;
7731 if (zone == ZONE_MOVABLE)
7734 end_pfn = max(max_zone_pfn[zone], start_pfn);
7735 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7736 arch_zone_highest_possible_pfn[zone] = end_pfn;
7738 start_pfn = end_pfn;
7741 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7742 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7743 find_zone_movable_pfns_for_nodes();
7745 /* Print out the zone ranges */
7746 pr_info("Zone ranges:\n");
7747 for (i = 0; i < MAX_NR_ZONES; i++) {
7748 if (i == ZONE_MOVABLE)
7750 pr_info(" %-8s ", zone_names[i]);
7751 if (arch_zone_lowest_possible_pfn[i] ==
7752 arch_zone_highest_possible_pfn[i])
7755 pr_cont("[mem %#018Lx-%#018Lx]\n",
7756 (u64)arch_zone_lowest_possible_pfn[i]
7758 ((u64)arch_zone_highest_possible_pfn[i]
7759 << PAGE_SHIFT) - 1);
7762 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7763 pr_info("Movable zone start for each node\n");
7764 for (i = 0; i < MAX_NUMNODES; i++) {
7765 if (zone_movable_pfn[i])
7766 pr_info(" Node %d: %#018Lx\n", i,
7767 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7771 * Print out the early node map, and initialize the
7772 * subsection-map relative to active online memory ranges to
7773 * enable future "sub-section" extensions of the memory map.
7775 pr_info("Early memory node ranges\n");
7776 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7777 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7778 (u64)start_pfn << PAGE_SHIFT,
7779 ((u64)end_pfn << PAGE_SHIFT) - 1);
7780 subsection_map_init(start_pfn, end_pfn - start_pfn);
7783 /* Initialise every node */
7784 mminit_verify_pageflags_layout();
7785 setup_nr_node_ids();
7786 for_each_online_node(nid) {
7787 pg_data_t *pgdat = NODE_DATA(nid);
7788 free_area_init_node(nid);
7790 /* Any memory on that node */
7791 if (pgdat->node_present_pages)
7792 node_set_state(nid, N_MEMORY);
7793 check_for_memory(pgdat, nid);
7797 static int __init cmdline_parse_core(char *p, unsigned long *core,
7798 unsigned long *percent)
7800 unsigned long long coremem;
7806 /* Value may be a percentage of total memory, otherwise bytes */
7807 coremem = simple_strtoull(p, &endptr, 0);
7808 if (*endptr == '%') {
7809 /* Paranoid check for percent values greater than 100 */
7810 WARN_ON(coremem > 100);
7814 coremem = memparse(p, &p);
7815 /* Paranoid check that UL is enough for the coremem value */
7816 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7818 *core = coremem >> PAGE_SHIFT;
7825 * kernelcore=size sets the amount of memory for use for allocations that
7826 * cannot be reclaimed or migrated.
7828 static int __init cmdline_parse_kernelcore(char *p)
7830 /* parse kernelcore=mirror */
7831 if (parse_option_str(p, "mirror")) {
7832 mirrored_kernelcore = true;
7836 return cmdline_parse_core(p, &required_kernelcore,
7837 &required_kernelcore_percent);
7841 * movablecore=size sets the amount of memory for use for allocations that
7842 * can be reclaimed or migrated.
7844 static int __init cmdline_parse_movablecore(char *p)
7846 return cmdline_parse_core(p, &required_movablecore,
7847 &required_movablecore_percent);
7850 early_param("kernelcore", cmdline_parse_kernelcore);
7851 early_param("movablecore", cmdline_parse_movablecore);
7853 void adjust_managed_page_count(struct page *page, long count)
7855 atomic_long_add(count, &page_zone(page)->managed_pages);
7856 totalram_pages_add(count);
7857 #ifdef CONFIG_HIGHMEM
7858 if (PageHighMem(page))
7859 totalhigh_pages_add(count);
7862 EXPORT_SYMBOL(adjust_managed_page_count);
7864 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7867 unsigned long pages = 0;
7869 start = (void *)PAGE_ALIGN((unsigned long)start);
7870 end = (void *)((unsigned long)end & PAGE_MASK);
7871 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7872 struct page *page = virt_to_page(pos);
7873 void *direct_map_addr;
7876 * 'direct_map_addr' might be different from 'pos'
7877 * because some architectures' virt_to_page()
7878 * work with aliases. Getting the direct map
7879 * address ensures that we get a _writeable_
7880 * alias for the memset().
7882 direct_map_addr = page_address(page);
7884 * Perform a kasan-unchecked memset() since this memory
7885 * has not been initialized.
7887 direct_map_addr = kasan_reset_tag(direct_map_addr);
7888 if ((unsigned int)poison <= 0xFF)
7889 memset(direct_map_addr, poison, PAGE_SIZE);
7891 free_reserved_page(page);
7895 pr_info("Freeing %s memory: %ldK\n",
7896 s, pages << (PAGE_SHIFT - 10));
7901 void __init mem_init_print_info(void)
7903 unsigned long physpages, codesize, datasize, rosize, bss_size;
7904 unsigned long init_code_size, init_data_size;
7906 physpages = get_num_physpages();
7907 codesize = _etext - _stext;
7908 datasize = _edata - _sdata;
7909 rosize = __end_rodata - __start_rodata;
7910 bss_size = __bss_stop - __bss_start;
7911 init_data_size = __init_end - __init_begin;
7912 init_code_size = _einittext - _sinittext;
7915 * Detect special cases and adjust section sizes accordingly:
7916 * 1) .init.* may be embedded into .data sections
7917 * 2) .init.text.* may be out of [__init_begin, __init_end],
7918 * please refer to arch/tile/kernel/vmlinux.lds.S.
7919 * 3) .rodata.* may be embedded into .text or .data sections.
7921 #define adj_init_size(start, end, size, pos, adj) \
7923 if (start <= pos && pos < end && size > adj) \
7927 adj_init_size(__init_begin, __init_end, init_data_size,
7928 _sinittext, init_code_size);
7929 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7930 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7931 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7932 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7934 #undef adj_init_size
7936 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7937 #ifdef CONFIG_HIGHMEM
7941 nr_free_pages() << (PAGE_SHIFT - 10),
7942 physpages << (PAGE_SHIFT - 10),
7943 codesize >> 10, datasize >> 10, rosize >> 10,
7944 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7945 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7946 totalcma_pages << (PAGE_SHIFT - 10)
7947 #ifdef CONFIG_HIGHMEM
7948 , totalhigh_pages() << (PAGE_SHIFT - 10)
7954 * set_dma_reserve - set the specified number of pages reserved in the first zone
7955 * @new_dma_reserve: The number of pages to mark reserved
7957 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7958 * In the DMA zone, a significant percentage may be consumed by kernel image
7959 * and other unfreeable allocations which can skew the watermarks badly. This
7960 * function may optionally be used to account for unfreeable pages in the
7961 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7962 * smaller per-cpu batchsize.
7964 void __init set_dma_reserve(unsigned long new_dma_reserve)
7966 dma_reserve = new_dma_reserve;
7969 static int page_alloc_cpu_dead(unsigned int cpu)
7972 lru_add_drain_cpu(cpu);
7976 * Spill the event counters of the dead processor
7977 * into the current processors event counters.
7978 * This artificially elevates the count of the current
7981 vm_events_fold_cpu(cpu);
7984 * Zero the differential counters of the dead processor
7985 * so that the vm statistics are consistent.
7987 * This is only okay since the processor is dead and cannot
7988 * race with what we are doing.
7990 cpu_vm_stats_fold(cpu);
7995 int hashdist = HASHDIST_DEFAULT;
7997 static int __init set_hashdist(char *str)
8001 hashdist = simple_strtoul(str, &str, 0);
8004 __setup("hashdist=", set_hashdist);
8007 void __init page_alloc_init(void)
8012 if (num_node_state(N_MEMORY) == 1)
8016 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8017 "mm/page_alloc:dead", NULL,
8018 page_alloc_cpu_dead);
8023 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8024 * or min_free_kbytes changes.
8026 static void calculate_totalreserve_pages(void)
8028 struct pglist_data *pgdat;
8029 unsigned long reserve_pages = 0;
8030 enum zone_type i, j;
8032 for_each_online_pgdat(pgdat) {
8034 pgdat->totalreserve_pages = 0;
8036 for (i = 0; i < MAX_NR_ZONES; i++) {
8037 struct zone *zone = pgdat->node_zones + i;
8039 unsigned long managed_pages = zone_managed_pages(zone);
8041 /* Find valid and maximum lowmem_reserve in the zone */
8042 for (j = i; j < MAX_NR_ZONES; j++) {
8043 if (zone->lowmem_reserve[j] > max)
8044 max = zone->lowmem_reserve[j];
8047 /* we treat the high watermark as reserved pages. */
8048 max += high_wmark_pages(zone);
8050 if (max > managed_pages)
8051 max = managed_pages;
8053 pgdat->totalreserve_pages += max;
8055 reserve_pages += max;
8058 totalreserve_pages = reserve_pages;
8062 * setup_per_zone_lowmem_reserve - called whenever
8063 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8064 * has a correct pages reserved value, so an adequate number of
8065 * pages are left in the zone after a successful __alloc_pages().
8067 static void setup_per_zone_lowmem_reserve(void)
8069 struct pglist_data *pgdat;
8070 enum zone_type i, j;
8072 for_each_online_pgdat(pgdat) {
8073 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8074 struct zone *zone = &pgdat->node_zones[i];
8075 int ratio = sysctl_lowmem_reserve_ratio[i];
8076 bool clear = !ratio || !zone_managed_pages(zone);
8077 unsigned long managed_pages = 0;
8079 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8081 zone->lowmem_reserve[j] = 0;
8083 struct zone *upper_zone = &pgdat->node_zones[j];
8085 managed_pages += zone_managed_pages(upper_zone);
8086 zone->lowmem_reserve[j] = managed_pages / ratio;
8092 /* update totalreserve_pages */
8093 calculate_totalreserve_pages();
8096 static void __setup_per_zone_wmarks(void)
8098 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8099 unsigned long lowmem_pages = 0;
8101 unsigned long flags;
8103 /* Calculate total number of !ZONE_HIGHMEM pages */
8104 for_each_zone(zone) {
8105 if (!is_highmem(zone))
8106 lowmem_pages += zone_managed_pages(zone);
8109 for_each_zone(zone) {
8112 spin_lock_irqsave(&zone->lock, flags);
8113 tmp = (u64)pages_min * zone_managed_pages(zone);
8114 do_div(tmp, lowmem_pages);
8115 if (is_highmem(zone)) {
8117 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8118 * need highmem pages, so cap pages_min to a small
8121 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8122 * deltas control async page reclaim, and so should
8123 * not be capped for highmem.
8125 unsigned long min_pages;
8127 min_pages = zone_managed_pages(zone) / 1024;
8128 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8129 zone->_watermark[WMARK_MIN] = min_pages;
8132 * If it's a lowmem zone, reserve a number of pages
8133 * proportionate to the zone's size.
8135 zone->_watermark[WMARK_MIN] = tmp;
8139 * Set the kswapd watermarks distance according to the
8140 * scale factor in proportion to available memory, but
8141 * ensure a minimum size on small systems.
8143 tmp = max_t(u64, tmp >> 2,
8144 mult_frac(zone_managed_pages(zone),
8145 watermark_scale_factor, 10000));
8147 zone->watermark_boost = 0;
8148 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8149 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8151 spin_unlock_irqrestore(&zone->lock, flags);
8154 /* update totalreserve_pages */
8155 calculate_totalreserve_pages();
8159 * setup_per_zone_wmarks - called when min_free_kbytes changes
8160 * or when memory is hot-{added|removed}
8162 * Ensures that the watermark[min,low,high] values for each zone are set
8163 * correctly with respect to min_free_kbytes.
8165 void setup_per_zone_wmarks(void)
8167 static DEFINE_SPINLOCK(lock);
8170 __setup_per_zone_wmarks();
8175 * Initialise min_free_kbytes.
8177 * For small machines we want it small (128k min). For large machines
8178 * we want it large (256MB max). But it is not linear, because network
8179 * bandwidth does not increase linearly with machine size. We use
8181 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8182 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8198 int __meminit init_per_zone_wmark_min(void)
8200 unsigned long lowmem_kbytes;
8201 int new_min_free_kbytes;
8203 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8204 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8206 if (new_min_free_kbytes > user_min_free_kbytes) {
8207 min_free_kbytes = new_min_free_kbytes;
8208 if (min_free_kbytes < 128)
8209 min_free_kbytes = 128;
8210 if (min_free_kbytes > 262144)
8211 min_free_kbytes = 262144;
8213 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8214 new_min_free_kbytes, user_min_free_kbytes);
8216 setup_per_zone_wmarks();
8217 refresh_zone_stat_thresholds();
8218 setup_per_zone_lowmem_reserve();
8221 setup_min_unmapped_ratio();
8222 setup_min_slab_ratio();
8225 khugepaged_min_free_kbytes_update();
8229 postcore_initcall(init_per_zone_wmark_min)
8232 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8233 * that we can call two helper functions whenever min_free_kbytes
8236 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8237 void *buffer, size_t *length, loff_t *ppos)
8241 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8246 user_min_free_kbytes = min_free_kbytes;
8247 setup_per_zone_wmarks();
8252 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8253 void *buffer, size_t *length, loff_t *ppos)
8257 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8262 setup_per_zone_wmarks();
8268 static void setup_min_unmapped_ratio(void)
8273 for_each_online_pgdat(pgdat)
8274 pgdat->min_unmapped_pages = 0;
8277 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8278 sysctl_min_unmapped_ratio) / 100;
8282 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8283 void *buffer, size_t *length, loff_t *ppos)
8287 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8291 setup_min_unmapped_ratio();
8296 static void setup_min_slab_ratio(void)
8301 for_each_online_pgdat(pgdat)
8302 pgdat->min_slab_pages = 0;
8305 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8306 sysctl_min_slab_ratio) / 100;
8309 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8310 void *buffer, size_t *length, loff_t *ppos)
8314 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8318 setup_min_slab_ratio();
8325 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8326 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8327 * whenever sysctl_lowmem_reserve_ratio changes.
8329 * The reserve ratio obviously has absolutely no relation with the
8330 * minimum watermarks. The lowmem reserve ratio can only make sense
8331 * if in function of the boot time zone sizes.
8333 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8334 void *buffer, size_t *length, loff_t *ppos)
8338 proc_dointvec_minmax(table, write, buffer, length, ppos);
8340 for (i = 0; i < MAX_NR_ZONES; i++) {
8341 if (sysctl_lowmem_reserve_ratio[i] < 1)
8342 sysctl_lowmem_reserve_ratio[i] = 0;
8345 setup_per_zone_lowmem_reserve();
8350 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8351 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8352 * pagelist can have before it gets flushed back to buddy allocator.
8354 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8355 void *buffer, size_t *length, loff_t *ppos)
8358 int old_percpu_pagelist_fraction;
8361 mutex_lock(&pcp_batch_high_lock);
8362 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8364 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8365 if (!write || ret < 0)
8368 /* Sanity checking to avoid pcp imbalance */
8369 if (percpu_pagelist_fraction &&
8370 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8371 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8377 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8380 for_each_populated_zone(zone)
8381 zone_set_pageset_high_and_batch(zone);
8383 mutex_unlock(&pcp_batch_high_lock);
8387 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8389 * Returns the number of pages that arch has reserved but
8390 * is not known to alloc_large_system_hash().
8392 static unsigned long __init arch_reserved_kernel_pages(void)
8399 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8400 * machines. As memory size is increased the scale is also increased but at
8401 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8402 * quadruples the scale is increased by one, which means the size of hash table
8403 * only doubles, instead of quadrupling as well.
8404 * Because 32-bit systems cannot have large physical memory, where this scaling
8405 * makes sense, it is disabled on such platforms.
8407 #if __BITS_PER_LONG > 32
8408 #define ADAPT_SCALE_BASE (64ul << 30)
8409 #define ADAPT_SCALE_SHIFT 2
8410 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8414 * allocate a large system hash table from bootmem
8415 * - it is assumed that the hash table must contain an exact power-of-2
8416 * quantity of entries
8417 * - limit is the number of hash buckets, not the total allocation size
8419 void *__init alloc_large_system_hash(const char *tablename,
8420 unsigned long bucketsize,
8421 unsigned long numentries,
8424 unsigned int *_hash_shift,
8425 unsigned int *_hash_mask,
8426 unsigned long low_limit,
8427 unsigned long high_limit)
8429 unsigned long long max = high_limit;
8430 unsigned long log2qty, size;
8436 /* allow the kernel cmdline to have a say */
8438 /* round applicable memory size up to nearest megabyte */
8439 numentries = nr_kernel_pages;
8440 numentries -= arch_reserved_kernel_pages();
8442 /* It isn't necessary when PAGE_SIZE >= 1MB */
8443 if (PAGE_SHIFT < 20)
8444 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8446 #if __BITS_PER_LONG > 32
8448 unsigned long adapt;
8450 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8451 adapt <<= ADAPT_SCALE_SHIFT)
8456 /* limit to 1 bucket per 2^scale bytes of low memory */
8457 if (scale > PAGE_SHIFT)
8458 numentries >>= (scale - PAGE_SHIFT);
8460 numentries <<= (PAGE_SHIFT - scale);
8462 /* Make sure we've got at least a 0-order allocation.. */
8463 if (unlikely(flags & HASH_SMALL)) {
8464 /* Makes no sense without HASH_EARLY */
8465 WARN_ON(!(flags & HASH_EARLY));
8466 if (!(numentries >> *_hash_shift)) {
8467 numentries = 1UL << *_hash_shift;
8468 BUG_ON(!numentries);
8470 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8471 numentries = PAGE_SIZE / bucketsize;
8473 numentries = roundup_pow_of_two(numentries);
8475 /* limit allocation size to 1/16 total memory by default */
8477 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8478 do_div(max, bucketsize);
8480 max = min(max, 0x80000000ULL);
8482 if (numentries < low_limit)
8483 numentries = low_limit;
8484 if (numentries > max)
8487 log2qty = ilog2(numentries);
8489 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8492 size = bucketsize << log2qty;
8493 if (flags & HASH_EARLY) {
8494 if (flags & HASH_ZERO)
8495 table = memblock_alloc(size, SMP_CACHE_BYTES);
8497 table = memblock_alloc_raw(size,
8499 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8500 table = __vmalloc(size, gfp_flags);
8502 huge = is_vm_area_hugepages(table);
8505 * If bucketsize is not a power-of-two, we may free
8506 * some pages at the end of hash table which
8507 * alloc_pages_exact() automatically does
8509 table = alloc_pages_exact(size, gfp_flags);
8510 kmemleak_alloc(table, size, 1, gfp_flags);
8512 } while (!table && size > PAGE_SIZE && --log2qty);
8515 panic("Failed to allocate %s hash table\n", tablename);
8517 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8518 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8519 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8522 *_hash_shift = log2qty;
8524 *_hash_mask = (1 << log2qty) - 1;
8530 * This function checks whether pageblock includes unmovable pages or not.
8532 * PageLRU check without isolation or lru_lock could race so that
8533 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8534 * check without lock_page also may miss some movable non-lru pages at
8535 * race condition. So you can't expect this function should be exact.
8537 * Returns a page without holding a reference. If the caller wants to
8538 * dereference that page (e.g., dumping), it has to make sure that it
8539 * cannot get removed (e.g., via memory unplug) concurrently.
8542 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8543 int migratetype, int flags)
8545 unsigned long iter = 0;
8546 unsigned long pfn = page_to_pfn(page);
8547 unsigned long offset = pfn % pageblock_nr_pages;
8549 if (is_migrate_cma_page(page)) {
8551 * CMA allocations (alloc_contig_range) really need to mark
8552 * isolate CMA pageblocks even when they are not movable in fact
8553 * so consider them movable here.
8555 if (is_migrate_cma(migratetype))
8561 for (; iter < pageblock_nr_pages - offset; iter++) {
8562 if (!pfn_valid_within(pfn + iter))
8565 page = pfn_to_page(pfn + iter);
8568 * Both, bootmem allocations and memory holes are marked
8569 * PG_reserved and are unmovable. We can even have unmovable
8570 * allocations inside ZONE_MOVABLE, for example when
8571 * specifying "movablecore".
8573 if (PageReserved(page))
8577 * If the zone is movable and we have ruled out all reserved
8578 * pages then it should be reasonably safe to assume the rest
8581 if (zone_idx(zone) == ZONE_MOVABLE)
8585 * Hugepages are not in LRU lists, but they're movable.
8586 * THPs are on the LRU, but need to be counted as #small pages.
8587 * We need not scan over tail pages because we don't
8588 * handle each tail page individually in migration.
8590 if (PageHuge(page) || PageTransCompound(page)) {
8591 struct page *head = compound_head(page);
8592 unsigned int skip_pages;
8594 if (PageHuge(page)) {
8595 if (!hugepage_migration_supported(page_hstate(head)))
8597 } else if (!PageLRU(head) && !__PageMovable(head)) {
8601 skip_pages = compound_nr(head) - (page - head);
8602 iter += skip_pages - 1;
8607 * We can't use page_count without pin a page
8608 * because another CPU can free compound page.
8609 * This check already skips compound tails of THP
8610 * because their page->_refcount is zero at all time.
8612 if (!page_ref_count(page)) {
8613 if (PageBuddy(page))
8614 iter += (1 << buddy_order(page)) - 1;
8619 * The HWPoisoned page may be not in buddy system, and
8620 * page_count() is not 0.
8622 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8626 * We treat all PageOffline() pages as movable when offlining
8627 * to give drivers a chance to decrement their reference count
8628 * in MEM_GOING_OFFLINE in order to indicate that these pages
8629 * can be offlined as there are no direct references anymore.
8630 * For actually unmovable PageOffline() where the driver does
8631 * not support this, we will fail later when trying to actually
8632 * move these pages that still have a reference count > 0.
8633 * (false negatives in this function only)
8635 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8638 if (__PageMovable(page) || PageLRU(page))
8642 * If there are RECLAIMABLE pages, we need to check
8643 * it. But now, memory offline itself doesn't call
8644 * shrink_node_slabs() and it still to be fixed.
8651 #ifdef CONFIG_CONTIG_ALLOC
8652 static unsigned long pfn_max_align_down(unsigned long pfn)
8654 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8655 pageblock_nr_pages) - 1);
8658 static unsigned long pfn_max_align_up(unsigned long pfn)
8660 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8661 pageblock_nr_pages));
8664 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8665 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8666 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8667 static void alloc_contig_dump_pages(struct list_head *page_list)
8669 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8671 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8675 list_for_each_entry(page, page_list, lru)
8676 dump_page(page, "migration failure");
8680 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8685 /* [start, end) must belong to a single zone. */
8686 static int __alloc_contig_migrate_range(struct compact_control *cc,
8687 unsigned long start, unsigned long end)
8689 /* This function is based on compact_zone() from compaction.c. */
8690 unsigned int nr_reclaimed;
8691 unsigned long pfn = start;
8692 unsigned int tries = 0;
8694 struct migration_target_control mtc = {
8695 .nid = zone_to_nid(cc->zone),
8696 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8699 lru_cache_disable();
8701 while (pfn < end || !list_empty(&cc->migratepages)) {
8702 if (fatal_signal_pending(current)) {
8707 if (list_empty(&cc->migratepages)) {
8708 cc->nr_migratepages = 0;
8709 ret = isolate_migratepages_range(cc, pfn, end);
8710 if (ret && ret != -EAGAIN)
8712 pfn = cc->migrate_pfn;
8714 } else if (++tries == 5) {
8719 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8721 cc->nr_migratepages -= nr_reclaimed;
8723 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8724 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8727 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8728 * to retry again over this error, so do the same here.
8736 alloc_contig_dump_pages(&cc->migratepages);
8737 putback_movable_pages(&cc->migratepages);
8744 * alloc_contig_range() -- tries to allocate given range of pages
8745 * @start: start PFN to allocate
8746 * @end: one-past-the-last PFN to allocate
8747 * @migratetype: migratetype of the underlying pageblocks (either
8748 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8749 * in range must have the same migratetype and it must
8750 * be either of the two.
8751 * @gfp_mask: GFP mask to use during compaction
8753 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8754 * aligned. The PFN range must belong to a single zone.
8756 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8757 * pageblocks in the range. Once isolated, the pageblocks should not
8758 * be modified by others.
8760 * Return: zero on success or negative error code. On success all
8761 * pages which PFN is in [start, end) are allocated for the caller and
8762 * need to be freed with free_contig_range().
8764 int alloc_contig_range(unsigned long start, unsigned long end,
8765 unsigned migratetype, gfp_t gfp_mask)
8767 unsigned long outer_start, outer_end;
8771 struct compact_control cc = {
8772 .nr_migratepages = 0,
8774 .zone = page_zone(pfn_to_page(start)),
8775 .mode = MIGRATE_SYNC,
8776 .ignore_skip_hint = true,
8777 .no_set_skip_hint = true,
8778 .gfp_mask = current_gfp_context(gfp_mask),
8779 .alloc_contig = true,
8781 INIT_LIST_HEAD(&cc.migratepages);
8784 * What we do here is we mark all pageblocks in range as
8785 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8786 * have different sizes, and due to the way page allocator
8787 * work, we align the range to biggest of the two pages so
8788 * that page allocator won't try to merge buddies from
8789 * different pageblocks and change MIGRATE_ISOLATE to some
8790 * other migration type.
8792 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8793 * migrate the pages from an unaligned range (ie. pages that
8794 * we are interested in). This will put all the pages in
8795 * range back to page allocator as MIGRATE_ISOLATE.
8797 * When this is done, we take the pages in range from page
8798 * allocator removing them from the buddy system. This way
8799 * page allocator will never consider using them.
8801 * This lets us mark the pageblocks back as
8802 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8803 * aligned range but not in the unaligned, original range are
8804 * put back to page allocator so that buddy can use them.
8807 ret = start_isolate_page_range(pfn_max_align_down(start),
8808 pfn_max_align_up(end), migratetype, 0);
8812 drain_all_pages(cc.zone);
8815 * In case of -EBUSY, we'd like to know which page causes problem.
8816 * So, just fall through. test_pages_isolated() has a tracepoint
8817 * which will report the busy page.
8819 * It is possible that busy pages could become available before
8820 * the call to test_pages_isolated, and the range will actually be
8821 * allocated. So, if we fall through be sure to clear ret so that
8822 * -EBUSY is not accidentally used or returned to caller.
8824 ret = __alloc_contig_migrate_range(&cc, start, end);
8825 if (ret && ret != -EBUSY)
8830 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8831 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8832 * more, all pages in [start, end) are free in page allocator.
8833 * What we are going to do is to allocate all pages from
8834 * [start, end) (that is remove them from page allocator).
8836 * The only problem is that pages at the beginning and at the
8837 * end of interesting range may be not aligned with pages that
8838 * page allocator holds, ie. they can be part of higher order
8839 * pages. Because of this, we reserve the bigger range and
8840 * once this is done free the pages we are not interested in.
8842 * We don't have to hold zone->lock here because the pages are
8843 * isolated thus they won't get removed from buddy.
8847 outer_start = start;
8848 while (!PageBuddy(pfn_to_page(outer_start))) {
8849 if (++order >= MAX_ORDER) {
8850 outer_start = start;
8853 outer_start &= ~0UL << order;
8856 if (outer_start != start) {
8857 order = buddy_order(pfn_to_page(outer_start));
8860 * outer_start page could be small order buddy page and
8861 * it doesn't include start page. Adjust outer_start
8862 * in this case to report failed page properly
8863 * on tracepoint in test_pages_isolated()
8865 if (outer_start + (1UL << order) <= start)
8866 outer_start = start;
8869 /* Make sure the range is really isolated. */
8870 if (test_pages_isolated(outer_start, end, 0)) {
8875 /* Grab isolated pages from freelists. */
8876 outer_end = isolate_freepages_range(&cc, outer_start, end);
8882 /* Free head and tail (if any) */
8883 if (start != outer_start)
8884 free_contig_range(outer_start, start - outer_start);
8885 if (end != outer_end)
8886 free_contig_range(end, outer_end - end);
8889 undo_isolate_page_range(pfn_max_align_down(start),
8890 pfn_max_align_up(end), migratetype);
8893 EXPORT_SYMBOL(alloc_contig_range);
8895 static int __alloc_contig_pages(unsigned long start_pfn,
8896 unsigned long nr_pages, gfp_t gfp_mask)
8898 unsigned long end_pfn = start_pfn + nr_pages;
8900 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8904 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8905 unsigned long nr_pages)
8907 unsigned long i, end_pfn = start_pfn + nr_pages;
8910 for (i = start_pfn; i < end_pfn; i++) {
8911 page = pfn_to_online_page(i);
8915 if (page_zone(page) != z)
8918 if (PageReserved(page))
8924 static bool zone_spans_last_pfn(const struct zone *zone,
8925 unsigned long start_pfn, unsigned long nr_pages)
8927 unsigned long last_pfn = start_pfn + nr_pages - 1;
8929 return zone_spans_pfn(zone, last_pfn);
8933 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8934 * @nr_pages: Number of contiguous pages to allocate
8935 * @gfp_mask: GFP mask to limit search and used during compaction
8937 * @nodemask: Mask for other possible nodes
8939 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8940 * on an applicable zonelist to find a contiguous pfn range which can then be
8941 * tried for allocation with alloc_contig_range(). This routine is intended
8942 * for allocation requests which can not be fulfilled with the buddy allocator.
8944 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8945 * power of two then the alignment is guaranteed to be to the given nr_pages
8946 * (e.g. 1GB request would be aligned to 1GB).
8948 * Allocated pages can be freed with free_contig_range() or by manually calling
8949 * __free_page() on each allocated page.
8951 * Return: pointer to contiguous pages on success, or NULL if not successful.
8953 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8954 int nid, nodemask_t *nodemask)
8956 unsigned long ret, pfn, flags;
8957 struct zonelist *zonelist;
8961 zonelist = node_zonelist(nid, gfp_mask);
8962 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8963 gfp_zone(gfp_mask), nodemask) {
8964 spin_lock_irqsave(&zone->lock, flags);
8966 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8967 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8968 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8970 * We release the zone lock here because
8971 * alloc_contig_range() will also lock the zone
8972 * at some point. If there's an allocation
8973 * spinning on this lock, it may win the race
8974 * and cause alloc_contig_range() to fail...
8976 spin_unlock_irqrestore(&zone->lock, flags);
8977 ret = __alloc_contig_pages(pfn, nr_pages,
8980 return pfn_to_page(pfn);
8981 spin_lock_irqsave(&zone->lock, flags);
8985 spin_unlock_irqrestore(&zone->lock, flags);
8989 #endif /* CONFIG_CONTIG_ALLOC */
8991 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8993 unsigned long count = 0;
8995 for (; nr_pages--; pfn++) {
8996 struct page *page = pfn_to_page(pfn);
8998 count += page_count(page) != 1;
9001 WARN(count != 0, "%lu pages are still in use!\n", count);
9003 EXPORT_SYMBOL(free_contig_range);
9006 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9007 * page high values need to be recalculated.
9009 void __meminit zone_pcp_update(struct zone *zone)
9011 mutex_lock(&pcp_batch_high_lock);
9012 zone_set_pageset_high_and_batch(zone);
9013 mutex_unlock(&pcp_batch_high_lock);
9017 * Effectively disable pcplists for the zone by setting the high limit to 0
9018 * and draining all cpus. A concurrent page freeing on another CPU that's about
9019 * to put the page on pcplist will either finish before the drain and the page
9020 * will be drained, or observe the new high limit and skip the pcplist.
9022 * Must be paired with a call to zone_pcp_enable().
9024 void zone_pcp_disable(struct zone *zone)
9026 mutex_lock(&pcp_batch_high_lock);
9027 __zone_set_pageset_high_and_batch(zone, 0, 1);
9028 __drain_all_pages(zone, true);
9031 void zone_pcp_enable(struct zone *zone)
9033 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9034 mutex_unlock(&pcp_batch_high_lock);
9037 void zone_pcp_reset(struct zone *zone)
9040 struct per_cpu_pageset *pset;
9042 if (zone->pageset != &boot_pageset) {
9043 for_each_online_cpu(cpu) {
9044 pset = per_cpu_ptr(zone->pageset, cpu);
9045 drain_zonestat(zone, pset);
9047 free_percpu(zone->pageset);
9048 zone->pageset = &boot_pageset;
9052 #ifdef CONFIG_MEMORY_HOTREMOVE
9054 * All pages in the range must be in a single zone, must not contain holes,
9055 * must span full sections, and must be isolated before calling this function.
9057 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9059 unsigned long pfn = start_pfn;
9063 unsigned long flags;
9065 offline_mem_sections(pfn, end_pfn);
9066 zone = page_zone(pfn_to_page(pfn));
9067 spin_lock_irqsave(&zone->lock, flags);
9068 while (pfn < end_pfn) {
9069 page = pfn_to_page(pfn);
9071 * The HWPoisoned page may be not in buddy system, and
9072 * page_count() is not 0.
9074 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9079 * At this point all remaining PageOffline() pages have a
9080 * reference count of 0 and can simply be skipped.
9082 if (PageOffline(page)) {
9083 BUG_ON(page_count(page));
9084 BUG_ON(PageBuddy(page));
9089 BUG_ON(page_count(page));
9090 BUG_ON(!PageBuddy(page));
9091 order = buddy_order(page);
9092 del_page_from_free_list(page, zone, order);
9093 pfn += (1 << order);
9095 spin_unlock_irqrestore(&zone->lock, flags);
9099 bool is_free_buddy_page(struct page *page)
9101 struct zone *zone = page_zone(page);
9102 unsigned long pfn = page_to_pfn(page);
9103 unsigned long flags;
9106 spin_lock_irqsave(&zone->lock, flags);
9107 for (order = 0; order < MAX_ORDER; order++) {
9108 struct page *page_head = page - (pfn & ((1 << order) - 1));
9110 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9113 spin_unlock_irqrestore(&zone->lock, flags);
9115 return order < MAX_ORDER;
9118 #ifdef CONFIG_MEMORY_FAILURE
9120 * Break down a higher-order page in sub-pages, and keep our target out of
9123 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9124 struct page *target, int low, int high,
9127 unsigned long size = 1 << high;
9128 struct page *current_buddy, *next_page;
9130 while (high > low) {
9134 if (target >= &page[size]) {
9135 next_page = page + size;
9136 current_buddy = page;
9139 current_buddy = page + size;
9142 if (set_page_guard(zone, current_buddy, high, migratetype))
9145 if (current_buddy != target) {
9146 add_to_free_list(current_buddy, zone, high, migratetype);
9147 set_buddy_order(current_buddy, high);
9154 * Take a page that will be marked as poisoned off the buddy allocator.
9156 bool take_page_off_buddy(struct page *page)
9158 struct zone *zone = page_zone(page);
9159 unsigned long pfn = page_to_pfn(page);
9160 unsigned long flags;
9164 spin_lock_irqsave(&zone->lock, flags);
9165 for (order = 0; order < MAX_ORDER; order++) {
9166 struct page *page_head = page - (pfn & ((1 << order) - 1));
9167 int page_order = buddy_order(page_head);
9169 if (PageBuddy(page_head) && page_order >= order) {
9170 unsigned long pfn_head = page_to_pfn(page_head);
9171 int migratetype = get_pfnblock_migratetype(page_head,
9174 del_page_from_free_list(page_head, zone, page_order);
9175 break_down_buddy_pages(zone, page_head, page, 0,
9176 page_order, migratetype);
9177 if (!is_migrate_isolate(migratetype))
9178 __mod_zone_freepage_state(zone, -1, migratetype);
9182 if (page_count(page_head) > 0)
9185 spin_unlock_irqrestore(&zone->lock, flags);